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Abstract. We discuss variants of the Gauss-Green theorem of Harrison-Norton.

1. Introduction

Let Ω ⊂ Rn be a bounded open set, and set χΩ(x) = 1 for x ∈ Ω, 0 for x ∈ Rn\Ω.
We have the Rn-valued distribution,

(1.1) ∇χΩ = µ ∈ E ′(Rn),

supported on ∂Ω, and basic distribution theory gives

(1.2) ⟨divF, χΩ⟩ = −⟨F, µ⟩,

for each vector field F ∈ C∞(Rn). This is a very general version of the Gauss-Green
formula.

Several important, related questions arise. For one, it is of extreme interest to
extend (1.2) to a much broader class of vector fields F . A related matter is to place
the distribution µ in a smaller class of distributions, such as Sobolev spaces. For
example, we clearly have

(1.3) µ ∈ H−1,∞(Rn),

a result essentially equivalent to the assertion that (1.2) extends to all F ∈ H1,1(Rn),
but we want to do better. A third important question is to investigate what sharper
information on µ and on extensions of (1.2) one has under various geometric hy-
potheses on ∂Ω.

Fundamental work of deGiorgi and Federer addressed these issues in the setting
of finite-perimeter domains. These are domains for which µ in (1.1) is a finite Rn-
valued measure. It was shown that this holds if and only if the measure-theoretic
boundary ∂∗Ω (a subset of ∂Ω) has finite (n − 1)-dimensional Hausdorff measure
(Hn−1(∂∗Ω) < ∞). In such a case, the Radon-Nikodym theorem gives

(1.4) µ = νσ,

where σ is a positive Borel measure on ∂Ω, ν is Rn-valued, and |ν(x)| = 1 for σ-a.e.
x. Then (1.2) can be written

(1.5)

∫
Ω

divF dx =

∫
∂Ω

ν · F dσ,
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first for F ∈ C∞(Rn). This result extends to F satisfying

(1.6) F ∈ C(Rn), divF ∈ L1(Rn).

In fact, using a mollifier we get Fk = φk ∗ F ∈ C∞(Rn),

(1.7) Fk −→ F locally uniformly, divFk = φk ∗ divF −→ divF in L1(Rn).

Applying (1.5) to Fk gives

(1.8)

∫
Ω

divFk dx =

∫
∂Ω

ν · Fk dσ,

and taking k → ∞ and using (1.7) gives (1.5) for all F satisfying (1.6). Exposi-
tions of the theory of finite-perimeter domains are given in [Fed], [EG], and [Zie],
including proofs that

(1.9) σ = Hn−1⌊∂∗Ω,

and that ∂∗Ω is countably rectifiable.
There are results extending (1.5) to much less regular F under additional hy-

potheses on Ω, such as Ahlfors regularity, of use in the analysis of layer potentials.
See for example [HMT] and [MMM]. In this note we are pursuing the opposite
direction, examining domains that are rougher than finite-perimeter domains.

Let us return for now to general bounded open Ω, and consider the following
extension of (1.2), beyond F ∈ H1,1(Rn). Namely, assume

(1.10) F ∈ L1(Rn), divF ∈ L1(Rn).

Using a mollifier to obtain Fk = φk ∗ F , as above, we have

(1.11)

∫
Ω

divFk dx = ⟨Fk, µ⟩,

and divFk = φk ∗ divF → divF in L1-norm as k → ∞, hence

(1.12)

∫
Ω

divFk dx −→
∫
Ω

divF dx,

as k → ∞. By (1.11), ⟨Fk, µ⟩ also converges to the right side of (1.12) as k → ∞, so
µ ∈ H−1,1(Rn) extends to a bounded linear functional on the Banach space V1(Rn)
of vector fields satisfying (1.10), and in that sense we have an extension of (1.2) to
this Banach space V1(Rn):

(1.13) µ ∈ V1(Rn)′ and

∫
Ω

divF dx = ⟨F, µ⟩, ∀F ∈ V1(Rn).
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Further extensions, involving

(1.10A) F ∈ Lp(Rn), divF ∈ M(Rn),

the space of finite signed Borel measures on Rn, are given in [CCT], for general open
Ω, following work on finite-perimeter domains in [CTZ], [CP], and other works cited
there.

Now (1.13) might seem to be a strictly stronger result than (1.5), applied to
F satisfying (1.6). After all, (1.13) applies to a larger class of domains Ω and to
a larger class of vector fields F . However, (1.5) has the advantage that the right
side clearly applies strictly to the restriction of F to ∂Ω. Generally, if α ∈ E ′(Rn)
and supp α ⊂ K, compact, one might have F ∈ C∞(Rn), satisfying F |K = 0 but
⟨F, α⟩ ̸= 0. It is important to investigate when such a phenomenon can be shown
not to arise for α = µ, given by (1.1), and when F is somewhat less regular than
C∞.

Here is one basic case, yielding localization of µ on ∂Ω.

Proposition 1.1. Let Ω ⊂ Rn be a bounded open set, and define µ by (1.1). Then

(1.14)
F ∈ Lip(Rn), F

∣∣
∂Ω

= 0 =⇒
∫
Ω

divF dx = 0

=⇒ ⟨F, µ⟩ = 0.

