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Introduction

Methods of the calculus of variations applied to problems in geometry and
classical continuum mechanics often lead to elliptic PDE that are not linear.
We discuss a number of examples and some of the developments that have
arisen to treat such problems.
The simplest nonlinear elliptic problems are the semilinear ones, of the

form Lu = f(x,Dm−1u), where L is a linear elliptic operator of order
m and the nonlinear term f(x,Dm−1u) involves derivatives of u of order
≤ m− 1. In §1 we look at semilinear equations of the form

(0.1) ∆u = f(x, u),

on a compact, Riemannian manifold M , with or without boundary. The
Dirichlet problem for (0.1) is solvable provided ∂uf(x, u) ≥ 0 if each con-
nected component of M has a nonempty boundary. If M has no boundary,
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this condition does not always imply the solvability of (0.1), but one can
solve this equation if one requires f(x, u) to be positive for u > a1 and neg-
ative for u < a0. We use three approaches to (0.1): a variational approach,
minimizing a function defined on a certain function space, the “method of
continuity,” solving a one-parameter family of equations of the type (0.1),
and a variant of the method of continuity that involves a Leray-Schauder
fixed-point theorem. This fixed-point theorem is established in Appendix
B, at the end of this chapter.

A particular example of (0.1) is

(0.2) ∆u = k(x)−K(x)e2u,

which arises when one has a 2-manifold with Gauss curvature k(x) and
wants to multiply the metric tensor by the conformal factor e2u and obtain
K(x) as the Gauss curvature. The condition ∂uf(x, u) ≥ 0 implies that
K(x) ≤ 0 in (0.2).
In §2 we study (0.2) on a compact, Riemannian 2-fold without boundary,

given K(x) < 0. The Gauss-Bonnet formula implies that χ(M) < 0 is a
necessary condition for solvability in this case; the main result of §2 is that
this is also a sufficient condition. When you take K ≡ −1, this establishes
the uniformization theorem for compact Riemann surfaces of negative Euler
characteristic. When χ(M) = 0, one takes K = 0 and (0.2) is linear. The
remaining case of this uniformization theorem, χ(M) = 2, is treated in
Chapter 10, §9.

The next topic is local solvability of nonlinear elliptic PDE. We establish
this via the inverse function theorem for C1-maps on a Banach space. We
treat underdetermined as well as determined elliptic equations. We obtain
solutions in §3 with a high but finite degree of regularity. In some cases such
solutions are actually C∞. In §4 we establish higher regularity for solutions
to elliptic PDE that are already known to have a reasonably high degree of
smoothness. This result suffices for applications made in §3, though PDE
encountered further on will require much more powerful regularity results.
In §5 we establish the theorem of J. Nash, on isometric imbeddings of

compact Riemannian manifolds in Euclidean space, largely following the
ingenious simplification of M. Günther [Gu1], allowing one to apply the
inverse function theorem for C1-maps on a Banach space. Again, the regu-
larity result of §4 applies, allowing one to obtain a C∞-isometric imbedding.
In §6 we introduce the venerable problem of describing minimal surfaces.

We establish a number of classical results, in particular the solution to the
Plateau problem, producing a (generalized) minimal surface, as the image
of the unit disc under a harmonic and essentially conformal map, taking the
boundary of the disc homeomorphically onto a given simple closed curve.
In §7 we begin to study the quasi-linear elliptic PDE satisfied by a func-

tion whose graph is a minimal surface. We use results of §6 to establish
some results on the Dirichlet problem for the minimal surface equation, and
we note several questions about this Dirichlet problem whose solutions are
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not simple consequences of the results of §6, such as boundary regularity.
These questions serve as guides to the results of boundary problems for
quasi-linear elliptic PDE derived in the next three sections.
In §8 we apply the paradifferential operator calculus developed in Chap-

ter 13, §10, to obtain regularity results for nonlinear elliptic boundary
problems. We concentrate on second-order PDE (possibly systems) on a
compact manifold with boundary M and obtain higher regularity for a so-
lution u, assumed a priori to belong to C2+r(M), for some r > 0, for a
completely nonlinear elliptic PDE, or to C1+r(M), in the quasi-linear case.
To check how much these results accomplish, we recall the minimal surface
equation and note a gap between the regularity of a solution needed to
apply the main result (Theorem 8.4) and the regularity a solution is known
to possess as a consequence of results in §7.
Section 9 is devoted to filling that gap, in the scalar case, by the famous

DeGiorgi-Nash-Moser theory. We follow mainly J. Moser [Mo2], together
with complementary results of C. B. Morrey on nonhomogeneous equa-
tions. Morrey’s results use spaces now known as Morrey spaces, which are
discussed in Appendix A at the end of this chapter.
With the regularity results of §§8 and 9 under our belt, we resume the

study of the Dirichlet problem for quasi-linear elliptic PDE in the scalar
case, in §10, with particular attention to the minimal surface equation.
We note that the Dirichlet problem for general boundary data is not solv-
able unless there is a restriction on the domain on which a solution u is
sought. This has to do with the fact that the minimal surface equation
is not “uniformly elliptic.” We give examples of some uniformly elliptic
PDE, modeling stretched membranes, for which the Dirichlet problem has
a solution for general smooth data, on a general, smooth, bounded domain.
We do not treat the most general scalar, second-order, quasi-linear elliptic
PDE, though our treatment does include cases of major importance. More
material can be found in [GT] and [LU].

In §11 we return to the variational method, introduced in §1, and prove
that a variety of functionals

(0.3) I(u) =

∫
Ω

F (x, u,∇u) dV (x)

possess minima in sets

(0.4) V = {u ∈ H1(Ω) : u = g on ∂Ω}.

The analysis includes cases both of real-valued u and of u taking values
in RN . The latter case gives rise to N × N elliptic systems, and some
regularity results for quasi-linear elliptic systems are established in §12.
Sometimes solutions are not smooth everywhere, but we can show that
they are smooth on the complement of a closed set Σ ⊂ Ω of Hausdorff
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dimension < n− 2 (n = dim Ω). Results of this nature are called “partial
regularity” results.
In §13 we establish results on linear elliptic equations in nondivergence

form, due to N. Krylov and M. Safonov, which take the place of DeGiorgi-
Nash-Moser estimates in the study of certain fully nonlinear equations,
done in §14. In §15 we apply this to equations of the Monge-Ampere type.
In §16 we obtain some results for nonlinear elliptic equations for functions

of two variables that are stronger than results available for functions of more
variables.
One attack on second-order, scalar, nonlinear elliptic PDE that has been

very active recently is the “viscosity method.” We do not discuss this
method here; one can consult the review article [CIL] for material on this.

1. A class of semilinear equations

In this section we look at equations of the form

(1.1) ∆u = f(x, u) on M,

where M is a Riemannian manifold, either compact or the interior of a
compact manifoldM with smooth boundary. We first consider the Dirichlet
boundary condition

(1.2) u
∣∣
∂M

= g,

where M is connected and has nonempty boundary. We suppose f ∈
C∞(M × R). We will treat (1.1)–(1.2) under the hypothesis that

(1.3)
∂f

∂u
≥ 0.

Other cases will be considered later in this section. Suppose F (x, u) =∫ u

0
f(x, s) ds, so

(1.4) f(x, u) = ∂uF (x, u).

Then (1.3) is the hypothesis that F (x, u) is a convex function of u. Let

(1.5) I(u) =
1

2
∥du∥2L2(M) +

∫
M

F
(
x, u(x)

)
dV (x).

We will see that a solution to (1.1)–(1.2) is a critical point of I on the space
of functions u on M , equal to g on ∂M .

We will make the following temporary restriction on F :

(1.6) For |u| ≥ K, ∂uf(x, u) = 0,

so F (x, u) is linear in u for u ≥ K and for u ≤ −K. Thus, for some
constant L,

(1.7) |∂u F (x, u)| ≤ L on M × R.
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Let

(1.8) V = {u ∈ H1(M) : u = g on ∂M}.

Lemma 1.1. Under the hypotheses (1.3)–(1.7), we have the following re-
sults about the functional I : V → R:

(1.9) I is strictly convex;

(1.10) I is Lipschitz continuous,

with the norm topology on V ;

(1.11) I is bounded below;

and

(1.12) I(v) → +∞, as ∥v∥H1 → ∞.

Proof. (1.9) is trivial. (1.10) follows from

(1.13) |F (x, u)− F (x, v)| ≤ L|u− v|,

which follows from (1.7). The convexity of F (x, u) in u implies

(1.14) F (x, u) ≥ −C0|u| − C1.

Hence

(1.15)
I(u) ≥ 1

2
∥du∥2 − C0∥u∥L1 − C ′

1

≥ 1

4
∥du∥2L2 +

1

2
B∥u∥2L2 − C∥u∥L2 − C ′,

since

(1.16)
1

2
∥du∥2L2 ≥ B∥u∥2L2 − C ′′, for u ∈ V.

The last line in (1.15) clearly implies (1.11) and (1.12).

Proposition 1.2. Under the hypotheses (1.3)–(1.7), I(u) has a unique
minimum on V .

Proof. Let α0 = infV I(u). By (1.11), α0 is finite. Pick R such that
K = V ∩ BR(0) ̸= ∅, where BR(0) is the ball of radius R centered at 0 in
H1(M), and such that ∥u∥H1 ≥ R ⇒ I(u) ≥ α0 + 1, which is possible by
(1.12). Note that K is a closed, convex, bounded subset of H1(M). Let

(1.17) Kε = {u ∈ K : α0 ≤ I(u) ≤ α0 + ε}.
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For each ε > 0, Kε is a closed, convex subset of K. It follows that Kε is
weakly closed in K, which is weakly compact. Hence

(1.18)
∩
ε>0

Kε = K0 ̸= ∅.

Now inf I(u) is assumed onK0. By the strict convexity of I(u), K0 consists
of a single point.

If u is the unique point in K0 and v ∈ C∞
0 (M), then u+ sv ∈ V , for all

s ∈ R, and I(u+ sv) is a smooth function of s which is minimal at s = 0,
so

(1.19) 0 =
d

ds
I(u+ sv)

∣∣
s=0

= (−∆u, v) +

∫
M

f
(
x, u(x)

)
v(x) dV (x).

Hence (1.1) holds. We have the following regularity result:

Proposition 1.3. For k = 1, 2, 3, . . . , if g ∈ Hk+1/2(∂M), then any solu-
tion u ∈ V to (1.1)–(1.2) belongs to Hk+1(M). Hence, if g ∈ C∞(∂M),
then u ∈ C∞(M).

Proof. We start with u ∈ H1(M). Then the right side of (1.1) belongs
to H1(M) if f(x, u) satisfies (1.6). This gives u ∈ H2(M), provided g ∈
H3/2(∂M). Additional regularity follows inductively.

We have uniqueness of the element u ∈ V minimizing I(u), under the hy-
potheses (1.3)–(1.7). In fact, under the hypothesis (1.3), there is uniqueness
of solutions to (1.1)–(1.2) which are sufficiently smooth, as a consequence
of the following application of the maximum principle.

Proposition 1.4. Let u and v ∈ C2(M)∩C(M) satisfy (1.1), with u = g
and v = h on ∂M . If (1.3) holds, then

(1.20) sup
M

(u− v) ≤ sup
∂M

(g − h) ∨ 0,

where a ∨ b = max(a, b) and

(1.21) sup
M

|u− v| ≤ sup
∂M

|g − h|.

Proof. Let w = u− v. Then, by (1.3),

(1.22) ∆w = λ(x)w, w
∣∣
∂M

= g − h,

where

λ(x) =
f(x, u)− f(x, v)

u− v
≥ 0.
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If O = {x ∈M : w(x) ≥ 0}, then ∆w ≥ 0 on O, so the maximum principle
applies on O, yielding (1.20). Replacing w by −w gives (1.20) with the
roles of u and v, and of g and h, reversed, and (1.21) follows.

One application will be the following first step toward relaxing the hy-
pothesis (1.6).

Corollary 1.5. Let f(x, 0) = φ(x) ∈ C∞(M). Take g ∈ C∞(∂M), and
let Φ ∈ C∞(M) be the solution to

(1.23) ∆Φ = φ on M, Φ = g on ∂M.

Then, under the hypothesis (1.3), a solution u to (1.1)–(1.2) satisfies

(1.24) sup
M

u ≤ sup
M

Φ+
(
sup
M

(−Φ) ∨ 0
)

and

(1.25) sup
M

|u| ≤ sup
M

2|Φ|.

Proof. We have

(1.26) ∆(u− Φ) = f(x, u)− f(x, 0) = λ(x)u,

with λ(x) = [f(x, u) − f(x, 0)]/u ≥ 0. Thus ∆(u − Φ) ≥ 0 on O = {x ∈
M : u(x) > 0}, so

sup
O

(u− Φ) = sup
∂O

(u− Φ) ≤ sup
M

(−Φ) ∨ 0.

This gives (1.24). Also ∆(Φ− u) ≥ 0 on O− = {x ∈M : u(x) < 0}, so

sup
O−

(Φ− u) = sup
∂O−

(Φ− u) ≤ sup
M

Φ ∨ 0,

which together with (1.24) gives (1.25).

We can now prove the following result on the solvability of (1.1)–(1.2).

Theorem 1.6. Suppose f(x, u) satisfies (1.3). Given g ∈ C∞(∂M), there
is a unique solution u ∈ C∞(M) to (1.1)–(1.2).

Proof. Let fj(x, u) be smooth, satisfying

(1.27) fj(x, u) = f(x, u), for |u| ≤ j,

and be such that (1.3)–(1.7) hold for each fj , with K = Kj . We have
solutions uj ∈ C∞(M) to

(1.28) ∆uj = fj(x, uj), uj
∣∣
∂M

= g.
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Now fj(x, 0) = f(x, 0) = φ(x), independent of j, and the estimate (1.25)
holds for all uj , so

(1.29) sup
M

|uj | ≤ sup
M

2|Φ|,

where Φ is defined by (1.23). Thus the sequence (uj) stabilizes for large j,
and the proof is complete.

We next discuss a geometrical problem that can be solved using the
results developed above. A more substantial variant of this problem will be
tackled in the next section. The problem we consider here is the following.
LetM be a connected, compact, two-dimensional manifold, with nonempty
boundary. We suppose that we are given a Riemannian metric g onM , and
we desire to construct a conformally related metric whose Gauss curvature
K(x) is a given function on M . As shown in (3.46) of Appendix C, if k(x)
is the Gauss curvature of g and if g′ = e2ug, then the Gauss curvature of
g′ is given by

(1.30) K(x) =
(
−∆u+ k(x)

)
e−2u,

where ∆ is the Laplace operator for the metric g. Thus we want to solve
the PDE

(1.31) ∆u = k(x)−K(x)e2u = f(x, u),

for u. This is of the form (1.1). The hypothesis (1.3) is satisfied provided
K(x) ≤ 0. Thus Theorem 1.6 yields the following.

Proposition 1.7. IfM is a connected, compact 2-manifold with nonempty
boundary ∂M, g a Riemannian metric on M , and K ∈ C∞(M) a given
function satisfying

(1.32) K(x) ≤ 0 on M,

then there exists u ∈ C∞(M) such that the metric g′ = e2ug conformal to
g has Gauss curvature K. Given any v ∈ C∞(∂M), there is a unique such
u satisfying u = v on ∂M .

Results of this section do not apply if K(x) is allowed to be positive
somewhere; we refer to [KaW] and [Kaz] for results that do apply in that
case.
If one desires to make (M, g) conformally equivalent to a flat metric, that

is, one with K(x) = 0, then (1.31) becomes the linear equation

(1.33) ∆u = k(x).

This can be solved whenever M is connected with nonempty boundary,
with u prescribed on ∂M . As shown in Proposition 3.1 of Appendix C,
when the curvature vanishes, one can choose local coordinates so that the
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metric tensor becomes δjk. This could provide an alternative proof of the
existence of local isothermal coordinates, which is established by a different
argument in Chapter 5, §10. However, the following logical wrinkle should
be pointed out. The derivation of the formula (1.30) in §3 of Appendix C
made use of a reduction to the case gjk = e2vδjk and therefore relied on
the existence of local isothermal coordinates. Now, one could grind out a
direct proof of (1.30) without using this reduction, thus smoothing out this
wrinkle.

We next tackle the equation (1.1) whenM is compact, without boundary.
For now, we retain the hypothesis (1.3), ∂f/∂u ≥ 0. Without a boundary
for M , we have a hard time bounding u, since (1.16) fails for constant
functions onM . In fact, the equation (1.31) cannot be solved whenK(x) =
−1, k(x) = 1, and M = S2, so some further hypotheses are necessary. We
will make the following hypothesis: For some aj ∈ R,

(1.34) u < a0 ⇒ f(x, u) < 0, u > a1 ⇒ f(x, u) > 0.

If ∂f/∂u > 0, this is equivalent to the existence of a function u = φ(x)
such that f

(
x, φ(x)

)
= 0. We see how this hypothesis controls the size of

a solution.

Proposition 1.8. If u solves (1.1) and M is compact, then

(1.35) a0 ≤ u(x) ≤ a1,

provided (1.34) holds.

Proof. If u is maximal at x0, then ∆u(x0) ≤ 0, so f
(
x0, u(x0)

)
≤ 0, and

so (1.34) implies u ≤ a1. The other inequality in (1.35) follows similarly.

To get an existence result out of this estimate, we use a technique known
as the method of continuity. We show that, for each τ ∈ [0, 1], there is a
smooth solution to

(1.36) ∆u = (1− τ)(u− b) + τf(x, u) = fτ (x, u),

where we pick b = (a0+a1)/2. Clearly, this equation is solvable when τ = 0.
Let J be the largest interval in [0, 1], containing 0, with the property that
(1.36) is solvable for all τ ∈ J . We wish to show that J = [0, 1]. First note
that, for any τ ∈ [0, 1],

(1.37) u < a0 ⇒ fτ (x, u) < 0, u > a1 ⇒ fτ (x, u) > 0,

so any solution u = uτ to (1.36) must satisfy

(1.38) a0 ≤ uτ (x) ≤ a1.

Using this, we can show that J is closed in [0, 1]. In fact, let uj = uτj
solve (1.36) for τj ∈ J, τj ↗ σ. We have ∥uj∥L∞ ≤ a < ∞ by (1.38), so
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gj(x) = fτj
(
x, uj(x)

)
is bounded in C(M). Thus elliptic regularity for the

Laplace operator yields

(1.39) ∥uj∥Cr(M) ≤ br <∞,

for any r < 2. This yields a Cr-bound for gj , and hence (1.39) holds for
any r < 4. Iterating, we get uj bounded in C∞(M). Any limit point
u ∈ C∞(M) solves (1.36) with τ = σ, so J is closed.
We next show that J is open in [0, 1]. That is, if τ0 ∈ J, τ0 < 1, then,

for some ε > 0, [τ0, τ0 + ε) ⊂ J . To do this, fix k large and define

(1.40) Ψ : [0, 1]×Hk(M) −→ Hk−2(M), Ψ(τ, u) = ∆u− fτ (x, u).

This map is C1, and its derivative with respect to the second argument is

(1.41) D2Ψ(τ0, u)v = Lv,

where

L : Hk(M) −→ Hk−2(M)

is given by

(1.42) Lv = ∆v −A(x)v, A(x) = 1− τ0 + τ0 ∂uf(x, u).

Now, if f satisfies (1.3), then A(x) ≥ 1− τ0, which is > 0 if τ0 < 1. Thus
L is an invertible operator. The inverse function theorem implies that
Ψ(τ, u) = 0 is solvable for |τ − τ0| < ε. We thus have the following:

Proposition 1.9. If M is a compact manifold without boundary and if
f(x, u) satisfies the conditions (1.3) and (1.34), then the PDE (1.1) has a
smooth solution. If (1.3) is strengthened to ∂uf(x, u) > 0, then the solution
is unique.

The only point left to establish is uniqueness. If u and v are two solutions,
then, as in (1.22), we have for w = u− v the equation

∆w = λ(x)w, λ(x) =
[
f(x, u)− f(x, v)

]
/(u− v) ≥ 0.

Thus

−∥∇w∥2L2 =

∫
λ(x)|w(x)|2 dV,

which implies w = 0 if λ(x) > 0 on M .
Note that if we only have λ(x) ≥ 0, then w must be constant (if M is

connected), and that constant must be 0 if λ(x) > 0 on an open subset of
M , so cases of nonuniqueness are rather restricted, under the hypotheses
of Proposition 1.9. The reader can formulate further uniqueness results.
It is possible to obtain solutions to (1.1) without the hypothesis (1.3) if

we retain the hypothesis (1.34). To do this, first alter f(x, u) on u ≤ a0 and
on u ≥ a1 to a smooth g(x, u) satisfying g(x, u) = −κ0 < 0 for u ≤ a0 − δ
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and g(x, u) = κ1 > 0 for u ≥ a1 + δ, where δ is some positive number. We
want to show that, for each τ ∈ [0, 1], the equation

(1.43) ∆u = (1− τ)(u− b) + τg(x, u) = gτ (x, u)

is solvable, with solution satisfying (1.38). Convert (1.43) to

(1.44) u = (∆− 1)−1
(
gτ (x, u)− u

)
= Φτ (u).

Now each Φτ is a continuous and compact map on the Banach space C(M):

(1.45) Φτ : C(M) −→ C(M),

with continuous dependence on τ . For solvability we can use the Leray-
Schauder fixed-point theorem, proved in Appendix B at the end of this
chapter. Note that any solution to (1.44) is also a solution to (1.43) and
hence satisfies (1.38). In particular,

(1.46) u = Φτ (u) =⇒ ∥u∥C(M) ≤ A = max
(
|a0|, |a1|

)
.

Since Φ0(u) = −(∆− 1)−1b = b, which is independent of u, it follows from
Theorem B.5 that (1.44) is solvable for all τ ∈ [0, 1]. We have the following
improvement of Proposition 1.9.

Theorem 1.10. If M is a compact manifold without boundary and if the
function f(x, u) satisfies the condition (1.34), then the equation (1.1) has
a smooth solution, satisfying a0 ≤ u(x) ≤ a1.

The equation (1.31) for the conformal factor needed to adjust the curva-
ture of a 2-manifold to a desired K(x) satisfies the hypotheses of Theorem
1.10 (even those of Proposition 1.9) in the special case when k(x) < 0 and
K(x) < 0, yielding a special case of a result to be proved in §2, where
the assumption that k(x) < 0 is replaced by χ(M) < 0. In some cases,
Theorem 1.10 also applies to equations for such conformal factors in higher
dimensions. When dim M = n ≥ 3, we alter the metric by

(1.47) g′ = u4/(n−2)g.

The scalar curvatures σ and S of the metrics g and g′ are then related by

(1.48) S = u−α(σu− γ∆u), γ = 4
n− 1

n− 2
, α =

n+ 2

n− 2
,

where ∆ is the Laplacian for the metric g. Hence, obtaining the scalar
curvature S for g′ is equivalent to solving

(1.49) γ∆u = σ(x)u− S(x)uα,

for a smooth positive function u. Note that α > 1 and γ > 1. For n = 3,
we have γ = 8 and α = 5.
Note that (1.34) holds, for some aj satisfying 0 < a0 < a1 <∞, provided

both σ(x) and S(x) are negative on M . Thus we have the next result:
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Proposition 1.11. Let M be a compact manifold of dimension n ≥ 2.
Let g be a Riemannian metric on M with scalar curvature σ. If both σ
and S are negative functions in C∞(M), then there exists a conformally
equivalent metric g′ on M with scalar curvature S.

An important special case of Proposition 1.11 is that if M has a met-
ric with negative scalar curvature, then that metric can be conformally
altered to one with constant negative scalar curvature. There is a very
significant generalization of this result, first stated by H. Yamabe. Namely,
for any compact manifold with a Riemannian metric g, there is a confor-
mally equivalent metric with constant scalar curvature. This result, known
as the solution to the Yamabe problem, was established by R. Schoen [Sch],
following progress by N. Trudinger and T. Aubin.
Note that (1.3) also holds in the setting of Proposition 1.11; thus to prove

this latter result, we could appeal as well to Proposition 1.9 as to Theorem
1.10. Here is a generalization of (1.49) to which Theorem 1.10 applies in
some cases where Proposition 1.9 does not:

(1.50) γ∆u = B(x)uβ + σ(x)u−A(x)uα, β < 1 < α.

It is possible that β < 0. Then we have (1.34), for some aj > 0, and hence
the solvability of (1.50), for some positive u ∈ C∞(M), provided A(x) and
B(x) are both negative on M , for any σ ∈ C∞(M). If we assume A < 0
on M but only B ≤ 0 on M , we still have (1.34), and hence the solvability
of (1.50), provided σ(x) < 0 on {x ∈M : B(x) = 0}.
An equation of the form (1.50) arises in Chapter 18, in a discussion of

results of J. York and N. O’Murchadha, describing permissible first and
second fundamental forms for a compact, spacelike hypersurface of a Ricci-
flat spacetime, in the case when the mean curvature is a given constant.
See (9.28) of Chapter 18.

Exercises

1. Assume f(x, u) is smooth and satisfies (1.6). Define F (x, u) and I(u) as in
(1.4) and (1.5). Show that I has the strict convexity property (1.9) on the
space V given by (1.8), as long as

(1.51)
∂

∂u
f(x, u) ≥ −λ0,

where λ0 is the smallest eigenvalue of −∆ on M , with Dirichlet conditions on
∂M . Extend Proposition 1.2 to cover this case, and deduce that the Dirichlet
problem (1.1)–(1.2) has a unique solution u ∈ C∞(M), for any g ∈ C∞(∂M),
when f(x, u) satisfies these conditions.

2. Extend Theorem 1.6 to the case where f(x, u) satisfies (1.51) instead of (1.3).
(Hint: To obtain sup norm estimates, use the variants of the maximum prin-
ciple indicated in Exercises 5–7 of §2, Chapter 5.)
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3. Let spec(−∆) = {λj}, where 0 < λ0 < λ1 < · · · . Suppose there is a pair
λj < λj+1 and ε > 0 such that

−λj+1 + ε ≤ ∂

∂u
f(x, u) ≤ −λj − ε,

for all x, u. Show that, for g ∈ C∞(∂M), the boundary problem (1.1)–(1.2)
has a unique solution u ∈ C∞(M).
(Hint: With µ = (λj + λj+1)/2, u = v + g, g ∈ C∞(M), rewrite (1.1)–(1.2)
as

(∆ + µ)v = f(x, v + g) + µv −G, v
∣∣∣
∂M

= 0,

where G = (∆+ µ)g, or

(1.52) v = (∆+ µ)−1
[
f(x, v + g) + µv

]
− g = Φ(v).

Apply the contraction mapping principle.)
4. In the context of Exercise 3, this time assume

−λj+1 + ε ≤ ∂

∂u
f(x, u) ≤ −λj−1 − ε,

so ∂f/∂u might assume the value −λj . Take µ = (λj−1 + λj+1)/2, let P0

be the orthogonal projection of L2(M) on the λj eigenspace of −∆, and let
P1 = I − P0. Writing

u− g = v = P0v + P1v = v0 + v1,

convert (1.1)–(1.2) to a system

(1.53)

v1 = (∆+ µ)−1P1

[
f(x, v0 + v1 + g) + µv1

]
− P1g,

v0 = (µ− λj)
−1P0

[
f(x, v0 + v1 + g) + µv0

]
− P0g.

Given v0, the first equation in (1.53) has a unique solution, v1 = Ξ(v0), by
the argument in Exercise 3. Thus the solvability of (1.1)–(1.2) is converted to
the solvability of

(1.54) v0 = (µ− λj)
−1P0

[
f
(
x, v0 + Ξ(v0) + g

)
+ µv0

]
− P0g = Ψ(v0).

Here, Ψ is a nonlinear operator on a finite-dimensional space. (Essentially, on
the real line if λj is a simple eigenvalue of −∆.) Examine various cases, where
there will or will not be solutions, perhaps more than one in number.

5. Given a Riemanian manifoldM of dimension n ≥ 3, with metric g and Laplace
operator ∆, define the “conformal Laplacian” on functions:

(1.55) Lf = ∆f − γ−1
n σ(x)f, γ−1

n =
n− 2

4(n− 1)
,

where σ(x) is the scalar curvature of (M, g). If g′ = u4/(n−2)g as in (1.47),
and (M, g′) has scalar curvature S(x), set

(1.56) L̃f = ∆̃f − γ−1
n S(x)f,
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where ∆̃ is the Laplace operator for the metric g′. Show that

(1.57) L(uf) = u4/(n−2)uL̃f.

(Hint: First show that ∆(uf)− uu4/(n−2)∆̃f = (∆u)f . Then use the identity
(1.49).)

6. Assume M is compact and connected. Let λ0 be the smallest eigenvalue of
−L = −∆ + γ−1

n σ(x). A λ0-eigenfunction v of L is nowhere vanishing (by
Proposition 2.9 of Chapter 8). Assume v(x) > 0 on M . Form the new metric
g̃ = v4/(n−2)g. Show that the scalar curvature S̃ of (M, g̃) is given by

(1.58) S̃(x) = λ0v
−4/(n−2),

which is positive everywhere if λ0 > 0, negative everywhere if λ0 < 0, and
zero if λ0 = 0.

7. Establish existence for an ℓ× ℓ system

∆u = f(x, u),

where M is a compact Riemannian manifold and f : M × Rℓ → Rℓ satisfies
the condition that, for some A <∞,

|u| ≥ A =⇒ f(x, u) · u > 0.

(Hint: Replace f by τf , and let 0 ≤ τ ≤ 1. Show that any solution to such a
system satisfies |u(x)| < A.)

8. Let Ω be a compact, connected Riemannian manifold with nonempty bound-
ary. Consider

(1.59) ∆u+ f(x, u) = 0, u
∣∣∣
∂Ω

= g,

for some real-valued u; assume f ∈ C∞(Ω×R), g ∈ C∞(∂Ω). Assume there
is an upper solution u and a lower solution u, in C2(Ω) ∩ C(Ω), satisfying

∆u+ f(x, u) ≤ 0, u
∣∣∣
∂Ω

≥ g,

∆u+ f(x, u) ≥ 0, u
∣∣∣
∂Ω

≤ g.

Also assume u ≤ u on Ω.
Under these hypotheses, show that there exists a solution u ∈ C∞(Ω) to
(1.59), such that u ≤ u ≤ u.
One approach. Let K = {v ∈ C(Ω) : u ≤ v ≤ u}, which is a closed, bounded,
convex set in C(Ω). Pick λ > 0 so that |∂uf(x, u)| ≤ λ, for min u ≤ u ≤
max u. Let Φ(v) = w be the solution to

∆w − λw = −λv − f(x, v), w
∣∣∣
∂Ω

= g.

Show that Φ : K → K continuously and that Φ(K) is relatively compact in
K. Deduce that Φ has a fixed point u ∈ K.
Second approach. If u0 = u and uj+1 = Φ(uj), show that

u = u0 ≤ u1 ≤ · · · ≤ uj ≤ · · · ≤ u

and that uj ↗ u, solving (1.59).
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2. Surfaces with negative curvature

In this section we examine the possibility of imposing a given Gauss curva-
ture K(x) < 0 on a compact surface M without boundary, by conformally
altering a given metric g, whose Gauss curvature is k(x). As noted in §1,
if g and g′ are conformally related,

(2.1) g′ = e2ug,

then K and k are related by

(2.2) K(x) = e−2u(−∆u+ k(x)),

where ∆ is the Laplace operator for the original metric g, so we want to
solve the PDE

(2.3) ∆u = k(x)−K(x)e2u.

This is not possible if M is diffeomorphic to the sphere S2 or the torus
T2, by virtue of the Gauss-Bonnet formula (proved in §5 of Appendix C):

(2.4)

∫
M

k dV =

∫
M

Ke2u dV = 2πχ(M),

where dV is the area element on M , for the original metric g, and χ(M) is
the Euler characteristic of M . We have

(2.5) χ(S2) = 2, χ(T2) = 0.

For us to be able to arrange that K < 0 be the curvature of M , it is
necessary for χ(M) to be negative. This is the only obstruction; following
[Bgr], we will establish the following.

Theorem 2.1. If M is a compact surface satisfying χ(M) < 0, with given
Riemannian metric g, then for any negative K ∈ C∞(M), the equation
(2.3) has a solution, so M has a metric, conformal to g, with Gauss curva-
ture K(x).

We will produce the solution to (2.3) as an element where the function

(2.6) F (u) =

∫
M

(1
2
|du|2 + k(x)u

)
dV

on the set

(2.7) S =
{
u ∈ H1(M) :

∫
M

K(x)e2u dV = 2πχ(M)
}

achieves a minimum. Note that the Gauss-Bonnet formula is built into
(2.7), since a metric g′ = e2ug has volume element e2udV . While providing
an obstruction to specifying K(x), the Gauss-Bonnet formula also provides
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an aid in making a prescription of K(x) < 0 when it is possible to do so,
as we will see below.

Lemma 2.2. The set S is a nonempty C1-submanifold of H1(M) if K < 0
and χ(M) < 0.

Proof. Set

(2.8) Φ(u) = e2u.

By Trudinger’s inequality,

(2.9) Φ : H1(M) −→ Lp(M),

for all p < ∞. Take p = 1. We see that Φ is differentiable at each
u ∈ H1(M) and

(2.10) DΦ(u)v = 2e2uv, DΦ(u) : H1(M) → L1(M).

Furthermore,

(2.11)

∥∥(DΦ(u)−DΦ(w)
)
v
∥∥
L1(M)

≤ 2

∫
M

|v| · |e2u − e2w| dV

≤ 2
(∫

|v|4 dV
)1/4(∫

|u− w|4 dV
)1/4(∫

e4|u|+4|w| dV
)1/2

≤ C∥v∥H1 · ∥u− w∥H1 · exp
[
C
(
∥u∥H1 + ∥w∥H1

)]
,

so the map Φ : H1(M) → L1(M) is a C1-map. Consequently,

(2.12) J(u) =

∫
M

Ke2u dV =⇒ J : H1(M) → R is a C1-map.

Furthermore, DJ(u) = 2K e2u, as an element of H−1(M) ≈ L(H1(M),R),
so DJ(u) ̸= 0 on S. The implicit function theorem then implies that S is a
C1-submanifold of H1(M). If K < 0 and χ(M) < 0, it is clear that there
is a constant function in S, so S ̸= ∅.

Lemma 2.3. Suppose F : S → R, defined by (2.6), assumes a minimum at
u ∈ S. Then u solves the PDE (2.3), provided the hypotheses of Theorem
2.1 hold.

Proof. Clearly, F : S → R is a C1-map. If γ(s) is any C1-curve in S with
γ(0) = u, γ′(0) = v, we have

(2.13)

0 =
d

ds
F (u+ sv)

∣∣
s=0

=

∫
M

[
(du, dv) + k(x)v

]
dV

=

∫
M

(
−∆u+ k(x)

)
v dV.
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The condition that v is tangent to S at u is

(2.14)

∫
M

Ke2(u+sv) dV = 2πχ(M) +O(s2),

which is equivalent to

(2.15)

∫
M

vKe2u dV = 0.

Thus, if u ∈ S is a minimum for F , we have

v ∈ H1(M),

∫
M

vKe2u dV = 0 =⇒
∫
M

(
−∆u+ k(x)

)
v dV = 0,

and hence −∆u+ k(x) is parallel to Ke2u in H1(M); that is,

(2.16) −∆u+ k(x) = βKe2u,

for some constant β. Integrating and using the Gauss-Bonnet theorem
yield β = 1 if χ(M) ̸= 0.
By Trudinger’s estimate, the right side of (2.16) belongs to L2(M), so

u ∈ H2(M). This implies e2u ∈ H2(M), and an easy inductive argument
gives u ∈ C∞(M).

Our task is now to show that F has a minimum on S, given K < 0 and
χ(M) < 0. Let us write, for any u ∈ H1(M),

(2.17) u = u0 + α,

where α = (Area M)−1
∫
M
u dV is the mean value of u, and

(2.18) u0 ∈ H(M) =
{
v ∈ H1(M) :

∫
M

v dV = 0
}
.

Then u belongs to S if and only if

e2α
∫
M

Ke2u0 dV = 2πχ(M),

or equivalently,

(2.19) α =
1

2
log

[
2πχ(M)

/∫
Ke2u0 dV

]
.

Thus, for u ∈ S,

(2.20)

F (u) =

∫
M

(1
2
|du0|2 + ku0

)
dV

+ πχ(M)

 log 2π|χ(M)| − log
∣∣∣∫
M

Ke2u0 dV
∣∣∣
 .
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Lemma 2.4. If χ(M) < 0 and K < 0, then infS F (u) = a > −∞.

Proof. By (2.20), we need to estimate

−χ(M) log
∣∣∣∫
M

Ke2u0 dV
∣∣∣

from below. Indeed, granted that K(x) ≤ −δ < 0,∫
Ke2u0 dV ≤ −δ

∫
e2u0 dV.

Since ex ≥ 1 + x, we have
∫
e2u0 dV ≥

∫
dV +

∫
2u0 dV = area M , so∫

M

Ke2u0 dV ≥ −δA (A = Area M),

and hence

(2.21) −χ(M) log
∣∣∣∫
M

Ke2u0 dV
∣∣∣ ≥ |χ(M)| log |δA| ≥ b > −∞.

Thus, for u ∈ S,

(2.22) F (u) ≥
∫
M

(1
2
|du0|2 + ku0

)
dV − C2,

with C2 independent of u0 ∈ H1(M). Now, since ∥u0∥L2 ≤ C∥du0∥L2 ,

(2.23)
∣∣∣∫
M

ku0 dV
∣∣∣ ≤ C3ε∥du0∥2L2 +

C4

ε
,

with C3 and C4 independent of ε. Taking ε = 1/2C3, we get F (u) ≥
−C3C4 − C2, which proves the lemma.

We are now in a position to prove the main existence result.

Proposition 2.5. If M and K are as in Theorem 2.1, then F achieves a
minimum at a point u ∈ S, which consequently solves (2.3).

Proof. Pick un ∈ S so that a + 1 ≥ F (un) ↘ a. If we use (2.22) and
(2.23), with ε = 1/4C3, we have

(2.24) a+ 1 ≥ 1

4
∥dun0∥2L2 − C5,

where un0 = un− mean value. But the mean value of un is

1

2
log

[
2πχ(M)

/∫
M

Ke2un0 dV
]
,
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which is bounded from above by the proof of Lemma 2.4. Hence

(2.25) un is bounded in H1(M).

Passing to a subsequence, we have an element u ∈ H1(M) such that

(2.26) un −→ u weakly in H1(M).

By Proposition 4.3 of Chapter 12, e2un → e2u in L1(M), in norm, so u ∈ S.
Now (2.26) implies that

∫
M
k(x)un dV →

∫
M
k(x)u dV and that

(2.27)

∫
M

|du|2 dV ≤ lim inf
n→∞

∫
M

|dun|2 dV,

so F (u) ≤ a =
∫
S
F (v), and the existence proof is completed.

The most important special case of Theorem 2.1 is the case K = −1.
For any compact surface with χ(M) < 0, given a Riemannian metric g,
it is conformally equivalent to a metric for which K = −1. The universal
covering surface

(2.28) M̃ −→M,

endowed with the lifted metric, also has curvature −1. A basic theorem of
differential geometry is that any two complete, simply connected Riemann-
ian manifolds, with the same constant curvature (and the same dimension),
are isometric. See the exercises for dimension 2. For a proof in general, see
[ChE]. One model surface of curvature −1 is the Poincaré disk,

(2.29) D = {(x, y) ∈ R2 : x2 + y2 < 1} = {z ∈ C : |z| < 1},

with metric

(2.30) ds2 = 4(1− x2 − y2)−2
(
dx2 + dy2

)
.

This was discussed in §5 of Chapter 8. Any compact surface M with
negative Euler characteristic is conformally equivalent to the quotient of D
by a discrete group Γ of isometries. If M is orientable, all the elements of
Γ preserve orientation.
A group of orientation-preserving isometries of D is provided by the

group G of linear fractional transformations, where

(2.31) Tgz =
az + b

cz + d
, g =

(
a b
c d

)
,

for

(2.32) g ∈ G = SU(1, 1) =
{(

u v
v u

)
: u, v ∈ C, |u|2 − |v|2 = 1

}
.

It is easy to see that G acts transitively on D; that is, for any z1, z2 ∈ D,
there exists g ∈ G such that Tgz1 = z2. We claim {Tg : G ∈ G} exhausts
the group of orientation-preserving isometries of D. In fact, let T be such
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an isometry of D; say T (0) = z0. Pick g ∈ G such that Tgz0 = 0. Then
Tg ◦T is an orientation-preserving isometry of D, fixing 0, and it is easy to
deduce that Tg ◦ T must be a rotation, which is given by an element of G.
Since each element of G defines a holomorphic map of D to itself, we

have the following result, a major chunk of the uniformization theorem for
compact Riemann surfaces:

Proposition 2.6. If M is a compact Riemann surface, χ(M) < 0, then
there is a holomorphic covering map of M by the unit disk D.

Let us take a brief look at the case χ(M) = 0. We claim that any metric
g on such M is conformally equivalent to a flat metric g′, that is, one for
which K = 0. Note that the PDE (2.3) is linear in this case; we have

(2.33) ∆u = k(x).

This equation can be solved on M if and only if

(2.34)

∫
M

k(x) dV = 0,

which, by the Gauss-Bonnet formula (2.4) holds precisely when χ(M) = 0.
In this case, the universal covering surface M̃ of M inherits a flat metric,
and it must be isometric to Euclidean space. Consequently, in analogy with
Proposition 2.6, we have the following:

Proposition 2.7. If M is a compact Riemann surface, χ(M) = 0, then
M is holomorphically equivalent to the quotient of C by a discrete group
of translations.

By the characterization

χ(M) = dim H0(M)− dim H1(M) + dim H2(M) = 2− dim H1(M),

if M is a compact, connected Riemann surface, we must have χ(M) ≤
2. If χ(M) = 2, it follows from the Riemann-Roch theorem that M is
conformally equivalent to the standard sphere S2 (see §9 of Chapter 10).
This implies the following.

Proposition 2.8. IfM is a compact Riemannian manifold homeomorphic
to S2, with Riemannian metric tensor g, then M has a metric tensor,
conformal to g, with Gauss curvature ≡ 1.

In other words, we can solve for u ∈ C∞(M) the equation

(2.35) ∆u = k(x)− e2u,

where k(x) is the Gauss curvature of g. This result does not follow from
Theorem 2.1. A PDE proof, involving a nonlinear parabolic equation, is
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given by [Chow], following work of [Ham3]. An elliptic PDE proof, under
the hypothesis that M has a metric with Gauss curvature k(x) > 0, has
been given in Chapter 2 of [CK].
We end this section with a direct linear PDE proof of the following,

which as noted above implies Proposition 2.8. This argument appeared in
[MT].

Proposition 2.9. IfM is a compact Riemannian manifold homeomorphic
to S2, there is a conformal diffeomorphism F :M → S2 onto the standard
Riemann sphere.

Proof. Pick a Riemannian metric on M , compatible with its conformal
structure. Then pick p ∈M , and pick h ∈ D′(M), supported at p, given in
local coordinates as a first-order derivative of δp (plus perhaps a multiple
of δp), such that ⟨1, h⟩ = 0. Hence there exists a solution u ∈ D′(M) to

(2.36) ∆u = h.

Then u ∈ C∞(M \ p), and u is harmonic on M \ p and has a dist(x, p)−1

type of singularity. Now, ifM is homeomorphic to S2, thenM \p is simply
connected, so u has a single-valued harmonic conjugate on M \ p, given
by v(x) =

∫ x

q
∗du, where we pick q ∈ M \ p. We see that v also has a

dist(x, p)−1 type singularity. Then f = u+ iv is holomorphic on M \ p and
has a simple pole at p. From here it is straightforward that f provides a
conformal diffeomorphism of M onto the standard Riemann sphere.

Actually, the bulk of [MT] dealt with an attack on the curvature equation
(2.3), with M a planar domain and K ≡ −1, so the equation is

(2.37) ∆u = e2u on Ω ⊂ C.

Here is one of the main results of [MT].

Proposition 2.10. Assume Ω = C \ S, where S is a closed subset of C
with more than one point. Then there exists a solution to (2.37) on Ω such
that e2u(dx2 + dy2) is a complete metric on Ω with curvature ≡ −1.

As with Proposition 2.6, this has as a corollary the following special case
of the general uniformization theorem.

Corollary 2.11. If Ω ⊂ C is as in Proposition 2.10, there exists a holo-
morphic covering of Ω by the unit disk D.

Techniques employed in the proof of Proposition 2.10 include maximal
principle arguments and barrier constructions. We refer to [MT] for further
details.
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Exercises

1. Let M be a complete, simply connected 2-manifold, with Gauss curvature
K = −1. Fix p ∈M , and consider

Expp : R2 ≈ TpM −→M.

Show that this is a diffeomorphism.
(Hint: The map is onto by completeness. Negative curvature implies no Jacobi
fields vanishing at 0 and another point, so D Expp is everywhere nonsingular.
Use simple connectivity of M to show that Expp must be one-to-one.)

2. For M as in Exercise 1, take geodesic polar coordinates, so the metric is

ds2 = dr2 +G(r, θ) dθ2.

Use formula (3.37) of Appendix C, for the Gauss curvature, to deduce that

∂2
r

√
G =

√
G

if K = −1. Show that
√
G(0, θ) = 0, ∂r

√
G(0, θ) = 1,

and deduce that
√
G(r, θ) = φ(r) is the unique solution to

φ′′(r)− φ(r) = 0, φ(0) = 0, φ′(0) = 1.

Deduce that

G(r, θ) = sinh2 r.

3. Using Exercise 2, deduce that any two complete, simply connected 2-manifolds
with Gauss curvature K = −1 are isometric. Use (3.37) or (3.41) of Appendix
C to show that the Poincaré disk (2.30) has this property.

3. Local solvability of nonlinear elliptic equations

We take a look at nonlinear PDE, of the form

(3.1) f(x,Dmu) = g(x),

where, in the latter argument of f ,

(3.2) Dmu = {Dαu : |α| ≤ m}.

We suppose f(x, ζ) is smooth in its arguments, x ∈ Ω ⊂ Rn, and ζ = {ζα :
|α| ≤ m}. The function u might take values in some vector space Rk. Set

(3.3) F (u) = f(x,Dmu),

so F : C∞(Ω) → C∞(Ω); F is the nonlinear differential operator. Let
u0 ∈ Cm(Ω). We say that the linearization of F at u0 is DF (u0), which
is a linear map from Cm(Ω) to C(Ω). (Sometimes less smooth u0 can be
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considered.) We have

(3.4) DF (u0)v =
∂

∂s
F (u0 + sv)

∣∣
s=0

=
∑

|β|≤m

∂f

∂ζβ
(x,Dmu0) D

βv,

so DF (u0) is itself a linear differential operator of order m. We say the
operator F is elliptic at u0 if its linearization DF (uo) is an elliptic, linear
differential operator.
An operator of the form (3.3) with

(3.5) f(x,Dmu) =
∑

|α|=m

aα(x,D
m−1u)Dαu+ f1(x,D

m−1u)

is said to be quasi-linear. In that case, the linearization at u0 is

(3.6) DF (u0) =
∑

|α|=m

aα(x,D
m−1u0)D

αv + Lv,

where L is a linear differential operator of order m − 1, with coefficients
depending on Dm−1u0. A nonlinear operator that is not quasi-linear is
called completely nonlinear. The distinction is made because some aspects
of the theory of quasi-linear operators are simpler than the general case.
An example of a completely nonlinear operator is the Monge-Ampere

operator

(3.7) F (u) = det

(
uxx uxy
uxy uyy

)
= uxxuyy − u2xy,

with (x, y) ∈ Ω ⊂ R2. In this case,

(3.8)
DF (u)v = Tr

[(
vxx vxy
vxy vyy

)(
uyy −uxy
−uxy uxx

)]
= uyyvxx − 2uxyvxy + uxxvyy.

Thus the linear operator DF (u) acting on v is elliptic provided the matrix

(3.9)

(
uyy −uxy
−uxy uxx

)
is either positive-definite or negative-definite. Since, for u real-valued, this
is a real symmetric matrix, we see that this condition holds precisely when
F (u) > 0.
More generally, for Ω ⊂ Rn, we consider the Monge-Ampere operator

(3.7a) F (u) = det H(u),

where H(u) = (∂j∂ku) is the Hessian matrix of second-order derivatives.
In this case, we have

(3.8a) DF (u)v = Tr
[
C(u)H(v)

]
,
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where H(v) is the Hessian matrix for v and C(u) is the cofactor matrix of
H(u), satisfying

H(u)C(u) =
[
det H(u)

]
I.

In this setting we see that DF (u) is a linear, second-order differential op-
erator that is elliptic provided the matrix C(u) is either positive-definite
or negative-definite, and this holds provided the Hessian matrix H(u) is
either positive-definite or negative-definite.

Having introduced the concepts above, we aim to establish the following
local solvability result:

Theorem 3.1. Let g ∈ C∞(Ω), and let u1 ∈ C∞(Ω) satisfy

(3.10) F (u1) = g(x), at x = x0,

where F (u) is of the form (3.3). Suppose that F is elliptic at u1. Then, for
any ℓ, there exists u ∈ Cℓ(Ω) such that

(3.11) F (u) = g

on a neighborhood of x0.

We begin with a formal power-series construction to arrange that (3.11)
hold to infinite order at x0.

Lemma 3.2. Under the hypotheses of Theorem 3.1, there exists u0 ∈
C∞(Ω) such that

(3.12) F (u0)− g(x) = O(|x− x0|∞)

and

(3.13) (u0 − u1)(x) = O(|x− x0|m+1).

Proof. Making a change of variable, we can suppose x0 = 0. Denote
coordinates near 0 in Ω by (x, y) = (x1, . . . , xn−1, y). We write u0(x, y) as
a formal power series in y:

(3.14) u0(x, y) = v0(x) + v1(x)y + · · ·+ 1

k!
vk(x)y

k + · · · .

Set
(3.15)

v0(x) = u1(x, 0), v1(x) = ∂yu1(x, 0), . . . , vm−1(x) = ∂m−1
y u1(x, 0).

Now the PDE F (u) = g can be rewritten in the form

(3.16)
∂mu

∂ym
= F#(x, y,Dm

x u,D
m−1
x Dyu, . . . ,D

1
xD

m−1
y u).
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Then the equation for vm(x) becomes

(3.17) vm(x) = f#(x, 0, Dm
x v0(x), . . . , D

1
xvm−1(x)).

Now, by (3.10), we have vm(0) = ∂my u1(0, 0), so (3.13) is satisfied. Taking
y-derivatives of (3.16) yields inductively the other coefficients vj(x), j ≥
m+ 1, and the lemma follows from this construction.

Note that if F is elliptic at u1, then F continues to be elliptic at u0, at
least on a neighborhood of x0; shrink Ω appropriately.

To continue the proof of Theorem 3.1, for k > m+1+n/2, we have that

(3.18) F : Hk(Ω) −→ Hk−m(Ω)

is a C1-map. We have

(3.19) L = DF (u0) : H
k(Ω) −→ Hk−m(Ω).

Now, L is an elliptic operator of orderm. We know from Chapter 5 that the
Dirichlet problem is a regular boundary problem for the strongly elliptic
operator LL∗. Furthermore, if Ω is a sufficiently small neighborhood of x0,
the map

(3.20) LL∗ : Hk+m(Ω) ∩Hm
0 (Ω) −→ Hk−m(Ω)

is invertible. Hence the map (3.19) is surjetive, so we can apply the implicit
function theorem. For any neighborhood Bk of u0 in Hk(Ω), the image of
Bk under the map F contains a neighborhood Ck of F (u0) in Hk−m(Ω).
Now if (3.12) holds, then any neighborhood of r(x) = F (u0)−g inHk−m(Ω)
contains functions that vanish on a neighborhood of x0, so any neighbor-
hood Ck of F (u0) contains functions equal to g(x) on a neighborhood of
x0. This establishes the local solvability asserted in Theorem 3.1.
One would rather obtain a local solution u ∈ C∞ than just an ℓ-fold

differentiable solution. This can be achieved by using elliptic regularity
results that will be established in the next section.
We now discuss a refinement of Theorem 3.1.

Proposition 3.3. If u1, g ∈ C∞(Ω) satisfy the hypotheses of Theorem 3.1
at x = x0, with F elliptic at u1, then, for any ℓ, there exists u ∈ Cℓ(Ω)
such that, on a neighborhood of x0,

(3.21) F (u) = g

and, furthermore,

(3.22) (u− u1)(x) = O(|x− x0|m+1).

