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1. Introduction

Let O be a smoothly bounded open set in Rn (it can have several connected
components), and let Ω = Rn \O. We study harmonic k-forms on Ω that belong to
Lp(Ω) and satisfy absolute or relative boundary conditions on ∂Ω. That is to say,
we study

(1.1)
Hp

A(Ω,Λ
k) = {u ∈ Lp(Ω,Λk) : du = 0 = d ∗ u on Ω, u⌋ν = 0 on ∂Ω},

Hp
R(Ω,Λ

k) = {u ∈ Lp(Ω,Λk) : du = 0 = d ∗ u on Ω, ν ∧ u = 0 on ∂Ω}.

Here, ν is the unit conormal to ∂Ω.
Regarding the existence of boundary values, we can take a collar neighborhood

I × ∂Ω if ∂Ω in Ω, with local coordinates (y, y′), y = 0 defining ∂Ω, and write the
elliptic system du = d ∗ u = 0 on functions with values in Λ∗ = ⊕Λk as

(1.2)
∂u

∂y
= K(y, y′, Dy′)u,

yielding, for u ∈ Lp(Ω) satisfying this system, the behavior

(1.3)
∂u

∂y
∈ Lp(I,H−1,p(∂Ω)),

hence

(1.4) u ∈ C(I,H−1,p(∂Ω)),

and consequently u|∂Ω ∈ H−1,p(∂Ω). This is not sharp. As shown in [Se], one
actually has the Besov space trace result

(1.5) u
∣∣
∂Ω

∈ B−1/p
p,p (∂Ω).
1
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The result (1.4) allows one to apply methods of Chapter 10 of [H] to obtain C∞

regularity results, and estimates, such as

(1.6) ∥u∥C1(Ω∩BK) ≤ CK∥u∥Lp(Ω∩B2K),

for all u ∈ Hp
B(Ω,Λ

k), with B = A or R, where we pick K ∈ (0,∞) such that

(1.7) O ⊂ BK = {x ∈ Rn : |x| < K}.

The spaces Hp
B(Ω,Λ

k), for k = 1 and n = 2 or 3, are of interest in the study
of Euler equations for incompressible fluids, and results on these spaces have been
treated in several papers, notably [HY1]–[HY2]. These papers stimulate one to
investigate more general cases of n and k.

In §2 we establish that, for all n ≥ 2 and k ∈ {1, . . . , n}, and all p ∈ (1,∞),

(1.8) dimHp
B(Ω,Λ

k) < ∞,

with B = A or R. These results were established in the papers cited above for
k = 1 and n = 2, 3.

In §3, we specialize to n = 2, k = 1, and give a proof that

(1.9)
dimHp

A(Ω,Λ
1) = dimHp

R(Ω,Λ
1) = L, if 2 < p < ∞,

L− 1, if 1 < p ≤ 2,

where L is the number of connected components of ∂Ω. This is one of the main
results of [HY2], but the details of the proof given here differ from those of that
paper.

One useful tool in the analysis is that

(1.10) du = 0 = d ∗ u =⇒ ∆u = 0 on Ω,

where ∆ is the Laplace operator, acting on k-forms, which for a k-form u on Ω ⊂ Rn

just means the standard Laplace operator ∆ = ∂2
1 + · · ·+∂2

n, acting componentwise
on u.
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2. Finite dimensionality results

As in §1, let B denote either A or R, and assume p ∈ (1,∞). Our analysis of
Hp(Ω,Λk) starts with the following.

Proposition 2.1. If u ∈ Hp
B(Ω,Λ

k), then

(2.1) lim
|x|→∞

|u(x)| = 0.

To establish this, tile a neighborhood of Ω \ BK in Ω with cubes Qν , of a fixed
size, such that, for all ν, 2Qν ⊂⊂ Ω. Then, thanks to (1.10) and local regularity
for harmonic functions, we have

(2.2)

∑
ν

∥u∥pL∞(Qν)
≤ C1

∑
ν

∥u∥pLp(2Qν)

≤ C2∥u∥pLp(Ω),

for all u ∈ Hp
B(Ω,Λ

k). This implies (2.1).
Another corollary of (2.2), in concert with (1.6), is that

(2.3) ∥u∥L∞(Ω) ≤ C∥u∥Lp(Ω), ∀u ∈ Hp
B(Ω,Λ

k),

given p ∈ (1,∞). This leads to the following.

