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Abstract

We study a class of Toeplitz operators with discontinuous sym-
bols, stimulated by classical work of R. Douglas and H. Widom. We
extend the notion of a locally sectorial symbol from the setting of
scalar Toeplitz operators on the circle to systems, acting on sections
of vector bundles over a class of multidimensional domains with mini-
mal smoothness, known as uniformly rectifiable domains, and establish
Fredholm properties in this expanded setting.

1 Introduction

Let P be the orthogonal projection on L2(T) given by

P
( ∞∑

k=−∞
ake

ikθ
)

=
∞∑

k=0

ake
ikθ, (1.1)

where T = R/2πZ. If we have a complex-valued f ∈ L∞(T), then the
Toeplitz operator Tf can be defined on L2(T) by

Tfu = PfPu + (I − P )u. (1.2)

Let us assume f is bounded away from 0, so

f, f−1 ∈ L∞(T). (1.3)

The most basic result in the theory is that if in addition f is continuous,
then Tf is Fredholm on L2(T1), and its index is the negative of the winding
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number of f : T→ C \ 0. In [7] it was shown that Tf is Fredholm whenever
f satisfies (1.3) and is locally sectorial, i.e., has the property that for each
θ0 ∈ T, there is a neighborhood of θ0 on which arg f varies by less than π.
Furthermore, the notion of winding number extends to this setting, to yield
ι(f) ∈ Z, and

IndexTf = −ι(f). (1.4)

Here we will discuss some generalizations of this result. These include
both Toeplitz operators acting on functions on T, for broader classes of sym-
bols f , discussed in §3, and classes of Toeplitz operators acting on functions
on ∂Ω, when Ω is a bounded, uniformly rectifiable domain in Rn (or in an
n-dimensional manifold), discussed in §4.

Before tackling these extensions, we devote §2 to a discussion of the proof
of the Douglas-Widom result. The approach taken here is adapted from [7],
but there are some differences, which will suggest ways to extend the result.
As in [7], we start with a factorization

f(θ) = F (θ)G(θ), θ ∈ T. (1.5)

Here, the factors satisfy

F ∈ C(T), F (θ) 6= 0, ReG(θ) ≥ b > 0, ∀ θ ∈ T. (1.6)

This is a slightly different specification from that of [7], and it allows us to
use an endgame that brings in the Lax-Milgram theorem, in place of results
of [3].

As indicated above, in §3 we treat further classes of Toeplitz operators
on T. For one, we take f ∈ L∞(T), having a factorization (1.5), with G as
in (1.6) but the hypothesis on F generalized to

F ∈ L∞ ∩ vmo(T), F−1 ∈ L∞(T). (1.7)

This hypothesis actually implies F−1 ∈ L∞∩vmo(T). Here vmo(T) denotes
the space of functions with vanishing mean oscillation, a class introduced by
[13] and widely studied since. Applicability of the more general hypothesis
(1.7) to Fredholm properties of Tf makes use of commutator estimates of
[4], whose ramifications have also had wide use in analysis.

Another extension has f(θ) taking values in the space M(`,C) of complex
` × ` matrices, with u in (1.2) taking values in C`. In this situation, our
condition on f is that it has a factorization (1.5) with

F ∈ C(T, G`(`,C)), G(θ) + G(θ)∗ ≥ bI > 0, ∀ θ ∈ T. (1.8)
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We can further generalize the hypothesis on F , as in (1.7), i.e., F, F−1 ∈
L∞ ∩ vmo(T). In such a case, index computations are aided by results of
[2].

A third extension discussed in §3 is that, given such f , there exist p0 ∈
(1, 2) and p1 ∈ (2,∞) such that Tf is Fredholm on Lp(T) for p ∈ (p0, p1).