In the literature, one frequently sees a result weaker than (3.22). The
desirability of having this refinement was pointed out to the author by R.
Bryant. As before, results of the next section will give u ∈ C∞(Ω).
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To begin the proof, we invoke Lemma 3.2, as before, obtaining u0. Now,
for k > m+ 1 + n/2, set

(3.23)
Vk =

{
u ∈ Hk(Ω) : (u− u0)(x) = O(|x− x0|m+1)

}
,

Gk−m =
{
h ∈ Hk−m(Ω) : h(x0) = g(x0)

}
.

Then

(3.24) F : Vk −→ Gk−m

is a C1-map, and we want to show that F maps a neighborhood of u0 in
Vk onto a neighborhood of g0 = F (u0) in Gk−m. We will again use the
implicit function theorem. We want to show that the linear map

(3.25) L = DF (u0) : Vb
k −→ Gb

k−m

is surjective, where

(3.26)
Vb
k = {v ∈ Hk(Ω) : Dβv(x0) = 0 for |β| ≤ m},

Gb
k−m = {h ∈ Hk−m(Ω) : h(x0) = 0}

are the tangent spaces to Vj and Gk−m, at u0 and g0, respectively.
By the previous argument involving (3.19) and (3.20), we know that,

for any given h ∈ Gb
k−m, we can find v1 ∈ Hk(Ω) such that Lv1 = h,

perhaps after shrinking Ω. To prove the surjectivity in (3.25), we need to
find v ∈ Hk(Ω) such that Lv = 0 and such that v−v1 = O(|x−x0|m+1), so
that v1 − v ∈ Vb

k and L(v1 − v) = h. We will actually produce v ∈ C∞(Ω).
To work on this problem, we will find it convenient to use the notion of the
m-jet Jm

0 (v) of a function v ∈ C∞(Ω), at x0, being the Taylor polynomial
of order m for v about x0. Note that

(3.27) Jm
0 (v) = Jm

0 (v#) ⇐⇒ (v − v#)(x) = O(|x− x0|m+1),

given that v, v# ∈ C∞(Ω). The existence of the function v we seek here is
guaranteed by the following assertion.

Lemma 3.4. Given an elliptic operator L of order m, as above, let

(3.28) J = {Jm
0 (v) : Lv(x0) = 0}

and

(3.29) S = {Jm
0 (v) : v ∈ C∞(Ω), Lv = 0 on Ω}.

Clearly, S ⊂ J . If Ω is a sufficiently small neighborhood of x0, then S = J .

Proof. This result is a simple special case of our goal, Proposition 3.3;
the beginning of the proof here just retraces arguments from the beginning
of that proof. Namely, let v1 ∈ C∞(Ω) have m-jet in J , hence satisfying
Lv1(x0) = 0. Then Lemma 3.2 applies, so there exists v0 such that

(3.30) Jm
0 (v0) = Jm

0 (v1) and Lv0 = O(|x− x0|∞).
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Set h0 = Lv0. Suppose Ω is shrunk so far that LL∗ in (3.20) is an isomor-
phism. Now, for any ε > 0, there exists h1 ∈ C∞(Ω) such that

(3.31) h1 = h0 near x0, ∥h1∥Hℓ(Ω) < ε.

Then the Dirichlet problem

LL∗w̃ = h1 on Ω, w̃ ∈ Hm
0 (Ω)

has a unique solution w̃ satisfying estimates

(3.32) ∥w̃∥Hℓ+2m(Ω) ≤ Cℓ∥h1∥Hℓ(Ω).

Fix ℓ > n/2. By Sobolev’s imbedding theorem, w = L∗w̃ satisfies

(3.33) ∥w∥Cm(Ω) ≤ C#∥w∥Hℓ+m(Ω).

In light of this, we have

(3.34) ∥w∥Cm(Ω) ≤ C#
ℓ ε, Lw = h1 on Ω,

so v = v1 − w defines an element in S, provided Ω is shrunk to Ω1, on
which h1 = h0 in (3.31). Furthermore, Jm

0 (v) differs from Jm
0 (v1) by

Jm
0 (w), which is small (i.e., proportional to ε). Since S is a linear subspace

of the finite-dimensional space J , this approximability yields the identity
S = J and proves the lemma.

From the lemma, as we have seen, it follows that the map (3.25) is a
surjective linear map between two Hilbert spaces, so the implicit function
theorem therefore applies to the map F in (3.24). In other words, F maps
a neighborhood of u0 in Vk onto a neighborhood of g0 = F (u0) in Gk−m.
As in the proof of Theorem 3.1, we see that any neighborhood of r(x) =
F (u0)−g in Gb

k−m contains functions that vanish on a neighborhood of x0,
so any neighborhood of F (u0) in Gk−m contains functions equal to g(x) on
a neighborhood of x0. This completes the proof of Proposition 3.3.

In some geometrical problems, it is useful to extend the notion of elliptic-
ity. A differential operator of the form (3.3) is said to be underdetermined
elliptic at u0 provided DF (u0) has surjective symbol.

Proposition 3.5. If F (u1) satisfies F (u1) = g at x = x0, and if F is
underdetermined elliptic at u1, then, for any ℓ, there exists u ∈ Cℓ(Ω)
such that F (u) = g on a neighborhood of x0 and such that (u − u1)(x) =
O(|x− x0|m+1).

Proof. We produce u in the form u = u1 + u2, where we want

(3.35) F (u1 + u2) = g near x0, u2(x) = O(|x− x0|m+1).

We will find u2 in the form u2 = L∗w, where L = DF (u1). Thus we want
to find w ∈ Cℓ+m(Ω) satisfying

(3.36) Φ(w) = F (u1 + L∗w) = g near x0, w(x) = O(|x− x0|2m+1).
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Now Φ(w) is strongly elliptic of order 2m at w1 and Φ(w1) = 0 at x0 if
w1 = 0. Thus the existence of w satisfying (3.36) follows from Proposition
3.3, and the proof is finished.

We will apply the local existence theory to establish the following clas-
sical local isometric imbedding result.

Proposition 3.6. Let M be a 2-dimensonal Riemannian manifold. If
p0 ∈M and the Gauss curvature K(p0) > 0, then there is a neighborhood
O of p0 in M that can be smoothly isometrically imbedded in R3.

The proof involves constructing a smooth, real-valued function u on O
such that du(p0) = 0 and such that g1 = g−du2 is a flat metric on O, where
g is the given metric tensor onM . Assuming this can be accomplished, then
by the fundamental property of curvature (Proposition 3.1 of Appendix
C), we can take coordinates (x, y) on O (after possibly shrinking O) such
that g1 = dx2 + dy2. Thus g = dx2 + dy2 + du2, which implies that
(x, y, u) : O → R3 provides the desired local isometric imbedding.
Thus our task is to find such a function u. We need a formula for the

Gauss curvature K1 of O, with metric tensor g1 = g − du2. A lengthy but
finite computation from the fundamental formulas given in §3 of Appendix
C yields

(3.37)
(
1− |∇u|2

)2
K1 =

(
1− |∇u|2

)
K − det Hg(u).

Here, |∇u|2 = gjku;ju;k, and Hg(u) is the Hessian of u relative to the
Levi-Civita connection of g:

(3.38) Hg(u) =
(
u;j ;k

)
.

This is the tensor field of type (1,1) associated to the tensor field ∇2u of
type (0,2), such as defined by (2.3)–(2.4) of Appendix C, or equivalently
by (3.27) of Chapter 2. In normal coordinates centered at p ∈M , we have
Hg(u) = (∂j∂ku), at p.

Therefore, g1 is a flat metric if and only if u satisfies the PDE

(3.39) det Hg(u) =
(
1− |∇u|2

)
K.

By the sort of analysis done in (3.7)–(3.9), we see that this equation is
elliptic, provided K > 0 and |∇u| < 1. Thus Proposition 3.3 applies,
to yield a local solution u ∈ Cℓ(O), for arbitrarily large ℓ, provided the
metric tensor g is smooth. As mentioned above, results of §4 will imply
that u ∈ C∞(O).

If K(p0) < 0, then (3.39) will be hyperbolic near p0, and results of
Chapter 16 will apply, to produce an analogue of Proposition 3.6 in that
case. No matter what the value of K(p0), if the metric tensor g is real
analytic, then the nonlinear Cauchy-Kowalewsky theorem, proved in §4 of
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Chapter 16, will apply, yielding in that case a real analytic, local isometric
imbedding of M into R3.

If M is compact (diffeomorphic to S2) and has a metric with K > 0
everywhere, then in fact M can be globally isometrically imbedded in R3.
This result is established in [Ni2] and [Po]. Of course, it is not true that
a given compact Riemannian 2-manifold M can be globally isometrically
imbedded in R3 (for example, if K < 0), but it can always be isometrically
imbedded in RN for sufficiently large N . In fact, this is true no matter
what the dimension of M . This important result of J. Nash will be proved
in §5 of this chapter.

Exercises

1. Given the formula (3.8a) for the linearization of F (u) = det H(u), show that
the symbol of DF (u) is given by

(3.40) σDF (u)(x, ξ) = −C(u)ξ · ξ.

2. Let a surface M ⊂ R3 be given by x3 = u(x1, x2). Given K(x1, x2), to
construct u such that the Gauss curvature of M at (x1, x2, u(x1, x2)) is equal
to K(x1, x2) is to solve

(3.41) det H(u) =
(
1 + |∇u|2

)2

K.

See (4.29) of Appendix C. If one is given a smooth K(x1, x2) > 0, then this
PDE is elliptic. Applying Proposition 3.3, what geometrical properties of M
can you prescribe at a given point and guarantee a local solution?

3. Verify (3.37). Compare with formula (**) on p. 210 of [Spi], Vol. 5.
4. Show that, in local coordinates on a 2-dimensional Riemannian manifold, the

left side of (3.39) is given by

det
(
u;j

;k

)
= g−1 det(∂j∂ku) +Ajk(x,∇u) ∂j∂ku+Q(∇u,∇u),

where g = det(gjk),

Ajk(x,∇u) = ±gjkσj′ℓ
k′∂ℓu,

with “+” if j = k, “−” if j ̸= k, j′ and k′ the indices complementary to j and
k, and

σjℓ
k = ∂kg

jℓ + Γj
mkg

mℓ,

and

Q(∇u,∇u) = det(τ jk), τ jk = σjℓ
k∂ℓu.

4. Elliptic regularity I (interior estimates)

Here we will discuss two methods of establishing regularity of solutions to
nonlinear elliptic PDE. The first is to consider regularity for a linear elliptic
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differential operator of order m

(4.1) A(x,D) =
∑

|α|≤m

aα(x) D
α,

whose coefficients have limited regularity. The second method will involve
use of paradifferential operators. For both methods, we will make use of
the Hölder spaces Cs(Rn) and Zygmund spaces Cs

∗(Rn), discussed in §8 of
Chapter 13. Material in this section largely follows the exposition in [T].
Let us suppose aα(x) ∈ Cs(Rn), s ∈ (0,∞) \ Z. Then A(x, ξ) belongs

to the symbol space Cs
∗S

m
1,0, as defined in §9 of Chapter 13. Recall that

p(x, ξ) ∈ Cs
∗S

m
1,δ, provided

(4.2) |Dα
ξ p(x, ξ)| ≤ Cα⟨ξ⟩m−|α|

and

(4.3) ∥Dα
ξ p(·, ξ)∥Cs

∗(Rn) ≤ Cα⟨ξ⟩m−|α|+δs.

We would like to establish regularity results for elliptic A(x, ξ) ∈ Cs
∗S

m
1,0, by

pseudodifferential operator techniques. It is not so convenient to work with
an operator with symbol A(x, ξ)−1. Rather, we will decompose A(x, ξ) into
a sum

(4.4) A(x, ξ) = A#(x, ξ) +Ab(x, ξ),

in such a way that a good parametrix can be constructed for A#(x,D),
while Ab(x,D) is regarded as a remainder term to be estimated. Pick
δ ∈ (0, 1). As shown in Proposition 9.9 of Chapter 13, any A(x, ξ) ∈ Cs

∗S
m
1,0

can be written in the form (4.4), with

(4.5) A#(x, ξ) ∈ Sm
1,δ, Ab(x, ξ) ∈ Cs

∗S
m−δs
1,δ .

To Ab(x,D) we apply Proposition 9.10 of Chapter 13, which, we recall,
states that

(4.6) p(x, ξ) ∈ Cs
∗S

µ
1,δ =⇒ p(x,D) : Cµ+r

∗ −→ Cr
∗ , −(1− δ)s < r < s.

Consequently,

(4.7) Ab(x,D) : Cm+r−δs
∗ −→ Cr

∗ , −(1− δ)s < r < s.

Now let p(x,D) ∈ OPS−m
1,δ be a parametrix for A#(x,D), which is ellip-

tic. Hence, mod C∞,

(4.8) p(x,D)A(x,D)u = u+ p(x,D)Ab(x,D)u,

so if

(4.9) A(x,D)u = f,

then, mod C∞,

(4.10) u = p(x,D)f − p(x,D)Ab(x,D)u.
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In view of (4.7), we see that when (4.10) is satisfied,

(4.11) u ∈ Cm+r−δs
∗ , f ∈ Cr

∗ =⇒ u ∈ Cm+r
∗ .

We then have the following.

Proposition 4.1. Let A(x, ξ) ∈ Cs
∗S

m
1,0 be elliptic, and suppose u solves

(4.9). Assuming

(4.12) s > 0, 0 < δ < 1 and − (1− δ)s < r < s,

we have

(4.13) u ∈ Cm+r−δs, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ .

Note that, for |α| = m, Dαu ∈ Cr−δs
∗ , and r − δs could be negative.

However, aα(x)D
αu will still be well defined for aα ∈ Cs. Indeed, if (4.6)

is applied to the special case of a multiplication operator, we have

(4.14) a ∈ Cs, u ∈ Cσ
∗ =⇒ au ∈ Cσ

∗ , for − s < σ < s.

Note that the range of r in (4.12) can be rewritten as −s < r−δs < (1−δ)s.
If we set r − δs = −s + ε, this means 0 < ε < (2 − δ)s, so we can rewrite
(4.13) as

(4.15) u ∈ Cm−s+ε, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ , provided ε > 0, r < s,

as long as the relation r = −(1− δ)s+ ε holds. Letting δ range over (0, 1),
we see that this will hold for any r ∈ (−s+ ε, ε). However, if r ∈ [ε, s), we
can first obtain from the hypothesis (4.15) that u ∈ Cm+ρ

∗ , for any ρ < ε.
This improves the a priori regularity of u by almost s units. This argument
can be iterated repeatedly, to yield:

Theorem 4.2. If A(x, ξ) ∈ CsSm
1,0 is elliptic and u solves (4.9), then

(assuming s > 0)

(4.16)
u ∈ Cm−s+ε, f ∈ Cr

∗ =⇒ u ∈ Cm+r
∗ ,

provided ε > 0 and − s < r < s.

We can sharpen this up to obtain the following Schauder regularity result:

Theorem 4.3. Under the hypotheses above,

(4.17) u ∈ Cm−s+ε, f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

Proof. Applying (4.16), we can assume u ∈ Cm+r
∗ with s − r > 0 ar-

bitrarily small. Now if we invoke Proposition 9.7 of Chapter 13, which
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says

(4.18) p(x, ξ) ∈ CrSm
1,1 =⇒ p(x,D) : Cm+r+ε

∗ −→ Cr
∗ ,

for all ε > 0, we can supplement (4.7) with

(4.19) Ab(x,D) : Cm+s−δs+ε
∗ −→ Cs

∗ , ε > 0.

If δ > 0, and if ε > 0 is picked small enough, we can write m+ s− δs+ ε =
m+ r with r < s, so, under the hypotheses of (4.17), the right side of (4.8)
belongs to Cm+s

∗ , proving the theorem. We note that a similar argument
also produces the regularity result:

(4.20) u ∈ Hm−s+ε,p, f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

We now apply these results to solutions to the quasi-linear elliptic PDE

(4.21)
∑

|α|≤m

aα(x,D
m−1u) Dαu = f.

As long as u ∈ Cm−1+s, aα(x,D
m−1u) ∈ Cs. If also u ∈ Cm−s+ε, we

obtain (4.16) and (4.17). If r > s, using the conclusion u ∈ Cm+s
∗ , we

obtain aα(x,D
m−1u) ∈ Cs+1, so we can reapply (4.16) and (4.17) for

further regularity, obtaining the following:

Theorem 4.4. If u solves the quasi-linear elliptic PDE (4.21), then

(4.22) u ∈ Cm−1+s ∩ Cm−s+ε, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ ,

provided s > 0, ε > 0, and −s < r. Thus

(4.23) u ∈ Cm−1+s, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ ,

provided

(4.24) s >
1

2
, r > s− 1.

We can sharpen Theorem 4.4 a bit as follows. Replace the hypothesis in
(4.22) by

(4.25) u ∈ Cm−1+s ∩Hm−1+σ,p,

with p ∈ (1,∞). Recall that Proposition 9.10 of Chapter 13 gives both
(4.6) and, for p ∈ (1,∞),

(4.26)
p(x, ξ) ∈ Cs

∗S
m
1,δ =⇒ p(x,D) : Hr+m,p −→ Hr,p,

−(1− δ)s < r < s.

Parallel to (4.14), we have

(4.27) a ∈ Cs, u ∈ Hσ,p =⇒ au ∈ Hσ,p, for − s < σ < s,
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as a consequence of (4.26), so we see that the left side of (4.21) is well
defined provided s+ σ > 1. We have (4.8) and, by (4.26),

(4.28) Ab(x,D) : Hm+r−δs,p −→ Hr,p, for − (1− δ)s < r < s,

parallel to (4.7). Thus, if (4.25) holds, we obtain

(4.29) p(x,D)Ab(x,D)u ∈ Hm−1+σ+δs,p,

provided −(1− δ)s < δs− 1 + σ < s, i.e., provided

(4.30) s+ σ > 1 and − 1 + σ + δs < s.

Thus, if f ∈ Hρ,p with ρ > σ − 1, we manage to improve the regularity of
u over the hypothesized (4.25). One way to record this gain is to use the
Sobolev imbedding theorem:

(4.31) Hm−1+σ+δs,p ⊂ Hm−1+σ,p1 , p1 =
pn

n− δs
> p
(
1 +

δsp

n

)
.

If we assume f ∈ Cr
∗ with r > σ−1, we can iterate this argument sufficiently

often to obtain u ∈ Cm−1+σ−ε, for arbitrary ε > 0. Now we can arrange
s + σ > 1 + ε, so we are now in a position to apply Theorem 4.4. This
proves the following:

Theorem 4.5. If u solves the quasi-linear elliptic PDE (4.21), then

(4.32) u ∈ Cm−1+s ∩Hm−1+σ,p, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ ,

provided 1 < p <∞ and

(4.33) s > 0, s+ σ > 1, r > σ − 1.

Note that if u ∈ Hm,p for some p > n, then u ∈ Cm−1+s for s = 1−n/p >
0, and then (4.32) applies, with σ = 1, or even with σ = n/p+ ε.
We next obtain a result regarding the regularity of solutions to a com-

pletely nonlinear elliptic system

(4.34) F (x,Dmu) = f.

We could apply Theorems 4.2 and 4.3 to the equation for uj = ∂u/∂xj :

(4.35)
∑

|α|≤m

∂F

∂ζα
(x,Dmu)Dαuj = −Fxj (x,D

mu) +
∂f

∂xj
= fj .

Suppose u ∈ Cm+s, s > 0, so the coefficients aα(x) = (∂F/∂ζα)(x,D
mu) ∈

Cs. If f ∈ Cr
∗ , then fj ∈ Cs + Cr−1

∗ . We can apply Theorems 4.2 and 4.3
to uj provided u ∈ Cm+1−s+ε, to conclude that u ∈ Cm+s+1

∗ ∪Cm+r
∗ . This

implication can be iterated as long as s+1 < r, until we obtain u ∈ Cm+r
∗ .

This argument has the drawback of requiring too much regularity of u,
namely that u ∈ Cm+1−s+ε as well as u ∈ Cm+s. We can fix this up
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by considering difference quotients rather than derivatives ∂ju. Thus, for
y ∈ Rn, |y| small, set

vy(x) = |y|−1
[
u(x+ y)− u(x)

]
;

vy satisfies the PDE

(4.36)
∑

|α|≤m

Φαy(x)D
αvy(x) = Gy(x,D

mu),

where

(4.37) Φαy(x) =

∫ 1

0

(∂F/∂ζα)
(
x, tDmu(x) + (1− t)Dmu(x+ y)

)
dt

and Gy is an appropriate analogue of the right side of (4.35). Thus Φαy is
in Cs, uniformly as |y| → 0, if u ∈ Cm+s, while this hypothesis also gives
a uniform bound on the Cm−1+s-norm of vy. Now, for each y, Theorems
4.2 and 4.3 apply to vy, and one can get an estimate on ∥vy∥Cm+ρ , ρ =
min(s, r − 1), uniform as |y| → 0. Therefore, we have the following.

Theorem 4.6. If u solves the elliptic PDE (4.34), then

(4.38) u ∈ Cm+s, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ ,

provided

(4.39) 0 < s < r.

We shall now give a second approach to regularity results for nonlinear
elliptic PDE, making use of the paradifferential operator calculus developed
in §10 of Chapter 13. In addition to giving another perspective on interior
estimates, this will also serve as a warm-up for the work on boundary
estimates in §8.
If F is smooth in its arguments, then, as shown in (10.53)–(10.55) of

Chapter 13,

(4.40) F (x,Dmu) =
∑

|α|≤m

Mα(x,D)Dαu+ F (x,DmΨ0(D)u),

where F
(
x,DmΨ0(D)u

)
∈ C∞ and

(4.41) Mα(x, ξ) =
∑
k

mα
k (x)ψk+1(ξ),

with

(4.42) mα
k (x) =

∫ 1

0

∂F

∂ζα

(
Ψk(D)Dmu+ tψk+1(D)Dmu

)
dt.

As shown in Proposition 10.7 of Chapter 13, we have, for r ≥ 0,

(4.43) u ∈ Cm+r =⇒Mα(x, ξ) ∈ Ar
0S

0
1,1 ⊂ S0

1,1 ∩ CrS0
1,0.
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We recall from (10.31) of Chapter 13 that

(4.44) p(x, ξ) ∈ Ar
0S

m
1,δ ⇐⇒ ∥Dα

ξ p(·, ξ)∥Cr+s ≤ Cαs ⟨ξ⟩m−|α|+δs, s ≥ 0.

Consequently, if we set

(4.45) M(u;x,D) =
∑

|α|≤m

Mα(x,D)Dα,

we obtain

Proposition 4.7. If u ∈ Cm+r, r ≥ 0, then

(4.46) F (x,Dmu) =M(u;x,D)u+R,

with R ∈ C∞ and

(4.47) M(u;x, ξ) ∈ Ar
0S

m
1,1 ⊂ Sm

1,1 ∩ CrSm
1,0.

Decomposing each Mα(x, ξ), we have, by (10.60)–(10.61) of Chapter 13,

(4.48) M(u;x, ξ) =M#(x, ξ) +M b(x, ξ),

with

(4.49) M#(x, ξ) ∈ Ar
0S

m
1,δ ⊂ Sm

1,δ

and

(4.50) M b(x, ξ) ∈ CrSm−δr
1,δ ∩ Ar

0S
m
1,1 ⊂ Sm−rδ

1,1 .

Let us explicitly recall that (4.49) implies

(4.51)
Dβ

xM
#(x, ξ) ∈ Sm

1,δ, |β| ≤ r,

S
m+δ(|β|−r)
1,δ , |β| ≥ r.

Note that the linearization of F (x,Dmu) at u is given by

(4.52) Lv =
∑

|α|≤m

M̃α(x)D
αv,

where

(4.53) M̃α(x) =
∂F

∂ζα
(x,Dmu).

Comparison with (4.40)–(4.42) gives (for u ∈ Cm+r)

(4.54) M(u;x, ξ)− L(x, ξ) ∈ CrSm−r
1,1 ,

by the same analysis as in the proof of the δ = 1 case of (9.35) of Chapter
13. More generally, the difference in (4.54) belongs to CrSm−rδ

1,δ , 0 ≤ δ ≤ 1.
Thus L(x, ξ) and M(u;x, ξ) have many qualitative properties in common.
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Consequently, given u ∈ Cm+r, the operator M#(x,D) ∈ OPSm
1,δ is

microlocally elliptic in any direction (x0, ξ0) ∈ T ∗Rn \ 0 that is noncharac-
teristic for F (x,Dmu), which by definition means noncharacteristic for L.
In particular, M#(x,D) is elliptic if F (x,Dmu) is. Now if

(4.55) F (x,Dmu) = f

is elliptic and Q ∈ OPS−m
1,δ is a parametrix for M#(x,D), we have

(4.56) u = Q(f −M b(x,D)u), mod C∞.

By (4.50) we have

(4.57) QM b(x,D) : Hm−rδ+s,p −→ Hm+s,p, s > 0.

(In fact s > −(1− δ)r suffices.) We deduce that

(4.58) u ∈ Hm−δr+s,p, f ∈ Hs,p =⇒ u ∈ Hm+s,p,

granted r > 0, s > 0, and p ∈ (1,∞). There is a similar implication,
with Sobolev spaces replaced by Hölder (or Zygmund) spaces. This sort of
implication can be iterated, leading to a second proof of Theorem 4.6. We
restate the result, including Sobolev estimates, which could also have been
obtained by the first method used to prove Theorem 4.6.

Theorem 4.8. Suppose, given r > 0, that u ∈ Cm+r satisfies (4.55) and
this PDE is elliptic. Then, for each s > 0, p ∈ (1,∞),

(4.59) f ∈ Hs,p =⇒ u ∈ Hm+s,p and f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

By way of further comparison with the methods used earlier in this sec-
tion, we now rederive Theorem 4.5, on regularity for solutions to a quasi-
linear elliptic PDE. Note that, in the quasi-linear case,

(4.60) F (x,Dmu) =
∑

|α|≤m

aα(x,D
m−1u)Dαu = f,

the construction above gives F (x,Dmu) = M(u;x,D)u + R0(u) with the
property that, for r ≥ 0,

(4.61) u ∈ Cm+r =⇒M(u;x, ξ) ∈ Cr+1Sm
1,0 ∩ Sm

1,1 + CrSm−1
1,0 ∩ Sm−1

1,1 .

Of more interest to us now is that, for 0 < r < 1,

(4.62) u ∈ Cm−1+r =⇒M(u;x, ξ) ∈ CrSm
1,0 ∩ Sm

1,1 + Sm−r
1,1 ,

which follows from (10.23) of Chapter 13. Thus we can decompose the term
in CrSm

1,0∩Sm
1,1 via symbol smoothing, as in (10.60)–(10.61) of Chapter 13,

and throw the term in Sm−r
1,1 into the remainder, to get

(4.63) M(u;x, ξ) =M#(x, ξ) +M b(x, ξ),



4. Elliptic regularity I (interior estimates) 37

with

(4.64) M#(x, ξ) ∈ Sm
1,δ, M b(x, ξ) ∈ Sm−rδ

1,1 .

If P (x,D) ∈ OPS−m
1,δ is a parametrix for the elliptic operator M#(x,D),

then whenever u ∈ Cm−1+r ∩ Hm−1+ρ,p is a solution to (4.60), we have,
mod C∞,

(4.65) u = P (x,D)f − P (x,D)M b(x,D)u.

Now

(4.66) P (x,D)M b(x,D) : Hm−1+ρ,p −→ Hm−1+ρ+rδ,p if r + ρ > 1,

by the last part of (4.64). As long as this holds, we can iterate this argument
and obtain Theorem 4.5, with a shorter proof than the one given before.
Next we look at one example of a quasi-linear elliptic system in divergence

form, with a couple of special features. One is that we will be able to
assume less regularity a priori on u than in results above. The other is that
the lower-order terms have a more significant impact on the analysis than
above. After analyzing the following system, we will show how it arises in
the study of the Ricci tensor.
We consider second-order elliptic systems of the form

(4.67)
∑

∂jajk(x, u)∂ku+B(x, u,∇u) = f.

We assume that ajk(x, u) and B(x, u, p) are smooth in their arguments and
that

(4.68) |B(x, u, p)| ≤ C⟨p⟩2.

Proposition 4.9. Assume that a solution u to (4.67) satisfies

(4.69) ∇u ∈ Lq, for some q > n, hence u ∈ Cr,

for some r ∈ (0, 1). Then, if p ∈ (q,∞) and s ≥ −1, we have

(4.70) f ∈ Hs,p =⇒ u ∈ Hs+2,p.

To begin the proof of Proposition 4.9, we write

(4.71)
∑
k

ajk(x, u) ∂ku = Aj(u;x,D)u

mod C∞, with

(4.72) u ∈ Cr =⇒ Aj(u;x, ξ) ∈ CrS1
1,0 ∩ S1

1,1 + S1−r
1,1 ,

as established in Chapter 13. Hence, given δ ∈ (0, 1),

(4.73)
Aj(u;x, ξ) = A#

j (x, ξ) +Ab
j(x, ξ),

A#
j (x, ξ) ∈ S1

1,δ, Ab
j(x, ξ) ∈ S1−rδ

1,1 .
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It follows that we can write

(4.74)
∑

∂jajk(x, u) ∂ku = P#u+ P bu,

with

(4.75) P# =
∑

∂jA
#
j (x,D) ∈ OPS2

1,δ, elliptic,

and

(4.76) P b =
∑

∂jA
b
j(x,D).

By Theorem 9.1 of Chapter 13, we have

(4.77) Ab
j(x,D) : H1−rδ+µ,p′

−→ Hµ,p′
, for µ > 0, 1 < p′ <∞.

In particular (taking µ = rδ, p′ = q),

(4.78) ∇u ∈ Lq =⇒ P bu ∈ H−1+rδ,q.

Now, if

(4.79) E# ∈ OPS−2
1,δ

denotes a parametrix of P#, we have, mod C∞,

(4.80) u = E#f − E#B(x, u,∇u)− E#P bu,

and we see that under the hypothesis (4.69), we have some control over the
last term:

(4.81) E#P bu ∈ H1+rδ,q ⊂ H1,q̃,
1

q̃
=

1

q
− rδ

n
.

Note also that under our hypothesis on B(x, u, p),

(4.82) ∇u ∈ Lq =⇒ B(x, u,∇u) ∈ Lq/2.

Now, by Sobolev’s imbedding theorem,

(4.83) E#B(x, u,∇u) ∈ H1,p̃,

with p̃ = q/(2 − q/n) if q < 2n and for all p̃ < ∞ if q ≥ 2n. Note that
p̃ > q(1 + a/n) if q = n+ a. This treats the middle term on the right side
of (4.80). Of course, the hypothesis on f yields

(4.84) E#f ∈ Hs+2,p, s+ 2 ≥ 1,

which is just where we want to place u.
Having thus analyzed the three terms on the right side of (4.80), we have

(4.85) u ∈ H1,q# , q# = min(p̃, p, q̃).

Iterating this argument a finite number of times, we get

(4.86) u ∈ H1,p.

If s = −1 in (4.70), our work is done.
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If s > −1 in (4.70), we proceed as follows. We already have u ∈ H1,p,
so ∇u ∈ Lp. Thus, on the next pass through estimates of the form (4.78)–
(4.83), we obtain

(4.87)
E#P bu ∈ H1+rδ,p,

E#B(x, u,∇u) ∈ H2,p/2 ⊂ H2−n/p,p,

and hence

(4.88) u ∈ H1+σ,p, σ = min
(
rδ, 1− n

p
, 1 + s

)
.

We can iterate this sort of argument a finite number of times until the
conclusion in (4.70) is reached.
Further results on elliptic systems of the form (4.67) will be given in

§12B. We now apply apply Proposition 4.9 to estimates involving the Ricci
tensor. Consider a Riemannian metric gjk defined on the unit ball B1 ⊂ Rn.
We will work under the following hypotheses:

(i) For some constants aj ∈ (0,∞), there are estimates

(4.89) 0 < a0I ≤
(
gjk(x)

)
≤ a1I.

(ii) The coordinates x1, . . . , xn are harmonic, namely

(4.90) ∆xℓ = 0.

Here, ∆ is the Laplace operator determined by the metric gjk. In general,

(4.91) ∆v = gjk∂j∂kv − λℓ∂ℓv, λℓ = gjkΓℓ
jk.

Note that ∆xℓ = −λℓ, so the coordinates are harmonic if and only if λℓ = 0.
Thus, in harmonic coordinates,

(4.92) ∆v = gjk ∂j∂kv.

We will also assume some bounds on the Ricci tensor, and we desire to
see how this influences the regularity of gjk in these coordinates. Generally,
as can be derived from formulas in §3 of Appendix C, the Ricci tensor is
given by

(4.93)

Ricjk =
1

2
gℓm

[
−∂ℓ∂mgjk − ∂j∂kgℓm

+ ∂k∂mgℓj + ∂ℓ∂jgkm
]
+Mjk(g,∇g)

= −1

2
gℓm∂ℓ∂mgjk +

1

2
gjℓ∂kλ

ℓ +
1

2
gkℓ∂jλ

ℓ +Hjk(g,∇g),

with λℓ as in (4.91). In harmonic coordinates, we obtain

(4.94) −1

2

∑
∂jg

jk(x) ∂kgℓm +Qℓm(g,∇g) = Ricℓm,

and Qℓm(g,∇g) is a quadratic form in∇g, with coefficients that are smooth
functions of g, as long as (4.89) holds. Also, when (4.89) holds, the equation
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(4.94) is elliptic, of the form (4.67). Thus Proposition 4.9 implies the
following.

Proposition 4.10. Assume the metric tensor satisfies hypotheses (i) and
(ii). Also assume that, on B1,

(4.95) ∇gjk ∈ Lq, for some q > n,

and

(4.96) Ricℓm ∈ Hs,p,

for some p ∈ (q,∞), s ≥ −1. Then, on the ball B9/10,

(4.97) gjk ∈ Hs+2,p.

In [DK] it was shown that if gjk ∈ C2, in harmonic coordinates, then,
for k ∈ Z+, α ∈ (0, 1), Ricℓm ∈ Ck+α ⇒ gjk ∈ Ck+2+α. Such results also
follow by the methods used to prove Proposition 4.10. A result stronger
than Proposition 4.10, using Morrey spaces, is proved in [T2].

Exercises

1. Consider the system F (x,Dmu) = f when

F (x,Dmu) =
∑

|α|≤m

aα(x,D
ju) Dαu,

for some j such that 0 ≤ j < m. Assume this quasi-linear system is elliptic.
Given p, q ∈ (1,∞), r > 0, assume

u ∈ Cj+r ∩Hm−1+ρ,p, r + ρ > 1.

Show that

f ∈ Hs,q =⇒ u ∈ Hs+m,q.

5. Isometric imbedding of Riemannian manifolds

In this section we will establish the following result.

Theorem 5.1. If M is a compact Riemannian manifold, there exists a
C∞-map

(5.1) Φ :M −→ RN ,

which is an isometric imbedding.

This was first proved by J. Nash [Na1], but the proof was vastly simpli-
fied by M. Günther [Gu1]–[Gu3]. These works also deal with noncompact
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Riemannian manifolds and derive good bounds for N , but to keep the
exposition simple we will not cover these results.
To prove Theorem 5.1, we can suppose without loss of generality thatM

is a torus Tk. In fact, imbed M smoothly in some Euclidean space Rk; M
will sit inside some box; identify opposite faces to have M ⊂ Tk. Then
smoothly extend the Riemannian metric on M to one on Tk.
If R denotes the set of smooth Riemannian metrics on Tk and E is the set

of such metrics arising from smooth imbeddings of Tk into some Euclidean
space, our goal is to prove

(5.2) E = R.

Now R is clearly an open convex cone in the Fréchet space

V = C∞(Tk, S2T ∗)

of smooth, second-order, symmetric, covariant tensor fields. As a prelim-
inary to demonstrating (5.2), we show that the subset E shares some of
these properties.

Lemma 5.2. E is a convex cone in V .

Proof. If g0 ∈ E , it is obvious from scaling the imbedding producing g0
that αg0 ∈ E , for any α ∈ (0,∞). Suppose also that g1 ∈ E . If these
metrics gj arise from imbeddings φj : Tk → Rνj , then g0 + g1 is a metric
arising from the imbedding φ0⊕φ1 : Tk → Rν0+ν1 . This proves the lemma.

Using Lemma 5.2 plus some functional analysis, we will proceed to es-
tablish that any Riemannian metric on Tk can be approximated by one in
E . First, we define some more useful objects. If u : Tk → Rm is any smooth
map, let γu denote the symmetric tensor field on Tk obtained by pulling
back the Euclidean metric on Rm. In a natural local coordinate system on
Tk = Rk/Zk, arising from standard coordinates (x1, . . . , xk) on Rk,

(5.3) γu =
∑
i,j,ℓ

∂uℓ
∂xi

∂uℓ
∂xj

dxi ⊗ dxj .

Whenever u is an immersion, γu is a Riemannian metric; and if u is an
imbedding, then γu is of course an element of E . Denote by C the set of
tensor fields on Tk of the form γu. By the same reasoning as in Lemma
5.2, C is a convex cone in V .

Lemma 5.3. E is a dense subset of R.

Proof. If not, take g ∈ R such that g /∈ E , the closure of E in V . Now E
is a closed, convex subset of V , so the Hahn-Banach theorem implies that
there is a continuous linear functional ℓ : V → R such that ℓ(E) ≤ 0 while
ℓ(g) = a > 0.
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Let us note that C ⊂ E (and hence C = E). In fact, if u : Tk → Rm

is any smooth map and φ : Tk → Rn is an imbedding, then, for any
ε > 0, εφ⊕ u : Tk → Rn+m is an imbedding, and γεφ⊕u = ε2γφ + γu ∈ E .
Taking ε↘ 0, we have γu ∈ E .

Consequently, the linear functional ℓ produced above has the property
ℓ(C) ≤ 0. Now we can represent ℓ as a k× k symmetric matrix of distribu-
tions ℓij on Tk, and we deduce that

(5.4)
∑
i,j

⟨
∂if ∂jf, ℓij

⟩
≤ 0, ∀f ∈ C∞(Tk).

If we apply a Friedrichs mollifier Jε, in the form of a convolution operator
on Tk, it follows easily that (5.4) holds with ℓij ∈ D′(Tk) replaced by
λij = Jεℓij ∈ C∞(Tk). Now it is an exercise to show that if λij ∈ C∞(Tk)
satisfies both λij = λji and the analogue of (5.4), then Λ = (λij) is a
negative-semidefinite, matrix-valued function on Tk, and hence, for any
positive-definite G = (gij) ∈ C∞(Tk, S2T ∗),

(5.5)
∑
i,j

⟨
gij , λij

⟩
≤ 0.

Taking λij = Jεℓij and passing to the limit ε→ 0, we have

(5.6)
∑
i,j

⟨
gij , ℓij

⟩
≤ 0,

for any Riemannian metric tensor (gij) on Tk. This contradicts the hy-
pothesis that we can take g /∈ E , so Lemma 5.3 is proved.

The following result, to the effect that E has nonempty interior, is the
analytical heart of the proof of Theorem 5.1.

Lemma 5.4. There exist a Riemannian metric g0 ∈ E and a neighborhood
U of 0 in V such that g0 + h ∈ E whenever h ∈ U .

We now prove (5.2), hence Theorem 5.1, granted this result. Let g ∈ R,
and take g0 ∈ E , given by Lemma 5.4. Then set g1 = g + α(g − g0),
where α > 0 is picked sufficiently small that g1 ∈ R. It follows that g
is a convex combination of g0 and g1; that is, g = ag0 + (1 − a)g1 for
some a ∈ (0, 1). By Lemma 5.4, we have an open set U ⊂ V such that
g0 + h ∈ E whenever h ∈ U . But by Lemma 5.3, there exists h ∈ U such
that g1 − bh ∈ E , b = a/(1− a). Thus g = a(g0 + h) + (1− a)(g1 − bh) is a
convex combination of elements of E , so by Lemma 5.1, g ∈ E , as desired.
We turn now to a proof of Lemma 5.4. The metric g0 will be one arising

from a free imbedding

(5.7) u : Tk −→ Rµ,

defined as follows.
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Definition. An imbedding as in (5.7) is free provided that the k + k(k +
1)/2 vectors

(5.8) ∂ju(x), ∂j∂ku(x)

are linearly independent in Rµ, for each x ∈ Tk.

Here, we regard Tk = Rk/Zk, so u : Rk → Rµ, invariant under the
translation action of Zk on Rk, and (x1, . . . xk) are the standard coordinates
on Rk. It is not hard to establish the existence of free imbeddings; see the
exercises.

Now, given that u is a free imbedding and that (hij) is a smooth, sym-
metric tensor field that is small in some norm (stronger than the C2-norm),
we want to find v ∈ C∞(Tk,Rµ), small in a norm at least as strong as the
C1-norm, such that, with g0 = γu,

(5.9)
∑
ℓ

∂i(uℓ + vℓ)∂j(uℓ + vℓ) = g0ij + hij ,

or equivalently, using the dot product on Rµ,

(5.10) ∂iu · ∂jv + ∂ju · ∂iv + ∂iv · ∂jv = hij .

We want to solve for v. Now, such a system turns out to be highly under-
determined, and the key to success is to append convenient side conditions.
Following [Gu3], we apply ∆− 1 to (5.10), where ∆ =

∑
∂2j , obtaining

∂i

{
(∆− 1)(∂ju · v) + ∆v · ∂jv

}
+ ∂j

{
(∆− 1)(∂iu · v) + ∆v · ∂iv

}
−2
{
(∆− 1)(∂i∂ju · v) + 1

2
∂iv · ∂jv − ∂i∂ℓv · ∂j∂ℓv(5.11)

+∆v · ∂i∂jv +
1

2
(∆− 1)hij

}
= 0,

where we sum over ℓ. Thus (5.10) will hold whenever v satisfies the new
system

(5.12)

(∆− 1)
(
ζi(x) · v

)
= −∆v · ∂iv,

(∆− 1)
(
ζij(x) · v

)
= − 1

2
(∆− 1)hij

+
(
∂i∂ℓv · ∂j∂ℓv −∆v · ∂i∂jv −

1

2
∂iv · ∂jv

)
.

Here we have set ζi(x) = ∂iu(x), ζij(x) = ∂i∂ju(x), smooth Rµ-valued
functions on Tk.

Now (5.12) is a system of k(k + 3)/2 = κ equations in µ unknowns, and
it has the form

(5.13) (∆− 1)
(
ξ(x)v

)
+Q(D2v,D2v) = H =

(
0,−1

2
(∆− 1)hij

)
,
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where ξ(x) : Rµ → Rκ is surjective for each x, by the linear independence
hypothesis on (5.8), and Q is a bilinear function of its arguments D2v =
{Dαv : |α| ≤ 2}. This is hence an underdetermined system for v. We can
obtain a determined system for a function w on Tk with values in Rκ, by
setting

(5.14) v = ξ(x)tw,

namely

(5.15) (∆− 1)
(
A(x)w

)
+ Q̃(D2w,D2w) = H,

where, for each x ∈ Tk,

(5.16) A(x) = ξ(x)ξ(x)t ∈ End(Rκ) is invertible.

If we denote the left side of (5.15) by F (w), the operator F is a nonlinear
differential operator of order 2, and we have

(5.17) DF (w)f = (∆− 1)
(
A(x)f

)
+B(D2w,D2f),

where B is a bilinear function of its arguments. In particular,

(5.18) DF (0)f = (∆− 1)
(
A(x)f

)
.

We thus see that, for any r ∈ R+ \ Z+,

(5.19) DF (0) : Cr+2(Tk,Rκ) −→ Cr(Tk,Rκ) is invertible.

Consequently, if we fix r ∈ R+ \Z+, and if H ∈ Cr(Tk,Rκ) has sufficiently
small norm (i.e., if (hij) ∈ Cr+2(Tk, S2T ∗) has sufficiently small norm),
then (5.15) has a unique solution w ∈ Cr+2(Tk,Rκ) with small norm, and
via (5.14) we get a solution v ∈ Cr+2(Tk,Rµ), with small norm, to (5.13).
If the norm of v is small enough, then of course u+ v is also an imbedding.
Furthermore, if the Cr+2-norm of w is small enough, then (5.15) is an

elliptic system for w. By the regularity result of Theorem 4.6, we can
deduce that w is C∞ (hence v is C∞) if h is C∞. This concludes the proof
of Lemma 5.4, hence of Nash’s imbedding theorem.

Exercises

In Exercises 1–3, let B be the unit ball in Rk, centered at 0. Let (λij) be a
smooth, symmetric, matrix-valued function on B such that

(5.20)
∑
i,j

∫
(∂if)(x) (∂jf)(x) λij(x) dx ≤ 0, ∀f ∈ C∞

0 (B).

1. Taking fε ∈ C∞
0 (B) of the form

fε(x) = f(ε−2x1, ε
−1x′), 0 < ε < 1,

examine the behavior as ε ↘ 0 of (5.20), with f replaced by fε. Establish
that λ11(0) ≤ 0.
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2. Show that the condition (5.20) is invariant under rotations of Rk, and deduce

that
(
λij(0)

)
is a negative-semidefinite matrix.

3. Deduce that
(
λij(x)

)
is negative-semidefinite for all x ∈ B.

4. Using the results above, demonstrate the implication (5.4) ⇒ (5.5), used in
the proof of Lemma 5.3.

5. Suppose we have a C∞-imbedding φ : Tk → Rn. Define a map

ψ : Tk −→ Rn ⊕ S2Rn ≈ Rµ, µ = n+
1

2
n(n+ 1),

to have components

φj(x), 1 ≤ j ≤ n, φi(x)φj(x), 1 ≤ i ≤ j ≤ n.

Show that ψ is a free imbedding.
6. Using Leibniz’ rule to expand derivatives of products, verify that (5.10) and

(5.11) are equivalent, for v ∈ C∞(Tk,Rµ).
7. In [Na1] the system (5.10) was augmented with ∂iu · v = 0, yielding, instead

of (5.12), the system

(5.21)
ζi(x) · v = 0,

ζij(x) · v =
1

2

(
∂iv · ∂jv − hij

)
.

What makes this system more difficult to solve than (5.12)?

6. Minimal surfaces

A minimal surface is one that is critical for the area functional. To begin,
we consider a k-dimensional manifold M (generally with boundary) in Rn.
Let ξ be a compactly supported normal field to M , and consider the one-
parameter family of manifolds Ms ⊂ Rn, images of M under the maps

(6.1) φs(x) = x+ sξ(x), x ∈M.

We want a formula for the derivative of the k-dimensional area of Ms, at
s = 0. Let us suppose ξ is supported on a single coordinate chart, and
write

(6.2) A(s) =

∫
Ω

∥∥∂1X ∧ · · · ∧ ∂kX
∥∥ du1 · · · duk,

where Ω ⊂ Rk parameterizes Ms by X(s, u) = X0(u) + sξ(u). We can also
suppose this chart is chosen so that ∥∂1X0 ∧ · · · ∧ ∂kX0∥ = 1. Then we
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have

A′(0) =(6.3)

k∑
j=1

∫ ⟨
∂1X0 ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

⟩
du1 · · · duk.

By the Weingarten formula (see (4.9) of Appendix C), we can replace ∂jξ
by −AξEj , where Ej = ∂jX0. Without loss of generality, for any fixed
x ∈ M , we can assume that E1, . . . , Ek is an orthonormal basis of TxM .
Then

(6.4)
⟨
E1 ∧ · · · ∧AξEj ∧ · · · ∧ Ek, E1 ∧ · · · ∧ Ek

⟩
=
⟨
AξEj , Ej

⟩
,

at x. Summing over j yields Tr Aξ(x), which is invariantly defined, so we
have

(6.5) A′(0) = −
∫
M

Tr Aξ(x) dA(x),

where Aξ(x) ∈ End(TxM) is the Weingarten map of M and dA(x) the
Riemannian k-dimensional area element. We say M is a minimal submani-
fold of Rn provided A′(0) = 0 for all variations of the form (6.1), for which
the normal field ξ vanishes on ∂M .
If we specialize to the case where k = n − 1 and M is an oriented

hypersurface of Rn, letting N be the “outward” unit normal to M , for a
variation Ms of M given by

(6.6) φs(x) = x+ sf(x)N(x), x ∈M,

we hence have

(6.7) A′(0) = −
∫
M

Tr AN (x) f(x) dA(x).

The criterion for a hypersurface M of Rn to be minimal is hence that
Tr AN = 0 on M .
Recall from §4 of Appendix C that AN (x) is a symmetric operator on

TxM . Its eigenvalues, which are all real, are called the principal curvatures
of M at x. Various symmetric polynomials in these principal curvatures
furnish quantities of interest. The mean curvature H(x) of M at x is
defined to be the mean value of these principal curvatures, that is,

(6.8) H(x) =
1

k
Tr AN (x).

Thus a hypersurface M ⊂ Rn is a minimal submanifold of Rn precisely
when H = 0 on M .
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Note that changing the sign of N changes the sign of AN , hence of H.
Under such a sign change, the mean curvature vector

(6.9) H(x) = H(x)N(x)

is invariant. In particular, this is well defined whether or not M is ori-
entable, and its vanishing is the condition for M to be a minimal subman-
ifold. There is the following useful formula for the mean curvature of a
hypersurface M ⊂ Rn. Let X : M ↪→ Rn be the isometric imbedding. We
claim that

(6.10) H(x) =
1

k
∆X,

with k = n − 1, where ∆ is the Laplace operator on the Riemannian
manifold M , acting componentwise on X. This is easy to see at a point
p ∈ M if we translate and rotate Rn to make p = 0 and represent M as
the image of Rk = Rn−1 under

(6.11) Y (x′) =
(
x′, f(x′)

)
, x′ = (x1, . . . , xk), ∇f(0) = 0.

Then one verifies that

∆X(p) = ∂21Y (0) + · · ·+ ∂2kY (0) =
(
0, . . . , 0, ∂21f(0) + · · ·+ ∂2kf(0)

)
,

and (6.10) follows from the formula

(6.12) ⟨AN (0)X,Y ⟩ =
k∑

i,j=1

∂i∂jf(0) XiYj

for the second fundamental form of M at p, derived in (4.19) of Appendix
C.

More generally, if M ⊂ Rn has dimension k ≤ n − 1, we can define the
mean curvature vector H(x) by

(6.13) ⟨H(x), ξ⟩ = 1

k
Tr Aξ(x), H(x) ⊥ TxM,

so the criterion for M to be a minimal submanifold is that H = 0. Fur-
thermore, (6.10) continues to hold. This can be seen by the same type of
argument used above; represent M as the image of Rk under (6.11), where
now f(x′) = (xk+1, . . . , xn). Then (6.12) generalizes to

(6.14) ⟨Aξ(0)X,Y ⟩ =
k∑

i,j=1

⟨ξ, ∂i∂jf(0)⟩ XiYj ,

which yields (6.10). We record this observation.

Proposition 6.1. Let X : M → Rn be an isometric immersion of a Rie-
mannian manifold into Rn. Then M is a minimal submanifold of Rn if and
only if the coordinate functions x1, . . . , xn are harmonic functions on M .
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A two-dimensional minimal submanifold of Rn is called a minimal sur-
face. The theory is most developed in this case, and we will concentrate
on the two-dimensional case in the material below.
When dim M = 2, we can extend Proposition 6.1 to cases where X :

M → Rn is not an isometric map. This occurs because, in such a case, the
class of harmonic functions on M is invariant under conformal changes of
metric. In fact, if ∆ is the Laplace operator for a Riemannian metric gij
onM and ∆1 that for g1ij = e2ugij , then, since ∆f = g−1/2 ∂i(g

ijg1/2 ∂jf)

and gij1 = e−2ugij , while g
1/2
1 = ekug1/2 (if dim M = k), we have

(6.15) ∆1f = e−2u ∆f + e−ku⟨df, de(k−2)u⟩ = e−2u∆f if k = 2.

Hence ker ∆ = ker ∆1 if k = 2. We hence have the following:

Proposition 6.2. If Ω is a Riemannian manifold of dimension 2 and X :
Ω → Rn a smooth immersion, with image M , then M is a minimal surface
provided X is harmonic and X : Ω →M is conformal.

In fact, granted that X : Ω →M is conformal, M is minimal if and only
if X is harmonic on Ω.
We can use this result to produce lots of examples of minimal surfaces,

by the following classical device. Take Ω to be an open set in R2 = C,
with coordinates (u1, u2). Given a map X : Ω → Rn, with components
xj : Ω → R, form the complex-valued functions

(6.16) ψj(ζ) =
∂xj
∂u1

− i
∂xj
∂u2

= 2
∂

∂ζ
xj , ζ = u1 + iu2.

Clearly, ψj is holomorphic if and only if xj is harmonic (for the standard flat
metric on Ω), since ∆ = 4(∂/∂ζ)(∂/∂ζ). Furthermore, a short calculation
gives

(6.17)

n∑
j=1

ψj(ζ)
2 =

∣∣∂1X∣∣2 − ∣∣∂2X∣∣2 − 2i ∂1X · ∂2X.

