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1. Introduction

We are going to study differential operators of the form

P = P (x,D) = P0(D) + V (x,D)

where P0(D) has constant coefficients and V (x,D) has coefficients which are as-
sumed to decay slowly as ⟨x⟩ = (1 + |x|2)1/2 tends to infinity. We will make the
following assumptions.

(1.1) P0 and P are elliptic of order m, essentially self adjoint on S(Rn).

(1.2) V = V S + V L; V (x, ξ) =
∑

|α|≤m

Vα(x)ξ
α with Vα(x) = V S

α (x) + V L
α (x).

(1.3)
|V L

α (x)| ≤ C⟨x⟩−ε, for some ε > 0, and

|Dβ
xV

L
α (x)| ≤ Cβ⟨x⟩−1−ε, for all β > 0.

(1.4) |V S
α (x)| ≤ C⟨x⟩−1−ε.

If the set of values taken on by P0(ξ), ξ ∈ Rn, is [a,∞), then, as is well known,
the spectrum of P is described by

σ(P ) = [a,∞) ∪ {λj}

where λj → a are eigenvalues of finite multiplicity. Our goal is to show that, as z
approaches λ ∈ [a,∞) from the upper (or lower) half plane in the complex domain,
provided λ avoids a certain small exceptional set, (z−P )−1f converges, at least in
some weak sense, if f is nice enough. Such a result is known as a limiting absorption
principle.

The exceptional set consists of σp(P ), the point spectrum of P, and also the set
of critical values of P0 :

Λc = Λc(P0) = {P0(ξ) ∈ R : ∇ξP0(ξ) = 0}.

It is easy to see that, by the ellipticity of the polynomial P0(ξ), the set {ξ ∈ Rn :
∇ξP0(ξ) = 0} is a compact real algebraic variety and that hence Λc(P0) is a finite
set.
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Now to examine (P − z)−1f as z → λ ∈ σ(P0) \ [σp(P ) ∪ Λc], we will take f to
belong to a certain space B and derive weak convergence in B∗. We now define the
spaces B and B∗. Let Rj = 2j−1 for j ≥ 1, R0 = 0.
Definition.

(1.5) u ∈ B ⇐⇒
∞∑
j=1

(
Rj

∫
Rj−1<|x|<Rj

|u(x)|2dx
)1/2

<∞.

(1.6) u ∈ B∗ ⇐⇒ sup
R>1

(
R−1

∫
|x|<R

|u(x)|2dx
)1/2

<∞.

(1.7) u ∈ Bo∗ ⇐⇒ R−1

∫
|x|<R

|u(x)|2dx→ 0 as R→ ∞.

We use (1.5) and (1.6) to define the B-norm and B∗-norm, respectively. Note that
B∗ is the dual of B. However, B is not reflexive. We remark that the image of B
under the Fourier transform is a Besov space, but that fact plays no role in our
investigations.

The space B can be compared with some weighted L2 spaces, defined as follows:

(1.8) f ∈ L2,s ⇐⇒ ⟨x⟩sf ∈ L2(Rn).

One has:

(1.9) L2,1/2+ε ⊂ B ⊂ L2,1/2.

Furthermore, the use of such weighted L2 spaces facilitates the study of B and B∗.
We mention the following interpolation result, which will be of use:

Proposition 1.A. If T : L2 −→ L2 and also T : L2,1 −→ L2,1, both bounded,
then T : B −→ B. Consequently, if T : L2 −→ L2 and T : L2,−1 −→ L2,−1, then
T : B∗ −→ B∗.

Let us now state the main theorem, whose proof will be completed in section 5.

Theorem 1.B. Let λ ∈ [a,∞)\[σp(P )∪Λc(P0)]. Then there exist bounded operators

(1.10) T± : B −→ B∗

such that

(1.11) ⟨T±f, g⟩ = lim
z→λ, ±Im z>0

⟨(z − P )−1f, g⟩ for all f, g ∈ B.
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We will call this limit T± = R(λ± i0).

Remarks.
(1.12) In fact, there is not strong convergence. Although we will not prove this,
one could get strong convergence in L(L2,s, L2,−s), for s > 1/2.

(1.13) If λ ∈ σp(P ) \ Λc, we would still get convergence in (1.11), provided that f
and g are both chosen orthogonal to the λ-eigenspace of P. This would follow by
minor modifications of the arguments we give, and we will not give the details.

(1.14) σp(P )\Λc(P0) consists of isolated eigenvalues, of finite multiplicity (possibly
accumulating at points of Λc). We will prove this in section 3; see Corollary 3.J.

