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1. Introduction

These notes present material on harmonic functions on domains in Euclidean
space. They have some overlap with results presented in Chapters 3 and 5 of [T],
but are mostly complementary to those results. Topics treated here also have a bit
of overlap with results on harmonic functions given in [T2].

We start with a discussion of the Dirichlet problem. Let Ω ⊂ Rn be a nonempty
open set. We will assume Ω is connected. If Ω is also bounded, the Dirichlet
problem on Ω is the problem of solving

(1.1) ∆u = 0 on Ω, u
∣∣
∂Ω

= f, u ∈ C2(Ω), u ∈ C(Ω),

given f ∈ C(∂Ω). If Ω is not bounded, we instead consider

(1.2) ∆u = 0 on Ω, u
∣∣
∂Ω

= f, u ∈ C2(Ω), u ∈ C∗(Ω),

given

(1.3) f ∈ C∗(∂Ω).

Here, if K ⊂ Rn is a closed set,

(1.4) C∗(K) = {f ∈ C(K) : f(x) → 0 as x→ ∞}.

(If K is also bounded, C∗(K) = C(K).) Conditions for existence of solutions, and
study of their properties, is a big topic for Math 751. In this introduction, we take
care of the uniqueness issue.

Proposition 1.1. If (1.1), or more generally (1.2), has a solution, it is unique.

Proof. Suppose u and v both solve (1.2), with f as in (1.3). Consider w = u − v.
Then

(1.5) w
∣∣
∂Ω

= 0, w ∈ C∗(Ω),

and ∆w = 0 on Ω. Now is w satisfies (1.5) and is not identically zero, |w| must
assume a maximum at some point x0 ∈ Ω. But since ∆w = 0 on Ω, the strong
maximum principle implies w is constant. Then (1.5) forces the constant to be 0.

In §§2–3, we will treat two cases, Ω is a half-space in §2, and Ω is a ball in §3.
We look for explicit formulas yielding the solution to the Dirichlet problem in these
two cases. In §2 we take two distinct approaches to these formulas, and use the
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uniqueness result of Proposition 1.1 to show that these approaches yield equivalent
formulas. There results a nontrivial identity, namely, for y > 0,

(1.6) (2π)−n

∫
Rn

e−y|ξ|eix·ξ dξ =
2

An

y

(y2 + |x|2)(n+1)/2
,

established by different means in [T], Chapter 3, §5. Here An is the area of the unit
sphere Sn ⊂ Rn+1. (For n = 1, this is elementary, but not for n ≥ 2.)

In §3 we obtain a formula for the solution to (1.1) on the unit ball B ⊂ Rn, of
the form

(1.7) u(x) = Cn(1− |x|2)
∫

Sn−1

f(y)

|x− y|n
dS(y).

We have this for n = 2 by calculations involving Fourier series. Moving from this
to (1.7) for n ≥ 3 can be seen as motivated by the pattern in (1.6). We verify that
this works, with Cn = 1/An−1. One essential tool in this verification is the mean
value property for harmonic functions.

Sections 4–8 derive a number of results on harmonic functions on a domain
Ω ⊂ Rn, using tools from §§1 and 3 as major tools. In §4 we show that if u ∈ C2(Ω)
is harmonic, then actually u ∈ C∞(Ω). We also show that if uk are harmonic on Ω
and uk → u locally uniformly, then u is actually harmonic, and ∂αuk → ∂αu locally
uniformly, for all α. In §5, we recall the result that each harmonic function on Ω
has the mean value property (MVP), and complement this with the converse: each
continuous function on Ω with the MVP is actually smooth and harmonic. Sections
6–8 establish for harmonic functions on domains in Rn several results established
for holomorphic functions on planar domains in Math 656:

Schwarz reflection principle,

Liouville theorem,

Removable singularity theorem.

Section 9 treats Harnack inequalities, and Section 10 applies them to some further
Liouville theorems, which also have significant applications to complex function
theory.
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2. The Dirichlet problem on a half-space

Here we take

(2.1) Ω = Rn+1
+ = {(y, x) : y > 0, x ∈ Rn}.

Our problem is to solve

(2.2)
(∂2j +∆x)u(x, y) = 0, y > 0, x ∈ Rn,

u(0, x) = f(x),

such that

(2.3) u ∈ C2(Rn+1
+ ) ∩ C∗(R

n+1

+ ),

given

(2.4) f ∈ C∗(Rn).

We will establish the existence of a solution to (2.2) by finding a formula for u.
Our first approach uses Fourier analysis, taking

(2.5) u(y, x) = (2π)−n/2

∫
e−y|ξ|f̂(ξ)eix·ξ dξ.

For this, we modify the hypothesis (2.4) to

(2.6) f ∈ FL1(Rn),

i.e.,

(2.7) f ∈ S ′(Rn), f̂ ∈ L1(Rn).