Granted that X : Ω → Rn is an immersion, the criterion that it be confor-
mal is precisely that this quantity vanish. We have the following result.

Proposition 6.3. If ψ1, . . . , ψn are holomorphic functions on Ω ⊂ C such
that

(6.18)

n∑
j=1

ψj(ζ)
2 = 0 on Ω,

while
∑

|ψj(ζ)|2 ̸= 0 on Ω, then setting

(6.19) xj(u) = Re

∫
ψj(ζ) dζ
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defines an immersion X : Ω → Rn whose image is a minimal surface.

If Ω is not simply connected, the domain of X is actually the universal
covering surface of Ω.
We mention some particularly famous minimal surfaces in R3 that arise

in such a fashion. Surely the premier candidate for (6.18) is

(6.20) sin2 ζ + cos2 ζ − 1 = 0.

Here, take ψ1(ζ) = sin ζ, ψ2(ζ) = − cos ζ, and ψ3(ζ) = −i. Then (6.19)
yields

(6.21) x1 = (cosu1)(coshu2), x2 = (sinu1)(coshu2), x3 = u2.

The surface obtained in R3 is called the catenoid. It is the surface of
revolution about the x3-axis of the curve x1 = coshx3 in the (x1 − x3)-
plane. Whenever ψj(ζ) are holomorphic functions satisfying (6.18), so are
eiθψj(ζ), for any θ ∈ R. The resulting immersions Xθ : Ω → Rn give rise
to a family of minimal surfaces Mθ ⊂ Rn, which are said to be associated.
In particular, Mπ/2 is said to be conjugate to M = M0. When M0 is
the catenoid, defined by (6.21), the conjugate minimal surface arises from
ψ1(ζ) = i sin ζ, ψ2(ζ) = −i cos ζ, and ψ3(ζ) = 1 and is given by

(6.22) x1 = (sinu1)(sinhu2), x2 = (cosu1)(sinhu2), x3 = u1.

This surface is called the helicoid. We mention that associated minimal
surfaces are locally isometric but generally not congruent; that is, the isom-
etry between the surfaces does not extend to a rigid motion of the ambient
Euclidean space.
The catenoid and helicoid were given as examples of minimal surfaces by

Meusnier, in 1776.
One systematic way to produce triples of holomorphic functions ψj(ζ)

satisfying (6.18) is to take

(6.23) ψ1 =
1

2
f(1− g2), ψ2 =

i

2
f(1 + g2), ψ3 = fg,

for arbitrary holomorphic functions f and g on Ω. More generally, g can
be meromorphic on Ω as long as f has a zero of order 2m at each point
where g has a pole of order m. The resulting map X : Ω → M ⊂ R3 is
called the Weierstrass-Enneper representation of the minimal surface M .
It has an interesting connection with the Gauss map of M , which will be
sketched in the exercises. The example arising from f = 1, g = ζ produces
“Enneper’s surface.” This surface is immersed in R3 but not imbedded.

For a long time the only known examples of complete imbedded minimal
surfaces in R3 of finite topological type were the plane, the catenoid, and
the helicoid, but in the 1980s it was proved by [HM1] that the surface
obtained by taking g = ζ and f(ζ) = ℘(ζ) (the Weierstrass ℘-function) is
another example. Further examples have been found; computer graphics
have been a valuable aid in this search; see [HM2].
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A natural question is how general is the class of minimal surfaces arising
from the construction in Proposition 6.3. In fact, it is easy to see that every
minimal M ⊂ Rn is at least locally representable in such a fashion, using
the existence of local isothermal coordinates, established in §10 of Chapter
5. Thus any p ∈ M has a neighborhood O such that there is a conformal
diffeomorphism X : Ω → O, for some open set Ω ⊂ R2. By Proposition 6.2
and the remark following it, if M is minimal, then X must be harmonic, so
(6.16) furnishes the functions ψj(ζ) used in Proposition 6.3. Incidentally,
this shows that any minimal surface in Rn is real analytic.
As for the question of whether the construction of Proposition 6.3 glob-

ally represents every minimal surface, the answer here is also “yes.” A proof
uses the fact that every noncompact Riemann surface (without boundary)
is covered by either C or the unit disk in C. This is a more complete ver-
sion of the uniformization theorem than the one we established in §2 of
this chapter. A positive answer, for simply connected, compact minimal
surfaces, with smooth boundary, is implied by the following result, which
will also be useful for an attack on the Plateau problem.

Proposition 6.4. If M is a compact, connected, simply connected Rie-
mannian manifold of dimension 2, with nonempty, smooth boundary, then
there exists a conformal diffeomorphism

(6.24) Φ :M −→ D,

where D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

This is a slight generalization of the Riemann mapping theorem, estab-
lished in §4 of Chapter 5, and it has a proof along the lines of the argument
given there. Thus, fix p ∈ M , and let G ∈ D′(M) ∩ C∞(M \ p) be the
unique solution to

(6.25) ∆G = 2πδ, G = 0 on ∂M.

Since M is simply connected, it is orientable, so we can pick a Hodge star
operator, and ∗dG = β is a smooth closed 1-form on M \ p. If γ is a curve
in M of degree 1 about p, then

∫
γ
β can be calculated by deforming γ to

be a small curve about p. The parametrix construction for the solution
to (6.25), in normal coordinates centered at p, gives G(x) ∼ log dist(x, p),
and one establishes that

∫
γ
β = 2π. Thus we can write β = dH, where H

is a smooth function onM \p, well defined mod 2πZ. Hence Φ(x) = eG+iH

is a single-valued function, tending to 0 as x → p, which one verifies to
be the desired conformal diffeomorphism (6.24), by the same reasoning as
used to complete the proof of Theorem 4.1 in Chapter 5.

An immediate corollary is that the argument given above for the lo-
cal representation of a minimal surface in the form (6.19) extends to a
global representation of a compact, simply connected minimal surface, with
smooth boundary
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So far we have dealt with smooth surfaces, at least immersed in Rn.
The theorem of J. Douglas and T. Rado that we now tackle deals with
“generalized” surfaces, which we will simply define to be the images of
two-dimensional manifolds under smooth maps into Rn (or some other
manifold). The theorem, a partial answer to the “Plateau problem,” asserts
the existence of an area-minimizing generalized surface whose boundary is
a given simple, closed curve in Rn.
To be precise, let γ be a smooth, simple, closed curve in Rn, that is, a

diffeomorphic image of S1. Let

(6.26)
Xγ = {φ ∈ C(D,Rn) ∩ C∞(D,Rn) :

φ : S1 → γ monotone, and α(φ) <∞},
where α is the area functional:

(6.27) α(φ) =

∫
D

|∂1φ ∧ ∂2φ| dx1dx2.

Then let

(6.28) Aγ = inf{α(φ) : φ ∈ Xγ}.

The existence theorem of Douglas and Rado is the following:

Theorem 6.5. There is a map φ ∈ Xγ such that α(φ) = Aγ .

We can choose φν ∈ Xγ such that α(φν) ↘ Aγ , but {φν} could hardly
be expected to have a convergent subsequence unless some structure is
imposed on the maps φν . The reason is that α(φ) = α(φ ◦ ψ) for any
C∞-diffeomorphism ψ : D → D. We say φ◦ψ is a reparameterization of φ.
The key to success is to take φν , which approximately minimize not only
the area functional α(φ) but also the energy functional

(6.29) ϑ(φ) =

∫
D

|∇φ(x)|2 dx1dx2,

so that we will also have ϑ(φν) ↘ dγ , where

(6.30) dγ = inf{ϑ(φ) : φ ∈ Xγ}.

To relate these, we compare (6.29) and the area functional (6.27).
To compare integrands, we have

(6.31) |∇φ|2 = |∂1φ|2 + |∂2φ|2,

while the square of the integrand in (6.27) is equal to

(6.32)

|∂1φ ∧ ∂2φ|2 = |∂1φ|2|∂2φ|2 − ⟨∂1φ, ∂2φ⟩
≤ |∂1φ|2|∂2φ|2

≤ 1

4

(
|∂1φ|2 + |∂2φ|2

)2
,
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where equality holds if and only if

(6.33) |∂1φ| = |∂2φ| and ⟨∂1φ, ∂2φ⟩ = 0.

Whenever ∇φ ̸= 0, this is the condition that φ be conformal. More gener-
ally, if (6.33) holds, but we allow ∇φ(x) = 0, we say that φ is essentially
conformal. Thus, we have seen that, for each φ ∈ Xγ ,

(6.34) α(φ) ≤ 1

2
ϑ(φ),

with equality if and only if φ is essentially conformal. The following result
allows us to transform the problem of minimizing α(φ) over Xγ into that
of minimizing ϑ(φ) over Xγ , which will be an important tool in the proof
of Theorem 6.5. Set

(6.35) X∞
γ = {φ ∈ C∞(D,Rn) : φ : S1 → γ diffeo.}.

Proposition 6.6. Given ε > 0, any φ ∈ X∞
γ has a reparameterization

φ ◦ ψ such that

(6.36)
1

2
ϑ(φ ◦ ψ) ≤ α(φ) + ε.

Proof. We will obtain this from Proposition 6.4, but that result may not
apply to φ(D), so we do the following. Take δ > 0 and define Φδ : D →
Rn+2 by Φδ(x) =

(
φ(x), δx

)
. For any δ > 0, Φδ is a diffeomorphism of D

onto its image, and if δ is very small, area Φδ(D) is only a little larger than
area φ(D). Now, by Proposition 6.4, there is a conformal diffeomorphism

Ψ : Φδ(D) → D. Set ψ = ψδ =
(
Ψ ◦ Φδ

)−1
: D → D. Then Φδ ◦ ψ = Ψ−1

and, as established above, (1/2)ϑ(Ψ−1) = Area(Ψ−1(D)), i.e.,

(6.37) 1
2ϑ(Φδ ◦ ψ) = Area

(
Φδ(D)

)
.

Since ϑ(φ ◦ ψ) ≤ ϑ(Φδ ◦ ψ), the result (6.34) follows if δ is taken small
enough.

One can show that

(6.38) Aγ = inf{α(φ) : φ ∈ X∞
γ }, dγ = inf{ϑ(φ) : φ ∈ X∞

γ }.

It then follows from Proposition 6.6 that Aγ = (1/2)dγ , and if φν ∈ X∞
γ is

chosen so that ϑ(φν) → dγ , then a fortiori α(φν) → Aγ .
There is still an obstacle to obtaining a convergent subsequence of such

{φν}. Namely, the energy integral (6.29) is invariant under reparameteri-
zations φ 7→ φ◦ψ for which ψ : D → D is a conformal diffeomorphism. We
can put a clamp on this by noting that, given any two triples of (distinct)
points {p1, p2, p2} and {q1, q2, q3} in S1 = ∂D, there is a unique conformal
diffeomorphism ψ : D → D such that ψ(pj) = qj , 1 ≤ j ≤ 3. Let us now
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make one choice of {pj} on S1—for example, the three cube roots of 1—
and make one choice of a triple {qj} of distinct points in γ. The following
key compactness result will enable us to prove Theorem 6.5.

Proposition 6.7. For any d ∈ (dγ ,∞), the set

(6.39) Σd =
{
φ ∈ X∞

γ : φ harmonic, φ(pj) = qj , and ϑ(φ) ≤ d
}

is relatively compact in C(D,Rn).

In view of the mapping properties of the Poisson integral, this result is
equivalent to the relative compactness in C(∂D, γ) of

(6.40) SK = {u ∈ C∞(S1, γ) diffeo. : u(pj) = qj , and ∥u∥H1/2(S1) ≤ K},

for any given K < ∞. For u ∈ SK , we have ∥u∥H1/2(S1) ≈ ∥PIu∥H1(D).
To demonstrate this compactness, there is no loss of generality in taking
γ = S1 ⊂ R2 and pj = qj .
We will show that the oscillation of u over any arc I ⊂ S1 of length 2δ is

≤ CK
/√

log(1/δ). This modulus of continuity will imply the compactness,
by Ascoli’s theorem.
Pick a point z ∈ S1. Let Cr denote the portion of the circle of radius

r and center z which lies in D. Thus Cr is an arc, of length ≤ πr. Let
δ ∈ (0, 1). As r varies from δ to

√
δ, Cr sweeps out part of an annulus, as

illustrated in Fig. 6.1.

Figure 6.1

We claim there exists ρ ∈ [δ,
√
δ] such that

(6.41)

∫
Cρ

|∇φ| ds ≤ K

√
2π

log 1
δ

if K = ∥∇φ∥L2(D), φ = PIu. To establish this, let

ω(r) = r

∫
Cr

|∇φ|2 ds.
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Then ∫ √
δ

δ

ω(r)
dr

r
=

∫ √
δ

δ

∫
Cr

|∇φ|2 ds dr = I ≤ K2.

By the mean-value theorem, there exists ρ ∈ [δ,
√
δ] such that

I = ω(ρ)

∫ √
δ

δ

dr

r
=
ω(ρ)

2
log

1

δ
.

For this value of ρ, we have

(6.42) ρ

∫
Cρ

|∇φ|2 ds = 2I

log 1
δ

≤ 2K2

log 1
δ

.

Then Cauchy’s inequality yields (6.41), since length(Cρ) ≤ πρ.

Figure 6.2

This almost gives the desired modulus of continuity. The arc Cρ is
mapped by φ into a curve of length ≤ K

√
2π/log(1/δ), whose endpoints

divide γ into two segments, one rather short (if δ is small) and one not
so short. There are two possibilities: φ(z) is contained in either the short
segment (as in Fig. 6.2) or the long segment (as in Fig. 6.3). However, as
long as φ(pj) = pj for three points pj , this latter possibility cannot occur.
We see that

|u(a)− u(b)| ≤ K

√
2π

log 1
δ

,

if a and b are the points where Cρ intersects S1. Now the monotonicity
of u along S1 guarantees that the total variation of u on the (small) arc

from a to b in S1 is ≤ K
√
2π
/
log(1/δ). This establishes the modulus of

continuity and concludes the proof.
Now that we have Proposition 6.7, we proceed as follows. Pick a se-

quence φν in X∞
γ such that ϑ(φν) → dγ , so also α(φν) → Aγ . Now we do
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Figure 6.3

not increase ϑ(φν) if we replace φν by the Poisson integral of φν

∣∣
∂D

, and
we do not alter this energy integral if we reparameterize via a conformal
diffeomorphism to take {pj} to {qj}. Thus we may as well suppose that
φν ∈ Σd. Using Proposition 6.7 and passing to a subsequence, we can
assume

(6.43) φν −→ φ in C(D,Rn),

and we can furthermore arrange

(6.44) φν −→ φ weakly in H1(D,Rn).

Of course, by interior estimates for harmonic functions, we have

(6.45) φν −→ φ in C∞(D,Rn).

The limit function φ is certainly harmonic on D. By (6.44), we of course
have

(6.46) ϑ(φ) ≤ lim
ν→∞

ϑ(φν) = dγ .

Now (6.34) applies to φ, so we have

(6.47) α(φ) ≤ 1

2
ϑ(φ) ≤ 1

2
dγ = Aγ .

On the other hand, (6.43) implies that φ : ∂D → γ is monotone. Thus φ
belongs to Xγ . Hence we have

(6.48) α(φ) = Aγ .

This proves Theorem 6.5 and most of the following more precise result.

Theorem 6.8. If γ is a smooth, simple, closed curve in Rn, there exists a
continuous map φ : D → Rn such that

(6.49) ϑ(φ) = dγ and α(φ) = Aγ ,

(6.50) φ : D −→ Rn is harmonic and essentially conformal,
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(6.51) φ : S1 −→ γ, homeomorphically.

Proof. We have (6.49) from (6.46)–(6.48). By the argument involving
(6.31) and (6.32), this forces φ to be essentially conformal. It remains to
demonstrate (6.51).
We know that φ : S1 → γ, monotonically. If it fails to be a homeomor-

phism, there must be an interval I ⊂ S1 on which φ is constant. Using a
linear fractional transformation to map D conformally onto the upper half-
plane Ω+ ⊂ C, we can regard φ as a harmonic and essentially conformal
map of Ω+ → Rn, constant on an interval I on the real axis R. Via the
Schwartz reflection principle, we can extend φ to a harmonic function

φ : C \ (R \ I) −→ Rn.

Now consider the holomorphic function ψ : C \ (R \ I) → Cn, given by
ψ(ζ) = ∂φ/∂ζ. As in the calculations leading to Proposition 6.3, the
identities

(6.52) |∂1φ|2 − |∂2φ|2 = 0, ∂1φ · ∂2φ = 0,

which hold on Ω+, imply
∑n

j=1 ψj(ζ)
2 = 0 on Ω+; hence this holds on

C \ (R \ I), and so does (6.52). But since ∂1φ = 0 on I, we deduce that
∂2φ = 0 on I, hence ψ = 0 on I, hence ψ ≡ 0. This implies that φ,
being both Rn-valued and antiholomorphic, must be constant, which is
impossible. This contradiction establishes (6.51).

Theorem 6.8 furnishes a generalized minimal surface whose boundary is
a given smooth, closed curve in Rn. We know that φ is smooth on D. It
has been shown by [Hild] that φ is C∞ on D when the curve γ is C∞, as we
have assumed here. It should be mentioned that Douglas and others treated
the Plateau problem for simple, closed curves γ that were not smooth. We
have restricted attention to smooth γ for simplicity. A treatment of the
general case can be found in [Nit1]; see also [Nit2].
There remains the question of the smoothness of the image surface M =

φ(D). The map φ : D → Rn would fail to be an immersion at a point
z ∈ D where ∇φ(z) = 0. At such a point, the Cn-valued holomorphic
function ψ = ∂φ/∂ζ must vanish; that is, each of its components must
vanish. Since a holomorphic function on D ⊂ C that is not identically zero
can vanish only on a discrete set, we have the following:

Proposition 6.9. The map φ : D → Rn parameterizing the generalized
minimal surface in Theorem 6.8 has injective derivative except at a discrete
set of points in D.

If ∇φ(z) = 0, then φ(z) ∈ M = φ(D) is said to be a branch point of
the generalized minimal surface M ; we say M is a branched surface. If
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n ≥ 4, there are indeed generalized minimal surfaces with branch points
that arise via Theorem 6.8. Results of Osserman [Oss2], complemented by
[Gul], show that if n = 3, the construction of Theorem 6.8 yields a smooth
minimal surface, immersed in R3. Such a minimal surface need not be
imbedded; for example, if γ is a knot in R3, such a surface with boundary
equal to γ is certainly not imbedded. If γ is analytic, it is known that there
cannot be branch points on the boundary, though this is open for merely
smooth γ. An extensive discussion of boundary regularity is given in Vol. 2
of [DHKW].

The following result of Rado yields one simple criterion for a generalized
minimal surface to have no branch points.

Proposition 6.10. Let γ be a smooth, closed curve in Rn. If a minimal
surface with boundary γ produced by Theorem 6.8 has any branch points,
then γ has the property that

(6.53)
for some p ∈ Rn, every hyperplane through p

intersects γ in at least four points.

Proof. Suppose z0 ∈ D and ∇φ(z0) = 0, so ψ = ∂φ/∂ζ vanishes at z0.
Let L(x) = α ·x+c = 0 be the equation of an arbitrary hyperplane through
p = φ(z0). Then h(x) = L

(
φ(x)

)
is a (real-valued) harmonic function on

D, satisfying

(6.54) ∆h = 0 on D, ∇h(z0) = 0.

The proposition is then proved, by the following:

Lemma 6.11. Any real-valued h ∈ C∞(D) ∩ C(D) having the property
(6.54) must assume the value h(z0) on at least four points on ∂D.

We leave the proof as an exercise for the reader.
The following result gives a condition under which a minimal surface

constructed by Theorem 6.8 is the graph of a function.

Proposition 6.12. Let O be a bounded convex domain in R2 with smooth
boundary. Let g : ∂O → Rn−2 be smooth. Then there exists a function

(6.55) f ∈ C∞(O,Rn−2) ∩ C(O,Rn−2),

whose graph is a minimal surface, and whose boundary is the curve γ ⊂ Rn

that is the graph of g, so

(6.56) f = g on ∂O.

Proof. Let φ : D → Rn be the function constructed in Theorem 6.8. Set
F (x) =

(
φ1(x), φ2(x)

)
. Then F : D → R2 is harmonic on D and F maps
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S1 = ∂D homeomorphically onto ∂O. It follows from the convexity of O
and the maximum principle for harmonic functions that F : D → O.

We claim that DF (x) is invertible for each x ∈ D. Indeed, if x0 ∈ D and
DF (x0) is singular, we can choose nonzero α = (α1, α2) ∈ R2 such that, at
x = x0,

α1
∂φ1

∂xj
+ α2

∂φ2

∂xj
= 0, j = 1, 2.

Then the function h(x) = α1φ1(x) + α2φ2(x) has the property (6.54), so
h(x) must take the value h(x0) at four distinct points of ∂D. Since F :
∂D → ∂O is a homeomorphism, this forces the linear function α1x1+α2x2
to take the same value at four distinct points of ∂O, which contradicts the
convexity of O.

Thus F : D → O is a local diffeomorphism. Since F gives a homeo-
morphism of the boundaries of these regions, degree theory implies that
F is a diffeomorphism of D onto O and a homeomorphism of D onto
O. Consequently, the desired function in (6.55) is f = φ̃ ◦ F−1, where
φ̃(x) =

(
φ2(x), . . . , φn(x)

)
.

Functions whose graphs are minimal surfaces satisfy a certain nonlinear
PDE, called the minimal surface equation, which we will derive and study
in §7.
Let us mention that while one ingredient in the solution to the Plateau

problem presented above is a version of the Riemann mapping theorem,
Proposition 6.4, there are presentations for which the Riemann mapping
theorem is a consequence of the argument, rather than an ingredient (see,
e.g., [Nit2]).
It is also of interest to consider the analogue of the Plateau problem

when, instead of immersing the disk in Rn as a minimal surface with given
boundary, one takes a surface of higher genus, and perhaps several bound-
ary components. An extra complication is that Proposition 6.4 must be
replaced by something more elaborate, since two compact surfaces with
boundary which are diffeomorphic to each other but not to the disk may
not be conformally equivalent. One needs to consider spaces of “moduli”
of such surfaces; Theorem 4.2 of Chapter 5 deals with the easiest case after
the disk. This problem was tackled by Douglas [Dou2] and by Courant
[Cou2], but their work has been criticized by [ToT] and [Jos], who present
alternative solutions. The paper [Jos] also treats the Plateau problem for
surfaces in Riemannian manifolds, extending results of [Mor1].
There have been successful attacks on problems in the theory of min-

imal submanifolds, particularly in higher dimension, using very different
techniques, involving geometric measure theory, currents, and varifolds.
Material on these important developments can be found in [Alm], [Fed],
and [Morg].
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So far in this section, we have devoted all our attention to minimal sub-
manifolds of Euclidean space. It is also interesting to consider minimal
submanifolds of other Riemannian manifolds. We make a few brief com-
ments on this topic. A great deal more can be found in [Cher], [Law],
[Law2], [Mor1], and [Pi], and in survey articles in [Bom].
Let Y be a smooth, compact Riemannian manifold. Assume Y is iso-

metrically imbedded in Rn, which can always be arranged, by Nash’s the-
orem. Let M be a compact, k-dimensional submanifold of Y . We say
M is a minimal submanifold of Y if its k-dimensional volume is a critical
point with respect to small variations of M , within Y . The computations
in (6.1)–(6.13) extend to this case. We need to take X = X(s, u) with
∂sX(s, u) = ξ(s, u), tangent to Y , rather than X(s, u) = X0(u) + sξ(u).
Then these computations show that M is a minimal submanifold of Y if
and only if, for each x ∈M ,

(6.57) H(x) ⊥ TxY,

where H(x) is the mean curvature vector of M (as a submanifold of Rn),
defined by (6.13).

There is also a well-defined mean curvature vector HY (x) ∈ TxY , or-
thogonal to TxM , obtained from the second fundamental form of M as a
submanifold of Y . One sees that HY (x) is the orthogonal projection of
H(x) onto TxY , so the condition that M be a minimal submanifold of Y is
that HY = 0 on M .
The formula (6.10) continues to hold for the isometric imbedding X :

M → Rn. Thus M is a minimal submanifold of Y if and only if, for each
x ∈M ,

(6.58) ∆X(x) ⊥ TxY.

If dim M = 2, the formula (6.15) holds, so if M is given a new metric,
conformally scaled by a factor e2u, the new Laplace operator ∆1 has the
property that ∆1X = e−2u∆X, hence is parallel to ∆X. Thus the property
(6.58) is unaffected by such a conformal change of metric; we have the
following extension of Proposition 6.2:

Proposition 6.13. If M is a Riemannian manifold of dimension 2 and
X : M → Rn is a smooth imbedding, with image M1 ⊂ Y , then M1 is a
minimal submanifold of Y provided X : M → M1 is conformal and, for
each x ∈M ,

(6.59) ∆X(x) ⊥ TX(x)Y.

We note that (6.59) alone specifies that X is a harmonic map from M
into Y . Harmonic maps will be considered further in §§11 and 12B; they
will also be studied, via parabolic PDE, in Chapter 15, §2.
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Exercises

1. Consider the Gauss map N : M → S2, for a smooth, oriented surface M ⊂
R3. Show that N is antiholomorphic if and only if M is a minimal surface.
(Hint: If N(p) = q, DN(p) : TpM → TqS

2 ≈ TpM is identified with −AN .
Compare (4.67) in Appendix C. Check when ANJ = −JAN , where J is
counterclockwise rotation by 90◦, on TpM.) Thus, if we define the antipodal
Gauss map Ñ :M → S2 by Ñ(p) = −N(p), this map is holomorphic precisely
when M is a minimal surface.

2. If x ∈ S2 ⊂ R3, pick v ∈ TxS
2 ⊂ R3, set w = Jv ∈ TxS

2 ⊂ R3, and take
ξ = v + iw ∈ C3. Show that the one-dimensional, complex span of ξ is
independent of the choice of v, and that we hence have a holomorphic map

Ξ : S2 −→ CP3.

Show that the image Ξ(S2) ⊂ CP3 is contained in the image of {ζ ∈ C3 \ 0 :
ζ21 + ζ22 + ζ33 = 0} under the natural map C3 \ 0 → CP3.

3. Suppose that M ⊂ R3 is a minimal surface constructed by the method of
Proposition 6.3, via X : Ω → M ⊂ R3. Define Ψ : Ω → C3 \ 0 by Ψ =
(ψ1, ψ2, ψ3), and define X : Ω → CP3 by composing Ψ with the natural map
C3 \ 0 → CP3. Show that, for u ∈ Ω,

X(u) = Ξ ◦ Ñ
(
X(u)

)
.

For the relation between ψj and the Gauss map for minimal surfaces in
Rn, n > 3, see [Law].

4. Give a detailed demonstration of (6.38).
5. In analogy with Proposition 6.4, extend Theorem 4.3 of Chapter 5 to the

following result:

Proposition. IfM is a compact Riemannian manifold of dimension 2 which
is homeomorphic to an annulus, then there exists a conformal diffeomorphism

Ψ :M −→ Aρ,

for a unique ρ ∈ (0, 1), where Aρ = {z ∈ C : ρ ≤ |z| ≤ 1}.

6. If ĨI is the second fundamental form of a minimal hypersurface M ⊂ Rn,
show that ĨI has divergence zero. As in Chapter 2, §3, we define the di-
vergence of a second-order tensor field T by T jk

;k. (Hint: Use the Codazzi
equation (cf. Appendix C, §4, especially (4.18)) plus the zero trace condi-
tion.)

7. Similarly, if ĨI is the second fundamental form of a minimal submanifoldM of
codimension 1 in Sn (with its standard metric), show that ĨI has divergence
zero.
(Hint: The Codazzi equation, from (4.16) of Appendix C, is

(∇Y ĨI)(X,Z)− (∇Y ĨI)(Y,Z) = ⟨R(X,Y )Z,N⟩,

where ∇ is the Levi-Civita connection on M ; X,Y, Z are tangent to M ; Z
is normal to M (but tangent to Sn); and R is the curvature tensor of Sn. In
such a case, the right side vanishes. (See Exercise 6 in §4 of Appendix C.)
Thus the argument needed for Exercise 6 above extends.)
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8. Extend the result of Exercises 6–7 to the case where M is a codimension-1
minimal submanifold in any Riemannian manifold Ω with constant sectional
curvature.

9. Let M be a two-dimensional minimal submanifold of S3, with its standard
metric. Assume M is diffeomorphic to S2. Show that M must be a “great
sphere” in S3.
(Hint: By Exercise 7, ĨI is a symmetric trace free tensor of divergence zero;
that is, ĨI belongs to

V = {u ∈ C∞(M,S2
0T

∗) : div u = 0},

a space introduced in (10.47) of Chapter 10. As noted there, when M is a
Riemann surface, V ≈ O(κ⊗κ). By Corollary 9.4 of Chapter 10, O(κ⊗κ) = 0
when M has genus g = 0.)

10. Prove Lemma 6.11.

6B. Second variation of area

In this appendix to §6, we take up a computation of the second variation
of the area integral, and some implications, for a family of manifolds of
dimension k, immersed in a Riemannian manifold Y . First, we take Y = Rn

and suppose the family is given by X(s, u) = X0(u) + sξ(u), as in (6.1)–
(6.5).

Suppose, as in the computation (6.2)–(6.5), that ∥∂1X0∧· · ·∧∂kX0∥ = 1
on M , while Ej = ∂jX0 form an orthonormal basis of TxM , for a given
point x ∈M . Then, extending (6.3), we have

A′(s) =(6b.1)

k∑
j=1

∫ ⟨
∂1X ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX, ∂1X ∧ · · · ∧ ∂kX

⟩
∥∂1X ∧ · · · ∧ ∂kX∥

du1 · · · duk.

Consequently, A′′(0) will be the integral with respect to du1 · · · duk of a
sum of three terms:

−
∑
i,j

⟨
∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

⟩
×
⟨
∂1X0 ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

⟩
+ 2

∑
i<j

⟨
∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

⟩(6b.2)

+
∑
i,j

⟨
∂1X0 ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂kX0

⟩
.
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Let us write

(6b.3) AξEi =
∑
ℓ

aiℓξ Eℓ,

with Ej = ∂jX0 as before. Then, as in (6.4), the first sum in (6.b2) is equal
to

(6b.4) −
∑
i,j

aiiξ a
jj
ξ .

Let us move to the last sum in (6b.2). We use the Weingarten formula
∂jξ = ∇1

jξ −AξEj , to write this sum as

(6b.5)
∑
i,j

ajjξ a
ii
ξ +

∑
i,j

⟨
∇1

jξ,∇1
i ξ
⟩
,

at x. Note that the first sum in (6b.5) cancels (6b.4), while the last sum
in (6b.5) can be written as ∥∇1ξ∥2. Here, ∇1 is the connection induced on
the normal bundle of M .
Now we look at the middle term in (6b.2), namely,

(6b.6) 2
∑
i<j

∑
ℓ,m

aiℓξ a
jm
ξ

⟨
E1 ∧ · · · ∧Eℓ ∧ · · · ∧Em ∧ · · · ∧Ek, E1 ∧ · · · ∧Ek

⟩
,

at x, where Eℓ appears in the ith slot and Em appears in the jth slot in
the k-fold wedge product. This is equal to

(6b.7) 2
∑
i<j

(
aiiξ a

jj
ξ − aijξ a

ji
ξ

)
= 2 Tr Λ2Aξ,

at x. Thus we have

(6b.8) A′′(0) =

∫
M

[
∥∇1ξ∥2 + 2 Tr Λ2Aξ

]
dA(x).

If M is a hypersurface of Rn, and we take ξ = fN , where N is a unit
normal field, then ∥∇1ξ∥2 = ∥∇f∥2 and (6b.7) is equal to

(6b.9) 2
∑
i<j

⟨
R(Ej , Ei)Ei, Ej

⟩
f2 = Sf2,

by the Theorema Egregium, where S is the scalar curvature of M . Conse-
quently, if M ⊂ Rn is a hypersurface (with boundary), and the hypersur-
faces Ms are given by (6.6), with area integral (6.2), then

(6b.10) A′′(0) =

∫
M

[
∥∇f∥2 + S(x)f2

]
dA(x).

Recall that when dim M = 2, so M ⊂ R3,

(6b.11) S = 2K,
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where K is the Gauss curvature, which is ≤ 0 whenever M is a minimal
surface in R3.
If M has general codimension in Rn, we can rewrite (6b.8) using the

identity

(6b.12) 2 Tr Λ2Aξ = (Tr Aξ)
2 − ∥Aξ∥2,

where ∥Aξ∥ denotes the Hilbert-Schmidt norm of Aξ, that is,

∥Aξ∥2 = Tr(A∗
ξAξ).

Recalling (6.13), if k = dim M , we get

(6b.13) A′′(0) =

∫
M

[
∥∇1ξ∥2 − ∥Aξ∥2 + k2⟨H(x), ξ⟩2

]
dA(x).

Of course, the last term in the integrand vanishes for all compactly sup-
ported fields ξ normal to M when M is a minimal submanifold of Rn.
We next suppose the family of manifolds Ms is contained in a manifold

Y ⊂ Rn. Hence, as before, instead of X(s, u) = X0(u) + sξ(u), we require
∂sX(s, u) = ξ(s, u) to be tangent to Y . We take X(0, u) = X0(u). Then
(6b.1) holds, and we need to add to (6b.2) the following term, in order to
compute A′′(0):

(6b.14)
Φ =

k∑
j=1

⟨
∂1X0 ∧ · · · ∧ ∂jκ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

⟩
,

κ = ∂sξ = ∂2sX.

If, as before, ∂jX0 = Ej form an orthonormal basis of TxM , for a given
x ∈M , then

(6b.15) Φ =

k∑
j=1

⟨∂jκ,Ej⟩, at x.

Now, given the compactly supported field ξ(0, u), tangent to Y and nor-
mal to M , let us suppose that, for each u, γu(s) = X(s, u) is a constant-
speed geodesic in Y , such that γ′u(0) = ξ(0, u). Thus κ = γ′′u(0) is normal
to Y , and, by the Weingarten formula for M ⊂ Rn,

(6b.16) ∂jκ = ∇1
Ej
κ−AκEj ,

at x, where ∇1 is the connection on the normal bundle to M ⊂ Rn and A
is as before the Weingarten map for M ⊂ Rn. Thus

(6b.17) Φ = −
∑
j

⟨AκEj , Ej⟩ = −Tr Aκ = −k⟨H(x), κ⟩,

where k = dim M .
If we suppose M is a minimal submanifold of Y , then H(x) is normal to

Y , so, for any compactly supported field ξ, normal to M and tangent to
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Y , the computation (6b.13) supplemented by (6b.14)–(6b.17) gives

(6b.18) A′′(0) =

∫
M

[
∥∇1ξ∥2 − ∥Aξ∥2 − k⟨H(x), κ⟩

]
dA(x).

Recall that Aξ is the Weingarten map of M ⊂ Rn.
We prefer to use Bξ, the Weingarten map ofM ⊂ Y . It is readily verified

that

(6b.19) Aξ = Bξ ∈ End TxM

if ξ ∈ TxY and ξ ⊥ TxM ; see Exercise 13 in §4 of Appendix C. Thus
in (6b.18) we can simply replace ∥Aξ∥2 by ∥Bξ∥2. Also recall that ∇1 in
(6b.18) is the connection on the normal bundle to M ⊂ Rn. We prefer to
use the connection on the normal bundle to M ⊂ Y , which we denote by
∇#. To relate these two objects, we use the identities

(6b.20)
∂jξ = ∇1

jξ −AξEj , ∂jξ = ∇̃jξ + IIY (Ej , ξ),

∇̃jξ = ∇#
j ξ −BξEj ,

where ∇̃ denotes the covariant derivative on Y , and IIY is the second
fundamental form of Y ⊂ Rn. In view of (6b.19), we obtain

(6b.21) ∇1
jξ = ∇#

j ξ + IIY (Ej , ξ),

a sum of terms tangent to Y and normal to Y , respectively. Hence

(6b.22) ∥∇1ξ∥2 = ∥∇#ξ∥2 +
∑
j

∥IIY (Ej , ξ)∥2.

Thus we can rewrite (6b.18) as

(6b.23) A′′(0) =

∫
M

[
∥∇#ξ∥2−∥Bξ∥2+

∑
j

∥IIY (Ej , ξ)∥2− Tr Aκ

]
dA(x).

We want to replace the last two terms in this integrand by a quantity
defined intrinsically byMs ⊂ Y , not by the way Y is imbedded in Rn. Now
Tr Aκ =

∑
⟨IIM (Ej , Ej), κ⟩, where IIM is the second fundamental form

of M ⊂ Rn. On the other hand, it is easily verified that

(6b.24) κ = γ′′u(0) = IIY (ξ, ξ).

Thus the last two terms in the integrand sum to

(6b.25) Ψ =
∑
j

[
∥IIY (Ej , ξ)∥2 − ⟨IIY (ξ, ξ), IIM (Ej , Ej)⟩

]
.

We can replace IIM (Ej , Ej) by II
Y (Ej , Ej) here, since these two objects

have the same component normal to Y . Then Gauss’ formula implies

(6b.26) Ψ =
∑
j

⟨RY (ξ, Ej)ξ, Ej⟩,
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whereRY is the Riemann curvature tensor of Y . We defineR ∈ End NxM ,
where N(M) is the normal bundle of N ⊂ Y , by

(6b.27) ⟨R(ξ), η⟩ =
∑
j

⟨RY (ξ, Ej)η,Ej⟩,

at x, where {Ej} is an orthonormal basis of TxM . It follows easily that
this is independent of the choice of such an orthonormal basis.
Our calculation of A′′(0) becomes

(6b.28) A′′(0) =

∫
M

[
∥∇#ξ∥2 − ∥Bξ∥2 +

⟨
R(ξ), ξ

⟩]
dA(x)

when M is a minimal submanifold of Y , where ∇# is the connection on
the normal bundle to M ⊂ Y , B is the Weingarten map for M ⊂ Y , and
R is defined by (6b.27). If we define a second-order differential operator
L0 and a zero-order operator B on C∞

0

(
M,N(M)

)
by

(6b.29) L0ξ = (∇#)∗∇#ξ, ⟨B(ξ), η⟩ = Tr(B∗
ηBξ),

respectively, we can write this as

(6b.30) A′′(0) = (Lξ, ξ)L2(M), Lξ = L0ξ −B(ξ) +R(ξ).

We emphasize that these formulas, and the ones below, for A′′(0) are valid
for immersed minimal submanifolds of Y as well as for imbedded subman-
ifolds.
Suppose that M has codimension 1 in Y and that Y and M are ori-

entable. Complete the basis {Ej} of TxM to an orthonormal basis

{Ej : 1 ≤ j ≤ k + 1}

of TxY . In this case, Ek+1(x) and ξ(x) are parallel, so

⟨RY (ξ, Ek+1)η,Ek+1⟩ = 0.

Thus (6b.27) becomes

(6b.31) R(ξ) = −RicY ξ if dim Y = dim M + 1,

where RicY denotes the Ricci tensor of Y . In such a case, taking ξ =
fEk+1 = fν, where ν is a unit normal field to M , tangent to Y , we obtain

(6b.32)

A′′(0) =

∫
M

[
∥∇f∥2 −

(
∥Bν∥2 + ⟨RicY ν, ν⟩

)
|f |2

]
dA(x)

= (Lf, f)L2(M),

where

(6b.33) Lf = −∆f + φf, φ = −∥Bν∥2 − ⟨RicY ν, ν⟩.
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We can express φ in a different form, noting that

(6b.34) ⟨RicY ν, ν⟩ = SY −
k∑

j=1

⟨RicY Ej , Ej⟩,

where SY is the scalar curvature of Y . From Gauss’ formula we readily
obtain, for general M ⊂ Y of any codimension,

(6b.35)

⟨RicY Ej , Ej⟩ = ⟨RY (Ej , ν)ν,Ej⟩+ ⟨RicMEj , Ej⟩

+
∑
ℓ

∥II(Ej , Eℓ)∥2 − k
⟨
HY , II(Ej , Ej)

⟩
,

where II denotes the second fundamental form of M ⊂ Y . Summing over
1 ≤ j ≤ k, when M has codimension 1 in Y , and ν is a unit normal to M ,
we get

(6b.36) 2⟨RicY ν, ν⟩ = SY − SM − ∥Bν∥2 + ∥HY ∥2.

If M is a minimal submanifold of Y of codimension 1, this implies that

(6b.37)
φ =

1

2
(SM − SY )− 1

2
∥Bν∥2

=
1

2
(SM − SY ) + Tr Λ2Bν .

We also note that when dim M = 2 and dim Y = 3, then, for x ∈M ,

(6b.38) Tr Λ2Bν(x) = KM (x)−KY (TxM),

where KM = (1/2)SM is the Gauss curvature of M and KY (TxM) is the
sectional curvature of Y , along the plane TxM .
We consider another special case, where dimM = 1. We have ⟨R(ξ), ξ⟩ =

−|ξ|2KY (ΠMξ), where K
Y (ΠMξ) is the sectional curvature of Y along the

plane in TxY spanned by TxM and ξ. In this case, to say M is minimal
is to say it is a geodesic; hence Bξ = 0 and ∇#ξ = ∇̃T ξ, where ∇̃ is the
covariant derivative on Y , and T is a unit tangent vector to M . Thus
(6b.28) becomes the familiar formula for the second variation of arc length
for a geodesic:

(6b.39) ℓ′′(0) =

∫
γ

[
∥∇̃T ξ∥2 − |ξ|2KY (Πγξ)

]
ds,

where we have used γ instead of M to denote the curve, and also ℓ instead
of A and ds instead of dA, to denote arc length.
The operators L and L are second-order elliptic operators that are self-

adjoint, with domain H2(M), if M is compact and without boundary, and
with domain H2(M) ∩ H1

0 (M), if M is compact with boundary. In such
cases, the spectra of these operators consist of eigenvalues λj ↗ +∞. If M
is not compact, butB andR are bounded, we can use the Friedrichs method
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to define self-adjoint extensions L and L, which might have continuous
spectrum.
We say a minimal submanifold M ⊂ Y is stable if A′′(0) ≥ 0 for all

smooth, compactly supported variations ξ, normal to M (and vanishing
on ∂M). Thus the condition that M be stable is that the spectrum of L
(equivalently, of L, if codimM = 1) be contained in [0,∞). In particular, if
M is actually area minimizing with respect to small perturbations, leaving
∂M fixed (which we will just call “area minimizing”), then it must be
stable, so

(6b.40) M area minimizing =⇒ spec L ⊂ [0,∞).

The second variational formulas above provide necessary conditions for
a minimal immersed submanifold to be stable. For example, suppose M
is a boundaryless, codimension-1 minimal submanifold of Y , and both are
orientable. Then we can take f = 1 in (6b.32), to get

(6b.41) M stable =⇒
∫
M

(
∥Bν∥2 + ⟨RicY ν, ν⟩

)
dA ≤ 0.

If dim M = 2 and dim Y = 3, then, by (6b.37), we have

(6b.42) M stable =⇒
∫
M

(
∥Bν∥2 + SY − 2KM

)
dA ≤ 0.

In this case, if M has genus g, the Gauss-Bonnet theorem implies that∫
KM dA = 4π(1− g), so

(6b.43) M stable =⇒
∫
M

(
∥Bν∥2 + SY

)
dA ≤ 8π(1− g).

This implies some nonexistence results.

Proposition 6B.1. Assume that Y is a compact, oriented Riemannian
manifold and that Y and M have no boundary.
If the Ricci tensor RicY is positive-definite, then Y cannot contain any

compact, oriented, area-minimizing immersed hypersurface M . If RicY is
positive-semidefinite, then any such M would have to be totally geodesic
in Y .
Now assume dim Y = 3. If Y has scalar curvature SY > 0 everywhere,

then Y cannot contain any compact, oriented, area-minimizing immersed
surface M of genus g ≥ 1.
More generally, if SY ≥ 0 everywhere, and if M is a compact, oriented,

immersed hypersurface of genus g ≥ 1, then for M to be area minimizing
it is necessary that g = 1 and that M be totally geodesic in Y .

R. Schoen and S.-T. Yau [SY] obtained topological consequences for a
compact, oriented 3-manifold Y from this together with the following exis-
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tence theorem. Suppose M is a compact, oriented surface of genus g ≥ 1,
and suppose the fundamental group π1(Y ) contains a subgroup isomorphic
to π1(M). Then, given any Riemannian metric on Y , there is a smooth
immersion of M into Y which is area minimizing with respect to small
perturbations, as shown in [SY]. It follows that if Y is a compact, oriented
Riemannian 3-manifold, whose scalar curvature SY is everywhere positive,
then π1(Y ) cannot have a subgroup isomorphic to π1(M), for any compact
Riemann surface M of genus g ≥ 1.

We will not prove the result of [SY] on the existence of such minimal
immersions. Instead, we demonstrate a topological result, due to Synge, of
a similar flavor but simpler to prove. It makes use of the second variational
formula (6b.39) for arc length.

Proposition 6B.2. If Y is a compact, oriented Riemannian manifold of
even dimension, with positive sectional curvature everywhere, then Y is
simply connected.

Proof. It is a simple consequence of Ascoli’s theorem that there is a length-
minimizing, closed geodesic in each homotopy class of maps from S1 to
Y . Thus, if π1(Y ) ̸= 0, there is a nontrivial stable geodesic, γ. Pick
p ∈ γ, ξp normal to γ at p (i.e., ξp ∈ Np(γ)), and parallel translate ξ about
γ, obtaining ξp ∈ Np(γ) after one circuit. This defines an orientation-
preserving, orthogonal, linear transformation τ : Npγ → Npγ. If Y has
dimension 2k, then Npγ has dimension 2k − 1, so τ ∈ SO(2k − 1). It
follows that τ must have an eigenvector in Npγ, with eigenvalue 1. Thus
we get a nontrivial, smooth section ξ of N(γ) which is parallel over γ, so
(6b.39) implies

(6b.44)

∫
γ

KY (Πγξ) ds ≤ 0.

If KY (Π) > 0 everywhere, this is impossible.

One might compare these results with Proposition 4.7 of Chapter 10,
which states that if Y is a compact Riemannian manifold and RicY > 0,
then the first cohomology group H1(Y ) = 0.

7. The minimal surface equation

We now study a nonlinear PDE for functions whose graphs are minimal
surfaces. We begin with a formula for the mean curvature of a hypersurface
M ⊂ Rn+1 defined by u(x) = c, where ∇u ̸= 0 on M . If N = ∇u/|∇u|, we
have the formula

(7.1) ⟨ANX,Y ⟩ = −|∇u|−1(D2u)(X,Y ),
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for X,Y ∈ TxM , as shown in (4.26) of Appendix C. To take the trace of
the restriction of D2u to TxM , we merely take Tr(D2u)−D2u(N,N). Of
course, Tr(D2u) = ∆u. Thus, for x ∈M ,

(7.2) Tr AN (x) = −|∇u(x)|−1
[
∆u− |∇u|−2D2u(∇u,∇u)

]
.

Suppose now that M is given by the equation

xn+1 = f(x′), x′ = (x1, . . . , xn).

Thus we take u(x) = xn+1 − f(x′), with ∇u = (−∇f, 1). We obtain for
the mean curvature the formula

(7.3) nH(x) = − 1

⟨∇f⟩3
[
⟨∇f⟩2∆f −D2f(∇f,∇f)

]
= M(f),

where ⟨∇f⟩2 = 1 + |∇f(x′)|2. Written out more fully, the quantity in
brackets above is

(7.4)
(
1 + |∇f |2

)
∆f −

∑
i,j

∂2f

∂xi∂xj

∂f

∂xi

∂f

∂xj
= M̃(f).

Thus the equation stating that a hypersurface xn+1 = f(x′) be a minimal
submanifold of Rn+1 is

(7.5) M̃(f) = 0.

In case n = 2, we have the minimal surface equation, which can also be
written as

(7.6)
(
1 + |∂2f |2

)
∂21f − 2

(
∂1f · ∂2f

)
∂1∂2f +

(
1 + |∂1f |2

)
∂22f = 0.

It can be verified that this PDE also holds for a minimal surface in Rn

described by x′′ = f(x′), where x′′ = (x3, . . . , xn), if (7.6) is regarded as
a system of k equations in k unknowns, k = n − 2, and (∂1f · ∂2f) is the
dot product of Rk-valued functions. We continue to denote the left side of
(7.6) by M̃(f).

Proposition 6.12 can be translated immediately into the following exis-
tence theorem for the minimal surface equation:

Proposition 7.1. Let O be a bounded, convex domain in R2 with smooth
boundary. Let g ∈ C∞(∂O,Rk) be given. Then there is a solution

(7.7) u ∈ C∞(O,Rk) ∩ C(O,Rk)

to the boundary problem

(7.8) M̃(u) = 0, u
∣∣
∂O = g.

When k = 1, we also have uniqueness, as a consequence of the following:
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Proposition 7.2. LetO be any bounded domain in Rn. Let uj ∈ C∞(O)∩
C(O) be real-valued solutions to

(7.9) M̃(uj) = 0, uj = gj on ∂O,

for j = 1, 2. Then

(7.10) g1 ≤ g2 on ∂O =⇒ u1 ≤ u2 on O.

Proof. We prove this by deriving a linear PDE for the difference v =
u2 − u1 and applying the maximum principle. In general,

(7.11) Φ(u2)− Φ(u1) = Lv, L =

∫ 1

0

DΦ
(
τu2 + (1− τ)u1

)
dτ.

Suppose Φ is a second-order differential operator:

(7.12) Φ(u) = F (u, ∂u, ∂2u), F = F (u, p, ζ).

Then, as in (3.4),

(7.13) DΦ(u) = Fζ(u, ∂u, ∂
2u) ∂2v + Fp(u, ∂u, ∂

2u) ∂v + Fu(u, ∂u, ∂
2u)v.

When Φ(u) = M̃(u) is given by (7.4), Fu(u, ξ, ζ) = 0, and we have

(7.14) DM̃(u)v = A(u)v +B(u)v,

where

(7.15) A(u)v =
(
1 + |∇u|2

)
∆v −

∑
i,j

∂u

∂xi

∂u

∂xj

∂2v

∂xi∂xj

is strongly elliptic, and B(u) is a first-order differential operator. Conse-
quently, we have

(7.16) M̃(u2)− M̃(u1) = Av +Bv,

where A =
∫ 1

0
A
(
τu2 + (1− τ)u2

)
dτ is strongly elliptic of order 2 at each

point of O, and B is a first-order differential operator, which annihilates
constants. If (7.9) holds, then Av + Bv = 0. Now (7.10) follows from the
maximum principle, Proposition 2.1 of Chapter 5.

We have as of yet no estimates on |∇uj(x)| as x → ∂O, so A, which is
elliptic in O, could conceivably degenerate at ∂O. To achieve a situation
where the results of Chapter 5, §2, apply, we could note that the hypotheses
of Proposition 7.2 imply that, for any ε > 0, u1 ≤ u2+ε on a neighborhood
of ∂O. Alternatively, one can check that the proof of Proposition 2.1 in
Chapter 5 works even if the elliptic operator is allowed to degenerate at the
boundary. Either way, the maximum principle then applies to yield (7.10).

While Proposition 7.2 is a sort of result that holds for a large class of
second-order, scalar, elliptic PDE, the next result is much more special and
has interesting consequences. It implies that the size of a solution to the
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minimal surface equation (7.8) can sometimes be controlled by the behavior
of g on part of the boundary.

Proposition 7.3. Let O ⊂ R2 be a domain contained in the annulus
r1 < |x| < r2, and let u ∈ C2(O) ∩ C(O) solve M̃(u) = 0. Set

(7.17) G(x; r) = r cosh−1

(
|x|
r

)
, for |x| > r, G(x; r) ≤ 0.

If

(7.18) u(x) ≤ G(x; r1) +M on {x ∈ ∂O : |x| > r1},

for some M ∈ R, then

(7.19) u(x) ≤ G(x; r1) +M on O.

Here, z = G(x; r1) defines the lower half of a catenoid, over {x ∈ R2 :
|x| ≥ r1}. This function solves the minimal surface equation on |x| > r1
and vanishes on |x| = r1.

Proof. Given s ∈ (r1, r2), let

(7.20) ε(s) = max
s≤|x|≤r2

∣∣G(x; r1)−G(x; s)
∣∣.

The hypothesis (7.18) implies that

(7.21) u(x) ≤ G(x; s) +M + ε(s)

on {x ∈ ∂O : |x| ≥ s}. We claim that (7.21) holds for x in

(7.22) O(s) = O ∩ {x : s < |x| < r2}.

