Harmonic Forms on Exterior Domains in \mathbb{R}^n

MICHAEL TAYLOR

Contents

- 1. Introduction
- 2. Finite dimensionality results
- 3. Dimension computation for n = 2
- 4. The dimension of $\mathcal{H}^p_B(\Omega, \Lambda^1)$, for $n \geq 3$

1. Introduction

Let \mathcal{O} be a smoothly bounded open set in \mathbb{R}^n (it can have several connected components), and let $\Omega = \mathbb{R}^n \setminus \overline{\mathcal{O}}$. We study harmonic k-forms on Ω that belong to $L^p(\Omega)$ and satisfy absolute or relative boundary conditions on $\partial\Omega$. That is to say, we study

(1.1)
$$\begin{aligned} \mathcal{H}^p_A(\Omega,\Lambda^k) &= \{ u \in L^p(\Omega,\Lambda^k) : du = 0 = d * u \text{ on } \Omega, \ u \rfloor \nu = 0 \text{ on } \partial\Omega \}, \\ \mathcal{H}^p_R(\Omega,\Lambda^k) &= \{ u \in L^p(\Omega,\Lambda^k) : du = 0 = d * u \text{ on } \Omega, \ \nu \wedge u = 0 \text{ on } \partial\Omega \}. \end{aligned}$$

Here, ν is the unit conormal to $\partial\Omega$.

Regarding the existence of boundary values, we can take a collar neighborhood $I \times \partial \Omega$ if $\partial \Omega$ in $\overline{\Omega}$, with local coordinates (y, y'), y = 0 defining $\partial \Omega$, and write the elliptic system du = d * u = 0 on functions with values in $\Lambda^* = \bigoplus \Lambda^k$ as

(1.2)
$$\frac{\partial u}{\partial y} = K(y, y', D_{y'})u,$$

yielding, for $u \in L^p(\Omega)$ satisfying this system, the behavior

(1.3)
$$\frac{\partial u}{\partial y} \in L^p(I, H^{-1,p}(\partial\Omega)),$$

hence

(1.4)
$$u \in C(I, H^{-1, p}(\partial \Omega)),$$

and consequently $u|_{\partial\Omega} \in H^{-1,p}(\partial\Omega)$. This is not sharp. As shown in [Se], one actually has the Besov space trace result

(1.5)
$$u\Big|_{\partial\Omega} \in B^{-1/p}_{p,p}(\partial\Omega).$$

The result (1.4) allows one to apply methods of Chapter 10 of [H] to obtain C^{∞} regularity results, and estimates, such as

(1.6)
$$||u||_{C^1(\overline{\Omega}\cap B_K)} \le C_K ||u||_{L^p(\Omega\cap B_{2K})},$$

for all $u \in \mathcal{H}^p_B(\Omega, \Lambda^k)$, with B = A or R, where we pick $K \in (0, \infty)$ such that

(1.7)
$$\overline{\mathcal{O}} \subset B_K = \{ x \in \mathbb{R}^n : |x| < K \}.$$

The spaces $\mathcal{H}^p_B(\Omega, \Lambda^k)$, for k = 1 and n = 2 or 3, are of interest in the study of Euler equations for incompressible fluids, and results on these spaces have been treated in several papers, notably [HY1]–[HY2]. These papers stimulate one to investigate more general cases of n and k.

In §2 we establish that, for all $n \ge 2$ and $k \in \{1, \ldots, n\}$, and all $p \in (1, \infty)$,

(1.8)
$$\dim \mathcal{H}^p_B(\Omega, \Lambda^k) < \infty,$$

with B = A or R. These results were established in the papers cited above for k = 1 and n = 2, 3.

In §3, we specialize to n = 2, k = 1, and give a proof that

(1.9)
$$\dim \mathcal{H}^p_A(\Omega, \Lambda^1) = \dim \mathcal{H}^p_R(\Omega, \Lambda^1) = L, \quad \text{if } 2$$

where L is the number of connected components of $\partial\Omega$. This is one of the main results of [HY2], but the details of the proof given here differ from those of that paper.