The space T is naturally identified with the boundary ∂D of the unit disk
D in C, with P representing the orthogonal projection of L2(∂D) onto the
subspace of L2(∂D) consisting of boundary values of functions holomorphic
on D. Natural extensions have been pursued, with D replaced by more
general bounded open sets Ω in C. These extensions become quite nontrivial
when ∂Ω is not smooth. Of particular note is the work of [11], extending the
analysis of P to Szegö projectors on functions on ∂Ω, for various classes of
bounded domains Ω ⊂ C with finite perimeter, such as Lipschitz domains.
Our treatment here of Toeplitz operators associated to such domains will be
folded into §4.

In §4 we deal with a class of Toeplitz operators introduced in [12], and
extend the Fredholm theory of such operators in a fashion parallel to that
indicated above. In this setting, we let Ω be a bounded, uniformly rectifiable
domain (UR domain) in Rn, or more generally a UR domain in a compact, n-
dimensional Riemannian manifold M . (See §4 for a definition of the class of
UR domains.) We assume we have a first-order elliptic differential operator
D : C∞(M, E0) → C∞(M, E1), acting on sections of a vector bundle E0 → M .
We consider the space

Hp(Ω, D) = {u ∈ C1(Ω, E0) : Du = 0, Nu ∈ Lp(∂Ω), u
∣∣
∂Ω

exists a.e.},
(1.9)

for p ∈ (1,∞). Here Nu denotes the non-tangential maximal function.
Under a mild unique continuation hypothesis on D (satisfied, for example,
when D is of Dirac type, or when D has analytic coefficients), the trace map
τ(u) = u|∂Ω is injective and yields an isomorphism:

τ : Hp(Ω, D) ≈−→ Hp(∂Ω, D), (1.10)

onto a closed linear subspaceHp(∂Ω, D) of Lp(∂Ω, E0). As described in more
detail in §4, the work [12] produced a projection

P : Lp(∂Ω, E0) −→ Hp(∂Ω, D), (1.11)

and studied Toeplitz operators Tf , of the form (1.2), with P replaced by P,
given u ∈ Lp(∂Ω, E0 ⊗ C`), with f ∈ L∞(∂Ω,M(`,C)), obtaining Fredholm
properties for

f ∈ C(∂Ω, G`(`,C)), (1.12)
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and more generally for

f, f−1 ∈ L∞ ∩ vmo(∂Ω,M(`,C)). (1.13)

The paper [12] also looked at the orthogonal projection

S : L2(∂Ω, E0) −→ H2(∂Ω, D), (1.14)

and associated Toeplitz operators, which we denote Tf . In case Ω = D ⊂ C
and D = ∂/∂z, the operators P and S coincide (with P in (1.1)), but in
general they differ. More on their relation is discussed in §4. As shown in
§4, Fredholm results on such Toeplitz operators extend to symbols f , having
a factorization (1.5) with

F ∈ C(∂Ω, G`(`,C)), G(x) + G(x)∗ ≥ bI > 0, ∀x ∈ ∂Ω, (1.15)

and, more generally,

F, F−1 ∈ L∞ ∩ vmo(∂Ω,M(`,C)). (1.16)

In Theorem 4.1 we obtain such Fredholm results for Tf under the additional
hypothesis that

P − P∗ is compact on L2(∂Ω). (1.17)

In Theorem 4.4 we obtain such Fredholm results for Tf (with no need for
(1.17)). The hypothesis (1.17) holds, for example, when D is of Dirac type
and Ω is a regular SKT domain. (See §4 for a definition.) Theorem 4.4
holds for general UR domains. We end §4 with the observation that f ∈
L∞(∂Ω,M(`,C)) has a factorization f = FG satisfying (1.15) provided it
satisfies the following version of a local sectorial condition: namely, for each
y ∈ ∂Ω there exist a neighborhood Oy of y in ∂Ω and a matrix Cy ∈ M(`,C)
such that

ReCyf(x) ≥ bI > 0, ∀x ∈ Oy, (1.18)

where ReT = (1/2)(T + T ∗).
In §5 we briefly discuss how to extend Theorems 4.1 and 4.4, to treat

f ∈ L∞(∂Ω,M(`,C)) having a factorization

f(x) = F1(x)G(x)F2(x), (1.19)

with Fj , F
−1
j ∈ L∞ ∩ vmo(∂Ω,M(`,C)) and G(x) as in (1.15). We also

discuss a variant of (1.18) as a sufficient condition for (1.19).