Once this is established, (7.19) follows by taking s ↘ r1. To prove this,
it suffices by Proposition 7.2 to show that (7.21) holds on ∂O(s). Since it
holds on ∂O, it remains to show that (7.21) holds for x in

(7.23) C(s) = O ∩ {x : |x| = s},

illustrated by a broken arc in Fig. 7.1. If not, then u(x) − G(x; s) would
have a maximum M1 > M + ε(s) at some point p ∈ C(s). By Proposition
7.1, we have u(x)−G(x; s) ≤M1 on O(s). However, ∇u(x) is bounded on
a neighborhood of p, while

(7.24)
∂

∂r
G(x; s) = −∞ on |x| = s.

This implies that u(x) − G(x; s) > M1, for all points in O(s) sufficiently
near p. This contradiction shows that (7.21) must hold on C(s), and the
proposition is proved.
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Figure 7.1

One implication is that if O ⊂ R2 is as illustrated in Fig. 7.1, it is not
possible to solve the boundary problem (7.8) with g prescribed arbitrarily
on all of ∂O. A more precise statement about domains O ⊂ R2 for which
(7.8) is always solvable is the following:

Proposition 7.4. Let O ⊂ R2 be a bounded, connected domain with
smooth boundary. Then (7.8) has a solution for all g ∈ C∞(∂O) if and
only if O is convex.

Proof. The positive result is given in Proposition 7.1. Now, if O is not
convex, let p ∈ ∂O be a point where O is concave, as illustrated in Fig. 7.2.
Pick a disk D whose boundary C is tangent to ∂O at p and such that, near
p, C intersects the complement Oc only at p. Then apply Proposition 7.3
to the domain Õ = O \ D, taking the origin to be the center of D and r1
to be the radius of D. We deduce that if u solves M̃(u) = 0 on O, then

(7.25) u(x) ≤M +G(x; r1) on ∂O \ D =⇒ u(p) ≤M,

which certainly restricts the class of functions g for which (7.8) can be
solved.

Note that the function v(x) = G(x; r) defined by (7.17) also provides an
example of a solution to the minimal surface equation (7.8) on an annular
region

O = {x ∈ R2 : r < |x| < s},

with smooth (in fact, locally constant) boundary values

v = 0 on |x| = r, v = −r cosh−1 s

r
on |x| = s,
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Figure 7.2

which is not a smooth function, or even a Lipschitz function, on O. This is
another phenomenon that is different when O is convex. We will establish
the following:

Proposition 7.5. If O ⊂ R2 is a bounded region with smooth boundary
which is strictly convex (i.e., ∂O has positive curvature), and g ∈ C∞(∂O)
is real-valued, then the solution to (7.8) is Lipschitz at each point x0 ∈ ∂O.

Proof. Given x0 ∈ ∂O, we have z0 =
(
x0, g(x0)

)
∈ γ ⊂ R3, where γ is

the boundary of the minimal surface M which is the graph of z = u(x).
The strict convexity hypothesis on O implies that there are two planes Πj

in R3 through z0, such that Π1 lies below γ and Π2 above γ, and Πj are
given by z = αj · (x− x0) + g(x0) = wjx0

(x), αj = αj(x0) ∈ R3. There is
an estimate of the form

(7.26) |αj(x0)| ≤ K(x0)∥g ◦ ρx0∥C2 ,

where ρx0
is the radial projection (from the center of O) of ∂O onto a circle

C(x0) containing O and tangent to ∂O at x0, and K(x0) depends on the
curvature of C(x0). Now Proposition 7.2 applies to give

(7.27) w1x0(x) ≤ u(x) ≤ w2x0(x), x ∈ O,

since linear functions solve the minimal surface equation. This establishes
the Lipschitz continuity, with the quantitative estimate

(7.28) |u(x0)− u(x)| ≤ A|x− x0|, x0 ∈ ∂O, x ∈ O,

where

(7.29) A = sup
x0∈∂O

|α1(x0)|+ |α2(x0)|.
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This result points toward an estimate on |∇u(x)|, x ∈ O, for a solution
to (7.8). We begin the line of reasoning that leads to such an estimate,
a line that applies to other situations. First, let’s rederive the minimal
surface equation, as the stationary condition for

(7.30) I(u) =

∫
O

F
(
∇u(x)

)
dx,

where

(7.31) F (p) =
(
1 + |p|2

)1/2
,

so (7.30) gives the area of the graph of z = u(x). The method used in
Chapter 2, §1, yields the PDE

(7.32)
∑

Aij(∇u) ∂i∂ju = 0,

where

(7.33) Aij(p) =
∂2F

∂pi∂pj
.

Compare this with (1.68) and (1.36) of Chapter 2. When F (p) is given by
(7.31), we have

(7.34) Aij(p) = ⟨p⟩−3
(
δij⟨p⟩2 − pipj

)
,

so in this case (7.32) is equal to −M(u), defined by (7.3). Now, when u is
a sufficiently smooth solution to (7.32), we can apply ∂ℓ = ∂/∂xℓ to this
equation and obtain the PDE

(7.35)
∑

∂iA
ij(∇u) ∂jwℓ = 0,

for wℓ = ∂ℓu, not for all PDE of the form (7.32), but whenever Aij(p) is
symmetric in (i, j) and satisfies

(7.36)
∂Aij

∂pm
=
∂Aim

∂pj
,

which happens when Aij(p) has the form (7.33). If (7.35) satisfies the
ellipticity condition

(7.37)
∑

Aij
(
∇u(x)

)
ξiξj ≥ C(x)|ξ|2, C(x) > 0,

for x ∈ O, then we can apply the maximum principle, to obtain the follow-
ing:

Proposition 7.6. Assume u ∈ C1(O) is real-valued and satisfies the PDE
(7.32), with coefficients given by (7.33). If the ellipticity condition (7.37)
holds, then ∂ℓu(x) assumes its maximum and minimum values on ∂O; hence

(7.38) sup
x∈O

|∇u(x)| = sup
x∈∂O

|∇u(x)|.
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Combining this result with Proposition 7.5, we have the following:

Proposition 7.7. LetO ⊂ R2 be a bounded region with smooth boundary
which is strictly convex, g ∈ C∞(∂Ω) real-valued. If u ∈ C2(O)∩C1(O) is
a solution to (7.8), then there is an estimate

(7.39) ∥u∥C1(O) ≤ C(O) ∥g∥C2(∂O).

Note that the existence result of Proposition 7.1 does not provide us with
the knowledge that u belongs to C1(O), and thus it will take further work
to demonstrate that the estimate (7.39) actually holds for an arbitrary real-
valued solution to (7.8) when O ⊂ R2 is strictly convex and g is smooth.
We will be in a position to establish this result, and further regularity, after
sufficient theory is developed in the next two sections. See in particular
Theorem 10.4. For now, we can regard this as motivation to develop the
tools in the following sections, on the regularity of solutions to elliptic
boundary problems.

We next look at the Gauss curvature of a minimal surface M , given by
z = u(x), x ∈ O ⊂ R2. For a general u, the curvature is given by

(7.40) K =
(
1 + |∇u|2

)−2
det
( ∂2u

∂xj∂xk

)
.

See (4.29) in Appendix C. When u satisfies the minimal surface equation,
there are some other formulas for K, in terms of operations on

(7.41) Φ(x) = F (∇u)−1 =
(
1 + |∇u|2

)−1/2
,

which we will list, leaving their verification as an exercise:

(7.42) K = − |∇Φ|2

1− Φ2
,

(7.43) K =
1

2Φ
∆Φ,

(7.44) K = ∆ log(1 + Φ).

Now if we alter the metric g induced on M via its imbedding in R3 by a
conformal factor:

(7.45) g′ = (1 + Φ)2g = e2vg, v = log(1 + Φ),

then, as in formula (1.30), we see that the Gauss curvature k of M in the
new metric is

(7.46) k = (−∆v +K)e−2v = 0;

in other words, the metric g′ = (1 + Φ)2g is flat! Using this observation,
we can establish the following remarkable theorem of S. Bernstein:
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Theorem 7.8. If u : R2 → R is an everywhere-defined C2-solution to the
minimal surface equation, then u is a linear function.

Proof. Consider the minimal surface M given by z = u(x), x ∈ R2, in
the metric g′ = (1 + Φ)2g, which, as we have seen, is flat. Now g′ ≥ g, so
this is a complete metric on M . Thus (M, g′) is isometrically equivalent to
R2. Hence (M, g) is conformally equivalent to C.

On the other hand, the antipodal Gauss map

(7.47) Ñ :M −→ S2, Ñ = ⟨∇u⟩−1(∇u,−1),

is holomorphic; see Exercise 1 of §6. But the range of Ñ is contained in
the lower hemisphere of S2, so if we take S2 = C ∪ {∞} with the point
at infinity identified with the “north pole” (0, 0, 1), we see that Ñ yields
a bounded holomorphic function on M ≈ C. By Liouville’s theorem, Ñ
must be constant. Thus M is a flat plane in R3.

It turns out that Bernstein’s theorem extends to u : Rn → R, for n ≤ 7,
by work of E. DeGiorgi, F. Almgren, and J. Simons, but not to n ≥ 8.

Exercises

1. If DM̃(u) is the differential operator given by (7.14)–(7.15), show that its
principal symbol satisfies

(7.48) −σ
DM̃(u)

(x, ξ) =
(
1 + |p|2

)
|ξ|2 − (p · ξ)2 ≥ |ξ|2,

where p = ∇u(x).
2. Show that the formula (7.3) for M(f) is equivalent to

(7.49) M(f) =
∑
j

∂j
(
⟨∇f⟩−1 ∂jf

)
= div

(
⟨∇f⟩−1∇f

)
.

3. Give a detailed demonstration of the estimate (7.26) on the slope of planes
that can lie above and below the graph of g over ∂O (assumed to have positive
curvature), needed for the proof of Proposition 7.5. (Hint: In case ∂O is the
unit circle S1, consider the cases g(θ) = cosk θ.)

4. Establish the formulas (7.42)–(7.44) for the Gauss curvature of a minimal
surface.

8. Elliptic regularity II (boundary estimates)

We establish estimates and regularity for solutions to nonlinear elliptic
boundary problems. We treat completely nonlinear, second-order equa-
tions, obtaining L2-Sobolev estimates for solutions assumed a priori to
belong to C2+r(M), r > 0. We make note of improved estimates for solu-
tions to quasi-linear, second-order equations. In §10 we will show how such
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results, when supplemented by the DeGiorgi-Nash-Moser theory, apply to
the solvability of the Dirichlet problem for certain quasi-linear elliptic PDE.

Though we restrict attention to second-order equations, the analysis in
this section extends readily to higher-order elliptic systems, such as we
treated in §11 of Chapter 5. The exposition here is taken from [T].
Having looked at interior regularity in §4, we restrict attention to a collar

neighborhood of the boundary ∂M = X, so we look at a PDE of the form

(8.1) ∂2yu = F (y, x,D2
xu,D

1
x∂yu),

with y ∈ [0, 1], x ∈ X. We set

(8.2) v1 = Λu, v2 = ∂yu,

and produce a first-order system for v = (v1, v2),

(8.3)

∂v1
∂y

= Λv2,

∂v2
∂y

= F (y, x,D2
xΛ

−1v1, D
1
xv2).

An operator like T = Λ or T = D2
xΛ

−1 does not map Ck+1+r(I ×X) to
Ck+r(I ×X), but if we set

(8.4) Ck+r+(I ×X) =
∪
ε>0

Ck+r+ε(I ×X),

then

(8.5) T : Ck+1+r+(I ×X) −→ Ck+r+(I ×X).

Thus we will assume u ∈ C2+r+. This implies v ∈ C1+r+, and the argu-
ments D2

xΛ
−1v1 and D1

xv2 appearing in (8.3) belong to Cr+. We will be
able to drop the “+” in the statement of the main result.
Now if we treat y as a parameter and apply the paradifferential operator

construction developed in §10 of Chapter 13 to the family of operators on
functions of x, we obtain

(8.6)
F (y, x,D2

xΛ
−1v1, D

1
xv2) = A1(v; y, x,Dx)v1

+A2(v; y, x,Dx)v2 +R(v),

with (for fixed y) R(v) ∈ C∞(X),

(8.7) Aj(v; y, x, ξ) ∈ Ar
0S

1
1,1 ⊂ CrS1

1,0 ∩ S1
1,1

and

(8.8) Dβ
xAj ∈ S1

1,1, for |β| ≤ r, S
1+(|β|−r)
1,1 , for |β| > r,

provided u ∈ C2+r+.
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Note that if we write F = F (y, x, ζ, η), ζα = Dα
xu (|α| ≤ 2), ηα =

Dα
x∂yu (|α| ≤ 1), then we can set

(8.9) B1(v; y, x, ξ) =
∑
|α|≤2

∂F

∂ζα
(D2

xΛ
−1v1, D

1
xv2)ξ

α⟨ξ⟩−1

(suppressing the y- and x-arguments of F ) and

(8.10) B2(v; y, x, ξ) =
∑
|α|≤1

∂F

∂ηα
(D2

xΛ
−1v1, D

1
xv2)ξ

α.

Thus

(8.11) v ∈ C1+r+ =⇒ Aj −Bj ∈ CrS1−r
1,1 .

Using (8.4), we can rewrite the system (8.3) as

(8.12)

∂v1
∂y

= Λv2,

∂v2
∂y

= A1(x,D)v1 +A2(x,D)v2 +R(v).

We also write this as

(8.13)
∂v

∂y
= K(v; y, x,Dx)v +R (R ∈ C∞),

where K(v; y, x,Dx) is a 2 × 2 matrix of first-order pseudodifferential op-
erators. Let us denote the symbol obtained by replacing Aj by Bj as K̃,
so

(8.14) K − K̃ ∈ CrS1−r
1,1 .

The ellipticity condition can be expressed as

(8.15) spec K̃(v; y, x, ξ) ⊂ {z ∈ C : |Re z| ≥ C|ξ|},

for |ξ| large. Hence we can make the same statement about the spectrum
of the symbol K, for |ξ| large, provided v ∈ C1+r+ with r > 0.
In order to derive L2-Sobolev estimates, we will construct a symmetrizer,

in a fashion similar to §11 in Chapter 5. In particular, we will make use
of Lemma 11.4 of Chapter 5. Let Ẽ = Ẽ(v; y, x, ξ) denote the projection
onto the {Re z > 0} spectral space of K̃, defined by

(8.16) Ẽ(y, x, ξ) =
1

2πi

∫
γ

(
z − K̃(y, x, ξ)

)−1
dz,

where γ is a curve enclosing that part of the spectrum of K̃(y, x, ξ) con-
tained in {Re z > 0}. Then the symbol

(8.17) Ã = (2Ẽ − 1)K̃ ∈ CrS1
cl
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has spectrum in {Re z > 0}. (The symbol class CrSm
cl is defined as in

(9.46) of Chapter 13.) Let P̃ ∈ CrS0
cl be a symmetrizer for the symbol Ã,

constructed via Lemma 11.4 of Chapter 5, namely,

P̃ (y, x, ξ) = Φ
(
Ã(y, x, ξ)

)
,

where Φ is as in (11.54)–(11.55) in Chapter 5. Thus P̃ and (P̃ Ã + Ã∗P̃ )
are positive-definite symbols, for |ξ| ≥ 1.

We now want to apply symbol smoothing to P̃ , Ã, and Ẽ. It will be
convenient to modify the construction slightly, and smooth in both x and
y. Thus we obtain various symbols in Sm

1,δ, with the understanding that
the symbol classes reflect estimates on Dy,x-derivatives. For example, we
obtain (with 0 < δ < 1)

(8.18) P (y, x, ξ) ∈ S0
1,δ; P − P̃ ∈ CrS−rδ

1,δ

by smoothing P̃ , in (y, x). We set

(8.19) Q =
1

2

(
P (y, x,Dx) + P (y, x,Dx)

∗)+KΛ−1,

with K > 0 picked to make the operator Q positive-definite on L2(X).
Similarly, define A and E by smoothing Ã and Ẽ in (y, x), so

(8.20)
A(y, x, ξ) ∈ S1

1,δ, A− Ã ∈ CrS1−rδ
1,δ ,

E(y, x, ξ) ∈ S0
1,δ, E − Ẽ ∈ CrS−rδ

1,δ ,

and we smooth K, writing

(8.21) K = K0 +Kb; K0 ∈ S1
1,δ, Kb ∈ CrS1−rδ

1,δ ∩ S1−rδ
1,1 .

Consequently, on the symbol level,

(8.22)
A = (2E − 1)K0 +Ab, Ab ∈ S1−rδ

1,δ ,

PA+A∗P ≥ C|ξ|, for |ξ| large.

Let us note that the homogeneous symbols K̃, Ẽ, and Ã commute, for each
(y, x, ξ); hence the commutators of the various symbolsK, E, A have order
≤ rδ units less than the sum of the orders of these symbols; for example,

(8.23) [E(y, x, ξ),K0(y, x, ξ)] ∈ S1−rδ
1,δ .

Using this symmetrizer construction, we will look for estimates for solu-
tions to a system of the form (8.3) in the spaces Hk,s(M) = Hk,s(I ×X),
with norms

(8.24) ∥v∥2k,s =
k∑

j=0

∥∂jyΛk−j+sv(y)∥2L2(I×X).

We shall differentiate (QΛsEv,ΛsEv) and (QΛs(1−E)v,Λs(1−E)v) with
respect to y (these expressions being L2(X)-inner products) and sum the
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two resulting expressions, to obtain the desired a priori estimates, parallel
to the treatment in §11 of Chapter 5.
Using (8.13), we have

(8.25)

d

dy
(QΛsEv,ΛsEv) = 2 Re(QΛsE(Kv +R),ΛsEv)

+ (Q′ΛsEv,ΛsEv)

+ 2 Re(QΛsE′v,ΛsEv).

Note that given v ∈ C1+r+, r > 0, Q′ and E′ belong to OPSδ
1,δ. Hence,

for fixed y, each of the last two terms is bounded by

(8.26) C∥v(y)∥2Hs+δ/2 .

Here and below, we will adopt the convention that C = C(∥v∥C1+r+), with
a slight abuse of notation. Namely, v ∈ C1+r+ belongs to C1+r+ε for some
ε > 0, and we loosely use ∥v∥C1+r+ instead of ∥v∥C1+r+ε .

To analyze the first term on the right side of (8.25), we write

(8.27)

(QΛsE(Kv +R),ΛsEv) = (QΛsEK0v,Λ
sEv)

+ (QΛsKbv,ΛsEv)

+ (QΛsER,ΛsEv),

where the last term is harmless and, for fixed y,

(8.28) |(QΛsEKbv,ΛsEv)| ≤ C∥v(y)∥2Hs+(1−rδ)/2 ,

provided s+ (1− rδ)/2− (1− rδ) > −(1− δ)r, that is,

(8.29) s >
1

2
− r +

1

2
rδ,

in view of (8.21).
Since Ẽ(y, x, ξ) is a projection, we have E(y, x, ξ)2 − E(y, x, ξ) ∈ S−rδ

1,δ

and

(8.30)
E(y, x,D)− E(y, x,D)2 = F (y, x,D) ∈ OPS−σ

1,δ ,

σ = min (rδ, 1− δ).

Thus

(8.31) QEK0 = QAE +G; G(y) ∈ OPS1−σ
1,δ .

Consequently, we can write the first term on the right side of (8.27) as

(8.32) (QAEΛsv,ΛsEv)− (GΛsv,ΛsEv) + (Q[Λs, EK0]v,Λ
sEv).

The last two terms in (8.32) are bounded (for each y) by

(8.33) C∥v(y)∥2Hs+(1−σ)/2 .
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As for the contribution of the first term in (8.32) to the estimation of (8.25),
we have, for each y,

(8.34) (QAEΛsv,ΛsEv) = (QAΛsEv,ΛsEv) + (QA[E,Λs]v,Λsv),

the last term estimable by (8.33), and

(8.35) 2 Re(QAΛsEv,ΛsEv) ≥ C1∥Ev(y)∥2Hs+1/2 − C2∥Ev(y)∥2Hs ,

by (8.22) and G̊arding’s inequality. Keeping track of the various ingredients
in the analysis of (8.25), we see that

(8.36)

d

dy
(QΛsEv,ΛsEv) ≥ C1∥Ev(y)∥2Hs+1/2

− C2∥v(y)∥2Hs+(1−σ)/2 − C3∥R(y)∥2Hs ,

where Cj = Cj(∥v∥C1+r+) > 0.
A similar analysis gives

(8.37)

d

dy
(QΛs(1− E)v,Λs(1− E)v)

≤ −C1∥(1− E)v(y)∥2Hs+1/2 + C2∥v(y)∥2Hs+(1−σ/2) + C3∥R(y)∥2Hs .

Putting together these two estimates yields

(8.38)

1

2
C1∥v(y)∥2Hs+1/2 ≤ C1∥Ev(y)∥2Hs+1/2 + C1∥(1− E)v(y)∥2Hs+1/2

≤ d

dy
(QΛsEv,ΛsEv)− d

dy
(QΛs(1− E)v,Λs(1− E)v)

+C2∥v(y)∥2Hs+(1−σ)/2 + C3∥R(y)∥2Hs .

Now standard arguments allow us to replace Hs+(1−σ)/2 by Ht, with t <<
s. Then integration over y ∈ [0, 1] gives

(8.39)
C1∥v∥20,s+1/2 ≤ ∥ΛsEv(1)∥2L2 + ∥Λs(1− E)v(0)∥2L2

+ C2∥v∥20,t + C3∥R∥20,s.

Recalling that

(8.40) ∥v∥21,s = ∥Λ1+sv∥2L2(M) + ∥Λs∂yv∥2L2(M)

and using (8.13) to estimate ∂yv, we have

(8.41) ∥v∥21,s−1/2 ≤ C
[
∥Ev(1)∥2Hs + ∥(1− E)v(0)∥2Hs + ∥v∥20,t + ∥R∥20,s

]
,

with C = C(∥v∥C1+r+), provided that v ∈ C1+r+ with r > 0 and that s
satisfies the lower bound (8.29). Let us note that

C1

[
∥Λs(1− E)v(1)∥2L2 + ∥ΛsEv(0)∥2L2

]
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could have been included on the left side of (8.39), so we also have the
estimate

(8.42) ∥(1− E)v(1)∥2Hs + ∥Ev(0)∥2Hs ≤ right side of (8.41).

Having completed a first round of a priori estimates, we bring in a con-
sideration of boundary conditions that might be imposed. Of course, the
boundary conditions Ev(1) = f1, (1 − E)v(0) = f0 are a possibility, but
these are really a tool with which to analyze other, more naturally oc-
curring boundary conditions. The “real” boundary conditions of interest
include the Dirichlet condition on (8.1):

(8.43) u(0) = f0, u(1) = f1,

various sorts of (possibly nonlinear) conditions involving first-order deriva-
tives:

(8.44) Gj(x,D
1u) = fj , at y = j (j = 0, 1),

and when (8.1) is itself a K × K system, other possibilities, which can
be analyzed in the same spirit. Now if we write D1u = (u, ∂xu, ∂yu) =
(Λ−1v1, ∂xΛ

−1v1, v2), and use the paradifferential operator construction of
Chapter 13, §10, we can write (8.44) as

(8.45) Hj(v;x,D)v = gj , at y = j,

where, given v ∈ C1+r+,

(8.46) Hj(v;x, ξ) ∈ A1+r
0 S0

1,1 ⊂ C1+rS0
1,0 ∩ S0

1,1.

Of course, (8.43) can be written in the same form, with Hjv = v1.
Now the following is the natural regularity hypothesis to make on (8.45);

namely, that we have an estimate of the form

(8.47)

∑
j

∥v(j)∥2Hs ≤ C
[
∥Ev(0)∥2Hs + ∥(1− E)v(1)∥2Hs

]
+ C

∑
j

[
∥Hj(v;x,D)v(j)∥2Hs + ∥v(j)∥2Hs−1

]
.

We then say the boundary condition is regular. If we combine this with
(8.41) and (8.42), we obtain the following fundamental estimate:

Proposition 8.1. If v satisfies the elliptic system (8.3), together with the
boundary condition (8.45), assumed to be regular, then

(8.48) ∥v∥21,s−1/2 ≤ C
[∑

j

∥gj∥2Hs + ∥v∥20,t + ∥R∥20,s
]
,

provided v ∈ H1,s−1/2 ∩ C1+r, r > 0, and s satisfies (8.29). We can take
t << s. In case (8.44) holds, we can replace ∥gj∥Hs by ∥fj∥Hs , and in case
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the Dirichlet condition (8.43) holds and is regular, we can replace ∥gj∥Hs

by ∥fj∥Hs+1 in (8.48).

Here, we have taken the opportunity to drop the “+” from C1+r+; to
justify this, we need only shift r slightly. For the same reason, we can
assume that, in (8.1), u ∈ C2+r, for some r > 0. In the rest of this section,
we assume for simplicity that s− 1/2 ∈ Z+ ∪ {0}.
We can now easily obtain higher-order estimates, of the form

(8.49) ∥v∥2k,s−1/2 ≤ C
[∑

j

∥gj∥2Hs+k−1 + ∥v∥20,t + ∥R∥2k−1,s

]
,

for t << s− 1/2, by induction from

∥v∥2k,s−1/2 = ∥v∥2k−1,s+1/2 + ∥∂yv∥2k−1,s−1/2,

plus substituting the right side of (8.3) for ∂yv. This follows from the
existence of Moser-type estimates:

(8.50)
∥F (·, ·, w1, w2)∥k,s−1/2

≤ C
(
∥w1∥L∞ , ∥w2∥L∞

)[
∥w1∥k,s−1/2 + ∥w2∥k,s−1/2

]
,

for k, k + s − 1/2 > 0. If s − 1/2 ∈ Z+ ∪ {0}, such an estimate can be
established by methods used in §3 of Chapter 13.

We also obtain a corresponding regularity theorem, via inclusion of Friedrich
mollifiers in the standard fashion. Thus replace Λs by Λs

ε = ΛsJε in (8.25)
and repeat the analysis. One must keep in mind that Kb must be appli-
cable to v(y) for the analogue of (8.28) to work. Given (8.21), we need
v(y) ∈ Hσ with σ > 1 − r. However, v ∈ C1+r already implies this. We
thus have the following result.

Theorem 8.2. Let v be a solution to the elliptic system (8.3), satisfying
the boundary conditions (8.45), assumed to be regular. Assume

(8.51) v ∈ C1+r, r > 0,

and

(8.52) gj ∈ Hs+k−1(X),

with s− 1/2 ∈ Z+ ∪ {0}. Then

(8.53) v ∈ Hk,s−1/2(I ×X).

In particular, taking s = 1/2, and noting that

(8.54) Hk,0(M) = Hk(M),

we can specialize this implication to

(8.55) gj ∈ Hk−1/2(X) =⇒ v ∈ Hk(I ×X),
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for k = 1, 2, 3, . . . , granted (8.51) (which makes the k = 1 case trivial).
Note that, in (8.36)–(8.38), one could replace the term ∥R(y)∥2Hs by the

product ∥R(y)∥Hs−1/2 · ∥v(y)∥Hs+1/2 ; then an absorption can be performed
in (8.38), and hence in (8.39)–(8.41) we can substitute ∥R∥20,s−1/2, and use

∥R∥2k−1,s−1/2 in (8.49).
We note that Theorem 8.2 is also valid for solutions to a nonhomogeneous

elliptic system, where R in (8.13) can contain an extra term, belonging to
Hk−1,s−1/2, and then the estimate (8.49), strengthened as indicated above,
and consequent regularity theorem are still valid. If (8.1) is generalized to

(8.56) ∂2yu = F (D2
xu,D

1
x∂yu) + f,

then a term of the form (0, f)t is added to (8.13).
In view of the estimate (8.11) comparing the symbol of K with that

obtained from the linearization of the original PDE (8.1), and the analogous
result that holds for Hj , derived from Gj , we deduce the following:

Proposition 8.3. Suppose that, at each point on ∂M , the linearization
of the boundary condition of (8.44) is regular for the linearization of the
PDE (8.1). Assume u ∈ C2+r, r > 0. Then the regularity estimate (8.49)
holds. In particular, this holds for the Dirichlet problem, for any scalar
(real) elliptic PDE of the form (8.1).

We next establish a strengthened version of Theorem 8.2 when u solves a
quasi-linear, second-order elliptic PDE, with a regular boundary condition.
Thus we are looking at the special case of (8.1) in which

(8.57)

F (y, x,D2
xu,D

1
x∂yu) = −

∑
j

Bj(x, y,D1u) ∂j∂yu

−
∑
j,k

Ajk(x, y,D1u) ∂j∂ku

+ F1(x, y,D
1u).

All the calculations done above apply, but some of the estimates are better.
This is because when we derive the equation (8.13), namely,

(8.58)
∂v

∂y
= K(v; y, x,Dx)v +R (R ∈ C∞)

for v = (v1, v2) = (Λu, ∂yu), (8.7) is improved to

(8.59) u ∈ C1+r+ =⇒ K ∈ Ar
0S

1
1,1 + S1−r

1,1 (r > 0).

Compare with (4.62). Under the hypothesis u ∈ C1+r+, one has the result
(8.17), Ã ∈ CrS1

cl, which before required u ∈ C2+r+. Also (8.20)–(8.22)
now hold for u ∈ C1+r+. Thus all the a priori estimates, down through
(8.49), hold, with C = C(∥u∥C1+r+). As before, we can delete the “+.”
One point that must be taken into consideration is that, for the estimates
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to work, one needs v(y) ∈ Hσ with σ > 1− r, and now this does not nec-
essarily follow from the hypothesis u ∈ C1+r. Hence we have the following
regularity result. Compare the interior regularity established in Theorem
4.5.

Theorem 8.4. Let u satisfy a second-order, quasi-linear elliptic PDE with
a regular boundary condition, of the form (8.45), for v = (Λu, ∂yu). Assume
that

(8.60) u ∈ C1+r ∩H1,σ, r > 0, r + σ > 1.

Then, for k = 0, 1, 2, . . . ,

(8.61) gj ∈ Hk−1/2(X) =⇒ v ∈ Hk(I ×X).

The Dirichlet boundary condition is regular (if the PDE is real and
scalar), and

(8.62) u(j) = fj ∈ Hk+s(X) =⇒ v ∈ Hk,s− 1
2
(I ×X)

if s > (1− r)/2. In particular,

(8.63)
u(j) = fj ∈ Hk+1/2(X) =⇒ v ∈ Hk(I ×X)

=⇒ u ∈ Hk+1(I ×X).

We consider now the further special case

(8.64)

F (y, x,D2
xu,D

1
x∂yu) = −

∑
j

Bj(x, y, u) ∂j∂yu

−
∑
j,k

Ajk(x, y, u) ∂j∂ku+ F1(x, y,D
1u).

In this case, when we derive the system (8.58), we have the implication

(8.65) u ∈ Cr+(M) =⇒ K ∈ Ar
0S

1
1,1 + S1−r

1,1 (r > 0).

Similarly, under this hypothesis, we have Ã ∈ CrS1
cl, and so forth. There-

fore we have the following:

Proposition 8.5. If u satisfies the PDE (8.1) with F given by (8.64),
then the conclusions of Theorem 8.4 hold when the hypothesis (8.60) is
weakened to

(8.66) u ∈ Cr ∩H1,σ, r + σ > 1.

Note that associated to this regularity is an estimate. For example, if u
satisfies the Dirichlet boundary condition, we have, for k ≥ 2,

(8.67) ∥u∥Hk(M) ≤ Ck(∥u∥Cr(M))
[
∥u|∂M∥Hk−1/2(∂M) + ∥u∥L2(M)

]
,
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where we have used Poincaré’s inequality to replace the H1,σ-norm of u by
the L2-norm on the right.
Let us see to what extent the results obtained here apply to solutions to

the minimal surface equation produced in §7. Recall the boundary problem
(7.8):

(8.68) ⟨∇u⟩2∆u−
∑
i,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0, u = g on ∂O,

where O is a strictly convex region in R2, with smooth boundary. For this
boundary problem, Theorem 8.4 applies, to yield the implication

(8.69) g ∈ Hk+1/2(∂O) =⇒ u ∈ Hk+1(O), k = 0, 1, 2, . . . ,

provided we know that

(8.70) u ∈ C1+r(O) ∩H1,σ(A), r > 0, r + σ > 1,

where A is a collar neighborhood of ∂O in O. Now, while we know that so-
lutions to the minimal surface equation are smooth inside O (having proved
that minimal surfaces are real analytic), we so far have only continuity of
a solution u on O, plus a Lipschitz bound on u

∣∣
∂O and a hope of obtaining

a bound in C1(O). We therefore have a gap to close to be able to apply
the results of this section to solutions of (8.68).
The material of the next two sections will close this gap. As we’ll see,

we will be able to treat (8.68), not only for dim O = 2, but also for dim
O = n > 2. Also, the gap will be closed on a number of other quasi-linear
elliptic PDE.

Exercises

1. Suppose u is a solution to a quasi-linear elliptic PDE of the form∑
ajk(x, u)∂j∂ku+ b(x, u,∇u) = 0 on M,

satisfying boundary conditions

B0(x, u)u = g0, B1(x, u,D)u = g1, on ∂M,

assumed to be regular. The operators Bj have order j. Generalizing (8.67),
show that, for any r > 0, k ≥ 2, there is an estimate

(8.71)

∥u∥Hk(M) ≤ Ck

(
∥u∥Cr(M)

)(
∥g0∥Hk−1/2(∂M) + ∥g1∥Hk−3/2(∂M) + ∥u∥L2(M)

)
.

2. Extend Theorem 8.4 to nonhomogeneous, quasi-linear equations,

(8.72)
∑

ajk(x,D
1u) ∂j∂ku+ b(x,D1u) = h(x),
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satisfying regular boundary conditions. If one uses the Dirichlet boundary

condition, u
∣∣∣
∂M

= g, show that

(8.73)

∥u∥Hk(M) ≤ Ck

(
∥u∥C1+r(M)

)(
∥g∥Hk−1/2(∂M) + ∥h∥Hk−2(M) + ∥u∥L2(M)

)
.

3. Give a proof of the mapping property (8.5).
4. Prove the Moser-type estimate (8.50), when s − 1/2 = ℓ ∈ Z+ ∪ {0}. (Hint.

Rework Propositions 3.2–3.9 of Chapter 13, with Hk replaced by Hk,ℓ.)

9. Elliptic regularity III (DeGiorgi-Nash-Moser theory)

As noted at the end of §8, there is a gap between conditions needed on the
solution of boundary problems for many nonlinear elliptic PDEs, in order to
obtain higher-order regularity, and conditions that solutions constructed by
methods used so far in this chapter have been shown to satisfy. One method
of closing this gap, that has proved useful in many cases, involves the
study of second-order, scalar, linear elliptic PDE, in divergence form, whose
coefficients have no regularity beyond being bounded and measurable.

In this section we establish regularity for a class of PDE Lu = f , for
second-order operators of the form (using the summation convention)

(9.1) Lu = b−1∂j
(
ajkb ∂ku

)
,

where (ajk(x)) is a positive-definite, bounded matrix and 0 < b0 ≤ b(x) ≤
b1, b scalar, and ajk, b are merely measurable. The breakthroughs on this
were first achieved by DeGiorgi [DeG] and Nash [Na2]. We will present
Moser’s derivation of interior bounds and Hölder continuity of solutions to
Lu = 0, from [Mo2], and then Morrey’s analysis of the nonhomogeneous
equation Lu = f and proof of boundary regularity, from [Mor2]. Other
proofs can be found in [GT] and [KS].

We make a few preliminary remarks on (9.1). We will use ajk to define
an inner product of vectors:

(9.2) ⟨V,W ⟩ = Vja
jkWk,

and use b dx = dV as the volume element. In case gjk(x) is a metric tensor,
if one takes ajk = gjk and b = g1/2, then (9.1) defines the Laplace operator.
For a compactly supported function w,

(9.3) (Lu,w) = −
∫

⟨∇u,∇w⟩ dV.

The behavior of L on a nonlinear function of u, v = f(u), plays an
important role in estimates; we have

(9.4) v = f(u) =⇒ Lv = f ′(u)Lu+ f ′′(u)|∇u|2,
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where we set |V |2 = ⟨V, V ⟩. Also, taking w = ψ2u in (9.3) gives the
following important identity. If Lu = g on an open set Ω and ψ ∈ C1

0 (Ω),
then

(9.5)

∫
ψ2|∇u|2 dV = −2

∫
⟨ψ∇u, u∇ψ⟩ dV −

∫
ψ2gu dV.

Applying Cauchy’s inequality to the first term on the right yields the useful
estimate

(9.6)
1

2

∫
ψ2|∇u|2 dV ≤ 2

∫
|u|2|∇ψ|2 dV −

∫
ψ2gu dV.

Given these preliminaries, we are ready to present an approach to sup norm
estimates known as “Moser iteration.” Once this is done (in Theorem 9.3
below), we will then tackle Hölder estimates.

Figure 9.1

To implement Moser iteration, consider a nested sequence of open sets
with smooth boundary

(9.7) Ω0 ⊃ · · · ⊃ Ωj ⊃ Ωj+1 ⊃ · · ·

with intersection O, as illustrated in Fig. 9.1. We will make the geometrical
hypothesis that the distance of any point on ∂Ωj+1 to ∂Ωj is ∼ Cj−2. We
want to estimate the sup norm of a function v on O in terms of its L2-norm
on Ω0, assuming

(9.8) v > 0 is a subsolution of L (i.e., Lv ≥ 0).

In view of (9.4), an example is

(9.9) v = (1 + u2)1/2, Lu = 0.
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We will obtain such an estimate in terms of the Sobolev constants γ(Ωj)
and Cj , defined below. Ingredients for the analysis include the following
two lemmas, the first being a standard Sobolev inequality.

Lemma 9.1. For v ∈ H1(Ωj), κ ≤ n/(n− 2),

(9.10) ∥vκ∥2L2(Ωj)
≤ γ(Ωj)

[
∥∇v∥2κL2(Ωj)

+ ∥v∥2κL2(Ωj)

]
.

The next lemma follows from (9.6) if we take ψ = 1 on Ωj+1, tending
roughly linearly to 0 on ∂Ωj .

Lemma 9.2. If v > 0 is a subsolution of L, then, with Cj = C(Ωj ,Ωj+1),

(9.11) ∥∇v∥L2(Ωj+1) ≤ Cj∥v∥L2(Ωj).

Under the geometrical conditions indicated above on Ωj , we can assume

(9.12) γ(Ωj) ≤ γ0, Cj ≤ C(j2 + 1).

Putting together the two lemmas, we see that when v satisfies (9.8),

(9.13)
∥vκ∥2L2(Ωj+1)

≤ γ(Ωj+1)
[
C2κ

j ∥v∥2κL2(Ωj)
+ ∥v∥2κL2(Ωj+1)

]
≤ γ0(C

2κ
j + 1)∥v∥2κL2(Ωj)

.

Fix κ ∈ (1, n/(n− 2)]. Now, if v satisfies (9.8), so does

(9.14) vj = vκ
j

,

by (9.4). Note that vj+1 = vκj . Now let

(9.15) Nj = ∥v∥L2κj
(Ωj)

= ∥vj∥1/κ
j

L2(Ωj)
,

so

(9.16) ∥v∥L∞(O) ≤ lim sup
j→∞

Nj .

If we apply (9.13) to vj , we have

(9.17) ∥vj+1∥2L2(Ωj+1)
≤ γ0(C

2κ
j + 1)∥vj∥2κL2(Ωj)

.

Note that the left side is equal to N2κj+1

j+1 , and the norm on the right is

equal to N2κj+1

j . Thus (9.17) is equivalent to

(9.18) N2
j+1 ≤

[
γ0(C

2κ
j + 1)

]1/κj+1

N2
j .
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By (9.12), C2κ
j + 1 ≤ C0(j

4κ + 1), so

(9.19)

lim sup
j→∞

N2
j ≤

∞∏
j=0

[
γ0C0(j

4κ + 1)
]1/κj+1

N2
0

≤ (γ0C0)
1/(κ−1)

[
exp

∞∑
j=0

κ−j−1 log(j4κ + 1)
]
N2

0

≤ K2N2
0 ,

for finite K. This gives Moser’s sup-norm estimate:

Theorem 9.3. If v > 0 is a subsolution of L, then

(9.20) ∥v∥L∞(O) ≤ K∥v∥L2(Ω0),

where K = K(γ0, C0, n).

Hölder continuity of a solution to Lu = 0 will be obtained as a conse-
quence of the following “Harnack inequality.” Let Bρ = {x : |x| < ρ}.

Proposition 9.4. Let u ≥ 0 be a solution of Lu = 0 in B2r. Pick c0 ∈
(0,∞). Suppose

(9.21) meas{x ∈ Br : u(x) ≥ 1} > c−1
0 rn.

Then there is a constant c > 0 such that

(9.22) u(x) > c−1 in Br/2.

This will be established by examining v = f(u) with

(9.23) f(u) = max{− log(u+ ε), 0},

where ε is chosen in (0, 1). Note that f is convex, so v is a subsolution.
Our first goal will be to estimate the L2(Br)-norm of ∇v. Once this is
done, Theorem 9.3 will be applied to estimate v from above (hence u from
below) on Br/2.
We begin with a variant of (9.5), obtained by taking w = ψ2f ′(u) in

(9.3). The identity (for smooth f) is

(9.24)

∫
ψ2f ′′|∇u|2 dV + 2

∫
⟨ψf ′∇u,∇ψ⟩ dV = −(Lu, ψ2f ′).

This vanishes if Lu = 0. Applying Cauchy’s inequality to the second inte-
gral, we obtain

(9.25)

∫
ψ2
[
f ′′(u)− δ2f ′(u)2

]
|∇u|2 dV ≤ 1

δ2

∫
|∇ψ|2 dV.



9. Elliptic regularity III (DeGiorgi-Nash-Moser theory) 91

Now the function f(u) in (9.23) has the property that

(9.26) h = −e−f is a convex function;

indeed, in this case h(u) = max{−(u+ ε),−1}. Thus

(9.27) f ′′ − (f ′)2 = efh′′ ≥ 0.

Thus f ′′(u)|∇u|2 ≥ f ′(u)2|∇u|2 = |∇v|2 if v = f(u). Taking δ2 = 1/2 in
(9.25), we obtain

(9.28)

∫
ψ2|∇v|2 dV ≤ 4

∫
|∇ψ|2 dV,

after one overcomes the minor problem that f ′ has a jump discontinuity.
If we pick ψ to = 1 on Br and go linearly to 0 on ∂B2r, we obtain the
estimate

(9.29)

∫
Br

|∇v|2 dV ≤ Crn−2,

for v = f(u), given that Lu = 0 and that (9.26) holds.
Now the hypothesis (9.21) implies that v vanishes on a subset of Br of

measure > c−1
0 rn. Hence there is an elementary estimate of the form

(9.30) r−n

∫
Br

v2 dV ≤ Cr2−n

∫
Br

|∇v|2 dV,

which is bounded from above by (9.29). Now Theorem 9.3, together with
a simple scaling argument, gives

(9.31) v(x)2 ≤ Cr−n

∫
Br

v2 dV ≤ C2
1 , x ∈ Br/2,

so

(9.32) u+ ε ≥ e−C1 , for x ∈ Br/2,

for all ε ∈ (0, 1). Taking ε→ 0, we have the proof of Proposition 9.4.
We remark that Moser obtained a stronger Harnack inequality in [Mo3],

by a more elaborate argument. In that work, the hypothesis (9.21) is
weakened to

(9.21a) sup
Br

u(x) ≥ 1.

To deduce the Hölder continuity of a solution to Lu = 0 given Proposition
9.4 is fairly simple. Following [Mo2], who followed DeGiorgi, we have from
(9.20) a bound

(9.33) |u(x)| ≤ K
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on any compact subset O of Ω0, given u ∈ H1(Ω0), Lu = 0. Fix x0 ∈ O,
such that Bρ(x0) ⊂ O, and, for r ≤ ρ, let

(9.34) ω(r) = sup
Br

u(x)− inf
Br

u(x),

where Br = Br(x0). Clearly, ω(ρ) ≤ 2K. Adding a constant to u, we can
assume

(9.35) sup
Bρ

u(x) = − inf
Bρ

u(x) =
1

2
ω(ρ) =M.

Then u+ = 1 + u/M and u− = 1 − u/M are also annihilated by L. They
are both ≥ 0 and at least one of them satisfies the hypothesis (9.21), with
r = ρ/2. If, for example, u+ does, then Proposition 9.4 implies

(9.36) u+(x) > c−1 in Bρ/4,

so

(9.37) −M
(
1− 1

c

)
≤ u(x) ≤M in Bρ/4.

Hence

(9.38) ω(ρ/4) ≤
(
1− 1

2c

)
ω(ρ),

which gives Hölder continuity:

(9.39) ω(r) ≤ ω(ρ)
( r
ρ

)α
, α = − log4

(
1− 1

2c

)
.

We state the result formally.

Theorem 9.5. If u ∈ H1(Ω0) solves Lu = 0, then for every compact O in
Ω0, there is an estimate

(9.40) ∥u∥Cα(O) ≤ C∥u∥L2(Ω0).

It will be convenient to replace (9.40) by an estimate involving Morrey
spaces, which are discussed in Appendix A at the end of this chapter. We
claim that under the hypotheses of Theorem 9.5,

(9.41) ∇u
∣∣
O ∈Mp

2 , p =
n

1− α
,

where the Morrey space Mp
2 consists of functions f satisfying the q = 2

case of (A.2). The property (9.41) is stronger than (9.40), by Morrey’s
lemma (Lemma A.1). To see (9.41), if BR is a ball of radius R centered at
y, B2R ⊂ Ω, then let c = u(y) and replace u by u(x)− c in (9.6), to get

1

2

∫
ψ2|∇u|2 dV ≤ 2

∫
|u(x)− c|2|∇ψ|2 dV.
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Taking ψ = 1 on BR, going linearly to 0 on ∂B2R, gives

(9.42)

∫
BR

|∇u|2 dV ≤ C Rn−2+2α,

as needed to have (9.41).
So far we have dealt with the homogeneous equation, Lu = 0. We now

turn to regularity for solutions to a nonhomogeneous equation. We will
follow a method of Morrey, and Morrey spaces will play a very important
role in this analysis. We take L as in (9.1), with ajk measurable, satisfying

(9.43) 0 < λ0|ξ|2 ≤
∑

ajk(x)ξjξk ≤ λ1|ξ|2,

while for simplicity we assume b, b−1 ∈ Lip(Ω). We consider a PDE

(9.44) Lu = f.

It is clear that, for u ∈ H1
0 (Ω),

(9.45) (Lu, u) ≥ C
∑

∥∂ju∥2L2 ,

so we have an isomorphism

(9.46) L : H1
0 (Ω)

≈−→ H−1(Ω).

Thus, for any f ∈ H−1(Ω), (9.44) has a unique solution u ∈ H1
0 (Ω). One

can write such f as

(9.47) f =
∑

∂jgj , gj ∈ L2(Ω).

The solution u ∈ H1
0 (Ω) then satisfies

(9.48) ∥u∥2H1(Ω) ≤ C
∑

∥gj∥2L2 .

Here C depends on Ω, λ0, λ1, and b ∈ Lip(Ω).
One can also consider the boundary problem

(9.49) Lv = 0 on Ω, v = w on ∂Ω,

given w ∈ H1(Ω), where the latter condition means v−w ∈ H1
0 (Ω). Indeed,

setting v = u + w, the equation for u is Lu = −Lw, u ∈ H1
0 (Ω). Thus

(9.49) is uniquely solvable, with an estimate

(9.50) ∥∇v∥L2(Ω) ≤ C∥∇w∥L2(Ω),

where C has a dependence as in (9.48).
Our present goal is to give Morrey’s proof of the following local regularity

result.
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Theorem 9.6. Suppose u ∈ H1(Ω) solves (9.44), with f =
∑
∂jgj , gj ∈

Mq
2 (Ω), q > n, that is,

(9.51)

∫
Br

|gj |2 dV ≤ K2
1

( r
R

)n−2+2µ

, µ = 1− n

q
∈ (0, 1).

Assume L is of the form (9.1), where the coefficients ajk satisfy (9.43) and
b, b−1 ∈ Lip(Ω). Let O ⊂⊂ Ω, and assume µ < µ0 = α, for which Theorem
9.5 holds. Then u ∈ Cµ(O); more precisely, ∇u ∈Mq

2 (O), that is,

(9.52)

∫
Br

|∇u|2 dV ≤ K2
2

( r
R

)n−2+2µ

.

Morrey established this by using (9.48), (9.50), and an elegant dilation
argument, in concert with Theorem 9.5. For this, suppose BR = BR(y) ⊂ Ω
for each y ∈ O. We can write u = U +H on BR, where

(9.53)
LU =

∑
∂jgj on BR, U ∈ H1

0 (BR),

LH = 0 on BR, H − u ∈ H1
0 (BR),

and we have

(9.54) ∥∇U∥L2(BR) ≤ C1∥g∥L2(BR), ∥∇H∥L2(BR) ≤ C2∥∇u∥L2(BR),

where ∥g∥2L2 =
∑

∥gj∥2L2 . Let us set

(9.55) ∥F∥r = ∥F∥L2(Br).

Also let κ(gj , R) be the best constant K1 for which (9.51) is valid for
0 < r ≤ R. If gτ (x) = g(τx), note that

κ(gτ , τ
−1S) = τn/2κ(g, S).

Now define

(9.56)
φ(r) = sup

{
∥∇U∥rS : U ∈ H1

0 (BS), LU =
∑

∂jgj , on BS ,

κ(gj , S) ≤ 1, 0 < S ≤ R
}
.

Let us denote by φS(r) the sup in (9.56) with S fixed, in (0, R]. Then
φS(r) coincides with φR(r), with L replaced by the dilated operator, com-
ing from the dilation taking BS to BR. More precisely, the dilated operator
is

(9.57) LS = bS ∂j a
jk
S b−1

S ∂k,

with

ajkS (x) = ajk(SR−1x), bS(x) = b(SR−1x),
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assuming 0 has been arranged to be the center of BR. To see this, note
that if τ = S/R, Uτ (x) = τ−1U(τx), and gjτ (x) = gj(τx), then

(9.58) LU =
∑

∂jgj ⇐⇒ LSUτ =
∑

∂jgjτ .

Also, ∇Uτ (x) = (∇U)(τx), so ∥∇Uτ∥S/τ = τn/2∥∇U∥S .
Now for this family LS , one has a uniform bound on C in (9.48); hence

φ(r) is finite for r ∈ (0, 1]. We also note that the bounds in (9.40) and
(9.42) are uniformly valid for this family of operators. Theorem 9.6 will be
proved when we show that

(9.59) φ(r) ≤ A rn/2−1+µ.

In fact, this will give the estimate (9.52) with u replaced by U ; meanwhile
such an estimate with u replaced by H is a consequence of (9.42). Let H
satisfy (9.42) with α = µ0. We take µ < µ0.
Pick S ∈ (0, R] and pick gj satisfying (9.51), with R replaced by S

and K1 by K. Write the U of (9.53) as U = US + HS on BS , where
US ∈ H1

0 (BS), LUS = LU =
∑
∂jgj on BS . Clearly, (9.51) implies

(9.60)

∫
Br

|gj |2 dV ≤ K2
(S
R

)n−2+2µ( r
S

)n−2+2µ

.

Thus, as in (9.54) (and recalling the definition of φ), we have

(9.61)
∥∇US∥S ≤ A1K

(S
R

)n/2−1+µ

,

∥∇HS∥S ≤ A2∥∇U∥S ≤ A2Kφ
(S
R

)
.

Now, suppose 0 < r < S < R. Then, applying (9.42) to HS , we have

(9.62)
∥∇U∥r ≤ ∥∇US∥r + ∥∇HS∥r

≤ K
(S
R

)n/2−1+µ

φ
( r
S

)
+A3Kφ

(S
R

)( r
S

)n/2−1+µ0

.

Therefore, setting s = r/R, t = S/R, we have the inequality

(9.63) φ(s) ≤ tn/2−1+µφ
(s
t

)
+A3φ(t)

(s
t

)n/2−1+µ0

,

valid for 0 < s < t ≤ 1. Since it is clear that φ(r) is monotone and finite on
(0, 1], it is an elementary exercise to deduce from (9.63) that φ(r) satisfies
an estimate of the form (9.59), as long as µ < µ0. This proves Theorem
9.6.
Now that we have interior regularity estimates for the nonhomogeneous

problem, we will be able to use a few simple tricks to establish regularity
up to the boundary for solutions to the Dirichlet problem

(9.64) Lu =
∑

∂jgj , u = f on ∂Ω,
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where L has the form (9.1), Ω is compact with smooth boundary, f ∈
Lip(∂Ω), and gj ∈ Lq(Ω), with q > n. First, extend f to f ∈ Lip(Ω).
Then u = v + f , where v solves

(9.65) Lv =
∑

∂jhj , v = 0 on ∂Ω,

where

(9.66) ∂jhj = ∂jgj − b−1∂j
(
ajkb ∂kf

)
.