We now outline the method that will be developed in succeeding sections to
prove the main theorem. For λ ∈ [a,∞) \ [σp(P ) ∪ Λc], let ∆(λ, ρ) = {z ∈ C :
|z − λ| < ρ} and take ρ small. We obtain in section 3 the basic a priori estimate
that, if u ∈ Bo∗ ∩Hm

loc and (P − z)u = f ∈ B for some z ∈ ∆(λ, ρ), then there is a
ψ ∈ C∞

0 (Rn) such that

(1.15)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C∥ψu∥L2 ; C independent of z ∈ ∆(λ, ρ).

To get such a regularity estimate, we will develop a calculus of pseudodifferential
operators in section 2, which give good control on a function for large x. Indeed, it
is large x, rather than large frequency, which is the most delicate point to handle.
In frequency space, our difficulties are essentially confined to a small neighborhood
of the compact set

(1.16) Mλ = {ξ ∈ Rn : P0(ξ) = λ}.

The next step is to get rid of the second term on the right in (1.15). Indeed, as we
will see in the proof, if this were not possible one could produce a nonzero u ∈ Bo∗

such that (P − λ)u = 0. However, Theorem 3.I then yields u ∈ L2, so λ ∈ σp(P ),
contrary to assumption. This accomplished, we have the existence of weak limits in
B∗ of (P − z)−1f as z → λ from Im z > 0 and from Im z < 0. To check uniqueness
of these respective limits, we need a radiation condition. This radiation condition is
studied in section 4. It is given in terms of the ‘radiation set’ of an element u ∈ B∗,
defined in section 2, a concept formally similar to the concept of wave front set
except, again, the emphasis is on large |x| rather than large frequency.

In section 6 we note that the absence of the singular continuous spectrum of P
is a simple consequence of the main theorem.

The lectures of Agmon reported on here also were sketched in [1]. This material
is also treated in detail in §30.2 of [2]. For Schrödinger operators with long range
potentials, such results had been obtained in [3].
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2. Pseudodifferential operators and the radiation set

As usual, a pseudodifferential operator with symbol p(x, ξ) is defined by the
formula

(2.1) p(x,D)u =

∫
p(x, ξ)û(ξ)eix·ξdξ.

We will be interested in the following symbol classes. Let µ be a sequence:

µ = {µ(0), µ(1), µ(2), . . . }.

Assume µ(i) is monotonically decreasing, or at least non-increasing.
Definition. p(x, ξ) ∈ Sm

µ if and only if

(2.2) |Dβ
xD

α
ξ p(x, ξ)| ≤ C⟨ξ⟩m−|α|⟨x⟩µ(|β|).

We also define weighted Sobolev spaces. Namely,

(2.3) u ∈ Hm,s(Rn) ⇐⇒ ⟨x⟩s(1−∆)m/2u ∈ L2(Rn).

Our first result is elementary.

Theorem 2.A. If p(x, ξ) ∈ Sm
µ , then

p(x,D) : Hk,s −→ Hk−m,s−µ(0).

Using the interpolation result, Proposition 1.A, we obtain the following.

Corollary 2.B. If p(x, ξ) ∈ S0
{0,0,... }, then

p(x,D) : B −→ B, B∗ −→ B∗, Bo∗ −→ Bo∗.

The last conclusion follows from the second since p(x,D) : S −→ S and the
closure of S in B∗ is Bo∗.

The next few results record the basic behavior of operators in OPSm
µ , i.e., op-

erators defined by (2.1) with symbols in Sm
µ . We omit the proofs.

Theorem 3.C. If pj ∈ S
mj
µj for j = 1, 2, then

(2.4) p(x,D) = p1(x,D)p2(x,D) ∈ OPSm1+m2

µ1(0)+µ2(0)

and

p(x, ξ) =

N−1∑
j=0

qj(x, ξ) +RN (x, ξ)

with

(2.5) qj(x, ξ) ∈ Sm1+m2−j
µ1(0)+µ2(j)

and RN (x, ξ) ∈ Sm1+m2−N
µ1(0)+µ2(N).
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Theorem 2.D. If p ∈ Sm
µ , then p(x,D)∗ ∈ OPSm

µ , with symbol

(2.6) p∗(x, ξ) =
∑

|α|≤N

1

α!
Dα

ξD
α
xp(x, ξ) +RN (x, ξ),

and

(2.7) RN (x, ξ) ∈ Sm−N
µ(N) .

Corollary 2.E. If p(x, ξ) ∈ Sm
µ is real, then

p(x,D)− p(x,D)∗ ∈ OPSm−1
µ(1) .

The next theorem is an important technical result which will be used in the proof
of Theorem 2.J.

Theorem 2.F. Suppose p(x, ξ) ∈ S0
{0,−δ,... }, δ > 0. If u ∈ B∗, then p(x,D)u ∈ B∗

satisfies

(2.8) lim sup
R→∞

R−1

∫
|x|<R

|p(x,D)u|2dx ≤ C2
0 lim sup

R→∞
R−1

∫
|x|<R

|u(x)|2dx

where

(2.9) C0 = lim
R→∞

sup
|x|>R,ξ∈Rn

|p(x, ξ)|.