4



2 The Douglas-Widom theorem

Let f ∈ L∞(T) be a complex-valued function satisfying (1.3), having the
local sectorial property, defined in §1. In preparation for deriving the Fred-
holm and index properties of Tf established in [7], we begin by discussing
further the structure of such a locally sectorial symbol.

Since T is compact, we can cover it with a finite number of open subsets
Ij , 1 ≤ j ≤ k, and pick δ > 0 such that, on each Ij , arg f varies by an
amount that is ≤ π − δ. It then follows that there exist b > 0 and cj ∈ C
such that

Re cjf(θ) ≥ b > 0, for θ ∈ Ij . (2.1)

Now let {ψj : 1 ≤ j ≤ k} be a continuous partition of unity on T subordinate
to the cover {Ij : 1 ≤ j ≤ k}, so suppψj ⊂ Ij and 0 ≤ ψj ≤ 1. Then set

Φ(θ) =
k∑

j=1

cjψj(θ). (2.2)

We have Φ ∈ C(T) and

ReΦ(θ)f(θ) ≥ b > 0, ∀ θ ∈ T. (2.3)

It follows that Φ(θ) is bounded away from 0 so, with

F = Φ−1 ∈ C(T), G = Φf, (2.4)

we have the following.

Lemma 2.1 If f ∈ L∞(T) is a complex-valued function satisfying (1.3) and
f is locally sectorial, then f has a factorization

f(θ) = F (θ)G(θ), θ ∈ T, (2.5)

with
F, F−1 ∈ C(T), Re G(θ) ≥ b > 0, ∀ θ ∈ T. (2.6)

Fredholm properties of TFG follow from the results given in the next two
lemmas.

Lemma 2.2 Given F ∈ C(T), G ∈ L∞(T),

TFG − TF TG is compact on L2(T1). (2.7)
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Proof. We have
TFG − TF TG = PFGP − PFPGP

= P [P, F ]GP,
(2.8)

and, as is well known, [P, F ] is compact on L2(T) whenever F is continuous.
Of course, the other factors on the last line of (2.8) are bounded on L2(T).
¤

Lemma 2.3 Given G ∈ L∞(T), if for some b > 0,

ReG(θ) ≥ b, ∀ θ ∈ T, (2.9)

then TG is invertible on L2(T).

Proof. For u ∈ L2(T),

Re(TGu, u)L2 = Re(GPu, Pu)L2 + ‖(I − P )u‖2
L2

≥ b‖Pu‖2
L2 + ‖(I − P )u‖2

L2 ,
(2.10)

so the invertibility of TG on L2(T) follows from the Lax-Milgram theorem.
¤

In the situation arising from (2.5), we have from the standard theory of
Toeplitz operators with continuous symbol that TF is Fredholm, of index
−νF , where

νF = winding number of F : T→ C \ 0. (2.11)

and TG is invertible on L2(T), so TF TG is Fredholm on L2(T1), of index
−νF . Given (2.7), we have the following conclusion, due to [7].

Theorem 2.4 If f ∈ L∞(T1) is a complex-valued function satisfying (1.3)
and if f is locally sectorial, then

Tf is Fredholm, of index −νF , on L2(T), (2.12)

with νF as in (2.11).

3 One-dimensional extensions

In the introduction we mentioned three extensions of the results on Toeplitz
operators discussed in §2. Here we treat all three simultaneously. We take
P as in (1.1), acting on functions with values in C`, and define Tf as in
(1.2), for f ∈ L∞(T,M(`,C)).
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Theorem 3.1 Assume f has the factorization f = FG, with

F, F−1 ∈ L∞ ∩ vmo(T,M(`,C)),
G(θ) + G(θ)∗ ≥ bI > 0, ∀ θ ∈ T.