We will assume b ∈ Lip(Ω); then hj can be chosen in Lq also.
The class of equations (9.65) is invariant under smooth changes of vari-

ables (indeed, invariant under Lipschitz homeomorphisms with Lipschitz
inverses, having the further property of preserving volume up to a factor
in Lip(Ω)). Thus make a change of variables to flatten out the boundary
(locally), so we consider a solution v ∈ H1 to (9.65) in xn > 0, |x| ≤ R. We
can even arrange that b = 1. Now extend v to negative xn, to be odd under
the reflection xn 7→ −xn. Also extend ajk(x) to be even when j, k < n or
j = k = n, and odd when j or k = n (but not both). Extend hj to be
odd for j < n and even for j = n. With these extensions, we continue to
have (9.65) holding, this time in the ball |x| ≤ R. Thus interior regularity
applies to this extension of v, yielding Hölder continuity. The following is
hence proved.

Theorem 9.7. Let u ∈ H1(Ω) solve the PDE

(9.67)
∑

b−1∂j
(
ajkb ∂ku

)
=
∑

∂jgj on Ω, u = f on ∂Ω.

Assume gj ∈ Lq(Ω) with q > n = dim Ω, and f ∈ Lip(∂Ω). Assume
that b, b−1 ∈ Lip(Ω) and that (ajk) is measurable and satisfies the uniform
ellipticity condition (9.43). Then u has a Hölder estimate

(9.68) ∥u∥Cµ(Ω) ≤ C1

(∑
∥gj∥Lq(Ω) + ∥f∥Lip(∂Ω)

)
.

More precisely, if µ = 1−n/q ∈ (0, 1) is sufficiently small, then ∇u belongs
to the Morrey space Mq

2 (Ω), and

(9.69) ∥∇u∥Mq
2 (Ω) ≤ C2

(∑
∥gj∥Lq(Ω) + ∥f∥Lip(∂Ω)

)
.

In these estimates, Cj = Cj(Ω, λ1, λ2, b).

So far in this section we have looked at differential operators of the form
(9.1) in which (ajk) is symmetric, but unlike the nondivergence case, where
ajk(x) ∂j∂ku = akj(x) ∂j∂ku, nonsymmetric cases do arise; we will see an
example in §15. Thus we briefly describe the extension of the analysis of
(9.1) to

(9.70) Lu = b−1 ∂j
(
[ajk + ωjk]b ∂ku

)
.
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We make the same hypotheses on ajk(x) and b(x) as before, and we assume
(ωjk) is antisymmetric and bounded:

(9.71) ωjk(x) = −ωkj(x), ωjk ∈ L∞(Ω).

We thus have both a positive symmetric form and an antisymmetric form
defined at almost all x ∈ Ω:

(9.72) ⟨V,W ⟩ = Vja
jk(x)Wk, [V,W ] = Vjω

jk(x)Wk.

We use the subscript L2 to indicate the integrated quantities:

(9.73) ⟨v, w⟩L2 =

∫
⟨v, w⟩ dV, [v, w]L2 =

∫
[v, w] dV.

Then, in place of (9.3), we have

(9.74) (Lu,w) = −⟨∇u,∇w⟩L2 − [∇u,∇w]L2 .

The formula (9.4) remains valid, with |∇u|2 = ⟨∇u,∇u⟩, as before. Instead
of (9.5), we have

(9.75)

∫
ψ2|∇u|2 dV = −2⟨ψ∇u, u∇ψ⟩L2−2[ψ∇u, u∇ψ]L2−

∫
ψ2gu dV,

when Lu = g on Ω and ψ ∈ C1
0 (Ω). This leads to a minor change in (9.6):

(9.76)
1

2

∫
ψ2|∇u|2 dV ≤ (2 + C0)

∫
|u|2|∇ψ|2 dV −

∫
ψ2gu dV,

where C0 is determined by the operator norm of (ωjk), relative to the inner
product ⟨ , ⟩.
From here, the proofs of Lemmas 9.1 and 9.2, and that of Theorem 9.3,

go through without essential change, so we have the sup-norm estimate
(9.20). In the proof of the Harnack inequality, (9.24) is replaced by

(9.77)

∫
ψ2f ′′|∇u|2 dV + 2⟨ψf ′∇u,∇ψ⟩L2 + 2[ψf ′∇u,∇ψ]L2

= −(Lu, ψ2f ′).

Hence (9.25) still works if you replace the factor 1/δ2 by (1+C1)/δ
2, where

again C1 is estimated by the size of (ωjk). Thus Proposition 9.4 extends
to our present case, and hence so does the key regularity result, Theorem
9.5. Let us record what has been noted so far:

Proposition 9.8. Assume Lu has the form (9.70), where (ajk) and b
satisfy the hypotheses of Theorem 9.5, and (ωjk) satisfies (9.71). If u ∈
H1(Ω0) solves Lu = 0, then, for every compactO ⊂ Ω0, there is an estimate

(9.78) ∥u∥Cα(O) ≤ C∥u∥L2(Ω0).
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The Morrey space estimates go through as before, and the analysis of
(9.64) is also easily modified to incorporate the change in L. Thus we have
the following:

Proposition 9.9. The boundary regularity of Theorem 9.7 extends to the
operators L of the form (9.70), under the hypothesis (9.71) on (ωjk).

Exercises

1. Given the strengthened form of the Harnack inequality, in which the hypoth-
esis (9.21) is replaced by (9.21a), produce a shorter form of the argument in
(9.33)–(9.40) for Hölder continuity of solutions to Lu = 0.

2. Show that in the statement of Theorem 9.7,
∑
∂jgj in (9.67) can be replaced

by

h+
∑

∂jgj , gj ∈ Lq(Ω), h ∈ Lp(Ω), q > n, p >
n

2
.

(Hint: Write h =
∑
∂jhj for some hj ∈ Lq(Ω).)

3. With L given by (9.1), consider

L1 = L+X, X =
∑

Aj(x) ∂j .

Show that in place of (9.4) and (9.6), we have

v = f(u) =⇒ L1v = f ′(u)L1u+ f ′′(u)|∇u|2

and

1

2

∫
ψ2|∇u|2 dV ≤

∫ (
4|∇ψ|2 + 2Aψ2

)
|u|2 dV −

∫
ψ2u(L1u) dV,

where A(x)2 =
∑
Aj(x)

2.
Extend the sup-norm estimate of Theorem 9.3 to this case, given Aj ∈ L∞(Ω).

4. With L given by (9.1), suppose u solves

Lu+
∑

∂j
(
Aj(x)u

)
+ C(x)u = g on Ω ∈ Rn.

Supppose we have

Aj ∈ Lq(Ω), C ∈ Lp(Ω), g ∈ Lp(Ω), p >
n

2
, q > n,

and suppose we also have

∥u∥H1(Ω) + ∥u∥L∞(Ω) ≤ K, u
∣∣∣
∂Ω

= f ∈ Lip(∂Ω).

Show that, for some µ > 0, u ∈ Cµ(Ω). (Hint: Apply Theorem 9.7, together
with Exercise 2.)

10. The Dirichlet problem for quasi-linear elliptic equations

The primary goal in this section is to establish the existence of smooth
solutions to the Dirichlet problem for a quasi-linear elliptic PDE of the
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form

(10.1)
∑

Fpjpk
(∇u)∂j∂ku = 0 on Ω, u = φ on ∂Ω.

More general equations will also be considered. As noted in (7.32), this is
the PDE satisfied by a critical point of the function

(10.2) I(u) =

∫
Ω

F (∇u) dx

defined on the space

V 1
φ = {u ∈ H1(Ω) : u = φ on ∂Ω}.

Assume φ ∈ C∞(Ω). We assume F is smooth and satisfies

(10.3) A1(p)|ξ|2 ≤
∑

Fpjpk
(p)ξjξk ≤ A2(p)|ξ|2,

with Aj : Rn → (0,∞), continuous.
We use the method of continuity, showing that, for each τ ∈ [0, 1], there

is a smooth solution to

(10.4) Φτ (D
2u) = 0 on Ω, u = φτ on ∂Ω,

where Φ1(D
2u) = Φ(D2u) is the left side of (10.1) and φ1 = φ. We arrange

a situation where (10.4) is clearly solvable for τ = 0. For example, we might
take φτ ≡ φ and

(10.5) Φτ (D
2u) = τΦ(D2u) + (1− τ)∆u =

∑
Ajk

τ (∇u) ∂j∂ku,

with

(10.6) Ajk
τ (p) = ∂pj

∂pk

[
τF (p) +

1

2
(1− τ)|p|2

]
.

Another possibility is to take

(10.7) Φτ (D
2u) = Φ(D2u), φτ (x) = τφ(x),

since at τ = 0 we have the solution u = 0 in this case.
Let J be the largest interval containing {0} such that (10.7) has a solution

u = uτ ∈ C∞(Ω) for each τ ∈ J . We will show that J is all of [0, 1] by
showing it is both open and closed in [0, 1]. We will deal specifically with
the method (10.5)–(10.6), but a similar argument can be applied to the
method (10.7).

Demonstrating the openness of J is the relatively easy part.

Lemma 10.1. If τ0 ∈ J , then, for some ε > 0, [τ0, τ0 + ε) ⊂ J .

Proof. Fix k large and define

(10.8) Ψ : [0, 1]× V k
φ −→ Hk−2(Ω)
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by Ψ(τ, u) = Φτ (D
2u), where

(10.9) V k
φ = {u ∈ Hk(Ω) : u = φ on ∂Ω}.

This map is C1, and its derivative with respect to the second argument is

(10.10) D2Ψ(τ0, u)v = Lv,

where

(10.11) L : V k
0 = Hk ∩H1

0 −→ Hk−2(Ω)

is given by

(10.12) Lv =
∑

∂jA
jk
τ0 (∇u(x)) ∂kv.

L is an elliptic operator with coefficients in C∞(Ω) when u = uτ0 , clearly
an isomorphism in (10.11). Thus, by the inverse function theorem, for τ
close enough to τ0, there will be uτ , close to uτ0 , such that Ψ(τ, uτ ) = 0.
Since uτ ∈ Hk(Ω) solves the regular elliptic boundary problem (10.4), if
we pick k large enough, we can apply the regularity result of Theorem 8.4
to deduce uτ ∈ C∞(Ω).

The next task is to show that J is closed. This will follow from a sufficient
a priori bound on solutions u = uτ , τ ∈ J . We start with fairly weak
bounds. First, the maximum principle implies

(10.13) ∥u∥L∞(M) = ∥φ∥L∞(∂M),

for each u = uτ , τ ∈ J .
Next we estimate derivatives. Each wℓ = ∂ℓu satisfies

(10.14)
∑

∂jA
jk(∇u)∂kwℓ = 0,

where Ajk(∇u) is given by (10.6); we drop the subscript τ .
The next ingredient is a “boundary gradient estimate,” of the form

(10.15) |∇u(x)| ≤ K, for x ∈ ∂Ω,

As we have seen in the discussion of the minimal surface equation in §7,
whether this holds depends on the nature of the PDE and the region M .
For now, we will make (10.15) a hypothesis. Then the maximum principle
applied to (10.14) yields a uniform bound

(10.16) ∥∇u∥L∞(Ω) ≤ K.

For the next step of the argument, we will suppose for simplicity that
Ω = Tn−1 × [0, 1], for the present, and discuss the modification of the
argument for the general case later. Under this assumption, in addition to
(10.14), we also have

(10.17) wℓ = ∂ℓφ on ∂Ω, for 1 ≤ ℓ ≤ n− 1,
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since ∂ℓ is tangent to ∂Ω for 1 ≤ ℓ ≤ n− 1.
Now we can say that Theorem 9.7 applies to uℓ = ∂ℓu, for 1 ≤ ℓ ≤ n−1.

Thus there is an r > 0 for which we have bounds

(10.18) ∥wℓ∥Cr(Ω) ≤ K, 1 ≤ ℓ ≤ n− 1.

Let us note that Theorem 9.7 yields the bounds

(10.19) ∥∇wℓ∥Mp
2 (Ω) ≤ K ′, 1 ≤ ℓ ≤ n− 1,

which are more precise than (10.18); here 1 − r = n/p. Away from the
boundary, such a property on all first derivatives of a solution to (10.1) leads
to the applicability of Schauder estimates to establish interior regularity.

In the case of examining regularity at the boundary, more work is re-
quired since (10.18) does not include a derivative ∂n transverse to the
boundary. Now, using (10.4), we can solve for ∂2nu in terms of ∂j∂ku, for
1 ≤ j ≤ n, 1 ≤ k ≤ n− 1. This will lead to the estimate

(10.20) ∥u∥Cr+1(Ω) ≤ K,

as we will now show.
In order to prove (10.20), note that, by (10.19),

(10.21) ∂k∂ℓu ∈Mp
2 (Ω), for 1 ≤ ℓ ≤ n− 1, 1 ≤ k ≤ n,

where p ∈ (n,∞) and r ∈ (0, 1) are related by 1 − r = n/p. Now the
PDE (10.4) enables us to write ∂2nu as a linear combination of the terms
in (10.21), with L∞(Ω)-coefficients. Hence

(10.22) ∂2nu ∈Mp
2 (Ω),

so

(10.23) ∇(∂nu) ∈Mp
2 (Ω) ⊂Mp(Ω).

Morrey’s lemma (Lemma A.1) states that

(10.24) ∇v ∈Mp(Ω) =⇒ v ∈ Cr(Ω) if r = 1− n

p
∈ (0, 1).

Thus

(10.25) ∂nu ∈ Cr(Ω),

and this together with (10.18) yields (10.20). From this, plus the Morrey
space inclusions (10.21)–(10.22), we have the hypothesis (8.60) of Theorem
8.4, with r > 0 and σ = 1. Thus, by Theorem 8.4, and the associated
estimate (8.73), we deduce estimates

(10.26) ∥u∥Hk(Ω) ≤ Kk,

for k = 2, 3, . . . . Therefore, if [0, τ1) ⊂ J , as τν ↗ τ1, we can pick a sub-
sequence of uτν converging weakly in Hk+1(Ω), hence strongly in Hk(Ω).
If k is picked large enough, the limit u1 is an element of Hk+1(Ω), solving
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(10.4) for τ = τ1, and furthermore the regularity result Theorem 8.4 is
applicable; hence u1 ∈ C∞(Ω). This implies that J is closed.

Hence we have a proof of the solvability of the boundary problem (10.1),
for the special case Ω = Tn−1 × [0, 1], granted the validity of the boundary
gradient estimate (10.15).

As noted, to have ∂ℓ, 1 ≤ ℓ ≤ n − 1, tangent to ∂M , we required Ω =
Tn−1 × [0, 1]. For Ω ⊂ Rn, if X =

∑
bℓ∂ℓ is a smooth vector field tangent

to ∂Ω, then uX = Xu solves, in place of (10.14),

(10.27)
∑

∂jA
jk(∇u) ∂kuX =

∑
∂jFj ,

with Fj ∈ L∞ calculable in terms of ∇u. Thus Theorem 9.7 still applies,
and the rest of the argument above extends easily. We have the following
result.

Theorem 10.2. Let F : Rn → R be a smooth function satisfying (10.3).
Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let φ ∈
C∞(∂Ω). Then the Dirichlet problem (10.1) has a unique solution u ∈
C∞(Ω), provided the boundary gradient estimate (10.15) is valid for all
solutions u = uτ to (10.4), for τ ∈ [0, 1].

Proof. Existence follows from the fact that J is open and closed in [0, 1],
and nonempty, as 0 ∈ J . Uniqueness follows from the maximum principle
argument used to establish Proposition 7.2.

Let us record a result that implies uniqueness.

Proposition 10.3. Let Ω be any bounded domain in Rn. Assume that
uν ∈ C∞(Ω) ∩ C(Ω) are real-valued solutions to

(10.28) G(∇uν , ∂2uν) = 0 on Ω, uν = gν on ∂Ω,

for ν = 1, 2, where G = G(p, ζ), ζ = (ζjk). Then, under the ellipticity
hypothesis

(10.29)
∑ ∂G

∂ζjk
(p, ζ) ξjξk ≥ A(p)|ξ|2 > 0,

we have

(10.30) g1 ≤ g2 on ∂Ω =⇒ u1 ≤ u2 on Ω.

Proof. Same as Proposition 7.2. As shown there, v = u2−u1 satisfies the
identity Lv = G(∇u2, ∂2u2)−G(∇u1, ∂2u1), and L satisfies the conditions
for the maximum principle, in the form of Proposition 2.1 of Chapter 5,
given (10.29).
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It is also useful to note that we can replace the first part of (10.28) by

(10.31) G(∇u2, ∂2u2) ≤ G(∇u1, ∂2u1),

and the maximum principle still yields the conclusion (10.30).
Since the boundary gradient estimate was verified in Proposition 7.5

for the minimal surface equation whenever Ω ⊂ R2 has strictly convex
boundary, we have existence of smooth solutions in that case. In fact, the
proof of Proposition 7.5 works when Ω ⊂ Rn is strictly convex, so that
∂Ω has positive Gauss curvature everywhere. We hence have the following
result.

Theorem 10.4. If Ω ⊂ Rn is a bounded domain with smooth boundary
that is strictly convex, then the Dirichlet problem

(10.32)
⟨
∇u
⟩2
∆u−

∑
j,k

∂u

∂xj

∂u

∂xk

∂2u

∂xj∂xk
= 0, u = g on ∂Ω,

for a minimal hypersurface, has a unique solution u ∈ C∞(Ω), given g ∈
C∞(∂Ω).

In Proposition 7.1, it was shown that when n = 2, the equation (10.32)
has a solution u ∈ C∞(Ω)∩C(Ω), and Proposition 7.2 showed that such a
solution must be unique. Hence in the case n = 2, Theorem 10.4 implies
the regularity at ∂Ω for this solution, given φ ∈ C∞(∂Ω).
We now look at other cases where the boundary gradient estimate can

be verified, by extending the argument used in Proposition 7.5. Some
terminology is useful. Let us be given a nonlinear operator F (D2u), and
g ∈ C∞(∂Ω). We say a function B+ ∈ C2(Ω) is an upper barrier at y ∈ ∂Ω
(for g), provided

(10.33)
F (D2B+) ≤ 0 on Ω, B+ ∈ C1(Ω),

B+ ≥ g on ∂Ω, B+(y) = g(y).

Similarly, we say B− ∈ C2(Ω) is a lower barrier at y (for g), provided

(10.34)
F (D2B−) ≥ 0 on Ω, B− ∈ C1(Ω),

B− ≤ g on ∂Ω, B−(y) = g(y).

An alternative expression is that g has an upper (or lower) barrier at y.
Note well the requirement that B± belong to C1(Ω). We say g has upper
(resp., lower) barriers along ∂Ω if there are upper (resp., lower) barriers for
g at each y ∈ ∂Ω, with uniformly bounded C1(Ω)-norms. The following
result parallels Proposition 7.5.

Proposition 10.5. Let Ω ⊂ Rn be a bounded region with smooth bound-
ary. Consider a nonlinear differential operator of the form F (D2u) =
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G(∇u, ∂2u), satisfying the ellipticity hypothesis (10.29). Assume that g
has upper and lower barriers along ∂Ω, whose gradients are everywhere
bounded by K. Then a solution u ∈ C2(Ω) ∩ C(Ω) to F (D2u) = 0, u =
g on ∂Ω, satisfies

(10.35) |u(y)− u(x)| ≤ 2K|y − x|, y ∈ ∂Ω, x ∈ Ω.

If u ∈ C2(Ω) ∩ C1(Ω), then

(10.36) |∇u(x)| ≤ 2K, x ∈ Ω.

Proof. Same as Proposition 7.5. If B±y are the barriers for g at y ∈ ∂Ω,
then

B−y(x) ≤ u(x) ≤ B+y(x), x ∈ Ω,

which readily yields (10.35). Note that wℓ = ∂ℓu satisfies the PDE

(10.37)
∑ ∂G

∂ζjk
∂j∂kwℓ +

∑ ∂G

∂pj
∂jwℓ = 0 on Ω,

so the maximum principle yields (10.36).

Now, behind the specific implementation of Proposition 7.5 is the fact
that when ∂Ω is strictly convex and g ∈ C∞(∂Ω), there are linear functions
B±y, satisfying B−y ≤ g ≤ B+y on ∂Ω, B−y(y) = g(y) = B+y(y), with
bounded gradients. Such functions B±y are annihilated by operators of the
form (10.1). Therefore, we have the following extension of Theorem 10.4.

Theorem 10.6. If Ω ⊂ Rn is a bounded domain with smooth boundary
that is strictly convex, then the Dirichlet problem (10.1) has a unique
solution u ∈ C∞(Ω), given φ ∈ C∞(∂Ω), provided the ellipticity hypothesis
(10.3) holds.

We next consider the construction of upper and lower barriers when
F (D2u) =

∑
Ajk(∇u) ∂j∂ku satisfies the uniform ellipticity condition

(10.38) λ0|ξ|2 ≤
∑

Ajk(p)ξjξk ≤ λ1|ξ|2,

for some λj ∈ (0,∞), independent of p. Given z ∈ Rn, R = |y − z|, α ∈
(0,∞), set

(10.39) Ey,z(x) = e−αr2 − e−αR2

, r2 = |x− z|2.

A calculation, used already in the derivation of maximum principles in §2
of Chapter 5, gives

(10.40)

∑
Ajk(p) ∂j∂kEy,z(x)

= e−αr2
[
4α2Ajk(p)(xj − zj)(xk − zk)− 2αAj

j(p)
]
.
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Under the hypothesis (10.38), we have

(10.41)
∑

Ajk(p) ∂j∂kEy,z(x) ≥ 2αe−αr2
[
2αλ0|x− z|2 − nλ1

]
.

To make use of these functions, we proceed as follows. Given y ∈ ∂Ω,
pick z = z(y) ∈ Rn\Ω such that y is the closest point to z on Ω. Given that
Ω is compact and ∂Ω is smooth, we can arrange that |y−z| = R, a positive
constant, with the property that R−1 is greater than twice the absolute
value of any principal curvature of ∂Ω at any point. Note that, for any
choice of α > 0, Ey,z(y) = 0 and Ey,z(x) < 0 for x ∈ Ω\{y}. From (10.41)
we see that if α is picked sufficiently large (namely, α > nλ1/2R

2λ0), then

(10.42)
∑

Ajk(p) ∂j∂kEy,z(x) > 0, x ∈ Ω,

for all p, since |x−z| ≥ R. Now, given g ∈ C∞(∂Ω), we can findK ∈ (0,∞)
such that, for all x ∈ ∂Ω,

(10.43) B±y(x) = g(y)∓KEy,z(x) =⇒ B−y(x) ≤ g(x) ≤ B+y(x).

Consequently, we have upper and lower barriers for g along ∂Ω. Therefore,
we have the following existence theorem.

Theorem 10.7. Let Ω ⊂ Rn be any bounded region with smooth bound-
ary. If the PDE (10.1) is uniformly elliptic, then (10.1) has a unique solution
u ∈ C∞(Ω) for any φ ∈ C∞(∂Ω).

Certainly the equation (10.32) for minimal hypersurfaces is not uniformly
elliptic. Here is an example of a uniformly elliptic equation. Take

(10.44) F (p) =
(√

1 + |p|2 − a
)2

= |p|2 − 2a
√
1 + |p|2 + 1 + a2,

with a ∈ (0, 1). This models the potential energy of a stretched membrane,
say a surface S ⊂ R3, given by z = u(x), with the property that each point
in S is constrained to move parallel to the z-axis. Compare with (1.5) in
Chapter 2.
It is also natural to look at the variational equation for a stretched mem-

brane for which gravity also contributes to the potential energy. Thus we
replace F (p) in (10.44) by

(10.45) F#(u, p) = F (p) + au,

where a is a positive constant. This is of a form not encompassed by the
class considered so far in this section. The PDE for u in this case has the
form

(10.46) div F#
p (u,∇u)− F#

u (u,∇u) = 0,

which, when F#(u, p) has the form (10.45), becomes

(10.47)
∑

Fpjpk
(∇u) ∂j∂ku− a = 0.
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We want to extend the existence argument to this case, to produce a so-
lution u ∈ C∞(Ω), with given boundary data φ ∈ C∞(∂Ω). Using the
continuity method, we need estimates parallel to (10.13)–(10.20). Now,
since a > 0, the maximum principle implies

(10.48) sup
x∈Ω

u(x) = sup
y∈∂Ω

φ(y).

To estimate ∥u∥L∞ , we also need control of infΩ u(x). Such an estimate
will follow if we obtain an estimate on ∥∇u∥L∞(Ω). To get this, note that
the equation (10.14) for wℓ = ∂ℓu continues to hold. Again the maximum
principle applies, so the boundary gradient estimate (10.15) continues to
imply (10.16). Furthermore, the construction of upper and lower barriers
in (10.39)–(10.43) is easily extended, so one has such a boundary gradient
estimate.

Now one needs to apply the DeGiorgi-Nash-Moser theory. Since (10.14)
continues to hold, this application goes through without change, to yield
(10.20), and the argument producing (10.26) also goes through as before.
Thus Theorem 10.7 extends to PDE of the form (10.47).
One might consider more general force fields, replacing the potential

energy function (10.45) by

(10.49) F#(u, p) = F (p) + V (u).

Then the PDE for u becomes

(10.50)
∑

Fpjpk
(∇u)∂j∂ku− V ′(u) = 0.

In this case, wℓ = ∂ℓu satisfies

(10.51)
∑

∂jA
jk(∇u)∂kwℓ − V ′′(u)wℓ = 0.

This time, we won’t start with an estimate on ∥u∥L∞ , but we will aim
directly for an estimate on ∥∇u∥L∞ , which will serve to bound ∥u∥L∞ ,
given that u = φ on ∂Ω.

The maximum principle applies to (10.51), to yield

(10.52) ∥∇u∥L∞(Ω) = sup
y∈∂Ω

|∇u(y)|, provided V ′′(u) ≥ 0.

Next, we check whether the barrier construction (10.39)–(10.43) yields a
boundary gradient estimate in this case. Having (10.43) (with g = φ), we
want

(10.53) H(D2B+y) ≤ H(D2u) ≤ H(D2B−y) on Ω,

in place of (10.42), where H(D2u) is given by the left side of (10.50), and
we want this sequence of inequalities together with (10.43) to yield

(10.54) B−y(x) ≤ u(x) ≤ B+y(x), x ∈ Ω.

To obtain (10.53), note that we can arrange the left side of (10.42) to
exceed a large constant, and also a large multiple of Ey,z(x). Note that
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the middle quentity in (10.53) is zero, so we want H(D2B+y) ≤ 0 and
H(D2B−y) ≥ 0, on Ω. We can certainly achieve this under the hypothesis
that there is an estimate

(10.55) |V ′(u)| ≤ A1 +A2|u|.

In such a case, we have (10.53). To get (10.54) from this, we use the
following extension of Proposition 10.3.

Proposition 10.8. Let Ω ⊂ Rn be bounded. Consider a nonlinear differ-
ential operator of the form

(10.56) H(x,D2u) = G(x, u,∇u, ∂2u),

where G(x, u, p, ζ) satisfies the ellipticity hypothesis (10.29), and

(10.57) ∂uG(x, u, p, ζ) ≤ 0.

Then, given uν ∈ C2(Ω) ∩ C(Ω),

(10.58) H(D2u2) ≤ H(D2u1) on Ω, u1 ≤ u2 on ∂Ω =⇒ u1 ≤ u2 on Ω.

Proof. Same as Proposition 10.3. For the relevant maximum principle,
replace Proposition 2.1 of Chapter 5 by Proposition 2.6 of that chapter.

To continue our analysis of the PDE (10.50), Proposition 10.8 applies to
give (10.53) ⇒ (10.54), provided V ′′(u) ≥ 0. Consequently, we achieve a
bound on ∥∇u∥L∞(Ω), and hence also on ∥u∥L∞(Ω), provided V (u) satisfies
the hypotheses stated in (10.52) and (10.55).

It remains to apply the DeGiorgi-Nash-Moser theory. In the simplified
case where Ω = Tn−1 × [0, 1], we obtain (10.18), this time by regarding
(10.51) as a nonhomogeneous PDE for wℓ, of the form (9.67), with one
term ∂jgj , namely ∂ℓV

′(u). The L∞-estimate we have on u is more than
enough to apply Theorem 9.7, so we again have (10.18)–(10.19). Next, the
argument (10.21)–(10.23) goes through, so we again have (10.20) and the
Morrey space inclusions (10.21)–(10.22). Hence the hypothesis (8.60) of
Theorem 8.4 holds, with r > 0 and σ = 1. Theorem 8.4 yields

(10.59) ∥u∥Hk(Ω) ≤ Kk,

and a modification of the argument parallel to the use of (10.27) works for
Ω ⊂ Rn.
The estimates above work for

(10.60) τ
∑

Fpjpk
(∇u)∂j∂ku− τV ′(u) + (1− τ)∆u = 0, u

∣∣
∂Ω

= φ,

for all τ ∈ [0, 1]. Also, each linearized operator is seen to be invertible,
provided V ′′(u) ≥ 0. Thus all the ingredients needed to use the method of
continuity are in place. We have the following existence result.
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Proposition 10.9. Let Ω ⊂ Rn be any bounded domain with smooth
boundary. If the PDE

(10.61)
∑

Fpjpk
(∇u)∂j∂ku− V ′(u) = 0, u = φ on ∂Ω,

is uniformly elliptic, and if V ′(u) satisfies

(10.62) |V ′(u)| ≤ A1 +A2|u|, V ′′(u) ≥ 0,

then (10.61) has a unique solution u ∈ C∞(Ω), given φ ∈ C∞(∂Ω).

Consider the case V (u) = Au2. This satisfies (10.62) if A ≥ 0 but not if
A < 0. The case A < 0 corresponds to a repulsive force (away from u = 0)
that increases linearly with distance. The physical basis for the failure of
(10.61) to have a solution is that if u(x) takes a large enough value, the
repulsive force due to the potential V cannot be matched by the elastic
force of the membrane. If Fpjpk

(p) is independent of p and 2A < 0 is an
eigenvalue of the linear operator

∑
Fpjpk

∂j∂k, then certainly (10.61) is not
solvable.

On the other hand, if V (u) = Au2 with 0 > A > −ℓ0, where ℓ0 is
less than the smallest eigenvalue of all operators

∑
Ajk ∂j∂k with coeffi-

cients satisfying (10.38), then one can still hope to establish solvability for
(10.61), in the uniformly elliptic case. We will not pursue the details on
such existence results.
We now consider more general equations, of the form

(10.63) H(D2u) =
∑

Fpjpk
(∇u) ∂j∂ku+ g(x, u,∇u) = 0, u

∣∣
∂Ω

= φ.

Consider the family

(10.64) Hτ (D
2u) =

∑
Fpjpk

(∇u) ∂j∂ku+τg(x, u,∇u) = 0, u
∣∣
∂Ω

= τφ.

We will prove the following:

Proposition 10.10. Assume that the equation (10.63) satisfies the ellip-
ticity condition (10.3) and that ∂ug(x, u, p) ≤ 0. Let Ω ⊂ Rn be a bounded
domain with smooth boundary, and let φ ∈ C∞(∂Ω) be given. Assume
that, for τ ∈ [0, 1], any solution u = uτ to (10.64) has an a priori bound in
C1(Ω). Then (10.63) has a solution u ∈ C∞(Ω).

Proof. For wℓ = ∂ℓu, we have, in place of (10.14),

(10.65)
∑

∂jA
jk(∇u) ∂kwℓ = −∂ℓg(x, u,∇u).

The C1-bound on u yields an L∞-bound on g(x, u,∇u), so, as in the proof
of Proposition 10.9, we can use Theorem 9.7 and proceed from there to
obtain high-order Sobolev estimates on solutions to (10.64).

Thus the largest interval J in [0, 1] that contains τ = 0 and such that
(10.64) is solvable for all τ ∈ J is closed. The hypothesis ∂ug ≤ 0 implies
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that the linearized equation at τ = τ0 is uniquely solvable, so, as in Lemma
10.1, J is open in [0, 1], and the proposition is proved.

A simple example of (10.63) is the equation for a surface z = u(x) of
given constant mean curvature H:

(10.66) ⟨∇u⟩−3
[
⟨∇u⟩2∆u−D2u(∇u,∇u)

]
+ nH = 0, u = φ on ∂Ω,

which is of the form (10.63), with F (p) =
(
1 + |p|2

)1/2
and g(x, u, p) =

nH. Note that members of the family (10.64) are all of the same type in
this case, namely equations for surfaces with mean curvature τH. We see
that Proposition 10.3 applies to this equation. This implies uniqueness of
solutions to (10.66), provided they exist, and also gives a tool to estimate
L∞-norms, at least in some cases, by using equations of graphs of spheres
of radius 1/H as candidates to bound u from above and below. We can
also use such functions to construct barriers, replacing the linear functions
used in the proof of Proposition 7.5. This change means that the class
of domains and boundary data for which upper and lower barriers can be
constructed is different when H ̸= 0 than it is in the minimal surface case
H = 0.

Note that if u solves (10.66), then wℓ = ∂ℓu solves a PDE of the form
(10.14). Thus the maximum principle yields ∥∇u∥L∞(Ω) = sup∂Ω |∇u(y)|.
Consequently, we have the solvability of (10.66) whenever we can construct
barriers to prove the boundary gradient estimate.
The methods for constructing barriers described above do not exhaust

the results one can obtain on boundary gradient estimates, which have
been pushed quite far. We mention a result of H. Jenkins and J. Serrin.
They have shown that the Dirichlet problem (10.66) for surfaces of constant
mean curvature H is solvable for arbitrary φ ∈ C∞(∂Ω) if and only if the
mean curvature κ(y) of ∂Ω ⊂ Rn satisfies

(10.67) κ(y) ≥ n

n− 1
|H|, ∀y ∈ ∂Ω.

In the special case n = 2,H = 0, this implies Proposition 7.3 in this chapter.
See [GT] and [Se2] for proofs of this and extensions, including variable
mean curvature H(x), as well as extensive general discussions of boundary
gradient estimates. We will have a little more practice constructing barriers
and deducing boundary gradient estimates in §§13 and 15 of this chapter.
See the proofs of Lemma 13.12 and of the estimate (15.54).
Results discussed above extend to more general second-order, scalar,

quasi-linear PDE. In particular, Proposition 10.10 can be extended to all
equations of the form

(10.68)
∑

ajk(x, u,∇u) ∂j∂ku+ b(x, u,∇u) = 0, u
∣∣
∂Ω

= φ.
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Let φ ∈ C∞(∂Ω) be given. As long as it can be shown that, for each
τ ∈ [0, 1], a solution to

(10.69)
∑

ajk(x, u,∇u) ∂j∂ku+ τb(x, u,∇u) = 0, u
∣∣
∂Ω

= τφ,

has an a priori bound in C1(Ω), then (10.68) has a solution u ∈ C∞(Ω).
This result, due to O. Ladyzhenskaya and N. Ural’tseva, is proved in [GT]
and [LU]. These references, as well as [Se2], also discuss conditions under
which one can establish a boundary gradient estimate for solutions to such
PDE, and when one can pass from that to a C1(Ω)-estimate on solutions.
The DeGiorgi-Nash-Moser estimates are still a major analytical tool in the
proof of this general result, but further work is required beyond what was
used to prove Proposition 10.10.

Exercises

1. Carry out the construction of barriers for the equation of a surface of constant
mean curvature mentioned below (10.66) and thus obtain some existence re-
sults for this equation. Compare these results with the result of Jenkins and
Serrin, stated in (10.67).

Exercises 2–4 deal with quasi-linear elliptic equations of the form

(10.70)
∑

∂jA
jk(x, u)∂ku = 0 on Ω, u

∣∣∣
∂Ω

= φ.

Assume there are positive functions Aj such that

A1(u)|ξ|2 ≤
∑

Ajk(x, u)ξjξk ≤ A2(u)|ξ|2.

2. Fix φ ∈ C∞(∂Ω). Consider the operator Φ(u) = v, the solution to∑
∂jA

jk(x, u)∂kv = 0, v
∣∣∣
∂Ω

= φ.

Show that, for some r > 0,

Φ : C(Ω) −→ Cr(Ω),

continuously. Use the Schauder fixed-point theorem to deduce that Φ has a
fixed point in {u ∈ C(Ω) : sup |u| ≤ sup |φ|} ∩ Cr(Ω).

3. Show that this fixed point lies in C∞(Ω).
4. Examine whether solutions to (10.70) are unique.
5. Extend results on (10.1) to the case

(10.71)
∑

∂jFpj (x,∇u) = 0, u
∣∣∣
∂Ω

= φ,

arising from the search for critical points of I(u) =
∫
Ω
F (x,∇u) dx, generaliz-

ing the case considered in (10.2).
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In Exercises 6–9, we consider a PDE of the form

(10.72)
∑

∂ja
j(x, u,∇u) + b(x, u) = 0 on Ω.

We assume aj and b are smooth in their arguments and

|aj(x, u, p)| ≤ C(u)⟨p⟩, |∇pa
j(x, u, p)| ≤ C(u).

We make the ellipticity hypothesis∑ ∂aj

∂pk
(x, u, p)ξjξk ≥ A(u)|ξ|2, A(u) > 0.

6. Show that if u ∈ H1(Ω) ∩ L∞(Ω) solves (10.72), then u solves a PDE of the
form ∑

∂jA
jk(x)∂ku+ ∂jc

j(x, u) + b(x, u) = 0,

with

Ajk ∈ L∞,
∑

Ajk(x)ξjξk ≥ A|ξ|2.

(Hint: Start with

aj(x, u, p) = aj(x, u, 0)+
∑
k

Ãjk(x, u, p)pk, Ãjk(x, u, p) =

∫ 1

0

∂aj

∂pk
(x, u, sp) ds.)

7. Deduce that if u ∈ H1(Ω)∩L∞(Ω) solves (10.72), then u is Hölder continuous
on the interior of Ω.

8. If Ω is a smooth, bounded region in Rn and u ∈ H1(Ω) ∩ L∞(Ω) satisfies

(10.72) and u
∣∣∣
∂Ω

= φ ∈ C1(∂Ω), show that u is Hölder continuous on Ω and

that ∇u ∈Mq
2 (Ω), for some q > n.

9. If u ∈ C2(Ω) satisfies (10.72), show that uℓ = ∂ℓu satisfies

∂ja
j
pk (x, u,∇u) ∂kuℓ + ∂j

[
aju(x, u,∇u)uℓ

]
+∂ja

j
xℓ
(x, u,∇u) + bu(x, u)uℓ + bxℓ(x, u) = 0.

Discuss obtaining estimates on u in C1+r(Ω), given estimates on u in C1(Ω).

11. Direct methods in the calculus of variations

We study the existence of minima (or other stationary points) of functionals
of the form

(11.1) I(u) =

∫
Ω

F (x, u,∇u) dV (x),

on some set of functions, such as {u ∈ B : u = g on ∂Ω}, where B is a
suitable Banach space of functions on Ω, possibly taking values in RN , and
g is a given smooth function on ∂Ω. We assume Ω is a compact Riemannian
manifold with boundary and

(11.2) F : RN × (RN ⊗ T ∗Ω) −→ R is continuous.
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Let us begin with a fairly direct generalization of the hypotheses (1.3)–
(1.8) made in §1. Thus, let

(11.3) V = {u ∈ H1(Ω,RN ) : u = g on ∂Ω}.

For now, we assume that, for each x ∈ Ω,

(11.4) F (x, ·, ·) : RN × (RN ⊗ T ∗
xΩ) −→ R is convex,

where the domain has its natural linear structure. We also assume

(11.5) A0|ξ|2 −B0|u| − C0 ≤ F (x, u, ξ),

for some positive constants A0, B0, C0, and

(11.6) |F (x, u, ξ)− F (x, v, ζ)| ≤ C
(
|u− v|+ |ξ − ζ|

)(
|ξ|+ |ζ|+ 1

)
.

These hypotheses will be relaxed below.

Proposition 11.1. Assume Ω is connected, with nonempty boundary.
Assume I(u) < ∞ for some u ∈ V . Under the hypotheses (11.2)–(11.6), I
has a minimum on V .

Proof. As in the situation dealt with in Proposition 1.2, we see that I :
V → R is Lipschitz continuous, bounded below, and convex. Thus, if
α0 = infV I(u), then

(11.7) Kε = {u ∈ V : α0 ≤ I(u) ≤ α0 + ε}

is, for each ε ∈ (0, 1], a nonempty, closed, convex subset of V . Hence Kε is
weakly compact in H1(Ω,RN ). Hence

∩
ε>0Kε = K0 ̸= ∅, and inf I(u) is

assumed on K0.

We will state a rather general result whose proof is given by the argument
above.

Proposition 11.2. Let V be a closed, convex subset of a reflexive Banach
space W , and let Φ : V → R be a continuous map, satisfying:

(11.8) inf
V

Φ = α0 ∈ (−∞,∞),

(11.9) ∃ b > α0 such that Φ−1
(
[α0, b]

)
is bounded in W,

(11.10) ∀ y ∈ (α0, b], Φ−1
(
[α0, y]

)
is convex.

Then there exists v ∈ V such that Φ(v) = α0.

As above, the proof comes down to the observation that, for 0 < ε ≤
b − α0, Kε is a nested family of subsets of W that are compact when W
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has the weak topology. This result encompasses such generalizations of
Proposition 11.1 as the following. Given p ∈ (1,∞), g ∈ C∞(∂Ω,RN ), let

(11.11) V = {u ∈ H1,p(Ω,RN ) : u = g on ∂Ω}.

We continue to assume (11.4), but replace (11.5) and (11.6) by

(11.12) A0|ξ|p −B0|u| − C0 ≤ F (x, u, ξ),

for some positive A0, B0, C0, and

(11.13) |F (x, u, ξ)− F (x, v, ζ)| ≤ C
(
|u− v|+ |ξ − ζ|

)(
|ξ|+ |ζ|+ 1

)p−1
.

Then we have the following:

Proposition 11.3. Assume Ω is connected, with nonempty boundary.
Take p ∈ (1,∞), and assume I(u) < ∞ for some u ∈ V . Under the
hypotheses (11.2), (11.4), and (11.11)–(11.13), I has a minumum on V .

It is useful to extend Propositions 11.1 and 11.3, replacing (11.4) by a
hypothesis of convexity only in the last set of variables.

Proposition 11.4. Make the hypotheses of Proposition 11.1, or more gen-
erally of Proposition 11.3, but weaken (11.4) to the hypothesis that

(11.14) F (x, u, ·) : RN ⊗ T ∗
xΩ −→ R is convex,

for each (x, u) ∈ Ω× RN . Then I has a minimum on V .

Proof. Let α0 = infV I(u). The hypothesis (11.12) plus Poincaré’s in-
equality imply that α0 > −∞ and that

(11.15) B = {u ∈ V : I(u) ≤ α0 + 1} is bounded in H1,p(Ω,RN ).

Pick uj ∈ B so that I(uj) → α0. Passing to a subsequence, we can assume

(11.16) uj → u weakly in H1,p(Ω,RN ).

Hence uj → u strongly in Lp(Ω,RN ). We want to show that

(11.17) I(u) = α0.

To this end, set

(11.18) Φ(u, v) =

∫
Ω

F (x, u, v) dV (x).

With vj = ∇uj , we have

(11.19) Φ(uj , vj) → α0.

Also vj → v = ∇u weakly in Lp(Ω,RN ⊗ T ∗).
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We can conclude that I(u) ≤ α0, and hence (11.17) holds if we show that

(11.20) Φ(u, v) ≤ α0.

Now, by hypothesis (11.13) we have

(11.21)

|Φ(uj , vj)− Φ(u, vj)| ≤ C

∫
Ω

|uj − u|
(
|vj |+ 1

)p−1
dV (x)

≤ C ′∥uj − u∥Lp(Ω),

so

(11.22) Φ(u, vj) −→ α0.

This time, by (11.5), (11.6), and (11.14) we have that, for each ε ∈ (0, 1],

(11.23) Kε = {w ∈ Lp(Ω,RN ⊗ T ∗) : Φ(u,w) ≤ α0 + ε}

is a closed, convex subset of Lp(Ω,RN ⊗T ∗). Hence Kε is weakly compact,
provided it is nonempty. Furthermore, by (11.22), vj ∈ Kεj with εj → 0,
so we have v ∈ K0. This implies (11.20), so Proposition 11.4 is proved.

The following extension of Proposition 11.4 applies to certain constrained
minimization problems.

Proposition 11.5. Let p ∈ (1,∞), and let F (x, u, ξ) satisfy the hypothe-
ses of Proposition 11.4. Then, if S is any subset of V (given by (11.11))
that is closed in the weak topology of H1,p(Ω,RN ), it follows that I

∣∣
S
has

a minimum in S.

Proof. Let α0 = infS I(u), and take uj ∈ S, I(uj) → α0. Since (11.15)
holds, we can take a subsequence uj → u weakly in H1,p(Ω,RN ), so u ∈ S.
We want to show that I(u) = α0. Indeed, if we form Φ(u, v) as in (11.18),
then the argument involving (11.19)–(11.23) continues to hold, and our
assertion is proved.

For example, if X ⊂ RN is a closed subset, we could take

(11.24) S = {u ∈ V : u(x) ∈ X for a.e. x ∈ Ω},

and Proposition 11.5 applies. As a specific example, X could be a compact
Riemannian manifold, isometrically imbedded in RN , and we could take
p = 2, F (x, u,∇u) = |∇u|2. The resulting minimum of I(u) is a harmonic
map of Ω into X. If u : Ω → X is a harmonic map, it satisfies the PDE

(11.25) ∆u− Γ(u)(∇u,∇u) = 0,

where Γ(u)(∇u,∇u) is a certain quadratic form in ∇u. See §2 of Chapter
15 for a derivation.
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A generalization of the notion of harmonic map arises in the study of
“liquid crystals.” One takes

(11.26) F (x, u,∇u) = a1|∇u|2+a2(div u)2+a3(u·curl u)2+a4|u×curl u|2,

where the coefficients aj are positive constants, and then one minimizes
the functional

∫
Ω
F (x, u,∇u) dV (x) over a set S of the form (11.24), with

X = S2 ⊂ R3, namely, over

(11.27) S = {u ∈ H1(Ω,R3) : |u(x)| = 1 a.e. on Ω, u = g on ∂Ω}.

In this case, F (x, u, ξ) has the form

F (x, u, ξ) =
∑
j,α

bjα(u)ξ
2
jα, bj,α(u) ≥ a1 > 0,

where each coefficient bjα(u) is a polynomial of degree 2 in u. Clearly, this
function is convex in ξ. The function F (x, u, ξ) does not satisfy (11.6);
hence, in going through the argument establishing Proposition 11.4, we
would need to replace the p = 2 case of (11.22) by

(11.28) |Φ(uj , vj)− Φ(u, vj)| ≤ C

∫
Ω

|uj − u| · |vj |2 dV (x).

The following result covers integrands of the form (11.26), as well as
many others. It assumes a slightly bigger lower bound on F than the
previous results, but it greatly relaxes the hypotheses on how rapidly F
can vary.

Theorem 11.6. Assume Ω is connected, with nonempty boundary. Take
p ∈ (1,∞), and set

V = {u ∈ H1,p(Ω,RN ) : u = g on ∂Ω}.

Assume I(u) <∞ for some u ∈ V . Assume that F (x, u, ξ) is smooth in its
arguments and satisfies the convexity condition (11.14) in ξ and the lower
bound

(11.29) A0|ξ|p ≤ F (x, u, ξ),

for some A0 > 0. Then I has a minimum on V .
Also, if S is a subset of V that is closed in the weak topology ofH1,p(Ω,RN ),

then I
∣∣
S
has a minimum in S.

Proof. Clearly, α0 = infS I(u) ≥ 0. With B as in (11.15), pick uj ∈ B∩S
so that

(11.30) I(uj) → α0, uj → u weakly in H1,p(Ω,RN ).
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Passing to a subsequence, we can assume uj → u a.e. on Ω. We need to
show that

(11.31)

∫
Ω

F (x, u,∇u) dV ≤ α0.

By Egorov’s theorem, we can pick measurable sets Eν ⊃ Eν+1 ⊃ · · · in
Ω, of measure < 2−ν , such that uj → u uniformly on Ω \ Eν . We can also
arrange that

(11.32) |u(x)|+ |∇u(x)| ≤ C · 2ν , for x ∈ Ω \ Eν .

Now, we have∫
Ω\Eν

F (x, u,∇u) dV =

∫
Ω\Eν

F (x, uj ,∇uj) dV

+

∫
Ω\Eν

[
F (x, uj ,∇u)− F (x, uj ,∇uj)

]
dV(11.33)

+

∫
Ω\Eν

[
F (x, u,∇u)− F (x, uj ,∇u)

]
dV.

To estimate the second integral on the right side of (11.33), we use the
convexity hypothesis to write

(11.34) F (x, uj ,∇u)− F (x, uj ,∇uj) ≤ DξF (x, uj ,∇u) · (∇u−∇uj).

Now, for each ν,

(11.35) DξF (x, uj ,∇u) −→ DξF (x, u,∇u), uniformly on Ω \ Eν ,

while ∇u−∇uj → 0 weakly in Lp(Ω,Rn), so

(11.36) lim
j→∞

∫
Ω\Eν

[
F (x, uj ,∇u)− F (x, uj ,∇uj)

]
dV = 0.

Estimating the last integral in (11.33) is easy, since

(11.37) F (x, u,∇u)− F (x, uj ,∇u) −→ 0, uniformly on Ω \ Eν .

Thus, from our analysis of (11.33), we have

(11.38)

∫
Ω\Eν

F (x, u,∇u) dV ≤ lim sup
j→∞

∫
Ω\Eν

F (x, uj ,∇uj) dV ≤ α0,

for all ν, and taking ν → ∞ gives (11.31). The theorem is proved.

There are a number of variants of the results above. We mention one:
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Proposition 11.7. Assume that F is smooth in (x, u, ξ), that

(11.39) F (x, u, ξ) ≥ 0,

and that

(11.40) F (x, u, ·) : RN ⊗ T ∗
xΩ −→ R is convex,

for each x, u. Suppose

(11.41) uν → u weakly in H1,1
loc (Ω,R

N ).

Then

(11.42) I(u) ≤ lim inf
ν→∞

I(uν).

For a proof, and other extensions, see [Gia] or [Dac]. It is a result of
J. Serrin [Se1] that, in the case where u is real-valued, the hypothesis
(11.41) can be weakened to

(11.43) uν , u ∈ H1,1
loc (Ω), uν → u in L1

loc(Ω).

In [Mor2] there is an attempt to extend Serrin’s result to systems, but it
was shown by [Eis] that such an extension is false.
In [Dac] there is also a discussion of a replacement for convexity, due to

Morrey, called “quasi-convexity.” For other contexts in which the convexity
hypothesis is absent, and one often looks not for a minimizer but some sort
of saddle point, see [Str2] and [Gia2].
In this section we have obtained solutions to extremal problems, but these

solutions lie in Sobolev spaces with rather low regularity. The problem of
higher regularity for such solutions is considered in §12.

Exercises

1. In Theorem 11.6, take p > n = dim Ω = N , and consider

S = {u ∈ V : det Du = 1, a.e. on Ω}.

Show that S is closed in the weak topology of H1,p(Ω,Rn) and hence that
Theorem 11.6 applies. (Hint: See (6.35)–(6.36) of Chapter 13.)

2. In Theorem 11.6, take p ∈ (1,∞), Ω ⊂ Rn, N = 1. Let h ∈ C∞(Ω), and
consider

S = {u ∈ V : u ≥ h on Ω}.

Show that S is closed in the weak topology ofH1,p(Ω) and hence that Theorem
11.6 applies.

Say I
∣∣∣
S

achieves its minimum at u, and suppose you are given that u ∈
C(Ω), so

O = {x ∈ Ω : u(x) > h(x)}
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is open. Assume also that ∂F/∂ξj and ∂F/∂u satisfy convenient bounds.
Show that, on O, u satisfies the PDE∑

j

∂jFξj (x, u,∇u) + Fu(x, u,∇u) = 0.

For more on this sort of variational problem, see [KS].

