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Abstract. This paper studies the Poisson equation ∆gu = f on a variety
of noncompact Riemannian manifolds M , with f either compactly supported
or possessing a simple asymptotic expansion at infinity. A construction in
geometrical optics motivates the study of this equation when M is a compactly
perturbed plane and f has compact support. Results in this case in turn
motivate a study for higher dimensional M and more general f .

1. Introduction

This paper studies the Poisson equation

(1.1) ∆gu = f

where ∆g is the Laplace operator on a noncompact Riemannian manifold, in a
number of settings.

Our original motivation arose from an issue in geometrical optics, concerning
the null bicharacteristics of a variable speed d’Alembertian

(1.2) ∂2
t − a(x)2∆,

with t ∈ R, x ∈ Rn, ∆ = ∂2
1 + · · ·+ ∂2

n. We might assume

(1.3) a ∈ C∞(Rn), a > 0, a(x) = 1 for |x| ≥ R,

for some R ∈ (0,∞). To leading order, the operator (1.2) agrees with

(1.4) ∂2
t −∆g,

where ∆g is the Laplace-Beltrami operator on M = Rn, endowed with the metric
tensor

(1.5) gjk = a(x)−2δjk,

and in particular the two operators have the same null bicharacteristics, and hence
propagate singularities along the same rays. These rays correspond naturally to
orbits of the geodesic flow on S∗M , with metric tensor gjk.
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When it comes to constructing examples that have periodic orbits with pre-
scribed geometric properties, the setting (1.4) is quite convenient, as it allows one’s
geometrical intuition to take hold. We take gjk to be an arbitrary compactly sup-
ported perturbation of the flat metric on Rn:

(1.6) gjk ∈ C∞(Rn), positive definite, gjk(x) = δjk for |x| ≥ R.

For example, we can take a sphere Sn, cut out a disk about its south pole, cut out
a disk about the origin in Rn, and attach these two spaces by a tube, obtaining a
Riemannian manifold, diffeomorphic to Rn, with closed geodesics of a certain type.
This leads to the question of what such a construction might say about (1.2). That
is to say, does there exist a function a(x), satisfying, not quite (1.3), but

(1.7) a ∈ C∞(Rn), a > 0, a(x) ∼ 1 as |x| → ∞,

such that (Rn, a(x)−2δjk) is isometric to (M, g)? Certainly this will fail in general
if n ≥ 3, since (M, g) will typically not be locally conformally flat. As we will see,
it does succeed when n = 2.

Here is our first task, in case n = 2. Let gjk be a metric tensor on R2, satisfying
(1.6). We desire to find

(1.8) u ∈ C∞(R2), u(x) → 0 as |x| → ∞,

such that the new metric tensor

(1.9) g̃jk = e2ugjk has zero curvature.

Then (R2, g̃jk) is flat, complete, and simply connected. In such a case, one can
choose a base point, and the exponential map yields a global isometry from (R2, δjk)
onto (R2, g̃jk). Generally, if k(x) denotes the Gauss curvature of (R2, gjk), then the
Gauss curvature K(x) of (R2, e2ugjk) is given by

(1.10) K(x) = (−∆gu + k(x))e−2u.

If we want K ≡ 0, we want to solve the linear equation

(1.11) ∆gu = k,

and we want a solution satisfying (1.8). In case gjk = δjk, we would solve (1.11)
for a general function k ∈ C∞0 (R2) by convolving k with the fundamental solution

(1.12) E0(x) =
1
2π

log |x|.
Typically, k ∗ E0(x) has a log blow-up as |x| → ∞, unless k integrates to zero.
Fortunately, k in (1.11) has this property. In fact, the Gauss-Bonnet theorem
implies

(1.13)
∫

M

k(x) dV (x) = 0,

where M = R2 and dV (x) =
√

g(x) dx is the area element associated to the metric
tensor gjk, with g(x) = det(gjk).

In §2 we will show that if (M, gjk) is a compactly supported perturbation of
(R2, δjk) and k ∈ C∞0 (M) satisfies (1.13), then (1.11) has a solution u satisfying
(1.8). In fact, u has a complete asymptotic expansion in negative powers of r. This
finer behavior is of potential significance for applications to scattering theory. We
find the solution u by solving a certain nonlocal boundary problem on a compact
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domain in M . We will not require M to be diffeomorphic to R2; we could add
handles to the plane. Of course, in such a case, the Gauss-Bonnet theorem implies
that (1.13) fails if k(x) is the Gauss curvature of M , but it is still of intrinsic interest
to have this solvability result, under the hypothesis (1.13). In §2 we also show there
is a Green function, behaving like log |x| at infinity.

Results of §2 suggest a number of further problems, some of which are treated
in §§3–6. For one, since the solution u to (1.11) obtained in §2 has a simple as-
ymptotic expansion at infinity, it is natural to extend the class of right hand sides
of (1.11), and consider k with such an expansion. In §3 we study (1.11) when M
is an n-dimensional, asymptotically Euclidean, Riemannian manifold and k has an
asymptotic expansion in terms of powers r−k−2, k ∈ N, and obtain u, with a more
complicated asymptotic expansion, involving also powers of log r, such that (1.11)
holds asymptotically. This leads to the problem of solving (1.11) when k ∈ S(M),
i.e., k and all its covariant derivatives vanish rapidly at infinity. We plan to take
this problem up elsewhere.