Note that if f satisfies (2.7), then f = F∗f̂ . Now the Riemann-Lebesgue lemma
says

(2.8) F ,F∗ : L1(Rn) −→ C∗(Rn),

so

(2.9) FL1(Rn) ⊂ C∗(Rn).
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Given (2.6), we see from the dominated convergence theorem that

(2.10) e−y|ξ|f̂ ∈ C([0,∞)y, L
1(Rn)),

hence, by (2.8),

(2.11) u(y, ·) = F∗(e−y|ξ|f̂) ∈ C([0,∞)y, C∗(Rn)).

Furthermore,

(2.12)
sup
x

|u(y, x)| ≤ (2π)−n/2

∫
e−y|ξ||f̂(ξ)| dξ

→ 0, as y ↘ ∞,

also by the dominated convergence theorem. The two properties (2.11)–(2.12) imply

(2.13) u ∈ C∗(R
n+1

+ ).

In addition, we have, for y > 0,

(2.14)

∂yu(y, x) = −(2π)−n/2

∫
|ξ|e−y|ξ|f̂(ξ)eix·ξ dξ,

∂2yu(y, x) = (2π)−n/2

∫
|ξ|2e−y|ξ|f̂(ξ)eix·ξ dξ

= −∆xu(y, x),

so u, given by (2.5), satisfies the conditions (2.2)–(2.3), as long as f satisfies (2.6).
Let us denote the solution operator by PI,

(2.15) PI f(y, x) = (2π)−n/2

∫
e−y|ξ|f̂(ξ)eix·ξ dξ.

We have

(2.16) PI : FL1(Rn) −→ C∗(R
n+1

+ ) ∩ {u ∈ C2(Rn+1
+ ) : ∆u = 0}.

Now, since u = PI f is harmonic on Rn+1
+ , the strong maximum principle applies.

In light of (2.11)–(2.12), this implies

(2.17) sup
y,x

|PI f(y, x)| = sup
x

|f(x)|,

when f ∈ FL1(Rn). Using this, we can establish the following.
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Proposition 2.1. The map PI in (2.15)–(2.16) has a unique continuous linear
extension to

(2.18) PI : C∗(Rn) −→ C∗(R
n+1

+ ).

Proof. To see this, note that

(2.19) FL1(Rn) is dense in C∗(Rn).

Indeed, since S(Rn) ⊂ L1(Rn) and F ,F∗ : S(Rn) → S(Rn), we get (2.19) from

(2.20) S(Rn) ⊂ FL1(Rn) and S(Rn) is dense in C∗(Rn).

To proceed, given f ∈ C∗(Rn), produce fν ∈ FL1(Rn) such that sup |f −fν | ≤ 2−ν .

Then PI fν is well defined in C∗(R
n+1

+ ), and

(2.21) sup
Rn+1

+

|PI fν − PI fµ| ≤ sup
Rn

|fν − fµ|,

so (PI fν) is a Cauchy sequence in C∗(R
n+1

+ ). As such, it has a unique limit u in

C∗(R
n+1

+ ), and the extension takes PI f = u.

Remark. A little later we will see that PI f is harmonic on Rn+1
+ , for all f ∈

C∗(Rn).

As one attack on a further formula for PI f , we get from (2.5) that, if f, f̂ ∈
L1(Rn), i.e., f ∈ A(Rn), then

(2.22)

u(y, x) = (2π)−n

∫∫
f(z)e−y|ξ|ei(x−z)·ξ dz dξ

=

∫
f(z)P#

n (y, x− z) dz,

where

(2.23) P#
n (y, x) = (2π)−n

∫
e−y|ξ|eix·ξ dξ.

Here we have used the absolute summability of the double integral in (2.22) to
interchange order of integration (using Fubini’s theorem). We claim that P#

n (y, x)
is equal to

(2.24) Pn(y, x) = cn
y

(y2 + |x|2)(n+1)/2
,
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with

(2.25) cn = π−(n+1)/2Γ
(n+ 1

2

)
.

This is established in Chapter 3, §5 of [T]. The derivation is not at all straightfor-
ward, except in the case n = 1. It is straightforward to get from (2.23) that

(2.26) P#
1 (y, z) = P1(y, z) =

1

π

y

y2 + x2
.

For n ≥ 2, the derivation of (2.24) given there goes through a “subordination
identity,” whose proof in turn is somewhat sophisticated. Here, we provide another
route to the identity

(2.27) PI f(y, x) =

∫
f(z)Pn(y, x− z) dz,

with Pn(y, x) given by (2.24).
Even without looking at (2.24), we might expect the formula for Pn(y, x) to have

a structure somewhat parallel to (2.26). To get it, we note that the fundamental
solution to the Laplacian ∂2y +∆x on Rn+1 is equal to a constant times

(2.28) En(y, x) = (y2 + |x|2)(2−(n+1))/2 = (y2 + |x|2)(1−n)/2.