12. Quasi-linear elliptic systems

Here we (partially) extend the study of the scalar equation (10.1) to a study
of an N ×N system

(12.1) Ajk
αβ(∇u)∂j∂ku

β = 0 on Ω, u = φ on ∂Ω,

where φ ∈ C∞(∂Ω,RN ) is given. The hypothesis of strong ellipticity used
previously is

(12.2)
∑

Ajk
αβ(p)vαvβξjξk ≥ C|v|2|ξ|2, C > 0,

but many nonlinear results require that Ajk
αβ(p) satisfy the very strong

ellipticity hypothesis:

(12.3)
∑

Ajk
αβ(p)ζjαζkβ ≥ κ|ζ|2, κ > 0.

We mention that, in much of the literature, (12.3) is called strong ellipticity
and (12.2) is called the “Legendre-Hadamard condition.”
In the case when (12.1) arises from minimizing the function

(12.4) I(u) =

∫
Ω

F (∇u) dx,

we have

(12.5) Ajk
αβ(p) = ∂pjα

∂pkβ
F (p).

In such a case, (12.3) is the statement that F (p) is a uniformly strongly
convex function of p. If (12.5) holds, (12.1) can be written as

(12.6)
∑
j

∂jG
j
α(∇u) = 0 on Ω, u = φ on ∂Ω; Gj

α(p) = ∂pjα
F (p).

We will assume

(12.7)
a0|p|2 − b0 ≤ F (p) ≤ a1|p|2 + b1,

|Gj
α(p)| ≤ C0⟨p⟩, |Ajk

αβ(p)| ≤ C1.

These are called “controllable growth conditions.”
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If (12.5) holds, then

(12.8)

∂jG
j
α(∇u)− ∂jG

j
α(∇v) = ∂jAjk

αβ(x)∂k(u
β − vβ),

Ajk
αβ(x) =

∫ 1

0

Ajk
αβ

(
s∇u+ (1− s)∇v

)
ds.

This leads to a uniqueness result:

Proposition 12.1. Assume Ω ⊂ Rn is a smoothly bounded domain, and
assume that (12.3) and (12.7) hold. If u, v ∈ H1(Ω,RN ) both solve (12.6),
then u = v on Ω.

Proof. By (12.8), we have

(12.9)

∫
Ω

Ajk
αβ(x) ∂j(u

α − vα) ∂k(u
β − vβ) dx = 0,

so (12.3) implies ∂j(u− v) = 0, which immediately gives u = v.

LetX =
∑
bℓ∂ℓ be a smooth vector field on Ω, tangent to ∂Ω. If we knew

that u ∈ H2(Ω), we could deduce that uX = Xu is the unique solution in
H1(Ω,RN ) to

(12.10)
∑

∂jA
jk(∇u) ∂kuX =

∑
∂jf

j + g, uX = Xφ on ∂Ω,

where

(12.11)
f j = Ajk(∇u)(∂kbℓ)(∂ℓu) + (∂ℓb

j)Gℓ
α(∇u),

g = −(∂ℓ∂jb
ℓ)Gj

α(∇u).

Under the growth hypothesis (12.7), |f j(x)| ≤ C|∇u(x)|, so ∥f j∥L2(Ω) ≤
C∥∇u∥L2(Ω). Similarly, ∥g∥L2(Ω) ≤ C∥∇u∥L2(Ω) + C. Hence, we can say
that (12.10) has a unique solution, satisfying

(12.12) ∥uX∥H1(Ω) ≤ C
(
∥u∥H1(Ω) + ∥φ∥H2(Ω) + 1

)
.

It is unsatisfactory to hypothesize that u belong to H2(Ω), so we replace
the differentiation of (12.6) by taking difference quotients. Let F t

X denote
the flow on Ω generated by X, and set uh = u ◦ Fh

X . Then uh extremizes
a functional

(12.13) Ih(uh) =

∫
Ω

Fh(x,∇uh) dx,

where Fh(x, p) depends smoothly on (h, x, p) and F0(x, p) = F (p). (In fact,
(12.13) is simply (12.4), after a coordinate change.) Thus uh satisfies the
PDE

(12.14) ∂j(∂pjα
Fh)(x,∇uh) = 0, uh = φk on ∂Ω.
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Applying the fundamental theorem of calculus to the difference of (12.14)
and (12.6), we have

(12.15) ∂jAjk
αβh(x) ∂k

(uβh − uβ

h

)
= ∂jH

j
αh(x,∇uh),

where Ajk
αβh(x) is as in (12.8), with v = uh, and

(12.16) Hj
αh(x, p) =

∫ h

0

d

ds
(∂pjαFs)(x, p) ds.

As in the analysis of (12.10), we have

(12.17) ∥h−1(uh − u)∥H1(Ω) ≤ C
(
∥u∥H1(Ω) + ∥φ∥H2(Ω) + 1

)
.

Taking h→ 0, we have uX ∈ H1(Ω,RN ), with the estimate (12.12).
From here, a standard use of ellipticity, parallel to the argument in

(10.21)–(10.25), gives an H1-bound on a transversal derivative of u; hence
u ∈ H2(Ω,Rn), and

(12.18) ∥u∥H2(Ω) ≤ C
(
∥u∥H1(Ω) + ∥φ∥H2(Ω) + 1

)
.

As in the scalar case, one of the keys to the further analysis of a solu-
tion to (12.6) is an examination of regularity for solutions to linear elliptic
systems with L∞-coefficients. Thus we consider linear operators of the
form

(12.19) Lu = b(x)−1
n∑

j,k=1

∂j
(
Ajk(x)b(x) ∂ku

)
,

Compare with (9.1). Here u takes values in RN and each Ajk is an N ×N
matrix, with real-valued entries Ajk

αβ ∈ L∞(Ω). We assume Ajk
αβ = Akj

βα.
As in (12.3), we make the hypothesis

(12.20) λ1|ζ|2 ≥
∑

Ajk
αβ(x)ζjαζkβ ≥ λ0|ζ|2, λ0 > 0,

of very strong ellipticity. Thus Ajk
αβ defines a positive-definite inner product

⟨ , ⟩ on T ∗ ⊗ RN . We also assume

(12.21) 0 < C0 ≤ b(x) ≤ C1.

Then b(x) dx = dV defines a volume element, and, for φ ∈ C1
0 (Ω,RN ),

(12.22) (Lu, φ) = −
∫
Ω

⟨∇u,∇φ⟩ dV.

We will establish the following result of [Mey].

Proposition 12.2. Let Ω ⊂ Rn be a bounded domain with smooth bound-
ary, let fj ∈ Lq(Ω,RN ) for some q > 2, and let u be the unique solution in
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H1,2
0 (Ω) to

(12.23) Lu =
∑

∂jfj .

Assume L has the form (12.19), with coefficients Ajk ∈ L∞(Ω), satisfying
(12.20), and b ∈ C∞(Ω), satisfying (12.21). Then u ∈ H1,p(Ω), for some
p > 2.

Proof. We define the affine map

(12.24) T : H1,p
0 (Ω) −→ H1,p

0 (Ω)

as follows. Let ∆ be the Laplace operator on Ω, endowed with a smooth
Riemannian metric whose volume element is dV = b(x) dx, and adjust
λ0, λ1 so (12.20) holds when |ζ|2 is computed via the inner product ( , )
on T ∗ ⊗ RN associated with this metric, so that

(12.25) (∆u, φ) = −
∫
Ω

(∇u,∇φ) dV.

Then we define Tw = v to be the unique solution in H1,2
0 (Ω) to

(12.26) ∆v = ∆w − λ−1
1 Lw + λ−1

1

∑
∂jfj .

The mapping property (12.24) holds for 2 ≤ p ≤ q, by the Lp-estimates of
Chapter 13. In fact, if ∆v =

∑
∂jgj , v ∈ H1,2

0 (Ω), then

(12.27) ∥∇v∥Lp(Ω) ≤ C(p)∥g∥Lp(Ω).

If we fix r > 2, then, for 2 ≤ p ≤ r, interpolation yields such an estimate,
with

(12.28) C(p) = C(r)θ,
1− θ

2
+
θ

r
=

1

p
, i.e., θ =

r

p

p− 2

r − 2
.

Hence C(p) ↘ 1, as p↘ 2. Now we see that Tw1 −Tw2 = v1 − v2 satisfies

(12.29) ∆(v1 − v2) =
(
∆− λ−1

1 L
)
(w1 − w2) = ∇g,

where

(12.30) gαj = ∂j(w
α
1 − wα

2 )− λ−1
1 Ajk

αβ ∂k(w
β
1 − wβ

2 ),

and hence, under our hypotheses,

(12.31) ∥g∥Lp(Ω) ≤
(
1− λ0

λ1

)
∥∇(w1 − w2)∥Lp(Ω),

so

(12.32) ∥∇(v1 − v2)∥Lp(Ω) ≤ C(p)
(
1− λ0

λ1

)
∥∇(w1 − w2)∥Lp(Ω),

for 2 ≤ p ≤ q. We see that, for some p > 2, C(p)
(
1 − λ0/λ1

)
< 1; hence

T is a contraction on H1,p(Ω) in such a case. Thus T has a unique fixed
point. This fixed point is u, so we have u ∈ H1,p

0 (Ω), as claimed.



122

Corollary 12.3. With hypotheses as in Proposition 12.2, given a function
ψ ∈ H1,q(Ω), the unique solution u ∈ H1,2(Ω) satisfying (12.23) and

(12.33) u = ψ on ∂Ω

also belongs to H1,p(Ω), for some p > 2.

Proof. Apply Proposition 12.2 to u− ψ.

Let us return to the analysis of a solution u ∈ H1(Ω,RN ) to the nonlinear
system (12.6), under the hypotheses of Proposition 12.1. Since we have
established that u ∈ H2(Ω,RN ), we have a bound

(12.34) ∥∇u∥Lq(Ω) ≤ A, q > 2.

In fact, this holds with q = 2n/(n− 2) if n ≥ 3, and for all q <∞ if n = 2.
As above, if X =

∑
bℓ ∂ℓ is a smooth vector field on Ω, tangent to ∂Ω, then

uX = Xu is the unique solution in H1(Ω,RN ) to (12.10), and we can now
say that f j ∈ Lq(Ω). Thus Corollary 12.3 gives

(12.35) Xu ∈ H1,p(Ω), for some p > 2,

with a bound, and again a standard use of ellipticity gives an H1,p-bound
on a transversal derivative of u. We have established the following result.

Theorem 12.4. If u ∈ H1(Ω,RN ) solves (12.6) on a smoothly bounded
domain Ω ∈ Rn, and if the very strong ellipticity hypothesis (12.3) and
the controllable growth hypothesis (12.7) hold, then u ∈ H2,p(Ω,RN ), for
some p > 2, and

(12.36) ∥u∥H2,p(Ω) ≤ C
(
∥∇u∥L2(Ω) + ∥φ∥H2,q(Ω) + 1

)
.

The case n = dim Ω = 2 of this result is particularly significant, since, for
p > n, H1,p(Ω) ⊂ Cr(Ω), r > 0. Thus, under the hypotheses of Theorem
12.4, we have u ∈ C1+r(Ω), for some r > 0, if n = 2. Then the material of
§8 applies to (12.1), so we have the following:

Proposition 12.5. If u ∈ H1(Ω,RN ) solves (12.6) on a smoothly bounded
domain Ω ⊂ R2, and the hypotheses (12.3) and (12.7) hold, then u ∈
C∞(Ω), provided φ ∈ C∞(∂Ω).

When n = 2, we then have existence of a unique smooth solution to
(12.1), given φ ∈ C∞(∂Ω). In fact, we have two routes to such existence.
We could obtain a minimizer u ∈ H1(Ω,RN ) for (12.4), subject to the
condition that u

∣∣
∂Ω

= φ, by the results of §11, and then apply Proposition
12.5 to deduce smoothness.
Alternatively, we could apply the continuity method, to solve

(12.37) Ajk
αβ(∇u)∂j∂ku

β = 0 on Ω, u = τφ on ∂Ω.



12. Quasi-linear elliptic systems 123

This is clearly solvable for τ = 0, and the proof that the biggest τ -interval
J ⊂ [0, 1], containing 0, on which (12.37) has a unique solution u ∈ C∞(Ω),
is both open and closed is accomplished along lines similar to arguments in
§10. However, unlike in §10, we do not need to establish a sup-norm bound
on ∇u, or even on u; we make do with an H1-norm bound, which can be
deduced from (12.3) as follows.

If Ajk
αβ(x) is given by (12.8), with v = φ, we have

(12.38)

∫
Ω

Ajk
αβ(x) ∂k(u

β − φβ) ∂j(u
α − φα) dx

=

∫
Ω

∂jG
j
α(∇φ)(uα − φα) dx,

for a solution to (12.37) (in case τ = 1). Hence

(12.39) κ∥∇(u− φ)∥2L2(Ω) ≤ C∥u− φ∥L2(Ω).

Note the different exponents. We have ∥u−φ∥2L2(Ω) ≤ C2∥∇(u−φ)∥2L2(Ω),
by Poincaré’s inequality, so

(12.40) ∥u− φ∥L2(Ω) ≤
C

κC2
.

Plugging this back into (12.39) gives

(12.41) ∥∇(u− φ)∥2L2(Ω) ≤
C2

κ2C2
,

which implies the desired H1-bound on u.
Once we have the H1-bound on u = uτ , (12.36) gives an H

2,p-bound for
some p > 2, hence a bound in C1+r(Ω), for some r > 0. Then the results
of §8 give bounds in higher norms, sufficient to show that J is closed.
Proposition 12.5 does not in itself imply all the results of §10 when

dim Ω = 2, since the hypotheses (12.3) and (12.7) imply that (12.1) is
uniformly elliptic. For example, the minimal surface equation is not covered
by Proposition 12.5. However, it is a simple matter to prove the following
result, which does (essentially) contain the n = 2 case of Theorem 10.2.

Proposition 12.6. Assume Ajk
αβ(p) is smooth in p and satisfies

(12.42) Ajk
αβ(p)ζjαζkβ ≥ C(p)|ζ|2, C(p) > 0.

Let Ω ⊂ R2 be a smoothly bounded domain. Then the Dirichlet problem
(12.1) has a unique solution u ∈ C∞(Ω), provided one has an a priori
bound

(12.43) ∥∇uτ∥L∞(Ω) ≤ K,

for all smooth solutions u = uτ to (12.37), for τ ∈ [0, 1].
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Proof. Use the method of continuity, as above. To prove that J is closed,
simply modify F (p) on {p : |p| ≥ K + 1} to obtain F̃ (p), satisfying (12.3)
and (12.7). The solution uτ to (12.1) for τ ∈ J also solves the modified
equation, for which (12.36) works, so as above we have strong norm bounds
on uτ as τ approaches an endpoint of J .

Recall that, for scalar equations, (12.43) follows from a boundary gradi-
ent estimate, via the maximum principle. The maximum principle is not
available for general elliptic N × N systems, even under the very strong
ellipticity hypothesis, so (12.43) is then a more severe hypothesis.
Moving beyond the case n = 2, we need to confront the fact that solutions

to elliptic PDE of the form (12.1) need not be smooth everywhere. A
number of examples have been found; we give one of J. Necas [Nec], where
Ajk

αβ(p) in (12.1) has the form (12.5), satisfying (12.3), such that F (p)

satisfies |DαF (p)| ≤ Cα⟨p⟩−|α||p|2, ∀ α ≥ 0. Namely, take

(12.44)

F (∇u) = 1

2

∂uij

∂xk

∂uij

∂xk
+
µ

2

∂uij

∂xi

∂ukk

∂xj

+ λ
∂uij

∂xi

∂uak

∂xa

∂uℓb

∂xℓ

∂ujk

∂xb
⟨∇u⟩−2,

where u takes values in Mn×n ≈ Rn2

, and we set

(12.45) λ = 2
n3 − 1

n(n− 1)(n3 − n+ 1)
, µ =

4 + nλ

n2 − n+ 1
.

Since λ, µ → 0 as n → ∞, we have ellipticity for sufficiently large n. But
for any n,

(12.46) uij(x) =
xixj
|x|

is a solution to (12.1). Thus u is Lipschitz but not C1 on every neigh-
borhood of 0 ∈ Rn. See [Gia] for other examples. Also, when one looks
at more general classes of nonlinear elliptic systems, there are examples of
singular solutions even in the case n = 2; this is discussed further in §12B.
We now discuss some results known as partial regularity, to the effect

that solutions u ∈ H1(Ω,RN ) to (12.1) can be singular only on relatively
small subsets of Ω.
We will measure how small the singular set is via the Hausdorff s-

dimensional measure Hs, which is defined for s ∈ [0,∞) as follows. First,
given ρ > 0, S ⊂ Rn, set

(12.47) h∗s,ρ(S) = inf
{∑
j≥1

(
diam Yj

)s
: S ⊂

∪
j≥1

Yj , diam Yj ≤ ρ
}
.
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Here diam Yj = sup{|x− y| : x, y ∈ Yj}. Each set function h∗s,ρ is an outer
measure on Rn. As ρ decreases, h∗s,ρ(S) increases. Set

(12.48) h∗s(S) = lim
ρ→0

h∗s,ρ(S).

Then h∗s(S) is an outer measure. It is seen to be a metric outer measure,
that is, if A,B ⊂ Rn and inf{|x−y| : x ∈ A, y ∈ B} > 0, then h∗s(A∪B) =
h∗s(A)+ h∗s(B). It follows by a fundamental theorem of Caratheodory that
every Borel set in Rn is h∗s-measurable. For any h∗s-measurable set A, we
set

(12.49) Hs(A) = γsh
∗
s(A), γs =

πs/22−s

Γ( s2 + 1)
,

the factor γs being picked so that if k ≤ n is an integer and S ⊂ Rn is
a smooth, k-dimensional surface, then Hk(S) is exactly the k-dimensional
surface area of S. Treatments of Hausdorff measure can be found in [EG],
[Fed], and [Fol].
Our next goal will be to establish the following result. Assume n ≥ 3.

Theorem 12.7. If Ω ⊂ Rn is a smoothly bounded domain and u ∈
H1(Ω,RN ) solves (12.1), then there exists an open Ω0 ⊂ Ω such that
u ∈ C∞(Ω0) and

(12.50) Hr(Ω \ Ω0) = 0, for some r < n− 2.

We know from Theorem 12.4 that u ∈ H2,p(Ω,RN ), for some p > 2.
Hence (12.10) holds for derivatives of u; in particular,

(12.51) uℓ = ∂ℓu =⇒ uℓ ∈ H1,p(Ω,RN )

and

(12.52) ∂jA
jk(∇u)∂kuℓ = 0, 1 ≤ ℓ ≤ n.

Regarding this as an elliptic system for v = (∂1u, . . . , ∂nu), we see that to
establish Theorem 12.7, it suffices to prove the following:

Proposition 12.8. Assume that v ∈ H1,p(Ω,RM ), for some p > 2, and
that v solves the system

(12.53) ∂jA
jk(x, v) ∂kv = 0,

where Ajk
αβ(x, v) is uniformly continuous in (x, v) and satisfies

(12.54) λ1|ζ|2 ≥ Ajk
αβ(x, v)ζjαζkβ ≥ λ0|ζ|2, λ0 > 0.

Then there is an open Ω0 ⊂ Ω such that v is Hölder continuous on Ω0, and
(12.50) holds.
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In turn, we will derive Proposition 12.8 from the following more precise
result:

Proposition 12.9. Under the hypotheses of Proposition 12.8, consider
the subset Σ ⊂ Ω defined by

(12.55) x ∈ Σ ⇐⇒ lim inf
R→0

R−n

∫
BR(x)

|v(y)− vx,R|2 dy > 0,

where

(12.56) vx,R = AvgBR(x) v =
1

Vol BR(x)

∫
BR(x)

v(y) dy.

Then

(12.57) Hr(Σ) = 0, for some r < n− 2,

and Σ contains a closed subset Σ̃ of Ω such that v is Hölder continuous on
Ω0 = Ω \ Σ̃.

Note that every point of continuity of v belongs to Ω \Σ; it follows from
Proposition 12.9 that v is Hölder continuous on a neighborhood of every
point of continuity, under the hypotheses of Proposition 12.8. As Lemma
12.11 will show, for this fact we need assume only that u ∈ H1,2, instead
of u ∈ H1,p for some p > 2.

Let us first prove that Σ, defined by (12.55), has the property (12.57).
First, by Poincaré’s inequality,

(12.58) Σ ⊂
{
x ∈ Ω : lim inf

R→0
R2−n

∫
BR(x)

|∇v(y)|2 dy > 0
}
.

Since ∇v ∈ Lp(Ω) for some p > 2, Hölder’s inequality implies

(12.59) Σ ⊂
{
x ∈ Ω : lim inf

R→0
Rp−n

∫
BR(x)

|∇v(y)|p dy > 0
}
.

Therefore, (12.57) is a consequence of the following.

Lemma 12.10. Given w ∈ L1(Ω), 0 ≤ s < n, let

(12.60) Es =
{
x ∈ Ω : lim sup

r→0
r−s

∫
Br(x)

|w(y)| dy > 0
}
.

Then

(12.61) Hs+ε(Es) = 0, ∀ ε > 0.
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It is actually true that Hs(Es) = 0 (see [EG] and [Gia]), but to shorten
the argument we will merely prove the weaker result (12.61), which will
suffice for our purposes. In fact, we will show that

(12.62) Hs(Esδ) <∞, ∀ δ > 0,

where

Esδ =
{
x ∈ Ω : lim sup

r→0
r−s

∫
Br(x)

|w(y)| dy ≥ δ
}
.

This implies that Hs+ε(Esδ) = 0, ∀ ε > 0, and since Es =
∪

nEs,1/n, this
yields (12.61).
As a tool in the argument, we use the following:

Vitali covering lemma. Let C be a collection of closed balls in Rn (with
positive radius) such that diam B < C0 < ∞, for all B ∈ C. Then there
exists a countable family F of disjoint balls in C such that

(12.63)
∪

B∈F
B̂ ⊃

∪
B∈C

B,

where B̂ is a ball concentric with B, with 5 times its radius.

Sketch of proof. Take Cj = {B ∈ C : 2−jC0 ≤ diam B < 21−jC0}. Let
F1 be a maximal disjoint collection of balls in C1. Inductively, let Fk be a
maximal disjoint set of balls in

{B ∈ Ck : B disjoint from all balls in F1, . . . ,Fk−1}.

Then set F =
∪
Fk. One can then verify (12.63).

To begin the proof of (12.62), note that, for each ρ > 0, Esδ is covered
by a collection C of balls Bx of radius rx < ρ, such that

(12.64)

∫
Bx

|w(y)| dy ≥ δrsx.

Thus there is a collection F of disjoint balls Bν in C (of radius rν) such
that (12.63) holds. In particular, {B̂ν} covers Esδ, so

(12.65) h∗s,5ρ(Esδ) ≤ Cn

∑
ν

rsν ≤ Cn

δ

∫
∪

Bν

|w(y)| dy ≤ Cn

δ
∥w∥L1(Ω),

where Cn is independent of ρ. This proves (12.62) and hence Lemma 12.10.
Thus we have (12.57) in Proposition 12.9. To prove the other results

stated in that proposition, we will establish the following:

Lemma 12.11. Given τ ∈ (0, 1), there exist constants

ε0 = ε0(τ, n,M, λ−1
0 λ1), R0 = R0(τ, n,M, λ−1

0 λ1),
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and furthermore there exists a constant

A0 = A0(n,M, λ−1
0 λ1),

independent of τ , such that the following holds. If u ∈ H1(Ω,RM ) solves
(12.53) and if, for some x0 ∈ Ω and some

R < R0(x0) = min(R0,dist(x0, ∂Ω)),

we have

(12.66) U(x0, R) < ε20,

where

(12.67) U(x0, R) = R−n

∫
BR(x0)

|u(y)− ux0,R|2 dy,

then

(12.68) U(x0, τR) ≤ 2A0τ
2U(x0, R).

Let us show how this result yields Proposition 12.9. Pick α ∈ (0, 1),
and choose τ ∈ (0, 1) such that 2A0τ

2−2α = 1. Suppose x0 ∈ Ω and R <
min(R0,dist(x0, ∂Ω)), and suppose (12.66) holds. Then (12.68) implies

U(x0, τR) ≤ τ2αU(x0, R).

In particular, U(x0, τR) < U(x0, R) < ε20, so inductively the implication
(12.66) ⇒ (12.68) yields

U(x0, τ
kR) ≤ τ2αkU(x0, R).

Hence, for ρ < R,

(12.69) U(x0, ρ) ≤ C
( ρ
R

)2α
U(x0, R).

Note that, for fixed R > 0, U(x0, R) is continuous in x0, so if (12.66)
holds at x0, then we have U(x,R) < ε20 for every x in some neighborhood
Br(x0) of x0, and hence

U(x, ρ) ≤ C
( ρ
R

)2α
U(x,R), x ∈ Br(x0);

that is, we have

(12.70)

∫
Bρ(x)

|u(y)− ux,ρ|2 dy ≤ Cρn+2α

uniformly for x ∈ Br(x0). This implies, by Proposition A.2,

(12.71) u ∈ Cα
(
Br(x0)

)
.
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In fact, we can say more. Extending some of the preliminary results of §9,
we have, for a solution u ∈ H1(Ω) of (12.53), estimates of the form

(12.72) ∥∇u∥2L2(Bρ/2(x))
≤ Cρ−2

∫
Bρ(x)

|u(y)− ux,ρ|2 dy;

see Exercise 2 below. Consequently, (12.70) implies

(12.73) ∇u
∣∣
Br(x0)

∈Mq
2

(
Br(x0)

)
, q =

n

1− α
.

which by Morrey’s lemma implies (12.71). Thus, granted Lemma 12.11,
Proposition 12.9 is proved, with

(12.74) Ω0 = {x0 ∈ Ω : inf
R<R0(x0)

U(x0, R) < ε20},

since clearly Σ ⊃ Ω \ Ω0 = Σ̃.
The proof of Lemma 12.11 (following the exposition in [Gia]) evolved

from work of E. DeGiorgi [DeG2] and F. Almgren [Alm2] on regularity for
minimal surfaces. It consists of blowing up small neighborhoods of x0 and
obtaining a limiting PDE for a limit of the resulting dilations of u. As a
preliminary to the proof of Lemma 12.11, we first identify the constant A0.

Lemma 12.12. There is a constant A0 = A0(n,M, λ1/λ0) such that
whenever bjkαβ are constants satisfying

(12.75) λ1|ζ|2 ≥
∑

bjkαβζjαζkβ ≥ λ0|ζ|2, λ0 > 0,

the following holds. If u ∈ H1
(
B1(0),RM ) solves

(12.76) ∂jb
jk
αβ∂ku

β = 0 on B1(0),

then, for all ρ ∈ (0, 1),

(12.77) U(0, ρ) ≤ A0ρ
2U(0, 1).

Proof. For ρ ∈ (0, 1/2], we have

(12.78) U(0, ρ) ≤ ρ2−n

∫
Bρ(0)

|∇u(y)|2 dy ≤ Cnρ
2∥∇u∥2L∞(B1/2(0))

.

On the other hand, regularity for the constant-coefficient, elliptic PDE
(12.76) readily yields an estimate

(12.79) ∥∇u∥2L∞(B1/2(0))
≤ B0∥∇u∥2L2(B3/4(0))

≤ B1∥u− u0,1∥2L2(B1(0))
,

with Bj = Bj(n,M, λ1/λ0), from which (12.77) easily follows.

We now tackle the proof of Lemma 12.11. If the conclusion (12.68) is
false, then there exist τ ∈ (0, 1) and xν ∈ Ω, εν → 0, Rν → 0, and
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uν ∈ H1(Ω,RM ), solving (12.53), such that

(12.80) Uν(xν , Rν) = ε2ν , Uν(xν , τRν) > 2A0τ
2ε2ν .

To implement the dilation argument mentioned above, we set

(12.81) vν(x) = ε−1
ν

[
uν(xν +Rνx)− uνxν ,Rν

]
.

Then vν solves

(12.82) ∂jA
jk
αβ

(
xν +Rνx, ενvν(x) + uνxν ,Rν

)
∂kv

β
ν = 0 on B1(0).

If we set

(12.83)

Vν(0, ρ) = ρ−n

∫
Bρ(0)

|vν(y)− vν0,ρ|2 dy

= ε−2
ν ρ−nR−n

ν

∫
BρRν (xν)

|uν(y)− uνxν ,Rν |2 dy,

we have (since vν0,1 = 0)

(12.84) Vν(0, 1) = ∥vν∥2L2(B1(0))
= 1, Vν(0, τ) > 2A0τ

2.

Passing to a subsequence, we can assume that

(12.85) vν → v weakly in L2
(
B1(0),RM ), ενvν → 0 a.e. in B1(0).

Also

(12.86) Ajk
αβ(xν , uνxν ,Rν

) −→ bjkαβ ,

an array of constants satisfying (12.75). The uniform continuity of Ajk
αβ

then implies

(12.87) Ajk
αβ

(
xν +Rνx, ενvν(x) + uνxν ,Rν

)
−→ bjkαβ a.e. in B1(0).

Now, as in (12.72), the fact that vν solves (12.82) implies

(12.88) ∥vν∥H1(Bρ(0)) ≤ Cρ, ∀ ρ < 1.

Hence, passing to a further subsequence if necessary, we have

(12.89)
vν −→ v strongly in L2

loc

(
B1(0)

)
,

∇vν −→ ∇v weakly in L2
loc

(
B1(0)

)
.

Since the functions in (12.87) are uniformly bounded on B1(0), these results
imply that we can pass to the limit in (12.82), to conclude that

(12.90) ∂jb
jk
αβ ∂kv

β = 0 on B1(0).

Then Lemma 12.12 implies

(12.91) V (0, τ) ≤ A0τ
2V (0, 1),



Exercises 131

which is ≤ A0τ
2 by (12.85). On the other hand, (12.89) implies

(12.92) V (0, τ) ≥ 2A0τ
2

if (12.80) holds. This contradiction proves Lemma 12.11.
Hence the proof of Proposition 12.9 is complete, so we have Theorem

12.7.
Theorem 12.7 can be extended to a result on partial regularity up to the

boundary (see [Gia]).
There is a condition more general than strong convexity on the integrand

in (12.4), known as “quasi-convexity,” under which extrema for (12.4) have
been shown to possess partial regularity of the sort established in Theorem
12.7 (see [Ev3]).
There are also some results on regularity everywhere for stationary points

of (12.4) when Ω has dimension ≥ 3. A notable result of [U] is that such
solutions are smooth on Ω provided F (∇u) in (12.4), in addition to being
strongly convex in ∇u and satisfying the controllable growth conditions,
depends only on |∇u|2. A proof can also be found in [Gia].

Exercises

In Exercises 1–3, we consider an N ×N system

(12.93)
∑

∂jA
jk
αβ(x)∂ku

β =
∑

∂jf
α
j on B1 = {x ∈ Rn : |x| < 1},

under the very strong ellipticity hypothesis (12.20). Assume fj ∈ L2(B1).
1. Show that, with C = C(λ0, λ1),

(12.94) ∥∇u∥L2(B1/2)
≤ C∥u∥L2(B1)

+ C
∑

∥fj∥L2(B1)
.

(Hint: Extend (9.6).)
2. Let δrv(x) = v(rx). Show that, for r ∈ (0, 1],

(12.95) ∥δr(∇u)∥L2(B1/2)
≤ Cr−1∥δr(u− u)∥L2(B1)

+ C
∑

∥δrfj∥L2(B1)
,

where u = AvgB1 u. (Hint: First apply a dilation argument to (12.94).
Then apply the result to u− u.) This sort of estimate is called a “Caccioppoli
inequality.”

3. Deduce from Exercise 2 that if u ∈ H1(Ω) solves (12.93), then
(12.96)

∥δr(∇u)∥L2(B1/2)
≤ C∥δr(∇u)∥Lq(B1) + C

∑
∥δrfj∥L2(B1)

, q =
2n

n+ 2
< 2.

This sort of estimate is sometimes called a “reverse Hölder inequality.”
4. Deduce from (12.95) that if u ∈ H1(Ω) solves (12.93), then, for 0 < r < 1,

(12.97) u ∈ Cr(B1), fj ∈Mp
2 (B1), p =

n

1− r
=⇒ ∇u ∈Mp

2 (B1/2).

Compare (9.41)–(9.42).

5. Let C(p) be the constant in (12.27), in case Ω = B1. Show that if C(n)
(
1 −

λ0/λ1

)
< 1, then a solution u ∈ H1

0 (Ω) to (12.93) is Hölder continuous on
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B1, provided fj ∈ Lq(B1) for some q > n. Consider the problem of obtaining
precise estimates on C(p) in this case.

12B. Further results on quasi-linear systems

Regularity questions can become more complex when lower-order terms are
added to systems of the form (12.1). In fact, there are extra complications
even for solutions to a semilinear system of the form

(12b.1) Lu+B(x, u,∇u) = f,

where L is a second-order, linear elliptic differential operator and B(x, u, p)
is smooth in its arguments. One limitation on what one could possibly
prove is given by the following example of J. Frehse [Freh], namely that

(12b.2) u1(x) = sin log log |x|−1, u2(x) = cos log log |x|−1

provides a bounded, weak solution to the 2× 2 system

(12b.3)

∆u1 +
2(u1 + u2)

1 + |u|2
|∇u|2 = 0,

∆u2 +
2(u2 − u1)

1 + |u|2
|∇u|2 = 0,

belonging to H1(B), for any ball B ⊂ R2, centered at the origin, of radius
r < 1. Evidently, u is not continuous at the origin; one can also see that
∇u does not belong to Lp(B) for any p > 2. (After all, that would force
u to be Hölder continuous.) Thus Theorem 12.4 and Proposition 12.5 do
not extend to this case.
The following result shows that if a weak solution to such a semilinear

system as (12b.1) has any Hölder continuity, then higher-order regularity
results hold.

Proposition 12B.1. Assume u ∈ H1 solves (12b.1) and B(x, u, p) is a
smooth function of its arguments, satisfying

(12b.4) |B(x, u, p)| ≤ C⟨p⟩2.

Then, given r > 0, s > −1,

(12b.5) u ∈ Cr, f ∈ Cs
∗ =⇒ u ∈ Cs+2

∗ .

Proof. Write

(12b.6) u = Ef − EB(x, u,∇u), mod C∞,

where E ∈ OPS−2
1,0 is a parametrix for the elliptic operator L. We have

Ef ∈ Cs+2
∗ , and, since u ∈ H1 ⇒ B(x, u,∇u) ∈ L1, we have

EB(x, u,∇u) ∈ H2−σ,1+ε, ∀ ε > 0, σ >
nε

1 + ε
.
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If s ≥ 0, this implies

(12b.7) u ∈ H2−σ,1+ε ∩Hr−σ,p,

for all p <∞, hence

(12b.8) u ∈ [H2−σ,1+ε,Hr−σ,p]θ, ∀ θ ∈ (0, 1).

Results on such interpolation spaces follow from (6.30) of Chapter 13. If
we set θ = 1/2 and take p large enough, we have

(12b.9) u ∈ H1+r/2−σ,2+2ε, ∀ ε ∈ (0, 1), σ >
nε

1 + ε
.

On the other hand, if we set θ = (1−σ)/(2−r), (assuming r < 1), we have

(12b.10) u ∈ H1,2q, ∀ q <
1− 1

2r

1− r
,

hence

(12b.11) B(x, u,∇u) ∈ Lq, ∀ q <
1− 1

2r

1− r
, e.g., q = 1 +

r

2
.

Another look at (12b.6) now yields

(12b.12) u ∈ H2,1+r/2 ∩Hr−σ,p, ∀p <∞,

provided s ≥ 0, which is an improvement of (12b.7). We can iterate this
argument until we get (12b.5), provided s ≥ 0.
If instead we merely assume s > −1, then, instead of (12b.7), we deduce

from (12b.6) and EB(x, u,∇u) ∈ H2−σ,1+ε that

(12b.13) EB(x, u,∇u) ∈ H2−σ,1+ε ∩Hr−σ,p

and hence (parallel to (12b.8)–(12b.11)) that

(12b.14)

EB(x, u,∇u) ∈
∩

θ∈(0,1)

[H2−σ,1+ε,Hr−σ,p]θ

⊂ H1+r/2−σ,2 ∩H1,2+r,

so another look at (12b.6) gives

u ∈ H1,2+r,

hence

(12b.15) B(x, u,∇u) ∈ L1+r/2,

so

(12b.16) EB(x, u,∇u) ∈ H2,1+r/2 ∩Hr−σ,p,

and we can iterate this argument until (12b.5) is proved.
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Note that Proposition 12B.1 applies to the semilinear system (11.25) for
a harmonic map u : Ω → X, where X is a submanifold of RN :

(12b.17) ∆u− Γ(u)(∇u,∇u) = 0.

On the other hand, there are quasi-linear equations with a somewhat similar
structure that also arise naturally in geometry, such as the system (4.94)
satisfied by the metric tensor, in harmonic coordinates, when the Ricci
tensor is given. This system has the following form, more general than
(12b.1):

(12b.18)
∑

∂ja
jk(x, u)∂ku+B(x, u,∇u) = f.

We assume that ajk(x, u) and B(x, u, p) are smooth in their arguments and
that (12b.4) holds. Recall that we have established one regularity result
for such a system in §4, namely, if n = dim Ω and n < q < p <∞, then

(12b.19) u ∈ H1,q, f ∈ Hs,p =⇒ u ∈ Hs+2,p

if s ≥ −1. Here, we want to weaken the hypothesis that u ∈ H1,q for some
q > n, which of course implies u ∈ Cr, r = 1− n/q. We will establish the
following:

Proposition 12B.2. Assume that u ∈ H1 solves (12b.18) and thatB(x, u, p)
satisfies (12b.4). Also assume u ∈ Cr for some r > 0. Then

(12b.20) f ∈ L1 =⇒ u ∈ H2−σ,1+ε, ∀ ε ∈ (0, 1), σ >
nε

1 + ε
,

and, if 1 < p <∞,

(12b.21) f ∈ Lp =⇒ u ∈ H2,p.

More generally, for s ≥ 0,

(12b.22) f ∈ Hs,p =⇒ u ∈ Hs+2,p.

To begin the proof, as in the demonstration of Proposition 4.9, we write

(12b.23)
∑

ajk(x, u) ∂ku = Aj(u;x,D)u,

mod C∞, with

(12b.24) u ∈ Cr =⇒ Aj(u;x, ξ) ∈ CrS1
1,0 ∩ S1

1,1 + S1−r
1,1 .

Hence, given δ ∈ (0, 1),

(12b.25)
Aj(u;x, ξ) = A#

j (x, ξ) +Ab
j(x, ξ),

A#
j (x, ξ) ∈ S1

1,δ, Ab
j(x, ξ) ∈ S1−rδ

1,1 .

Thus we can write

(12b.26)
∑

∂ja
jk(x, ξ) ∂ku = P#u+ P bu,
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with

(12b.27) P# =
∑

∂jA
#
j (x,D) ∈ OPS2

1,δ, elliptic

and

(12b.28) P b =
∑

∂jA
b
j(x,D).

Then we let

(12b.29) E# ∈ OPS−2
1,δ

be a parametrix for P#, and we have

(12b.30) u = −E#P bu+ E#B(x, u,∇u) + E#f,

mod C∞, and if u ∈ Cr,

(12b.31) P b : Hσ,p −→ Hσ−2+rδ,p, P b : Cσ
∗ −→ Cσ−2+rδ

∗ ,

provided 1 < p <∞ and σ − 2 + rδ > −1, so

(12b.32) σ > 1− rδ.

Therefore, our hypotheses on u imply

(12b.33) E#P bu ∈ H1+rδ,2.

Now, if u ∈ H1(Ω), then (12b.4) implies

(12b.34) B(x, u,∇u) ∈ L1,

so, for small ε > 0, σ > nε/(1 + ε),

(12b.35) E#B(x, u,∇u) ∈ H2−σ,1+ε.

Hence we have (12b.30), mod C∞, with

(12b.36)
E#P bu ∈ H1+rδ,2, E#B(x, u,∇u) ∈ H2−σ,1+ε,

E#f ∈ H2−σ,1+ε.

This implies

u ∈ H1+rδ,1+ε,

hence, by (12b.31),

(12b.37) E#P bu ∈ H1+2rδ,1+ε.

Another look at (12b.30) gives

(12b.38)
u ∈ H1+2rδ,1+ε if 1 + 2rδ ≤ 2− σ,

H2−σ,1+ε if 1 + 2rδ ≥ 2− σ.

If the first of these alternatives holds, then

E#P bu ∈ H1+3rδ,1+ε.
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We continue until the conclusion of (12b.20) is achieved.
Given that u ∈ Cr and that (12b.20) holds, by interpolation we have

(12b.39) u ∈
[
H2−σ,1+ε,Hr−σ,p

]
θ
, ∀ θ ∈ (0, 1),

using Cr
∗ ⊂ Hr−σ,p, ∀ σ > 0, p <∞. If we take θ = 1/2 we get

u ∈ H1+r/2−σ,q,
1

q
=

1

2 + 2ε
+

1

2p
,

hence, taking p arbitrarily large, we have

(12b.40) u ∈ H1+r/2−σ,2+2ε, ∀ ε ∈ (0, 1), σ >
nε

1 + ε
.

Note that this is an improvement of the original hypothesis that u ∈ H1,2.
On the other hand, if we take θ = (1− σ)/(2− r), we get

(12b.41) u ∈ H1,2q, ∀ q <
1− 1

2r

1− r
,

so

(12b.42) B(x, u,∇u) ∈ Lq, ∀ q <
1− 1

2r

1− r
.

Hence

(12b.43) E#B(x, u,∇u) ∈ H2,q.

Meanwhile, by (12b.40),

(12b.44) E#P bu ∈ H1+r/2+rδ−σ,2.

On the other hand, if we set

(12b.45) q = 1 +
r

2
,

which satisfies the condition in (12b.41), we can take θ ≈ r/(2 + r) in
(12b.39) and get

(12b.46) u ∈ Hµ,q, ∀ µ < 4 + r2

2 + r
,

hence

(12b.47) E#P bu ∈ Hρ,q, ∀ ρ < 4 + r2

2 + r
+ rδ.

Note that

(12b.48)
4 + r2

2 + r
+ rδ = 2− r + rδ + r2 − 1

4
r3 + · · · ,

which is > 2, for any given r ∈ (0, 1), if δ is taken close enough to 1. Now,
another look at (12b.30) establishes the following special case of (12b.21):

(12b.49) 1 < p ≤ 1 +
r

2
, f ∈ Lp(Ω) =⇒ u ∈ H2,p.
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Under the hypotheses that u ∈ Cr and that (12b.49) holds, we have, par-
allel to (12b.39),

(12b.50) u ∈
[
H2,p,Hr−σ,Q

]
θ
, ∀ θ ∈ (0, 1),

for all σ > 0, Q <∞. As before, we can take θ ≈ 1/(2− r) and get

(12b.51) u ∈ H1,2q, ∀ q <
1− 1

2r

1− r
p.

Hence, parallel to (12b.43), and as before using 1+r/2 < (1−r/2)/(1−r),
we have

(12b.52) E#B(x, u,∇u) ∈ H2,(1+r/2)p.

Similarly, if we take θ ≈ r/(2 + r) in (12b.50), we get

(12b.53) u ∈ Hµ,(1+r/2)p, ∀ µ < 4 + r2

2 + r
,

and hence

E#P bu ∈ Hρ,(1+r/2)p, ∀ ρ < 4 + r2

2 + r
+ rδ.

As before, given r ∈ (0, 1), we can choose δ close enough to 1 that ρ > 2.
Another look at (12b.30) establishes that

(12b.54) 1 < p ≤
(
1 +

r

2

)2
, f ∈ Lp(Ω) =⇒ u ∈ H2,p.

Now we can iterate this argument repeatedly, and since, for all r > 0, we
have (1 + r/2)k → ∞ as k → ∞, we obtain (12b.21).
We next want to weaken the requirement of Hölder continuity on u.

Proposition 12B.3. Let u ∈ H1(Ω) solve (12b.18). Assume the very
strong ellipticity condition

(12b.55) ajkαβ(x, u)ζjαζkβ ≥ λ0|ζ|2, λ0 > 0.

Also assume B(x, u,∇u) is a quadratic form in ∇u. Assume furthermore
that u is continuous on Ω. Then, locally, if p > n/2,

(12b.56) f ∈Mp
2 =⇒ ∇u ∈Mq

2 , for some q > n.

Hence u ∈ Cr, for some r > 0.

To begin, given x0 ∈ Ω, shrink Ω down to a smaller neighborhood, on
which

(12b.57) |u(x)− u0| ≤ E,

for some u0 ∈ RM (if (12b.18) is an M ×M system). We will specify E
below. With the same notation as in (12.22), write

(12b.58)
(
∂ja

jk(x, u) ∂ku,w
)
L2 = −

∫
⟨∇u,∇w⟩ dx,
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so ajkαβ(x, u) determines an inner product on T ∗
x ⊗RM for each x ∈ Ω, in a

fashion that depends on u, perhaps, but one has bounds on the set of inner
products so arising. Now, if we let ψ ∈ C∞

0 (Ω) and w = ψ(x)2(u − u0),
and take the inner product of (12b.18) with w, we have

(12b.59)

∫
ψ2|∇u|2 dx+ 2

∫
ψ(∇u)(∇ψ)(u− u0) dx

−
∫
ψ2(u− u0)B(x, u,∇u) dx

= −
∫
ψ2f(u− u0) dx.

Hence we obtain the inequality

(12b.60)

∫
ψ2
[
|∇u|2 − |u− u0| · |B(x, u,∇u)| − δ2|∇u|2

]
dx

≤ 1

δ2

∫
|∇ψ|2|u− u0|2 dx+

∫
ψ2|f | · |u− u0| dx,

for any δ ∈ (0, 1). Now, for some A <∞, we have

(12b.61) |B(x, u,∇u)| ≤ A|∇u|2.

Then we choose E in (12b.57) so that

(12b.62) EA ≤ 1− a < 1.

Then take δ2 = a/2, and we have

(12b.63)
a

2

∫
ψ2|∇u|2 dx ≤ 2

a

∫
|∇ψ|2 ·|u−u0|2 dx+

∫
ψ2|f |·|u−u0| dx.

Now, given x ∈ Ω, for R < dist(x, ∂Ω), define U(x,R) as in (12.67) by

(12b.64) U(x,R) = R−n

∫
BR(x)

|u(y)− ux,R|2 dy,

where, as before, ux,R is the mean value of u
∣∣
BR(x)

. The following result is
analogous to Lemma 12.11. Let A0 be the constant produced by Lemma
12.12, applied to the present case, and pick ρ such that A0ρ

2 ≤ 1/2.

Lemma 12B.4. Let O ⊂⊂ Ω. There exist R0 > 0, ϑ < 1, and C0 < ∞
such that if x ∈ O and r ≤ R0, then either

(12b.65) U(x, r) ≤ C0r
2(2−n/p),

or

(12b.66) U(x, ρr) ≤ ϑU(x, r).
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Proof. If not, there exist xν ∈ O, Rν → 0, ϑν → 1, and uν ∈ H1(Ω,RM )
solving (12b.18) such that

(12b.67) Uν(xν , Rν) = ε2ν > C0R
2(2−n/p)
ν

and

(12b.68) Uν(xν , ρRν) > ϑνUν(xν , Rν).

The hypothesis that u is continuous implies εν → 0. We want to obtain a
contradiction.
As in (12.81), set

(12b.69) vν(x) = ε−1
ν

[
uν(xν +Rνx)− uνxν ,Rν

]
.

Then vν solves

(12b.70)

∂ja
jk
αβ

(
xν +Rνx, ενvν(x) + uνxν ,Rν

)
∂kv

β
ν

+ ενB
(
xν +Rνx, ενvν(x) + uνxν ,Rν ,∇vν(x)

)
=
R2

ν

εν
f.

Note that, by the hypothesis (12b.67),

(12b.71)
R2

ν

εν
<

1

C0
Rn/p

ν .

Now set

(12b.72) Vν(0, r) = r−n

∫
Br(0)

|vν(y)− vν0,r|2 dy.

Then, as in (12.84), we have

(12b.73) Vν(0, 1) = ∥vν∥2L2(B1(0))
= 1, Vν(0, ρ) > ϑν .

Passing to a subsequence, we can assume that

(12b.74) vν → v weakly in L2
(
B1(0),RM

)
, ενvν → 0 a.e. in B1(0).

Also, as in (12.87), there is an array of constants bjkαβ such that

(12b.75) ajkαβ
(
xν +Rνx, ενvν(x) + uνxν ,Rν

)
−→ bjkαβ a.e. in B1(0),

and this is bounded convergence.
We next need to estimate the L2-norm of ∇vν , which will take just

slightly more work than it did in (12.88).
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Substituting ενvν
(
(x − xν)/Rν

)
+ uνxν ,Rν for uν(x) in (12b.63), and

replacing u0 by uνxν ,Rν , we have

(12b.76)

a

2

∫
ψ2
∣∣∣∇vν(x− xν

Rν

)∣∣∣2 dx
≤ 2

a

∫
R2

ν |∇ψ|2
∣∣∣vν(x− xν

Rν

)∣∣∣2 dx
+
R2

ν

εν

∫
ψ2|f | ·

∣∣∣vν(x− xν
Rν

)∣∣∣ dx,
for ψ ∈ C∞

0

(
BRν

(xν)
)
. Actually, for this new value of u0, the estimate

(12b.57) might change to |u(x)− u0| ≤ 2E, so at this point we strengthen
the hypothesis (12b.62) to

(12b.77) 2EA ≤ 1− a < 1,

in order to get (12b.76). Since R2
ν/εν ≤ R

n/p
ν /C0, we have, for Ψ(x) =

ψ(xν +Rνx) ∈ C∞
0

(
B1(0)

)
,

(12b.78)
a

2

∫
Ψ2|∇vν |2 dx ≤ 2

a

∫
|∇Ψ|2|vν |2 dx+

R
n/p
ν

C0

∫
Ψ2|F | · |vν | dx,

where F (x) = f(xν +Rνx).
Since ∥vν∥L2(B1(0)) = 1, if Ψ ≤ 1, we have

(12b.79)

∫
Ψ2|F | · |vν | dx ≤

( ∫
B1(0)

|F |2 dx
)1/2

≤ C1R
−n/p
ν

if f ∈Mp
2 , so we have

(12b.80)
a

2

∫
Ψ2|∇vν |2 dx ≤ 2

a

∫
|∇Ψ|2|vν |2 dx+

C1

C0
∥f∥Mp

2
.

This implies that vν is bounded in H1
(
Bρ(0)

)
for each ρ < 1. Now, as in

(12.89), we can pass to a further subsequence and obtain

(12b.81)
vν −→ v strongly in L2

loc

(
B1(0)

)
,

∇vν −→ ∇v weakly in L2
loc

(
B1(0)

)
.

Thus, as in (12.90), we can pass to the limit in (12b.70), to obtain

(12b.82) ∂jb
jk
αβ∂kv

β = 0 on B1(0).

Also, by (12b.73),

(12b.83) V (0, 1) = ∥v∥L2(B1(0)) ≤ 1, V (0, ρ) ≥ 1.

This contradicts Lemma 12.12, which requires V (0, ρ) ≤ (1/2)V (0, 1).

Now that we have Lemma 12B.4, the proof of Proposition 12B.3 is easily
completed, by estimates similar to those in (12.69)–(12.73).
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We can combine Propositions 12B.2 and 12B.3 to obtain the following:

Corollary 12B.5. Let u ∈ H1(Ω)∩C(Ω) solve (12b.18). If the very strong
ellipticity condition (12b.53) holds and B(x, u,∇u) is a quadratic form in
∇u, then, given p ≥ n/2, q ∈ (1,∞), s ≥ 0,

(12b.84) f ∈Mp
2 ∩Hs,q =⇒ u ∈ Hs+2,q.

We mention that there are improvements of Proposition 12B.3, in which
the hypothesis that u is continuous is relaxed to the hypothesis that the
local oscillation of u is sufficiently small (see [HW]). For a number of results
in the case when the hypothesis (12b.4) is strengthened to

|B(x, u, p)| ≤ C⟨p⟩a,

for some a < 2, see [Gia]. Extensions of Corollary 12B.5, involving Morrey
space estimates, can be found in [T2].

Corollary 12B.5 implies that any harmonic map (satisfying (12b.17)) is
smooth wherever it is continuous. An example of a discontinuous harmonic
map from R3 to the unit sphere S2 ⊂ R3 is

(12b.85) u(x) =
x

|x|
.

It has been shown by F. Helein [Hel2] that any harmonic map u : Ω →M
from a two-dimensional manifold Ω into a compact Riemannian manifold
M is smooth. Here we will give the proof of Helein’s first result of this
nature:

Proposition 12B.6. Let Ω be a two-dimensional Riemannian manifold
and let

(12b.86) u : Ω −→ Sm

be a harmonic map into the standard unit sphere Sm ⊂ Rm+1. Then
u ∈ C∞(Ω).

