Stochastic Operators, and an Infinite Dimensional Version of the Perron-Frobenius Theorem

Michael Taylor

1. Introduction

Let X be a compact Hausdorff space. The space $C(X)$ of continuous, real-valued functions on X is a Banach space, with norm

$$
\begin{equation*}
\|f\|_{\text {sup }}=\sup _{x \in X}|f(x)| . \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
A: C(X) \longrightarrow C(X) \tag{1.2}
\end{equation*}
$$

be a bounded linear map. We say A is positive if

$$
\begin{equation*}
f \in C(X), f \geq 0 \Longrightarrow A f \geq 0 \tag{1.3}
\end{equation*}
$$

We say A is strictly positive if

$$
\begin{equation*}
f \in C(X), f \geq 0, f \neq 0 \Longrightarrow A f(x)>0, \quad \forall x \in X \tag{1.4}
\end{equation*}
$$

We say A is primitive if A is positive and some power A^{m} is strictly positive. We say A is irreducible if A is positive and

$$
\begin{equation*}
f \in C(X), f \geq 0, f \neq 0 \Longrightarrow \sup _{k} A^{k} f(x)>0, \quad \forall x \in X \tag{1.5}
\end{equation*}
$$

The dual of $C(X)$ is

$$
\begin{equation*}
\mathcal{M}(X)=C(X)^{\prime} \tag{1.6}
\end{equation*}
$$

where $\mathcal{M}(X)$ denotes the space of finite, signed, regular Borel measures on X. The norm on $\mathcal{M}(X)$ is the total variation, which satisfies

$$
\begin{equation*}
\|\mu\|_{\mathrm{TV}}=\sup \left\{\langle f, \mu\rangle: f \in C(X),\|f\|_{\text {sup }} \leq 1\right\} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle f, \mu\rangle=\int_{X} f d \mu \tag{1.8}
\end{equation*}
$$

The operator A in (1.2) has the adjoint

$$
\begin{equation*}
A^{t}: \mathcal{M}(X) \longrightarrow \mathcal{M}(X) \tag{1.9}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left\langle f, A^{t} \mu\right\rangle=\langle A f, \mu\rangle . \tag{1.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|A^{t}\right\|_{1}=\|A\|_{\infty} \tag{1.11}
\end{equation*}
$$

where $\|A\|_{\infty}$ denotes the operator norm of A on $C(X)$ and $\left\|A^{t}\right\|_{1}$ that of A^{t} on $\mathcal{M}(X)$. Note that, if A is positive, then

$$
\begin{equation*}
A^{t}: \mathcal{M}_{+}(X) \longrightarrow \mathcal{M}_{+}(X) \tag{1.12}
\end{equation*}
$$

where $\mathcal{M}_{+}(X)$ denotes the set of positive, finite, regular Borel measures on X.
A positive operator A on $C(X)$ is said to be a stochastic operator if, in addition,

$$
\begin{equation*}
A 1=1 . \tag{1.13}
\end{equation*}
$$

For such operators, we have

$$
\begin{equation*}
A^{t}: \mathcal{P}(X) \longrightarrow \mathcal{P}(X) \tag{1.14}
\end{equation*}
$$

where $\mathcal{P}(X)$ denotes the set of positive, regular Borel measures on X of total mass 1, i.e., probability measures on X.

The Perron-Frobenius theorem is a circle of results about the various sorts of operators defined above. The classical setting is the finite-dimensional case, i.e., where X is a finite point set. We establish such results here, in the infinite-dimensional setting. For a number of these results, we make the additional hypothesis that A in (1.2) is compact, which implies that A^{t} in (1.9) is compact.

In $\S 2$ we establish results in the Perron-Frobenius circle for stochastic operators. We first show that if A is a stochastic operator on $C(X)$, there exists $\mu \in \mathcal{P}(X)$ such that $A^{t} \mu=\mu$. (For this, compactness is not needed.) It follows that

$$
\begin{equation*}
A: V \longrightarrow V, \quad \text { where } V=\{f \in C(X):\langle f, \mu\rangle=0\} . \tag{1.15}
\end{equation*}
$$

We then show that if A is stochastic and strictly positive, then, for $f \in C(X)$,

$$
\begin{equation*}
f \notin \operatorname{Span}(1) \Longrightarrow\|A f\|_{\text {sup }}<\|f\|_{\text {sup }} \tag{1.16}
\end{equation*}
$$

This is used to show in Propositions 2.3-2.4 that if A is a compact, stochastic operator on $C(X)$, and A is strictly positive, or more generally if A is primitive, then $A_{V}=\left.A\right|_{V}$ has spectral radius $\rho\left(A_{V}\right)<1$. Using this result, we establish the following in Proposition 2.5.

Proposition 1.1. Let A be a compact, stochastic operator, and assume A is primitive. Then

$$
\begin{equation*}
A^{k} \longrightarrow P, \quad \text { as } \quad k \rightarrow \infty \tag{1.17}
\end{equation*}
$$

in operator norm, where P is the projection of $C(X)$ onto $\operatorname{Span}(1)$ that annihilates V.

It follows that

$$
\begin{equation*}
\left(A^{t}\right)^{k} \longrightarrow P^{t} \tag{1.18}
\end{equation*}
$$

in operator norm, and P^{t} is the projection of $\mathcal{M}(X)$ onto $\operatorname{Span}(\mu)$ that annihilates $W=\{\lambda \in \mathcal{M}(X):\langle 1, \lambda\rangle=0\}$. For P and P^{t}, we have the formulas

$$
\begin{equation*}
P f=\langle f, \mu\rangle 1, \quad P^{t} \lambda=\langle 1, \lambda\rangle \mu, \tag{1.19}
\end{equation*}
$$

given $f \in C(X), \lambda \in \mathcal{M}(X)$. Making use of Proposition 1.1, we establish in Propositions 2.7-2.8 the following.