Now

(2.29) ∂yEn(y, x) = (1− n)y(y2 + |x|2)−(n+1)/2,

which is indeed a constant times the right side of (2.24). Note that since En is
harmonic on Rn+1 \ (0, 0), so is ∂yEn, so we deduce that the function Pn(y, x),
given by (2.24), is harmonic on Rn+1 \ (0, 0). Furthermore, for y > 0, this function
is an integrable function of x ∈ Rn. In fact, for y > 0, we have

(2.30)

Pn(y, x) = y−nQn

(x
y

)
,

Qn(x) =
cn

(1 + |x|2)(n+1)/2
.

Clearly

(2.31)

∫
Pn(y, x) dx =

∫
Qn(x) dx, ∀ y > 0.

We pick cn (below) so that this integral is equal to 1. We deduce from these
calculations that, if f ∈ C∗(Rn), then

(2.32) u(y, x) =

∫
f(z)Pn(y, x− z) dz
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is harmonic on Rn+1
+ , and

(2.33) u(y, x) −→ f(x), uniformly, as y ↘ 0.

Consequently we can readily verify that, if f ∈ C∗(Rn), then u, defined by (2.32),
with Pn given by (2.24), solves the Dirichlet problem (2.2)–(2.3). In light of the
uniqueness result, Proposition 1.1, we hence have

(2.34) PI f(y, x) =

∫
f(z)Pn(y, x− z) dz,

with Pn(y, x) given by (2.24).
It remains to compute cn so that

∫
Qn(x) dx = 1, and verify (2.25). We use

spherical polar coordinates on Rn to write

(2.35)

1

cn

∫
Qn(x) dx =

∫
(1 + |x|2)−α dx

(
α =

n+ 1

2

)
=

∫
Sn−1

∫ ∞

0

(1 + r2)−αrn−1 dr dS(ω)

= An−1

∫ ∞

0

(1 + r2)−αrn−1 dr

=
An−1

2

∫ ∞

0

(1 + t)−αtn/2−1 dt.

This last integral is given by Euler’s beta function, defined for x, y > 0 by

(2.36)

B(x, y) =

∫ ∞

0

(1 + u)−x−yux−1 du

=

∫ 1

0

sx−1(1− s)y−1 ds.

We have

(2.37)
1

cn

∫
Qn(x) dx =

An−1

2
B
(n
2
,
1

2

)
.

Now the classical evaluation of B(x, y) (cf. [T], Chapter 3, Appendix A) is

(2.38) B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Hence, recalling that An−1 = 2πn/2/Γ(n/2), we have

(2.39)
1

cn

∫
Qn(x) dx =

πn/2

Γ(n2 )

Γ(n2 )Γ(
1
2 )

Γ(n+1
2 )

=
π(n+1)/2

Γ(n+1
2 )

,

and we have (2.25).
In view of the harmonicity on Rn+1

+ of u, given by (2.36), for f ∈ C∗(Rn), we
have the following result, advertised in the remark below (2.21).

Corollary 2.2. The extension PI given in Proposition 2.1 has the property that

(2.40) PI : C∗(Rn) −→ C∗(R
n+1

+ ) ∩ {u ∈ C2(Rn+1
+ ) : ∆u = 0}.
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3. The Dirichlet problem on a ball

Let B ⊂ Rn denote the unit ball {x ∈ Rn : |x| < 1}. (For n = 2, we use the
notation D, for the unit disk.) The Dirichlet problem on B is

(3.1) ∆u = 0 on B, u
∣∣
∂B

= f,

for

(3.2) u ∈ C2(B) ∩ C(B), given f ∈ C(∂B).

In the course of studying Fourier series, we produced the formula

(3.3) u(reiθ) =
1− r2

2π

∫ π

−π

f(eiφ)

1− 2r cos(θ − φ) + r2
dφ,

when n = 2. If we switch notation to

(3.4) x = reiθ ∈ D, y = eiφ ∈ S1 = ∂D, ds(y) = dφ (arclength),

and note that

(3.5)

|x− y|2 = (reiθ − eiφ)(re−iθ − e−iφ)

= r2 + 1− r(ei(θ−φ) + e−i(θ−φ))

= 1− 2r cos(θ − φ) + r2,

we can rewrite (3.3) as

(3.6) u(x) =
1− |x|2

2π

∫
∂D

f(y)

|x− y|2
ds(y),

for the solution to (3.1)–(3.2), when n = 2 and B = D.
Moving from dimension 2 to dimension n ≥ 3, we are motivated to try a formula

for the solution to (3.1) of the form

(3.7) u(x) = Cn(1− |x|2)
∫

Sn−1

f(y)

|x− y|n
dS(y).

We will show that this works, and along the way calculate the constant Cn. First
we will show that, for each f ∈ C(Sn−1), the function u is harmonic on B. This is
a consequence of the following.
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Lemma 3.1. For a given y ∈ Sn−1 (i.e., |y| = 1), set

(3.8) v(x) = (1− |x|2)|x− y|−n.

