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0. Introduction

An eye-opening and side-splitting book review, [F], recently raised the interesting
question of just what hypotheses on a sequence of IID random variables are needed
for the sequence to satisfy a central limit theorem. One answer to this question is
that one gets different central limit theorems depending on the specific hypotheses
put forth. The purpose of this note is to describe explicitly some of the varieties of
central limit theorems that arise. These results have, no doubt, been known for a
long time, but it is perhaps useful to collect them.

To set things up, suppose (Ω,F , µ) is a probability space (Ω a set, F a σ-algebra,
µ a probability measure) and that {fj} is a sequence of (real valued) independent,
identically distributed random variables on Ω, with mean 0 and variance σ, so

(0.1) fj ∈ L2(Ω, µ),

∫
Ω

fj dµ = 0,

∫
Ω

f2j dµ = σ > 0.

In such a case, the independence implies

(0.2) (fi, fj)L2 = 0, for i ̸= j.

The weak law of large numbers says that, as k → ∞,

(0.3) Sk =
1

k

k∑
j=1

fj −→ 0, in L2-norm.

The proof is simple:

(0.4)
∥∥∥1
k

k∑
j=1

fj

∥∥∥2
L2

=
1

k2

k∑
i,j=1

(fi, fj)L2 =
σ

k
.

A standard presentation of the weak law says that Sk → 0 in measure, which follows
from (0.3) (or better, from (0.4)), via Chebychev’s inequality.

Kolmogoroff’s strong law of large numbers produces pointwise a.e. convergence,
and relaxes the L2 hypothesis, down to L1 (and then yields L1-norm convergence),
but we will not be concerned with that here. (Cf. Chapter 15 of [T] for a treatment,
making a connection to Birkhoff’s ergodic theorem.)

To proceed, each real-valued random variable f on Ω induces a probability mea-
sure νf on R, given by

(0.5) νf (S) = µ(f−1(S)),
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when S ⊂ R is a Borel set. Note that

(0.6)

f ∈ L1(Ω, µ) ⇐⇒
∫

|x| dνf (x) <∞,∫
Ω

f dµ =

∫
R

x dνf (x).

Similarly,

(0.7)

∫
Ω

f2 dµ =

∫
R

x2 dνf (x),

and, more generally, for p ∈ [1,∞),

(0.8)

∫
Ω

|f |p dµ =

∫
R

|x|p dνf (x).

Given f as above, the function

(0.9)

χf (ξ) =

∫
Ω

e−iξf dµ

=

∫
R

e−ixξ dνf (x)

=
√
2πν̂f (ξ)

is called the characteristic function of f . If {fj} are independent, then

(0.10) Gk =
k∑

j=1

fj =⇒ χGk
(ξ) = χf1(ξ) · · ·χfk(ξ).

A special class of probability distributions on R, called centered Gaussian dis-
tributions, has the form

(0.11) γσ(x) =
1√
2πσ

e−x2/2σ.

One computes

(0.12)

∫
x γσ(x) dx = 0,

∫
x2 γσ(x) dx = σ.
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A random variable f on (Ω,F , µ) is said to be Gaussian if νf is Gaussian. A
standard Fourier transform calculation gives

(0.13)
√
2πγ̂σ(ξ) = e−σξ2/2.

Hence f : Ω → R is Gaussian with mean 0 and variance σ if and only if

(0.14) χf (ξ) = e−σξ2/2.

We note that

(0.15) γσ ∗ γτ = γσ+τ ,

and that if fj are independent, centered Gaussian random variables on Ω, then the
sum Gk = f1 + · · ·+ fk is also Gaussian.

Gaussian distributions are often approximated by distributions of the sum of a
large number of IID random variables, suitably rescaled. Theorems to this effect
are called Central Limit Theorems. As stated in the opening paragraph, our goal
is to present some of these theorems here.

Given that {fj} is IID and satisfies (0.1), the appropriate rescaling of f1+· · ·+fk
is suggested by the computation (0.4). We have

(0.16) gk =
1√
k

k∑
j=1

fj =⇒ ∥gk∥2L2 ≡ σ.

Note that if ν1 is the probability distribution of f1 (hence of fj for all j), then for
any Borel set B ⊂ R,

(0.17) νgk(B) = νk(
√
kB), νk = ν1 ∗ · · · ∗ ν1 (k factors).

Note that

(0.18)

∫
x2 dν1 = σ,

∫
x dν1 = 0.

In §1 we prove the following version of CLT:

Theorem 0.1. If {fj : j ∈ N} is IID on (Ω,F , µ), satisfying (0.1), and gk is given
by (0.16), then

(0.19) νgk −→ γσ, weak∗ in M(R̂) = C(R̂)′,

where R̂ = R ∪ {∞}, so

(0.20) C(R̂) = {u ∈ C(R) : u(x) → u∞ as |x| → ∞}.
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In §1 we also strengthen the conclusion (0.19) to

(0.21) (1 + x2)νgk −→ (1 + x2)γσ, weak∗ in M(R̂).

Remark 1. The weak∗ convergence (0.19) means

(0.22)

∫
f dνgk −→

∫
f dγσ,

for each f ∈ C(R̂). Since νgk are finite positive measures, and γσ is absolutely

continuous on R̂, it is an automatic consequence that (0.22) holds whenever f is a

bounded Borel function that is Riemann integrable on R̂ ≈ S1. See Appendix A
for a brief discussion of this fact.

Remark 2. In contrast to the law of large numbers, the central limit theorem does
not assert that {gk} converges to a random variable on Ω that is Gaussian with
variance σ. In fact, the set {σ−1/2fj} forms an orthonormal basis of a Hilbert space
H ⊂ L2(Ω, µ), and each gk is an element of H, and so is any limit. But, for each
fixed j,

(0.23) lim
k→∞

(fj , gk)L2 = 0,

so in fact, as k → ∞,

(0.24) gk −→ 0, weakly in L2(Ω, µ).

Remark 3. The review [F] seems to say that the proof of CLT on p. 194 of [GS]
requires all the moments of νf1 to be finite. We can only recommend that the
interested reader make an independent assessment of the proof given there. On the
other hand, we must acknowledge the gaffe made on line 6, p. 200, of [O], though
ignoring this errant phrase leaves a proof that is OK.

In §2 we study the coin toss, for which

(0.25) νfj =
1

2
(δ1 + δ−1).

The analysis of νgk for this case illustrates the “rough” manner in which the weak∗

limit (0.19) holds. Indeed, we have

(0.26) νgk =
1√
2π
Ĉk(x)λk,
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where λk is a sum of point masses supported at integer multiples of k−1/2 (see
(2.12)), and Ck(ξ) is given by (2.5) and (2.8). While this does illuminate rough
weak∗ convergence, we get a much more precise result than (0.19), namely, as
k → ∞,

(0.27) νgk − 1√
2π
e−x2/2λk −→ 0 in TV norm on M(R).

This is proved as a consequence of the result that

(0.28) Ĉk(x) −→ e−x2/2, uniformly, as k → ∞.

Going further, we show that, for each ℓ ∈ N,

(0.29) ∂ℓxĈk(x) −→ ∂ℓxe
−x2/2, uniformly, as k → ∞,

and also that

(0.30) xℓĈk(x) −→ xℓe−x2/2, uniformly, as k → ∞,

where we start the sequence (0.30) at k = ℓ+1. We also have quantitative estimates
on the rate of convergence, such as

(0.31) sup
x∈R

|Ĉk(x)− e−x2/2| ≤ C

k
,

refining (0.28), and

(0.32) ∥νgk − γ1 λk∥TV(R) ≤ C

√
log k

k
,

refining (0.27).
In §3, we return to more general IID sequences and examine the rate at which

νgk converges to γσ. We establish the following complement to Theorem 0.1.

Proposition 0.2. In the setting of Theorem 0.1, and under the additional hypoth-
esis that, for some a > 0,

(0.33) χfj (ξ) = e−σξ2/2+ξ2β(ξ), for |ξ| ≤ a,

where |β(ξ)| ≤ σ/4 on this interval, and

(0.34) |β(ξ)| ≤ b|ξ|r, for some r ∈ (0, 2],

we have

(0.35) |⟨νgk − γσ, v⟩| ≤ Ck−r/2A(v) + |⟨ψ(k−1/2D)νgk , v⟩|,
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where

(0.36) A(v) =

∫ ∞

−∞
|v̂(ξ)|e−σξ2/8|ξ|2+r dξ.