One useful tool in the analysis is that

(1.10)
$$du = 0 = d * u \Longrightarrow \Delta u = 0 \text{ on } \Omega,$$

where Δ is the Laplace operator, acting on k-forms, which for a k-form u on $\Omega \subset \mathbb{R}^n$ just means the standard Laplace operator $\Delta = \partial_1^2 + \cdots + \partial_n^2$, acting componentwise on u.

2. Finite dimensionality results

As in §1, let B denote either A or R, and assume $p \in (1, \infty)$. Our analysis of $\mathcal{H}^p(\Omega, \Lambda^k)$ starts with the following.

Proposition 2.1. If $u \in \mathcal{H}^p_B(\Omega, \Lambda^k)$, then

(2.1)
$$\lim_{|x| \to \infty} |u(x)| = 0.$$

To establish this, tile a neighborhood of $\Omega \setminus B_K$ in Ω with cubes Q_{ν} , of a fixed size, such that, for all ν , $2Q_{\nu} \subset \subset \Omega$. Then, thanks to (1.10) and local regularity for harmonic functions, we have

(2.2)
$$\sum_{\nu} \|u\|_{L^{\infty}(Q_{\nu})}^{p} \leq C_{1} \sum_{\nu} \|u\|_{L^{p}(2Q_{\nu})}^{p} \leq C_{2} \|u\|_{L^{p}(\Omega)}^{p},$$

for all $u \in \mathcal{H}^p_B(\Omega, \Lambda^k)$. This implies (2.1).

Another corollary of (2.2), in concert with (1.6), is that

(2.3)
$$\|u\|_{L^{\infty}(\Omega)} \le C \|u\|_{L^{p}(\Omega)}, \quad \forall u \in \mathcal{H}^{p}_{B}(\Omega, \Lambda^{k}),$$

given $p \in (1, \infty)$. This leads to the following.

Proposition 2.2. If 1 , then

(2.4)
$$\mathcal{H}^p_B(\Omega, \Lambda^k) \subset \mathcal{H}^q_B(\Omega, \Lambda^k).$$

Proposition 2.1 allows us to prove the following uniform estimate.

Proposition 2.3. Let $\Delta u = 0$ on Ω and assume (2.1) holds. Pick K such that (1.7) holds. Then, if $n \ge 3$, we have, for $|x| \ge K$,

(2.5)
$$|u(x)| \le \left(\sup_{|y|=K} |u(y)|\right) \left|\frac{x}{K}\right|^{-(n-2)}$$

If n = 2, we have, for $|x| \ge K$,

(2.6)
$$|u(x)| \le C_K \left(\sup_{|y|=K} |u(y)|\right) \left|\frac{x}{K}\right|^{-1}.$$

Proof. It suffices to get such estimates for real valued harmonic functions. Since $|x|^{-(n-2)}$ is harmonic on $\mathbb{R}^n \setminus 0$, the estimate (2.8) follows from the maximum principle. When n = 2, we argue as follows. Set

(2.7)
$$v(x) = u(|x|^{-2}x), \quad |x| \le \frac{1}{K}, \ x \ne 0.$$

Then, by invariance of the class of harmonic functions under conformal maps, $v \in C^{\infty}(\overline{B}_{1/K} \setminus 0)$ is harmonic and tends to 0 as $x \to 0$. Hence 0 is a removable singularity, and v extends to be harmonic on $B_{1/K}$, with v(0) = 0. Hence

(2.8)
$$|v(x)| \le A(v)|x|, \text{ for } |x| \le \frac{1}{2K},$$
$$A(v) = \sup_{|x| \le 1/2K} |\nabla v(x)| \le C \Big(\sup_{|y|=1/K} |v(y)|\Big),$$

the last estimate thanks to interior elliptic regularity. This yields (2.6).

In concert with (1.6), Proposition 2.3 yields the following uniform bounds.