Then v is harmonic on Rn \ {y}.

Proof. It suffices to show that w(x) = v(x + y) is harmonic on Rn \ {0}. Since
1− |x+ y|2 = −(2x · y + |x|2) provided |y| = 1, we have

(3.9) −w(x) = 2(y · x)|x|−n + |x|2−n.

We have already seen that |x|2−n is harmonic on Rn \ 0, as a consequence of the
formula for ∆ acting on radial functions. Now applying ∂/∂xj to a smooth harmonic
function on an open set in Rn gives another, so the following are harmonic on Rn\0:

(3.10) wj(x) =
∂

∂xj
|x|2−n = (2− n)xn|x|−n.

For n = 2, we take instead

(3.11)
∂

∂xj
log |x| = xj |x|−2.

Thus the first term on the right side of (3.9) is a linear combination of these func-
tions, so the lemma is proved.

To justify (3.7), it remains to show that if u is given by this formula, and Cn is
chosen correctly, then u = f on Sn−1. Note that if we write x = rω, ω ∈ Sn−1,
then (3.7) yields

(3.12) u(rω) =

∫
Sn−1

p(r, ω, y)f(y) dS(y),

where

(3.13) p(r, ω, y) = Cn(1− r2)|rω − y|−n.

It is clear that

(3.14) p(r, ω, y) −→ 0, as r ↗ 1, if ω ̸= y,

with uniform convergence on each compact subset of {(ω, y) ∈ Sn−1 × Sn−1 :
ω ̸= y}. We claim that

(3.15)

∫
Sn−1

p(r, ω, y) dS(y) = C ′
n,
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a constant independent of r and ω. The independence of ω follows by rotational
symmetry. Thus we can integrate with respect to ω. But Lemma 3.1 implies that

(3.16) p(r, x, y) = Cn(1− |rx|2)|rx− y|−n

is harmonic in x, for |x| < 1/r, so the mean value property for harmonic functions
gives

(3.17)
1

An−1

∫
Sn−1

p(r, ω, y) dS(ω) = Cn,

for all r < 1, y ∈ Sn−1. This implies (3.15), with C ′
n = CnAn−1.

By (3.15) and the fact that p(r, ω, y) is highly peaked near ω = y ∈ Sn−1 as
r ↗ 1, the standard approximate identity argument yields that the limit of (3.12)
as r ↗ 1 is equal to CnAn−1f(ω), for each f ∈ C(Sn−1). This justifies the formula
(3.7) and fixes the constant: Cn = 1/An−1. We record the conclusion.

Proposition 3.2. Given f ∈ C(Sn−1), the solution in C(B) ∩ C2(B) to (3.1) is
given by the Poisson integral formula

(3.18) u(x) =
1− |x|2

An−1

∫
Sn−1

f(y)

|x− y|n
dS(y).

Furthermore, this solution is unique.

Recall that uniqueness follows from Proposition 1.1.

Another way to write the conclusion (3.18) of Proposition 3.2 is

(3.19) u(rω) =
1− r2

An−1

∫
Sn−1

f(y)

(1− 2rω · y + r2)n/2
dS(y).

We define the Poisson integral operator

(3.20) PI : C(∂B) −→ C(B)

as PI f(x) = u(x), given by (3.18), for x ∈ B, and PI f(x) = f(x) for x ∈ ∂B.
Proposition 3.2 asserts that PI has this mapping property, and in addition

(3.21) PI : C(∂B) −→ {u ∈ C2(B) : ∆u = 0}.

Let us also record the fact that, for f ∈ C(∂B),

(3.22) sup
B

|PI f | = sup
∂B

|f |.
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4. Regularity theorems for harmonic functions

We have defined the Poisson integral operator PI on C(∂B) in (3.18)–(3.21). It
is useful to note that one can apply an arbitrary x derivative ∂αx to the right side
of (3.18), and supplement (3.21) with the result

(4.1) PI : C(∂Ω) −→ C∞(B).

We also have, for each multiindex α and r < 1,

(4.1A) sup
|x|≤r

|∂αx PI f(x)| ≤ Cα,r sup
∂B

|f |.

Translation and dilation of variables allow us to work on a general ball BR(p), of
radius R, centered at p ∈ Rn, obtaining solution operators

(4.2)
PIp,R : C(∂BR(p)) −→ C(BR(p)) ∩ C∞(BR(p)),

u = PIp,R f =⇒ ∆u = 0 on BR(p), u
∣∣
∂BR(p)

= f,

and, by Proposition 1.1, PIp,R f is the unique solution to such a Dirichlet problem.
These observations lead to the following regularity theorem.

Proposition 4.1. If Ω ⊂ Rn is open and

(4.3) u ∈ C2(Ω), ∆u = 0 on Ω,

then

(4.4) u ∈ C∞(Ω).

Proof. Take p ∈ Ω and pick R > 0 such that BR(p) ⊂ Ω. It suffices to show that,
for each such p,R,

(4.5) u ∈ C∞(BR(p)).

