Harmonic Forms on Exterior Domains in \mathbb{R}^{n}

Michael Taylor

Contents

1. Introduction
2. Finite dimensionality results
3. Dimension computation for $n=2$
4. The dimension of $\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$, for $n \geq 3$

1. Introduction

Let \mathcal{O} be a smoothly bounded open set in \mathbb{R}^{n} (it can have several connected components), and let $\Omega=\mathbb{R}^{n} \backslash \overline{\mathcal{O}}$. We study harmonic k-forms on Ω that belong to $L^{p}(\Omega)$ and satisfy absolute or relative boundary conditions on $\partial \Omega$. That is to say, we study

$$
\begin{align*}
\mathcal{H}_{A}^{p}\left(\Omega, \Lambda^{k}\right) & \left.=\left\{u \in L^{p}\left(\Omega, \Lambda^{k}\right): d u=0=d * u \text { on } \Omega, u\right\rfloor \nu=0 \text { on } \partial \Omega\right\}, \\
\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{k}\right) & =\left\{u \in L^{p}\left(\Omega, \Lambda^{k}\right): d u=0=d * u \text { on } \Omega, \nu \wedge u=0 \text { on } \partial \Omega\right\} . \tag{1.1}
\end{align*}
$$

Here, ν is the unit conormal to $\partial \Omega$.
Regarding the existence of boundary values, we can take a collar neighborhood $I \times \partial \Omega$ if $\partial \Omega$ in $\bar{\Omega}$, with local coordinates $\left(y, y^{\prime}\right), y=0$ defining $\partial \Omega$, and write the elliptic system $d u=d * u=0$ on functions with values in $\Lambda^{*}=\oplus \Lambda^{k}$ as

$$
\begin{equation*}
\frac{\partial u}{\partial y}=K\left(y, y^{\prime}, D_{y^{\prime}}\right) u \tag{1.2}
\end{equation*}
$$

yielding, for $u \in L^{p}(\Omega)$ satisfying this system, the behavior

$$
\begin{equation*}
\frac{\partial u}{\partial y} \in L^{p}\left(I, H^{-1, p}(\partial \Omega)\right) \tag{1.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
u \in C\left(I, H^{-1, p}(\partial \Omega)\right) \tag{1.4}
\end{equation*}
$$

and consequently $\left.u\right|_{\partial \Omega} \in H^{-1, p}(\partial \Omega)$. This is not sharp. As shown in [Se], one actually has the Besov space trace result

$$
\begin{equation*}
\left.u\right|_{\partial \Omega} \in B_{p, p}^{-1 / p}(\partial \Omega) . \tag{1.5}
\end{equation*}
$$

The result (1.4) allows one to apply methods of Chapter 10 of $[\mathrm{H}]$ to obtain C^{∞} regularity results, and estimates, such as

$$
\begin{equation*}
\|u\|_{C^{1}\left(\bar{\Omega} \cap B_{K}\right)} \leq C_{K}\|u\|_{L^{p}\left(\Omega \cap B_{2 K}\right)} \tag{1.6}
\end{equation*}
$$

for all $u \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$, with $B=A$ or R, where we pick $K \in(0, \infty)$ such that

$$
\begin{equation*}
\overline{\mathcal{O}} \subset B_{K}=\left\{x \in \mathbb{R}^{n}:|x|<K\right\} . \tag{1.7}
\end{equation*}
$$

The spaces $\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$, for $k=1$ and $n=2$ or 3 , are of interest in the study of Euler equations for incompressible fluids, and results on these spaces have been treated in several papers, notably [HY1]-[HY2]. These papers stimulate one to investigate more general cases of n and k.

In $\S 2$ we establish that, for all $n \geq 2$ and $k \in\{1, \ldots, n\}$, and all $p \in(1, \infty)$,

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)<\infty \tag{1.8}
\end{equation*}
$$

with $B=A$ or R. These results were established in the papers cited above for $k=1$ and $n=2,3$.

In $\S 3$, we specialize to $n=2, k=1$, and give a proof that

$$
\begin{align*}
\operatorname{dim} \mathcal{H}_{A}^{p}\left(\Omega, \Lambda^{1}\right)=\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)=L, & \text { if } 2<p<\infty \\
L-1, & \text { if } 1<p \leq 2 \tag{1.9}
\end{align*}
$$

where L is the number of connected components of $\partial \Omega$. This is one of the main results of [HY2], but the details of the proof given here differ from those of that paper.

