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Abstract. We provide an elementary asymptotic analysis of the spectrum of the
sublaplacian X2

1 + X2
2 = ∆ − X2

3 on the 2D sphere S2. Our result is consistent
with the general asymptotic analysis of [MS], but here we have a sharper remainder
estimate.

1. Introduction

Let S2 be the unit sphere in R3, with its standard round metric. Let Xj denote
the vector fields that generate period-2π rotation about the xj-axis, for j = 1, 2, 3.
Then the Laplace-Beltrami operator on S2 is given by

(1.1) ∆ = X2
1 +X2

2 +X2
3 .

We are interested in the sublaplacian

(1.2) L = X2
1 +X2

2 .

This operator is subelliptic with loss of one derivative, so

(1.3) (1− L)−1 : Hs(S2) −→ Hs+1(S2), ∀ s ∈ R.

In particular, (1 − L)−1 is a compact self-adjoint operator on L2(S2), so L2(S2)
has an orthonormal basis {φk} satisfying

(1.4) Lφk = −λ2
kφk, λk ↗ +∞.

In fact, since ∆ andX3 commute, the functions φk can be taken to be eigenfunctions
of ∆, so ∆φk = −µ2

kφk, but in the ordering for which (1.4) holds (µk) is not
monotonically increasing.

Our goal is to analyze the spectrum of L. Our approach will be to consider the
joint spectrum of the commuting pair (∆, X3). To begin, we recall that, if

(1.5) Λ =

√
−∆+

1

4
,

then

(1.6) SpecΛ =
{
k +

1

2
: k ∈ Z, k ≥ 0

}
.

1
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We have the eigenspaces

(1.7) Vk =
{
u ∈ L2(S2) : Λu =

(
k +

1

2

)
u
}
, dimVk = 2k + 1.

Also X3 : Vk → Vk, and

(1.8) Spec iX3

∣∣∣
Vk

= {−k,−k + 1, . . . , k − 1, k}.

Cf. [T], Chapter 8, §4.
The operator L can be written

(1.9)
−L = −∆+X2

3

= Λ2 +X2
3 − 1

4
.

Hence L : Vk → Vk for each k, and

(1.10)
Spec(−L)

∣∣∣
Vk

= −1

4
+
{(

k +
1

2

)2

− ℓ2 : −k ≤ ℓ ≤ k
}

= k + {k2 − ℓ2 : −k ≤ ℓ ≤ k}.

The counting function

(1.11) NL(R) = #{k ∈ Z+ : λ2
k ∈ Spec(−L), λ2

k ≤ R}

can be identified as

(1.12) NL(R) = #{(k, ℓ) ∈ Z+ × Z : −k ≤ ℓ ≤ k, k + k2 − ℓ2 ≤ R}.

Analyzing (1.12) directly is a lattice-counting problem, which we will tackle in §3.
First, in §2, we will take another approach to the asymptotic analysis of NL(R).
We will establish the following.

Proposition 1.1. We have

(1.13) Tr etL ∼ A

t
log

1

t
, as t ↘ 0,

where

(1.14) A =
1

2
.

Given this result, we can apply Karamata’s Tauberian theorem (cf. [T2]) to
deduce that

(1.15) NL(R) ∼ AR
(
logR

)
, R ↗ +∞.
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By contrast, we recall that standard heat asymptotics yields

(1.16) Tr et∆ ∼ 1

t
, as t ↘ 0,

hence

(1.17) N∆(R) ∼ R, as R ↗ +∞,

consistent with (1.6)–(1.7).
Since L is not elliptic, construction of a parametrix for etL is harder than for

et∆. However, results of [MS] apply to this, and they yield (1.13)–(1.15). In §2 we
will give another demonstration of this asymptotic behavior. Our approach to the
analysis of Tr etL will proceed directly from (1.10), which gives

(1.18) Tr etL =
∞∑
k=0

k∑
ℓ=−k

e−tke−t(k2−ℓ2).

By contrast, note that (1.6)–(1.7) implies

(1.19) Tr et(∆−1/4) =
∞∑
k=0

(2k + 1)e−t(k+1/2)2 ,

hence

(1.20) Tr et∆ =
∞∑
k=0

(2k + 1)e−tke−tk2

.

In §3 we tackle the lattice point problem directly, and use it to prove the following
refinement of (1.15):

Proposition 1.2. We have

(1.21) NL(R) =
1

2
R(logR) +O(R), R ↗ +∞.
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2. Asymptotic analysis of Tr etL

To begin the asymptotic analysis of (1.15) as t ↘ 0, let us set

(2.1) µ = k + ℓ, ν = k − ℓ,

and write (1.18) as

(2.2) Φ(t) =
∑

µ,ν≥0, µ−ν even

e−t(µ+ν)/2e−tµν .