Indeed, the observations made above imply that, on BR(p),

(4.6) u = PIp,R f, f = u
∣∣
∂BR(p)

,

and the conclusion (4.5) follows from (4.2).

Our next result establishes regularity for a locally uniform limit of a sequence of
harmonic functions.
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Proposition 4.2. Let Ω ⊂ Rn be open. Assume

(4.7) uk ∈ C∞(Ω), ∆uk = 0, uk → u, locally uniformly on Ω.

Then

(4.8) u ∈ C∞(Ω), ∆u = 0,

and, for all α,

(4.9) ∂αx uk −→ ∂αx u, locally uniformly on Ω.

Proof. The assumption uk → u locally uniformly on Ω implies u ∈ C(Ω). To

proceed, pick p ∈ Ω, and R > 0 such that BR(p) ⊂ Ω; hence uk → u uniformly on

BR(p). Set

(4.10) fk = uk
∣∣
∂BR(p)

, f = u
∣∣
∂BR(p)

.

Hence fk → f uniformly on ∂BR(p). Parallel to (3.22), we have

(4.11) sup
BR(p)

|PIp,R(fk − f)| = sup
∂BR(p)

|fk − f |,

i.e.,

(4.12) sup
BR(p)

|uk − PIp,R f | = sup
∂BR(p)

|fk − f |,

and taking k → ∞ yields

(4.13) u = PIp,R f, on BR(p).

Since this holds for arbitrary p ∈ Ω, this gives (4.8). The result (4.9) follows from
the fact that, parallel to (4.1A), for r < R,

(4.14) sup
|x−p|≤r

|∂αx PIp,R(fk − f)| ≤ Cα,r sup
∂BR(p)

|fk − f |.
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5. Converse of the mean value property

Previous sections have made use of the fact that harmonic functions have the
following mean value property.

Proposition 5.1. Let Ω ⊂ Rn be open, u ∈ C2(Ω) harmonic. Assume BR(x0) ⊂
Ω. Then

(5.1) Avg∂BR(x0) u = u(x0),

and

(5.2) AvgBR(x0) u = u(x0).

Just for grins, we recall the proof given in class. Several other proofs are given
in [T] and [T2]. To begin, we define ψ on [0, R] by

(5.3) ψ(r) =

∫
Sn−1

u(x0 + rω) dS(ω).

Then

(5.4)

ψ′(r) =

∫
Sn−1

ω · ∇u(x0 + rω) dS(ω)

= rn−1

∫
∂Br(x0)

∂νu(x) dS(x).

We use the Green theorem, which implies that, for any smoothly bounded O ⊂ Ω,

(5.5)

∫
∂O

∂νu dS = 0, if ∆u = 0 on Ω.

Taking O = Br(x0), we deduce that

(5.6) ψ′(r) = 0, ∀ r ∈ (0, R],

hence ψ(0) = ψ(r), for all r ∈ (0, R]. This gives (5.1). Furthermore,

(5.7)

∫
BR(x0)

u(x) dx =

∫ R

0

∫
Sn−1

u(x0 + rω) dS(ω) rn−1 dr

=

∫ R

0

ψ(r)rn−1 dr

= u(x0)An−1

∫ R

0

rn−1 dr

= V (BR)u(x0),
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and we have (5.2).

This result motivates the following concept.

Definition. A function u ∈ C(Ω) is said to satisfy the mean value property (MVP)

provided (5.2) holds whenever BR(x0) ⊂ Ω.

The proof of the strong maximum principle for harmonic functions works without
change in the setting of continuous functions satisfying the MVP:

Proposition 5.2. Let Ω ⊂ Rn be open and connected. Assume u ∈ C(Ω) satisfies
the MVP, and is real valued. If x0 ∈ Ω and u has a maximum at x0, the u is
constant.

Proof. Let X = {x ∈ Ω : u(x) = umax}. By hypothesis, x0 ∈ X. Clearly X is a

closed subset of Ω. Now, if x1 ∈ X and Br(x1) ⊂ Ω, we have

(5.5) AvgBr(x1) u = u(x1) = umax,

hence Br(x1) ⊂ X, so X is open. If Ω is connected, this forces X = Ω.

We have the following immediate consequence.

Corollary 5.3. Let Ω ⊂ Rn be bounded and open, u ∈ C(Ω). If u satisfies the
MVP on Ω, then

(5.11) sup
Ω

u = sup
∂Ω

u,

and

(5.12) sup
Ω

|u| = sup
∂Ω

|u|.

Here is our advertised converse to the mean value property.

Proposition 5.4. Let Ω ⊂ Rn be open, u ∈ C(Ω). Assume u satisfies the MVP.
Then u ∈ C∞(Ω) and ∆u = 0.

Proof. It suffices to show that if the ball B ⊂ Ω, then u is harmonic on B. To this
end, set

(5.13) v = PI f, f = u
∣∣
∂B
.