One useful tool in the analysis is that

$$
\begin{equation*}
d u=0=d * u \Longrightarrow \Delta u=0 \text { on } \Omega, \tag{1.10}
\end{equation*}
$$

where Δ is the Laplace operator, acting on k-forms, which for a k-form u on $\Omega \subset \mathbb{R}^{n}$ just means the standard Laplace operator $\Delta=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$, acting componentwise on u.

2. Finite dimensionality results

As in $\S 1$, let B denote either A or R, and assume $p \in(1, \infty)$. Our analysis of $\mathcal{H}^{p}\left(\Omega, \Lambda^{k}\right)$ starts with the following.
Proposition 2.1. If $u \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$, then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|u(x)|=0 \tag{2.1}
\end{equation*}
$$

To establish this, tile a neighborhood of $\Omega \backslash B_{K}$ in Ω with cubes Q_{ν}, of a fixed size, such that, for all $\nu, 2 Q_{\nu} \subset \subset \Omega$. Then, thanks to (1.10) and local regularity for harmonic functions, we have

$$
\begin{align*}
\sum_{\nu}\|u\|_{L^{\infty}\left(Q_{\nu}\right)}^{p} & \leq C_{1} \sum_{\nu}\|u\|_{L^{p}\left(2 Q_{\nu}\right)}^{p} \tag{2.2}\\
& \leq C_{2}\|u\|_{L^{p}(\Omega)}^{p},
\end{align*}
$$

for all $u \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$. This implies (2.1).
Another corollary of (2.2), in concert with (1.6), is that

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{L^{p}(\Omega)}, \quad \forall u \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right), \tag{2.3}
\end{equation*}
$$

given $p \in(1, \infty)$. This leads to the following.
Proposition 2.2. If $1<p<q<\infty$, then

$$
\begin{equation*}
\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right) \subset \mathcal{H}_{B}^{q}\left(\Omega, \Lambda^{k}\right) \tag{2.4}
\end{equation*}
$$

Proposition 2.1 allows us to prove the following uniform estimate.
Proposition 2.3. Let $\Delta u=0$ on Ω and assume (2.1) holds. Pick K such that (1.7) holds. Then, if $n \geq 3$, we have, for $|x| \geq K$,

$$
\begin{equation*}
|u(x)| \leq\left(\sup _{|y|=K}|u(y)|\right)\left|\frac{x}{K}\right|^{-(n-2)} . \tag{2.5}
\end{equation*}
$$

If $n=2$, we have, for $|x| \geq K$,

$$
\begin{equation*}
|u(x)| \leq C_{K}\left(\sup _{|y|=K}|u(y)|\right)\left|\frac{x}{K}\right|^{-1} \tag{2.6}
\end{equation*}
$$

Proof. It suffices to get such estimates for real valued harmonic functions. Since $|x|^{-(n-2)}$ is harmonic on $\mathbb{R}^{n} \backslash 0$, the estimate (2.8) follows from the maximum principle. When $n=2$, we argue as follows. Set

$$
\begin{equation*}
v(x)=u\left(|x|^{-2} x\right), \quad|x| \leq \frac{1}{K}, x \neq 0 \tag{2.7}
\end{equation*}
$$

Then, by invariance of the class of harmonic functions under conformal maps, $v \in$ $C^{\infty}\left(\bar{B}_{1 / K} \backslash 0\right)$ is harmonic and tends to 0 as $x \rightarrow 0$. Hence 0 is a removable singularity, and v extends to be harmonic on $B_{1 / K}$, with $v(0)=0$. Hence

$$
\begin{align*}
& |v(x)| \leq A(v)|x|, \text { for }|x| \leq \frac{1}{2 K} \\
& A(v)=\sup _{|x| \leq 1 / 2 K}|\nabla v(x)| \leq C\left(\sup _{|y|=1 / K}|v(y)|\right), \tag{2.8}
\end{align*}
$$

the last estimate thanks to interior elliptic regularity. This yields (2.6).
In concert with (1.6), Proposition 2.3 yields the following uniform bounds.
Proposition 2.4. For all $u \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right), x \in \bar{\Omega}$,

$$
\begin{equation*}
|u(x)| \leq C\|u\|_{L^{p}(\Omega)}(1+|x|)^{-\alpha_{n}} \tag{2.9}
\end{equation*}
$$

where $\alpha_{n}=n-2$ for $n \geq 3$, and $\alpha_{2}=1$.
Note that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(1+|x|)^{-\alpha_{n} q} d x \leq C+C \int_{1}^{\infty} r^{-\alpha_{n} q} r^{n-1} d r \tag{2.10}
\end{equation*}
$$

which is finite if and only if

$$
q>\frac{n}{\alpha_{n}}=\frac{n}{n-2}, \quad \text { if } n \geq 3, ~ \begin{array}{cl}
\text { if } n=2 \tag{2.11}
\end{array}
$$