Proposition 2.2. If 1 < p < q < ∞, then

(2.4) Hp
B(Ω,Λ

k) ⊂ Hq
B(Ω,Λ

k).

Proposition 2.1 allows us to prove the following uniform estimate.

Proposition 2.3. Let ∆u = 0 on Ω and assume (2.1) holds. Pick K such that
(1.7) holds. Then, if n ≥ 3, we have, for |x| ≥ K,

(2.5) |u(x)| ≤
(
sup

|y|=K

|u(y)|
)∣∣∣ x

K

∣∣∣−(n−2)

.

If n = 2, we have, for |x| ≥ K,

(2.6) |u(x)| ≤ CK

(
sup

|y|=K

|u(y)|
)∣∣∣ x

K

∣∣∣−1

.
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Proof. It suffices to get such estimates for real valued harmonic functions. Since
|x|−(n−2) is harmonic on Rn \ 0, the estimate (2.8) follows from the maximum
principle. When n = 2, we argue as follows. Set

(2.7) v(x) = u(|x|−2x), |x| ≤ 1

K
, x ̸= 0.

Then, by invariance of the class of harmonic functions under conformal maps, v ∈
C∞(B1/K \ 0) is harmonic and tends to 0 as x → 0. Hence 0 is a removable
singularity, and v extends to be harmonic on B1/K , with v(0) = 0. Hence

(2.8)

|v(x)| ≤ A(v)|x|, for |x| ≤ 1

2K
,

A(v) = sup
|x|≤1/2K

|∇v(x)| ≤ C
(

sup
|y|=1/K

|v(y)|
)
,

the last estimate thanks to interior elliptic regularity. This yields (2.6).

In concert with (1.6), Proposition 2.3 yields the following uniform bounds.

Proposition 2.4. For all u ∈ Hp
B(Ω,Λ

k), x ∈ Ω,

(2.9) |u(x)| ≤ C∥u∥Lp(Ω)(1 + |x|)−αn ,

where αn = n− 2 for n ≥ 3, and α2 = 1.

Note that

(2.10)

∫
Rn

(1 + |x|)−αnq dx ≤ C + C

∫ ∞

1

r−αnqrn−1 dr,

which is finite if and only if

(2.11)
q >

n

αn
=

n

n− 2
, if n ≥ 3,

2 if n = 2.

We hence complement (2.4) with the following.

Proposition 2.5. In the setting of (2.9),

(2.12) p >
n

αn
=⇒ Hp

B(Ω,Λ
k) ⊂ Hq

B(Ω,Λ
k), ∀ q >

n

αn
.

Consequently,

(2.13) Hp
B(Ω,Λ

k) = Hq
B(Ω,Λ

k), ∀ p, q ∈ (n/αn,∞).

We are now amply prepared for the following.
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Theorem 2.6. Given p ∈ (1,∞), n ≥ 2, k ∈ {1, . . . , n}, and B = A or R,

(2.14) dimHp
B(Ω,Λ

k) < ∞.

Proof. By (2.4), it suffices to prove (2.14) for p > n/αn. Fix such p, and suppose
uν ∈ Hp

B(Ω,Λ
k) satisfies ∥uν∥Lp(Ω) ≤ 1. By Proposition 2.4, we have a uniform

estimate

(2.15) |uν(x)| ≤ C(1 + |x|)−αn , ∀ ν.

Also, using (1.6), applied to a sequence Kµ → ∞, and using a diagonal argument,
we can pass to a subsequence (which we still denote (uν)) and an element u ∈
Hp

B(Ω,Λ
k), such that

(2.16) sup
Ω∩BK

|u− uν | −→ 0, ∀K < ∞.