In (0.35), we take

(0.37) ψ ∈ C∞(R), ψ(ξ) = 0 for |ξ| ≤ a

2
, 1 for |ξ| ≥ a.

This result leads to the task of estimating the last term on the right side of
(0.35), which we denote Bk(v). One straightforward estimate, established in §3, is
that if v ∈ Lip(R), then

(0.38) Bk(v) ≤ Ck−1/2 Lip(v).

More generally, if v ∈ C(R) and ∂mx v ∈ L∞(R), we have

(0.39) Bk(v) ≤ C∥∂mx v∥L∞k−m/2.

In §4, we consider circumstances under which we can derive a rate at which

(0.40) Φk(y)−G(y) −→ 0,

as k → ∞, where

(0.41) Φk(y) = νgk((−∞, y]), G(y) = γσ((−∞, y]).

The magnitude of this difference is of the form (0.35), with v = vy the indicator
function of (−∞, y], but in this case the estimate of the last term in (0.35) is more
difficult than that covered by (0.38). To deal with this, we approximate vy by
smooth functions wy,h, equal to 0 for x ≥ y, to 1 for x ≤ y − h, taking values in
[0, 1] for y − h ≤ x ≤ y, and satisfying

(0.42) |∂mx wy,h(x)| ≤ Cmh
−m.

An elementary argument gives

(0.43) sup
y

|Φk(y)−G(y)| ≤ sup
y

|⟨νgk − γσ, wy,h⟩|+ Ch,

hence the left side of (0.43) is dominated by Ck−r/2+Cmk
−m/2h−m+Ch. Taking

h = k−m/2(m+1) yields

(0.44) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Cmk
−m/2(m+1),

in the setting of Proposition 0.2. In particular, taking m large enough, we have
that the left side of (0.44) is

(0.45) ≤ Ck−r/2, provided 0 < r < 1.

Such estimates were established by Liapunov.
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In §5 we discuss the Berry-Esseen theorem, which treats the endpoint case of
(0.45):

Theorem 0.3. In the setting of Proposition 0.2, under the hypothesis that (0.33)
holds with

(0.46) |β(ξ)| ≤ b|ξ|, for |ξ| ≤ a,

we have

(0.47) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

Note that the coin toss satisfies the hypotheses (0.33)–(0.34) with r = 2, but, as
is clear from the estimate (0.32), comparing νgk to the discretized Gaussian, in this
case the exponent −1/2 in (0.47) cannot be improved.

While the exponent in (0.47) is optimal for the coin toss, there are other inter-
esting cases where it is not. One example occurs when

(0.48) νf1 =
1

2
1[−1,1](x),

in which case

(0.49) χ(ξ) =
sin ξ

ξ
.

In §6 we estabish the following.

Proposition 0.4. In the setting of Proposition 0.2, particularly with (0.34) for
some r ∈ (0, 2], and with the additional hypotheses that

(0.50) sup
|ξ|≥a/2

|χ(ξ)| ≤ δ < 1, and

∫ ∞

−∞
|χ(ξ)|ℓ dξ <∞,

for some ℓ ∈ N, we have

(0.51) |⟨νgk − γσ, v⟩| ≤ CA(v)k−r/2 + CSk(v)δ
k−ℓk1/2,

with A(v) as in (0.36) and

(0.52) Sk(v) = sup
|ξ|≥(a/2)k1/2

|ṽ(ξ)|.

This applies to v = vy, the indicator function of (−∞, y], to yield

(0.53) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2,

under the hypotheses of Proposition 0.4. In particular, we treat the case (0.48),
obtaining (0.53) with r = 2.
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In §7 we turn our attention to tail estimates. The first result of this nature is
(0.21), which sharpens (0.19), in that it says more about the behavior of {νgk} far
out in (−∞,∞). Going further, we establish the following.

Proposition 0.5. In the setting of Theorem 0.1, assume also that, for some ℓ ∈
N, ℓ ≥ 2,

(0.54)

∫
x2ℓ dνf1(x) <∞.

Then

(0.55) (1 + x2ℓ)νgk −→ (1 + x2ℓ)γσ, weak∗ in M(R̂).

This result is complemented by the following.

Proposition 0.6. In the setting of Proposition 0.2, particularly including (0.34),

(0.56) ρ < r + 2 ⇒ (1 + x2)ρ/2νgk → (1 + x2)ρ/2γσ, weak∗ in M(R̂).

Furthermore, for such ρ,

(0.57) v ∈ Sρ(R) =⇒ |⟨νgk − γσ, v⟩| ≤ Ck−r/2.

Here,

(0.58) Sρ(R) = {v ∈ C∞(R) : |v(ℓ)(x)| ≤ Cℓ(1 + |x|)ρ−ℓ, ∀ ℓ ∈ Z+}.

In §8 we expand the scope of CLT beyond results on approximating Gaussians.
We look at probability measures on R arising from fractional diffusion equations:

(0.59) γtα(x) = e−t(−∂2
x)

α/2

δ(x),

for t > 0, α ∈ (0, 2), and establish the following:

Theorem 0.7. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ) whose char-
acteristic function χ(ξ) satisfies

(0.60) χ(ξ) = 1− t|ξ|α + r(ξ), r(ξ) = o(|ξ|α), as ξ → 0,

for some t > 0, α ∈ (0, 2). Define gk by

(0.61) gk = k−1/α(f1 + · · ·+ fk).

Then

(0.62) νgk −→ γtα, weak∗ in M(R̂).
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We close with some appendices. Appendix A discusses the fact that if we have
a weak∗ convergent sequence of probability measures, νk → µ, so

(0.63)

∫
X

f dνk −→
∫
X

f dµ, as k → ∞,

for continuous f on X, then (0.63) automatically holds for a larger class of functions
f , namely bounded Borel functions f : X → R such that

(0.64) f ∈ R(X,µ),

a space of “Riemann integrable” functions. Here X denotes a compact metric
space, and µ is a probability measure on X. In the body of the text, this has

several applications when X = R̂, involving matters related to the Levy-Cramér

continuity theorem. In Appendix B we pursue this further when X = R̂ and µ has
no atoms, and apply it to results on uniform convergence of Φk → G.
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1. General CLT for IID random variables with finite second moments

As advertised in the introduction, our first task in this section is to prove the
following.

Theorem 1.1. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ), with mean
zero, and satisfying ∥fj∥2L2(Ω,µ) ≡ σ. Set

(1.1) gk =
1√
k

k∑
j=1

fj ,

and define γσ as in (0.11). Then

(1.2) νgk −→ γσ, weak∗ in M(R̂).

Proof. Applying the Fourier transform to the convolution identity in (0.17) yields

(1.3) χgk(ξ) = χ(k−1/2ξ)k,

where χ(ξ) =
√
2πν̂1(ξ). By (0.6)–(0.7) applied to (0.1), and the fact that the

Fourier transform intertwines multiplication by x and id/dξ, and that the Fourier
transform of a finite measure is a bounded, continuous function, we have

(1.4) χ ∈ C2(R), χ′(0) = 0, χ′′(0) = −σ.

Hence

(1.5) χ(ξ) = 1− σ

2
ξ2 + r(ξ), r(ξ) = o(ξ2), as ξ → 0.

Equivalently, there exists a > 0 such that, for |ξ| ≤ a,

(1.6) χ(ξ) = e−σξ2/2+ξ2β(ξ), β(ξ) → 0, as ξ → 0.

Hence

(1.7) χgk(ξ) = e−σξ2/2+ξ2β(k−1/2ξ), for |ξ| ≤ ak1/2,

with

(1.8) β(k−1/2ξ) −→ 0 as k → ∞, ∀ ξ ∈ R.
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Therefore,

(1.9) lim
k→∞

ν̂gk(ξ) = γ̂σ(ξ), ∀ ξ ∈ R.

Now the functions ν̂gk(ξ) are uniformly bounded by 1/
√
2π. Making use of (1.9),

the Parseval identity for the Fourier transform, and the dominated convergence
theorem, we obtain for each v ∈ S(R) (the Schwartz space of rapidly decreasing
functions) that

(1.10)

∫
v dνgk =

∫
v̂(ξ)ν̂gk(ξ) dξ

→
∫
v̂(ξ)γ̂σ(ξ) dξ

=

∫
v γσ dx.