Proposition 1.2. Let A be a compact, stochastic operator on $C(X)$, and assume A is irreducible. Then the measure $\mu \in \mathcal{P}(X)$ such that $A^{t} \mu=\mu$ is unique. Furthermore, 1 is an eigenvalue of A of algebraic multiplicity one, i.e., the generalized eigenspace $\mathcal{G E}(A, 1)$ is one-dimensional (equal to $\operatorname{Span}(1)$).

In $\S 3$ we turn to other classes of positive operators. We say a positive operator A on $C(X)$ is crypto-stochastic provided there exists

$$
\begin{equation*}
\psi \in C(X) \text { such that } \psi(x)>0, \forall x \in X, \text { and } A \psi=\psi \tag{1.20}
\end{equation*}
$$

Then, with $M_{\psi} f=\psi f, \widetilde{A}=M_{\psi}^{-1} A M_{\psi}$ is stochastic, and results of $\S 2$ apply. More generally, we say A is crypto-stochastic up to scaling if there exists $\lambda \in(0, \infty)$ such that $\lambda^{-1} A$ is crypto-stochastic. Clearly a necessary condition for A to have this property is that

$$
\begin{equation*}
A 1(x)=\varphi(x)>0, \quad \forall x \in X \tag{1.21}
\end{equation*}
$$

We show in Proposition 3.4 that if A is a positive, irreducible, compact operator on $C(X)$ satisfying three hypotheses, given as (H1)-(H3), then A is crypto-stochastic, up to scaling.

Turning away from crypto-stochastic operators, we establish the following in Proposition 3.5.
Proposition 1.3. Let A be a positive, compact operator on $C(X)$. Assume that A satisfies (1.21). Then there exists $\lambda>0$ and $\mu \in \mathcal{P}(X)$ such that $A^{t} \mu=\lambda \mu$.

In $\S 4$ we take a look at positive infinite matrices that define bounded linear maps

$$
\begin{equation*}
A: \ell^{\infty}(\mathbb{N}) \longrightarrow \ell^{\infty}(\mathbb{N}) \tag{1.22}
\end{equation*}
$$

Such maps are treated in [Sen]. We show that their analysis fits into the material developed in $\S \S 2-3$, via the natural, positivity-preserving, isometric isomorphism

$$
\begin{equation*}
\ell^{\infty}(\mathbb{N}) \approx C\left(X_{\mathbb{N}}\right) \tag{1.23}
\end{equation*}
$$

where $X_{\mathbb{N}}$ is the Stone-Cech compactification of \mathbb{N}, which can also be characterized as the maximal ideal space of $\ell^{\infty}(\mathbb{N})$, viewed as a commutative C^{*}-algebra.

2. Stochastic operators

Our first result in the circle of Perron-Frobenius theorems is the following. Actually, this result does not require A to be compact (nor does Proposition 2.2).
Proposition 2.1. Assume A is a stochastic operator. Then there exists

$$
\begin{equation*}
\mu \in \mathcal{P}(X) \text { such that } A^{t} \mu=\mu . \tag{2.1}
\end{equation*}
$$

Proof. The set $\mathcal{P}(X)$ is a compact, convex subset of $\mathcal{M}(X)$, endowed with the weak ${ }^{*}$ topology, and A^{t} is continuous on $\mathcal{M}(X)$ in this topology. Also,

$$
\begin{equation*}
A^{t}: \mathcal{P}(X) \longrightarrow \mathcal{P}(X) \tag{2.2}
\end{equation*}
$$

The existence of a fixed point $\mu \in \mathcal{P}(X)$ is then a consequence of the MarkovKakutani fixed point theorem (cf. [DS], p. 456).

Given μ as in (2.1), we set

$$
\begin{equation*}
V=\{f \in C(X):\langle f, \mu\rangle=0\}, \tag{2.3}
\end{equation*}
$$

a closed linear subspace of $C(X)$, of codimension 1 . We have a direct sum decomposition

$$
\begin{equation*}
C(X)=V \oplus \operatorname{Span}(1) \tag{2.4}
\end{equation*}
$$

Also, whenever (2.1) holds,

$$
\begin{equation*}
A: V \longrightarrow V \tag{2.5}
\end{equation*}
$$

since

$$
\begin{equation*}
\langle A f, \mu\rangle=\left\langle f, A^{t} \mu\right\rangle=\langle f, \mu\rangle . \tag{2.6}
\end{equation*}
$$

Proposition 2.2. Let A be a stochastic operator. Assume in addition that A is strictly positive, so (1.4) holds. Then, for $f \in C(X)$,

$$
\begin{equation*}
f \notin \operatorname{Span}(1) \Longrightarrow\|A f\|_{\text {sup }}<\|f\|_{\text {sup }} \tag{2.7}
\end{equation*}
$$

Proof. It suffices to treat the case $\|f\|_{\text {sup }}=1$, so $-1 \leq f \leq 1$. If $f(x)<1$ for some x, there exists $\varphi \in C(X)$ such that $\varphi \geq 0, \varphi(x)>0$, and $f+\varphi \leq 1$. Hence $A f+A \varphi \leq 1$. The hypothesis (1.4) implies $A \varphi(x)>0$ for all $x \in X$, so $\sup A f(x)<1$. Similarly, if $f(x)>-1$ for some $x \in X$, we have $\inf A f(x)>-1$. If $-1 \leq f \leq 1$ and $f \notin \operatorname{Span}(1)$, both of these conditions hold, and we have (2.7).

Before stating the next result, we note that if A is a stochastic operator on $C(X)$, then

$$
\begin{equation*}
\|A\|_{\infty}=\left\|A^{t}\right\|_{1}=1 \tag{2.8}
\end{equation*}
$$

Also, having (2.5), let us denote the restriction of A to V by A_{V}.