Proposition 2.4. For all $u \in \mathcal{H}^p_B(\Omega, \Lambda^k), x \in \overline{\Omega}$,

(2.9)
$$|u(x)| \le C ||u||_{L^p(\Omega)} (1+|x|)^{-\alpha_n},$$

where $\alpha_n = n - 2$ for $n \ge 3$, and $\alpha_2 = 1$.

Note that

(2.10)
$$\int_{\mathbb{R}^n} (1+|x|)^{-\alpha_n q} \, dx \le C + C \int_1^\infty r^{-\alpha_n q} r^{n-1} \, dr$$

which is finite if and only if

(2.11)
$$q > \frac{n}{\alpha_n} = \frac{n}{n-2}, \quad \text{if} \quad n \ge 3,$$
$$2 \quad \text{if} \quad n = 2.$$

We hence complement (2.4) with the following.

Proposition 2.5. In the setting of (2.9),

(2.12)
$$p > \frac{n}{\alpha_n} \Longrightarrow \mathcal{H}^p_B(\Omega, \Lambda^k) \subset \mathcal{H}^q_B(\Omega, \Lambda^k), \quad \forall q > \frac{n}{\alpha_n}.$$

Consequently,

(2.13)
$$\mathcal{H}^p_B(\Omega, \Lambda^k) = \mathcal{H}^q_B(\Omega, \Lambda^k), \quad \forall p, q \in (n/\alpha_n, \infty).$$

We are now amply prepared for the following.

Theorem 2.6. Given $p \in (1, \infty)$, $n \ge 2$, $k \in \{1, ..., n\}$, and B = A or R,

(2.14)
$$\dim \mathcal{H}^p_B(\Omega, \Lambda^k) < \infty.$$

Proof. By (2.4), it suffices to prove (2.14) for $p > n/\alpha_n$. Fix such p, and suppose $u_{\nu} \in \mathcal{H}^p_B(\Omega, \Lambda^k)$ satisfies $||u_{\nu}||_{L^p(\Omega)} \leq 1$. By Proposition 2.4, we have a uniform estimate

(2.15)
$$|u_{\nu}(x)| \leq C(1+|x|)^{-\alpha_n}, \quad \forall \nu.$$

Also, using (1.6), applied to a sequence $K_{\mu} \to \infty$, and using a diagonal argument, we can pass to a subsequence (which we still denote (u_{ν})) and an element $u \in \mathcal{H}^p_B(\Omega, \Lambda^k)$, such that

(2.16)
$$\sup_{\Omega \cap B_K} |u - u_{\nu}| \longrightarrow 0, \quad \forall K < \infty.$$

In particular,

$$(2.17) u_{\nu}(x) \longrightarrow u(x), \quad \forall x \in \Omega.$$

Then the uniform upper bound (2.15) allows us to apply the Lebesgue dominated convergence theorem, to deduce that

(2.18)
$$\int_{\Omega} |u_{\nu} - u|^p \, dx \longrightarrow 0.$$

Thus the closed unit ball in $\mathcal{H}^p_B(\Omega, \Lambda^k)$ is compact, so (2.14) holds.

While Propositions 2.4–2.5 are adequate for the proof of Theorem 2.6, it is nevertheless of interest to record the following improvement.

Proposition 2.7. The results (2.9)–(2.13) hold with

$$(2.19) \qquad \qquad \alpha_n = n - 1.$$

Proof. We have this for n = 2, so we focus on $n \ge 3$. In this case, given $u \in \mathcal{H}^p_B(\Omega, \Lambda^k)$, arguments above, involving Proposition 2.1, imply that, for $|x| \ge K$, u(x) has a convergent expansion