Proof. For k ∈ N, define ρk : R → R by

(1.15)

ρk = 0, for |λ| ≤ 2−k,

λ− 2−k, for λ ≥ 2−k,

λ+ 2−k, for λ ≤ −2−k,

and set

(1.16) Fk(x) = ρk ◦ F (x),

where ρk is applied componentwise to F (x). Then each Fk ∈ Lip(Rn), and, as
k → ∞,

(1.17) Fk −→ F locally uniformly, ∇Fk −→ ∇F, boundedly and a.e.

Also, each Fk vanishes on a neighborhood of ∂Ω, so it is elementary that

(1.18)

∫
Ω

divFk dx = 0, ∀ k ∈ N.

Letting k → ∞, we have
∫
Ω
divF dx = 0, i.e., the first implication in (1.14), and

this leads to the second implication, via (1.13).

In turn, this leads to the following.
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Corollary 1.2. In the setting of Proposition 1.1, there is a uniquely defined

(1.19) µ# ∈ Lip(∂Ω)′,

satisfying, for each Rn-valued f ∈ Lip(∂Ω),

(1.20) ⟨f, µ#⟩ = ⟨F, µ⟩, ∀F ∈ Lip(Rn) such that F
∣∣
∂Ω

= f.

Proof. First, given a compact K ⊂ Rn, each f ∈ Lip(K) has an extension to
F ∈ Lip(Rn), given, e.g., by the Whitney extension theorem. The fact that µ#

is well defined then follows by applying Proposition 1.1 to F1 − F2, given two
extensions Fj ∈ Lip(Rn) of f .

Combining Corollary 1.2 with (1.13), we have

(1.21)

∫
Ω

divF dx = ⟨f, µ#⟩,

for each f ∈ Lip(∂Ω), and each extension F ∈ Lip(Rn).
In a pioneering work, [HN] took this further, defining

(1.22) µ# ∈ Lipr(∂Ω)′,

with r ∈ (0, 1), for a class of bounded open Ω ⊂ Rn satisfying further geometric
conditions essentially related to the “box dimension” of ∂Ω. Here, given r ∈ (0, 1]
and a bounded function f in a set S ⊂ Rn (maybe valued in Rk), we say

(1.23) f ∈ Lipr(S) ⇐⇒ |f(x)− f(y)| ≤ C|x− y|r,

for all x, y ∈ S. Thus Lip1(S) = Lip(S). We set

(1.24) ∥f∥Lipr(S) = ∥f∥lipr(S) + sup
S

|f |,

with

(1.25) ∥f∥lipr(S) = sup
x̸=y∈S

|f(x)− f(y)|
|x− y|r

.

The purpose of this note is to present some more results along these lines. Our
hypotheses differ from those of [HN] in several respects. For one, [HN] works under
the hypothesis that ∂Ω is a topological manifold (of topological dimension n− 1).
We do not make that hypothesis. Our basic geometric hypothesis on Ω is

(1.26)

∫
Ω

δ(x)r−1 dx < ∞,
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where δ(x) = dist(x, ∂Ω). This is related to but weaker than the hypothesis in
[HN] that ∂Ω be “d-summable,” with d = n− 1 + r. The relationship is discussed
in §3. On the other hand, [HN] treats vector fields F (or rather, in their setting,
(n− 1)-forms) that are “d-flat,” a class that contains Lipr.

Given a bounded open set Ω ⊂ Rn, the functional µ# ∈ Lipr(∂Ω)′ is constructed
in §2 by a process similar to that used in [HN0] (there in the setting of n = 2
and ∂Ω a Jordan curve). A Whitney extension operator W is shown to have the
property

(1.27) W : Lipr(∂Ω) −→ C(Ω) ∩H1,1(Ω),

provided (1.26) holds. In fact, for f ∈ Lipr(∂Ω),

(1.28)

∫
Ω

|∇Wf(x)| dx ≤ C
(∫
Ω

δ(x)r−1 dx
)
∥f∥lipr(∂Ω).

Then µ# is defined by

(1.29) ⟨f, µ#⟩ =
∫
Ω

divWf(x) dx.

This is shown to be independent of choices inherent in the construction of W, in
Proposition 2.2.

To tie in µ# in (1.22) with µ# in (1.19), we need to face the fact that Lip(∂Ω)
is not dense in Lipr(∂Ω), in the norm topology, when r < 1. This issue is dealt
with in Propositions 2.7–2.8. It is shown that, for each f ∈ Lipr(∂Ω), there exist
fk ∈ Lip(∂Ω), satisfying

(1.30) ∥fk∥Lipr(∂Ω) ≤ A < ∞, ∥fk − f∥C0(∂Ω) → 0,

and, whenever this holds,

(1.31) ⟨f, µ#⟩ = lim
k→∞

⟨fk, µ#⟩.

A key to this is a refinement of the estimate (1.28), to

(1.32)

∫
Ω

|∇Wf(x)| dx ≤ Cωr,Ω(ε)∥f∥lipr(∂Ω) +
C

ε
m(Ω) ∥f∥c0(∂Ω),

valid for all ε ∈ (0, 1]. Here,

(1.33) ωr,Ω(ε) =

∫
{x∈Ω:δ(x)<ε}

δ(x)r−1 dx,
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having the property that ωr,Ω(ε) → 0 as ε → 0. Also, we use the notation

(1.34) ∥f∥C0(S) = sup
S

|f |, ∥f∥c0(S) = inf
a∈Rk

∥f − a∥C0(S),

for bounded f : S → Rk. As we will see in §4, it is useful to know that the constants
C on the right side of (1.32) are independent of Ω (given n).