Proposition 2.3. Let A be a compact stochastic operator, and assume A is strictly positive. Then

$$
\begin{equation*}
\alpha \in \operatorname{Spec} A_{V} \Longrightarrow|\alpha|<1 \tag{2.9}
\end{equation*}
$$

Hence the spectral radius of A_{V} is <1, i.e.,

$$
\begin{equation*}
\rho\left(A_{V}\right)<1 . \tag{2.10}
\end{equation*}
$$

Proof. Note that $A_{V}: V \rightarrow V$ is compact, so each nonzero $\alpha \in \operatorname{Spec}\left(A_{V}\right)$ must be an eigenvalue. The conclusion (2.9) then follows directly from (2.7). Also, compactness of A_{V} implies that $\operatorname{Spec} A_{V}$ is a countable subset of \mathbb{C}, whose only possible accumulation point is 0 . Hence (2.10) follows from (2.9).

Remark. We recall the following useful formula for the spectral radius:

$$
\begin{equation*}
\rho\left(A_{V}\right)=\limsup _{k \rightarrow \infty}\left\|A_{V}^{k}\right\|^{1 / k} \tag{2.11}
\end{equation*}
$$

The following result extends the scope of Proposition 2.3 a bit.
Proposition 2.4. Let A be a compact stochastic operator, and assume A is primitive, i.e.,

$$
\begin{equation*}
A^{m} \text { is strictly positive for some } m \in \mathbb{N} \text {. } \tag{2.12}
\end{equation*}
$$

Then the conclusions (2.9)-(2.10) hold.
Proof. We still have (2.5), and we can define A_{V} as before. Also $\left(A_{V}\right)^{m}=\left(A^{m}\right)_{V}$. Now if $\alpha \in \operatorname{Spec} A_{V}$, and $\alpha \neq 0$, compactness implies α is an eigenvalue of A_{V}, hence α^{m} is an eigenvalue of $\left(A_{V}\right)^{m}=\left(A^{m}\right)_{V}$. But Proposition 2.3 applies to A^{m}, so $\left|\alpha^{m}\right|<1$. This gives (2.9), and (2.10) follows.

Remark. In case $X=\{1,2\}$ so $C(X)=\mathbb{R}^{2}$, the following is an example of a stochastic matrix that is irreducible but not primitive:

$$
A=\left(\begin{array}{ll}
0 & 1 \tag{2.13}\\
1 & 0
\end{array}\right)
$$

Note that (2.9)-(2.10) fail for this matrix.

We can now prove the following key result.

Proposition 2.5. Let A be a compact stochastic operator, and assume A is primitive. Then

$$
\begin{equation*}
A^{k} \longrightarrow P, \quad \text { as } k \rightarrow \infty, \tag{2.14}
\end{equation*}
$$

in operator norm on $C(X)$, where P is the projection of $C(X)$ onto $\operatorname{Span}(1)$ that annihilates V.

Proof. We have

$$
\begin{align*}
A^{k} & =A^{k} P+A^{k}(I-P) \\
& =P+A_{V}^{k}(I-P), \tag{2.15}
\end{align*}
$$

so

$$
\begin{align*}
\left\|A^{k}-P\right\|_{\infty} & =\left\|A_{V}^{k}(I-P)\right\|_{\infty} \tag{2.16}\\
& \leq\left\|A_{V}^{k}\right\|_{\infty} \cdot\|I-P\|_{\infty}
\end{align*}
$$

and the fact that this converges to 0 (at an exponential rate) follows from (2.10)(2.11).

Corollary 2.6. In the setting of Proposition 2.5,

$$
\begin{equation*}
\left(A^{t}\right)^{k} \longrightarrow P^{t}, \quad \text { as } \quad k \rightarrow \infty, \tag{2.17}
\end{equation*}
$$

in operator norm on $\mathcal{M}(X)$. In this case, P^{t} is the projection of $\mathcal{M}(X)$ onto $\operatorname{Span}(\mu)$ that annihilates

$$
\begin{equation*}
W=\{\lambda \in \mathcal{M}(X):\langle 1, \lambda\rangle=0\} . \tag{2.18}
\end{equation*}
$$

Proof. To get (2.17), just apply the transpose to (2.15)-(2.16):

$$
\begin{equation*}
\left(A^{t}\right)^{k}=P^{t}+\left(A_{V}^{k}(I-P)\right)^{t}, \tag{2.19}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\left\|\left(A_{V}^{k}(I-P)\right)^{t}\right\|_{1}=\left\|A_{V}^{k}(I-P)\right\|_{\infty} . \tag{2.20}
\end{equation*}
$$

Let us note that P is given by the formula

$$
\begin{equation*}
P f=\langle f, \mu\rangle 1, \tag{2.21}
\end{equation*}
$$

and then the identity

$$
\begin{equation*}
\left\langle f, P^{t} \lambda\right\rangle=\langle P f, \lambda\rangle=\langle f, \mu\rangle\langle 1, \lambda\rangle \tag{2.22}
\end{equation*}
$$

yields the formula

$$
\begin{equation*}
P^{t} \lambda=\langle 1, \lambda\rangle \mu, \quad \text { for } \quad \lambda \in \mathcal{M}(X) . \tag{2.23}
\end{equation*}
$$

From (2.17) and (2.23), we deduce that, when A is a compact stochastic operator that is primitive, the measure μ in (2.1) is unique. The following extends the scope of this result.

Proposition 2.7. Let A be a compact stochastic operator on $C(X)$, and assume A is irreducible. Then the measure μ in (2.1) is unique.

Proof. Form

$$
\begin{equation*}
B=\sum_{k=1}^{\infty} 2^{-k} A^{k}=\frac{1}{2} A\left(I-\frac{1}{2} A\right)^{-1} \tag{2.24}
\end{equation*}
$$

which is a convergent series by (2.8), and defines a compact stochastic operator on $C(X)$. If A is irreducible, then B is strictly positive. Hence Proposition 2.3 and Corollary 2.6 apply to B. On the other hand, Proposition 2.1 applies to A, and clearly

$$
\begin{equation*}
\mu \in \mathcal{P}(X), A^{t} \mu=\mu \Longrightarrow B^{t} \mu=\mu \tag{2.25}
\end{equation*}
$$

By Corollary 2.6, applied to $B,\left(B^{t}\right)^{k} \rightarrow P^{t}$, given by (2.23). This establishes uniqueness of μ in (2.25).