(3.1)

Then there exist p0 ∈ (1, 2) and p1 ∈ (2,∞) such that

Tf : Lp(T,C`) −→ Lp(T,C`) is Fredholm, for p ∈ (p0, p1), (3.2)

and
IndexTf = IndexTF . (3.3)

The proof starts with the following extension of Lemma 2.2.

Lemma 3.2 Given F ∈ L∞ ∩ vmo(T, M(`,C)) and G ∈ L∞(T,M(`,C)),

TFG − TF TG is compact on Lp(T,C`), ∀ p ∈ (1,∞). (3.4)

Proof. As in (2.8), we have

TFG − TF TG = P [P, F ]GP. (3.5)

All the factors on the right side are bounded on Lp(T,C`) for each p ∈
(1,∞). It is a consequence of commutator estimates of [4] that, if F ∈
L∞ ∩ vmo(T,M(`,C)), then

[P, F ] is compact on Lp(T,C`), ∀ p ∈ (1,∞). (3.6)

Such commutator estimates in a more general setting, which will be directly
applicable in §4, are given in §2.4 of [8]. ¤

The next lemma helps to finish the proof of Theorem 3.1.

Lemma 3.3 In the setting of Theorem 3.1, there exist p0 ∈ (1, 2) and p1 ∈
(2,∞) such that

TG is invertible on Lp(T,C`), for p ∈ (p0, p1). (3.7)

Proof. We start with p = 2. Parallel to (2.10), for u ∈ L2(T,C`),

Re(TGu, u)L2 = Re(GPu, Pu)L2 + ‖(I − P )u‖2
L2

≥ b

2
‖Pu‖2

L2 + ‖(I − P )u‖2
L2 ,

(3.8)
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so the invertibility of TG on L2(T,C`) follows from the Lax-Milgram theo-
rem. The invertibility on Lp(T,C`) then follows from an extrapolation result
of [15]. ¤

The last ingredient in the proof of Theorem 3.1 is the fact that, when F
satisfies (3.1), then

TF is Fredholm on Lp(T,C`), ∀ p ∈ (1,∞). (3.9)

In fact, Lemma 3.2 implies that, for all p ∈ (1,∞),

TF TF−1 − I and TF−1TF − I are compact on Lp(T,C`). (3.10)

Remark. When F satisfies (3.1), it is fairly easy to show that the index of
TF on Lp(T,C`) is independent of p ∈ (1,∞); cf. (4.2.16)–(4.2.18) of [12].
In case F ∈ C(T, G`(`,C)), it is well known that IndexTF is equal to the
negative of the winding number of detF : T → C \ 0. Extensions to more
general F satisfying (3.1) are given in [2] and, in a more general setting,
applicable to material in §4, in §4.2 of [12].

We end this section with the observation that the partition of unity
argument used to prove Lemma 2.1 also establishes the following.

Proposition 3.4 Take f ∈ L∞(T,M(`,C)) and assume that for each ξ ∈ T
there is a neighborhood Oξ of ξ and Cξ ∈ M(`,C) such that

ReCξf(θ) ≥ bI > 0, ∀ θ ∈ Oξ, (3.11)

where ReT = (1/2)(T + T ∗). Then f has a factorization f = FG with

F ∈ C(T, G`(`,C)) (3.12)

and G as in (3.1).

4 Higher-dimensional variants

As advertised in the introduction, here we discuss a class of Toeplitz oper-
ators that act on functions on ∂Ω, when Ω is a UR domain in a compact,
n-dimensional Riemannian manifold M . This is to say, ∇χΩ is a finite vec-
tor measure on M , supported on ∂Ω, whose total variation σ coincides with
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(n − 1)-dimensional Hausdorff measure on ∂Ω, and satisfies the following
additional properties. First is Ahlfors regularity:

c0r
n−1 ≤ σ(Br(x0) ∩ ∂Ω) ≤ c1r

n−1, ∀x0 ∈ ∂Ω, (4.1)

for r ∈ (0, 1]. We call such Ω an Ahlfors regular domain. Such Ω is said
to be a UR domain if, in addition, ∂Ω contains “big pieces of Lipschitz
surfaces,” in the sense that there exist ε, L ∈ (0,∞) such that, for each
x ∈ ∂Ω, R ∈ (0, 1], there is a Lipschitz map ϕ : Bn−1

R → M , with Lipschitz
constant ≤ L, such that

Hn−1(∂Ω ∩BR(x) ∩ ϕ(Bn−1
R )) ≥ εRn−1. (4.2)

Here, Bn−1
R is a ball of radius R in Rn−1.