An equivalent statement is that

(1.11) νgk −→ γσ in S ′(R),

where S ′(R) denotes the Schwartz space of tempered distributions. However, since
{νgk : k ∈ N} is bounded in M(R) and S(R) is dense in

(1.12) C∗(R) = {u ∈ C(R̂) : u(∞) = 0},

we also have

(1.13)

∫
v dνgk −→

∫
v γσ dx,

for all v ∈ C∗(R). Clearly (1.13) also holds for v = 1, so we have the conclusion
(1.2).

We can strengthen the conclusion of Theorem 1.1, by using

(1.14)

∫
x2 dνgk(x) = ∥gk∥2L2 ≡ σ.

In particular,

(1.15) {(1 + x2)νgk : k ∈ N} is bounded in M(R̂),

and we have from (1.11) that

(1.16) (1 + x2)νgk −→ (1 + x2)γσ,

in S ′(R), hence in C∗(R)′, and then, by (1.14), in C(R̂)′. This gives:

Proposition 1.2. In the setting of Theorem 1.1, we have

(1.17) (1 + x2)νgk −→ (1 + x2)γσ, weak∗in M(R̂).



13

2. Coin toss

To model a fair coin toss, one takes X = {1,−1}, each point having measure
1/2, and forms the probability space

(2.1) Ω =
∏
j∈N

{1,−1},

with product Borel field and product measure. The random variables fj , given by

(2.2) fj(ω1, ω2, ω3, . . . ) = ωj ,

are independent and satisfy (0.1), with σ = 1. We have

(2.3) νfj = ν =
1

2
(δ1 + δ−1), χfj (ξ) = χ(ξ) = cos ξ,

and gk, given by (0.16), has characteristic function

(2.4) χgk(ξ) = χ(k−1/2ξ)k,

as in (1.3).
To analyze this, we set

(2.5)
C(ξ) = cos ξ for |ξ| ≤ π

2
,

0 otherwise,

so

(2.6) χ(ξ) =
∑
n∈Z

(−1)nC(ξ + nπ),

hence

(2.7) χgk(ξ) =
∑
n∈Z

(−1)knCk(ξ + k1/2nπ),

where we have set

(2.8) Ck(ξ) = C(k−1/2ξ)k.

Note that the series (2.7) converges in S ′(R). Applying the Fourier transform gives

(2.9)
√
2π νgk = Ĉk(x)λk,
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where

(2.10/11)

λk =
∑
n∈Z

(−1)kneink
1/2πx

=
∑
n∈Z

einπk
1/2(x+k1/2),

convergence also holding in S ′(R), on which Ĉk acts as a multiplier. The Poisson
summation formula gives

(2.12)

λk = 2k−1/2
∑
ℓ∈Z

δ2ℓk−1/2 , k even,

2k−1/2
∑
ℓ∈Z

δ(2ℓ+1)k−1/2 , k odd.

Thanks to (2.9), the task of producing a detailed asymptotic analysis of the

behavior of νgk is reduced to that of analyzing Ĉk(x). For this, we can use techniques

similar to those brought to bear in §1. These will yield stronger conclusions on Ĉk

than we obtained there for νgk . Parallel to (1.6), we can write

(2.13) C(ξ) = e−ξ2/2+ξ2β(ξ), for |ξ| < π

2
,

with

(2.14) β ∈ C∞(I), β(ξ) = O(ξ2), I =
(
−π
2
,
π

2

)
.

We also have

(2.15) 0 ≤ C(ξ) ≤ e−aξ2 , ∀ ξ ∈ R,

for some a > 0. It follows that

(2.16) Ck(ξ) = e−ξ2/2+ξ2β(k−1/2ξ), for |ξ| < π

2
k1/2,

and furthermore

(2.17) 0 ≤ Ck(ξ) ≤ e−aξ2 , ∀ ξ ∈ R.

Parallel to (1.9), we have from (2.16) and (2.14) that

(2.18) Ck(ξ) −→ e−ξ2/2, ∀ ξ ∈ R.

The additional uniform bound (2.17) allows us to use the dominated convergence
theorem to deduce that

(2.19) Ck −→ e−ξ2/2 in L1(R), as k → ∞.

Hence

(2.20) Ĉk(x) −→ e−x2/2 =
√
2πγ1(x), uniformly, as k → ∞.

We are now in a position to establish the following, giving a much more precise
analysis of νgk than Theorem 1.1 does.
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Proposition 2.1. For Ω and fj given by (2.1)–(2.2), λk by (2.12), we have

(2.21) νgk − γ1(x)λk −→ 0 in M(R), in total variation norm.

Proof. By (2.9), our conclusion is equivalent to the assertion that

(2.22)
(
(2π)−1/2Ĉk(x)− γ1(x)

)
λk −→ 0, in total variation norm.

We can deduce this from (2.20) in concert with the facts that

(2.23) (2π)−1/2Ĉkλk = νgk are probability measures on R,

and

(2.24) γ1(x)λk are positive measures with mass mk → 1.

To see this, pick ε > 0. Pick A ∈ (0,∞) so that, for all k ∈ N, the total mass of
γ1λk outside [−A,A] is ≤ ε. Then pick K ∈ N so that

(2.25)

k ≥ K =⇒ |mk − 1| ≤ ε, and

max
|x|≤A

∣∣(2π)−1/2Ĉk(x)− γ1(x)
∣∣ ≤ ε

2A
.

It follows that, for k ≥ K, the total mass of the measure in (2.22) is ≤ 4ε, and we
deduce the asserted result.

To complement the results (2.20)–(2.21), let us note that (2.17)–(2.18) imply

(2.26)
ξℓCk(ξ) −→ ξℓe−ξ2/2,

0 ≤ |ξ|ℓCk(ξ) ≤ |ξ|ℓe−aξ2 , ∀ ξ ∈ R, ℓ ∈ N,

hence

(2.27) ∂ℓxĈk(x) −→ ∂ℓxe
−x2/2, uniformly, as k → ∞, ∀ ℓ ∈ N.

To proceed, we analyze the behavior of derivatives of Ck(ξ). Note that

(2.28) Ck ∈ Cℓ(R), ∀ ℓ < k.

Now (2.14) implies that, for each m ∈ N,

(2.29) {β(k−1/2ξ) : k ≥ m} −→ 0 in C∞(Im),
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as k → ∞, where

(2.30) Im =
{
ξ ∈ R : |ξ| < π

2
m1/2

}
.

We deduce from (2.16) that

(2.31) {Ck : k ≥ m} −→ e−ξ2/2 in C∞(Im),

as k → ∞, and consequently, for each ℓ ∈ N,

(2.32) {C(ℓ)
k (ξ) : k > ℓ} −→ ∂ℓξe

−ξ2/2, ∀ ξ ∈ R.

Having this extension of (2.18), we seek uniform estimates on {C(ℓ)
k : k > ℓ},

parallel to (2.17). Indeed, differentiating

(2.33) Ck(ξ) = C(k−1/2ξ)k,

we have

(2.34)

C ′
k(ξ) = k1/2C ′(k−1/2ξ)C(k−1/2ξ)k−1

=
[
−k1/2 sin(k−1/2ξ)

]
C(k−1/2ξ)k−1

= − sin(k−1/2ξ)

k−1/2ξ
ξ C(k−1/2ξ)k−1,

so, by (2.17),

(2.35)
|C ′

k(ξ)| ≤ |ξ|e−a(1−1/k)ξ2

≤ |ξ|e−aξ2/2, for k ≥ 2.

Next,

(2.36)
C ′′

k (ξ) = C ′′(k−1/2ξ)C(k−1/2ξ)k−1

+ (k − 1)C ′(k−1/2ξ)2C(k−1/2ξ)k−2,

and the analysis of k1/2C ′(k−1/2ξ) used in (2.34) yields

(2.37)

|C ′′
k (ξ)| ≤ C(k−1/2ξ)k−1 + ξ2C(k−1/2ξ)k−2

≤ (1 + ξ2)e−a(1−2/k)ξ2

≤ (1 + ξ2)e−aξ2/3, for k ≥ 3.
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From (2.32), (2.35), (2.37), and the dominated convergence theorem, we have

(2.38) C
(ℓ)
k −→ ∂ℓξe

−ξ2/2 in L1(R), as k → ∞,

for ℓ = 1, 2, hence, complementing (2.20),

(2.39) xℓĈk(x) −→ xℓe−x2/2, uniformly, as k → ∞,

for ℓ = 1, 2. This is enough to give an alternative proof of (2.22), hence of Propo-
sition 2.1.