In §3 we discuss the geometrical significance of the hypothesis (1.26), and relate
it to the box dimension and box counting function of ∂Ω. We show that the
hypothesis of [HN] that ∂Ω is d-summable, with d = n− 1 + r, is equivalent to the
validity of (1.26) plus the following:

(1.35) m(∂Ω) = 0, and

∫
Ω−

δ(x)r−1 dx < ∞,

where Ω− = BR \Ω, given an open ball BR ⊃ Ω. We discuss examples of bounded
open sets Ω ⊂ Rn that satisfy (1.26) but not (1.35).

In §4 we seek conditions on a sequence of domains Ωj ⊂ Rn such that

(1.36) ⟨F, µj⟩ −→ ⟨F, µ⟩

(with µj = ∇χΩj
), with particular attention to which spaces of vector fields F this

holds for. One simple result is that if

(1.37) F ∈ Lipr(Rn), divF ∈ L1(Rn),

and Ω, Ωj all satisfy (1.26), then

(1.38) ⟨F, µ− µj⟩ =
∫

Ω△Ωj

divF dx,

which tends to 0 as j → ∞ provided

(1.39) m(Ω△Ωj) −→ 0.

However, it is of greater interest to know when (1.36) holds for all F ∈ Lipr(Rn).
Proposition 4.2 states that if all Ωj lie in some ball BR, R < ∞, and if (1.26) holds
uniformly, in the sense that there exist ω(ε) so that, for all j ∈ N, ε ∈ (0, 1],

(1.40) ωr,Ωj
(ε) ≤ ω(ε), ω(ε) → 0,

and if (1.39) holds, then (1.36) holds for all F ∈ Lipr(Rn). The validity of the
estimate (1.32), with C independent of Ω, plays a key role in the proof.
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2. Gauss-Green with Lipr boundary values

Here we extend µ# from a continuous linear functional on Lip(∂Ω) to one on
Lipr(∂Ω), under a metric condition on Ω, which we derive below. One tool we use
is the Whitney extension map, which we now recall (cf. [Wh], or [T], Appendix C).

Let Ω ⊂ Rn be a bounded, open set. Whitney’s construction says there exist
C,M ∈ (0,∞) and a partition of unity {Φj : j ≥ 1} on Ω such that each Φj ∈
C∞

0 (Ω), and furthermore the following hold.

(a) Each x ∈ Ω is in the support of at most M of the Φj .

(b) For each δ > 0, if x ∈ suppΦj and dist(x, ∂Ω) = δ, then

(2.1) diam suppΦj ≤
δ

2
,

and

(2.2) |∇Φj(x)| ≤
C

δ
.

Having this, and given r ∈ (0, 1], we construct

(2.3) W : Lipr(∂Ω) −→ C(Ω) ∩ C∞(Ω)

as follows. For each j ∈ N, let yj be a point in ∂Ω of minimal distance from suppΦj .
Then, for f ∈ Lipr(∂Ω), set

(2.4) Wf(x) =
∑
j

f(yj)Φj(x), x ∈ Ω.

Since this sum is locally finite, we clearly have W : Lipr(∂Ω) → C∞(Ω). Now
suppose x ∈ Ω, z ∈ ∂Ω, and |x− z| = δ. Then

(2.5)

x ∈ suppΦj =⇒ |x− yj | ≤ Cδ

=⇒ |z − yj | ≤ Cδ

=⇒ |f(yj)− f(z)| ≤ Cδr,

so

(2.6)
Wf(x) = f(z) +

∑
j

{
f(yj)− f(z)

}
Φj(x)

= f(z) +O(δr).
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This implies

(2.7) W : Lipr(∂Ω) → C(Ω), Wf
∣∣
∂Ω

= f.

We next estimate ∇v(x), for v = Wf, x ∈ Ω. Noting that

(2.8)
∑
j

∇Φj(x) ≡ 0 on Ω,

we have

(2.9) ∇v(x) =
∑
j

{
f(yj)− f(z)

}
∇Φj(x), ∀ z ∈ ∂Ω.

For each x ∈ Ω, there are at most M terms in this sum, for which x ∈ suppΦj . Say
x ∈ suppΦℓ, and pick z = yℓ. It follows from (2.1)–(2.2) that

(2.10)

|∇v(x)| ≤
∑
j

|f(yj)− f(yℓ)| · |∇Φj(x)|

≤ Cδ(x)r−1∥f∥lipr(∂Ω),

where the lipr seminorm is defined in (1.25), and

(2.11) δ(x) = dist(x, ∂Ω).

This establishes the following result.

Proposition 2.1. Let Ω ⊂ Rn be a bounded open set, and take r ∈ (0, 1]. Then

(2.12) W : Lipr(∂Ω) −→ C(Ω) ∩H1,1(Ω),

provided

(2.13)

∫
Ω

δ(x)r−1 dx < ∞.