Proposition 2.8. Let A be a compact stochastic operator on $C(X)$, and assume A is irreducible. Then 1 is an eigenvalue of A of algebraic multiplicity 1, i.e., the generalized eigenspace $\mathcal{G E}(A, 1)$ is 1-dimensional.

Proof. With B as in (2.24), we have $B-I=(A-I)(I-A / 2)^{-1}$, and hence

$$
\begin{equation*}
f \in \mathcal{G \mathcal { E }}(A, 1) \Longleftrightarrow f \in \mathcal{G \mathcal { E }}(B, 1) . \tag{2.26}
\end{equation*}
$$

But Proposition 2.3 applies to B, and the conclusion (2.9) for B_{V} implies $\mathcal{G E}(B, 1)$ has dimension 1.

3. Other classes of positive compact operators

We move on from compact stochastic operators to other classes of positive compact operators on $C(X)$. To begin, we say a positive operator A on $C(X)$ is crypto-stochastic if there exists

$$
\begin{equation*}
\psi \in C(X) \text { such that } \psi(x)>0, \forall x \in X, \text { and } A \psi=\psi \tag{3.1}
\end{equation*}
$$

Then, with $M_{\psi} f=\psi f$, we have the positive operator

$$
\begin{equation*}
\widetilde{A}=M_{\psi}^{-1} A M_{\psi}, \quad \text { stochastic } \tag{3.2}
\end{equation*}
$$

and the results of $\S 2$ apply to \widetilde{A}. Note that if A is strictly positive, resp., primitive, or irreducible, so is \widetilde{A}. Note also that strict positivity of ψ is required in order that M_{ψ}^{-1} be a well defined, bounded operator on $C(X)$. In connection with this, we have the following.

Proposition 3.1. Assume the positive operator A is irreducible. Then

$$
\begin{equation*}
\psi \in C(X), \psi \geq 0, \psi \neq 0, A \psi=\psi \Longrightarrow \psi(x)>0, \quad \forall x \in X \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
E=\sum_{k=1}^{\infty} \frac{1}{k!} A^{k}=e^{A}-I . \tag{3.4}
\end{equation*}
$$

If A is irreducible, then E is strictly positive. Now

$$
\begin{equation*}
A \psi=\psi \Longrightarrow E \psi=(e-1) \psi \tag{3.5}
\end{equation*}
$$

But $\psi \geq 0, \psi \neq 0 \Rightarrow E \psi(x)>0$ for all $x \in X$, so we have (3.4).
Clearly a necessary condition for a positive operator A on $C(X)$ to be cryptostochasitc is that

$$
\begin{equation*}
A 1(x)=\varphi(x)>0, \quad \forall x \in X \tag{3.6}
\end{equation*}
$$

However, this condition is not sufficient. For example, in one picks a positive $\lambda \neq 1$ and a strictly positive compact stochastic operator A_{0} on $C(X)$, the operator $A=\lambda A_{0}$ is positive and satisfies (3.6), but (3.1) cannot hold. This motivates the definition of a more general class of operators. We say a positive operator A on $C(X)$ is crypto-stochastic up to scaling if there exist

$$
\begin{equation*}
\psi \in C(X), \lambda \in(0, \infty) \text { such that } \psi(x)>0, \forall x \in X \text { and } A \psi=\lambda \psi \tag{3.7}
\end{equation*}
$$

In such a case, the operator $A^{\#}=\lambda^{-1} A$ is crypto-stochastic.
These considerations lead to the problem of determining when a positive, compact operator on $C(X)$ is crypto-stochastic, up to scaling. In connection with this, we mention the following weaker problem.

Problem PF. Given a positive, compact operator on $C(X)$, find

$$
\begin{equation*}
\psi \in C(X), \lambda>0 \text { such that } \psi \geq 0, \psi \neq 0, \text { and } A \psi=\lambda \psi \tag{3.8}
\end{equation*}
$$

The weakening consists in not requiring ψ in (3.8) to be strictly positive. Part of the classical Perron-Frobenius theory is that this problem is always solvable when X is a finite point set, so, for some $n \in \mathbb{N}, C(X) \approx \mathbb{R}^{n}$. Here is that result. We phrase its formulation and proof in a way that lends itself to extension beyond the finite case.

Proposition 3.2. Assume X has n points, $n \in \mathbb{N}$, and A is a positive operator on $C(X)$. Assume

$$
\begin{equation*}
f \in C(X), f \geq 0, f \neq 0 \Longrightarrow A f \neq 0 \tag{3.9}
\end{equation*}
$$

Then there exist $\lambda>0$ and $\psi \in C(X)$ satisfying (3.8).
Proof. Let ν_{0} be the probability measure on X that assigns the mass $1 / n$ to each of its points. With the notation

$$
\begin{equation*}
C_{+}(X)=\{f \in C(X): f \geq 0\} \tag{3.10}
\end{equation*}
$$

let

$$
\begin{equation*}
\Sigma=\left\{f \in C_{+}(X):\left\langle f, \nu_{0}\right\rangle=1\right\} . \tag{3.11}
\end{equation*}
$$

Thus Σ is a compact, convex subset of $C(X)$. We define

$$
\begin{equation*}
\Phi: \Sigma \longrightarrow \Sigma \tag{3.12}
\end{equation*}
$$

by

$$
\begin{equation*}
\Phi(f)=\frac{1}{\left\langle A f, \nu_{0}\right\rangle} A f \tag{3.13}
\end{equation*}
$$

The hypothesis (3.11) implies $\left\langle A f, \nu_{0}\right\rangle>0$ for all $f \in \Sigma$, and by compactness we have a positive lower bound. Now the Brouwer fixed point theorem applies to (3.13). (A proof of his result can be found in Chapter 1 of [T$]$.) Hence there exists $f \in \Sigma$ such that

$$
\begin{equation*}
A f=\left\langle A f, \nu_{0}\right\rangle f . \tag{3.14}
\end{equation*}
$$

This proves Proposition 3.2.
Recalling Proposition 3.1, we see that if X is a finite point set, every positive, irreducible A on $C(X)$ is crypto-stochastic, up to scaling.