We split this sum into 2 pieces, over

(2.3)
µ, ν ≥ 0 both even, say µ = 2j, ν = 2k, j, k ≥ 0,

µ, ν ≥ 1 both odd, say µ = 2j + 1, ν = 2k + 1, j, k ≥ 0.

Thus

(2.4)

Φ(t) =
∑
j,k≥0

e−t(j+k)e−4tjk +
∑
j,k≥0

e−t(j+k+1)e−t(4jk+2j+2k+1)

=
∑
j,k≥0

e−t(j+k)e−4tjk + e−2t
∑
j,k≥0

e−3t(j+k)e−4tjk.

Thus our task becomes to analyze the behavior as t ↘ 0 of

(2.5) Φa(t) =
∑
j,k≥0

e−at(j+k)e−4tjk,

for a = 1, 3. We first sum over j:

(2.6)

∞∑
j=0

e−atje−4tkj =

∞∑
j=0

e−t(a+4k)j

=
1

1− e−t(a+4k)
.

Hence

(2.7) Φa(t) =
∞∑
k=0

e−atk

1− e−t(a+4k)
.

To analyze this, set

(2.8) F (x) =
x

1− e−x
,
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satisfying

(2.9) F ∈ C∞([0,∞)), F (0) = 1.

We have

(2.10)

Φa(t) =
1

t

∞∑
k=0

e−atk

a+ 4k
F (ta+ 4tk)

=
1

t

∞∑
k=0

e−atk

a+ 4k
+Ra(t),

where

(2.11) Ra(t) =
1

t

∞∑
k=0

e−atk

a+ 4k

[
F (ta+ 4tk)− 1

]
.

We see that

(2.12) |F (x)− 1| ≤ Cx, for x ≥ 0,

so

(2.13) |Ra(t)| ≤ C
∞∑
k=0

e−atk =
C

1− e−at
=

C

at
F (at).

Thus we are left with the task of analyzing

(2.14) Ψa(t) =
1

t

∞∑
k=0

e−atk

a+ 4k
=

1

t
Ga(e

−at),

where

(2.15) Ga(z) =

∞∑
k=0

zk

a+ 4k
, for |z| < 1.

Hence, for |z| < 1,

(2.16) zaGa(z
4) = Ha(z) =

∞∑
k=0

z4k+a

4k + a
.
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Now

(2.17)

H ′
a(z) =

∞∑
k=0

z4k+a−1

= za−1
∞∑
k=0

z4k

=
za−1

1− z4

=
1

1− z

za−1

1 + z + z2 + z3
.

Integrating, we get

(2.18) Ha(z) ∼
1

4
log

1

1− z
, as z ↗ 1.

This implies

(2.19) Ga(z) ∼
1

4
log

1

1− z1/4
∼ 1

4
log

1

1− z
.

Hence, as t ↘ 0,

(2.20)

Φa(t) ∼
1

t
Ga(e

−at)

∼ 1

4t
log

1

1− e−at

∼ 1

4t
log

1

at
.

Therefore,

(2.21)
Tr etL = Φ(t) = Φ1(t) + e−2tΦ3(t)

∼ 1

2t
log

1

t
.

This gives (1.13)–(1.14), and completes the proof of Proposition 1.1.

Remark. We could probably examine (2.2)–(2.11) more carefully, and produce
further terms in the asymptotic expansion of Tr etL.



7

3. A lattice counting problem

As seen in (1.10)–(1.12), the counting function NL(R) for the spectrum of L is
given by

(3.1) NL(R) = #{(k, ℓ) ∈ Z+ × Z : (k, ℓ) ∈ ΩR},

where

(3.2) ΩR = {(x, y) ∈ R+ × R : |y| ≤ x, x+ x2 − y2 ≤ R}.

Our goal is to establish the following.

Proposition 3.1. We have

(3.3) NL(R) =
1

2
R logR+O(R), R → +∞.

Note that this is sharper than the result (1.15), established via the results of §2.
Our first step is to show that

(3.4) AreaΩR =
1

2
R logR+O(R) as R → +∞,

To get (3.4), we apply the transformation

(3.5) T

(
x

y

)
=

(
1 1
1 −1

)(
x

y

)
to get

(3.6) AreaΩR =
1

2
Area Ω̃R,

where

(3.7)
Ω̃R =

{
(x, y) ∈ R+ × R+ :

x+ y

2
+ xy ≤ R

}
=

{
(x, y) ∈ R2 : 0 ≤ x ≤ 2R, 0 ≤ y ≤ 2R− x

2x+ 1

}
.