In particular, if C0 = 0, then p(x,D) : B∗ −→ Bo∗, but that is not the only case
of interest.

We now define a couple of further classes of symbols:

Σ̃0
0 ⊂ Σ0

0 ⊂ S0
{0,−1,−2,... }; Σm

ℓ ⊂ Sm
{ℓ,ℓ−1,ℓ−2,... }

as follows.
Definition. p(x, ξ) ∈ Σm

ℓ if and only if p(x, ξ) ∈ Sm
1,0 and is homogeneous in x of

degree ℓ for |x| large.
Next, let R̃n = Rn ∪ {∞}. We say f(ξ) is C∞ near ∞ provided g(ξ) = f(ξ/|ξ|2)

is C∞ near 0. Similarly, C∞(Sn−1 × R̃n) is defined. Note that, if Z(x) is C∞ with

Z(x) = 0 for |x| ≤ 1
2 , Z(x) = 1 for |x| ≥ 1, and if p0(ω, ξ) ∈ C∞(Sn−1 × R̃n), then

(2.10) Z(x)p0(x/|x|, ξ)
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belongs to Σ0
0.

Definition. p(x, ξ) ∈ Σ̃0
0 if and only if p(x, ξ) is of the form (2.10) for some

p0(ω, ξ) ∈ C∞(Sn−1 × R̃n).
We now define the concept of the radiation set of an element u ∈ L# =

∪sL
2,s. We consider a more general concept than is absolutely necessary. Thus,

let ∩k,sHk,s ⊂ L ⊂ ∪sL
2,s and assume

OPS0
{0,... } : L −→ L.

The example of greatest interest is L = Bo∗.
Definition. Let u ∈ L#. Then L/RS(u), called the L-radiation set of u, is defined
as follows.

L/RS(u) ⊂ Sn−1 × R̃n

and (ω0, ξ0) /∈ L/RS(u) if and only if there exist h(ω) ∈ C∞(Sn−1) with h(ω0) ̸= 0

and φ(ξ) ∈ C∞(R̃n) with φ(ξ0) ̸= 0 such that

(2.11) Z(x)h(x/|x|)φ(D)u ∈ L.

The following results are elementary consequences of the previous theorems.

Theorem 2.G. L/RS(u) = ∅ if and only if u ∈ L.

Theorem 2.H. Let p(x,D) ∈ OPS0
µ. Assume µ(0) = 0, µ(i) → −∞. Then

(2.12) L/RS(p(x,D)u) ⊂ L/RS(u).

Furthermore, if p0(ω, ξ) = 0 on a neighborhood of L/RS(u), p0(ω, ξ) ∈ C∞(Sn−1×
R̃n), then L/RS(Z(x)p0(

x
|x| , D)u) = ∅.

Using the first part of Theorem 2.H, one sees that the following result is a
generalization of the second part.

Theorem 2.I. Take p(x,D) ∈ OPS0
µ as in 2.H Theorem. Let O ⊂ Sn−1 × R̃n be

open, and assume

|Dβ
xD

α
ξ p(x, ξ)| ≤ CN ⟨x⟩−N ⟨ξ⟩−|α|, (x/|x|, ξ) ∈ O.

Then O ∩ L/RS(p(x,D)u) = ∅.

We emphasize that the case of special interest for us is

Bo∗/RS(u)

which we shall merely call the radiation set of u. In this case we have the following
technically important strengthening of the second half of Theorem 2.H. See the
proof of Proposition 4.B.
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Theorem 2.J. Let u ∈ B∗. Take p(x, ξ) ∈ Σ̃0
0, of the form (2.11), such that

p0(ω, ξ) = 0 on Bo∗/RS(u).

Then p(x,D)u ∈ Bo∗.

Proof. Write p(x, ξ) = p1(x, ξ)+p2(x, ξ) with pj = Zpj0(x/|x|, ξ). Suppose p10(ω, ξ) =
0 on a neighborhood of Bo∗/RS(u) and |p20(ω, ξ)| ≤ δ. Then p1(x,D)u ∈ Bo∗ by
the second half of Theorem 2.H. Meanwhile, Theorem 2.F implies that

lim sup
R→∞

R−1

∫
|x|<R

|p(x,D)u|2dx ≤ δ2∥u∥2B∗ .

Taking δ → 0 completes the proof.



10

3. The basic a priori estimate

This section is devoted to the proof and a few consequences of the following
estimate. Fix λ ∈ [a,∞) \ [σp(P )∪Λc(P0)] and pick ρ so small that ∆(λ, ρ) = {z ∈
C : |z − λ| < ρ} is bounded away from σp(P ) ∪ Λc(P0).