We hence complement (2.4) with the following.
Proposition 2.5. In the setting of (2.9),

$$
\begin{equation*}
p>\frac{n}{\alpha_{n}} \Longrightarrow \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right) \subset \mathcal{H}_{B}^{q}\left(\Omega, \Lambda^{k}\right), \quad \forall q>\frac{n}{\alpha_{n}} \tag{2.12}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)=\mathcal{H}_{B}^{q}\left(\Omega, \Lambda^{k}\right), \quad \forall p, q \in\left(n / \alpha_{n}, \infty\right) \tag{2.13}
\end{equation*}
$$

We are now amply prepared for the following.

Theorem 2.6. Given $p \in(1, \infty), n \geq 2, k \in\{1, \ldots, n\}$, and $B=A$ or R,

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)<\infty \tag{2.14}
\end{equation*}
$$

Proof. By (2.4), it suffices to prove (2.14) for $p>n / \alpha_{n}$. Fix such p, and suppose $u_{\nu} \in \mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$ satisfies $\left\|u_{\nu}\right\|_{L^{p}(\Omega)} \leq 1$. By Proposition 2.4, we have a uniform estimate

$$
\begin{equation*}
\left|u_{\nu}(x)\right| \leq C(1+|x|)^{-\alpha_{n}}, \quad \forall \nu . \tag{2.15}
\end{equation*}
$$

Also, using (1.6), applied to a sequence $K_{\mu} \rightarrow \infty$, and using a diagonal argument, we can pass to a subsequence (which we still denote $\left(u_{\nu}\right)$) and an element $u \in$ $\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$, such that

$$
\begin{equation*}
\sup _{\Omega \cap B_{K}}\left|u-u_{\nu}\right| \longrightarrow 0, \quad \forall K<\infty . \tag{2.16}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
u_{\nu}(x) \longrightarrow u(x), \quad \forall x \in \Omega . \tag{2.17}
\end{equation*}
$$

Then the uniform upper bound (2.15) allows us to apply the Lebesgue dominated convergence theorem, to deduce that

$$
\begin{equation*}
\int_{\Omega}\left|u_{\nu}-u\right|^{p} d x \longrightarrow 0 \tag{2.18}
\end{equation*}
$$

Thus the closed unit ball in $\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$ is compact, so (2.14) holds.
While Propositions 2.4-2.5 are adequate for the proof of Theorem 2.6, it is nevertheless of interest to record the following improvement.

Proposition 2.7. The results (2.9)-(2.13) hold with

$$
\begin{equation*}
\alpha_{n}=n-1 . \tag{2.19}
\end{equation*}
$$

Proof. We have this for $n=2$, so we focus on $n \geq 3$. In this case, given $u \in$ $\mathcal{H}_{B}^{p}\left(\Omega, \Lambda^{k}\right)$, arguments above, involving Proposition 2.1, imply that, for $|x| \geq K$, $u(x)$ has a convergent expansion

$$
\begin{equation*}
u(x)=A_{0}|x|^{-(n-2)}+\sum_{\ell \geq 1} A_{\ell}\left(\frac{x}{|x|}\right)|x|^{-(n-2)-\ell}, \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}=\sum_{j_{1}<\cdots<j_{k}} a_{j_{1} \cdots j_{k}} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}} \tag{2.21}
\end{equation*}
$$

and, for $\ell \geq 1, A_{\ell}(y)$ is a finite linear combination of spherical harmonics, with coefficients in $\Lambda^{k} \mathbb{R}^{n}$ (i.e., of a form like (2.21)). It suffices to show that

$$
\begin{equation*}
d u=d * u=0 \Longrightarrow A_{0}=0 \tag{2.22}
\end{equation*}
$$