Remark. A condition equivalent to (2.13) is

(2.14)

∫ 1

0

m
({

x ∈ Ω : δ(x) < t
})

tr−1 dt

t
< ∞,

i.e.,

(2.15) m
({

x ∈ Ω : δ(x) < t
})

≤ β(t)t1−r,

∫ 1

0

β(t)

t
dt < ∞,
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where m denotes Lebesgue measure on Rn. See §3 for a further discussion of this
condition.

We are now ready for a definition.
Definition. Given that the bounded open set Ω ⊂ Rn satisfies (2.13), we define
µ# ∈ Lipr(∂Ω)′ by

(2.16) ⟨f, µ#⟩ =
∫
Ω

divWf(x) dx,

for Rn-valued f ∈ Lipr(∂Ω).

Constructing the partition of unity {Φj} and the extension map W involves
choices. The following important result implies, among other things, that µ# is
independent of such choices.

Proposition 2.2. Assume the bounded open set Ω ⊂ Rn satisfies (2.13), and take
f ∈ Lipr(∂Ω). Then, for Rn-valued G,

(2.17) G ∈ C(Ω) ∩H1,1(Ω), G
∣∣
∂Ω

= f =⇒
∫
Ω

divGdx = ⟨f, µ#⟩.

Proof. Considering H = G−Wf , it suffices to prove the following.

Lemma 2.3. Let Ω ⊂ Rn be a bounded, open set. Given Rn-valued H ∈ C(Ω) ∩
H1,1(Ω), we have

(2.18) H
∣∣
∂Ω

= 0 =⇒
∫
Ω

divH dx = 0.

Proof. Define Hk = ρk ◦H, as in (1.15)–(1.16). Then (cf. [GT], Lemmas 7.6–7.7)

(2.19)
Hk −→ H uniformly on Ω, Hk ∈ H1,1

0 (Ω),

∇Hk(x) −→ ∇H(x) a.e., and |∇Hk(x)| ≤ |∇H(x)|,

so

(2.20) Hk −→ H in H1,1(Ω).

Hence

(2.21)

∫
Ω

divH dx = lim
k→∞

∫
Ω

divHk dx = 0.

We next record the following useful property of W.
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Proposition 2.4. If Ω ⊂ Rn is a bounded open set, and 0 < r ≤ 1,

(2.22) W : Lipr(∂Ω) −→ Lipr(Ω).

Proof. Take f ∈ Lip(∂Ω), v = Wf . We already have v ∈ C(Ω). Also (2.6) gives

(2.23) |v(x)− f(z)| ≤ C|x− z|r, for x ∈ Ω, z ∈ ∂Ω,

and (2.10) gives

(2.24) |∇v(x)| ≤ Cδ(x)r−1, x ∈ Ω,

with δ(x) = dist(x, ∂Ω). With these results in hand, take

(2.25) x, y ∈ Ω, h = |x− y|.

We consider two cases:

δ(x) ≥ 2h,(a)

δ(x) < 2h.(b)

In case (a), the line segment ℓ(t) = ty+ (1− t)x from x to y has the property that
δ(ℓ(t)) ≥ h for each t ∈ [0, 1], so

(2.26) |v(x)− v(y)| ≤ Ch · hr−1 = Chr, in case (a).

In case (b), one also has δ(y) < 3h. Pick

(2.27) x0, y0 ∈ ∂Ω, |x− x0| = δ(x), |y − y0| = δ(y).

Then

(2.28)
|v(x)− v(y)| ≤ |v(x)− f(x0)|+ |f(x0)− f(y0)|+ |f(y0)− v(y)|

≤ Chr, in case (b).

This yields (2.22).

There is the following related result. Let K ⊂ Rn be compact. Say K ⊂ BR(0),
and consider Ω = BR(0) \K. The analysis behind Proposition 2.24, plus a cut-off
near ∂BR(0) yields a continuous map

(2.29) W̃ : Lipr(K) −→ Lipr(Rn), W̃f
∣∣
K

= f.

Consequently, in the setting of Proposition 2.4, we have

(2.30) W̃ : Lipr(∂Ω) −→ Lipr(Rn), W̃f
∣∣
Ω
= Wf.

Note that the case r = 1 of (2.29) was invoked in the proof of Corollary 1.2, which
we can rephrase as

(2.31) ⟨f, µ#⟩ = ⟨W̃f, µ⟩, µ = ∇χΩ, ∀ f ∈ Lip(∂Ω).

Here is another useful consequence of (2.29).
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Proposition 2.5. Given K ⊂ Rn compact, s ∈ (0, 1), and f ∈ Lips(K), there
exist fk satisfying

(2.32) fk ∈ Lip(K), {fk} bounded in Lips(K), fk → f in Lipr -norm, ∀ r < s.

Proof. Apply a standard mollifier argument to v = W̃f , obtaining vk ∈ Lip(Rn)
having properties analogous to those stated in (2.32), and set fk = vk|K .

The following result ties in µ# as defined in (2.16) with its debut in Corollary
1.2.

Proposition 2.6. Take r ∈ (0, 1) and assume Ω ⊂ Rn is a bounded open set
satisfying the condition (2.13). Take

(2.33) f ∈ Lips(∂Ω), s > r.