Let D : C∞(M, E0) → C∞(M, E1) be a first order elliptic differential
operator, and, for 1 < p < ∞, define Hp(Ω, D) as in (1.9), yielding a closed
linear subspaceHp(∂Ω, D) ⊂ Lp(∂Ω, E0) under the trace isomorphism (1.10).
A construction of the projection P in (1.11) arises via the following Cauchy
transform:

Cg(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))g(y) dσ(y), x ∈ Ω, (4.3)

and associated principal value singular integral operator

Cg(x) = i PV
∫

∂Ω

E(x, y)σD(y, ν(y))g(y) dσ(y), x ∈ ∂Ω. (4.4)

Here σD is the principal symbol of D, ν(y) the outward unit normal to
∂Ω at y (well defined for σ-a.e. y), and E(x, y) a fundamental solution to
D, defined on a neighborhood of Ω. Results initiated in the seminal work
[5] and pursued further in [8] imply that C exists as a bounded operator on
Lp(∂Ω) for 1 < p < ∞, and further results of [8] yield nontangential maximal
function estimates on Cg, for g ∈ Lp(∂Ω), and also pointwise nontangential
limits

Cg∣∣
∂Ω

(x) =
(1

2
I + C

)
g(x), for σ-a.e. x ∈ ∂Ω. (4.5)

In (4.3)–(4.5), g belongs to Lp(∂Ω, E0), or more generally to Lp(∂Ω, E0⊗C`),
but to lighten the notation we say g ∈ Lp(∂Ω). As shown in §2.3 of [12], we
have

C : Lp(∂Ω) −→ Hp(Ω, D), (4.6)
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and
Cg∣∣

∂Ω
=

(1
2
I + C

)
= Pg =⇒ P2 = P, (4.7)

and P is a projection of Lp(∂Ω) onto Hp(∂Ω, D).
We are now in a position to define Toeplitz operators. Given f ∈

L∞(∂Ω,M(`,C)), Tf acts on sections of E0 ⊗ C` by

Tfu = PfPu + (I − P)u. (4.8)

We have Tf : Lp(∂Ω) → Lp(∂Ω) for p ∈ (1,∞). The following result extends
Theorem 3.1.

Theorem 4.1 Assume f ∈ L∞(∂Ω, M(`,C)) has the factorization f = FG
with

F, F−1 ∈ L∞ ∩ vmo(∂Ω,M(`,C)),
G(x) + G(x)∗ ≥ bI > 0, ∀x ∈ ∂Ω.

(4.9)

Assume in addition that

P − P∗ is compact on L2(∂Ω). (4.10)

Then there exist p0 ∈ (1, 2) and p1 ∈ (2,∞) such that

Tf is Fredholm on Lp(∂Ω), for p ∈ (p0, p1), (4.11)

and
IndexTf = IndexTF . (4.12)

The proof of Theorem 4.1 follows along the lines of that of Theorem 3.1,
except that it depends on results from [8] and [12], rather than on more
classical results. It starts with the following lemma.