Note that (2.20) says $u(x)=\sum_{\ell \geq 0} u_{\ell}(x)$, with u_{ℓ} homogeneous in x of degree $-(n-2)-\ell$. Hence, for each $\ell, d u_{\ell}$ and $d * u_{\ell}$ are homogeneous in x of degree $-(n-2)-\ell-1$. Thus the hypothesis in (2.22) implies $d u_{\ell}=d * u_{\ell}=0$ for each ℓ. Now

$$
\begin{equation*}
d u_{0}(x)=-\frac{n-2}{|x|^{n}} \sum_{\ell} x_{\ell} d x_{\ell} \wedge A_{0} \tag{2.23}
\end{equation*}
$$

so

$$
\begin{align*}
d u_{0}=0 & \Rightarrow d x_{\ell} \wedge A_{0}=0, \quad \forall \ell \in\{1, \ldots, n\} \\
& \Rightarrow k=n . \tag{2.24}
\end{align*}
$$

Similarly $d * u_{0}=0 \Rightarrow k=0$. This proves (2.22), and yields (2.19).

3. Dimension computation for $n=2$

As advertised in $\S 1$, the purpose of this section is to prove the following.
Proposition 3.1. Let $\mathcal{O} \subset \mathbb{R}^{2}$ be a smoothly bounded open set, $\Omega=\mathbb{R}^{2} \backslash \overline{\mathcal{O}}$. Assume $\partial \Omega$ has L connected components. Then

$$
\begin{align*}
\operatorname{dim} \mathcal{H}_{A}^{p}\left(\Omega, \Lambda^{1}\right)=\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)=L, & \text { if } 2<p<\infty \\
L-1, & \text { if } 1<p \leq 2 \tag{3.1}
\end{align*}
$$

In general (for $\Omega \subset \mathbb{R}^{n}$), the Hodge $*$ operator provides isomorphisms

$$
\begin{equation*}
*: \mathcal{H}_{A}^{p}\left(\Omega, \Lambda^{k}\right) \xrightarrow{\approx} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{n-k}\right) . \tag{3.2}
\end{equation*}
$$

In particular, when $n=2$,

$$
\begin{equation*}
*: \mathcal{H}_{A}^{p}\left(\Omega, \Lambda^{1}\right) \xrightarrow{\approx} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \tag{3.3}
\end{equation*}
$$

so it suffices to establish (3.1) for $\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$.
We start with a lower bound on $\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$. The following result is useful.
Lemma 3.2. Let $f \in C^{\infty}(\bar{\Omega})$ be a real valued harmonic function. Assume f is constant on each connected component Γ_{ℓ} of $\partial \Omega$:

$$
\begin{equation*}
\left.f\right|_{\Gamma_{\ell}}=c_{\ell} . \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
u=d f \Longrightarrow u \wedge \nu=0 \text { on } \partial \Omega . \tag{3.5}
\end{equation*}
$$

Hence, for such u,

$$
\begin{equation*}
u \in L^{p}(\Omega) \Longrightarrow u \in \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \tag{3.6}
\end{equation*}
$$

Proof. The result (3.5) is clear. Also $u=d f \Rightarrow d u=d^{2} f=0$. Finally,

$$
\begin{equation*}
u=d f \Longrightarrow * d * u=\Delta f \tag{3.7}
\end{equation*}
$$

so we have (3.6).
To proceed, it is convenient to identify \mathbb{R}^{2} with the complex plane \mathbb{C} and bring in the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, and set

$$
\begin{equation*}
\bar{\Omega}^{*}=\bar{\Omega} \cup\{\infty\} \subset \widehat{\mathbb{C}}, \tag{3.8}
\end{equation*}
$$

so $\bar{\Omega}^{*}$ is a smoothly bounded, compact subset of the compact Riemann surface $\widehat{\mathbb{C}}$, on which we can solve the Dirichlet problem, producing a map

$$
\begin{equation*}
\mathrm{PI}: C^{\infty}(\partial \Omega) \longrightarrow C^{\infty}\left(\bar{\Omega}^{*}\right) \tag{3.9}
\end{equation*}
$$