From here, an inductive argument gives, for general ℓ ∈ N,

(2.40)

|C(ℓ)
k (ξ)| ≤ Aℓ(1 + |ξ|ℓ)C(k−1/2ξ)k−ℓ

≤ Aℓ(1 + |ξ|ℓ)e−a(1−ℓ/k)ξ2

≤ Aℓ(1 + |ξ|ℓ)e−aξ2/(ℓ+1), for k > ℓ.

From (2.32), (2.40), and the dominated convergence theorem, we have (2.38) for all
ℓ ∈ N, and applying the Fourier transform yields the following result.

Proposition 2.2. For each integer ℓ ≥ 0,

(2.41) xℓĈk(x) −→ xℓe−x2/2, uniformly, as k → ∞,

where we start the sequence (2.41) at k = ℓ+ 1.

We next investigate the rate at which the uniform convergence (2.20) holds, and
its implications for an estimate for the rate at which norm convergence in (2.21)
holds. We start with a more hands-on approach to (2.19), estimating

(2.42)

∫ ∞

−∞
|Ck(ξ)− e−ξ2/2| dξ.

To start, we use the estimate (2.17) to dominate the integrand in (2.42) by 2e−aξ2 ,
and use

(2.43)

∫
|ξ|≥r

e−aξ2 dξ = 2

∫ ∞

r

e−aξ2 dξ

≤ 2

r

∫ ∞

r

e−aξ2ξ dξ

=
1

ar
e−ar2 ,

to estimate the integral (2.42) over |ξ| ≥ r (a quantity to be chosen below). To
estimate the integral over |ξ| ≤ r, we use (2.16) (and (2.14)). We have

(2.44) Ck(ξ)− e−ξ2/2 = e−ξ2/2
(
eξ

2β(k−1/2ξ) − 1
)
,
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with

(2.45) |ξ2β(k−1/2ξ)| ≤ Ck−1ξ4, for |ξ| ≤ π

4
k1/2,

hence

(2.46)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ Ck−1ξ4, for |ξ| ≤ k1/4

We deduce that, with

(2.47) r(k) = k1/4,

we have

(2.48)

∫
|ξ|≤r(k)

|Ck(ξ)− e−ξ2/2| dξ ≤ C

k

∫
|ξ|≤r(k)

e−ξ2/2ξ4 dξ

≤ C

k

∫ ∞

−∞
e−ξ2/2ξ4 dξ

=
C ′

k
.

Hence, if we take r = r(k) in (2.43), we have

(2.49) ∥Ck − e−ξ2/2∥L1(R) ≤
C

k
.

This refines (2.20) to

(2.50) sup
x∈R

|Ĉk(x)− e−x2/2| ≤ C

k
.

With this estimate in hand, we can tackle the quantitative refinement of Proposi-
tion 2.1, and estimate the total variation norm of (2.21). Let’s start by considering

(2.51) mk = ∥γ1λk∥TV.

We can deduce from Jacobi’s formula,

(2.52)

∑
ℓ∈Z

e−εℓ2 =
(π
ε

)1/2 ∑
n∈Z

e−n2π2/ε

=
(π
ε

)1/2 (
1 +O(e−π2/ε)

)
,
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that

(2.53) |1−mk| ≤ Ce−bk1/2

,

for some b > 0, C <∞. It will be convenient to bring in the sequence of probability
measures

(2.54) µk = m−1
k γ1(x)λk.

Now to the total variation estimate. By (2.22) and (2.50),

(2.55) ∥νgk − γ1 λk∥TV(Ik) ≤
C

k
ℓ(Ik),

where

(2.56) Ik = [−s(k), s(k)],

with s(k) to be selected shortly. Meanwhile, parallel to (2.43),

(2.57) ∥γ1 λk∥TV(R\Ik) ≤ Ce−s(k)2/2.

It is hence tempting to take

(2.58) s(k) =
√

2 log k.

In light of (2.53)–(2.54), we have

(2.59) ∥νgk − µk∥TV(Ik) ≤ C

√
log k

k
, ∥µk∥TV(R\Ik) ≤

C

k
.

Also, since νgk and µk are both probability measures on R, we have

(2.60)

∥νgk∥TV(R\Ik) = 1− ∥νgk∥TV(Ik)

= 1− ∥µk∥TV(Ik) +O
(√log k

k

)
= ∥µk∥TV(R\Ik) +O

(√log k

k

)
.

Putting together (2.55)–(2.60), we have:

Proposition 2.3. In the setting of Proposition 2.1,

(2.61) ∥νgk − γ1(x)λk∥TV(R) ≤ C

√
log k

k
,

for k ≥ 2.
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3. Estimates on rate of approach of νgk to γσ

Here we derive some estimates on the rate at which

(3.1) ⟨νgk − γσ, v⟩ −→ 0,

as k → ∞, for νgk as in (0.17) and γσ as in (0.11). We retain the hypothesis
(0.1). We take v in various function spaces, and impose various conditions on νfj ,
beyond having a finite second moment. For example, we consider the condition
fj ∈ Lp(Ω, µ) for p = 2 + r > 2, or equivalently

(3.2)

∫
|x|2+r dνfj (x) <∞.

This implies that

(3.3) χ = χfj ∈ C2+r(R).

In such a case, we can refine (1.6) to

(3.4) χ(ξ) = e−σξ2/2+ξ2β(ξ), for |ξ| ≤ a,

where

(3.5) |β(ξ)| ≤ b|ξ|r, provided r ∈ (0, 1].

If by chance (3.2) holds with r ≥ 1 and

(3.6)

∫
x3 dνfj = 0,

we can expand the scope of (3.5) to

(3.7) |β(ξ)| ≤ b|ξ|r, provided r ∈ (0, 2].

To start the estimate of (3.1), we have

(3.8)

√
2π⟨νgk − γσ, v⟩ =

√
2π⟨ν̂gk − γ̂σ, ṽ⟩

=

∫ [
χgk(ξ)− e−σξ2/2

]
ṽ(ξ) dξ.

Now

(3.9) χgk(ξ)− e−σξ2/2 = e−σξ2/2
(
eξ

2β(k−1/2ξ) − 1
)
, for |ξ| ≤ ak1/2,
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and (3.5) (or (3.7)) implies

(3.10) |ξ2β(k−1/2ξ)| ≤ bk−r/2|ξ|2+r, for |ξ| ≤ ak1/2.

It follows that

(3.11)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ b̃k−r/2|ξ|2+r,

for k−r/2|ξ|2+r ≤ 1, or equivalently for

(3.12) |ξ| ≤ ke(r), e(r) =
r

2(2 + r)
.

Shrinking a if necessary, we also arrange that

(3.13) |β(k−1/2ξ)| ≤ σ

4
, for |ξ| ≤ ak1/2,

so

(3.14)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ 2eσξ
2/4, for ke(r) ≤ |ξ| ≤ ak1/2.

We will make do with the estimate

(3.15) |χgk(ξ)| ≤ 1, for |ξ| ≥ ak1/2.

We therefore divide the range of integration R on the right side of (3.8) into
three pieces:

(3.16) |ξ| ≤ ke(r), ke(r) ≤ |ξ| ≤ ak1/2, |ξ| ≥ ak1/2,

and obtain the following result.

Proposition 3.1. In the setting of Theorem 1.1, and with the additional hypothesis
that (3.4) holds, with

(3.17) |β(ξ)| ≤ b|ξ|r, for some r ∈ (0, 2],

we have

(3.18)
√
2π

∣∣⟨νgk − γσ, v⟩
∣∣ ≤ Ak(v) +Bk(v) + Ck(v),

where

(3.19)

Ak(v) = b̃k−r/2

∫
|ξ|≤ke(r)

|ṽ(ξ)|e−σξ2/2|ξ|2+r dξ,

Bk(v) = 2

∫
ke(r)≤|ξ|≤ak1/2

|ṽ(ξ)|e−σξ2/4 dξ,

Ck(v) = 2

∫
|ξ|≥ak1/2

|ṽ(ξ)| dξ.
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Note that

(3.20)

Ak(v) ≤ Ãk(v) = b̃k−r/2

∫ ∞

−∞
|ṽ(ξ)|e−σξ2/2|ξ|2+r dξ,

Bk(v) ≤ B̃k(v) = 2e−(σ/8)k2e(r)

∫
|ξ|≥ke(r)

|ṽ(ξ)|e−σξ2/8 dξ,

Ck(v) ≤ C̃k(v) =
4

a
k−1/2 sup

ξ
ξ2|ṽ(ξ)|.