We return to cases where $C(X)$ is infinite dimensional, and investigate ways to extend the proof of Proposition 3.2 to cover positive, compact operators on $C(X)$, under some additional hypotheses. To start, we make the following three hypotheses:
(H1) There is a measure $\nu \in \mathcal{P}(X)$ such that $\nu(U)>0$ for each nonempty open $U \subset X$. Equivalently,

$$
\begin{equation*}
f \in C(X), f \geq 0, f \neq 0 \Longrightarrow\langle f, \nu\rangle>0 \tag{3.15}
\end{equation*}
$$

(H2) The positive operator A satisfies

$$
\begin{equation*}
A: L^{1}(X, \nu) \longrightarrow C(X), \quad \text { compactly. } \tag{3.16}
\end{equation*}
$$

(H3) With $C_{+}(X)$ as in (3.10), and

$$
\begin{equation*}
\Sigma=\left\{f \in C_{+}(X):\langle f, \nu\rangle=1\right\} \tag{3.17}
\end{equation*}
$$

there is a $\delta>0$ such that

$$
\begin{equation*}
f \in \Sigma \Longrightarrow\|A f\|_{\text {sup }} \geq \delta \tag{3.18}
\end{equation*}
$$

These hypotheses imply that $A(\Sigma)$ is a relatively compact, convex subset of $C(X)$. The following is a useful improvement of (3.18).
Lemma 3.3. Under hypotheses (H1)-(H3), there exists $\alpha>0$ such that

$$
\begin{equation*}
f \in \Sigma \Longrightarrow\langle A f, \nu\rangle \geq \alpha \tag{3.19}
\end{equation*}
$$

Proof. If (3.19) fails, there exist $f_{k} \in \Sigma$ such that $\left\langle A f_{k}, \nu\right\rangle \leq 2^{-k}$. Since $A(\Sigma)$ is relatively compact in $C(X)$, we have a subsequence $f_{k_{j}}$ such that $A f_{k_{j}} \rightarrow g \in$ $C_{+}(X)$, uniformly. Consequently, $\langle g, \nu\rangle=0$, which by (H1), implies $g=0$. This contradicts the condition (3.18) in (H3).

Now define

$$
\begin{equation*}
\Phi: \Sigma \longrightarrow \Sigma, \quad \Phi(f)=\frac{1}{\langle A f, \nu\rangle} A f \tag{3.20}
\end{equation*}
$$

By (3.19), this is a well defined, continuous map, and the relative compactness of $A(\Sigma)$ in $C(X)$ yields

$$
\begin{equation*}
\Phi: \Sigma \longrightarrow \mathcal{K}, \tag{3.21}
\end{equation*}
$$

where \mathcal{K} is a compact, convex subset of $\Sigma \subset C(X)$. The Schauder fixed point theorem (a proof of which can be found in Chapter 13 of [T]) applies, to yield $\psi \in \mathcal{K} \subset \Sigma$ satisfying $\Phi(\psi)=\psi$, hence $A \psi=\langle A \psi, \nu\rangle \psi$. We have proved the first part of the following.

Proposition 3.4. Let $A: C(X) \rightarrow C(X)$ be a positive operator. Assume hypotheses (H1)-(H3). Then there exist $\lambda>0$ and $\psi \in C(X)$ such that (3.8) holds.

If also A is irreducible, then $A^{\#}=\lambda^{-1} A$ satisfies

$$
\begin{equation*}
A^{\#} \psi=\psi, \quad \text { and } \quad \psi(x)>0, \quad \forall x \in X \tag{3.22}
\end{equation*}
$$

and hence $A^{\#}$ is crypto-stochastic.
Proof. The first part was established above, and (3.22) follows from Proposition 3.1.

Suppose now that A_{0} is a compact, positive operator on $C(X)$ and that (H1)(H3) hold for $A=A_{0}^{m}$, for some $m \in \mathbb{N}$. If A_{0} is irreducible, so is A, so, with λ as in Proposition 3.4, $A_{1}^{m}=A^{\#}$ is crypto-stochastic, where $A_{1}=\lambda^{-1 / m} A_{0}$, and we have (3.22). It follows that there exists $\mu \in \mathcal{P}(X)$ such that $\left(A^{\#}\right)^{t} \mu=\mu$, and, with V as in (2.3), ψ as in (3.22), we have

$$
\begin{equation*}
C(X)=V \oplus \operatorname{Span}(\psi), \quad A^{\#}: V \rightarrow V . \tag{3.23}
\end{equation*}
$$

If $A^{\#}$ is primitive, so is $A^{\#}$. One deduces via Proposition 2.4 that $A_{V}^{\#}=\left.A^{\#}\right|_{V}$ has spectral radius $\rho<1$, and

$$
\begin{equation*}
\mathcal{G E}\left(A^{\#}, 1\right)=\operatorname{Span}(\psi) \tag{3.24}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
A^{\#}\left(A_{1} \psi\right)=A_{1}^{m+1} \psi=A_{1}\left(A^{\#} \psi\right)=A_{1} \psi, \tag{3.25}
\end{equation*}
$$

hence $A_{1} \psi \in \operatorname{Span}(\psi)$. If $A_{1} \psi=\beta \psi$, then $A^{\#} \psi=\beta^{m} \psi=\psi$, so $\beta^{m}=1$. Since A_{1} is positive, this implies $\beta=1$, so

$$
\begin{equation*}
A_{1} \psi=\psi \tag{3.26}
\end{equation*}
$$

Consequently A_{1} itself is crypto-stochastic.
We temporarily leave results related to (H1)-(H3), and look directly for positive measures on X that are eigenvectors of A^{t}.