Theorem 3.A. If u ∈ Bo∗ ∩Hm
loc and, for some z ∈ ∆(λ, ρ),

(P − z)u = f ∈ B,

then there is a ψ ∈ C∞
0 (Rn) and a C <∞, independent of z ∈ ∆(λ, ρ), such that

(3.1)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C∥ψu∥L2 .

We begin the proof, isolating the hard part as 3.B Proposition . Rewrite V (x, ξ)

as Ṽ L+Ṽ S with Ṽ L ∈ Sm
{−ε,−1−ε,... } such that all the roots of P0(ξ)+Ṽ

L(x, ξ)−λ =

0 are in Oλ, a small neighborhood of

Mλ = {ξ ∈ Rn : P0(ξ) = λ}.

Let P̃L(x, ξ) = P0(ξ)+ Ṽ
L(x, ξ). Take ω(ξ) such that ω(ξ) = 0 on Oλ, ω(ξ) = ⟨ξ⟩m

for |ξ| large. Let

(3.2) K(x, ξ, z) = ω(ξ)(P̃L(x, ξ)− z)−1.

Then K ∈ OPS0
µ with {µ(i)} = {0,−1− ε, . . . }. Thus

(3.3) K(x,D, z)(P̃L(x,D)− z)− ω(D) = L(x,D, z) ∈ OPSm−1
µ̃ ; µ̃(i) = µ(i+ 1).

Thus, for u satisfying the hypotheses of Theorem 3.A,

(3.4)
ω(D)u = K(P̃L − z)u− Lu

= Kf −K(Ṽ Su)− Lu

so

(3.5) ∥ω(D)u∥B∗ ≤ C∥f∥B∗ + C∥u∥m,− 1
2−

ε
2
.

Now, setting χ(D) = I − ω(D), we claim:
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Proposition 3.B. χ(D)u satisfies the estimate∑
|α|≤m

∥Dαχ(D)u∥B∗ ≤ C∥f∥B + C∥u∥m,− 1
2−

ε
2
.

Granted this result, we have the following, from (3.5):

(3.6)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C∥u∥m,− 1
2−

ε
2
.

Now, if ψ(x) is a cut-off, equal to 1 on a large set,

∥(1− ψ)u∥m,−1/2−ε/2 <
1

2

∑
|α|≤m

∥Dαu∥B∗ ,

so we get

(3.7)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C ′∥ψu∥m.

Now we can use (P − z)(ψu) = ψf + [P, ψ]u, noting that the coefficients of [P, ψ]
are compactly supported, to get ∥ψu∥m ≤ C∥f∥ + C∥ψ1u∥m−1, with some ψ1 ∈
C∞

0 (Rn). Relabelling ψ, calling it ψ, we have

(3.8)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C∥ψu∥m−1.

The estimate (3.1) follows from (3.8) by Poincare’s inequality. Thus we have given
the proof of Theorem 3.A, modulo the proof of Proposition 3.B.

To prove Proposition 3.B, we cover the zero set of P0(ξ)−Ṽ L(x, ξ)−λ in Rn×Rn

(which is close toMλ) with little balls and write χ(D) =
∑
χj(D) where each χj(ξ)

is supported on such a ball. We take the balls so small that, for each j, there is a k
such that ∂P0/∂ξk is non-vanishing on supp χj . For simplicity we will assume that
k = 1, which can be arranged for each fixed j by a coordinate rotation, and that

(3.9) ∂P0/∂ξ1 > 0 on supp χj .

The situation ∂P0/∂ξ1 < 0 is handled by a similar argument. Now, on supp χj ,
write (with ξ = (ξ1, ξ

′))

(3.10) PL(x, ξ1, ξ
′)− z = (ξ1 − a(x, ξ′, z))F (x, ξ, z)

with F (x, ξ, z) non-vanishing. It is clear that if z = λ ∈ R then Im a = 0. More
generally, we have the following fact, which will be technically useful.
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Lemma 3.C. For certain real valued b(x, ξ′, z) which, on supp χj , satisfies

(3.11) |Dα
ξ′b| ≤ Cα⟨ξ⟩−|α|

and

(3.12) Dβ
x′D

α
ξ′b(x1, x

′, ξ′, z)| ≤ Cαβ⟨x1⟩−1−ε⟨ξ⟩−|α| for |β| ≥ 1

one has, on supp χj ,

(3.13) Im a(x, ξ′, z) = (Im z)b(x, ξ′, z)2.

Proof. Since PL is a small perturbation of P0, we can drop the extra parameters.
Let p(ξ1) be some polynomial and let ρ(z) be the unique zero of p − z near ρ0 =
ρ(λ0), assuming p(ρ0) − λ0 = 0, λ0 real, and p′(ρ0) > 0. The implicit function
theorem gives

(3.14)
d

dλ
ρ(λ0) > 0.