Then, given $g \in C^{\infty}(\partial \Omega), f=\mathrm{PI} g$ can be restricted to $\bar{\Omega}$, yielding

$$
\begin{equation*}
f \in C^{\infty}(\bar{\Omega}), \quad \Delta f=0 \text { on } \Omega,\left.\quad f\right|_{\partial \Omega}=g, \quad f(z) \rightarrow f(\infty) \text { as }|z| \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Let $\mathcal{C}(\partial \Omega)$ denote the space of real valued functions on $\partial \Omega$ that are constant on each connected component. We have a map

$$
\begin{align*}
& \mathfrak{h}: \mathcal{C}(\partial \Omega) \longrightarrow\left\{u \in C^{\infty}\left(\bar{\Omega}, \Lambda^{1}\right): d u=d * u=0 \text { on } \Omega, u \wedge \nu=0 \text { on } \partial \Omega\right\}, \tag{3.11}\\
& \mathfrak{h} g=d \operatorname{PI} g .
\end{align*}
$$

Expanding PI $g\left(r e^{i \theta}\right)$ in a Fourier series in θ, we have, for $|z| \geq K(K$ as in (1.7)),

$$
\begin{equation*}
\operatorname{PI} g(z)=a_{0}+\sum_{\ell \geq 1}\left(a_{\ell} \cos \ell \theta+b_{\ell} \sin \ell \theta\right) r^{-\ell} \tag{3.12}
\end{equation*}
$$

with $a_{0}, a_{\ell}, b_{\ell} \in \mathbb{R}$. The constant term a_{0} is annihilated by d, and the images of $a_{\ell}(\cos \ell \theta) r^{-\ell}$ and $b_{\ell}(\sin \ell \theta) r^{-\ell}$ are homogeneous of degree $-\ell-1$. We hence have

$$
\begin{equation*}
|\mathfrak{h} g(z)|=O\left(|z|^{-2}\right), \quad \forall g \in \mathcal{C}(\partial \Omega) \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{h}: \mathcal{C}(\partial \Omega) \longrightarrow \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right), \quad \forall p>1 \tag{3.14}
\end{equation*}
$$

Now $\mathcal{C}(\partial \Omega)$ is a real vector space of dimension L, and the null space of \mathfrak{h} is the one-dimensional subspace of functions assuming the same constant value on each connected component of $\partial \Omega$. Hence the range if \mathfrak{h} in (3.14) is a real vector space of dimension $L-1$. We have

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \geq L-1, \quad \forall p>1 \tag{3.15}
\end{equation*}
$$

We next produce another element of $\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$, when $p \in(2, \infty)$, in the form

$$
\begin{equation*}
u_{L}=d(\log |x|-\mathrm{PI} g) \tag{3.16}
\end{equation*}
$$

where we arrange (by translating coordinates if necessary) that $0 \in \mathcal{O}$, and set

$$
\begin{equation*}
g(x)=\log |x|, \quad \text { for } \quad x \in \partial \Omega \tag{3.17}
\end{equation*}
$$

so $g \in C^{\infty}(\partial \Omega)$. We define $\mathrm{PI} g$ as in (3.9)-(3.10). Then $\mathrm{PI} g$ again has the form (3.12), so $|d \operatorname{PI} g(x)|=O\left(|x|^{-2}\right)$. Hence

$$
\begin{equation*}
u_{L}(x)=|x|^{-2} \sum_{\ell} x_{\ell} d x_{\ell}+O\left(|x|^{-2}\right) . \tag{3.18}
\end{equation*}
$$

Note that $\log |x|-\mathrm{PI} g$ vanishes on $\partial \Omega$. Hence

$$
\begin{equation*}
u_{L} \in \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \Longleftrightarrow 2<p<\infty . \tag{3.19}
\end{equation*}
$$

We see by comparing (3.13) with (3.18) that u_{L} does not belong to the range of \mathfrak{h} in (3.14). Therefore, we have

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \geq L, \quad \forall p \in(2, \infty) \tag{3.20}
\end{equation*}
$$

We next seek to account for the jump in dimensions described in (3.1). Pick $q \in(2, \infty)$ and suppose $u \in \mathcal{H}_{R}^{q}\left(\Omega, \Lambda^{1}\right)$. Picking K as in (3.12) and expanding $u\left(r e^{i \theta}\right)$ in a Fourier series, we have (parallel to (2.20))

$$
\begin{equation*}
u(x)=\sum_{\ell \geq 1} u_{\ell}=\sum_{\ell \geq 1}\left(A_{\ell} \cos \ell \theta+B_{\ell} \sin \ell \theta\right) r^{-\ell} \tag{3.21}
\end{equation*}
$$

with $A_{\ell}, B_{\ell} \in \Lambda^{1} \mathbb{R}^{2}$. In particular,

$$
\begin{equation*}
u_{1}(x)=|x|^{-2} \sum_{i, j} \alpha_{i j} x_{i} d x_{j}, \quad \alpha_{i j} \in \mathbb{R} \tag{3.22}
\end{equation*}
$$