Proof. We are assuming that u ∈ H1
loc(Ω), that u satisfies (12b.86), and

that the components uj of u = (u1, . . . , um+1) satisfy

(12b.87) ∆uj + uj |∇u|2 = 0.

Here, ∆uj and |∇u|2 =
∑

|∇uℓ|2 are determined by the Riemannian met-
ric on Ω, but the property of being a harmonic map is invariant under
conformal changes in this metric (see Chapter 15, §2, for more on this),
so we may as well take Ω to be an open set in R2, and ∆ = ∂21 + ∂22 the
standard Laplace operator. Now |u(x)|2 = 1 a.e. on Ω implies

(12b.88)

m+1∑
j=1

uj(∂iuj) = 0, i = 1, 2,
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and putting this together with (12b.87) gives

(12b.89) ∆uj = −
m+1∑
k=1

(uj∇uk − uk∇uj) · ∇uk, ∀ j.

On the other hand, a calculation gives

(12b.90) div(uj∇uk − uk∇uj) =
∑
ℓ

∂ℓ(uj∂ℓuk − uk∂ℓuj) = 0,

for all j and k. Furthermore, since u ∈ H1
loc(Ω) ∩ L∞(Ω),

(12b.91) uj∇uk − uk∇uj ∈ L2
loc(Ω), ∇uk ∈ L2

loc(Ω).

Now Proposition 12.14 of Chapter 13 implies

(12b.92)
∑
k

(uj∇uk − uk∇uj) · ∇uk = fj ∈ H1
loc(Ω),

where H1
loc(Ω) is the local Hardy space, discussed in §12 of Chapter 13.

Also, by Corollary 12.12 of Chapter 13, when dim Ω = 2,

(12b.93) ∆uj = −fj ∈ H1
loc(Ω) =⇒ uj ∈ C(Ω).

Now that we have u ∈ C(Ω), Proposition 12B.6 follows from Corollary
12B.5.

If dim Ω > 2, there are results on partial regularity for harmonic maps u :
Ω → M , for energy-minimizing harmonic maps [SU] and for “stationary”
harmonic maps; see [Ev4] and [Bet]. See also [Si2], for an exposition. On
the other hand, there is an example due to T. Riviere [Riv] of a harmonic
map for which there is no partial regularity.
We mention another system of the type (12b.1), the 3× 3 system

(12b.94) ∆u = 2Hux × uy on Ω, u = g on ∂Ω.

Here H is a real constant, Ω is a bounded open set in R2, and g ∈
C∞(Ω,R3). We seek u : Ω → R3. This equation arises in the study of
surfaces in R3 of constant mean curvature H. In fact, if Σ ⊂ R3 is a sur-
face and u : Ω → Σ a conformal map (using, e.g., isothermal coordinates)
then, by (6.10) and (6.15), Σ has constant mean curvature H if and only if
(12b.94) holds. In one approach to the analogue of the Plateau problem for
surfaces of mean curvature H, the problem (12b.94) plays a role parallel
to that played by ∆u = 0 in the study of the Plateau problem for minimal
surfaces (the H = 0 case) in §6. For this reason, in some articles (12b.94)
is called the “equation of prescribed mean curvature,” though that term is
a bit of a misnomer.
The equation (12b.94) is satisfied by a critical point of the functional

(12b.95) J(u) =

∫
Ω

{1
2
|∇u|2 + 2

3
H(u · ux × uy)

}
dx dy,
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acting on the space

(12b.96) V = {u ∈ H1(Ω,R3) : u = g on ∂Ω}.

That J is well defined and smooth on V follows from the following estimate
of Rado:

(12b.97) |V (u)− V (g)|2 ≤ 1

32π

(
∥∇u∥2L2 + ∥∇g∥2L2

)3
,

provided u = g on ∂Ω, where

(12b.98) V (u) =

∫
Ω

(u · ux × uy) dx dy.

The boundary problem (12b.94) is not solvable for all g, though it is
known to be solvable provided

(12b.99) |H| · ∥g∥L∞ ≤ 1.

We refer to [Str1] for a discussion of this and also a treatment of the Plateau
problem for surfaces of mean curvature H, using (12b.94). Here we merely
mention that given u ∈ H1(Ω,R3), solving (12b.94), the fact that

(12b.100) u ∈ C(Ω,R3)

then follows from Corollary 12.12 and Proposition 12.14 of Chapter 13, just
as in (12b.93). Hence Corollary 12B.5 is applicable. This result, established
by [Wen], was an important precursor to Proposition 12.13 of Chapter 13.

13. Elliptic regularity IV (Krylov-Safonov estimates)

In this section we obtain estimates for solutions to second-order elliptic
equations of the form

(13.1) Lu = f, Lu = ajk(x) ∂j∂ku+ bj(x) ∂ju+ c(x)u,

on a domain Ω ⊂ Rn. We assume that ajk, bj , and c are real-valued and
that ajk ∈ L∞(Ω), with

(13.2) λ|ξ|2 ≤ ajk(x)ξjξk ≤ Λ|ξ|2,

for certain λ,Λ ∈ (0,∞). We define

(13.3) D = det (ajk), D∗ = D1/n.

A. Alexandrov [Al] proved that if |b|/D∗ ∈ Ln(Ω) and c ≤ 0 on Ω, then

(13.4) u ∈ C(Ω) ∩H2,n
loc (Ω), Lu ≥ f on Ω,

implies

(13.5) sup
x∈Ω

u(x) ≤ sup
y∈∂Ω

u+(y) + C∥D−1
∗ f∥Ln(Ω),



144

where C = C
(
n,diam Ω, ∥b/D∗∥Ln

)
. We will not make use of this and will

not include a proof, but we will establish the following result of I. Bakelman
[B], essentially a more precise version of (13.5) for the special case bj = c =
0 (under stronger regularity hypotheses on u). It is used in some proofs of
(13.5) (see [GT]).

To formulate this result, set

(13.6)
Γ+ = {y ∈ Ω : u(x) ≤ u(y) + p · (x− y),∀ x ∈ Ω,

for some p = p(y) ∈ Rn}.

If u ∈ C1(Ω), then y belongs to Γ+ if and only if the graph of u lies
everywhere below its tangent plane at

(
y, u(y)

)
. If u ∈ C2(Ω), then u is

concave on Γ+, that is, (∂j∂ku) ≤ 0 on Γ+.

Proposition 13.1. If u ∈ C2(Ω) ∩ C(Ω), we have

(13.7) sup
x∈Ω

u(x) ≤ sup
y∈∂Ω

u(y) +
d

nV
1/n
n

∥∥D−1
∗ (ajk∂j∂ku)

∥∥
Ln(Γ+)

,

where d = diam Ω, and Vn is the volume of the unit ball in Rn.

To establish this, we use the matrix inequality

(13.8) (det A)(det B) ≤
( 1
n

Tr AB
)n
,

for positive, symmetric, n× n matrices A and B. (See the exercise at the
end of this section for a proof.) Setting

(13.9) A = −H(u) = −
(
∂j∂ku(x)

)
, B =

(
ajk(x)

)
, x ∈ Γ+,

where H(u) is the Hessian matrix, as in (3.7a), we have

(13.10) |det H(u)| ≤ D−1
(
− 1

n
ajk ∂j∂ku

)n
on Γ+.

Thus Proposition 13.1 follows from

Lemma 13.2. For u ∈ C2(Ω) ∩ C(Ω), we have

(13.11) sup
x∈Ω

u(x) ≤ sup
y∈∂Ω

u(y) +
d

V
1/n
n

(∫
Γ+

|det H(u)| dx
)1/n

.

Proof. Replacing u by u − sup∂Ω u, it suffices to assume u ≤ 0 on ∂Ω.
Define χ(Ω) to be

∪
y∈Ω χ(y), where

(13.12) χ(y) = {p ∈ Rn : u(x) ≤ u(y) + p · (x− y),∀ x ∈ Ω},

so χ(y) ̸= ∅ ⇔ y ∈ Γ+. Also, if u ∈ C1(Ω) (as we assume here),

(13.13) χ(y) = {Du(y)}, for y ∈ Γ+.



13. Elliptic regularity IV (Krylov-Safonov estimates) 145

Thus the Lebesgue measure of χ(Ω) is given by

(13.14) Ln
(
χ(Ω)

)
= Ln

(
χ(Γ+)

)
= Ln

(
Du(Γ+)

)
≤
∫
Γ+

|det H(u)| dx.

Thus it suffices to show that if u ∈ C(Ω) ∩ C2(Ω) and u ≤ 0 on ∂Ω, then

(13.15) sup
x∈Ω

u(x) ≤ d

V
1/n
n

Ln
(
χ(Ω)

)
.

This is basically a comparison result. Assume sup u > 0 is attained
at x0. Let W1 be the function on Ω whose graph is the cone with apex
at
(
x0, u(x0)

)
and base ∂Ω × {0}. Then, if χW1

(y) denotes the function
(13.12) with u replaced by W1, we have

(13.16) χu(Ω) ⊃ χW1(Ω).

Similarly, if W2 is the function on Bd(x0) whose graph is the cone with
apex at

(
x0, u(x0)

)
and base {x : |x− x0| = d} × {0}, then

(13.17) χW1(Ω) ⊃ χW2

(
Bd(x0)

)
.

Finally, the inequality

(13.18) sup W2 ≤ d

V
1/n
n

Ln
(
χW2

(Bd(x0))
)

is elementary, so we have (13.15), and hence Lemma 13.2 is proved.

We now make the assumption that

(13.19)
Λ

λ
≤ γ,

( |b|
λ

)2
≤ ν,

|c|
λ

≤ ν,

and establish the following local maximum principle, following [GT].

Proposition 13.3. Let u ∈ H2,n(Ω), Lu ≥ f, f ∈ Ln(Ω). Then, for any
ball B = B2R(y) ⊂ Ω and any p ∈ (0, n], we have

(13.20) sup
x∈BR(y)

u(x) ≤ C

( 1

Vol(B)

∫
B

(u+)p dx
)1/p

+
R

λ
∥f∥Ln(B)

 ,

where C = C(n, γ, νR2, p).

Proof. Translating and dilating, we can assume without loss of generality
that 0 ∈ Ω and B = B1(0). We will also assume that u ∈ C2(Ω)∩H2,n(Ω),
since if (13.20) is established in this case, the more general case follows by
a simple approximation argument.
Given β ≥ 1, define

(13.21) η(x) =
(
1− |x|2

)β
, for |x| ≤ 1.
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Setting v = ηu on B, we have

(13.22)
ajk ∂j∂kv = ηajk ∂j∂ku+ 2ajk(∂jη)(∂ku) + uajk ∂j∂kη

≥ η(f − bj ∂ju− cu) + 2ajk(∂jη)(∂ku) + uajk ∂j∂kη.

Let Γ+
v be as in (13.6), but with u replaced by v, and Ω replaced by B.

Clearly, u ≥ 0 on Γ+
v . We have

(13.23) |Dv| ≤ v

1− |x|
on Γ+

v ,

so

(13.24)
|Du| = η−1|Dv − uDη| ≤ 1

η

( v

1− |x|
+ u|Dη|

)
≤ 2(1 + β)η−1/βu on Γ+

v .

Hence

(13.25)
−ajk ∂j∂kv ≤

{(
16β2 + 2βη

)
Λη−2/β + 2β|b|η−1/β + c

}
v + ηf

≤ Cλη−2/βv + f,

on Γ+
v , where C = C(n, β, γ, ν). Of course, ajk∂j∂kv ≤ 0 on Γ+

v . If β ≥ 2,
we have, upon applying Proposition 13.1 to v,

(13.26)

sup
B

v ≤ C
(∥∥η−2/βv+

∥∥
Ln(B)

+
1

λ
∥f∥Ln(B)

)
≤ C1

{(
sup
B

v+
)1−2/β∥∥(u+)2/β∥∥

Ln(B)
+

1

λ
∥f∥Ln(B)

}
.

Choose β = 2n/p ≥ 2, so we have

(13.27) sup
B

v ≤ C1

{(
sup
B

v+
)1−p/n∥u+∥p/nLp(B) +

1

λ
∥f∥Ln(B)

}
.

(Here we allow p < 1, in which case ∥ · ∥Lp is not a norm, but (13.27) is
still valid.) Using the elementary inequality

(13.28) a1−p/nbp/n ≤ εa+ ε−
(
n/p−1

)
b, ∀ ε ∈ (0,∞),

and taking a = supB v+, b = ∥u+∥Lp(B), and ε = 1/2C1, we have (the
R = 1 case of) (13.20), so Proposition 13.3 is proved.

Replacing u by −u, we have an estimate on supBR(y) (−u) when Lu ≤ f .
Thus, when Lu = f and the hypotheses of Proposition 13.3 hold, we have

(13.29) sup
BR(y)

|u| ≤ C

( 1

Vol(B)

∫
B

|u|p dx
)1/p

+
R

λ
∥f∥Ln(B)

 .

Next we establish a “weak Harnack inequality” of [KrS], which will lead
to results on Hölder continuity of solutions of Lu = f . This result will also
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be applied directly in the next section, to results on solutions to certain
completely nonlinear equations.

Proposition 13.4. Assume u ∈ H2,n(Ω), Lu ≤ f in Ω, f ∈ Ln(Ω), and
u ≥ 0 on a ball B = B2R(y) ⊂ Ω. Then

(13.30)

 1

Vol(BR)

∫
BR

up dx

1/p

≤ C
(
inf
BR

u+
R

λ
∥f∥Ln(B)

)
,

for some positive p = p(n, γ, νR2) and C = C(n, γ, νR2).

As before, there is no loss of generality in assuming B = B1(0). Also,
replacing L and f by λ−1L and λ−1f , we can assume λ = 1.
To begin the proof, take ε > 0 and set

(13.31)
u = u+ ε+ ∥f∥Ln(B), w = log

1

u
,

v = ηw, g =
f

u
,

where η is given by (13.21). Note that w is large (positive) where u is
small. We have

(13.32)

−ajk ∂j∂kv = −ηajk ∂j∂kw − 2ajk(∂jη)(∂kw)− wajk ∂j∂kη

≤ η
[
−ajk(∂jw)(∂kw) + bj∂jw + |c|+ g

]
− 2ajk(∂jη)(∂kw)− wajk ∂j∂kη

≤ 2

η
ajk(∂jη)(∂kη)− wajk ∂j∂kη + (|b|2 + |c|+ g)η,

where the last inequality is obtained via Cauchy’s inequality, applied to the
inner product ⟨V,W ⟩ = Vja

jkWk.
Now the form of η implies that ajk ∂j∂kη ≥ 0 provided 2(β−1)ajkxjxk+

ajj |x|2 ≥ ajj , and hence

(13.33) 2β|x|2 ≥ nΛ =⇒ ajk ∂j∂kη ≥ 0.

Thus, if α ∈ (0, 1), then

(13.34) β ≥ nγ

2α
, |x| ≥ α =⇒ ajk ∂j∂kη ≥ 0.

Hence, on the set B+ = {x ∈ B : w(x) > 0}, we have

(13.35)

−ajk ∂j∂kv ≤ 4β2
(
1− |x|2

)β−2|x|2 + vχBα
sup
Bα

(
−a

jk ∂j∂kη

η

)
+
(
|b|2 + |c|+ g

)
η

≤ 4β2Λ + |b|2 + |c|+ g +
2nβΛ

1− α2
vχBα

.
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Note that ∥g∥Ln(B) ≤ 1. Thus Proposition 13.1 yields

(13.36) sup
B

v ≤ C
(
1 + ∥v+∥Ln(Bα)

)
,

with C = C(n, α, γ, ν).
Note that if u satisfies the hypotheses of Proposition 13.4 and t ∈ (0,∞),

then u/t satisfies L(u/t) ≤ f/t, and the analogue of w in (13.31) is w − k,
where k = log(1/t). The function g in (13.31) is unchanged, and, working
through (13.32)–(13.36), we obtain the following extension of (13.36):

(13.37) sup
B

η(w − k) ≤ C
(
1 + ∥η(w − k)+∥Ln(Bα)

)
, ∀ k ∈ R,

with constants independent of k.
The next stage in the proof of Proposition 13.4 will involve a decompo-

sition into cubes of the sort used for Calderon-Zygmund estimates in §5 of
Chapter 13. To set up some notation, given y ∈ Rn, R > 0, let QR(y)
denote the open cube centered at y, of edge 2R:

(13.38) QR(y) = {x ∈ Rn : |xj − yj | < R, 1 ≤ j ≤ n}.

If α < 1/
√
n, then Qα = Qα(0) ⊂⊂ B.

The cube decomposition we will use in the proof of Lemma 13.5 below can
be described in general as follows. Let Q0 be a cube in Rn, let φ ≥ 0 be an
element of L1(Q0), and suppose

∫
Q0
φ dx ≤ tLn(Q0), t ∈ (0,∞). Bisecting

the edges of Q0, we subdivide it into 2n subcubes. Those subcubes that
satisfy

∫
Q
φ dx ≤ tLn(Q) are similarly subdivided, and this process is

repeated indefinitely. Let F denote the set of subcubes so obtained that
satisfy ∫

Q

φ dx > tLn(Q);

we do not further subdivide these cubes. For each Q ∈ F , denote by Q̃ the
subcube whose subdivision gives Q. Since Ln(Q̃)/Ln(Q) = 2n, we see that

(13.39) t <
1

Ln(Q)

∫
Q

φ dx ≤ 2nt, ∀ Q ∈ F .

Also, setting F =
∪

Q∈F Q and G = Q0 \ F , we have

(13.40) φ ≤ t, a.e. in G.

This subdivision was also done in the proof of Lemma 5.5 in Chapter 13.
Let us also set F̃ =

∪
Q∈F Q̃; since Q ∈ F ⇒ Q̃ /∈ F , we have

(13.41)

∫
F̃

φ dx ≤ tLn(F̃ ).
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In particular, when φ is the characteristic function χΓ of a measurable
subset Γ of Q0, of measure ≤ t · Ln(Q0), we deduce from (13.40)–(13.41)
that

(13.42) Ln(Γ) = Ln(Γ ∩ F̃ ) ≤ tLn(F̃ ).

We have the following measure-theoretic result:

Lemma 13.5. Let Q0 be a cube in Rn, w ∈ L1(Q0), and, for k ∈ R, set

(13.43) Γk = {x ∈ Q0 : w(x) ≤ k}.

Suppose there are positive constants δ < 1 and C such that

(13.44) sup
Q0∩Q3r(z)

(w − k) ≤ C

whenever k and Q = Qr(z) ⊂ Q0 satisfy

(13.45) Ln(Γk ∩Q) ≥ δLn(Q).

Then, for all k ∈ R,

(13.46) sup
Q0

(w − k) ≤ C

(
1 +

log
(
Ln(Γk)/Ln(Q0)

)
log δ

)
.

Proof. We show by induction that

(13.47) sup
Q0

(w − k) ≤ mC,

for any m ∈ Z+ and k ∈ R such that Ln(Γk) ≥ δmLn(Q0). This is true
by hypothesis if m = 1. Suppose that it holds for m = M ∈ Z+ and that
Ln(Γk) ≥ δM+1Ln(Q0). Define Γ̃k by

(13.48) Γ̃k =
∪{

Q3r(z) ∩Q0 : Ln
(
Qr(z) ∩ Γk

)
≥ δ Ln

(
Qr(z)

)}
.

Applying the estimate (13.42), with t = δ, we see that either Γ̃k = Q0 or

(13.49) Ln(Γ̃k) ≥ δ−1Ln(Γk) ≥ δM vol(Q0),

and hence, replacing k by k + C, we obtain

(13.50) sup
Q0

(w − k) ≤ (M + 1)C,

which verifies (13.47) for m =M + 1.
Now, the estimate (13.46) follows by choosing m appropriately, and the

lemma is proved.

Returning to the estimation of the functions defined in (13.31), we see
that (13.36) implies

(13.51) sup
B

v ≤ C
(
1 + ∥v+∥Ln(Qα)

)
≤ C

(
1 +

[
vol(Q+

α )
]1/n

sup
B

v+
)
,
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where Qα = Qα(0), as stated below (13.38), and

Q+
α = {x ∈ Qα : v(x) > 0} = {x ∈ Qα : u(x) < 1}.

Hence, if C is the constant in (13.36),

(13.52)
vol(Q+

α )

vol(Qα)
≤
( 1

4αC

)n
= θ =⇒ sup

B
v ≤ 2C.

Now choose α = 1/3n, and take θ = (4αC)−n, as in (13.52). Using the
coordinate change x 7→ α(x− z)/r, we obtain for any cube Q = Qr(z) such
that B3nr(z) ⊂ B, the implication

(13.53)
vol(Q+)

vol(Q)
≤ θ =⇒ sup

Q3r(z)

w ≤ C(n, γ, ν).

With α and θ as specified above, take δ = 1− θ, Q0 = Qα(0), and note
that the estimate (13.53) holds also when w is replaced by w − k, and Q+

is replaced by the set {x ∈ Q : w(x)− k > 0}, as a consequence of (13.37).
Let

(13.54) µ(t) = Ln
(
{x ∈ Q0 : u(x) > t}

)
.

Setting k = log 1/t, we have from Lemma 13.5 the estimate

(13.55) µ(t) ≤ C
(
inf
Q0

t−1u
)κ
, ∀ t > 0,

where C = C(n, γ, ν), κ = κ(n, γ, ν). Replacing the cube Q0 by the
inscribed ball Bα(0), α = 1/3n, and using the identity

(13.56)

∫
Q0

(u)p dx = p

∫ ∞

0

tp−1µ(t) dt,

we have

(13.57)

∫
Bα

(u)p dx ≤ C
(
inf
Bα

u
)p
, for p =

κ

2
.

The inequality (13.30) then follows by letting ε → 0 if we use a covering
argument to extend (13.57) to arbitrary α < 1 (especially, α = 1/2) and
use the coordinate transformation x 7→ (x− y)/2R. Thus Proposition 13.4
is established.

Putting together (13.29) and (13.30), we have the following.

Corollary 13.6. Assume u ∈ H2,n(Ω), Lu = f on Ω, f ∈ Ln(Ω), and
u ≥ 0 on a ball B = B4R(y) ⊂ Ω. Then

(13.58) sup
BR(y)

u(x) ≤ C1

(
inf

B2R(y)
u+

R

λ
∥f∥Ln(B4R)

)
,
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for some C1 = C1(n, γ, νR
2). In particular, if u ≥ 0 on Ω,

(13.59) Lu = 0 =⇒ sup
BR(y)

u(x) ≤ C1 inf
B2R(y)

u(x).

We can use this to establish Hölder estimates on solutions to Lu = f .
We will actually apply Corollary 13.6 to L1 = ajk ∂j∂k + bj∂j , so L1u =
f1 = f − cu. Suppose that

(13.60) a = inf
B4R(y)

u ≤ sup
B4R(y)

u = b.

Then v = (u − a)/(b − a) is ≥ 0 on B4R(y), and L1v = f1/(b − a), so
Corollary 13.6 yields

(13.61) sup
BR(y)

u− a

b− a
≤ C1

(
inf

B2R(y)

u− a

b− a
+
R

λ

1

b− a
∥f − cu∥Ln(B4R)

)
.

Without loss of generality, we can assume C1 ≥ 1. Now given this, one of
the following two cases must hold:

(i) C1 inf
B2R(y)

u− a

b− a
≥ 1

2
sup

BR(y)

u− a

b− a
,

(ii) C1 inf
B2R(y)

u− a

b− a
<

1

2
sup

BR(y)

u− a

b− a
.

If case (i) holds, then either

sup
BR(y)

u− a

b− a
≤ 1

2
or inf

B2R(y)

u− a

b− a
≥ 1

4C1
,

and hence (since we are assuming C1 ≥ 1)

(13.62) (i) =⇒ osc
BR(y)

u ≤
(
1− 1

4C1

)
osc

B4R(y)
u.

If case (ii) holds, then

sup
BR(y)

u− a

b− a
≤ 2R

λ

1

b− a
∥f − cu∥Ln(B4R),

so

(13.63) (ii) =⇒ osc
BR(y)

u ≤ 2R

λ
∥f − cu∥Ln(B4R),

which is bounded by C2R in view of the sup-norm estimate (13.29). Con-
sequently, under the hypotheses of Corollary 13.6, we have

(13.64) osc
BR(y)

u ≤ max
(
C2R,

(
1− 1

C1

)
osc

B4R(y)
u
)
,
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with C1 = C1(n, γ, νR
2
0), C2 = C2(n, γ, νR

2
0)
[
∥f∥Ln(Ω) + ∥u∥Ln(Ω)

]
, given

B4R0(y) ⊂ Ω, R ≤ R0. Therefore, we have the following:

Theorem 13.7. Assume u ∈ H2,n(Ω), Lu = f , and f ∈ Ln(Ω). Given
O ⊂⊂ Ω, there is a positive µ = µ(O,Ω, n, γ, ν) such that

(13.65) ∥u∥Cµ(O) ≤ A
(
∥u∥Ln(Ω) + ∥f∥Ln(Ω)

)
,

with A = A(O,Ω, n, γ, ν).

Some boundary regularity results follow fairly easily from the methods
developed above. For the present, assume Ω is a smoothly bounded region
in Rn, that

(13.66) u ∈ H2,n(Ω) ∩ C(Ω), u
∣∣
∂Ω

≤ 0,

and that Lu = f on Ω. Let B = B2R(y) be a ball centered at y ∈ ∂Ω.
Then, extending (13.20), we have, for any p ∈ (0, n],

(13.67) sup
Ω∩BR(y)

u ≤ C

( 1

vol(B)

∫
B∩Ω

(u+)p dx
)1/p

+
R

λ
∥f∥Ln(B∩Ω)

 ,

with C = C(n, γ, νR2, p). To establish this, extend u to be 0 on B \ Ω.
This extended function might not belong to H2,n(B), but the proof of
Proposition 13.3 can still be seen to apply, given the following observation:

Lemma 13.8. Assume that u satisfies the hypotheses of Proposition 13.1
and that Ω ⊂ Ω̃, and set u = 0 on Ω̃ \ Ω. Then

(13.68) sup
Ω̃

u ≤ sup
∂Ω̃

u+
d̃

nV
1/n
n

∥∥D−1
∗ (ajk ∂j∂ku)

∥∥
Ln(Γ̃+)

,

where d̃ = diam Ω̃, and Γ̃+ is the upper contact set of u, defined as in
(13.6), with Ω, replaced by Ω̃.

Note that if u(x) > 0 anywhere on Ω, then Γ̃+ ⊂ Γ+.
The following result extends Proposition 13.4.

Proposition 13.9. Assume u ∈ H2,n(Ω), Lu = f on Ω, u ≥ 0 on B ∩Ω.
Set

(13.69) m = inf
B∩∂Ω

u,

and

(13.70)
ũ(x) = min

(
m,u(x)

)
, x ∈ B ∩ Ω,

m, x ∈ B \ Ω.
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Then

(13.71)

 1

vol(BR)

∫
BR

(ũ)p dx

1/p

≤ C
(

inf
Ω∩BR

u+
R

λ
∥f∥Ln(B∩Ω)

)
,

for some positive p = p(n, γ, νR2) and C = C(n, γ, νR2).

Proof. One adapts the proof of Proposition 13.4, with u replaced by ũ.
One gets an estimate of the form (13.53), with w replaced by w − k, k ≥
− logm. From there, one gets an estimate of the form (13.55), for 0 < t ≤
m. But µ(t) = 0 for t > m, so (13.71) follows as before.

This leads as before to a Hölder estimate:

Proposition 13.10. Assume u ∈ H2,n(Ω), Lu = f ∈ Ln(Ω), u
∣∣
∂Ω

= φ ∈
Cβ(∂Ω), and β > 0. Then there is a positive µ = µ(Ω, n, γ, ν, β) such that

(13.72) ∥u∥Cµ(Ω) ≤ A
(
∥u∥Ln(Ω) + ∥f∥Ln(Ω) + ∥φ∥Cβ(∂Ω)

)
,

with A = A(Ω, n, γ, ν, β).

We next establish another type of boundary estimate, which will also be
very useful in applications in the following sections. The following result is
due to [Kry2]; we follow the exposition in [Kaz] of a proof of L. Caffarelli.

Proposition 13.11. Assume u ∈ C2(Ω) satisfies

(13.73) Lu = f, u
∣∣
∂Ω

= 0.

Assume

(13.74) ∥u∥L∞(Ω) + ∥∇u∥L∞(Ω) + ∥f∥L∞(Ω) ≤ K.

Then there is a Hölder estimate for the normal derivative of u on ∂Ω:

(13.75) ∥∂νu∥Cα(∂Ω) ≤ CK,

for some positive α = α(Ω, n, ν, λ,Λ,K) and C = C(Ω, n, ν, λ,Λ).

To prove this, we can flatten out a portion of the boundary. After having
done so, absorb the terms bj(x)∂ju + c(x)u into f . It suffices to assume
that

(13.76) Lu = f on B+, Lu = ajk(x) ∂j∂ku,

where

B+ = {x ∈ Rn : |x| < 4, xn ≥ 0},
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and that

(13.77) u = 0 on Σ = {x ∈ Rn : |x| < 4, xn = 0},

and to show that there is an estimate

(13.78) ∥∂nu∥Cα(Γ) ≤ CK, C = C(n, λ,Λ),

where K is as in (13.74), with Ω replaced by B+, α = α(n, λ,Λ,K) > 0,
and

(13.79) Γ = {x ∈ Σ : |x| ≤ 1}.

Note that, for (x′, 0) ∈ Σ,

(13.80) ∂nu(x
′, 0) = v(x′, 0),

where

(13.81) v(x) = x−1
n u(x).

Figure 13.1

Let us fix some notation. Given R ≤ 1 and δ = λ/9nΛ < 1/2, let

(13.82)
Q(R) =

{
x ∈ B+ : |x′| ≤ R, 0 ≤ xn ≤ δR

}
,

Q+(R) =
{
x ∈ Q(R) :

1

2
δR ≤ xn ≤ δR

}
(see Fig. 13.1). Then set

(13.83) mR = inf
Q(R)

v, MR = sup
Q(R)

v,

so oscQ(R) v = MR −mR. Before proving Proposition 13.11, we establish
two lemmas.
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Lemma 13.12. Under the hypotheses (13.76) and (13.77), if also u ≥ 0
on Q(R), then

(13.84) inf
Q+(R)

v ≤ 2

δ
inf

Q(R/2)
v +

R

λ
sup |f |.

Proof. Let γ = inf{v(x) : |x′| ≤ R, xn = δR}, and set

(13.85) z(x) = γxn

(
δ − 2δ

R2
|x′|2 + 1

R
xn

)
− 1

2λ
xn
(
δR− xn

)
sup |f |.

Given δ ∈ (0, 1/2], we have the following behavior on ∂Q(R):

(13.86)

z(x) = 0, for x = (x′, 0), (bottom),

z(x) < 0 on {x ∈ Q(R) : |x′| = R}, (side),

z(x) < 2γδ2R < γδR on {x ∈ Q(R) : xn = δR} (top).

Also,

(13.87) Lz ≤ − sup |f | ≤ f on Q(R) if δ =
λ

9nΛ
.

Since u ≥ 0 on Q(R) and u = xnv ≥ γδR on the top of Q(R), we have

(13.88) L(u− z) ≥ 0 on Q(R), u ≥ z on ∂Q(R).

Thus, by the maximum principle, u ≥ z on Q(R), so v(z) ≥ z(x)/xn on
Q(R). Hence

(13.89) inf
Q(R/2)

v ≥ δ

2

(
γ − R

λ
sup |f |

)
.

Since γ ≥ infQ+(R) v, this yields (13.84).

Lemma 13.13. If u satisfies (13.76) and (13.77) and u ≥ 0 on Q(2R),
then

(13.90) sup
Q+(R)

v ≤ C
(

inf
Q+(R)

v +R sup |f |
)
,

with C = C(n, λ,Λ,K).

Proof. By (13.58), if x ∈ Q+(R), r = δR/8, we have

(13.91) sup
Br(x)

u ≤ C
(

inf
Br(x)

u+ r2 sup |f |
)
.

Since δR/2 ≤ xn ≤ δR on Q+(R), (13.90) follows from this plus a simple
covering argument.

We now prove Proposition 13.11. The various factors Cj will all have
the form Cj = Cj(n, λ,Λ,K). If we apply (13.90), with u replaced by
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u−m2Rxn ≥ 0, on Q(2R), we obtain

(13.92) sup
Q+(R)

(v −m2R) ≤ C1

(
inf

Q+(R)
(v −m2R) +R sup |f |

)
.

By Lemma 13.12, this is

(13.93)
≤ C2

(
inf

Q(R/2)
(v −m2R) +R sup |f |

)
= C2

(
mR/2 −m2R +R sup |f |

)
.

Reasoning similarly, with u replaced by M2Rxn−u ≥ 0 on Q(2R), we have

(13.94) sup
Q+(R)

(M2R − v) ≤ C2

(
M2R −MR/2 +R sup |f |

)
.

Summing these two inequalities yields

(13.95) M2R −m2R ≤ C3

[
(M2R −m2R)− (MR/2 −mR/2) +R sup |f |

]
,

which implies

(13.96) osc
Q(R/2)

v ≤ ϑ osc
Q(2R)

v +R sup |f |,

with ϑ = 1 − 1/C3 < 1. This readily implies the Hölder estimate (13.78),
proving Proposition 13.11.

Exercises

1. Prove the matrix inequality (13.8). (Hint: Set C = A1/2 ≥ 0 and reduce
(13.8) to

(13.97)
1

n
Tr X ≥ (det X)1/n,

for X = CBC ≥ 0. This is equivalent to the inequality

(13.98)
1

n
(λ1 + · · ·+ λn) ≥ (λ1 · · ·λn)

1/n, λj > 0,

which is called the arithmetic-geometric mean inequality. It can be deduced
from the facts that log x is concave and that any concave function φ satisfies

(13.99) φ

(
1

n
(λ1 + · · ·+ λn)

)
≥ 1

n

[
φ(λ1) + · · ·+ φ(λn)

]
.)
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14. Regularity for a class of completely nonlinear equations

In this section we derive Hölder estimates on the second derivatives of
real-valued solutions to nonlinear PDE of the form

(14.1) F (x,D2u) = 0,

satisfying the following conditions. First we require uniform strong ellip-
ticity:

(14.2) λ|ξ|2 ≤ ∂ζjkF (x, u,∇u, ∂2u)ξjξk ≤ Λ|ξ|2,

with λ,Λ ∈ (0,∞), constants. Next, we require that F be a concave func-
tion of ζ:

(14.3) ∂ζjk∂ζℓmF (x, u, p, ζ)ΞjkΞℓm ≤ 0, Ξjk = Ξkj ,

provided ζ = ∂2u(x), p = ∇u(x).
As an example, consider

(14.4) F (x, u, p, ζ) = log det ζ − f(x, u, p).

Then (DζF )Ξ = Tr(ζ−1Ξ), so the quantity (14.3) is equal to

(14.5) −Tr
(
ζ−1Ξζ−1Ξ

)
= − Tr

(
ζ−1/2Ξζ−1Ξζ−1/2

)
, Ξt = Ξ,

provided the real, symmetric, n×n matrix ζ is positive-definite, and ζ−1/2

is the positive-definite square root of ζ−1. Then the function (14.4) satisfies
(14.3), on the region where ζ is positive-definite. It also satisfies (14.2) for
∂2u(x) = ζ ∈ K, any compact set of positive-definite, real, n× n matrices.
In particular, if F is a bounded set in C2(Ω) such that (∂j∂ku) is positive-
definite for each u ∈ F , and (14.1) holds, with |f(x, u,∇u)| ≤ C0, then
(14.2) holds, uniformly for u ∈ F .
We first establish interior estimates on solutions to (14.1). We will make

use of results of §13 to establish these estimates, following [Ev], with sim-
plifications of [GT]. To begin, let µ ∈ Rn be a unit vector and apply ∂µ to
(14.1), to get

(14.6) Fζij ∂i∂j∂µu+ Fpi
∂i∂µu+ Fu ∂µu+ µi ∂xi

F = 0.

Then apply ∂µ again, to obtain

(14.7)
Fζij ∂i∂j∂

2
µu+ (∂ζij∂ζkℓ

F )(∂i∂j∂µu)(∂k∂ℓ∂µu)

+Aij
µ (x,D

2u) ∂i∂j∂µu+Bµ(x,D
2u) = 0,

where

Aij
µ (x,D

2u) = 2(∂ζij∂pk
F )(∂k∂µu) + 2(∂ζij∂uF )(∂µu) + 2µk(∂ζij∂xk

F ),

and Bµ(x,D
2u) also involves first- and second-order derivatives of F .

Given the concavity of F , we have the differential inequality

(14.8) Fζij ∂i∂j∂
2
µu ≥ −Aij

µ ∂i∂j∂µu−Bµ,
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where Aij
µ = Aij

µ (x,D
2u), Bµ = Bµ(x,D

2u). If we set

(14.9) hµ =
1

2

(
1 +

∂2µu

1 +M

)
, M = sup

Ω
|∂2u|,

then (14.8) implies

(14.10) −Fζij ∂i∂jhµ ≤ C

1 +M

(
A0|∂3u|+B0

)
,

where

(14.11) A0 = A0

(
∥u∥C2(Ω)

)
, B0 = B0

(
∥u∥C2(Ω)

)
.

Now let {µk : 1 ≤ k ≤ N} be a collection of unit vectors, and set

(14.12) hk = hµk
, v =

N∑
k=1

h2k.

Use hk in (14.10), multiply this by hk, and sum over k, to obtain

(14.13)

N∑
k=1

Fζij (∂ihk)(∂jhk)−
1

2
Fζij ∂i∂jv ≤ C

1 +M

(
A0|∂3u|+B0

)
.

Make sure that {µk : 1 ≤ k ≤ N} contains the set

(14.14) U = {ej : 1 ≤ j ≤ n} ∪ {2−1/2(ei ± ej) : 1 ≤ i < j ≤ n},

where {ej} is the standard basis of Rn. Consequently,

(14.15) |∂3u|2 =
∑
i,j,ℓ

|∂i∂j∂ℓu|2 ≤ 4(1 +M)2
N∑

k=1

|∂hk|2.

The ellipticity condition (14.2) implies

(14.16)

N∑
k=1

Fζij (∂ihk)(∂jhk) ≥ λ

N∑
k=1

|∂hk|2.

Now, take ε ∈ (0, 1), and set

(14.17) wk = hk + εv.

We have
(14.18)

ελ

N∑
k=1

|∂hk|2 −
1

2
Fζij ∂i∂jwk ≤ C

{
A0

( N∑
k=1

|∂hk|2
)1/2

+
B0

1 +M

}
.

Thus, by Cauchy’s inequality,

(14.19) Fζij∂i∂jwk ≥ −λµ, µ =
Cn

λ

(A2
0

λε
+

B0

1 +M

)
.
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We now prepare to apply Proposition 13.4. Let BR ⊂ B2R be concentric
balls in Ω, and set

(14.20)

Wks = sup
BsR

wk, Mks = sup
BsR

hk, mks = inf
BsR

hk,

ω(sR) =
N∑

k=1

osc
BsR

hk =
N∑

k=1

(Mks −mks).

Applying Proposition 13.4 to (14.19), we have

(14.21)

 1

vol BR

∫
BR

(
Wk2 − wk

)p
dx

1/p

≤ C(Wk2 −Wk1 + µR2),

where p = p(n,Λ/λ) > 0, C = C(n,Λ/λ). Denote the left side of (14.21)
by

Φp,R(Wk2 − wk).

Note that

(14.22)
Wk2 − wk ≥Mk2 − hk − 2εω(2R),

Wk2 −Wk1 ≥Mk2 −Mk1 + 2εω(2R).

Hence

(14.23) Φp,R(Mk2 − hk) ≤ C
{
Mk2 −Mk1 + εω(2R) + µR2

}
.

Consequently,

(14.24)

Φp,R

(∑
k

(Mk2 − hk)
)
≤ N1/p

∑
k

Φp,R(Mk2 − hk)

≤
{
(1 + ε)ω(2R)− ω(R) + µR2

}
.

We want a complementary estimate on Φp,R(hℓ −mℓ2). We exploit the
concavity of F in ζ again to obtain

(14.25)

Fζij

(
y,D2u(y)

)(
∂i∂ju(y)− ∂i∂ju(x)

)
≤ F

(
y,Du(y), ∂2u(x)

)
− F

(
y,Du(y), ∂2u(y)

)
= F

(
y,Du(y), ∂2u(x)

)
− F

(
x,Du(x), ∂2u(x)

)
≤ D0|x− y|,

where

(14.26) D0 = D0

(
∥u∥C2(Ω)

)
.

The equality in (14.25) follows from F (x,D2u) = 0. At this point, we
impose a special condition on the unit vectors µk used to define hk above.
The following is a result of [MW]:
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Lemma 14.1. Given 0 < λ < Λ < ∞, let S(λ,Λ) denote the set of
positive-definite, real, n × n matrices with spectrum in [λ,Λ]. Then there
exist N ∈ Z+ and λ∗ < Λ∗ in (0,∞), depending only on n, λ, and Λ, and
unit vectors µk ∈ Rn, 1 ≤ k ≤ N , such that

(14.27) {µk : 1 ≤ k ≤ N} ⊃ U,

where U is defined by (14.14), and such that every A ∈ S(λ,Λ) can be
written in the form

(14.28) A =

N∑
k=1

βkPµk
, βk ∈ [λ∗,Λ∗],

where Pµk
is the orthogonal projection of Rn onto the linear span of µk.

Proof. Let the set of real, symmetric, n × n matrices be denoted as
Symm(n) ≈ Rn(n+1)/2. Note that A ∈ Symm(n) belongs to S(λ,Λ) if
and only if

λ|v|2 ≤ v ·Av ≤ Λ|v|2, ∀ v ∈ Rn.

Thus S(λ,Λ) is seen to be a compact, convex subset of Symm(n). Also,
S(λ,Λ) is contained in the interior of S(λ1,Λ1) if 0 < λ1 < λ < Λ < Λ1.
It suffices to prove the lemma in the case Λ = 1/2n. Suppose 0 < λ <

1/2n. By the spectral theorem for elements of Symm(n), S(λ/2, 1/2n) is
contained in the interior of the convex hull CH(P) of the set

P = {0} ∪ {Pµ : µ ∈ Sn−1 ⊂ Rn}.

Thus, there exists a finite subset A ⊃ U of unit vectors such that S(λ/2, 1/2n)
is contained in the interior of CH(P0), with P0 = {0}∪{Pµ : µ ∈ A}. Write
A as {µk : 1 ≤ k ≤ N}. Then any element of S(λ/2, 1/2n) has a represen-
tation of the form

∑N
k=1 β̃kPµk

, with β̃k ∈ [0, 1].
Now, if we take A ∈ S(λ, 1/2n), it follows that

A−
N∑

k=1

λ

2N
Pµk

∈ S
(λ
2
,
1

2n

)
,

so A =
∑N

k=1

(
β̃k+λ/2N

)
Pµk

has the form (14.28), with βk = β̃k+λ/2N ∈[
λ/2N, 2

]
. This proves the lemma.
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If we choose the set {µk : 1 ≤ k ≤ N} of unit vectors to satisfy the
condition of Lemma 14.1, then

(14.29)

Fζij

(
y,D2u(y)

)(
∂i∂ju(y)− ∂i∂ju(x)

)
=

N∑
k=1

βk(y)
(
∂2µk

u(y)− ∂2µk
u(x)

)
= 2(1 +M)

N∑
k=1

βk(y)
(
hk(y)− hk(x)

)
,

with βk(y) ∈ [λ∗,Λ∗]. Consequently, for x ∈ B2R, y ∈ BR, we have from
(14.25) that

(14.30)

N∑
k=1

βk(y)
(
hk(y)− hk(x)

)
≤ Cλµ̃R, µ̃ =

D0

λ(1 +M)
.

Hence, for any ℓ ∈ {1, . . . , N},

(14.31)

hℓ(y)−mℓ2 ≤ 1

λ∗

{
Cλµ̃R+ Λ∗

∑
k ̸=ℓ

(
Mk2 − hk(y)

)}
≤ C

{
µ̃R+

∑
k ̸=ℓ

(
Mk2 − hk(y)

)}
,

where C = C(n,Λ/λ). We can use (14.24) to estimate the right side of
(14.31), obtaining

(14.32) Φp,R(hℓ −mℓ2) ≤ C
{
(1 + ε)ω(2R)− ω(R) + µ̃R+ µR2

}
.

Setting ℓ = k, adding (14.32) to (14.23), and then summing over k, we
obtain

(14.33) ω(2R) ≤ C
{
(1 + ε)ω(2R)− ω(R) + µ̃R+ µR2

}
,

and hence

(14.34) ω(R) ≤
(
1− 1

C
+ ε
)
ω(2R) +

(
µ̃R+ µR2

)
.

Now C is independent of ε, though µ is not. Thus fix ε = 1/2C, to obtain

(14.35) ω(R) ≤
(
1− 1

2C

)
ω(2R) +

(
µ̃R+ µR2

)
.

From this it follows that if B2R0
⊂ Ω and R ≤ R0, we have

(14.36) osc
BR

∂2u ≤ C
( R
R0

)α
(1 +M)

(
1 + µ̃R0 + µR2

0

)
,

where C and α are positive constants depending only on n and Λ/λ. We
have proved the following interior estimate:
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Proposition 14.2. Let u ∈ C4(Ω) satisfy (14.1), and assume that (14.2)
and (14.3) hold. Then, for any O ⊂⊂ Ω, there is an estimate

(14.37) ∥∂2u∥Cα(O) ≤ C
(
O,Ω, n, λ,Λ, ∥F∥C2 , ∥u∥C2(Ω)

)
.

In fact, examining the derivation of (14.36), we can specify the depen-
dence on O,Ω. If O is a ball, and |x − y| ≥ ρ for all x ∈ O, y ∈ ∂Ω,
then

(14.38) ∥∂2u∥Cα(O) ≤ C
(
n, λ,Λ, ∥F∥C2 , ∥u∥C2(Ω)

)
ρ−α.

We now tackle global estimates on Ω for solutions to the Dirichlet prob-
lem for (14.1). We first obtain estimates for ∂2u

∣∣
∂Ω

.

Lemma 14.3. Under the hypotheses of Proposition 14.2, if u
∣∣
∂Ω

= φ,
there is an estimate

(14.39) ∥∂2u∥Cα(∂Ω) ≤ C
(
Ω, n, λ,Λ, ∥F∥C2 , ∥u∥C2(Ω), ∥φ∥C3(∂Ω)

)
.

Proof. Let Y = bℓ(x)∂ℓ be a smooth vector field tangent to ∂Ω, and
consider v = Y u, which solves the boundary problem

(14.40) Fζij∂i∂jv = G(x), v
∣∣
∂Ω

= Y φ,

where

(14.41)
G(x) = 2Fζij (∂iB

ℓ)(∂j∂ℓu) + Fζij (∂i∂jb
ℓ)∂ℓu

+ Fpi
(∂ib

ℓ)(∂ℓu)− Fpi
∂iv − Fuv − bℓ∂xℓ

F.

The hypotheses give a bound on ∥G∥L∞(Ω) in terms of the right side of
(14.39). If ψ ∈ C2(Ω) denotes an extension of Y φ from ∂Ω to Ω, then
Proposition 13.11, applied to v − ψ, yields an estimate

(14.42) ∥∂νY u∥Cα(∂Ω) ≤ C,

where C is of the form (14.39). On the other hand, the ellipticity of
(14.1) allows one to solve for ∂2νu

∣∣
∂Ω

in terms of quantities estimated in
(14.42), plus u

∣∣
∂Ω

and ∇u
∣∣
∂Ω

, and second-order tangential derivatives of
u, so (14.39) is proved.

We now want to estimate |∂2γu(x)−∂2γu(x0)|, given x0 ∈ ∂Ω, x ∈ Ω, γ ∈
Rn a unit vector. For simplicity, we will strengthen the concavity hypoth-
esis (14.3) to strong concavity:

(14.43) ∂ζjk∂ζℓmF (x, u, p, ζ)ΞjkΞℓm ≤ −λ0|Ξ|2, Ξ = Ξt,

for some λ0 > 0, when ζ = ∂2u, p = ∇u. Then we can improve (14.8) to

(14.44) Fζij ∂i∂j(∂
2
γu) ≤ −Aij

γ ∂i∂j∂γu−Bγ − λ0|∂2∂γu|2 ≤ −C1,
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by Cauchy’s inequality, where

C1 = C1

(
n, λ,Λ, λ0, ∥Aγ(x,D

2u)∥L∞ , ∥Bγ(x,D
2u)∥L∞

)
.

Now the function

(14.45) W (x) = C2|x− x0|α (0 < α < 1)

is concave on Rn \ {x0}, and if C2 is sufficiently large, compared to C1 ·
diam(Ω)2−α/λ, we have

(14.46) LW ≤ −C1, Lv = Fζij ∂i∂jv.

Hence, by the maximum principle,

(14.47) ∂2γu ≤ ∂2γ(x0) +W on ∂Ω =⇒ ∂2γu ≤ ∂2γu(x0) +W on Ω.

Now the estimate (14.39) implies that the hypothesis of (14.47) is satisfied,
provided that also C2 ≥ ∥∂2u∥Cα(∂Ω), so we have the one-sided estimate
given by the conclusion of (14.47).
For the reverse estimate, use (14.25), with y = x0, together with (14.29),

to write

(14.48)

N∑
k=1

βk(x0)
(
∂2µk

u(x0)− ∂2µk
u(x)

)
≤ D0|x− x0|.

Recall that βk(x0) ∈ [λ∗,Λ∗], λ∗ > 0. This together with (14.47) implies

(14.49) |∂2µk
u(x)− ∂2µk

u(x0)| ≤ C3|x− x0|α,

with C3 of the form (14.39), and we can express any ∂j∂ℓu as a linear
combination of the ∂2µk

u, to obtain the following:

Lemma 14.4. If we have the hypotheses of Lemma 14.3, and we also
assume (14.43), then there is an estimate

(14.50) |∂2u(x)− ∂2u(x0)| ≤ C|x− x0|α, x0 ∈ ∂Ω, x ∈ Ω,

with

(14.51) C = C
(
Ω, n, λ,Λ, λ0, ∥F∥C2 , ∥u∥C2(Ω), ∥φ∥C3(∂Ω)

)
.

We now put (14.38) and (14.50) together to obtain a Hölder estimate
for ∂2u on Ω. To estimate |∂2u(x) − ∂2u(y)|, given x, y ∈ Ω, suppose
dist(x, ∂Ω) + dist(y, ∂Ω) = 2ρ, and consider two cases:

(i) |x− y| < ρ2,
(ii) |x− y| ≥ ρ2.

In case (i), we can use (14.38) to deduce that

(14.52) |∂2u(x)− ∂2u(y)| ≤ C|x− y|αρ−α ≤ C|x− y|α/2.
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In case (ii), let x′ ∈ ∂Ω minimize the distance from x to ∂Ω, and let y′ ∈ ∂Ω
minimize the distance from y to ∂Ω. Thus

(14.53)
|x− x′| ≤ 2ρ ≤ 2|x− y|1/2, |y − y′| ≤ 2ρ ≤ 2|x− y|1/2,

|x′ − y′| ≤ |x− y|+ |x′ − x|+ |y′ − y| ≤ |x− y|+ 4|x− y|1/2.

Thus

(14.54)

|∂2u(x)− ∂2u(y)| ≤ |∂2u(x)− ∂2u(x′)|+ |∂2u(x′)− ∂2u(y′)|
+ |∂2u(y′)− ∂2u(y)|

≤ C̃|x− x′|α + C̃|x′ − y′|α + C̃|y′ − y|α

≤ C|x− y|α/2.

In (14.52) and (14.54), C has the form (14.51). Taking r = α/2, we have
the following global estimate:

Proposition 14.5. Let u ∈ C4(Ω) satisfy (14.1), with u
∣∣
∂Ω

= φ. As-
sume the ellipticity hypothesis (14.2) and the strong concavity hypothesis
(14.43). Then there is an estimate

(14.55) ∥u∥C2+r(Ω) ≤ C
(
Ω, n, λ,Λ, λ0, ∥F∥C2 , ∥u∥C2(Ω), ∥φ∥C3(∂Ω)

)
,

for some r > 0, depending on the same quantities as C.

Now that we have this estimate, the continuity method yields the follow-
ing existence result. For τ ∈ [0, 1], consider a family of boundary problems

(14.56) Fτ (x,D
2u) = 0 on Ω, u

∣∣
∂Ω

= φτ .

Assume Fτ and φτ are smooth in all variables, including τ . Also, as-
sume that the ellipticity condition (14.2) and the strong concavity condition
(14.43) hold, uniformly in τ , for any smooth solution uτ .