We want Im ρ(z) = (Im z)σ(z)2, σ(z) real and smooth. Indeed, ρ(z) − ρ0 =
z∫

λ0

ρ′(ζ)dζ, so

Im ρ(z) =

z∫
λ0

Im [ρ′(ζ)dζ]

=

Im z∫
0

Re ρ′(λ+ is)ds

= (Im z)

1∫
0

Re ρ′(λ+ iτ Im z)dτ

= (Im z)σ(z)2,

by (3.14). This proves (3.13), and the proofs of (3.11) and (3.12) are straightfor-
ward.

To return to (3.10), this factorization implies that

(3.15)

(
−i ∂
∂x1

− a(x,Dx′ , z)
)
(χj(D)u) = G(x,Dx, z)(P

L − z) +Ru

= Gf −GV Su+Ru.
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Here G ∈ OPS−∞
µ and R ∈ OPS−∞

µ̃ , with {µ(j)} = {0,−1 − ε, . . . }, µ̃(j) =

µ(j + 1). We claim that, from (3.15), it follows that

(3.16)
∑

|α|≤m

∥Dαχj(D)u∥B∗ ≤ C∥f∥B + C∥GV Su∥B + C∥Ru∥B .

We briefly potspone the proof of (3.16) and show how this estimate leads to the
proof of 3.B Proposition.

Indeed, the short range hypothesis on V S and the operator properties of G and
R give

(3.17)
∑

|α|≤m

∥Dαχj(D)u∥B∗ ≤ C∥f∥B + C∥u∥m,− 1
2−

ε
2
,

and summing over j gives Proposition 3.B.
Thus, to complete the proof of Theorem 3.A, it remains only to establish that

(3.16) follows from (3.15). From the left hand side of (3.l5), we see that we are
considering an operator-valued ODE of the form

(3.18)
du

dy
−A(y)u(y) = g(y).

Here it is convenient to change notation, replacing x1 by y and replacing x′ by x.
So we denote a(x,Dx′ , z) by a(y, x,Dx, z) = A(y) (with z as a parameter). We
look for a priori estimates of solutions u(y), taking values in some Hilbert space
H, to (3.18), assuming f ∈ L1((0, T ],H) and A(y) ∈ C((−∞, T ],L(H)). As one
can imagine, using standard energy estimates and Gronwall inequality arguments,
one can get estimates on solutions u(y) to (3.18) provided A(y) satisfies the semi-
boundedness condition:

(3.19) A(y) +A(y)∗ ≤ B(y); B(y) symmetric and

T∫
−∞

∥B(y)∥dy <∞.

For example, the following result is elementary.

Proposition 3.D. Let u solve (3.18) and suppose lim inft→−∞ ∥u(t)∥ = 0. Then

∥u(t)∥ ≤
t∫

−∞

∥f(s)∥ds · exp
( t∫
−∞

∥B(s)∥ds
)
.

One can also get weighted estimates, such as the following:
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Proposition 3.E. Suppose in addition that ∥B(y)∥ ≤ ⟨y⟩−1−ε. Then, for k > 1,

T∫
−∞

(1 + |y|)k−2∥u(y)∥2dy ≤ Ck,T

T∫
−∞

(1 + |y|)k∥f(y)∥2dy, T <∞.

In our situation, A(y) = ia(y, x,Dx, z), with (3.13) holding. Let us consider the

case Im z ≤ 0. Otherwise, do the same argument on [T,∞). Thus, with (−Im z)
1
2 b

relabeled as b, we have
Im a = −b2.

It follows from (3.11), (3.12), and the pseudodifferential operator calculus, that

(3.20) A(y) +A(y)∗ = C(y)− 2b∗b ≤ C(y) and ∥C(y)∥ ≤ C⟨y⟩−1−δ.

Thus (3.19) is satisfied in our case.
Remark. It might be amusing to prove some sort of ‘sharp G̊arding inequality,’
which would make Lemma 3.C and the computation (3.20) unnecessary. However,
we will not pursue this.

The crucial abstract result, which allows us to deduce (3.16) from (3.15), is the
following. Let

Ω−
T = {(y, x) : y < T}.

Proposition 3.F. Suppose u, ∂u/∂y belong to L2,−N (Ω−
T ) for some N < 0. Con-

sider u, ∂u/∂y as functions of y with values in L2,−N (Rn−1). Let a(y, x,Dx) be as
above. Assume that

(3.21) lim inf
R→∞

R−1

∫
Ω−

T
∩{y2+|x|2<R2}

|u(y, x)|2dy dx = 0.

Suppose −i∂u/∂y − a(y, x,Dx)u = f(y, x) and

T∫
−∞

∥f(y, ·)∥L2(Rn−1)dy <∞.

Then

(3.22) ∥u(y, ·)∥L2(Rn−1) ≤ K

t∫
−∞

∥f(s)∥L2(Rn−1)ds.