Clearly the seminorms Ãk and B̃k are quite nicely behaved on rather wild func-

tions v. However, the seminorms Ck and C̃k are not finite on a number of test
functions v we would like to use. This provides motivation to modify the frequency
cutoffs. We hence bring in the functions φ and ψ, satisfying the following condi-
tions:

(3.21) φ,ψ ∈ C∞(R), φ(ξ) = 1 for |ξ| ≤ a

2
, 0 for |ξ| ≥ a, ψ = 1− φ.

We toss in the conditions

(3.22) 0 ≤ φ ≤ 1, φ(−ξ) = φ(ξ).

Now we have

(3.23) ⟨νgk − γσ, v⟩ = ⟨φ(k−1/2D)(νgk − γσ), v⟩+ ⟨ψ(k−1/2D)(νgk − γσ), v⟩,

and estimates arising in the proof of Proposition 3.1 imply

(3.24) |⟨φ(k−1/2D)(νgk − γσ), v⟩| ≤ Ck−r/2A(v),

where

(3.25) A(v) =

∫ ∞

−∞
|ṽ(ξ)|e−σξ2/8|ξ|2+r dξ.

We also have

(3.26) |⟨ψ(k−1/2D)γσ, v⟩| = 1√
2π

|⟨e−σξ2/2, ψ(k−1/2ξ)ṽ(ξ)⟩| ≤ Ce−bk1/2

A(v).

This gives the following.
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Proposition 3.2. In the setting of Proposition 3.1,

(3.27) |⟨νgk − γσ, v⟩| ≤ Ck−r/2A(v) + |⟨ψ(k−1/2D)νgk , v⟩|.

Other ways to present the last term arise via the identities

(3.28)
⟨ψ(k−1/2D)νgk , v⟩ = ⟨νgk , ψ(k−1/2D)v⟩

= ⟨ψ(2k−1/2D)νgk , ψ(k
−1/2D)v⟩,

the latter via

(3.29) ψ(2ξ)ψ(ξ) = ψ(ξ).

We now have the task of estimating

(3.30) Bk(v) = |⟨νgk , ψ(k−1/2D)v⟩|.

Here is one straightforward result.

Proposition 3.3. Assume v is Lipschitz continuous, with Lipschitz constant Lip(v) =
L:

(3.31) |v(x)− v(y)| ≤ L|x− y|, ∀x, y ∈ R.

Then

(3.32) Bk(v) ≤ Ck−1/2 Lip(v).

Proof. Clearly

(3.33) Bk(v) ≤ sup
x

|ψ(k−1/2D)v(x)|.

With f =
√
2πφ̂, an element of S(R) that integrates to 1, we have, for all x ∈ R,

(3.34)

|ψ(k−1/2D)v(x)| =
∣∣∣∫ k1/2f(k1/2y)v(x− y)dy − v(x)

∣∣∣
=

∣∣∣∫ k1/2f(k1/2y)
[
v(x− y)− v(x)

]
dy

∣∣∣
≤ Lip(v)

∫
k1/2|f(k1/2y)y| dy

= k−1/2 Lip(v)

∫
|f(y)y| dy.

This gives (3.32).

The following result is a useful extension of Proposition 3.3.
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Proposition 3.4. Let m ∈ N. Take v ∈ C(R) and assume

(3.35) ∂mx v ∈ L∞(R).

Then

(3.36) Bk(v) ≤ Cmk
−m/2Lm(v), Lm(v) = ∥∂mx v∥L∞(R).

Proof. Set

(3.37) ψm(ξ) = ξ−mψ(ξ),

and note that

(3.38) ψ̂m ∈ L1(R), for m ∈ N.

We have

(3.39) ψ(k−1/2D)v(x) = k−m/2ψm(k−1/2D)(i∂x)
mv(x),

so

(3.40) sup
x

|ψ(k−1/2D)v(x)| ≤ C∥ψ̂m∥L1(R)∥∂mx v∥L∞(R)k
−m/2,

and (3.36) follows.



25

4. Convergence of distribution functions – Liapunov estimates

In this section we study the rate of convergence of

(4.1) Φk(y) −→ G(y),

as k → ∞, where

(4.2) Φk(y) = νgk((−∞, y]), G(y) = γσ((−∞, y]).

We retain the hypotheses on gk in effect in Theorem 1.1, supplemented by those in
Proposition 3.1, especially that (3.4) and (3.17) hold, i.e., the characteristic function
χ(ξ) satisfies

(4.3) χ(ξ) = e−σξ2/2+ξ2β(ξ), for |ξ| ≤ a,

and

(4.4) |β(ξ)| ≤ b|ξ|r, with r ∈ (0, 2].

Recall that

(4.5) χgk(ξ) = χ(k−1/2ξ)k.

To put the desired analysis in the framework of Proposition 3.2, we have

(4.6) Φk(y)−G(y) = ⟨νgk − γσ, vy⟩,

where

(4.7)
vy(x) = 1, if x ≤ y,

0, if x > y.

Proposition 3.2 is applicable, and we have

(4.5) |Φk(y)−G(y)| ≤ Ck−r/2A(vy) + Bk(vy),

where

(4.9)
A(v) =

∫ ∞

−∞
|ṽ(ξ)|e−σξ2/8|ξ|2+r dξ,

Bk(v) = |⟨νgk , ψ(k−1/2D)v⟩|.
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Note that, with vy given by (4.7), the inverse Fourier transform ṽy is a principal
value distribution, with 1/ξ type blowup as ξ → 0, but this singularity is cancelled
out by the factor |ξ|2+r. We have ṽy = eiyξ ṽ0, so there is a uniform bound

(4.10) A(vy) ≤ A0 <∞, ∀ y ∈ R.

A direct estimate of Bk(vr) seems not so simple. Instead, we follow [V] and sneak
up on the problem of estimating (4.6) by bringing in

(4.11)

wy,h(x) = 0, if x ≥ y,

h−(x−y)
h , if y − h ≤ x ≤ y,

1, if x ≤ y − h.

For h ≥ 0, vy−h ≤ wy,h ≤ vy, so

(4.12) ⟨νgk , vy−h⟩ ≤ ⟨νgk , wy,h⟩ ≤ ⟨νgk , vy⟩,

and

(4.13) −⟨γσ, vy⟩ ≤ −⟨γσ, wy,h⟩ ≤ −⟨γσ, vy−h⟩,

hence

(4.14) ⟨νgk − γσ, wy,h⟩ ≤ ⟨νgk − γσ, vy⟩+ ⟨γσ, vy − vy−h⟩,

and

(4.15) ⟨νgk − γσ, vy−h⟩ − ⟨γσ, vy − vy−h⟩ ≤ ⟨νgk − γσ, wy,h⟩.

Since 0 ≤ ⟨γσ, vy − vy−h⟩ ≤ Ch, we have

(4.16) sup
y

|⟨νgk − γσ, vy⟩| ≤ sup
y

|⟨νgk − γσ, wy,h⟩|+ Ch.

Estimates parallel to (4.10) apply to A(wy,h):

(4.17) A(wy,h) ≤ A1 <∞, ∀ y ∈ R, h > 0.

Since also Lip(wy,h) = 1/h, Propositions 3.2–3.3 apply, giving

(4.18) |⟨νgk − γσ, wy,h⟩| ≤ Ck−r/2A(wy,h) + Ck−1/2h−1,

Hence (4.16) yields

(4.19) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−1/2h−1 + Ch,

for all h > 0. We choose h = k−1/4 to balance the last two terms on the right side
of (4.19), and obtain the following.
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Proposition 4.1. For νgk as in Proposition 3.1, in particular with (4.3)–(4.4)
holding, we have

(4.20) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−1/4.