Lemms 3.3. In the setting of (3.21), with $u \in \mathcal{H}_{R}^{q}\left(\Omega, \Lambda^{1}\right)$, there exists $\alpha \in \mathbb{R}$ such that

$$
\begin{equation*}
u_{1}(x)=\alpha d \log |x| . \tag{3.23}
\end{equation*}
$$

Proof. The set of 1-forms given by the right side of (3.22) is a 4-dimensional real vector space (call it \mathcal{V}), on which $*$ acts, satisfying $* *=-I$. The element u_{1} belongs to \mathcal{V}, and satisfies the constraint that $d u_{1}=d * u_{1}=0$. A 2 -dimensional linear subspace of \mathcal{V} satisfying this constraint is spanned by

$$
\begin{equation*}
\beta_{1}=d \log r, \quad \beta_{2}=* \beta_{1}=d \theta . \tag{3.24}
\end{equation*}
$$

If \mathcal{V} contained a linearly independent β_{3} satisfying $d \beta_{3}=d * \beta_{3}=0$, then $\beta_{4}=* \beta_{3}$ would also satisfy this condition. The span of $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ is invariant under $*$, so it cannot be 3 dimensional; it must be all of \mathcal{V}. But $\tilde{\beta}=|x|^{-2} x_{1} d x_{1} \in \mathcal{V}$, and $d \tilde{\beta} \neq 0$. It follows that there exist $\alpha, \alpha^{\prime} \in \mathbb{R}$ such that

$$
\begin{equation*}
u_{1}=\alpha d \log r+\alpha^{\prime} d \theta \tag{3.25}
\end{equation*}
$$

It remains to show that $\alpha^{\prime}=0$. To see this, note that

$$
\begin{equation*}
\int_{\partial \Omega} u=0 \tag{3.26}
\end{equation*}
$$

so, for each K such that $\overline{\mathcal{O}} \subset \subset B_{K}$, we have

$$
\begin{equation*}
\int_{\partial B_{K}} u=0, \tag{3.27}
\end{equation*}
$$

by Stokes' theorem. On the other hand, we see from (3.21) that $\int_{\partial B_{K}} u_{1}$ is independent of K, while, for $\ell \geq 2, \int_{\partial B_{K}} u_{\ell} \rightarrow 0$ as $K \rightarrow \infty$. This forces

$$
\begin{equation*}
\int_{\partial B_{K}} u_{1}=0 \tag{3.28}
\end{equation*}
$$

which in turn forces $\alpha^{\prime}=0$ in (3.25).
This leads to the following result.
Proposition 3.4. For $\Omega \subset \mathbb{R}^{2}$ as in Proposition 3.1, and u_{L} as in (3.16)-(3.18), if $1<p \leq 2<q<\infty$, then

$$
\begin{equation*}
\mathcal{H}_{R}^{q}\left(\Omega, \Lambda^{1}\right)=\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \oplus \operatorname{Span}\left(u_{L}\right) \tag{3.29}
\end{equation*}
$$

With this in hand, we deduce Proposition 3.1 from the following.
Proposition 3.5. For $\Omega \subset \mathbb{R}^{2}$ as in Proposition 3.1,

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)=L-1, \quad \text { if } 1<p \leq 2 \tag{3.30}
\end{equation*}
$$

Proof. Take $u \in \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$. The analysis of (3.21) gives, for $|x| \geq K$,

$$
\begin{equation*}
u(x)=\sum_{\ell \geq 2}\left(A_{\ell} \cos \ell \theta+B_{\ell} \sin \ell \theta\right) r^{-\ell} \tag{3.31}
\end{equation*}
$$

with $A_{\ell}, B_{\ell} \in \Lambda^{1} \mathbb{R}^{2}$. Such u defines a 1-form on $\bar{\Omega}^{*} \backslash\{\infty\} \subset \widehat{\mathbb{C}}$. Note that

$$
\begin{equation*}
w=\frac{1}{z} \Longrightarrow d w=-\frac{d z}{z^{2}} \text { and } d \bar{w}=-\frac{d \bar{z}}{\bar{z}^{2}} \tag{3.32}
\end{equation*}
$$