Lemma 4.2 Given F ∈ L∞∩vmo(∂Ω,M(`,C)) and G ∈ L∞(∂Ω,M(`,C)),

TFG − TF TG is compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.13)

Proof. An identity parallel to (3.5) reduces the proof to establishing com-
pactness of

[P, F ] = [C, F ] (4.14)

on Lp(∂Ω), for p ∈ (1,∞). In this case, such compactness follows from
commutator estimates in §2.4 of [8]. ¤

We proceed with the following extension of Lemma 3.3.
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Lemma 4.3 In the setting of Theorem 4.1 (particularly assuming (4.10)),
there exist p0 ∈ (1, 2) and p1 ∈ (2,∞) such that

TG is Fredholm of index 0 on Lp(∂Ω), for p ∈ (p0, p1). (4.15)

Proof. It is convenient to bring in S, the orthogonal projection of L2(∂Ω, E0⊗
C`) onto H2(∂Ω, D), which will be discussed at further length below. The
main fact that we need to know is that (4.10) implies

P − S is compact on Lp(∂Ω), for p ∈ (q0, q1), (4.16)

for some q0 ∈ (1, 2), q1 ∈ (2,∞). This is a consequence of (4.23)–(4.24)
below. Consequently, for such p, TG differs from

TG = SGS + (I − S) (4.17)

by an operator that is compact on Lp(∂Ω) for p ∈ (q0, q1). Now, a straight-
forward variant of (3.11) yields the invertibility of TG on L2(∂Ω). In fact,
we have

Re(TGu, u)L2 = Re(GSu, Su)L2 + ‖(I − S)u‖2
L2

≥ 1
2
b‖Su‖2

L2 + ‖(I − S)u‖2
L2 ,

(4.18)

so the invertibility of TG on L2(∂Ω) follows from the Lax-Milgram theorem.
As seen below, TG is bounded on Lp(∂Ω) for p ∈ (q0, q1). Hence it follows
from [Sn] that there exist p0 ∈ (q0, 2) and p1 ∈ (2, p1) such that

TG is invertible on Lp(∂Ω), for p ∈ (p0, p1). (4.19)

Also, (4.16) implies TG − TG is compact on Lp(∂Ω) for p ∈ (p0, p1), so we
have (4.15). ¤

As in §3, the proof of Theorem 4.1 is finished by the fact that, when F
satisfies (4.9), then

TF is Fredholm on Lp(∂Ω), ∀ p ∈ (1,∞). (4.20)

Indeed, one has compactness results parallel to (3.10), this time by Lemma
4.2.

Again it is fairly easy to show that the index of TF on Lp(∂Ω) is inde-
pendent of p ∈ (1,∞), via (4.2.16)–(4.2.18) of [12]. On the other hand, it
is worth noting that the evaluation of IndexTF in this setting is very much
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more subtle than that of §3. We will briefly indicate results of [12] that have
been brought to bear on this problem.

For one, given F as in (4.9), a construction given in §4.2 of [12] produces

Φ ∈ C(∂Ω, G`(`,C)) such that IndexTF = IndexTΦ. (4.21)

This construction takes off from material in [2], on the degree of BMO maps
from one smooth compact manifold X to another, Y , but here we need
to replace X by the rough surface ∂Ω, which involves substantial technical
complications.

As for the problem of computing IndexTF when F ∈ C(∂Ω, G`(`,C)),
results on localization and cobordism invariance in §§4.6–4.8 of [12] allow
one to identify IndexTF with the index of such a Toeplitz operator when
Ω is replaced by a domain Ω̃ ⊂ M with smooth boundary. In the smooth
case, a homotopy argument allows us to replace F ∈ C(∂Ω̃, G`(`,C)) by a
smooth F̃ ∈ C∞(∂Ω̃, G`(`,C)). Then T

F̃
is a pseudodifferential operator on

∂Ω̃, and the Atiyah-Singer formula can be applied to its index. In fact, the
index problem for general such Toeplitz operators in the smooth case can
be seen to be essentially equivalent to the general Atiyah-Singer problem.
Results of this nature are given in §§4–6 of [1].