Note. Given the crucial nature of this result, a complete proof should be written
down.
Remarks.
(3.23) This is better than Proposition 3.D, since we are only assuming u(y, ·) ∈
L2,−N .
(3.24) If the symbol a is real, we get such a result in Rn = Ω−

0 ∪ Ω+
0 .

(3.25) We also can prove weighted estimates.
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Corollary 3.G. Under the hypotheses of the Theorem above, one has

(3.26) ∥u∥B∗(Ω−
T
) ≤ C∥f∥B(Ω−

T
), C independent of T.

Thus we can take T = +∞; Ω−
T = Rn.

Proof. Use

∥u(y, ·)∥L2(Rn−1) ≤ C

t∫
−∞

∥f(y, ·)∥L2dy ≤ C ′∥f∥B(Ω−
t )

and
∥u∥B∗(Ω−

T
) ≤ C sup

s≤T
∥u(s, ·)∥L2 .

Corollary 3.H. If a is real and u ∈ Bo∗, then u(y, ·) ∈ L2(Rn−1) for almost all y,
and, for k > 1,

(3.27)

∞∫
−∞

⟨y⟩k−2∥u(y, ·)∥2L2dy ≤ C

∞∫
−∞

⟨y⟩k∥f(y, ·)∥2dy,

Now the estimate (3.26), for T = +∞, directly shows that (3.l6) follows from
(3.15). At this point, the proof of the basic a priori estimate, Theorem 3.A, is
complete. In the same fashion, via 3.H Corollary, one obtains the folowing.

Theorem 3.I. Let λ ∈ R, f ∈ L2,s, s > 1
2 . Then, if the principal part of P is real,

(3.28) (P − λ)u = f, u ∈ Bo∗ =⇒ u ∈ L2,s−1.

Corollary 2.J. All eigenvalues of P different from critical values (elements of
Λc(P0)) are isolated and have finite multiplicity.

Proof. Given [a, b] ⊂⊂ σ(P ) \ Λc(P0), 3.I Theorem yields, for λ ∈ [a, b],

(P − λ)u = f, u ∈ L2 ⊂ Bo∗ =⇒ ∥u∥m,s−1 ≤ Cs(∥f∥0,s + ∥ψu∥L2).

Taking s = 2, f = 0,
∥u∥m,1 ≤ C∥ψu∥L2 ≤ C ′∥u∥L2 .

The Rellich theorem implies the finite dimensionality of the sum of the eigenspaces
of P with eigenvalues in [a, b].

Note that all such eigenfunctions associated with eigenvalues λ ∈ σp(P )\Λc(P0)
belong to L2,s for all s <∞.
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4. The radiation condition

Let u ∈ B∗ and suppose Dαu ∈ B∗ for |α| ≤ m. Suppose λ ∈ σ(P ) \ [σp(P ) ∪
Λc(P0)], and

(P − λ)u = f ∈ B.

We say u is λ-outgoing if there exist zj → λ, Im zj > 0, such that

(P − zj)
−1f → u weakly in B∗, with all derivatives of order ≤ m.

Similarly we say u is λ-incoming if such a limit holds with zj → λ, Im zj < 0. Once
the limiting absorption principle is proved, in the next section, we can say that u
is λ-outgoing (resp., λ-incoming) if and only if, for some f ∈ B, u = R(λ + i0)f
(resp., u = R(λ − i0)f). Here, as an aid in proving our main theorem, we give a
characterization of λ-incoming and λ-outgoing functions u in terms of the radiation
set.

Theorem 4.A. Assume (P − λ)u = f ∈ B for some λ ∈ σ(P ) \ [σp(P ) ∪ Λc] and
suppose Dαu ∈ B∗ for |α| ≤ m. Then u is λ-outgoing if and only if, for |α| ≤ m,

(4.1) Bo∗/RS(Dαu) ⊂
{
(ω, ξ) ∈ Sn−1 × R̃n : ξ ∈ Mλ and ω =

∇P0(ξ)

|∇P0(ξ)|

}
= Y +

λ .

There is a similar characterization for u λ-incoming, with Y +
λ replaced by Y −

λ ,
characterized by

ξ ∈ Mλ, ω = − ∇P0(ξ)

|∇P0(ξ)|
.

Proof. As in the proof of Theorem 3.A, we need only consider the behavior of
χj(D)u. If u is λ-outgoing then Corollary 3.G implies that u restricted to Ω−

0

belongs to Bo∗(Ω−
0 ). Now we can re-define the ξ1-axis so that it points in any

direction non-tangent to Mλ on supp χj and hence conclude that χj(D)u is in
Bo∗ on the complement of an arbitrarily small cone about the normal to Mλ at a
point in supp χj , if this support is taken small enough, by taking a sufficiently fine
covering of Mλ. From this, (4.1) follows. A similar argument works if u is assumed
λ-incoming.

To prove the converse, we establish the folowing result, of independent interest.