Thanks to the fact that the Hodge star operator is conformally invariant on 1forms on a 2-dimensional Riemannian manifold, we see that the pull-back of u to a 1-form on $\{w \in \mathbb{C}: 0<|w|<1 / K\}$ is a harmonic 1-form, with coefficients that
are bounded on $B_{1 / K} \backslash\{0\}$. Hence 0 is a removable singularity, so in fact such u defines a harmonic 1-form

$$
\begin{equation*}
u \in \mathcal{H}_{R}\left(\bar{\Omega}^{*}, \Lambda^{1}\right)=\left\{u \in C^{\infty}\left(\bar{\Omega}^{*}, \Lambda^{1}\right): d u=d * u=0, \nu \wedge u=0 \text { on } \partial \Omega\right\} . \tag{3.33}
\end{equation*}
$$

As shown in [Mor], or [T], Chapter 5, Proposition 9.9, one has

$$
\begin{equation*}
\mathcal{H}_{R}\left(\bar{\Omega}^{*}, \Lambda^{1}\right) \approx H^{1}\left(\bar{\Omega}^{*}, \partial \Omega\right) \tag{3.34}
\end{equation*}
$$

the relative singular cohomology group, hence

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}\left(\bar{\Omega}^{*}, \Lambda^{1}\right)=L-1 \tag{3.35}
\end{equation*}
$$

Thus the natural injection

$$
\begin{equation*}
\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \longrightarrow \mathcal{H}_{R}\left(\bar{\Omega}^{*}, \Lambda^{1}\right) \tag{3.36}
\end{equation*}
$$

described above implies

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \leq L-1 \tag{3.37}
\end{equation*}
$$

In concert with (3.15), we have the asserted conclusion (3.30). In addition, we see that (3.36) is an isomorphism, for $p \in(1,2]$.

4. The dimension of $\mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)$, for $n \geq 3$

Our goal in this section is to prove the following.
Proposition 4.1. Assume $n \geq 3$, and let $\mathcal{O} \subset \mathbb{R}^{n}$ be a smoothly bounded open set, $\Omega=\mathbb{R}^{n} \backslash \overline{\mathcal{O}}$. Assume $\partial \Omega$ has L connected components. Then

$$
\begin{align*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right)=L, & \text { if } \beta_{n}<p<\infty \tag{4.1}\\
L-1, & \text { if } 1<p \leq \beta_{n}
\end{align*}
$$

where

$$
\begin{equation*}
\beta_{n}=\frac{n}{n-1} . \tag{4.2}
\end{equation*}
$$

For $n=3$, this is one of the main results on [HY1].
To begin our analysis, as in earlier sections we pick $K \in(0, \infty)$ such that (1.7) holds. The proof of Proposition 2.7 implies that, for $u \in \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right),|x| \geq K$, there is a convergent expansion

$$
\begin{equation*}
u(x)=\sum_{\ell \geq 1} u_{\ell}(x)=\sum_{\ell \geq 1} A_{\ell}\left(\frac{x}{|x|}\right)|x|^{-n+2-\ell}, \tag{4.3}
\end{equation*}
$$

where each $A_{\ell}(y)$ is a finite linear combination of spherical harmonics (harmonic polynomials in y, homogeneous of degree ℓ), with coefficients in $\Lambda^{1} \mathbb{R}^{n}$. Note that

$$
\begin{equation*}
u_{\ell} \in L^{p}\left(\mathbb{R}^{n} \backslash B_{K}\right) \Longleftrightarrow \int_{1}^{\infty} r^{-(n+\ell-2) p} r^{n-1} d r<\infty \tag{4.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
u_{1} \in L^{p}\left(\mathbb{R}^{n} \backslash B_{K}\right) \Longleftrightarrow p>\frac{n}{n-1}, \tag{4.5}
\end{equation*}
$$

while

$$
\begin{equation*}
u_{\ell} \in L^{p}\left(\mathbb{R}^{n} \backslash B_{K}\right), \quad \forall \ell \geq 2, p>1 \tag{4.6}
\end{equation*}
$$