Then v ∈ C∞(B) and ∆v = 0 on B. Since both u and v satisfy the MVP on B, so
does w = u− v. Also w|∂B = 0, so Corollary 5.3 implies w = 0 on B, i.e., u = v on
B, so u is harmonic on B.
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6. Schwarz reflection principle

Let Ω ⊂ Rn be a connected open set with the property that

(6.1) x ∈ Ω =⇒ ρ(x) ∈ Ω,

where

(6.2) ρ(x1, . . . , xn−1, xn) = (x1, . . . , xn−1,−xn).

Set

(6.3) Ω+ = {x ∈ Ω : xn > 0}, Ω− = {x ∈ Ω : xn < 0}, Σ = {x ∈ Ω : xn = 0}.

The Schwarz reflection principle states the following.

Proposition 6.1. Assume u ∈ C(Ω+ ∪ Σ),

(6.4) u is harmonic on Ω+, and u = 0 on Σ.

Define v on Ω by

(6.5)
v(x) = u(x), for x ∈ Ω+ ∪ Σ,

−u(ρ(x)), for x ∈ Ω−.

Then v is harmonic on Ω.

Proof. Clearly v ∈ C(Ω), and v is harmonic on Ω+ and on Ω−. It suffices to show
that, if

(6.6) p ∈ Σ, Br(p) ⊂ Ω,

then v is harmonic on Br(p). To this end, set

(6.7) f = v
∣∣
∂Br(p)

, w = PIp,r f,

so

(6.8) w ∈ C(Br(p)), w
∣∣
∂Br(p)

= f, w is harmonic on Br(p).

Now ρ : Br(p) → Br(p), and ρ : ∂Br(p) → ∂Br(p), and we have

(6.9) f ◦ ρ = −f.
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It follows by symmetry that

(6.10) w ◦ ρ = −w.

Also, of course, v ◦ ρ = −v. Therefore, if we set

(6.11) O± = Br(p) ∩ Ω±,

we have

(6.12) v − w ∈ C(O+), v − w = 0 on ∂O+,

and v − w is harmonic on O+. It follows from Proposition 1.1 that

(6.13) v = w on O+,

and then, by (6.10) and its analogue for v,

(6.14) v = w on O−, hence on Br(p).

Thus v is harmonic on Br(p), and Proposition 6.1 is proved.
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7. Liouville theorems

Here we establish the following form of Liouville’s theorem.

Proposition 7.1. If u ∈ C2(Rn) is harmonic on all of Rn and bounded, then u is
constant.

Proof. Pick any two points p, q ∈ Rn. We have, for each r > 0,

(7.1) u(p)− u(q) =
1

V (Br(0))

( ∫
Br(p)

u(x) dx−
∫

Br(q)

u(x) dx
)
.

Note that V (Br(0)) = Cnr
n. Thus

(7.2) |u(p)− u(q)| ≤ Cn

rn

∫
∆(p,q,r)

|u(x)| dx,

where

(7.3) ∆(p, q, r) = Br(p)△Br(q) =
(
Br(p) \Br(q)

)
∪
(
Br(q) \Br(p)

)
.

Now, if a = |p− q|, then

∆(p, q, r) ⊂ Br+a(p) \Br−a(p),

hence

(7.4) V (∆(p, q, r)) ≤ C(p, q)rn−1, for r ≥ a.

It follows that, if |u(x)| ≤M for all x ∈ Rn, then

(7.5) |u(p)− u(q)| ≤MCnC(p, q)r
−1, ∀ r ≥ a.

Taking r → ∞, we obtain u(p)− u(q) = 0, so u is constant.

Alternative approach

Another approach to Liouville’s theorem involves estimating ∇u when u is har-
monic. To start, suppose

(7.6) u ∈ C(B), harmonic on the interior,
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with B = B1(0). We take the Poisson integral formula (3.18) and differentiate.
Using

(7.7) ∇x|x− y|−n = −n x− y

|x− y|n+2
,

and evaluating the resulting integral at x = 0, yields

(7.8) ∇u(0) = n

An−1

∫
Sn−1

u(y)y dS(y).

Hence

(7.9)
|∇u(0)| ≤ n

An−1

∫
Sn−1

|u(y)| dS(y)

= n Avg∂B |u|.

Translating and dilating coordinates, we have the following.

Proposition 7.2. Let u ∈ C(BR(p)) be harmonic on the interior. Then

(7.10) |∇u(p)| ≤ n

R
Avg∂BR(p) |u|.

We now give the

Second proof of Proposition 7.1. If u is harmonic on Rn and |u(x)| ≤ M for
all x, then (7.10) gives, for each p ∈ Rn, R > 0,

(7.11) |∇u(p)| ≤ n

R
sup

|x−p|=R

|u| ≤ nM

R
.

Taking R→ ∞ gives

(7.12) ∇u(p) = 0, ∀ p,

which implies u is constant.