Proposition 4.B. Assume Dαu ∈ B∗, for |α| ≤ m, and (P − λ)u = f ∈ B, λ ∈
σ(P ) \ Λc. Suppose that, with one choice of sign, |α| ≤ m,

(4.2) Bo∗/RS(Dαu) ⊂ Y ±
λ .
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Take ψ(ξ) ∈ C∞(R̃n) with ψ(ξ)2 = |∇P0(ξ)| on Mλ. Then

(4.3) lim
R→∞

R−1

∫
|x|<R

|ψ(D)u|2dx = ±2 Im ⟨u, f⟩.

To see how this result completes the proof of Theorem 4.A, assume u satisfies
(4.1). In the next section, as a preliminary step toward proving the main theorem
(see Lemma 5.B) it will be shown that there exists a weak limit v = w − lim (P −
zj)

−1f in B∗, zj → λ, Im zj > 0; this result will be established without the use of
the ‘only if’ part of Theorem 4.A. Granted this, the part of Theorem 4.A proved
so far yields Bo∗/RS(v) ⊂ Y +

λ . Consider w = u − v. We have (P − λ)w = 0 and

Bo∗/RS(w) ⊂ Y +
λ . By Proposition 4.B, we conclude that

ψ(D)w ∈ Bo∗.

On the other hand, certainly ω(D)w ∈ Bo∗ since Bo∗/RS(w) ⊂ Y +
λ . This implies

that
w ∈ Bo∗.

But now Theorem 3.I yields w ∈ L2,s for all s < ∞. In particular either w is an
eigenfunction of P, contrary to the assumption that λ /∈ σp(P ), or w = 0, so u = v,
which shows that if u satisfies (4.1), then u is λ-outgoing. The same argument
shows that (4.1) with Y +

λ replaced by Y −
λ implies u is λ-incoming. Thus, granted

Proposition 4.B and Lemma 5.B, the proof of Theorem 4.A is complete.
We turn now to the proof of Proposition 4.B. Let φ ∈ C∞

0 (Rn) be of the form
φ(x) = φ1(|x|) with φ1 ∈ C∞

0 (R); assume φ1(s) = 1 for s ≤ 1. Let φR(x) = φ(x/R).
Note that

(4.4)
2i Im ⟨u, f⟩ = lim

R→∞
[⟨φRu, (P − λ)u⟩ − ⟨(P − λ)u, φRu⟩]

= lim
R→∞

⟨[P − λ, φR]u, u⟩.

Now

[P,φR] = − i

R

n∑
j=1

(∇xφ)(
x

R
) · (∇ξP )(x,D) +R−2QR(x,D)

and the coefficients of QR(x,D) are uniformly bounded in x and R. Thus

lim
R→∞

R−2|⟨QR(x,D)u, u⟩| = 0 if Dαu ∈ B∗ for |α| ≤ m.

Also ∇ξP (x, ξ) = ∇ξP0(ξ) +∇ξV (x, ξ), so our hypotheses on V give

lim
R→∞

|R−1⟨∇φ(x/R) · (∇ξV )(x,D)u, u⟩| = 0.
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Thus

(4.5)

2i Im ⟨u, f⟩ = lim
R→∞

⟨[P0, φR]u, u⟩

= −i lim
R→∞

R−1⟨(∇xφ)(x/R) · (∇ξP0)(x,D)u, u⟩.

Now let

(4.6) Q±(x, ξ) =
x

|x|
· ∇ξP0(ξ)∓ |ψ(ξ)|2.

Thus (4.5) becomes

(4.7)
−2 Im ⟨u, f⟩ = lim

R→∞
R−1⟨φ′

1(
|x|
R

)Q±(x,D)u, u⟩

∓ lim
R→∞

R−1⟨φ′
1(
|x|
R

)ψ(D)2u, u⟩.

On the other hand, we see that

(4.8) Q±

(
± ∇P0(ξ)

|∇P0(ξ)|
, ξ
)
= ±|P0(ξ)| ∓ |ψ(ξ)|2 = 0 on Mλ.

Thus Q±(x, ξ) vanishes, by hypothesis, on Bo∗/RS(Dαu), |α| ≤ m. Consequently,
Theorem 2.J implies Q±(x,D)u ∈ Bo∗, so (4.7) becomes

(4.9) 2 Im ⟨u, f⟩ = ± lim
R→∞

R−1⟨φ′
1(
|x|
R

)ψ(D)2u, u⟩.

If we take a sequence of φ1j(ξ) approaching in the limit φ0(s) = 1−s for 0 ≤ s ≤ 1, 0
for s ≥ 1, then in the limit (4.9) becomes (4.3), and the proof is complete.
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5. Proof of the main theorem

Let λ ∈ σ(P ) \ [σp(P ) ∪ Λc(P0)]. As stated in the Introduction, our goal is to
prove:

Theorem 5.A. There exist bounded operators

(5.1) T± : B −→ B∗

such that

(5.2) ⟨T±f, g⟩ = lim
z→λ,±Im z>0

⟨(z − P )−1f, g⟩ for all f, g ∈ B.