In particular,

(2.17) uν(x) −→ u(x), ∀x ∈ Ω.

Then the uniform upper bound (2.15) allows us to apply the Lebesgue dominated
convergence theorem, to deduce that

(2.18)

∫
Ω

|uν − u|p dx −→ 0.

Thus the closed unit ball in Hp
B(Ω,Λ

k) is compact, so (2.14) holds.

While Propositions 2.4–2.5 are adequate for the proof of Theorem 2.6, it is
nevertheless of interest to record the following improvement.

Proposition 2.7. The results (2.9)–(2.13) hold with

(2.19) αn = n− 1.

Proof. We have this for n = 2, so we focus on n ≥ 3. In this case, given u ∈
Hp

B(Ω,Λ
k), arguments above, involving Proposition 2.1, imply that, for |x| ≥ K,

u(x) has a convergent expansion

(2.20) u(x) = A0|x|−(n−2) +
∑
ℓ≥1

Aℓ

( x

|x|

)
|x|−(n−2)−ℓ,

where

(2.21) A0 =
∑

j1<···<jk

aj1···jk dxj1 ∧ · · · ∧ dxjk ,
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and, for ℓ ≥ 1, Aℓ(y) is a finite linear combination of spherical harmonics, with
coefficients in ΛkRn (i.e., of a form like (2.21)). It suffices to show that

(2.22) du = d ∗ u = 0 =⇒ A0 = 0.

Note that (2.20) says u(x) =
∑

ℓ≥0 uℓ(x), with uℓ homogeneous in x of degree

−(n − 2) − ℓ. Hence, for each ℓ, duℓ and d ∗ uℓ are homogeneous in x of degree
−(n− 2)− ℓ− 1. Thus the hypothesis in (2.22) implies duℓ = d ∗ uℓ = 0 for each ℓ.
Now

(2.23) du0(x) = −n− 2

|x|n
∑
ℓ

xℓ dxℓ ∧A0,

so

(2.24)
du0 = 0 ⇒ dxℓ ∧A0 = 0, ∀ ℓ ∈ {1, . . . , n}

⇒ k = n.

Similarly d ∗ u0 = 0 ⇒ k = 0. This proves (2.22), and yields (2.19).
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3. Dimension computation for n = 2

As advertised in §1, the purpose of this section is to prove the following.

Proposition 3.1. Let O ⊂ R2 be a smoothly bounded open set, Ω = R2 \ O.
Assume ∂Ω has L connected components. Then

(3.1)
dimHp

A(Ω,Λ
1) = dimHp

R(Ω,Λ
1) = L, if 2 < p < ∞,

L− 1, if 1 < p ≤ 2.

In general (for Ω ⊂ Rn), the Hodge ∗ operator provides isomorphisms

(3.2) ∗ : Hp
A(Ω,Λ

k)
≈−→ Hp

R(Ω,Λ
n−k).

In particular, when n = 2,

(3.3) ∗ : Hp
A(Ω,Λ

1)
≈−→ Hp

R(Ω,Λ
1),

so it suffices to establish (3.1) for Hp
R(Ω,Λ

1).
We start with a lower bound on dimHp

R(Ω,Λ
1). The following result is useful.

Lemma 3.2. Let f ∈ C∞(Ω) be a real valued harmonic function. Assume f is
constant on each connected component Γℓ of ∂Ω:

(3.4) f
∣∣
Γℓ

= cℓ.

Then

(3.5) u = df =⇒ u ∧ ν = 0 on ∂Ω.

Hence, for such u,

(3.6) u ∈ Lp(Ω) =⇒ u ∈ Hp
R(Ω,Λ

1).

Proof. The result (3.5) is clear. Also u = df ⇒ du = d2f = 0. Finally,

(3.7) u = df =⇒ ∗d ∗ u = ∆f,

so we have (3.6).