Going further, suppose that, in Proposition 7.2, u is also ≥ 0 on BR(p). Then

Avg∂BR(p) |u| = Avg∂BR(p) u = u(p),

so we have the following.
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Proposition 7.3. Let u ∈ C(BR(p)) be harmonic on the interior and ≥ 0. Then

(7.13) |∇u(p)| ≤ n

R
u(p).

With this in hand, we have the following sharper Liouville theorem.

Proposition 7.4. If u ∈ C2(Rn) is harmonic and ≥ 0 on all of Rn, then u is
constant.

Proof. We see that (7.13) holds for each p ∈ Rn and each R > 0. Taking R → ∞
again gives (7.12), so u is constant.

Corollary 7.5. Each function that is harmonic on all Rn and bounded from below
by some a ∈ R is constant.

To obtain other extensions of Liouville’s theorem, we return to the setting of
(7.6) and derive estimates on higher derivatives of u. Recalling the Poison integral
formula,

(7.14) u(x) =
1

An−1

∫
Sn−1

Pn(x, y)u(y) dS(y), Pn(x, y) =
1− |x|2

|x− y|n
,

we have, for y ∈ Sn−1,

(7.15) ∂αxPn(0, y) = pnα(y), pnα ∈ C∞(Sn−1),

and

(7.16) ∂αu(0) =
1

An−1

∫
Sn−1

pnα(y)u(y) dS(y),

so

(7.17) |∂αu(0)| ≤ Kα Avg∂B |u|, Kα = sup
|y|=1

|pnα(y)|.

Translating and dilating coordinates, we have the following.

Proposition 7.6. Let u ∈ C(BR(p)) be harmonic on the interior. Then

(7.18) |∂αu(p)| ≤ Kα

R|α| Avg∂BR(p) |u|.

This estimate enables us to establish the following extension of Liouville’s theo-
rem.
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Proposition 7.7. Let u be harmonic on Rn, and assume there exist C0, C1, and
k such that

(7.19) |u(x)| ≤ C0 + C1|x|k, ∀x ∈ Rn.

Then u(x) is a polynomial in x, of degree ≤ k.

Proof. For each x ∈ Rn, R > 0, (7.18) applies. The estimate (7.19) implies

(7.20) sup
|x−p|≤R

|u(x)| ≤ C0 + C1(R+ |p|)k,

and then (7.18) implies

(7.21) |∂αu(p)| ≤ Kα

Rk+1

[
C0 + C1(R+ |p|)k

]
, if |α| = k + 1.

Taking R→ ∞ yields

(7.22) ∂αu(p) = 0, ∀ p ∈ Rn, |α| = k + 1,

which in turn implies u(x) is a polynomial of degree ≤ k.
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8. Removable singularity theorem

The following is a removable singularity theorem for harmonic functions. It
extends in several ways the familiar removable singularity theorem for holomorphic
functions on planar domains. Take B = B1(0) ⊂ Rn.

Proposition 8.1. Assume u ∈ C2(B \ 0) ∩ C(B \ 0) is harmonic on B \ 0 and
bounded, i.e., there exists M <∞ such that

(8.1) |u(x)| ≤M, ∀x ∈ B \ 0.

Then u can be extended (in a unique fashion) to be harmonic on all of B.

Proof. Let f = u|∂B and set

(8.2) v = PI f, v ∈ C(B) ∩ C2(B).

We claim that v = u on B \ 0. To see this, consider w = u− v on B \ 0. we have

w ∈ C(B \ 0) ∩ C2(B \ 0), ∆w = 0 on B \ 0, w
∣∣
∂B

= 0.

Also |w| ≤ 2M on B \ 0. We claim w ≡ 0.
To show this, we can assume w is real valued. Now bring in the function

H ∈ C(B \ 0) ∩ C2(B \ 0),

given by

(8.3)

H(x) = |x|2−n − 1, if n ≥ 3,

log
1

|x|
, if n = 2.

We see that H is harmonic on B\0, H ≥ 0 on B\0, H = 0 on ∂B, and H(x) → +∞
as x→ 0. Hence, for each ε > 0, there exists δ0 > 0 such that

(8.4) εH − w ≥ 0 on ∂Bδ(0), ∀ δ ∈ (0, δ0].

The maximum principle implies

(8.5) εH − w ≥ 0,

on B \Bδ(0). Taking δ ↘ 0 yields (8.5) on B \ 0. Then taking ε↘ 0 yields

(8.6) w ≤ 0 on B \ 0.

A similar argument gives w ≥ 0 on B \ 0, hence w ≡ 0, and the proof is complete.
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9. Harnack estimates

Harnack inequalities deal with harmonic functions that satisfy one-sided bounds.
To start, assume u ∈ C(B) is harmonic on B = B1(0) and ≥ 0. Thus u|∂B = f ≥ 0
and u is given by (3.18). Hence, for x ∈ B,

(9.1)

u(x) ≥ (1− |x|2) · min
|y|=1

|x− y|−n Avg∂B f

=
1− |x|2

(1 + |x|)n
u(0),

so

(9.2) u(x) ≥ 1− |x|
(1 + |x|)n−1

u(0), ∀x ∈ B.