Denoting (z − P )−1f by R(z)f = u, we have established in Section 3 the basic
a priori estimate

(5.3)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B + C∥ψu∥L2 , z ∈ ∆(λ, ρ).

Our next goal is to improve this estimate by omitting the term ∥ψu∥L2 . (Obviously,
for any fixed z /∈ R, one could omit this term.) Thus we try to show that ∥ψu∥L2 ≤
C∥f∥B . We argue by contradiction. We consider only the case Im z > 0. Thus,
suppose there exists a sequence zj → λ ∈ [a,∞) \ [σp(P ) ∪ Λc], Im zj > 0, such
that one can find fj ∈ B with

(5.4) ∥fj∥B → 0 and ∥ψR(zj)fj∥L2 = 1.

The estimate (5.3) then implies, with uj = R(zj)fj ,

(5.5)
∑

|α|≤m

∥Dαuj∥B∗ ≤ C∥fj∥B + C∥ψuj∥L2 ≤ C ′.

Thus there is a weak limit, uj → u weakly inHm
loc.We also haveDαu ∈ B∗, |α| ≤ m.

Note that, by Rellich’s theorem, ψuj → ψu in the L2 norm. Hence ∥ψu∥L2 = 1. In
particular, u is not identically zero. On the other hand,

(5.6) (P − λ)u = 0.

Now this element u satisfies the λ-outgoing condition introduced in Section 4. Thus
the direct part of Theorem 4.A (which has been completely proved) implies that

(5.7) Bo∗/RS(Dαu) ⊂ Y +
λ , |α| ≤ m.



20

Consequently the hypotheses of Proposition 4.B are satisfied and, by (5.6), we have

lim
R→∞

R−1

∫
|x|<R

|ψ(D)u|2dx = 0

or

(5.8) ψ(D)u ∈ Bo∗.

But this implies Bo∗/RS(Dαu) ∩ Y +
λ = ∅, and together with (5.7) this gives

(5.9) Dαu ∈ Bo∗, |α| ≤ m.

Now Theorem 3.I gives u ∈ L2,s for all s < ∞. In particular, by (5.6), u must be
an eigenfunction of P, contradicting the hypothesis λ /∈ σp(P ). Thus we have the
following sharpening of (5.3):

(5.10)
∑

|α|≤m

∥Dαu∥B∗ ≤ C∥f∥B , z ∈ ∆(λ, ρ).

Since B∗ is the dual of B, an immediate consequence is:

Lemma 5.B. For f ∈ B, as z → λ ∈ [a,∞) \ [σp(P ) ∪ Λc] with ±Im z > 0, then
there exists a limit point u± ∈ B∗,

(5.11) R(z)f → u± weakly in B∗.

We are now almost through with the proof of Theorem 5.A. It remains only to
show that the limits in (5.11) are unique. So suppose zj → λ, Im zj > 0, and
suppose there exists another limit point v ∈ B∗. It follows that

(P − λ)(u+ − v) = 0.

It also follows that u+ − v ∈ B∗ satisfies the λ-outgoing condition. Hence, by
Theorem 4.A and Proposition 4.B, by an argument we have seen before, we conclude
that u+ − v ∈ Bo∗. Again, Theorem 3.I implies u+ − v must be an eigenfunction
of P unless u+ − v = 0, so since we assume λ /∈ σp(P ), we conclude u+ = v. The
main theorem is now proved. For notational convenience, we set

R(λ± i0) = T±.
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6. The absence of singular continuous spectrum

Here we deduce from the limiting absorption principle:

Theorem 6.A. The singular continuous spectrum of P is empty.

Proof. We want to show that, for any compact interval [α, β] in [a,∞) \σp(P ), the
spectrum of P is absolutely continuous. With Eλ denoting the spectral resolution
of P, use the formula

((Eβ − Eα)f, f) = lim
ε→0

1

2πi

β∫
α

([R(λ+ iε)−R(λ− iε)]f, f)dλ,

which holds for any f ∈ L2(Rn). Now suppose f ∈ B. It follows from 5.A Theorem
that

((Eβ − Eα)f, f) =
1

2πi

β∫
α

([R(λ+ i0)−R(λ− i0)]f, f)dλ.

It follows that (Eλf, f) is C
1 on [α, β] and

(d/dλ)(Eλf, f) =
1

2πi
([R(λ+ i0)−R(λ− i0)]f, f), λ ∈ [α, β],

for any f ∈ B. Now the set of functions f ∈ L2(Rn) for which (Eλf, f) is an
absolutely continuous function on [α, β] is known to be closed. Since we have
shown it is dense, it must be all L2. The proof is complete.

Remark. This proof is well known for the short range case.