Proposition 3.5. Let A be a positive, compact operator on $C(X)$. Assume that $\varphi=A 1$ satisfies (3.6). Then there exist $\lambda>0$ and $\mu \in \mathcal{P}(X)$ such that

$$
\begin{equation*}
A^{t} \mu=\lambda \mu . \tag{3.27}
\end{equation*}
$$

Proof. First note that there exists $\delta>0$ such that

$$
\begin{equation*}
\left\langle 1, A^{t} \mu\right\rangle=\langle\varphi, \mu\rangle \geq \delta, \quad \forall \mu \in \mathcal{P}(X), \tag{3.28}
\end{equation*}
$$

given (3.6). Hence we can define

$$
\begin{equation*}
\Psi: \mathcal{P}(X) \longrightarrow \mathcal{P}(X), \quad \Psi(\mu)=\frac{1}{\left\langle 1, A^{t} \mu\right\rangle} A^{t} \mu \tag{3.29}
\end{equation*}
$$

and Ψ is continuous. Since $A^{t}(\mathcal{P}(X))$ is a relatively compact, convex subset of $\mathcal{M}_{+}(X)$, we have

$$
\begin{equation*}
\Psi: \mathcal{P}(X) \longrightarrow \mathcal{K} \tag{3.30}
\end{equation*}
$$

where \mathcal{K} is a compact, convex subset of $\mathcal{P}(X)$. It follows from the Schauder fixed point theorem that Ψ has a fixed point, say μ, in \mathcal{K}, and then

$$
\begin{equation*}
A^{t} \mu=\left\langle 1, A^{t} \mu\right\rangle \mu \tag{3.31}
\end{equation*}
$$

giving (3.27).
Having Proposition 3.5, we again make contact with (H1):
Proposition 3.6. Let A be a opsitive operator on $C(X)$. If A is irreducible and $\mu \in \mathcal{P}(X)$ satisfies (3.27), with $\lambda>0$, then

$$
\begin{equation*}
f \in C(X), f \geq 0, f \neq 0 \Longrightarrow\langle f, \mu\rangle>0 \tag{3.32}
\end{equation*}
$$

Proof. For each $k \in \mathbb{N}$,

$$
\begin{equation*}
\lambda^{k}\langle f, \mu\rangle=\left\langle f,\left(A^{t}\right)^{k} \mu\right\rangle=\left\langle A^{k} f, \mu\right\rangle, \tag{3.33}
\end{equation*}
$$

hence, for $E=e^{A}-I$ as in (3.4) and f as in (3.32),

$$
\begin{equation*}
(e-1)\langle f, \mu\rangle=\langle E f, \mu\rangle>0 \tag{3.34}
\end{equation*}
$$

since irreducibility of A implies $E f(x)>0$ for all $x \in X$.

Remark. Compactness of A is not required for Proposition 3.6. This fact is particularly significant in light of Proposition 2.1.

It follows from Propositon 3.6 that, in the setting of Proposition 3.5, and with A irreducible, hypothesis (H1) holds with $\nu=\mu$. Furthermore, with

$$
\begin{equation*}
\Sigma=\left\{f \in C_{+}(X):\langle f, \mu\rangle=1\right\} \tag{3.35}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lambda^{-1} A: \Sigma \longrightarrow \Sigma \tag{3.36}
\end{equation*}
$$

so also (H3) and (3.19) hold. Thus Proposition 3.4 implies the following.
Proposition 3.7. Let A be a positive, compact, irreducible operator on $C(X)$, and assume $\varphi=$ A1 satisfies (3.6). Take $\mu \in \mathcal{P}(X)$ such that (3.27) holds. Assume that (H2) holds with $\nu=\mu$, i.e.,

$$
\begin{equation*}
A: L^{1}(X, \mu) \longrightarrow C(X), \quad \text { compactly } \tag{3.37}
\end{equation*}
$$

Then $\lambda^{-1} A$ is crypto-stochastic.

4. Connections with infinite positive matrices

Here we look at infinite matrices $A=\left(a_{j k}\right)$, defined for $j, k \in \mathbb{N}$, having a bound on the row sums:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{j k}\right| \leq \alpha<\infty, \quad \forall j \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
A: \ell^{\infty}(\mathbb{N}) \longrightarrow \ell^{\infty}(\mathbb{N}) \tag{4.2}
\end{equation*}
$$

acting as a bounded operator, by

$$
\begin{equation*}
(A f)_{j}=\sum_{k=1}^{\infty} a_{j k} f_{k}, \quad\|A\|_{\infty} \leq \alpha \tag{4.3}
\end{equation*}
$$

Here, $\ell^{\infty}(\mathbb{N})$ denotes the space of bounded real sequences, i.e., the space of bounded functions $f: \mathbb{N} \rightarrow \mathbb{R}$, a Banach space with norm $\|f\|_{\infty}=\sup _{k}\left|f_{k}\right|$. We identify $f_{k}=f(k)$. We say A is positive if $a_{j k} \geq 0$ for each $j, k \in \mathbb{N}$. We say a positive matrix is stochastic if each row sum is 1 , i.e., $\sum_{k} a_{j k}=1$ for each j, or equivalently

$$
\begin{equation*}
A 1=1, \tag{4.4}
\end{equation*}
$$

where here 1 denotes the function on \mathbb{N} that is identically 1 .
To relate the study of such matrices to material in $\S \S 1-3$, we use the natural isometric isomorphism

$$
\begin{equation*}
\ell^{\infty}(\mathbb{N}) \approx C\left(X_{\mathbb{N}}\right) \tag{4.5}
\end{equation*}
$$

where $X_{\mathbb{N}}$ denotes the Stone-Cech compactification of \mathbb{N}. This is a compact Hausdorff space. There is a natural inclusion

$$
\begin{equation*}
\mathbb{N} \subset X_{\mathbb{N}} \tag{4.6}
\end{equation*}
$$

as an open, dense subset. Since $\ell^{\infty}(\mathbb{N})$ is not separable, $X_{\mathbb{N}}$ is not metrizable. Using the isomorphism (4.5), we identify A in (4.2) with

$$
\begin{equation*}
A: C\left(X_{\mathbb{N}}\right) \longrightarrow C\left(X_{\mathbb{N}}\right) \tag{4.7}
\end{equation*}
$$

Positivity in (4.2) turns into positivity in (4.7), since the isomorphism (4.5) is also positivity preserving. Also, if (4.4) holds on $\ell^{\infty}(\mathbb{N})$, it holds on $C\left(X_{\mathbb{N}}\right)$.