To proceed, it is convenient to identify R2 with the complex plane C and bring

in the Riemann sphere Ĉ = C ∪ {∞}, and set

(3.8) Ω
∗
= Ω ∪ {∞} ⊂ Ĉ,



8

so Ω
∗
is a smoothly bounded, compact subset of the compact Riemann surface Ĉ,

on which we can solve the Dirichlet problem, producing a map

(3.9) PI : C∞(∂Ω) −→ C∞(Ω
∗
).

Then, given g ∈ C∞(∂Ω), f = PI g can be restricted to Ω, yielding

(3.10) f ∈ C∞(Ω), ∆f = 0 on Ω, f
∣∣
∂Ω

= g, f(z) → f(∞) as |z| → ∞.

Let C(∂Ω) denote the space of real valued functions on ∂Ω that are constant on
each connected component. We have a map

(3.11)
h : C(∂Ω) −→ {u ∈ C∞(Ω,Λ1) : du = d ∗ u = 0 on Ω, u ∧ ν = 0 on ∂Ω},
hg = d PI g.

Expanding PI g(reiθ) in a Fourier series in θ, we have, for |z| ≥ K (K as in (1.7)),

(3.12) PI g(z) = a0 +
∑
ℓ≥1

(aℓ cos ℓθ + bℓ sin ℓθ)r
−ℓ,

with a0, aℓ, bℓ ∈ R. The constant term a0 is annihilated by d, and the images of
aℓ(cos ℓθ)r

−ℓ and bℓ(sin ℓθ)r
−ℓ are homogeneous of degree −ℓ− 1. We hence have

(3.13) |hg(z)| = O(|z|−2), ∀ g ∈ C(∂Ω),

so

(3.14) h : C(∂Ω) −→ Hp
R(Ω,Λ

1), ∀ p > 1.

Now C(∂Ω) is a real vector space of dimension L, and the null space of h is the
one-dimensional subspace of functions assuming the same constant value on each
connected component of ∂Ω. Hence the range if h in (3.14) is a real vector space
of dimension L− 1. We have

(3.15) dimHp
R(Ω,Λ

1) ≥ L− 1, ∀ p > 1.

We next produce another element of Hp
R(Ω,Λ

1), when p ∈ (2,∞), in the form

(3.16) uL = d(log |x| − PI g),

where we arrange (by translating coordinates if necessary) that 0 ∈ O, and set

(3.17) g(x) = log |x|, for x ∈ ∂Ω,
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so g ∈ C∞(∂Ω). We define PI g as in (3.9)–(3.10). Then PI g again has the form
(3.12), so |d PI g(x)| = O(|x|−2). Hence

(3.18) uL(x) = |x|−2
∑
ℓ

xℓ dxℓ +O(|x|−2).

Note that log |x| − PI g vanishes on ∂Ω. Hence

(3.19) uL ∈ Hp
R(Ω,Λ

1) ⇐⇒ 2 < p < ∞.

We see by comparing (3.13) with (3.18) that uL does not belong to the range of h
in (3.14). Therefore, we have

(3.20) dimHp
R(Ω,Λ

1) ≥ L, ∀ p ∈ (2,∞).

We next seek to account for the jump in dimensions described in (3.1). Pick
q ∈ (2,∞) and suppose u ∈ Hq

R(Ω,Λ
1). Picking K as in (3.12) and expanding

u(reiθ) in a Fourier series, we have (parallel to (2.20))

(3.21) u(x) =
∑
ℓ≥1

uℓ =
∑
ℓ≥1

(Aℓ cos ℓθ +Bℓ sin ℓθ)r
−ℓ,

with Aℓ, Bℓ ∈ Λ1R2. In particular,

(3.22) u1(x) = |x|−2
∑
i,j

αijxi dxj , αij ∈ R.

Lemms 3.3. In the setting of (3.21), with u ∈ Hq
R(Ω,Λ

1), there exists α ∈ R such
that

(3.23) u1(x) = αd log |x|.