Then there exist fk ∈ Lip(∂Ω) satisfying (2.32), with K = ∂Ω. For any such
sequence,

(2.34) ⟨f, µ#⟩ = lim
k→∞

⟨fk, µ#⟩.

While Proposition 2.6 is a conveniently established consequence of Propositions
2.1–2.5, it is useful to sharpen it. We start with a sharpening of the estimate

(2.35) ∥Wf∥H1,1(Ω) ≤ C∥f∥Lipr(∂Ω)

implicit in (2.12). To get it, we complement (2.10) with the observations that
v = Wf satisfies

(2.36) |v(x)| ≤ C∥f∥C0(∂Ω), |∇v(x)| ≤ Cδ(x)−1∥f∥c0(∂Ω),

with the C0-norm and c0-seminorm given by (1.34). Hence, for all ε ∈ (0, 1],

(2.37)

∥∇v∥L1(Ω) =

∫
{δ(x)<ε}

|∇v(x)| dx+

∫
{δ(x)≥ε}

|∇v(x)| dx

≤ Cω(ε)∥f∥lipr(∂Ω) +
C

ε
∥f∥c0(∂Ω),

where, for Ω satisfying (2.13),

(2.38) ω(ε) =

∫
{x∈Ω:δ(x)<ε}

δ(x)r−1 dx.

Note that

(2.39) ω(ε) −→ 0, as ε → 0.

These estimates yield the following useful complement to Proposition 2.1.



12

Proposition 2.7. Assume Ω satisfies (2.13). Take

(2.40) f, fk ∈ Lipr(∂Ω),

satisfying

(2.41) ∥fk∥Lipr(∂Ω) ≤ A < ∞, ∥fk − f∥C0(∂Ω) → 0.

Then

(2.42) Wfk −→ Wf, in H1,1(Ω)-norm.

This leads to the following sharpening of Proposition 2.6.

Proposition 2.8. Take r ∈ (0, 1) and assume Ω ⊂ Rn is a bounded open set
satisfying (2.13). Take f ∈ Lipr(∂Ω). Then there exist fk ∈ Lip(∂Ω) satisfying
(2.41). For any such sequence,

(2.43) ⟨f, µ#⟩ = lim
k→∞

⟨fk, µ#⟩.

Here is a variant of Proposition 2.2, which can also be compared with (1.13).

Proposition 2.9. Assume the bounded open set Ω ⊂ Rn satisfies (2.13). Then

(2.44)

F ∈ Lipr(Rn), divF ∈ L1(Rn), f = F
∣∣
∂Ω

=⇒
∫
Ω

divF dx = ⟨f, µ#⟩.

Proof. A mollifier argument involving Fk = φk ∗F as in (1.7) yields Fk ∈ C∞(Rn),

(2.45)
Fk → F in C0(Rn), Fk bounded in Lipr(Rn),

divFk = φk ∗ divF → divF in L1(Rn).

We have

(2.46) fk = Fk|∂Ω −→ f in C0(∂Ω), fk bounded in Lipr(∂Ω),

hence

(2.47)

∫
Ω

divFk dx = ⟨fk, µ#⟩ → ⟨f, µ#⟩,
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the first identity by Corollary 1.2. Meanwhile,

(2.48)

∫
Ω

divFk dx −→
∫
Ω

divF dx,

and we have (2.44).

Remark. The only role of the Lipr hypothesis on F in (2.44) is to guarantee (2.46).
Thus we could weaken this hypothesis to

(2.49) F ∈ Lipr(O), for some open O ⊃ ∂Ω,

and still obtain the conclusion in (2.44). Even more generally, we could simply
hypothesize (2.46).

We complement the construction of µ# with one of µb, as follows. Let Ω ⊂ Rn

be a bounded open set, and take Ω− = Rn \ Ω. Assume Ω ⊂ BR, an open ball of
radius R < ∞. Apply the Whitney construction described above, with Ω replaced
by Ω−, to obtain a continuous extension map Lipr(∂Ω) → Lipr(Ω−) ∩ C∞(Ω−),
and follow this with multiplication by a function K ∈ C∞

0 (Rn), satisfying K = 1
on a neighborhood of Ω, K = 0 outside BR, to get

(2.50) W : Lipr(∂Ω) −→ Lipr(Ω−) ∩ C∞(Ω−), ∀ r ∈ (0, 1].

Now assume

(2.51)

∫
BR\Ω

δ(x)s−1 dx < ∞.

As shown in §3, there are cases where (2.13) and (2.51) hold for different ranges of
r and s. For the sake of argument, assume

(2.52) r ≤ s.

Parallel to Proposition 2.1, if (2.51) holds, then

(2.53) W : Lips(∂Ω) −→ Lips(Ω−) ∩H1,1(Ω−).

This leads to the following

Definition. Given that Ω ⊂ BR and that BR \ Ω satisfies (2.51), we define µb ∈
Lips(∂Ω)′ by

(2.54) ⟨f, µb⟩ = −
∫
Ω−

divWf dx,
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for Rn-valued f on ∂Ω.