(2.20)
$$u(x) = A_0 |x|^{-(n-2)} + \sum_{\ell \ge 1} A_\ell \left(\frac{x}{|x|}\right) |x|^{-(n-2)-\ell},$$

where

(2.21)
$$A_0 = \sum_{j_1 < \cdots < j_k} a_{j_1 \cdots j_k} \, dx_{j_1} \wedge \cdots \wedge dx_{j_k},$$

and, for $\ell \geq 1$, $A_{\ell}(y)$ is a finite linear combination of spherical harmonics, with coefficients in $\Lambda^k \mathbb{R}^n$ (i.e., of a form like (2.21)). It suffices to show that

$$(2.22) du = d * u = 0 \Longrightarrow A_0 = 0.$$

Note that (2.20) says $u(x) = \sum_{\ell \ge 0} u_{\ell}(x)$, with u_{ℓ} homogeneous in x of degree $-(n-2) - \ell$. Hence, for each ℓ , du_{ℓ} and $d * u_{\ell}$ are homogeneous in x of degree $-(n-2) - \ell - 1$. Thus the hypothesis in (2.22) implies $du_{\ell} = d * u_{\ell} = 0$ for each ℓ . Now

(2.23)
$$du_0(x) = -\frac{n-2}{|x|^n} \sum_{\ell} x_{\ell} \, dx_{\ell} \wedge A_0,$$

 \mathbf{SO}

(2.24)
$$du_0 = 0 \Rightarrow dx_\ell \land A_0 = 0, \quad \forall \ell \in \{1, \dots, n\} \\ \Rightarrow k = n.$$

Similarly $d * u_0 = 0 \Rightarrow k = 0$. This proves (2.22), and yields (2.19).

3. Dimension computation for n = 2

As advertised in $\S1$, the purpose of this section is to prove the following.

Proposition 3.1. Let $\mathcal{O} \subset \mathbb{R}^2$ be a smoothly bounded open set, $\Omega = \mathbb{R}^2 \setminus \overline{\mathcal{O}}$. Assume $\partial \Omega$ has L connected components. Then

(3.1)
$$\dim \mathcal{H}^p_A(\Omega, \Lambda^1) = \dim \mathcal{H}^p_R(\Omega, \Lambda^1) = L, \quad \text{if } 2$$

In general (for $\Omega \subset \mathbb{R}^n$), the Hodge * operator provides isomorphisms

(3.2)
$$*: \mathcal{H}^p_A(\Omega, \Lambda^k) \xrightarrow{\approx} \mathcal{H}^p_R(\Omega, \Lambda^{n-k}).$$

In particular, when n = 2,

(3.3)
$$*: \mathcal{H}^p_A(\Omega, \Lambda^1) \xrightarrow{\approx} \mathcal{H}^p_R(\Omega, \Lambda^1),$$

so it suffices to establish (3.1) for $\mathcal{H}^p_R(\Omega, \Lambda^1)$. We start with a lower bound on dim $\mathcal{H}^p_R(\Omega, \Lambda^1)$. The following result is useful.

Lemma 3.2. Let $f \in C^{\infty}(\overline{\Omega})$ be a real valued harmonic function. Assume f is constant on each connected component Γ_{ℓ} of $\partial \Omega$:

$$(3.4) f\big|_{\Gamma_{\ell}} = c_{\ell}.$$

Then

(3.5)
$$u = df \Longrightarrow u \wedge \nu = 0 \text{ on } \partial\Omega.$$

Hence, for such u,

(3.6)
$$u \in L^p(\Omega) \Longrightarrow u \in \mathcal{H}^p_R(\Omega, \Lambda^1).$$

Proof. The result (3.5) is clear. Also $u = df \Rightarrow du = d^2f = 0$. Finally,

$$(3.7) u = df \Longrightarrow *d * u = \Delta f,$$

so we have (3.6).