Another way to represent the right side of (4.20) is as

(4.21) ≤ Ck−δ(r), δ(r) = min
(r
2
,
1

4

)
.

The exponent in (4.21) is sharp if r ∈ (0, 1/2], but for larger r, one can do better.
For this, we want to replace the mollification wy,h of vy by the following. Take

(4.22) ζ ∈ C∞
0 (−1, 0), ζ ≥ 0,

∫
ζ(x) dx = 1,

set ζh(x) = h−1ζ(h−1x), and then set

(4.23) wy,h = ζh ∗ vy.

In common with (4.11), we have

(4.24)
wy,h(x) = 0, if x ≥ y,

1, if x ≤ y − h,

and

(4.25) 0 ≤ wy,h(x) ≤ 1, if y − h ≤ x ≤ y,

but now wy,h ∈ C∞(R), and, for m ∈ N,

(4.26) ∥∂mx wy,h∥L∞(R) = Amh
−m.

Estimates of the form (4.12)–(4.17) continue to hold. This time, we use (4.26) in
concert with Propositions 3.2 and 3.4 to obtain the following variant of (4.18):

(4.27) |⟨νgk − γσ, wy,h⟩| ≤ Ck−r/2A(wy,h) + Cmk
−m/2h−m,

which in concert with (4.16) gives the following variant of (4.19):

(4.28) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−m/2h−m + Ch,

for all h ∈ (0, 1]. This time we choose h to make k−m/2h−m = h, i.e.,

(4.29) h = k−m/2(m+1),

and we get the following extension of Proposition 4.1.
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Proposition 4.2. In the setting of Proposition 4.1, we have, for each m ∈ N,

(4.30) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Cmk
−m/2(m+1).

Consequently, as long as (4.3)–(4.4) hold with

(4.31) 0 < r < 1,

we have

(4.32) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2.

One interesting corollary arises by writing

(4.33) νgk([y, y + k−r/2]) = Φk(y + k−r/2)− Φk(y),

using (4.32), and estimating G(y + k−1/2)−G(y). We obtain the following.

Corollary 4.3. In the setting of Proposition 4.2, particularly assuming (4.3)-(4.4)
hold and r ∈ (0, 1), there exists C <∞ such that

(4.34) νgk([y, y + k−r/2]) ≤ Ck−r/2, ∀ y ∈ R.
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5. The Berry-Esseen theorem

The Berry-Esseen theorem treats the endpoint case of the results established in
§4. Here is a statement.

Theorem 5.1. Assume fj are IID random variables satisfying (0.1), and define
gk as in (0.16), and Φk and G as in (0.41). Assume in addition that

(5.1)

∫
Ω

|fj |3 dµ = ρ <∞.

Then there exists C <∞ such that

(5.2) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

To start the proof, we have the setting of Proposition 3.2, with r = 1. Hence
(4.8)–(4.10) hold, with r = 1 and vy given by (4.7). That is to say,

(5.3) |Φk(y)−G(y)| ≤ CA0k
−1/2 + Bk(vy),

and, recall,

(5.4) Bk(vy) = |⟨νgk , ψ(k−1/2D)vy⟩|,

with ψ as in (3.21).
Tp proceed, we take an approach to the estimate of Bk(vy) rather different from

that used in §4. Note that

(5.5) ψ(k−1/2D)vy(x) = ψ(k−1/2D)v0(x− y),

and

(5.6) ψ(k−1/2D)v0(x) = v0(x)− φ(k−1/2D)v0(x) = V (k1/2x),

where V ∈ L∞(R) ∩ C∞(R \ 0) has a simple jump at x = 0 and V (x) is rapidly
decreasing as |x| → ∞. Then

(5.7) ψ(k−1/2D)vy(x) = V (k1/2(x− y)),

with

(5.8) |V (x)| ≤ Cn⟨x⟩−n, ∀n ∈ N.

The next key ingredient in the proof of Theorem 5.1 is the following useful
extension of the estimates (4.34) on νgk .
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Proposition 5.2. Assume fj are IID random variables satisfying (0.1) and define
gk as in (0.12). Then there exists C <∞ such that

(5.9) νgk([y, y + k−1/2]) ≤ Ck−1/2, ∀ y ∈ R, k ∈ N.

Once we have this, then we get

(5.10) Bk(vy) ≤
∫

|V (k1/2(x− y))| dνgk(x),

and (5.8)–(5.9) imply this is ≤ Ck−1/2, as stated in (5.2). It remains to give the

Proof of Proposition 5.2. Pick ϕ satisfying

(5.11) ϕ ∈ C∞
0 ((−a, a)), ϕ ≥ 0, ϕ(0) = 1.

We desire to estimate

(5.12) ϕ(k−1/2D)νgk(x).

Note that its Fourier transform is

(5.13) ϕ(k−1/2ξ)χgk(ξ) = ϕ(k−1/2ξ)e−σξ2/2+ξ2β(k−1/2ξ).

As in (3.13), we can assume

(5.14) |β(ξ)| ≤ σ

4
for |ξ| ≤ a,

so

(5.15) |ϕ(k−1/2ξ)χgk(ξ)| ≤ Ce−σξ2/8, ∀ ξ ∈ R, k ∈ N.

This gives an L1-norm bound that implies

(5.16) |ϕ(k−1/2D)νgk(x)| ≤ C, ∀x ∈ R, k ∈ N.

Note that

(5.17) ϕ(k−1/2D)νgk(x) = ck1/2
∫
ϕ̂(k1/2(x− y)) dνgk(y).

We can pick ϕ satisfying (5.11) and also

(5.18) ϕ̂(x) ≥ 0, ∀x ∈ R.

Then ϕ̂(x) is bounded away from 0 on some neighborhood of 0, so (5.16)–(5.17)
yield (5.9).

The proof of Theorem 5.1 is complete.
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6. Faster convergence for more regular νf1

The Berry-Esseen theorem gives the optimal rate of convergence of Φk to G for
general IID random variables fj ∈ Lp(Ω, µ), satisfying (0,1), for each p ≥ 3, namely

(6.1) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

As we have noted, this estimate is optimal for the coin toss. However, one does
have faster convergence for lots of natural cases. Consider for example a case where
νfj is Lebesgue measure on R times

(6.2)
F (x) =

1

2
for |x| ≤ 1,

0 otherwise.

We have

(6.3) χ(ξ) =
sin ξ

ξ
,

and χ(k−1/2ξ)k tends to e−σξ2/2 (with σ = 1/3) much more nicely than does its
counterpart for the coin toss. The following result distills features that lead to
improvements of (6.1).

Proposition 6.1. Take an IID sequence {fj} as in Theorem 1.1. As in Proposition
3.1, assume χ = χfj satisfies (for some a > 0)

(6.4) χ(ξ) = e−σξ2/2+ξ2β(ξ), for |ξ| ≤ a,

where, for ξ in this interval,

(6.5) |β(ξ)| ≤ σ

4
, and |β(ξ)| ≤ C|ξ|r, for some r ∈ (0, 2].

Add the following hypotheses:

(6.6) sup
|ξ|≥a/2

|χ(ξ)| ≤ δ < 1,

and, for some ℓ ∈ N,

(6.7)

∫ ∞

−∞
|χ(ξ)|ℓ dξ <∞.
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Then, for k ≥ ℓ,

(6.8) |⟨νgk − γσ, v⟩ ≤ CA(v)k−r/2 + CSk(v)δ
k−ℓk1/2,

with A(v) as in (3.25), and

(6.9) Sk(v) = sup
|ξ|≥(a/2)k1/2

|ṽ(ξ)|.

Proof. By Proposition 3.2, it remains to estimate

(6.10) ⟨ψ(k−1/2D)νgk , v⟩ =
∫
ψ(k−1/2ξ)χ(k−1/2ξ)kṽ(ξ) dξ.

If k ≥ ℓ, this is bounded in absolute value by

(6.11)

∫
|ξ|≥(a/2)k1/2

|χ(k−1/2ξ)|k dξ · Sk(v)

≤ δk−ℓ

∫
|χ(k−1/2ξ)|ℓ dξ · Sk(v)

≤ Cδk−ℓk1/2Sk(v),

as desired.

We can apply Proposition 6.1 to v = vy, where

(6.12)
vy(x) = 1 for x ≤ y,

0 otherwise.