As in (1.6), we have the duality

$$
\begin{equation*}
\ell^{\infty}(\mathbb{N})^{\prime} \approx C\left(X_{\mathbb{N}}\right)^{\prime}=\mathcal{M}\left(X_{\mathbb{N}}\right) \tag{4.8}
\end{equation*}
$$

where $\mathcal{M}\left(X_{\mathbb{N}}\right)$ is the space of finite, signed, regular Borel measures on $X_{\mathbb{N}}$. There are a natural injection and a natural projection

$$
\begin{equation*}
J: \ell^{1}(\mathbb{N}) \longrightarrow \mathcal{M}\left(X_{\mathbb{N}}\right), \quad \Pi: \mathcal{M}\left(X_{\mathbb{N}}\right) \longrightarrow \ell^{1}(\mathbb{N}) \tag{4.9}
\end{equation*}
$$

induced by (4.6).
As in (1.9), the map (4.7) has a transpose

$$
\begin{equation*}
A^{t}: \mathcal{M}\left(X_{\mathbb{N}}\right) \longrightarrow \mathcal{M}\left(X_{\mathbb{N}}\right) \tag{4.10}
\end{equation*}
$$

We also have a map

$$
\begin{equation*}
A^{\tau}: \ell^{1}(\mathbb{N}) \longrightarrow \ell^{1}(\mathbb{N}) \tag{4.11}
\end{equation*}
$$

given by

$$
\begin{equation*}
A^{\tau}=\Pi A^{t} J \tag{4.12}
\end{equation*}
$$

Results of $\S \S 2-3$ yield conditions under which A^{t} has an invariant measure $\mu \in$ $\mathcal{P}\left(X_{\mathbb{N}}\right)$. Such μ is also an invariant element of A^{τ} if and only if $\operatorname{supp} \mu \subset \mathbb{N}$. We will see examples below for which $\ell^{1}(\mathbb{N})$ does not have a positive element that is invariant under A^{τ}.

While A^{t} has a richer structure that A^{τ}, the operator A^{τ} does not lose information about A. In fact, since $\ell^{\infty}(\mathbb{N})=\ell^{1}(\mathbb{N})^{\prime}$, a bounded operator on $\ell^{1}(\mathbb{N})$ has a transpose:

$$
\begin{equation*}
B: \ell^{1}(\mathbb{N}) \rightarrow \ell^{1}(\mathbb{N}) \Longrightarrow B^{t}: \ell^{\infty}(\mathbb{N}) \rightarrow \ell^{\infty}(\mathbb{N}) \tag{4.13}
\end{equation*}
$$

and we see that, for A in (4.2),

$$
\begin{equation*}
\left(A^{\tau}\right)^{t}=A \tag{4.14}
\end{equation*}
$$

Note also that $\ell^{1}(\mathbb{N})$ is weak* dense in $\mathcal{M}\left(X_{\mathbb{N}}\right)$ (though not norm dense), and A^{t} is the unique extension of A^{τ} to a linear operator on $\mathcal{M}\left(X_{\mathbb{N}}\right)$ that is continuous in the weak ${ }^{*}$ topology of $\mathcal{M}\left(X_{\mathbb{N}}\right)$.

At this point it is useful to note that, in place of the set of positive integers \mathbb{N}, we could use any countably infinite set S, and extend results derived above from the setting of (4.2) to

$$
\begin{equation*}
A: \ell^{\infty}(S) \rightarrow \ell^{\infty}(S), \quad \ell^{\infty}(S) \approx C\left(X_{S}\right), \quad C\left(X_{S}\right)^{\prime}=\mathcal{M}\left(X_{S}\right) \tag{4.15}
\end{equation*}
$$

where X_{S} is the Stone-Cech compactification of X_{S}. Particularly useful examples include

$$
\begin{equation*}
\mathbb{Z}, \quad \mathbb{Z}^{n}, \quad S \ell(n, \mathbb{Z}) \tag{4.16}
\end{equation*}
$$

An example involving $S=\mathbb{Z}$ is

$$
\begin{equation*}
A: \ell^{\infty}(\mathbb{Z}) \longrightarrow \ell^{\infty}(\mathbb{Z}), \quad A f(k)=f(k+1) \tag{4.17}
\end{equation*}
$$

An element $\mu \in \mathcal{P}\left(X_{\mathbb{Z}}\right)$ invariant under A^{t} defines a linear functional on $\ell^{\infty}(\mathbb{Z})$ known as an invariant mean. The existence of such invariant means is a special case of Proposition 2.1. It is clear that such μ satisfies $\mu(\mathbb{Z})=0$, and there does not exist an A^{τ}-invariant element of $\ell^{1}(\mathbb{Z})$. Such results hold for a number of related operators, such as

$$
\begin{equation*}
A: \ell^{\infty}(\mathbb{Z}) \longrightarrow \ell^{\infty}(\mathbb{Z}), \quad A f(k)=\frac{1}{2} f(k+1)+\frac{1}{2} f(k-1) \tag{4.18}
\end{equation*}
$$

The Markov process associated to this operator is "the standard random walk" on \mathbb{Z}.