We now produce a variant of the construction in $\S 2$ of a map

$$
\begin{equation*}
\mathfrak{h}: \mathcal{C}(\partial \Omega) \longrightarrow \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \tag{4.7}
\end{equation*}
$$

where $\mathcal{C}(\partial \Omega)$ denotes the L-dimensional space of real valued functions on $\partial \Omega$ that are constant on each connected component. This starts with the following variant of (3.9):

$$
\begin{equation*}
\mathrm{PI}: C^{\infty}(\partial \Omega) \longrightarrow\left\{f \in C^{\infty}(\bar{\Omega}): \Delta f=0,|f(x)| \leq C(1+|x|)^{-(n-2)}\right\} \tag{4.8}
\end{equation*}
$$

whose existence follows from taking into account the function $|x|^{-(n-2)}$, harmonic on $\mathbb{R}^{n} \backslash\{0\}$, together with the maximum principle. We set

$$
\begin{equation*}
\mathfrak{h} g=d \mathrm{PI} g \tag{4.9}
\end{equation*}
$$

for $g \in \mathcal{C}(\partial \Omega)$. For all such g,

$$
\begin{equation*}
|d \operatorname{PI} g(x)| \leq C(1+|x|)^{-(n-1)} \tag{4.10}
\end{equation*}
$$

Noting that Lemma 3.2 holds for $\Omega \subset \mathbb{R}^{n}$, we see that

$$
\begin{equation*}
\mathfrak{h}: \mathcal{C}(\partial \Omega) \longrightarrow \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right), \quad \forall p>\frac{n}{n-1} \tag{4.11}
\end{equation*}
$$

As opposed to the situation for \mathfrak{h} in (3.14), the map \mathfrak{h} in (4.11) is injective. We deduce that

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right) \geq L, \quad \forall p>\frac{n}{n-1} \tag{4.12}
\end{equation*}
$$

Let us also note that, for $g \in C^{\infty}(\partial \Omega)$, the function $\operatorname{PI} g(x)$ has (for $|x| \geq K$) the convergent expansion

$$
\begin{equation*}
\operatorname{PI} g(x)=\sum_{\ell \geq 0} f_{\ell}(x)=B_{0}|x|^{-(n-2)}+\sum_{\ell \geq 1} B_{\ell}\left(\frac{x}{|x|}\right)|x|^{-(n-2)-\ell}, \tag{4.13}
\end{equation*}
$$

where $B_{0} \in \mathbb{R}$ is constant and $B_{\ell}(y)$ is a linear combination of spherical harmonics, with real coefficients. Compare Proposition 2.7. These coefficients depend linearly on g, for example, $B_{0}: C^{\infty}(\partial \Omega) \longrightarrow \mathbb{R}$, and in particular

$$
\begin{equation*}
B_{0}: \mathcal{C}(\partial \Omega) \longrightarrow \mathbb{R} \tag{4.14}
\end{equation*}
$$

It is readily verified (via the maximum principle) that $B_{0}(1)>0$, so the null space $\mathcal{N}\left(B_{0}\right)$ in (4.14) satisfies

$$
\begin{equation*}
\mathcal{N}\left(B_{0}\right) \subset \mathcal{C}(\partial \Omega), \quad \operatorname{dim} \mathcal{N}\left(B_{0}\right)=L-1 \tag{4.15}
\end{equation*}
$$

An examination of (4.13) for $g \in \mathcal{N}\left(B_{0}\right)$ shhows that

$$
\begin{equation*}
\mathfrak{h}: \mathcal{N}\left(B_{0}\right) \longrightarrow \mathcal{H}_{R}^{p}\left(\Omega, \Lambda^{1}\right), \quad \forall p>1 \tag{4.16}
\end{equation*}
$$

Since \mathfrak{h} in (4.11) is injective, so is \mathfrak{h} here. We deduce that

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}^{p}\left(\Omega, \Lambda^{1}\right) \geq L-1, \quad \forall p>1 \tag{4.17}
\end{equation*}
$$

References

[HY1] M. Hieber, H. Kozono, A. Seifert, S. Shimizu, and T. Yanagisawa, A characterization of harmonic L^{r} vector fields in three dimensional exterior domains, Preprint, 2018.
[HY2] M. Hieber, H. Kozono, A. Seifert, S. Shimizu, and T. Yanagisawa, A characterization of harmonic L^{r} vector fields in two dimensional exterior domains, Preprint, 2019.
[H] L. Hörmander, Linear Partial Differential Operators, Springer, New York, 1964.
[Mor] C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.
[NW] M. Neudert and W. von Wahl, Asymptotic behaviour of the div-curl problem in exterior domains, Advances in Diff. Eq. 6 (2001), 1347-1376.
[Se] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809.
[T] M. Taylor, Partial Differential Equations, Vol. 1, Springer, New York 1996 (2nd ed., 2011).