We next consider the orthogonal projection S of L2(∂Ω, E0 ⊗ C`) onto
H2(∂Ω, D), and associated Toeplitz operators

Tfu = SfSu + (I − S)u, f ∈ L∞(∂Ω, M(`,C)), (4.22)

which is bounded on L2(∂Ω). A key ingredient in the analysis of these
operators is the following identity relating S and P (cf. [12], (3.2.5), taking
a cue from [10]):

P = S(I + A), A = P − P∗ = C − C∗. (4.23)

Note that A is skew-adjoint on L2(∂Ω), so I + A is invertible on this space.
Also, A is bounded on Lp(∂Ω) for all p ∈ (1,∞), so again Sneiberg’s theorem
implies that there exist q0 ∈ (1, 2) and q1 ∈ (2,∞) such that

I + A is invertible on Lp(∂Ω), for p ∈ (q0, q1). (4.24)

Thus S = P(I + A)−1 is bounded on Lp(∂Ω) for such p, and hence so is Tf .
We will establish the following variant of Theorem 4.1.
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Theorem 4.4 Assume f ∈ L∞(∂Ω,M(`,C)) has the factorization f = FG,
with F and G as in (4.9). Then there exist p0 ∈ (1, 2) and p1 ∈ (2,∞) such
that

Tf is Fredholm on Lp(∂Ω), for p ∈ (p0, p1), (4.25)

and
Index Tf = Index TF . (4.26)

Before starting the proof, we note that actually

Index TF = IndexTF (4.27)

on Lp(∂Ω) for p ∈ (q0, q1), for F as in (4.9), as seen in Proposition 4.4.3 of
[12].

The proof of Theorem 4.4 starts with the following variant of Lemma
4.2.

Lemma 4.5 Given F ∈ L∞∩vmo(∂Ω,M(`,C)) and G ∈ L∞(∂Ω,M(`,C)),
with qj as in (4.24),

TFG − TFTG is compact on Lp(∂Ω), ∀ p ∈ (q0, q1). (4.28)

Proof. As in previous variants, we start with the identity

TFG − TFTG = S[S, F ]GS. (4.29)

Then it suffices to establish compactness of [S, F ] on Lp(∂Ω). To get this,
we take the commutator of multiplication by F with (4.23) to get

[S, F ](I + A) = [P, F ]− S[A, F ]. (4.30)

As before, [P, F ] is compact on Lp(∂Ω) for all p ∈ (1,∞), and, by the same
reasoning so is [C,F ]. Taking adjoints yields compactness of [C∗, F ] on
Lp(∂Ω) for all p ∈ (1,∞), so (4.30) is compact on Lp(∂Ω) for all p ∈ (1,∞).
The conclusion (4.28) then follows from (4.24). ¤

Next, the following result was already established in the proof of Lemma
4.3.

Lemma 4.6 In the setting of Theorem 4.4, there exist p0 ∈ (1, 2) and p1 ∈
(2,∞) such that

TG is invertible on Lp(∂Ω), for p ∈ (p0, p1). (4.31)
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As in (4.20), the proof of Theorem 4.4 is finished by the fact that, when
F satisfies (4.9), then

TF is Fredholm on Lp(∂Ω), ∀ p ∈ (q0, q1), (4.32)

with qj as in (4.28). The result (4.32) follows from Lemma 4.5, which implies
that TF−1 is a two-sided Fredholm inverse of TF for such p. We hence have
Theorem 4.4, after perhaps adjusting pj to ensure that p0 ≥ q0 and p1 ≤ q1.

We close with some remarks on the hypothesis (4.10) in Theorem 4.1
and comparison with Theorem 4.4. As shown in §3.2 of [12], (4.10) holds
provided D is of Dirac type and Ω is a regular SKT domain. This class
of domains was introduced and studied in [14] and [9], where they were
called chord-arc domains with vanishing constant. The label “regular SKT
domains” was proposed in [8], where it was shown that this class of domains
can be characterized as follows:

Ω is an Ahlfors regular domain,

Ω satisfies a two-sided local John condition, and
the unit normal ν belongs to vmo(∂Ω).

(4.33)

In such a case, Ω is a UR domain and also an NTA domain. Details on this
can be found in §§4.1–4.2 of [8]. As shown in [8], a domain whose boundary
is locally the graph of a function with gradient in vmo is a regular SKT
domain.