Then ṽy is a PV type distribution with 1/ξ type blowup at ξ = 0, and |ṽ(ξ)| ≤ C/|ξ|
on R \ 0. Thus we have A(vy) ≤ A <∞, uniformly in y, and also

(6.13) k1/2Sk(vy) ≤ S <∞, uniformly in y.

We deduce that, when νf1 satisfies the hypotheses of Proposition 6.1, then

(6.14) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2,

and this works whenever (6.5) holds and r ∈ (0, 2].
For example, when νf1 is given by (6.2), then (6.14) holds with r = 2.
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7. Tail estimates

As seen in Proposition 1.2, we can sharpen the result νgk → γσ, weak∗ in M(R̂),
to

(7.1) (1 + x2)νgk −→ (1 + x2)γσ, weak∗ in M(R̂),

under the hypotheses of Theorem 1.1, especially
∫
x2 dνf1(x) = σ < ∞. Then

general results discussed in Appendix A yield

(7.2) Φ2,k(y) −→ G2(y), as k → ∞, ∀ y ∈ R,

where, complementing (0.41), we set

(7.3)

Φ2,k(y) =

∫ y

−∞
x2 dνgk(x),

G2(y) =

∫ y

−∞
x2γσ(x) dx.

Such results constitute tail estimates. Here we seek further tail estimates when we
have higher moments that are finite, i.e.,

(7.4)

∫
|x|p dνf1(x) <∞, p > 2.

We concentrate on the cases p = 2ℓ, ℓ ∈ N, ℓ > 1. In such a case, taking

(7.5) χ(ξ) =

∫
R

e−ixξ dνf1(ξ),

we have that, if (7.4) holds with p = 2ℓ, then χ ∈ C2ℓ(R) and

(7.6) χ(2ℓ)(0) = (−1)ℓ
∫
R

x2ℓ dνf1(x).

Conversely, if χ ∈ C(2ℓ)(R), then (7.4) holds, with p = 2ℓ, and we have (7.6).

Now, to obtain tail estimates, we start with the following observation.
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Proposition 7.1. Assume fj are IID random variables satisfying (0.1), and define
gk as in (0.16). Fix ℓ ∈ N, ℓ > 1. If

(7.7)

∫
x2ℓ dνf1(x) <∞,

then there exists A <∞, independent of k, such that

(7.8)

∫
x2ℓ dνgk(x) ≤ A, ∀ k.

Proof. As in (1.6), there exists a > 0 such that, for |ξ| ≤ a,

(7.9) χ(ξ) = eΨ(ξ), Ψ(0) = Ψ′(0) = 0.

If (7.7) holds, then χ ∈ C2ℓ(R), hence

(7.10) Ψ ∈ C2ℓ((−a, a)).

Now, as in (1.7), for |ξ| ≤ ak1/2,

(7.11) χgk(ξ) = eΨk(ξ), Ψk(ξ) = kΨ(k−1/2ξ).

We have

(7.12) Ψ
(j)
k (ξ) = k1−j/2Ψ(j)(k−1/2ξ),

for j ≤ 2ℓ, hence

(7.13) Ψ
(j)
k (0) = k1−j/2Ψ(j)(0), 0 ≤ j ≤ 2ℓ.

Note that the exponent in k1−j/2 is > 0 if and only if j = 0 or 1, and in these cases
the right side of (7.13) vanishes. It readily follows that there exists A < ∞ such
that

(7.14) |χ(2ℓ)
gk

(0)| ≤ A, ∀ k,

and this gives (7.8).

We can now extend Proposition 1.2.
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Proposition 7.2. Under the hypotheses of Proposition 7.1,

(7.15) (1 + x2ℓ)νgk −→ (1 + x2ℓ)γσ, weak∗ in M(R̂),

as k → ∞.

Proof. We know from Theorem 1.1 that

(7.16) ⟨(1 + x2ℓ)νgk , v⟩ −→ ⟨(1 + x2ℓ)γσ, v⟩,

as k → ∞, for all continuous v on R with compact support, hence, thanks to (7.8),

for all v ∈ C(R̂) satisfying v(∞) = 0. To get (7.15), it remains to obtain (7.16) for
v ≡ 1, hence to obtain

(7.17)

∫
R

x2ℓ dνgk(x) −→
∫
R

x2ℓγσ(x) dx, as k → ∞.

This is equivalent to

(7.18) χ(2ℓ)
gk

(0) −→
( d

dξ

)2ℓ

γσ(0), as k → ∞.

In turn, (7.18) follows from (7.9)–(7.13), supplemented by the identity

(7.19) Ψ′′(0) = −σ,

which follows from (0.1).

Results of Appendix A then yield the following.

Corollary 7.3. In the setting of Proposition 7.2, if v : R̂ → R is bounded, Borel,

and Riemann integrable on R̂, then

(7.20)

∫
R

v(x)(1 + x2ℓ) dνgk(x) −→
∫
R

v(x)(1 + x2ℓ)γσ(x) dx,

as k → 0.

Our next tail estimates will make use of results of §3. Recall from Proposition
3.2 that, if fj are IID random variables satisfying (0.1), and if (7.9) holds, with

(7.21)
Ψ(ξ) = −σ

2
ξ2 + ξ2β(ξ),

|β(ξ)| ≤ b|ξ|r, |β(ξ)| ≤ σ

4
,
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for |ξ| ≤ a, and for some r ∈ (0, 2], then

(7.22) |⟨νgk − γσ, v⟩| ≤ Ck−r/2A(v) + ∥ψ(k−1/2D)v∥L∞ ,

with

(7.23) A(v) =

∫ ∞

−∞
e−σξ2/8|ξ|2+r|v̂(ξ)| dξ,

and ψ as in (0.37). Hence

(7.24) |⟨νgk , v⟩| ≤ |⟨γσ, v⟩|+ Ck−r/2A(v) + ∥ψ(k−1/2D)v∥L∞ .

To state our next result, we bring in the following spaces of functions, for ρ ∈ R:

(7.25) Sρ(R) = {v ∈ C∞(R) : |v(ℓ)(x)| ≤ Cℓ(1 + |x|)ρ−ℓ, ∀ ℓ ∈ Z+}.

Then (cf. Proposition 2.4 in [T1], Chapter 7, but note the roles of x and ξ are
switched), we have

(7.26)
|v̂(ξ)| ≤ C|ξ|−ρ−1, for |ξ| ≤ 1 (provided ρ > −1),

Cν |ξ|−ν , for |ξ| ≥ 1.

We see that

(7.27) v ∈ Sρ(R), ρ < r + 2 =⇒ A(v) <∞,

and

(7.28)
v ∈ Sρ(R), ρ ∈ R =⇒ |⟨γσ, v⟩| <∞, and

∥ψ(k−1/2D)v∥L∞ ≤ C ′
νk

−ν/2.

Note that, for each ρ ∈ R,

(7.29) (1 + x2)ρ/2 ∈ Sρ(R).

We now have the following.

Proposition 7.4. Assume fj are IID random variables, satisfying (0.1), (7.9),
and (7.21), for |ξ| ≤ a, and some r ∈ (0, 2]. Then

(7.30) ρ < r + 2 ⇒ (1 + x2)ρ/2νgk → (1 + x2)ρ/2γσ, weak∗ in M(R̂).

Furthermore, for such ρ,

(7.31) v ∈ Sρ(R) =⇒ |⟨νgk − γσ, v⟩| ≤ Ck−r/2.
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Remark. When Proposition 7.2 applies, the result (7.15) is stronger than its
counterpart in (7.30), whose hypotheses hold with r = 2 if

∫
x3 dνf1 = 0, and with

r = 1 otherwise. On the other hand, (7.31) provides useful additional information.
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8. CLT associated with a fractional diffusion

For 0 < α ≤ 2, the semigroups

(8.1) P t
α = e−t(−∂2

x)
α/2

, t ≥ 0,

consist of positivity-preserving operators with the property that

(8.2)

∫
R

P t
αu(x) dx =

∫
R

u(x) dx,

for u ∈ L1(R). They are convolution operators,

(8.3) P t
αu(x) = γtα ∗ u(x),

where each γtα is a probability measure on R, whose characteristic function is

(8.4) χt,α(ξ) =

∫
e−ixξγtα(x) dx = e−t|ξ|α .