Parallel to Proposition 2.2, we have

(2.55)

∫
Ω−

divWf(x) dx =

∫
Ω−

divF dx,

for such f as in (2.54), whenever F ∈ C(Ω−)∩H1,1(Ω−) has compact support and
F |∂Ω− = f . Note that Ω ∪ ∂Ω ∪ Ω− = Rn and this is a disjoint union. Hence
χΩ + χΩ− = 1 a.e. on Rn provided m(∂Ω) = 0, so

(2.56) m(∂Ω) = 0 =⇒ ⟨f, µ#⟩ = ⟨f, µb⟩,
for all f ∈ Lip(∂Ω).

There is also an analogue of (2.37) for ∥∇Wf∥L1(BR\Ω). Furthermore, we have

an analogue of Proposition 2.8, yielding, for f ∈ Lips(∂Ω),

(2.57) ⟨f, µb⟩ = lim
k→∞

⟨fk, µb⟩,

whenever fk ∈ Lip(∂Ω), ∥fk∥Lips(∂Ω) ≤ A < ∞, and ∥fk − f∥C0(∂Ω) → 0. This
leads to the validity of (2.56) whenever f ∈ Lips(∂Ω), given (2.13), (2.51), and
(2.52). Also, By Proposition 2.8, in the setting of (2.50)–(2.56), µ# is the unique
linear extension of µb from Lips(∂Ω) to Lipr(∂Ω) satisfying

(2.58) |⟨f, µ#⟩| ≤ Cω(ε)∥f∥lipr(∂Ω) +
C

ε
∥f∥c0(∂Ω),

for all ε ∈ (0, 1], f ∈ Lipr(∂Ω), where ω(ε) is given by (2.38).
We record a Gauss-Green formula involving Ω−, though it does not use the

results of (2.50)–(2.58).

Proposition 2.10. Let Ω ⊂ Rn be a bounded open set. Assume Ω satisfies (2.13)
and

(2.59) m(∂Ω) = 0.

Set Ω− = Rn \ Ω, and assume

(2.60) F ∈ Lipr(Rn), divF ∈ L1(Rn), suppF compact,

and set f = F |∂Ω. Then

(2.61)

∫
Ω−

divF dx = −⟨f, µ#⟩.

Proof. We have

(2.62)

0 =

∫
Rn

divF dx =

∫
Ω

divF dx+

∫
Ω−

divF dx

= ⟨f, µ#⟩+
∫
Ω−

divF dx.
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3. The geometric condition on Ω

As derived in (2.13), the geometric hypothesis on the bounded open set Ω ⊂ Rn

used for the results of §2, related to applying µ# to Lipr(∂Ω), is

(3.1)

∫
Ω

δ(x)r−1 dx < ∞,

where δ(x) = dist(x, ∂Ω), or equivalently

(3.2) MΩ(t) ≤ β(t)t1−r,

∫ 1

0

β(t)

t
dt < ∞,

where

(3.3) MΩ(t) = m
({

x ∈ Ω : δ(x) < t
})

= m(Ot).

Note that MΩ(t) ≤ M̃∂Ω(t), defined by

(3.4) M̃∂Ω(t) = m
({

x ∈ Rn : dist(x, ∂Ω) < t
})

= m(Õt).

For each t > 0, the set Õt contains ∂Ω and also points in Rn \Ω, while Ot is disjoint
from these sets. The infimum of all d > 0 such that

(3.5) m(Õt) ≤ Cdt
n−d, ∀ t ∈ (0, 1],

is called the box dimension of ∂Ω (B-dim(∂Ω)). We see that

(3.6)
B-dim(∂Ω) < n− 1 + r =⇒

∫ 1

0

M̃∂Ω(t)t
r−1 dt

t
< ∞

=⇒ (3.2).

The terminology “box dimension” arises as follows. Given t > 0, tile Rn by n-
dimensional cubes (boxes) Qαt, of edge t, the edges being parallel to the coordinate
axes. We define the box-counting function of the compact set ∂Ω as

(3.7) N∂Ω(t) = number of boxes Qαt that intersect ∂Ω.

There exists C = Cn < ∞ such that

(3.8) m(Õt) ≤ CN∂Ω(t)t
n, N∂Ω(t)t

n ≤ m(ÕCt).
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Hence B-dim(∂Ω) is the infimum of all d > 0 such that

(3.9) N∂Ω(t) ≤ Cdt
−d, ∀ t ∈ (0, 1].

Basic material on the box dimension can be found in [Fal]. We mention that
B-dim(∂Ω) is greater than or equal to the Hausdorff dimension of ∂Ω, which in
turn is ≥ n− 1 when Ω ⊂ Rn is a (nonempty) bounded open set.

The estimates in (3.8) also give

(3.10)

∫ 1

0

M̃∂Ω(t)t
r−1 dt

t
≈

∫ 1

0

N∂Ω(t)t
n−1+r dt

t
.

The hypothesis that this be finite, i.e., that

(3.11)

∫ 1

0

N∂Ω(t)t
n−1+r dt

t
< ∞,

constitutes the hypothesis in [HN] that ∂Ω be d-summable, with d = n−1+r. The
analysis above shows that (3.11) holds if and only if we have (3.1) plus two other
conditions, namely

(3.12) m(∂Ω) = 0,

and

(3.13)

∫
Ω−

δ(x)r−1 dx < ∞,

where Ω− = BR \Ω, BR being some open ball that contains Ω. This quantifies the
extent to which the condition (3.11) is stronger than (3.1).