Proof. The set of 1-forms given by the right side of (3.22) is a 4-dimensional real
vector space (call it V), on which ∗ acts, satisfying ∗∗ = −I. The element u1

belongs to V, and satisfies the constraint that du1 = d ∗ u1 = 0. A 2-dimensional
linear subspace of V satisfying this constraint is spanned by

(3.24) β1 = d log r, β2 = ∗β1 = dθ.

If V contained a linearly independent β3 satisfying dβ3 = d ∗β3 = 0, then β4 = ∗β3

would also satisfy this condition. The span of β1, β2, β3, β4 is invariant under ∗,
so it cannot be 3 dimensional; it must be all of V. But β̃ = |x|−2x1 dx1 ∈ V, and
dβ̃ ̸= 0. It follows that there exist α, α′ ∈ R such that

(3.25) u1 = αd log r + α′dθ.
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It remains to show that α′ = 0. To see this, note that

(3.26)

∫
∂Ω

u = 0,

so, for each K such that O ⊂⊂ BK , we have

(3.27)

∫
∂BK

u = 0,

by Stokes’ theorem. On the other hand, we see from (3.21) that
∫
∂BK

u1 is inde-

pendent of K, while, for ℓ ≥ 2,
∫
∂BK

uℓ → 0 as K → ∞. This forces

(3.28)

∫
∂BK

u1 = 0,

which in turn forces α′ = 0 in (3.25).

This leads to the following result.

Proposition 3.4. For Ω ⊂ R2 as in Proposition 3.1, and uL as in (3.16)–(3.18),
if 1 < p ≤ 2 < q < ∞, then

(3.29) Hq
R(Ω,Λ

1) = Hp
R(Ω,Λ

1)⊕ Span(uL).

With this in hand, we deduce Proposition 3.1 from the following.

Proposition 3.5. For Ω ⊂ R2 as in Proposition 3.1,

(3.30) dimHp
R(Ω,Λ

1) = L− 1, if 1 < p ≤ 2.

Proof. Take u ∈ Hp
R(Ω,Λ

1). The analysis of (3.21) gives, for |x| ≥ K,

(3.31) u(x) =
∑
ℓ≥2

(Aℓ cos ℓθ +Bℓ sin ℓθ)r
−ℓ,

with Aℓ, Bℓ ∈ Λ1R2. Such u defines a 1-form on Ω
∗ \ {∞} ⊂ Ĉ. Note that

(3.32) w =
1

z
=⇒ dw = −dz

z2
and dw = −dz

z2
.

Thanks to the fact that the Hodge star operator is conformally invariant on 1-
forms on a 2-dimensional Riemannian manifold, we see that the pull-back of u to
a 1-form on {w ∈ C : 0 < |w| < 1/K} is a harmonic 1-form, with coefficients that
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are bounded on B1/K \ {0}. Hence 0 is a removable singularity, so in fact such u
defines a harmonic 1-form

(3.33) u ∈ HR(Ω
∗
,Λ1) = {u ∈ C∞(Ω

∗
,Λ1) : du = d ∗ u = 0, ν ∧ u = 0 on ∂Ω}.

As shown in [Mor], or [T], Chapter 5, Proposition 9.9, one has

(3.34) HR(Ω
∗
,Λ1) ≈ H1(Ω

∗
, ∂Ω),

the relative singular cohomology group, hence

(3.35) dimHR(Ω
∗
,Λ1) = L− 1.

Thus the natural injection

(3.36) Hp
R(Ω,Λ

1) −→ HR(Ω
∗
,Λ1)

described above implies

(3.37) dimHp
R(Ω,Λ

1) ≤ L− 1.

In concert with (3.15), we have the asserted conclusion (3.30). In addition, we see
that (3.36) is an isomorphism, for p ∈ (1, 2].
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4. The dimension of Hp
R(Ω,Λ

1), for n ≥ 3

Our goal in this section is to prove the following.

Proposition 4.1. Assume n ≥ 3, and let O ⊂ Rn be a smoothly bounded open set,
Ω = Rn \ O. Assume ∂Ω has L connected components. Then

(4.1)
dimHp

R(Ω,Λ
1) = L, if βn < p < ∞,

L− 1, if 1 < p ≤ βn,

where

(4.2) βn =
n

n− 1
.