To proceed, it is convenient to identify \mathbb{R}^2 with the complex plane \mathbb{C} and bring in the Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, and set

(3.8)
$$\overline{\Omega}^* = \overline{\Omega} \cup \{\infty\} \subset \widehat{\mathbb{C}},$$

so $\overline{\Omega}^*$ is a smoothly bounded, compact subset of the compact Riemann surface $\widehat{\mathbb{C}}$, on which we can solve the Dirichlet problem, producing a map

(3.9)
$$\operatorname{PI}: C^{\infty}(\partial\Omega) \longrightarrow C^{\infty}(\overline{\Omega}^*).$$

Then, given $g \in C^{\infty}(\partial \Omega)$, $f = \operatorname{PI} g$ can be restricted to $\overline{\Omega}$, yielding

(3.10)
$$f \in C^{\infty}(\overline{\Omega}), \quad \Delta f = 0 \text{ on } \Omega, \quad f|_{\partial\Omega} = g, \quad f(z) \to f(\infty) \text{ as } |z| \to \infty.$$

Let $\mathcal{C}(\partial\Omega)$ denote the space of real valued functions on $\partial\Omega$ that are constant on each connected component. We have a map

(3.11)
$$\begin{aligned} \mathfrak{h}: \mathcal{C}(\partial\Omega) &\longrightarrow \{ u \in C^{\infty}(\overline{\Omega}, \Lambda^1) : du = d * u = 0 \text{ on } \Omega, \ u \wedge \nu = 0 \text{ on } \partial\Omega \}, \\ \mathfrak{h}g &= d \text{ PI } g. \end{aligned}$$

Expanding $\operatorname{PI} g(re^{i\theta})$ in a Fourier series in θ , we have, for $|z| \ge K$ (K as in (1.7)),

(3.12)
$$\operatorname{PI} g(z) = a_0 + \sum_{\ell \ge 1} (a_\ell \cos \ell \theta + b_\ell \sin \ell \theta) r^{-\ell},$$

with $a_0, a_\ell, b_\ell \in \mathbb{R}$. The constant term a_0 is annihilated by d, and the images of $a_\ell(\cos \ell \theta)r^{-\ell}$ and $b_\ell(\sin \ell \theta)r^{-\ell}$ are homogeneous of degree $-\ell - 1$. We hence have

$$(3.13) |\mathfrak{h}g(z)| = O(|z|^{-2}), \quad \forall \, g \in \mathcal{C}(\partial\Omega),$$

 \mathbf{SO}

(3.14)
$$\mathfrak{h}: \mathcal{C}(\partial\Omega) \longrightarrow \mathcal{H}^p_R(\Omega, \Lambda^1), \quad \forall \, p > 1.$$

Now $\mathcal{C}(\partial\Omega)$ is a real vector space of dimension L, and the null space of \mathfrak{h} is the one-dimensional subspace of functions assuming the same constant value on each connected component of $\partial\Omega$. Hence the range if \mathfrak{h} in (3.14) is a real vector space of dimension L - 1. We have

(3.15)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) \ge L - 1, \quad \forall \, p > 1.$$

We next produce another element of $\mathcal{H}^p_R(\Omega, \Lambda^1)$, when $p \in (2, \infty)$, in the form

(3.16)
$$u_L = d(\log|x| - \operatorname{PI} g),$$

where we arrange (by translating coordinates if necessary) that $0 \in \mathcal{O}$, and set

(3.17)
$$g(x) = \log |x|, \text{ for } x \in \partial\Omega,$$

so $g \in C^{\infty}(\partial\Omega)$. We define PI g as in (3.9)–(3.10). Then PI g again has the form (3.12), so $|d \operatorname{PI} g(x)| = O(|x|^{-2})$. Hence

(3.18)
$$u_L(x) = |x|^{-2} \sum_{\ell} x_{\ell} \, dx_{\ell} + O(|x|^{-2}).$$

Note that $\log |x| - \operatorname{PI} g$ vanishes on $\partial \Omega$. Hence

(3.19)
$$u_L \in \mathcal{H}^p_R(\Omega, \Lambda^1) \iff 2$$

We see by comparing (3.13) with (3.18) that u_L does not belong to the range of \mathfrak{h} in (3.14). Therefore, we have

(3.20)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) \ge L, \quad \forall \, p \in (2, \infty).$$

We next seek to account for the jump in dimensions described in (3.1). Pick $q \in (2, \infty)$ and suppose $u \in \mathcal{H}^q_R(\Omega, \Lambda^1)$. Picking K as in (3.12) and expanding $u(re^{i\theta})$ in a Fourier series, we have (parallel to (2.20))