If we omit the hypothesis that u is continuous on B, and apply this reasoning to
ub(x) = u(bx) and let b ↗ 1, we obtain (9.2) for this more general class. Going
further, we can apply translations and dilations, and obtain the following result,
known as Harnack’s inequality.

Proposition 9.1. Assume u is harmonic on BR(x0) and ≥ 0 there. Then, for all
x1 ∈ BR(x0),

(9.3) u(x0) ≥
1−R−1|x1 − x0|

(1 +R−1|x1 − x0|)n−1
u(x0).

It is useful to complement Harnack’s lower bound with an upper bound. Again,
we assume u ∈ C(B) is harmonic on B and ≥ 0, and complement (9.1) with

(9.4)

u(x) ≤ (1− |x|2) · max
|y|=1

|x− y|−n Avg∂B f

=
1− |x|2

(1− |x|)n
u(0),

so

(9.5) u(x) ≤ 1 + |x|
(1− |x|)n−1

u(0), ∀x ∈ B.

We can remove the hypothesis of continuity on B by the dilation argument used
above. Further translation and dilation gives the following complement to Propo-
sition 9.1.
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Proposition 9.2. Assume u is harmonic on BR(x0) and ≥ 0 there. Then, for all
x1 ∈ BR(x0),

(9.6) u(x1) ≤
1 +R−1|x1 − x0|

(1−R−1|x1 − x0|)n−1
u(x0).

As a first illustration of the use of Harnack’s estimate, we give a second proof of
the Liouville theorem, Proposition 7.4, whose statement we recall.

Proposition 9.3. Assume u ∈ C2(Rn) is harmonic and ≥ 0 on all of Rn. Then
u is constant.

Proof. Given x0, x1 ∈ Rn, we can take R > |x1 − x0| and apply (9.3). Taking
R→ ∞ then gives

u(x1) ≥ u(x0), ∀x0, x1 ∈ Rn.

Reversing roles gives u(x0) ≥ u(x1), so u is constant.

We will proceed in §10 with a further extension of Liouville’s theorem.
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10. Further Liouville theorems

Here we show how the Harnack estimates lead to further versions of Liouville’s
theorem. The following will provide a key step.

Proposition 10.1. For each n ≥ 2, there exist constants Kn ∈ (0,∞) with the
following property. Let u be harmonic on BR(0) ⊂ Rn. Assume

(10.1) u(0) = 0, u(x) ≤M on BR(0).

Then

(10.2) u(x) ≥ −KnM on BR/2(0).

Proof. Apply Proposition 9.3, with M replaced by M − u, which is ≥ 0 on BR(0),
and equal to M at x0 = 0. We see that

(10.3) |x1| =
R

2
=⇒M − u(x1) ≤

3

2
2n−1M,

so (10.2) holds with Kn = 3 · 2n−2 − 1.

As a first application of Proposition 10.1, we present a

Third proof of Proposition 7.4. If v ≥ 0 is harmonic on all of Rn, then
u(x) = v(0) − v(x) satisfies (10.1), with M = v(0), for all R, so (10.2) implies
u(x) ≥ −Knv(0) for all x ∈ Rn. Hence u is harmonic and bounded on Rn, so the
fact that u is constant follows from the first Liouville theorem, Proposition 7.1.

The following result leads to an important sharpening of Proposition 7.7

Proposition 10.2. Assume that u is harmonic on Rn and that there exist C0, C1 ∈
(0,∞) and k ∈ N such that

(10.4) u(x) ≤ C0 + C1|x|k, ∀x ∈ Rn.

Then there exist C2, C3 ∈ (0,∞) such that

(10.5) u(x) ≥ −C2 − C3|x|k, ∀x ∈ Rn.

Proof. Apply Proposition 10.1 to

u(x)− u(0), M = C0 + |u(0)|+ C1R
k.

Putting together Propositions 10.2 and 7.7, we have the following.
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Corollary 10.3. If u is harmonic on Rn and satisfies (10.4), then u(x) is a poly-
nomial in x, of degree ≤ k.

Here is a basic application of Corollary 10.3 to complex function theory.

Proposition 10.4. Let f : C → C be holomorphic. Assume there is a bound

(10.6) |ef(z)| ≤ CeA|z|, ∀ z ∈ C.

Then f(z) has the form

(10.7) f(z) = az + b.

Proof. The bound (10.6) implies

(10.8) Re f(z) ≤ A|z|+A′.

Hence, by Corollary 10.3,

(10.9) Re f(z) = αx+ βy + γ,

with z = x+ iy. Consequently the harmonic conjugate v(x, y) of u(x, y) = Re f(z)
is also a first-order polynomial in x, y. This yields (10.7).
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