For n = 3, this is one of the main results on [HY1].
To begin our analysis, as in earlier sections we pick K ∈ (0,∞) such that (1.7)

holds. The proof of Proposition 2.7 implies that, for u ∈ Hp
R(Ω,Λ

1), |x| ≥ K, there
is a convergent expansion

(4.3) u(x) =
∑
ℓ≥1

uℓ(x) =
∑
ℓ≥1

Aℓ

( x

|x|

)
|x|−n+2−ℓ,

where each Aℓ(y) is a finite linear combination of spherical harmonics (harmonic
polynomials in y, homogeneous of degree ℓ), with coefficients in Λ1Rn. Note that

(4.4) uℓ ∈ Lp(Rn \BK) ⇐⇒
∫ ∞

1

r−(n+ℓ−2)prn−1 dr < ∞,

hence

(4.5) u1 ∈ Lp(Rn \BK) ⇐⇒ p >
n

n− 1
,

while

(4.6) uℓ ∈ Lp(Rn \BK), ∀ ℓ ≥ 2, p > 1.

We now produce a variant of the construction in §2 of a map

(4.7) h : C(∂Ω) −→ Hp
R(Ω,Λ

1),
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where C(∂Ω) denotes the L-dimensional space of real valued functions on ∂Ω that
are constant on each connected component. This starts with the following variant
of (3.9):

(4.8) PI : C∞(∂Ω) −→ {f ∈ C∞(Ω) : ∆f = 0, |f(x)| ≤ C(1 + |x|)−(n−2)},

whose existence follows from taking into account the function |x|−(n−2), harmonic
on Rn \ {0}, together with the maximum principle. We set

(4.9) hg = d PI g,

for g ∈ C(∂Ω). For all such g,

(4.10) |d PI g(x)| ≤ C(1 + |x|)−(n−1).

Noting that Lemma 3.2 holds for Ω ⊂ Rn, we see that

(4.11) h : C(∂Ω) −→ Hp
R(Ω,Λ

1), ∀ p >
n

n− 1
.

As opposed to the situation for h in (3.14), the map h in (4.11) is injective. We
deduce that

(4.12) dimHp
R(Ω,Λ

1) ≥ L, ∀ p >
n

n− 1
.

Let us also note that, for g ∈ C∞(∂Ω), the function PI g(x) has (for |x| ≥ K) the
convergent expansion

(4.13) PI g(x) =
∑
ℓ≥0

fℓ(x) = B0|x|−(n−2) +
∑
ℓ≥1

Bℓ

( x

|x|

)
|x|−(n−2)−ℓ,

where B0 ∈ R is constant and Bℓ(y) is a linear combination of spherical harmonics,
with real coefficients. Compare Proposition 2.7. These coefficients depend linearly
on g, for example, B0 : C∞(∂Ω) −→ R, and in particular

(4.14) B0 : C(∂Ω) −→ R.

It is readily verified (via the maximum principle) that B0(1) > 0, so the null space
N (B0) in (4.14) satisfies

(4.15) N (B0) ⊂ C(∂Ω), dimN (B0) = L− 1.

An examination of (4.13) for g ∈ N (B0) shhows that

(4.16) h : N (B0) −→ Hp
R(Ω,Λ

1), ∀ p > 1.

Since h in (4.11) is injective, so is h here. We deduce that

(4.17) dimHp(Ω,Λ1) ≥ L− 1, ∀ p > 1.
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[H] L. Hörmander, Linear Partial Differential Operators, Springer, New York,
1964.

[Mor] C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New
York, 1966.

[NW] M. Neudert and W. von Wahl, Asymptotic behaviour of the div-curl prob-
lem in exterior domains, Advances in Diff. Eq. 6 (2001), 1347–1376.

[Se] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math.
88 (1966), 781–809.

[T] M. Taylor, Partial Differential Equations, Vol. 1, Springer, New York 1996
(2nd ed., 2011).