We have

(3.8)

Area Ω̃R =

∫ 2R

0

2R− x

2x+ 1
dx

= R

∫ 2R

0

dx

x+ 1/2
− 1

2

∫ 2R

0

2x

2x+ 1
dx

= R log
(
x+

1

2

)∣∣∣2R
0

−R+
1

4
log

(
x+

1

2

)∣∣∣2R
0

=
(
R+

1

4

)[
log

(
2R+

1

2

)
+ log 2

]
−R.
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This gives (3.4).
The next step is to deduce (3.3) from (3.4). This involves a general, elementary

argument, which goes as follows. For ν = (ν1, . . . , νn) ∈ Zn, let

(3.9) Qν =
{
x = (x1, . . . , xn) ∈ Rn : νj −

1

2
≤ xj < νj +

1

2
, ∀ j

}
,

which are basically unit cubes centered at ν ∈ Zn. These cubes partition Rn into
mutually disjoint sets. Let

(3.10) Ω ⊂ Rn be open,

and let

(3.11)
SΩ = {ν ∈ Zn : Qν ⊂ Ω},
S∂Ω = {ν ∈ Zn : Qν ∩ ∂Ω ̸= ∅}.

Note that

(3.12)
∪

ν∈SΩ

Qν ⊂ Ω ⊂ Ω ⊂
∪

ν∈SΩ∪S∂Ω

Qν .

Hence

(3.13) #SΩ ≤ VolΩ ≤ #SΩ +#S∂Ω,

where #S denotes the number of elements of the set S. Furthermore,

(3.14) SΩ ⊂ Ω ∩ Zn ⊂ Ω ∩ Zn ⊂ SΩ ∪ S∂Ω,

so

(3.15) #SΩ ≤ #(Ω ∩ Zn) ≤ #(Ω ∩ Zn) ≤ #SΩ +#S∂Ω.

Comparing (3.13) and (3.15), we see that

(3.16)

∣∣VolΩ−#(Ω ∩ Zn)
∣∣ ≤ #S∂Ω,∣∣VolΩ−#(Ω ∩ Zn)
∣∣ ≤ #S∂Ω.

We apply the general estimate (3.16) to the family ΩR ⊂ Z2 described in (3.3).
One readily verifies that

(3.17) #S∂ΩR
≤ CR.

Hence (3.16) implies for NL(R) in (3.1) that

(3.18)
∣∣NL(R)−AreaΩR

∣∣ ≤ CR.
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This completes the derivation of (3.3) from (3.4).
We dwell a little further on lattice point counts. Note that, by (1.5)–(1.7),

(3.19) N∆(R) = #{(k, ℓ) ∈ Z+ × Z : −k ≤ ℓ ≤ k, k2 + k ≤ R}.

Also, for k ≥ 0,

(3.20) k2 + k ≤ R ⇐⇒ k ≤
√

R+
1

4
− 1

2
= ρ,

so

(3.21) N∆(R) = #(Tρ ∩ Z2),

where

(3.22) Tρ = ρT1, T1 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, |y| ≤ x}.

Since

(3.23) Area Tρ = ρ2, and #S∂Tρ ≤ Cρ,

we deduce from (3.16) and (3.21) that

(3.24) N∆(R) = R+O(R1/2).

In this case, N∆(R) jumps by 2k + 1 as ρ crosses k, so the remainder estimate in
(3.24) is sharp.

Note that the remainder in (3.24) is much smaller, compared to the leading term,
than is the remainder term in (3.3) for NL(R).

The application of (3.16) to (3.21), leading to (3.24), is a special case of the
following corollary of (3.16).

Proposition 3.2. Let O ⊂ R2 be a bounded open set with piecewise smooth bound-
ary, and set Oρ = ρO = {ρx : x ∈ O}. Then

(3.25) #(Oρ ∩ Z2) = (AreaO)ρ2 +O(ρ),

as ρ → ∞.

While the remainder estimate here is sharp in some cases, such as O = T1 in
(3.22), there are many important cases where it is far from sharp. One much-
studied, classical case is the disk

(3.26) D = {x ∈ R2 : |x| < 1}.
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A classical estimate here is

(3.27) #(Dρ ∩ Z2) = πρ2 +O(ρ2/3).

This is directly applicable to the spectral counting function for the Laplace operator
on the flat torus

(3.28) T2 = T1 × T1, T1 = R/(2πZ).

Methods of Fourier analysis are used to prove (3.27). These methods extend to
other situations, including analysis of numerical integration (cf. [RT], especially
§3). On the other hand, it is known that the remainder estimate in (3.27) is
not optimal. In fact, finding an optimal remainder estimate for this lattice point
problem is considered a major open problem. See §4 of [H] for a discussion and
further references.

Returning to our principal interest, we close with the following.
Question. Can the asymptotic analysis of NL(R) in (3.3) be improved?
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