Here is an example of a bounded open set Ω ⊂ R2 for which (3.1) applies but
(3.11) does not, produced as a modification of the planar domain illustrated in
Figure 5.1 in Chapter 5 of [T2]. The shaded region Ω winds like a tail infinitely
often about an oval Σ, which is its inner boundary. (The goal there was to discuss
whether a point z0 ∈ Σ is a regular point for the Dirichlet problem on Ω.) As the
tail of Ω winds about Σ, it gets progressively thinner. One can construct this set
Ω so that the tail thins exponentially fast, so that, for t ≤ 1/2,

(3.14) MΩ(t) ≤ Ct log
1

t
,

hence (3.1) and (3.2) hold for all r > 0. Now modify this construction, simply
by taking Σ to be a Koch snowflake (of Hausdorff dimension and box dimension
dK = (log 4)/(log 3), cf. [Fal], §9.2.) One can still arrange that (3.14) hold. But
since ∂Ω ⊃ Σ, (3.11) fails, for r ≤ dK − 1.
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In this example, R2 \∂Ω has three connected components, Ω, Ω0, and Ω1, where
Ω1 is the unbounded component and Ω0 is the bounded region for which ∂Ω0 = Σ.
We have

(3.15) ∇χΩ = µ, ∇χΩj = µj , µ+ µ0 + µ1 = 0.

The distribution µ0 is more singular than µ, as far as its action on the Lipr scale
is concerned.

One can readily produce related examples, replacing the Koch snowflake by fatter
fractals, for example, or moving up in dimension.

For a variant, one can start with the graph of

(3.16) y = sin
1

x
, 0 < x ≤ π,

which, as x ↘ 0, snakes toward the vertical line segment {(0, y) : −1 ≤ y ≤ 1}. Now
alter this to a curve that similarly snakes toward an arc of the Koch snowflake, or
some other fractal, such as {(u(y), y) : −1 ≤ y ≤ 1}, where u : [−1, 1] → R
is continuous but quite rough. Then thicken up the curve, to a tail of rapidly
decreasing thickness, to obtain Ω. One can arrange that such Ω satisfy (3.1) for all
r > 0, while BR \ Ω (with R sufficiently large that Ω ⊂ BR) satisfies (3.1) only for
r in some interval bounded away from 0. In this example, R2 \ ∂Ω has only two
connected components.

For a third example, let B1 = B1(0) ⊂ Rn be the open unit ball, and let
{pj : j ∈ N} be a dense subset of B1. Take a sequence rj satisfying

(3.17) rj ↘ 0,
∑
j≥1

rn−1
j < ∞,

∑
j≥1

rnj < 1.

Inductively, pick balls Bρj (pj) as follows:

(3.18) 0 < ρj ≤ rj , Bρj (pj) ⊂ B1 \
∪
k<j

Bρk
(pk).

If pj ∈ ∪k<jBρk
(pk), skip it. Now form the open set

(3.19) Ω =
∪
j

Bρj
(pj).

By construction,

(3.20)
Ω ⊂ B1, Ω = B1, and

m(Ω) < m(B), hence m(∂Ω) > 0.
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In this case, we have

(3.21) MΩ(t) ≤ Ct, ∀ t ∈ (0, 1],

with C = An−1

∑
j ρ

n−1
j , An−1 denoting the area of Sn−1. By contrast,

(3.22) M̃∂Ω(t) ≥ m(∂Ω) > 0, ∀ t ∈ (0, 1],

Hence (3.1) holds for all r > 0, but (3.11) fails for all r ∈ (0, 1), since (3.12) fails.
On the other hand, here

(3.23) Ω− = BR \B1

also satisfies an estimate like (3.21), and (3.13) holds for all r > 0. Actually, in this
case both Ω and Ω− are finite-perimeter domains. We have

(3.24) ∂∗Ω =
∪
j≥1

∂Bρj
(pj), ∂∗Ω− = ∂Ω− = ∂B1 ∪ ∂BR.
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4. Variation of µ = ∇χΩ with Ω

Here we study the dependence of the distribution µ = ∇χΩ on Ω, with particular
attention to when, and in what topology, we might have

(4.1) µj −→ µ, for µj = ∇χΩj .

For this it is useful to keep track of how estimates on µ depend on Ω. We begin
with the following observations.

First, in the estimates on a Whitney partition of unity on Ω described in (a)–
(b) of §2, the constants M and C may depend on the dimension n, but they are
otherwise independent of the open set Ω ⊂ Rn. (See [Wh], [T].) Consequently, if
v = Wf , the estimate (2.10) on |∇v(x)| involves a constant that is independent
of Ω. The same goes for the estimates in (2.36). Hence we can reformulate the
estimate (2.37) as

(4.2)

∫
Ω

|∇v(x)| dx ≤ Cωr,Ω(ε)∥f∥lipr(∂Ω) +
C

ε
m(Ω)∥f∥c0(∂Ω), ∀ ε ∈ (0, 1],

where

(4.3) ωr,Ω(ε) =

∫
{x∈Ω:δ(x)<ε}

δ(x)r−1 dx,

and C in (4.2) is independent of Ω. As a corollary, one has

(4.4) |⟨f, µ#⟩| ≤ Cωr,Ω(ε)∥f∥lipr(∂Ω) +
C

ε
m(Ω)∥f∥c0(∂Ω),

for f ∈ Lipr(∂Ω), given that (2.13) holds. Hence, by Proposition 2.9 plus (1.13),

(4.5) |⟨F, µ⟩| ≤ Cωr,Ω(ε)∥F∥lipr(Rn) +
C

ε
m(Ω)∥F∥c0(Rn),

given

(4.6) F ∈ Lipr(Rn), divF ∈ L1(Rn).