On the other hand, Theorem 4.4 applies to arbitrary relatively compact
UR domains. In this sense, Theorem 4.4 is a more satisfactory extension of
Theorem 3.1 than Theorem 4.1 is.

Finally, we note the following extension of Proposition 3.4, whose proof
again uses the same partition of unity argument.

Proposition 4.7 Take f ∈ L∞(∂Ω,M(`,C)) and assume that for each y ∈
∂Ω there are a neighborhood Oy of y in ∂Ω and Cy ∈ M(`,C) such that

ReCyf(x) ≥ bI > 0, ∀x ∈ Oy. (4.34)

Then f has a factorization f = FG, with

F ∈ C(∂Ω, G`(`,C)), (4.35)

and G as in (4.9).
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5 Further extension

We can extend Theorems 4.1 and 4.4 as follows. Assume f ∈ L∞(∂Ω,M(`,C))
has a factorization

f(x) = F1(x)G(x)F2(x), (5.1)

with
Fj , F

−1
j ∈ L∞ ∩ vmo(∂Ω,M(`,C)), (5.2)

and G as in (4.9). Then the conclusions of Theorems 4.1 and 4.4 continue
to hold, with the index identity (4.12) replaced by

IndexTf = IndexTF1 + IndexTF2 , (5.3)

and a similar replacement for (4.26). The key to seeing this is simply to
extend Lemmas 4.2 and 4.5 as follows.

Lemma 5.1 Given Fj ∈ L∞∩vmo(∂Ω,M(`,C)) and G ∈ L∞(∂Ω,M(`,C)),
we have

TF1GF2 − TF1TGTF2 compact on Lp(∂Ω), ∀ p ∈ (1,∞), (5.4)

and

TF1GF2 − TF1TGTF2 compact on Lp(∂Ω), ∀ p ∈ (q0, q1), (5.5)

with qj as in (4.24).

Proof. Lemmas 4.2 and 4.5, with F1 in place of F and GF2 in place of G,
imply the desired compactness of TF1GF2−TF1TGF2 and of TF1GF2−TF1TGF2 .
To finish Lemma 5.1 off, it suffices to get analogues of Leemmas 4.2 and 4.5
for TGF − TGTF and TGF −TGTF . For this, we can just replace the identity
(3.5) by

TGF − TGTF = −PG[P, F ]P, (5.6)

and (4.24) by
TGF − TGTF = −SG[S, F ]S. (5.7)

Then the compactness results on [P, F ] and [S, F ] established before apply
to finish the proof. ¤

In connection with the factorization (5.1), we mention the following vari-
ant of Proposition 4.7.
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Proposition 5.2 Take f ∈ L∞(∂Ω,M(`,C)) and assume that there exists
b > 0 and an open covering {Oj : 1 ≤ j ≤ N} of ∂Ω and Cj , C̃k ∈ M(`,C)
such that

ReCjf(x)C̃k ≥ bI > 0, ∀x ∈ Oj ∩ Ok. (5.8)

Then f has a factorization (5.1) with

Fj ∈ C(∂Ω, G`(`,C)) (5.9)

and G as in (4.9).

Proof. Let {ψj : 1 ≤ j ≤ N} be a continuous partition of unity on ∂Ω
subordinate to the cover {Oj : 1 ≤ j ≤ N}, so suppψj ⊂ Oj and 0 ≤ ψj ≤ 1.
Then set

Φ1(x) =
N∑

j=1

Cjψj(x), Φ2(x) =
N∑

k=1

C̃kψk(x). (5.10)

We have Φj ∈ C(∂Ω,M(`,C)) and

ReΦ1(x)f(x)Φ2(x) =
N∑

j,k=1

ReCjf(x)C̃kψj(x)ψk(x)

≥ bI.

(5.11)

It follows that both Φ1(x) and Φ2(x) are invertible for each x ∈ ∂Ω, and
Fj(x) = Φj(x)−1 satisfy (5.9), and that (5.1) holds with

G(x) = Φ1(x)f(x)Φ2(x). (5.12)

¤
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