(3.21)
$$u(x) = \sum_{\ell \ge 1} u_{\ell} = \sum_{\ell \ge 1} (A_{\ell} \cos \ell \theta + B_{\ell} \sin \ell \theta) r^{-\ell},$$

with $A_{\ell}, B_{\ell} \in \Lambda^1 \mathbb{R}^2$. In particular,

(3.22)
$$u_1(x) = |x|^{-2} \sum_{i,j} \alpha_{ij} x_i \, dx_j, \quad \alpha_{ij} \in \mathbb{R}.$$

Lemms 3.3. In the setting of (3.21), with $u \in \mathcal{H}^q_R(\Omega, \Lambda^1)$, there exists $\alpha \in \mathbb{R}$ such that

$$(3.23) u_1(x) = \alpha \, d \log |x|.$$

Proof. The set of 1-forms given by the right side of (3.22) is a 4-dimensional real vector space (call it \mathcal{V}), on which * acts, satisfying ** = -I. The element u_1 belongs to \mathcal{V} , and satisfies the constraint that $du_1 = d * u_1 = 0$. A 2-dimensional linear subspace of \mathcal{V} satisfying this constraint is spanned by

(3.24)
$$\beta_1 = d\log r, \quad \beta_2 = *\beta_1 = d\theta.$$

If \mathcal{V} contained a linearly independent β_3 satisfying $d\beta_3 = d * \beta_3 = 0$, then $\beta_4 = *\beta_3$ would also satisfy this condition. The span of $\beta_1, \beta_2, \beta_3, \beta_4$ is invariant under *, so it cannot be 3 dimensional; it must be all of \mathcal{V} . But $\tilde{\beta} = |x|^{-2}x_1 dx_1 \in \mathcal{V}$, and $d\tilde{\beta} \neq 0$. It follows that there exist $\alpha, \alpha' \in \mathbb{R}$ such that

(3.25)
$$u_1 = \alpha \, d \log r + \alpha' d\theta.$$

It remains to show that $\alpha' = 0$. To see this, note that

(3.26)
$$\int_{\partial\Omega} u = 0,$$

so, for each K such that $\overline{\mathcal{O}} \subset \subset B_K$, we have

(3.27)
$$\int_{\partial B_K} u = 0,$$

by Stokes' theorem. On the other hand, we see from (3.21) that $\int_{\partial B_K} u_1$ is independent of K, while, for $\ell \geq 2$, $\int_{\partial B_K} u_\ell \to 0$ as $K \to \infty$. This forces

(3.28)
$$\int_{\partial B_K} u_1 = 0,$$

which in turn forces $\alpha' = 0$ in (3.25).

This leads to the following result.

Proposition 3.4. For $\Omega \subset \mathbb{R}^2$ as in Proposition 3.1, and u_L as in (3.16)–(3.18), if 1 , then

(3.29)
$$\mathcal{H}^q_R(\Omega, \Lambda^1) = \mathcal{H}^p_R(\Omega, \Lambda^1) \oplus \operatorname{Span}(u_L).$$

With this in hand, we deduce Proposition 3.1 from the following.

Proposition 3.5. For $\Omega \subset \mathbb{R}^2$ as in Proposition 3.1,

(3.30)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) = L - 1, \quad \text{if } 1$$

Proof. Take $u \in \mathcal{H}^p_R(\Omega, \Lambda^1)$. The analysis of (3.21) gives, for $|x| \geq K$,

(3.31)
$$u(x) = \sum_{\ell \ge 2} (A_\ell \cos \ell \theta + B_\ell \sin \ell \theta) r^{-\ell},$$

with $A_{\ell}, B_{\ell} \in \Lambda^1 \mathbb{R}^2$. Such *u* defines a 1-form on $\overline{\Omega}^* \setminus \{\infty\} \subset \widehat{\mathbb{C}}$. Note that

(3.32)
$$w = \frac{1}{z} \Longrightarrow dw = -\frac{dz}{z^2} \text{ and } d\overline{w} = -\frac{d\overline{z}}{\overline{z}^2}.$$