Theorem 14.6. Assume there is a uniform bound in C2(Ω) for any solu-
tion uτ ∈ C∞(Ω) of (14.56). Also assume that ∂uFτ ≤ 0. Then, if (14.56)
has a solution in C∞(Ω) for τ = 0, it has a smooth solution for τ = 1.

With some more work, one can replace the strong concavity hypothesis
(14.43) by (14.3); see [CKNS].
There is an interesting class of elliptic PDE, known as Bellman equations,

for which F (x, u, p, ζ) is concave but not strongly concave in ζ, and also it
is Lipschitz but not C∞ in its arguments; see [Ev2] for an analysis.

Verifying the hypothesis in Theorem 14.6 that uτ is bounded in C2(Ω)
can be a nontrivial task. We will tackle this, for Monge-Ampere equations,
in the next section.
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Exercises

1. Discuss the Dirichlet problem for

∆u+ ∂2
1u+

1

2

(
1 + (∆u)2

)1/2

= σeu,

for σ ≥ 0.

15. Monge-Ampere equations

Here we look at equations of Monge-Ampere type:

(15.1) det H(u)− F (x, u,∇u) = 0 on Ω, u = φ on ∂Ω,

where Ω is a smoothly bounded domain in Rn, which we will assume to be
strongly convex. As in (3.7a), H(u) = (∂j∂ku) is the Hessian matrix. We
assume F (x, u,∇u) > 0, say F (x, u,∇u) = exp f(x, u,∇u), and look for
a convex solution to (15.1). It is convenient to set

(15.2) G(u) = log det H(u)− f(x, u,∇u),

so (15.1) is equivalent to G(u) = 0 on Ω, u = φ on ∂Ω. Note that

(15.3) DG(u)v = gjk ∂j∂kv − (∂pj
f)(x, u,∇u) ∂jv − (∂uf)(x, u,∇u)v,

where (gjk) is the inverse matrix of (∂j∂ku), which we will also denote as
(gjk). We will assume

(15.4) (∂uf)(x, u, p) ≥ 0,

this hypothesis being equivalent to (∂uF )(x, u, p) ≥ 0.
The hypotheses made above do not suffice to guarantee that (15.1) has

a solution. Consider the following example:

(15.5) det H(u)−K
(
1 + |∇u|2

)2
= 0 on Ω, u = 0 on ∂Ω,

where Ω is a domain in R2. Compare with (3.41). Let K be a positive
constant. If there is a convex solution u, the surface Σ = {(x, u(x)) : x ∈ Ω}
is a surface in R3 with Gauss curvature K. If Ω is convex, then the Gauss
map N : Σ → S2 is one-to-one and the image N(Σ) has area equal to
K · Area(Ω). But N(Σ) must be contained in a hemisphere of S2, so we
must have K · Area(Ω) ≤ 2π. We deduce that if K · Area(Ω) > 2π, then
(15.5) has no solution.
To avoid this obstruction to existence, we hypothesize that there exists

ub ∈ C∞(Ω), which is convex and satisfies

(15.6) log det H(ub)− f(x, ub,∇ub) ≥ 0 on Ω, ub = φ on ∂Ω.

We call ub a lower solution to (15.1). Note that the first part of (15.6) is
equivalent to det H(ub) ≥ F (x, ub,∇ub). In such a case, we will use the
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method of continuity and seek a convex uσ ∈ C∞(Ω) solving

(15.7)

log det H(uσ)− f(x, uσ,∇uσ)
= (1− σ)

[
log det H(ub)− f(x, ub,∇ub)

]
= (1− σ)h(x),

for σ ∈ [0, 1] and uσ = φ on ∂Ω. Note that u0 = ub solves (15.7) for σ = 0.
If such uσ exists for all σ ∈ [0, 1], then u = u1 is the desired solution to
(15.1).
Let J be the largest interval in [0, 1], containing 0, such that (15.7) has

a convex solution uσ ∈ C∞(Ω) for all σ ∈ J . Since the linear operator
in (15.3) is elliptic and invertible (by the maximum principle) under the
hypothesis (15.4), the same sort of argument used in the proof of Lemma
10.1 shows that J is open, and the real work is to show that J is closed. In
this case, we need to obtain bounds on uσ in C2+µ(Ω), for some µ > 0, in
order to apply the regularity theory of §8 and conclude that J is closed.

Lemma 15.1. Given σ ≤ τ ∈ J , we have

(15.8) ub ≤ uσ ≤ uτ on Ω.

Proof. The operator G(u) satisfies the hypotheses of Proposition 10.8;
since ub = uσ = uτ on ∂Ω, (15.8) follows.

In particular, taking σ = τ , we have uniqueness of the solution uσ ∈
C∞(Ω) to (15.7).

Next we record some estimates that are simple consequences of convexity
alone:

Lemma 15.2. Assume Ω is convex. For any σ ∈ J ,

(15.9) uσ ≤ sup
∂Ω

φ on Ω

and

(15.10) sup
x∈Ω

|∇uσ(x)| ≤ sup
y∈∂Ω

|∇uσ(y)|.

Thus we will have a bound on uσ in C1(Ω) if we bound ∇uσ on ∂Ω.
Since uσ

∣∣
∂Ω

= φ ∈ C∞(∂Ω), it remains to bound the normal derivative
∂νuσ on ∂Ω. Assume ∂ν points out of Ω. Then (15.8) implies

(15.11) ∂νuσ(y) ≤ ∂νu
b(y), ∀ y ∈ ∂Ω.

On the other hand, a lower bound on ∂νuσ(y) follows from convexity alone.
In fact, if ν(y) is the outward normal to ∂Ω at y, say ỹ = y−ℓ(y)ν(y) is the
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other point in ∂Ω through which the normal line passes. Then convexity
of uσ implies

(15.12) uσ
(
sy + (1− s)ỹ

)
≤ sφ(y) + (1− s)φ(ỹ),

for 0 ≤ s ≤ 1. Noting that ℓ(y) = |y − ỹ|, we have

∂νuσ(y) ≥
φ(ỹ)− φ(y)

|ỹ − y|
.

Thus we have the next result:

Lemma 15.3. If Ω is convex, then, for any σ ∈ J ,

(15.13) sup
Ω

|∇uσ| ≤ Lip1(φ) + sup
Ω

|∇ub|.

Here, Lip1(φ) denotes the Lipschitz constant of φ:

(15.14) Lip1(φ) = sup
y,y′∈∂Ω

|φ(y)− φ(y′)|
|y − y′|

.

We now look for C2-bounds on solutions to (15.7). For notational sim-
plicity, we write (15.7) as

(15.15) log det H(u)− f(x, u,∇u) = 0, u
∣∣
∂Ω

= φ,

where the second term on the left is

fσ(x, u,∇u) = f(x, u,∇u) + (1− σ)h(x),

and we drop the σ. By (15.4) and (15.6), we have f(x, u, p) > 0 and
(∂uf)(x, u, p) ≤ 0.
Since u is convex, it suffices to estimate pure second derivatives ∂2γu from

above. Following [CNS], who followed [LiP2], we make use of the function

w = eβ|∇u|2/2 ∂2γu,

where β is a constant that will be chosen later. Suppose this is maximized,
among all unit γ ∈ Rn, x ∈ Ω, at γ = γ0, x = x0. Rotating coordinates,
we can assume

(
gjk(x0)

)
=
(
∂j∂ku(x0)

)
is in diagonal form and γ0 =

(1, 0, . . . , 0). Set u11 = ∂21u, so we take

(15.16) w = eβ|∇u|2/2u11 = ψ(∇u)u11.

We now derive some identities and inequalities valid on all of Ω.
Differentiating (15.15), we obtain

(15.17)
gij ∂i∂j∂ℓu = ∂ℓf(x, u,∇u),
gij ∂i∂ju11 = giℓgjm(∂i∂j∂1u)(∂k∂m∂1u) + ∂21f,
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where (gij) is the inverse matrix to (gij) = (∂i∂ju), as above. Also, a
calculation gives
(15.18)

w−1 ∂iw = (logψ)pk
∂i∂ku+ u−1

11 (∂i∂
2
1u),

w−1 ∂i∂jw = w−2(∂iw)(∂jw) + (logψ)pkpℓ
(∂i∂ku)(∂j∂ℓu)

+ (logψ)pk
(∂i∂j∂ku) + u−1

11 ∂i∂ju11 − u−2
11 (∂i∂

2
1u)(∂j∂

2
1u).

Forming w−1 gij∂i∂jw and using (15.17) to rewrite the term u−1
11 g

ij ∂i∂ju11,
we obtain

(15.19)

ψ−1gij ∂i∂jw

≥ u11

[
(logψ)pkpℓ

gij(∂i∂ku)(∂j∂ℓu) + (logψ)pk
gij ∂i∂j∂ku

]
+ gik giℓ(∂i∂j∂1u)(∂k∂ℓ∂1u)− u−1

11 g
ij(∂i∂

2
1u)(∂j∂

2
1u) + ∂21f.

Now we have (logψ)pk
= βpk and (logψ)pkpℓ

= βδkℓ, and hence

(15.20) (logψ)pkpℓ
gij(∂i∂ku)(∂j∂ℓu) = βδkℓ δjk(∂j∂ℓu) = β∆u.

Let us assume the following bounds hold on f(x, u, p):

(15.21) |(∇f)(x, u, p)| ≤ µ, |(∂2f)(x, u, p)| ≤ µ.

Using the first identity in (15.17), we have

(15.22)
u11(logψ)pk

gij ∂i∂j∂ku+ ∂21f

≥ fpi
(w−1∂iw)u11 − C

[
1 + |∂2u|2 + β(1 + |∂2u|)

]
,

with C = C
(
µ, ∥∇u∥L∞(Ω)

)
.

Now, let us look at x0, where, recall, e
β|∇u|2/2∂21u is maximal, among all

values of eβ|∇u(x)|2/2∂2γu(x). If x0 ∈ Ω (i.e., x0 /∈ ∂Ω), then ∂iw(x0) = 0
and the left side of (15.19) is ≤ 0 at x0. Furthermore, due to the diagonal
nature of (gij) at x0, we easily verify that g11gijζi1ζj1 ≤ gijgkℓζikζjℓ, and
hence

(15.23) u−1
11 g

ij(∂i∂
2
1u)(∂j∂

2
1u) ≤ gikgjℓ(∂i∂j∂1u)(∂k∂ℓ∂1u),

at x0. Thus the evaluation of (15.19) at x0 implies the estimate

(15.24) 0 ≥ β(∂21u)(∆u)− µ− C
[
1 + |∂2u|2 + β(1 + |∂2u|)

]
if x0 /∈ ∂Ω. Hence, with X = ∂21u(x0),

(15.25) (β − C1)X
2 ≤ βC2(1 +X) + µ,

where C1 and C2 depend on µ and ∥∇u∥L∞ , but not on β. Taking β large,
we obtain a bound on X:

(15.26) ∂21u(x0) ≤ C
(
µ, ∥∇u∥L∞(Ω)

)
if x0 /∈ ∂Ω.
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On the other hand, if sup w is achieved on ∂Ω, we have

sup
x,γ

|∂2γu(x)| ≤ sup
∂Ω

|∂2u| · exp
(
β∥∇u∥L∞

)
.

This establishes the following.

Lemma 15.4. If u ∈ C3(Ω) ∩ C2(Ω) solves (15.15) and the hypotheses
above hold, then

(15.27) sup
Ω

|∂2u| ≤ C
(
µ, ∥∇u∥L∞(Ω)

)[
1 + sup

∂Ω
|∂2u|

]
.

To estimate ∂2u at a boundary point y ∈ ∂Ω, suppose coordinates are
rotated so that ν(y) is parallel to the xn-axis. Pick vector fields Yj , tangent
to ∂Ω, so that Yj(y) = ∂j , 1 ≤ j ≤ n− 1. Then we easily get

(15.28) |∂j∂ku(y)| ≤ |YjYkφ(y)|+ C|∇u(y)|, 1 ≤ j, k ≤ n− 1.

In fact, for later reference, we note the following. Suppose Yj is the vector
field tangent to ∂Ω, equal to ∂j at y, and obtained by parallel transport
along geodesics emanating from y. If Yk = bℓk∂ℓ, then

(15.29)
YjYku(y) = ∂j∂ku(y) +

(
∂jb

ℓ
k(y)

)
∂ℓu(y)

= ∂j∂ku(y) +
(
∇0

∂j
Yk
)
u(y),

where ∇0 is the standard flat connection on Rn. If ∇ is the Levi-Civita
connection on ∂Ω, we have ∇∂jYk = 0 at y, hence ∇0

∂j
Yk = −ĨI(∂j , ∂k) ∂ν

at y, where ∂ν = −N is the outward-pointing normal and ĨI is the second
fundamental form of ∂Ω; see §4 of Appendix C. Hence

(15.30) ∂j∂ku(y) = YjYku(y) + ĨI(∂j , ∂k) ∂νu(y), 1 ≤ j, k ≤ n− 1.

Later it will be important to note that strong convexity of ∂Ω implies
positive definiteness of ĨI.

We next need to estimate ∂nYku(y), 1 ≤ k ≤ n − 1. If Yk = bℓk(x) ∂ℓ,
then vk = Yku satisfies the equation

(15.31) gij ∂i∂jvk − fpi ∂ivk = A(x) + gijBij(x),

where

(15.32)
A(x) = 2∂ib

i
k + fxℓ

bℓk + fuvk + fpi(∂ib
ℓ
k) ∂ℓu,

Bij(x) = (∂i∂jb
ℓ
k) ∂ℓu,

and vk
∣∣
∂Ω

= Ykφ. This follows by multiplying the first identity in (15.17) by
bℓk and summing over ℓ; one also makes use of the identity gij ∂j∂ℓu = δiℓ.

We first derive a boundary gradient estimate for vk = Yku when (15.15)
takes the simpler form

(15.33) log det H(u)− f(x, u) = 0, u
∣∣
∂Ω

= φ;
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that is, ∇u is not an argument of f . Here, we follow [Au]. We assume
φ ∈ C∞(Ω), set

(15.34) wk = Yk(u− φ) = vk − Ykφ,

then let α and β be real numbers, to be fixed below, and set

(15.35) w̃k = wk + αh+ β(u− φ).

Here, h ∈ C∞(Ω) is picked to vanish on ∂Ω and satisfy a strong convexity
condition:

(15.36) (∂i∂jh) ≥ I, h
∣∣
∂Ω

= 0.

The hypothesis that Ω is strongly convex is equivalent to the existence of
such a function.

Now, a calculation using (15.31) (and noting that in this case fpi
= 0)

gives

(15.37) gij ∂i∂jw̃k = A(x) + nβ + gijB̃ij(x), w̃k

∣∣
∂Ω

= 0,

where A(x) is as in (15.32) (with the last term equal to zero), and

(15.38) B̃ij(x) = Bij(x)− ∂i∂jYkφ+ α∂i∂jh− β ∂i∂jφ.

We now choose α and β. Pick β = β0, so large that A(x) + nβ0 ≥ 0.
This done, pick α = α0, so large that (B̃ij) ≥ 0. Then w̃k0, defined by
(15.34) with α = α0, β = β0, satisfies

(15.39) gij ∂i∂jw̃k0 ≥ 0, w̃k0

∣∣
∂Ω

= 0.

Similarly, pick β = β1 sufficiently negative that A(x) + nβ1 ≤ 0, and then
pick α = α1 sufficiently negative that (B̃ij) ≤ 0. Then, w̃k1, defined by
(15.35) with α = α1 and β = β1, satisfies

(15.40) gij∂i∂jw̃k1 ≤ 0, w̃k1

∣∣
∂Ω

= 0.

The maximum principle implies w̃k0 ≤ 0 and w̃k1 ≥ 0; hence

(15.41) Ykφ− α1h− β1(u− φ) ≤ Yku ≤ Ykφ− α0h− β0(u− φ).

Thus, if ∂ν denotes the normal derivative at ∂Ω,

(15.42) |∂νYku| ≤ (α0 − α1)|∂νh|+ (β0 − β1)|∂νu− ∂νφ|+ |∂νYkφ|,

when u solves (15.33).
In view of the example (15.5), for a surface with Gauss curvature K,

we have ample motivation to estimate the normal derivative of Yku when
u solves the more general equation (15.15). We now tackle this, following
[CNS].
Generally, if wk = Yk(u− φ), (15.31) yields

(15.43)
gij ∂i∂jwk − fpi

∂iwk

=
[
A(x) + fpi

∂iYkφ
]
+ gij

[
Bij(x)− ∂i∂jYkφ

]
= Φ(x).
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Note that, given a bound for u in C1(Ω), we have

(15.44) |Φ(x)| ≤ C + Cgjj ,

where gjj is the trace of (gij).
Translate coordinates so that y = 0. Recall that we assume ν(y) is

parallel to the xn-axis. Assume xn ≥ 0 on Ω. As above, assume h ∈ C∞(Ω)
satisfies (15.36). Take µ ∈ (0, 1/4) and M ∈ (0,∞), and set hµ(x) =
h(x)− µ|x|2. We have

(15.45)

(gij ∂i∂j − fpi ∂i)(hµ +Mx2n)

= gij ∂i∂jhµ − fpi
∂ihµ + 2Mgnn − 2Mfpn

xn

≥
(1
2
gjj + 2Mgnn

)
−
(
Mfpn

xn + fpi
∂ihµ

)
.

The arithmetic-geometric mean inequality implies(
Mσ1 · · ·σn

)1/n ≤ 1

n

(∑
j<n

σj +Mσn

)
,

and if the eigenvalues of (gij) are σn ≤ · · · ≤ σ1, we have gnn ≥ σn, and
hence

(15.46)
[
M det(gij)

]1/n ≤ 1

n

(
gjj +Mgnn

)
.

Given a positive lower bound on det(gij) = 1/F (x, u,∇u), we have

(15.47)
1

2
gjj + 2Mgnn ≥ cgjj + c1M

1/n.

Hence (15.45) implies

(15.48) (gij ∂i∂j − fpi
∂i)(hµ +Mx2n) ≥ cgjj + c1M

1/n − c2 − c3Mxn.

At this point, fix M sufficiently large that c1M
1/n ≥ 1 + c2, so that

(15.49) (gij ∂i∂j − fpi
∂i)(hµ +Mx2n) ≥ 1 + cgjj − c3Mxn on Ω.

Now, let

Oε = {x ∈ Ω : 0 < xn < ε},

as illustrated in Fig. 15.1. We can then pick ε sufficiently small that (e.g.,
with µ = 1/8)

(15.50) (gij ∂i∂j − fpi
∂i)(hµ +Mx2n) ≥ cgjj +

1

2
on Oε.

Note that the function h has the property ∇h ̸= 0 on ∂Ω. Thus, after
possibly further shrinking ε, we have

(15.51)
hµ +Mx2n ≤ 0 on ∂Oε ∩ ∂Ω,

−c4 < 0 on Ω ∩ {xn = ε}.
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Figure 15.1

With ε > 0 so fixed, we can then pick A sufficiently large (depending on
∥u∥C1(Ω)) that c4A ≥ ∥Yku∥L∞(Ω); hence

(15.52)
wk +A(hµ +Mx2n) ≤ 0,

wk −A(hµ +Mx2n) ≥ 0

on ∂Oε. We can also pick A so large that (by (15.50) and (15.43)–(15.44))

(15.53)
(gij∂i∂j − fpi

∂i)
(
wk +A(hµ +Mx2n)

)
≥ 0,

(gij∂i∂j − fpi
∂i)
(
wk −A(hµ +Mx2n)

)
≤ 0

on Oε. The maximum principle then implies that (15.52) holds on Oε.
Thus

(15.54) |∂nYku(y)| ≤ A|∂nhµ(y)|.

This completes our estimation of ∂nYku(y), begun at (15.31).
We prepare to tackle the estimation of ∂2nu(y). A key ingredient will be

a positive lower bound on ∂2j u(y), for 1 ≤ j ≤ n− 1. In order to get this,
we make a further (temporary) hypothesis, namely that there is a strictly
convex function u# ∈ C∞(Ω) satisfying

(15.55) log det H(u#)− f(x, u#,∇u#) ≤ 0 on Ω, u#
∣∣
∂Ω

= φ.

The function u# is called an upper solution to (15.1). The proof of (15.8)
yields

(15.56) ub ≤ uσ ≤ uτ ≤ u# on Ω,

for σ ≤ τ ∈ J . In the present context, where we have dropped the σ and
where u ∈ C∞(Ω) is a solution to (15.15), this means ub ≤ u ≤ u# on Ω.
Consequently, complementing (15.11), we have

(15.57) ∂νu ≥ ∂νu
# on ∂Ω.
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Now let Yj be the vector field tangent to ∂Ω, equal to ∂j at y, used in
(15.30). We have

(15.58) ∂2j u(y) = Y 2
j u(y) + κj∂νu(y), κj = ĨI(∂j , ∂j) > 0,

for 1 ≤ j ≤ n− 1, by (15.30), assuming ∂Ω is strongly convex. There is a
similar identity for ∂2j u

#(y). Since u = u# = φ on ∂Ω, subtraction yields

(15.59) ∂2j u(y) = ∂2j u
#(y) + κj

[
∂νu(y)− ∂νu

#(y)
]
≥ ∂2j u

#(y),

for 1 ≤ j ≤ n − 1, the inequality following from (15.57). Since u# is
assumed to be a given strongly convex function, this yields a positive lower
bound:

(15.60) ∂2j u(y) ≥ K0 > 0, 1 ≤ j ≤ n− 1.

Now we can get an upper bound on ∂2nu(y). Rotating the x1 . . . xn−1

coordinate axes, we can assume
(
∂j∂ku(y)

)
1≤j,k≤n−1

is diagonal. Then, at
y,

(15.61) det H(u) = (∂2nu)

n−1∏
j=1

(∂2j u) + κ(∂2u),

where κ is an n-linear form in ∂2u(y) that does not contain ∂2nu(y). Since
det H(u) = f(x, u,∇u) and we have estimates on ∇u, as well as ∂j∂ku(y)
for ∂j∂k ̸= ∂2n, we deduce that

(15.62) Kn−1
0 ∂2nu(y) ≤ K1.

This completes the estimation of ∥u∥C2(Ω).

Once we have a bound in C2(Ω) for solutions to (15.15), we can apply
Theorem 14.6 to deduce the existence of a solution u ∈ C∞(Ω) to (15.1).
We thus have the following:

Proposition 15.5. Let Ω ⊂ Rn be a smoothly bounded, open set with
strongly convex boundary. Consider the Dirichlet problem (15.1), with
φ ∈ C∞(∂Ω). Assume F (x, u, p) is a smooth function of its arguments
satisfying

F (x, u, p) > 0, ∂uF (x, u, p) ≥ 0.

Furthermore, assume (15.1) has a lower solution ub, and an upper solution
u# ∈ C∞(Ω). Then (15.1) has a unique convex solution u ∈ C∞(Ω).

After a little more work, we will show that we need not assume the
existence of an upper solution u#. Note that u# was not needed for the
estimates of

s0 = sup |u|, s1 = sup |∇u|
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in Lemmas 15.1–15.3. Thus, if we take a constant a satisfying

0 < a < inf {F (x, u, p) : x ∈ Ω, |u| ≤ s0, |p| ≤ s1},

then any smooth, strongly convex u# satisfying

(15.63) det H(u#) ≤ a on Ω, u#
∣∣
∂Ω

= φ,

will serve as an upper solution to (15.1). Thus, for arbitrary a > 0, we want
to produce u# ∈ C∞(Ω), which is strongly convex and satisfies (15.63). For
this purpose, it is more than sufficient to have the following result, which
is of interest in its own right.

Proposition 15.6. Let Ω ⊂ Rn be a smoothly bounded, open set with
strongly convex boundary. Let φ ∈ C∞(∂Ω) be given and assume F ∈
C∞(Ω) is positive. Then there is a unique convex solution u ∈ C∞(Ω) to

(15.64) det H(u) = F (x), u
∣∣
∂Ω

= φ.

Proof. First, note that (15.64) always has a lower solution. In fact, if you
extend φ to an element of C∞(Ω) and let h ∈ C∞(Ω) be as in (15.36), then
ub = φ+ τh will work, for sufficiently large τ .
Following the proof of Proposition 15.5, we see that to establish Propo-

sition 15.6, it suffices to obtain an a priori estimate in C2(Ω) for a solution
to (15.64). All the arguments used above to establish Proposition 15.5 ap-
ply in this case, up to the use of u#, in (15.55)–(15.59), to establish the
estimate (15.60), namely,

(15.65) ∂2j u(y) ≥ K0 > 0, 1 ≤ j ≤ n− 1.

Recall that y is an arbitrarily selected point in ∂Ω, and we have rotated
coordinates so that the normal ν(y) to ∂Ω is parallel to the xn-axis. If we
establish (15.65) in this case, without using the hypothesis that an upper
solution exists, then the rest of the previous argument giving an estimate
in C2(Ω) will work, and Proposition 15.6 will be proved.

We establish (15.65), following [CNS], via a certain barrier function. It
suffices to treat the case j = 1. We can also assume that y is the origin in
Rn and that, near y, ∂Ω is given by

(15.66) xn = ρ(x′) =

n−1∑
j=1

Bjx
2
j +O(|x′|3), Bj > 0,

where x′ = (x1, . . . , xn−1).
Note that adding a linear term to u leaves the left side of (15.64) un-

changed and also has no effect on ∂2j u. Thus, without loss of generality, we
can assume that

(15.67) u(0) = 0, ∂ju(0) = 0, 1 ≤ j ≤ n− 1.
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We have, on ∂Ω,

(15.68) u = φ =
1

2

∑
j,k<n

γjkxjxk + κ3(x
′) +O(|x|4),

where κ3(x
′) is a polynomial, homogeneous of degree 3 in x′.

Now consider

(15.69) ũ(x) = u(x)− λxn, λ = B−1
1 γ11.

This function satisfies det H(ũ) = F (x). Looking at ũ
∣∣
∂Ω

= φ − λρ(x′),
we see that the coefficients of x21 cancel out here. We claim there is an
estimate of the form

(15.70) ũ
∣∣
∂Ω

≤
∑

1<j≤n

a1jx1xj + C
( ∑
1<k<n

x2k + |x|4
)
.

Indeed, in light of our remark about the disappearance of x21, we need only
worry about a multiple of x31, which can be dominated on ∂Ω by a term of
the form a1nx1xn plus a multiple of the quantity in parentheses in (15.70).

The barrier function will take the form

(15.71) W (x) =
1

2B

∑
1<j≤n

(a1jx1 +Bxj)
2 + δ|x|2 − εxn.

Take B >> C, then fix δ > 0 small, and take ε << δ. We can do this in
such a fashion as to arrange

(15.72) W ≥ ũ on ∂Ω.

Note that 2δ is the smallest eigenvalue of H(W ), and all the other eigen-
values are bounded above independently of δ ∈ (0, 1), so choosing δ small
enough gives

(15.73) det H(W ) < F (x) on Ω.

Then W is an upper barrier for ũ; the maximum principle yields

(15.74) ũ ≤W on Ω.

Consequently,

(15.75) ∂nũ(0) ≤ ∂nW (0) = −ε.

As noted above, our construction (15.69) yields

(15.76) ∂21 ũ
(
x′, ρ(x′)

)
= 0, at x′ = 0,

that is, ∂21 ũ+ (∂nũ)∂
2
1ρ = 0, at x′ = 0. Hence

(15.77) ∂21u(0) = ∂21 ũ(0) = −∂nũ(0) · ∂21ρ(0) ≥ ε∂21ρ(0).

This proves the j = 1 case of (15.65), as needed, so Proposition 15.6 is
proved.
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In light of the comments made after the statement of Proposition 15.5,
we have

Corollary 15.7. In Proposition 15.5, the hypothesis that there exists an
upper solution u# can be omitted.

There are some results for Monge-Ampere equations on nonconvex do-
mains; see [GS] and [HRS].
In addition to the Monge-Ampere equations studied here, there are com-

plex Monge-Ampere equations, whose study has been very important in
complex function theory and differential geometry; see [Au], [BT], [CKNS],
[Fef], and [Yau1].

Exercises

1. Let Ω ⊂ R2 be a strongly convex, smoothly bounded region. Let us assume
that F ∈ C∞(Ω), φ ∈ C∞(∂Ω), and F > 0. Show that

det H(u) = F (x) on Ω, u
∣∣∣
∂Ω

= φ,

has exactly two solutions in C∞(Ω), one convex and one concave.
2. Suppose the hypothesis ∂uF (x, u, p) ≥ 0 in Proposition 15.5 is dropped. Es-

tablish the existence of solutions, using the Leray-Schauder theory.
3. Given Ω as in Proposition 15.5, φ ∈ C∞(∂Ω), show that there exists K0 > 0

such that, for all K ∈ (0,K0), there is a unique convex solution uK ∈ C∞(Ω)
to

(15.78) det H(uK) = K
(
1 + |∇uK |2

)(n+2)/2

on Ω, uK

∣∣∣
∂Ω

= φ.

(Hint: Show that the convex solution to (15.64), with F = 1, yields a lower
solution for (15.78), provided K > 0 is sufficiently small.)
Note that the graph of uK is a surface with Gauss curvature K.

4. With uK as in Exercise 3, show that there is u0 ∈ Lip1(Ω) such that

(15.79) uK ↗ u0 as K ↘ 0.

In what sense can you say that u0 solves

(15.80) det H(u0) = 0 on Ω, u0

∣∣∣
∂Ω

= φ?

See [RT] and [TU] for more on (15.80).

16. Elliptic equations in two variables

We have seen in §12 that results on quasi-linear, uniformly elliptic equations
for real-valued functions on a domain Ω are obtained more easily when
dim Ω = 2 than when dim Ω ≥ 3 and have extensions to systems that do



16. Elliptic equations in two variables 177

not work in higher dimensions. Here we will obtain results on completely
nonlinear equations for functions of two variables which are more general
than those established in §14 for functions of n variables. The key is the
following result of Morrey on linear equations with bounded measurable
coefficients, whose conclusion is stronger than that of Theorem 13.7:

Theorem 16.1. Assume u ∈ C2(Ω) and Lu = f on Ω ⊂ R2, where

(16.1) Lu =

2∑
j,k=1

ajk(x) ∂j∂ku.

Assume ajk = akj are measurable on Ω and

(16.2) λ|ξ|2 ≤ ajk(x)ξjξk ≤ Λ|ξ|2,

for some λ,Λ ∈ (0,∞). Pick p > 2. Then, for O ⊂⊂ Ω, there is a µ > 0
such that

(16.3) ∥u∥C1+µ(O) ≤ C
[
∥u∥H1(Ω) + ∥f∥Lp(Ω)

]
,

where C = C(O,Ω, p, λ,Λ).

Proof. Let Vj = ∂ju. Then these functions satisfy the divergence-form
equations

(16.4)
∂1

(a11
a22

∂1V1 + 2
a12

a22
∂2V1

)
+ ∂2

(
∂2V1

)
= ∂1

( f

a22

)
,

∂1
(
∂1V2

)
+ ∂2

(a22
a11

∂2V2 + 2
a12

a11
∂1V2

)
= ∂2

( f

a11

)
.

Proposition 9.8 applies to each of these equations, yielding

(16.5) ∥Vj∥Cµ(O) ≤ C
[
∥Vj∥L2(Ω) + ∥f∥Lp(Ω)

]
.

This yields the desired estimate (16.3).

Morrey’s original proof of Theorem 16.1 came earlier than the DeGiorgi-
Nash-Moser estimate used in the proof above. Instead, he used estimates
on quasi-conformal mappings (see [Mor2]).
We apply Theorem 16.1 to estimates for real-valued solutions to equa-

tions of the form

(16.6) F (x, u,∇u, ∂2u) = f on Ω ⊂ R2,

where F = F (x, u, p, ζ) is a smooth function of its arguments satisfying the
ellipticity condition

(16.7)
λ|ξ|2 ≤

∑ ∂F

∂ζjk
(x, u, p, ζ)ξjξk ≤ Λ|ξ|2,

0 < λ = λ(u, p, ζ), Λ = Λ(u, p, ζ).
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For h > 0, ℓ = 1, 2, set

(16.8) Vℓh(x) = h−1
(
u(x+ heℓ)− u(x)

)
.

Then Vℓh satisfies the equation

(16.9)
∑
j,k

ajkℓh(x)∂j∂kVℓh = gℓh(x)

on Ωh = {x ∈ Ω : dist(x,R2 \ Ω) > h}, where the coefficients ajkℓh(x) are
given by

(16.10) ajkℓh(x) =

∫ 1

0

∂F

∂ζjk

(
x+ sheℓ, . . . , s∂

2τℓhu+ (1− s)∂2u
)
ds,

with τℓhu(x) = u(x+ heℓ), and the functions gℓh(x) are given by

gℓh(x) = −
∑
j

[∫ 1

0

∂F

∂pj

(
x+ sheℓ, . . . , s∂

2τℓhu+ (1− s)∂2u
)
ds

]
∂jVℓk

−
∫ 1

0

∂F

∂u

(
x+ sheℓ, . . . , s∂

2τℓh + (1− s)∂2u
)
ds Vℓh

−
∫ 1

0

∂F

∂xℓ

(
x+ sheℓ, . . . , s∂

2τℓhu+ (1− s)∂2u
)
ds

(16.11)

+ h−1
(
f(x+ heℓ)− f(x)

)
.

Theorem 16.1 then yields an estimate

(16.12) ∥Vℓh∥C1+µ(O) ≤ C
[
∥Vℓh∥L2(Ω) + ∥gℓh∥Lp(Ω)

]
,

with C = C(O,Ω, p, λ,Λ, ∥u∥C2(Ω)). Note that

(16.13) ∥gℓh∥Lp(Ω) ≤ C
(
∥u∥C2(Ω)

)
+
∥∥h−1(τℓhf − f)

∥∥
Lp(Ω)

.

Letting h→ 0, we have the following:

Theorem 16.2. Assume that Ω ⊂ R2, that u ∈ C2(Ω) solves (16.6), that
the ellipticity condition (16.7) holds, and that f ∈ H1,p(Ω), for some p > 2.
Then, given O ⊂⊂ Ω, there is a µ > 0 such that u ∈ C2+µ(O) and

(16.14) ∥u∥C2+µ(O) ≤ C
[
1 + ∥f∥H1,p(Ω)

]
,

where

(16.15) C = C
(
O,Ω, p, λ,Λ, ∥u∥C2(Ω)

)
.

For estimates up to the boundary, we use the following complement to
Theorem 16.1:
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Proposition 16.3. If u ∈ C2(Ω) and the hypotheses of Theorem 16.1
hold, then there is an estimate

(16.16) ∥u∥C1+µ(Ω) ≤ C
[
∥u∥H1,p(Ω) + ∥φ∥C2(∂Ω) + ∥f∥Lp(Ω)

]
,

where φ = u
∣∣
∂Ω

and C = C(Ω, p, λ,Λ).

Proof. Given y ∈ ∂Ω, locally flatten ∂Ω near y, using a coordinate change,
transforming it to the x1-axis. In the new coordinates, u satisfies an elliptic
equation of the form

(16.17) ãjk∂j∂ku = f − b̃j∂ju = f̃ .

Then Ṽ1 = ∂1u satisfies an analogue of the first equation in (16.4), while
Ṽ1 = ∂1φ on the flattened part of ∂Ω. Thus Proposition 9.9 (or rather
the local version mentioned at the end of §9) yields an estimate on Ṽ1 in
Cµ(U ∩ Ω), for some neighborhood U of y in R2.

Thus, for any smooth vector field X on R2, tangent to ∂Ω, we have
an estimate on ∥Xu∥Cµ(Ω) by the right side of (16.16). Furthermore, by
Proposition 9.9, there is a Morrey space estimate

(16.18) ∥∇Xu∥Mq
2 (Ω) ≤ RHS,

for some q > 2, where “RHS” stands for the right side of (16.16). We may
as well assume q ≤ p, so f̃ ∈ Lp(Ω) ⊂ Mq

2 (Ω). Then (16.17) and (16.18)
together imply

(16.19) ∥∂j∂ku∥Mq
2 (Ω) ≤ RHS,

for all j, k ≤ 2, which in turn implies (16.16).

We now establish the following:

Theorem 16.4. Assume that Ω ⊂ R2 and that u ∈ C3(Ω) solves (16.6),
with the ellipticity condition (16.7), with f ∈ H1,p(Ω) for some p > 2, and
u
∣∣
∂Ω

= φ. Then, for some µ > 0, there is an estimate

(16.20) ∥u∥C2+µ(Ω) ≤ C
[
1 + ∥φ∥C3(∂Ω) + ∥f∥H1,p(Ω)

]
,

where

(16.21) C = C
(
Ω, p, λ,Λ, ∥u∥C2(Ω)

)
.

Proof. If X = bℓ∂ℓ is a smooth vector field in R2, tangent to ∂Ω, then Xu
satisfies

(16.22)
Fζjk ∂j∂k(Xu) = − Fpj

∂j(Xu)− Fu Xu+ Fζjk(∂j∂kb
ℓ)(∂ℓu)

+ 2Fζjk(∂jb
ℓ)(∂k∂ℓu) + Fpj

(∂jb
ℓ)(∂ℓu) +Xf,
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and Xu = Xφ on ∂Ω. Thus Proposition 16.3 applies. We have a C1+µ(Ω)-
estimate on Xu, and even better, a Morrey space estimate:

(16.23) ∥∂j∂kXu∥Mq
2 (Ω) ≤ RHS,

for some q > 2, and for all j, k ≤ 2, where “RHS” now stands for the right
side of (16.20).
The proof is almost done. Parallel to (16.22), we have, for any ℓ,

(16.24) Fζjk ∂j∂k∂ℓu = −Fpj
∂j∂ℓu− Fu ∂ℓu+ ∂ℓf.

Thus we can solve for ∂j∂k∂ℓu in terms of functions of the form ∂j∂kXu
and other terms estimable in the Mq

2 (Ω)-norm by the right side of (16.20).
Hence we have (16.20), and even the stronger estimate

(16.25) ∥∂3u∥Mq
2 (Ω) ≤ RHS.

From this result the continuity method readily gives the following:

Theorem 16.5. Let Ω be a smoothly bounded domain in R2. Let the
function Fσ(x, u, p, ζ) depend smoothly on all its arguments, for σ ∈ [0, 1],
and let φσ ∈ C∞(Ω) have smooth dependence on σ. Assume that, for each
σ ∈ [0, 1],

∂uFσ(x, u, p, ζ) ≤ 0

and that the ellipticity condition (16.7) holds. Also assume that, for any
solution uσ ∈ C∞(Ω) to the equation

(16.26) Fσ(x, uσ,∇uσ, ∂2uσ) = 0 on Ω, uσ
∣∣
∂Ω

= φσ,

there is a C2(Ω)-bound:

(16.27) ∥uσ∥C2(Ω) ≤ K.

If (16.26) has a solution in C∞(Ω) for σ = 0, then it has a solution in
C∞(Ω) for σ = 1.

Exercises

1. In the proof of Theorem 16.1, can you replace the use of Proposition 9.8 by a
result analogous to Proposition 12.5?

2. Suppose that, in (16.7), λ and Λ are independent of ζ. Obtain a variant of
Theorem 16.5 in which (16.27) is weakened to a bound in C1(Ω).
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A. Morrey spaces

Given f ∈ L1
loc(Rn), p ∈ [1,∞), one says f ∈Mp(Rn) provided that

(A.1) R−n

∫
BR

|f(x)| dx ≤ C R−n/p,

for all balls BR of radius R ≤ 1 in Rn. More generally, if 1 ≤ q ≤ p and
f ∈ Lq

loc(Rn), we will say f ∈Mp
q (Rn) provided that, for all such BR,

(A.2) R−n

∫
BR

|f(x)|q dx ≤ C R−nq/p.

The spaces Mp
q (Rn) are called Morrey spaces. If we set δRf(x) = f(Rx),

the left side of (A.2) is equal to
∫
B1

|δRf(x)|q dx, so an equivalent condition
is

(A.3) ∥δRf∥Lq(B1) ≤ C ′R−n/p,

for all balls B1 of radius 1, and for all R ∈ (0, 1]. It follows from Hölder’s
inequality that

Lp
unif(R

n) =Mp
p (Rn) ⊂Mp

q (Rn) ⊂Mp(Rn).

We can give an equivalent characterization of Mp in terms of the heat
kernel. Let pr(ξ) = e−|rξ|2 . Then, given f ∈ L1

unif(Rn),

(A.4) f ∈Mp(Rn) ⇐⇒ pr(D)|f | ≤ C r−n/p,

for 0 < r ≤ 1. To see the implication ⇒, given x ∈ Rn write f = f1 + f2,
where f1 is the restriction of f to the unit ball B1(x) centered at x, and f2
is the restriction of f to the complement. That pr(D)|f1|(x) ≤ Cr−n/p, for
r ∈ (0, 1], follows easily from the characterization (A.1) and the formula

pr(D)δx(y) = (4πr2)−n/2 e−|x−y|2/4r2 ,

while this formula also implies that pr(D)|f2|(x) is rapidly decreasing as
r ↘ 0. The implication ⇐ is similarly easy to verify. Note that

(A.5) f satisfies (A.4) =⇒ |pr(D)f | ≤ Cr−n/p.

Recall the Zygmund spaces Cr
∗(Rn), r ∈ R, introduced in §8 of Chapter

13, with norms defined as follows. Let Ψ0(ξ) ∈ C∞
0 (Rn) be equal to 1 for

|ξ| ≤ 1, set Ψk(ξ) = Ψ0(2
−kξ), and let ψk(ξ) = Ψk(ξ)−Ψk−1(ξ). The set

{ψk(ξ)} is a Littlewood-Paley partition of unity. One sets

(A.6) ∥f∥Cr
∗
= sup

k
2kr∥ψk(D)f∥L∞ .

For r ∈ (0,∞) \ Z+, Cr
∗ coincides with the Hölder space Cr, and C1

∗ is
the classical Zygmund space. As shown in Chapter 13, one has, for all
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m, r ∈ R,

(A.7) P ∈ OPSm
1,0 =⇒ P : Cr

∗ −→ Cr−m
∗ .

The following relation exists between Zygmund spaces and Morrey spaces.
From (A.4)–(A.5) we readily obtain the inclusion

(A.8) Mp(Rn) ⊂ C
−n/p
∗ (Rn).

From this we deduce a result known as Morrey’s lemma:

Lemma A.1. If p > n, then, for f ∈ S ′(Rn),

(A.9) ∇f ∈Mp(Rn) =⇒ f ∈ Cr
loc(Rn), r = 1− n

p
∈ (0, 1).

Proof. We can write

(A.10) f =

n∑
j=1

Bj(∂jf) +Rf, Bj ∈ OPS−1(Rn), R ∈ OPS−∞(Rn).

Then (A.7)–(A.8) imply that Bj ∂jf ∈ Cr
∗(Rn), if the hypothesis of (A.9)

holds.

If Ω ⊂ Rn is a bounded region, we say f ∈Mp
q (Ω) if f̃ ∈Mp

q (Rn), where

f̃(x) = f(x) for x ∈ Ω, 0 for x /∈ Ω. If ∂Ω is smooth, it is easy to extend
(A.9) to the implication (for p > n):

(A.11) ∇f ∈Mp(Ω) =⇒ f ∈ Cr(Ω), r = 1− n

p
∈ (0, 1),

via a simple reflection argument (across ∂Ω).
One also considers homogeneous versions of Morrey spaces. If p ∈ (1,∞)

and 1 ≤ q ≤ p, f ∈ Lq
loc(Rn), we say f ∈ Mp

q(Rn) provided (A.2) holds for
all R ∈ (0,∞), not just for R ≤ 1. Note that if we set

(A.12) ∥f∥Mp
q
= sup

R
Rn/p

(
R−n

∫
BR

|f(x)|q dx
)1/q

,

where R runs over (0,∞) and BR over all balls of radius R, then

(A.13) ∥δr f∥Mp
q
= r−n/p ∥f∥Mp

q
,

where δrf(x) = f(rx). This is the same type of scaling as the Lp(Rn)-norm.
It is clear that compactly supported elements of Mp

q (Rn) and of Mp
q(Rn)

coincide. In a number of references, including [P2], Mp
q is denoted Lq,λ,

with λ = n
(
1− q/p

)
.

The following refinement of Morrey’s lemma is due to S. Campanato.
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Proposition A.2. Given p ∈ [1,∞), s ∈ (0, 1), assume that u ∈ Lp
loc(Rn)

and that, for each ball BR(x) with R ≤ 1, there exists α ∈ C such that

(A.14)

∫
BR(x)

|u(y)− α|p dy ≤ CRn+ps.

Then

(A.15) u ∈ Cs
loc(Rn).

Proof. Pick φ ∈ C∞
0 (Rn) to be a radial function, supported on |x| ≤ 1,

such that φ̂(ξ) ≥ 0, and let ψ = ∆φ, so
∫
ψ dx = 0. It suffices to show

that

(A.16)
∣∣(ψR ∗ u)(x)

∣∣ ≤ CRs, R ≤ 1,

where ψR(x) = R−nψ(R−1x). Note that, for fixed x, R, α = α
(
BR(x)

)
,

we have

(A.17) (ψR ∗ u)(x) = ψR ∗ (u− α)(x),

so

(A.18)

∣∣(ψR ∗ u)(x)
∣∣

≤ ∥ψR∥Lp′ (BR(0))∥u− α∥Lp(BR(x))

≤
( ∫
BR(0)

R−np′
|ψ(R−1y)|p

′
dy
)1/p′( ∫

BR(x)

|u(y)− α|p dy
)1/p

≤ C R−n ·Rn/p′
·Rn/p ·Rs = Rs,

as desired.

B. Leray-Schauder fixed-point theorems

We will demonstrate several fixed-point theorems that are useful for nonlin-
ear PDE. The first, known as Schauder’s fixed-point theorem, is an infinite
dimensional extension of Brouwer’s fixed-point theorem, which we recall.

Proposition B.1. If K is a compact, convex set in a finite-dimensional
vector space V , and F : K → K is a continuous map, then F has a fixed
point.

This was proved in §19 of Chapter 1, specifically when K was the closed
unit ball in Rn. Now, given any compact convex K ⊂ V , if we translate
it, we can assume 0 ∈ K. Let W denote the smallest vector space in V
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that contains K; say dimR W = n. Thus there is a basis of W , of the form
E ⊂ K. Clearly, the convex hull of E has nonempty interior in W . From
here, it is easily established that K is homeomorphic to the closed unit ball
in Rn.
A quicker reduction to the case of a ball goes like this. Put an inner

product on V , and say a ball B ⊂ V contains K. Let ψ : B → K map
a point x to the point in K closest to x. Then consider a fixed point of
F ◦ ψ : B → K ⊂ B.
The following is Schauder’s generalization:

Theorem B.2. If K is a compact, convex set in a Banach space V , and
F : K → K is a continuous map, then F has a fixed point.

Proof. Whether or not V has a countable dense set, K certainly does; say
{vj : j ∈ Z+} is dense in K. For each n ≥ 1, let Vn be the linear span of
{v1, . . . , vn} and Kn ⊂ K the closed, convex hull of {v1, . . . , vn}. Thus Kn

is a compact, convex subset of Vn, a linear space of dimension ≤ n.
We define continuous maps Qn : K → Kn as follows. Cover K by balls

of radius δn centered at the points vj , 1 ≤ j ≤ n. Let {φnj : 1 ≤ j ≤ n} be
a partition of unity subordinate to this cover, satisfying 0 ≤ φj ≤ 1. Then
set

(B.1) Qn(v) =

n∑
j=1

φnj(v)vj , Qn : K → Kn.

Since φnj(v) = 0 unless ∥v − vj∥ ≤ δn, it follows that

(B.2) ∥Qn(v)− v∥ ≤ δn.

The denseness of {vj : j ∈ Z+} in K implies we can take δn → 0 as n→ ∞.
Now consider the maps Fn : Kn → Kn, given by Fn = Qn ◦ F

∣∣
Kn

. By
Proposition B.1, each Fn has a fixed point xn ∈ Kn. Now

(B.3) QnF (xn) = xn =⇒ ∥F (xn)− xn∥ ≤ δn.

Since K is compact, (xn) has a limit point x ∈ K and (B.3) implies F (x) =
x, as desired.

It is easy to extend Theorem B.2 to the case where V is a Fréchet space,
using a translation-invariant distance function. In fact, a theorem of Ty-
chonov extends it to general locally convex V .
The following slight extension of Theorem B.2 is technically useful:

Corollary B.3. Let E be a closed, convex set in a Banach space V , and
let F : E → E be a continuous map such that F (E) is relatively compact.
Then F has a fixed point.
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Proof. The closed, convex hull K of F (E) is compact; simply consider
F
∣∣
K
, which maps K to itself.

Corollary B.4. Let B be the open unit ball in a Banach space V . Let
F : B → V be a continuous map such that F (B) is relatively compact and
F (∂B) ⊂ B. Then F has a fixed point.

Proof. Define a map G : B → B by

G(x) = F (x) if ∥F (x)∥ ≤ 1, G(x) =
F (x)

∥F (x)∥
if ∥F (x)∥ ≥ 1.

Then G : B → B is continuous and G(B) is relatively compact. Corollary
B.3 implies that G has a fixed point; G(x) = x. The hypothesis F (∂B) ⊂ B
implies ∥x∥ < 1, so F (x) = G(x) = x.

The following Leray-Schauder theorem is the one we directly apply to
such results as Theorem 1.10. The argument here follows [GT].

Theorem B.5. Let V be a Banach space, and let F : [0, 1]× V → V be a
continuous, compact map, such that F (0, v) = v0 is independent of v ∈ V .
Suppose there exists M <∞ such that, for all (σ, x) ∈ [0, 1]× V ,

(B.4) F (σ, x) = x =⇒ ∥x∥ < M.

Then the map F1 : V → V given by F1(v) = F (1, v) has a fixed point.

Proof. Without loss of generality, we can assume v0 = 0 and M = 1. Let
B be the open unit ball in V . Given ε ∈ (0, 1], define Gε : B → V by

Gε(x) = F
(1− ∥x∥

ε
,
x

∥x∥

)
if 1− ε ≤ ∥x∥ ≤ 1,

F
(
1,

x

1− ε

)
if ∥x∥ ≤ 1− ε.

Note that Gε(∂B) = 0. For each ε ∈ (0, 1], Corollary B.4 applies to Gε.
Hence each Gε has a fixed point x(ε). Let xk = x(1/k), and set

σk = k
(
1− ∥xk∥

)
if 1− 1

k
≤ ∥xk∥ ≤ 1,

1 if ∥xk∥ ≤ 1− 1

k
,

so σk ∈ (0, 1] and F (σk, xk) = xk. Passing to a subsequence, we have
(σk, xk) → (σ, x) in [0, 1]×B, since the map F is compact.

We claim σ = 1. Indeed, if σ < 1, then ∥xk∥ ≥ 1−1/k for large k, hence
∥x∥ = 1 and F (σ, x) = x, contradicting (B.4) (with M = 1). Thus σk → 1
and we have F (1, x) = x, as desired.
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There are more general results, involving Leray-Schauder “degree the-
ory,” which can be found in [Schw], [Ni6], and [Deim].
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Boston, 1984.

[GiuM] E. Giusti and M. Miranda, Sulla regolarita delle soluzioni deboli di
una classe di sistemi ellittici quasilineari, Arch. Rat. Mech. Anal.
31(1968), 173–184.

[GS] B. Guan and J. Spruck, Boundary-value problems on Sn for surfaces
of constant Gauss curvature, Ann. of Math. 138(1993), 601–624.

[Gu1] M. Günther, On the perturbation problem associated to isometric em-
beddings of Riemannian manifolds, Ann. Global Anal. Geom. 7(1989),
69–77.

[Gu2] M. Günther, Zum Einbettungssatz von J.Nash, Math. Nachr. 144(1989),
165–187.

[Gu3] M. Günther, Isometric embeddings of Riemannian manifolds, Proc.
Intern. Congr. Math. Kyoto, 1990, pp. 1137–1143.

[Ham] R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71(1988),
237–262.

[HKL] R. Hardt, D. Kinderlehrer, and F.-H. Lin, Existence and partial reg-
ularity of static liquid crystal configurations, Comm. Math. Phys.
105(1986), 547–570.

[HW] R. Hardt and M. Wolf (eds.), Nonlinear Partial Differential Equations
in Differential Geometry, IAS/Park City Math. Ser., Vol. 2, AMS,
Providence, R. I., 1995.

[Hei] E. Heinz, On elliptic Monge-Ampere equations and Weyl’s embedding
problem, Analyse Math. 7(1959), 1–52.

[HH] E. Heinz and S. Hildebrandt, Some remarks on minimal surfaces in
Riemannian manifolds, CPAM 23(1970), 371–377.

[Hel] F. Helein, Minima de la fonctionelle énergie libre des cristaux liquides,
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