In many cases, the operator A might have special structure that allows one to replace $\ell^{\infty}(S)$ by a smaller subspace, such as

$$
\begin{align*}
& \ell_{\#}^{\infty}(\mathbb{N})=\left\{f \in \ell^{\infty}(\mathbb{N}): \lim _{k \rightarrow \infty} f(k) \text { exists }\right\}, \text { or } \\
& \ell_{\#}^{\infty}(\mathbb{Z})=\left\{f \in \ell^{\infty}(\mathbb{Z}): \lim _{k \rightarrow+\infty} f(k) \text { and } \lim _{k \rightarrow-\infty} f(k) \text { exist }\right\}, \tag{4.19}
\end{align*}
$$

having natural isomorphisms

$$
\begin{align*}
& \ell_{\#}^{\infty}(\mathbb{N}) \approx C(\widehat{\mathbb{N}}), \quad \widehat{\mathbb{N}}=\mathbb{N} \cup\{\infty\}, \\
& \ell_{\#}^{\infty}(\mathbb{Z}) \approx C(\widehat{\mathbb{Z}}), \quad \widehat{\mathbb{Z}}=\mathbb{Z} \cup\{+\infty,-\infty\} \tag{4.20}
\end{align*}
$$

For example, (4.18) has the variant

$$
\begin{equation*}
A: \ell_{\#}^{\infty}(\mathbb{Z}) \longrightarrow \ell_{\#}^{\infty}(\mathbb{Z}), \quad A f(k)=\frac{1}{2} f(k+1)+\frac{1}{2} f(k-1) . \tag{4.21}
\end{equation*}
$$

Using the same letter A in (4.18) and (4.21) is perhaps an abuse of notation, a practice we continue by writing

$$
\begin{equation*}
A^{t}: \mathcal{M}(\widehat{\mathbb{Z}}) \longrightarrow \mathcal{M}(\widehat{\mathbb{Z}}) \tag{4.22}
\end{equation*}
$$

In the setting of (4.21), we can write the set of elements of $\mathcal{P}(\widehat{\mathbb{Z}})$ that are invariant under A^{t} as

$$
\begin{equation*}
\left\{a \delta_{+\infty}+(1-a) \delta_{-\infty}: 0 \leq a \leq 1\right\} . \tag{4.23}
\end{equation*}
$$

While Proposition 2.1 applies to the operators in (4.17), (4.18), and (4.21), most of the rest of $\S 2$ does not. For one thing, the operators just mentioned are not compact. Also, the operators in (4.18) and (4.21) have the weak irreducibility property that

$$
\begin{equation*}
f \in \ell^{\infty}(\mathbb{Z}), f \geq 0, f \neq 0 \Longrightarrow \sup _{m} A^{m} f(k)>0, \quad \forall k \in \mathbb{Z} \tag{4.24}
\end{equation*}
$$

However, whenever $f(k) \rightarrow 0$ as $|k| \rightarrow \infty$, so does $A^{m} f(k)$ for each m, so $\sup _{m} A^{m} f$ vanishes on $X_{\mathbb{Z}} \backslash \mathbb{Z}$ in case (4.18), and on $\widehat{\mathbb{Z}} \backslash \mathbb{Z}$ in case (4.21), for each such f, violating the condition (1.5) for irreducibility. This also explains why Proposition 3.6 does not apply to A in (4.18) and (4.21). For a positive operator $A: \ell^{\infty}(S) \rightarrow \ell^{\infty}(S)$, irreducibility in the sense of (1.5), for $A: C\left(X_{S}\right) \rightarrow C\left(X_{S}\right)$ (which, for emphasis, we will call strong irreducibility) is equivalent to the property

$$
\begin{equation*}
f \in \ell^{\infty}(S), f \geq 0, f \neq 0 \Longrightarrow \sup _{m} A^{m} f(k) \geq \delta(f)>0, \quad \forall k \in S \tag{4.25}
\end{equation*}
$$

We next look at a family of operators on $\ell^{\infty}(\mathbb{N})$, examined in [Sen], given by the infinite matrices

$$
A=\left(\begin{array}{ccccc}
q_{1} & p_{1} & & & \cdots \tag{4.26}\\
q_{2} & 0 & p_{2} & & \\
q_{3} & 0 & 0 & p_{3} & \\
\vdots & & & & \ddots
\end{array}\right)
$$

with

$$
\begin{equation*}
0<q_{j}<1, \quad q_{j}+p_{j}=1 \tag{4.27}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\{q_{j}\right\} \text { bounded away from } 0 \Longrightarrow A \text { is strongly irreducible, } \tag{4.28}
\end{equation*}
$$

as defined above, since then (4.25) holds. One also readily verifies that

$$
\begin{equation*}
p_{j} \rightarrow 0 \text { as } j \rightarrow \infty \Longrightarrow A \text { is compact on } \ell^{\infty}(\mathbb{N}) \tag{4.29}
\end{equation*}
$$

One can further extend the scope of the approach to positive infinite matrices described above. For example, we can consider bounded linear operators

$$
\begin{equation*}
A: L^{\infty}(Y, \sigma) \longrightarrow L^{\infty}(Y, \sigma) \tag{4.30}
\end{equation*}
$$

where (Y, σ) is a measure space. The positivity condition becomes

$$
\begin{equation*}
f \in L^{\infty}(Y, \sigma), f \geq 0 \Longrightarrow A f \geq 0 \tag{4.31}
\end{equation*}
$$

This fits into the framework of $\S \S 2-3$ as follows. The space $L^{\infty}(Y, \sigma)$ is a commutative C^{*}-algebra, and we have a natural, positivity-preserving, isometric isomorphism

$$
\begin{equation*}
L^{\infty}(Y, \sigma) \approx C(X) \tag{4.32}
\end{equation*}
$$

where X is the maximal ideal space of the C^{*}-algebra $L^{\infty}(Y, \sigma)$. In (4.2), we have $Y=\mathbb{N}$ and $\sigma=$ counting measure.

References

[DS] N. Dunford and J. Schwartz, Linear Operators, Vol. 1, Wiley, New York, 1958.
[Nel] E. Nelson, The adjoint Markoff process, Duke Math. J. 25 (1958), 671-690.
[Sen] E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag New York, 1981.
[T] M. Taylor, Partial Differential Equations, Vols. 1-3, Springer-Verlag, New York, 1996 (2nd ed., 2011).