Thanks to the fact that the Hodge star operator is conformally invariant on 1forms on a 2-dimensional Riemannian manifold, we see that the pull-back of u to a 1-form on $\{w \in \mathbb{C} : 0 < |w| < 1/K\}$ is a harmonic 1-form, with coefficients that are bounded on $B_{1/K} \setminus \{0\}$. Hence 0 is a removable singularity, so in fact such u defines a harmonic 1-form

$$(3.33) \quad u \in \mathcal{H}_R(\overline{\Omega}^*, \Lambda^1) = \{ u \in C^{\infty}(\overline{\Omega}^*, \Lambda^1) : du = d * u = 0, \ \nu \wedge u = 0 \text{ on } \partial\Omega \}.$$

As shown in [Mor], or [T], Chapter 5, Proposition 9.9, one has

(3.34)
$$\mathcal{H}_R(\overline{\Omega}^*, \Lambda^1) \approx H^1(\overline{\Omega}^*, \partial\Omega),$$

the relative singular cohomology group, hence

(3.35)
$$\dim \mathcal{H}_R(\overline{\Omega}^*, \Lambda^1) = L - 1.$$

Thus the natural injection

(3.36)
$$\mathcal{H}^p_R(\Omega, \Lambda^1) \longrightarrow \mathcal{H}_R(\overline{\Omega}^*, \Lambda^1)$$

described above implies

(3.37)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) \le L - 1.$$

In concert with (3.15), we have the asserted conclusion (3.30). In addition, we see that (3.36) is an isomorphism, for $p \in (1, 2]$.

4. The dimension of $\mathcal{H}^p_R(\Omega, \Lambda^1)$, for $n \geq 3$

Our goal in this section is to prove the following.

Proposition 4.1. Assume $n \geq 3$, and let $\mathcal{O} \subset \mathbb{R}^n$ be a smoothly bounded open set, $\Omega = \mathbb{R}^n \setminus \overline{\mathcal{O}}$. Assume $\partial \Omega$ has L connected components. Then

(4.1)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) = L, \quad \text{if } \beta_n$$

where

(4.2)
$$\beta_n = \frac{n}{n-1}$$

For n = 3, this is one of the main results on [HY1].

To begin our analysis, as in earlier sections we pick $K \in (0, \infty)$ such that (1.7) holds. The proof of Proposition 2.7 implies that, for $u \in \mathcal{H}^p_R(\Omega, \Lambda^1)$, $|x| \ge K$, there is a convergent expansion

(4.3)
$$u(x) = \sum_{\ell \ge 1} u_{\ell}(x) = \sum_{\ell \ge 1} A_{\ell} \left(\frac{x}{|x|}\right) |x|^{-n+2-\ell},$$

where each $A_{\ell}(y)$ is a finite linear combination of spherical harmonics (harmonic polynomials in y, homogeneous of degree ℓ), with coefficients in $\Lambda^1 \mathbb{R}^n$. Note that

(4.4)
$$u_{\ell} \in L^{p}(\mathbb{R}^{n} \setminus B_{K}) \Longleftrightarrow \int_{1}^{\infty} r^{-(n+\ell-2)p} r^{n-1} dr < \infty,$$

hence

(4.5)
$$u_1 \in L^p(\mathbb{R}^n \setminus B_K) \iff p > \frac{n}{n-1},$$

while

(4.6)
$$u_{\ell} \in L^{p}(\mathbb{R}^{n} \setminus B_{K}), \quad \forall \ell \geq 2, \, p > 1.$$

We now produce a variant of the construction in $\S2$ of a map

(4.7)
$$\mathfrak{h}: \mathcal{C}(\partial\Omega) \longrightarrow \mathcal{H}^p_R(\Omega, \Lambda^1),$$

where $C(\partial \Omega)$ denotes the *L*-dimensional space of real valued functions on $\partial \Omega$ that are constant on each connected component. This starts with the following variant of (3.9):