Here is one simple comparison of µ with µj . Given F satisfying (4.6),

(4.7)

⟨F, µ⟩ − ⟨F, µj⟩ =
∫
Ω

divF dx−
∫
Ωj

divF dx

=

∫
Ω\Ωj

divF dx−
∫

Ωj\Ω

divF dx.
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Hence

(4.8) |⟨F, µ⟩ − ⟨F, µj⟩| ≤
∫

Ω△Ωj

|divF | dx,

where

(4.9) Ω△Ωj = (Ω \ Ωj) ∪ (Ωj \ Ω).
This leads to the following convergence result.

Proposition 4.1. Let Ω and Ωj be bounded open sets in Rn. Assume F satisfies
(4.6). If

(4.10) m(Ω△Ωj) −→ 0,

as j → ∞, then ⟨F, µj⟩ → ⟨F, µ⟩.
Proof. If (4.10) holds, each subsequence of (j) has a further subsequence on which
χΩ△Ωj → 0,m-a.e. Then the dominated convergence theorem applies to the right
side of (4.8).

If the hypothesis on divF in (4.6) is strengthened to

(4.11) divF ∈ Lp(Rn), 1 < p ≤ ∞,

we get a rate of convergence:

(4.12) |⟨F, µ⟩ − ⟨F, µj⟩| ≤ ∥ divF∥Lp(Ω△Ωj) m(Ω△Ωj)
1/p′

.

We now aim for a convergence result valid for all F ∈ Lipr(Rn), without an
extra hypothesis on divF , such as given in (4.6). Istead, the domains Ω and Ωj

will satisfy an appropriate geometric hypothesis. As a first step in formulating the
result, we extend µ from a continuous linear functional on the space of F satisfying
(4.6) to a linear functional on Lipr(Rn), by

(4.13) ⟨F, µ⟩ = ⟨F |∂Ω, µ#⟩,
under the hypothesis that Ω satisfies (2.13). We also assume Ωj satisfy (2.13), and

similarly bring in µ#
j and extend µj . Our geometrical hypothesis on these domains

is that

(4.14) ωr,Ω(ε), ωr,Ωj
(ε) ≤ ω(ε), ∀ j,

where ω(ε) satisfies

(4.15) ω(ε) −→ 0, as ε → 0.

We also assume Ω,Ωj ⊂ BR(0), for all j, so m(Ω),m(Ωj) ≤ AnR
n. In such a case,

we have from (4.4) and its analogue for Ωj that

(4.16) |⟨F, µ− µj⟩| ≤ 2Cω(ε)∥F∥lipr(Rn) + 2
C

ε
AnR

n∥F∥c0(Rn),

for all F ∈ Lipr(Rn). Using these estimates, we can establish the following conver-
gence result.
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Proposition 4.2. Let Ω,Ωj be open sets in Rn, all contained in BR(0). Take
r ∈ (0, 1). Assume (2.13) holds, uniformly, and more precisely that (4.14) holds,
with ω(ε) satisfying (4.15). Furthermore, assume the estimate (4.10) on Ω△Ωj

holds. Then, as j → ∞,

(4.17) ⟨F, µj⟩ −→ ⟨F, µ⟩, ∀F ∈ Lipr(Rn).

Proof. We can assume F is supported in B2R(0). Apply the standard mollifier
argument to F , obtaining Fk = φk ∗ F ∈ C∞(Rn), satisfying

(4.18) ∥Fk∥Lipr ≤ ∥F∥Lipr , ∥Fk∥C0 ≤ ∥F∥C0 , ∥Fk − F∥C0 = δk → 0.

By Proposition 4.1, if (4.10) holds, then

(4.19) lim
j→∞

⟨Fk, µ− µj⟩ = 0, ∀ k.

Meanwhile, by (4.16), applied to F − Fk (plus (4.18)),

(4.20)
|⟨F − Fk, µ− µj⟩| ≤ 2Cω(ε)∥F − Fk∥Lipr + 2

C

ε
AnR

n∥F − Fk∥C0

≤ 4Cω(ε)∥F∥Lipr + 2
C

ε
AnR

nδk,

for all j. Thus,

(4.21) lim sup
j→∞

|⟨F, µ− µj⟩| ≤ 4ω(ε)∥F∥Lipr + 2
C

ε
AnR

nδk, ∀ k,

and for all ε ∈ (0, 1]. Taking k → ∞, we have

(4.22) lim sup
j→∞

|⟨F, µ− µj⟩| ≤ 4ω(ε)∥F∥Lipr , ∀ ε ∈ (0, 1],

and then taking ε → 0 yields (4.17).
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