If α < 2, the measures γtα do not have finite second moments, and if α ≤ 1 they do
not have finite first moments.

For α = 2, the operators P t
2 = et∂

2
x form the diffusion semigroup. For α < 2,

these are fractional diffusions. They give rise to stochastic processes belonging to
the family of Levy processes. For material on this, see [T3], which also treats the
higher dimensional case.

Here we formulate and prove a version of CLT associated with such fractional
diffusion semigroups.

To begin, suppose fj : Ω → R are IID random variables on a probability space
(Ω,F , µ), inducing the probability measure ν on R, as in (1.6), with characteristic
function

(8.5) χ(ξ) =

∫
Ω

e−iξfj dµ =

∫
R

e−ixξ dν(ξ).

Extending the setting of Theorem 1.1, involving (1.5), we will fix t > 0, α ∈ (0, 2),
and make the hypothesis that

(8.6) χ(ξ) = 1− t|ξ|α + r(ξ), r(ξ) = o(|ξ|α), as ξ → 0,

or, equivalently, there exists a > 0 such that, for |ξ| ≤ a,

(8.7) χ(ξ) = e−t|ξ|α+|ξ|αβ(ξ), β(ξ) → 0 as ξ → 0.
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An example of (8.6) (with t = 1) is

(8.8) χ(ξ) = (1 + |ξ|α)−1 =

∫ ∞

0

e−s(1+|ξ|α) ds,

the second identity implying that χ is the characteristic function of a probability
measure on R.

To proceed, we see that the characteristic function of f1 + · · ·+ fk is

(8.9)

∫
Ω

e−iξ(f1+···+fk) dµ = χ(ξ)k

= e−tk|ξ|α+k|ξ|αβ(ξ), for |ξ| ≤ a.

This formula tells us how to normalize the sum f1 + · · ·+ fk. In place of (0.16), we
set

(8.10) gk = k−1/α(f1 + · · ·+ fk),

yielding

(8.11)

χgk(ξ) =

∫
Ω

e−iξk−1/α(f1+···+fk) dµ

= χ(k−1/αξ)k

= e−t|ξ|α+|ξ|αβ(k−1/αξ),

the last identity holding for

(8.12) |ξ| ≤ ak1/α.

Having this, we can formulate the following variant of Theorem 1.1.

Theorem 8.1. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ) whose char-
acteristic function χ(ξ) satisfies (8.6), for some t > 0, α ∈ (0, 2). Define gk by
(8.10). Then

(8.13) νgk −→ γtα, weak∗ in M(R̂).

Proof. We see from (8.11)–(8.12) that

(8.14) lim
k→∞

ν̂gk(ξ) = γ̂tα(ξ), ∀ ξ ∈ R.

Arguing as in (1.10) yields

(8.15)

∫
v dνgk −→

∫
vγtα dx,
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for all v ∈ S(R). Since νgk and γtα are probability measures, this gives (8.15) for

all v ∈ C∗(R), and also for v ≡ 1, hence for all v ∈ C(R̂), giving the asserted result
(8.13).

Here is an illustration of Theorem 8.1, with α = 1. Define χ ∈ C(R) by

(8.16)
χ(ξ) = 1− 2

π
|ξ|, |ξ| ≤ π,

= χ(ξ + 2π), ∀ ξ ∈ R.

Then

(8.17) χ(ξ) =
4

π2

∑
k∈Z, odd

1

k2
eikξ,

so χ is the characteristic function of a random variable f satisfying

(8.18) νf =
4

π2

∑
k∈Z, odd

1

k2
δk.

It follows from Theorem 8.1 that if fj are IID random variables on (Ω,F , µ) for
which νfj satisfy (8.18), and we form

(8.19) gk =
1

k
(f1 + · · ·+ fk),

then

(8.20) νgk −→ γ
2/π
1 , weak∗ in M(R̂).

Note that

(8.21) γt1(x) =
1

π

t

x2 + t2
.
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A. Natural extension of weak∗ convergence of measures

Let X be a compact metric space, µ a finite positive Borel measure on X. If
f : X → R is a bounded function, we say f ∈ R(X,µ) provided that, for each
ε > 0, there exist

(A.1) u, v ∈ C(X) such that u ≤ f ≤ v, and

∫
X

(v − u) dµ < ε.

If X = S1, the unit circle, and µ is Lebesgue measure, this class coincides with the
standard notion of Riemann integrable functions. See [T2] for some basic results
on this class of functions. The following is a useful result.

Proposition A.1. Take X,µ as above, and let νk be finite, positive Borel measures
on X. Assume

(A.2) νk −→ µ, weak∗ in M(X) = C(X)′.

Then, if f : X → R is a bounded, Borel function,

(A.3) f ∈ R(X,µ) =⇒
∫
f dνk →

∫
f dµ.

Proof. Given f ∈ R(X,µ), take ε > 0 and pick u, v such that (A.1) holds. Then

(A.4)

∫
f dνk ≤

∫
v dνk →

∫
v dµ <

∫
f dµ+ ε,

so

(A.5) lim sup
k→∞

∫
f dνk ≤

∫
f dµ.

Similarly

(A.6) lim inf
k→∞

∫
f dνk ≥

∫
f dµ,

so we have (A.3).

Example. Let X = R̂ = R∪{∞}, and let νk and µ be probability measures on R,
naturally extended to R̂, so that µ({∞}) = 0. Let

(A.7) f : R −→ R be a bounded, continuous function.

Then f extends to a bounded function on R̂, with only ∞ as a point of discontinuity.

Hence f ∈ R(R̂, µ), and (A.3) applies, so if (A.2) holds,

(A.8)

∫
f dνk −→

∫
f dµ,

for all f satisfying (A.7). The fact that (A.2) and (A.7) imply (A.8) is part of the
Levy-Cramér continuity theorem. See [V], p. 25.
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B. Weak∗ convergence of measures and uniform convergence of distribu-
tion functions

let νk and µ be probability measures on R. The conditions

(B.1)

νk → µ in D′(R),
νk → µ in S ′(R),

νk → µ weak∗ in M(R̂) = C(R̂)′

are all equivalent. They say

(B.2)

∫
f dνk −→

∫
f dµ,

for f ∈ C∞
0 (R), f ∈ S(R), and f ∈ C(R̂), respectively. Let us now assume

(B.3) µ has no atoms.

Then, by Proposition A.1, (B.2) holds for f = χ(−∞,x], for each x ∈ R. In other
words, if we set

(B.4) Φk(x) = νk((−∞, x]), G(x) = µ((−∞, x]),

we have

(B.5) Φk(x) −→ G(x), ∀x ∈ R.

We note the following useful (and well known) refinement.

Proposition B.1. If νk and µ are probability measures on R satisfying (B.1) and
(B.3), then

(B.6) Φk −→ G, uniformly on R.

Proof. If not, there exist ε > 0, kn → ∞, and xkn
∈ R such that

(B.7) |Φkn
(xkn

)−G(xkn
)| ≥ ε.

If G(y0) = ε/4 and G(y1) − 1 − ε/4, then only finitely many xnk
can lie outside

[y0, y1]. Hence there is a subsequence (which we merely denote j) of (kn) such that

(B.8) xj → y ∈ [y0, y1], |Φj(xj)−G(xj)| ≥ ε.
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Then there is either a further subsequence satisfying xj ↗ y or one satisfying
xj ↘ y. Let’s deal with the first possibility; a similar argument will handle the
second.

To start, pick N so large that

(B.9) |Φj(y)−G(y)| < ε

4
, and |G(xj)−G(y)| < ε

4
, ∀ j ≥ N.

It follows that

(B.10) |Φj(y)−G(xj)| <
ε

2
, ∀ j ≥ N,

hence, if (B.8) holds,

(B.11) |Φj(xj)− Φj(y)| >
ε

2
, ∀ j ≥ N,

hence νj([xj , y]) > ε/2 for j ≥ N , and a fortiori

(B.12) νj([xN , y]) ≥
ε

2
, ∀ j ≥ N.

Now we take j → ∞ to conclude that

(B.13) µ([xN , y]) ≥
ε

2
,

i.e., G(y)−G(xN ) ≥ ε/2, contradicting (B.9). This finishes the proof.

Remark. Coming full circle, we can apply d/dx to (B.6) and obtain (B.1).
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