(4.8) PI:
$$C^{\infty}(\partial\Omega) \longrightarrow \{f \in C^{\infty}(\overline{\Omega}) : \Delta f = 0, |f(x)| \le C(1+|x|)^{-(n-2)}\},\$$

whose existence follows from taking into account the function $|x|^{-(n-2)}$, harmonic on $\mathbb{R}^n \setminus \{0\}$, together with the maximum principle. We set

(4.9)
$$\mathfrak{h}g = d \operatorname{PI}g$$

for $g \in \mathcal{C}(\partial \Omega)$. For all such g,

(4.10)
$$|d \operatorname{PI} g(x)| \le C(1+|x|)^{-(n-1)}$$

Noting that Lemma 3.2 holds for $\Omega \subset \mathbb{R}^n$, we see that

(4.11)
$$\mathfrak{h}: \mathcal{C}(\partial\Omega) \longrightarrow \mathcal{H}^p_R(\Omega, \Lambda^1), \quad \forall \, p > \frac{n}{n-1}.$$

As opposed to the situation for \mathfrak{h} in (3.14), the map \mathfrak{h} in (4.11) is *injective*. We deduce that

(4.12)
$$\dim \mathcal{H}^p_R(\Omega, \Lambda^1) \ge L, \quad \forall \, p > \frac{n}{n-1}.$$

Let us also note that, for $g \in C^{\infty}(\partial \Omega)$, the function $\operatorname{PI} g(x)$ has (for $|x| \geq K$) the convergent expansion

(4.13)
$$\operatorname{PI} g(x) = \sum_{\ell \ge 0} f_{\ell}(x) = B_0 |x|^{-(n-2)} + \sum_{\ell \ge 1} B_{\ell} \left(\frac{x}{|x|}\right) |x|^{-(n-2)-\ell}$$

where $B_0 \in \mathbb{R}$ is constant and $B_{\ell}(y)$ is a linear combination of spherical harmonics, with real coefficients. Compare Proposition 2.7. These coefficients depend linearly on g, for example, $B_0 : C^{\infty}(\partial \Omega) \longrightarrow \mathbb{R}$, and in particular

$$(4.14) B_0: \mathcal{C}(\partial\Omega) \longrightarrow \mathbb{R}.$$

It is readily verified (via the maximum principle) that $B_0(1) > 0$, so the null space $\mathcal{N}(B_0)$ in (4.14) satisfies

(4.15)
$$\mathcal{N}(B_0) \subset \mathcal{C}(\partial \Omega), \quad \dim \mathcal{N}(B_0) = L - 1.$$

An examination of (4.13) for $g \in \mathcal{N}(B_0)$ shows that

(4.16)
$$\mathfrak{h}: \mathcal{N}(B_0) \longrightarrow \mathcal{H}^p_R(\Omega, \Lambda^1), \quad \forall p > 1.$$

Since \mathfrak{h} in (4.11) is injective, so is \mathfrak{h} here. We deduce that

(4.17)
$$\dim \mathcal{H}^p(\Omega, \Lambda^1) \ge L - 1, \quad \forall \, p > 1.$$

References

- [HY1] M. Hieber, H. Kozono, A. Seifert, S. Shimizu, and T. Yanagisawa, A characterization of harmonic L^r vector fields in three dimensional exterior domains, Preprint, 2018.
- [HY2] M. Hieber, H. Kozono, A. Seifert, S. Shimizu, and T. Yanagisawa, A characterization of harmonic L^r vector fields in two dimensional exterior domains, Preprint, 2019.
 - [H] L. Hörmander, Linear Partial Differential Operators, Springer, New York, 1964.
- [Mor] C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.
- [NW] M. Neudert and W. von Wahl, Asymptotic behaviour of the div-curl problem in exterior domains, Advances in Diff. Eq. 6 (2001), 1347–1376.
 - [Se] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781–809.
 - [T] M. Taylor, Partial Differential Equations, Vol. 1, Springer, New York 1996 (2nd ed., 2011).