Sections 4–6 tackle (1.11) where M is a general complete, n-dimensional Rie-
mannian manifold (sometimes with nonempty boundary) assuming k ∈ C∞0 (M).
Our analysis parallels that of §2, but it is necessarily more elaborate in this case.
We take a smoothly bounded, compact Ω ⊂ M , containing the support of k, and
construct the solution to (1.11) via a nonlocal boundary problem on Ω. In §4 we
construct the Poisson integral on functions in Hs(∂Ω), for s ≥ 1/2, yielding har-
monic functions on X = M \ Ω, and analyze the Dirichlet-to-Neumann map as
a pseudodifferential operator on ∂Ω. In §5 we formulate and solve the nonlocal
boundary problem mentioned above. We obtain a general criterion on when (1.13)
is needed to get u ∈ L∞(M). In §6, we return to the Poisson integral and, using
the results of §5, extend it to act on Hs(∂Ω) for all s ∈ R.

In Appendix A, we return to the 2-dimensional setting and give a more general
criterion for (R2, gjk) to be conformally equivalent to (R2, δjk) than done in §2.
The proof uses the uniformization theorem and a Liouville theorem. This argument
provides less information about the resulting conformal factor a(x)−2 than what
we get in §2.

Our analysis makes some use of pseudodifferential operator calculus. To fix
notation, if Y is a compact manifold, we denote by OPSm(Y ) the set of “classical”
pseudodifferential operators of order m on Y .

We end this introduction with a brief discussion of previous work done on the
Poisson equation (1.11), on a complete Riemannian manifold M . Work of [6] yielded
a solution u ∈ C∞(M), given k ∈ C∞0 (M), for any such M . This paper showed the
existence of a “Green function” G on M ×M . The approach was non-constructive.
A constructive approach was given in [4] (building on some unpublished work of
Schoen and Yau). This paper also studied conditions guaranteeing that there is
a positive Green function. In such a case, estimates of [4] imply the solution u is
bounded. Various geometric conditions on M are given that yield the existence of a
positive Green function. Other important papers on this topic include [5], [8], [9],
and [13]. There are results on conditions on the Ricci tensor of M that guarantee
the existence of a positive Green function. Also, [8], [9], and [13] explore when
(1.11), for a class of Kähler manifolds, with k equal to the scalar curvature, help to
understand the Poincaré-Lelong equation, yielding important insights into natural
classes of complete, noncompact, Kähler manifolds.
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2. Solving ∆gu = f on compactly perturbed planes

Let (M, g) be a two-dimensional Riemannian manifold. We assume M is con-
nected and that there exist a compact K ⊂ M and R ∈ (0,∞) such that M \K is
isometric with R2 \BR(0). We denote the Laplace-Beltrami operator of (M, g) by
∆g. We aim to prove the following.

Proposition 2.1. Given f ∈ C∞0 (M) such that

(2.1)
∫

M

f(x) dV (x) = 0,

there exists a unique solution u to

(2.2) ∆gu = f,

satisfying

(2.3) u ∈ C∞(M), u(x) → 0 as x →∞.

To start, we can take a compact, smoothly bounded Ω ⊂ M such that

(2.4) K ⊂ Ω, supp f ⊂ Ω, and M \ Ω isometric to R2 \BS(0),

for some S ∈ (R,∞). Rescaling, we can assume S = 1. We will simply identify
M\Ω with R2\B1(0). We will construct u on Ω to solve a certain nonlocal boundary
problem (see (2.8) below). With v = u|∂Ω (and ∂Ω identified with ∂B1(0) = S1)
we define u on R2 \B1(0) to be

(2.5) u(x) =
∞∑

k=−∞
v̂(k)r−|k|eikθ, x = reiθ, r > 1,

where

(2.6) v̂(k) =
1
2π

∫

S1

v(θ)e−ikθ dθ.

Note that, for |x| > 1, and x = (x1, x2) identified with z = x1 + ix2,

(2.7) u(x) =
∞∑

k=0

v̂(k)z−k +
∞∑

k=1

v̂(−k)z−k

is harmonic. To fit this function together with a function on Ω and solve (2.2), we
want u on Ω to solve

(2.8) ∆gu = f on Ω, ∂νu = −Λu on ∂Ω,

where ν is the outward-pointing unit normal to ∂Ω, and Λ is the operator defined
on functions on ∂Ω = S1 by

(2.9) Λv(θ) =
∞∑

k=−∞
|k|v̂(k)eikθ.

Note that if u is given on R2 \B1(0), then ∂ru = −Λv on S1. If we can solve (2.8),
then using (2.5) with v = u|∂Ω produces a function that solves (2.6) on M \∂Ω and
has the property that neither u nor ∇u have a jump across ∂Ω, so in fact u solves
(2.6) on all of M .
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To proceed, take k ∈ N and define a family of operators

(2.10) Lτ : Hk+2(Ω) −→ Hk(Ω)⊕Hk+1/2(∂Ω),

for τ ∈ C, by

(2.11) Lτu = (∆gu, ∂νu + τΛu).

Lemma 2.2. When τ 6= −1, Lτ in (2.10) is Fredholm, of index zero.

Proof. We show that Lτ defines a regular, elliptic boundary problem when τ 6= −1.
One method (cf. [10], Chapter 5, §5) reduces this to studying solutions to

(2.12) ∆gu = 0 on Ω, ∂ν + τΛu = h on ∂Ω,

and looking for w on ∂Ω such that (2.12) is solved (mod C∞) by

(2.13) u = PI0 w,

where PI0 w solves the Dirichlet problem for ∆g on Ω, with boundary data w. If
M = R2 with its flat metric, then ∂ν PI0 w = Λw. In the current setting, local
regularity results for the Dirichlet problem imply that if (2.13) holds, then near ∂Ω
on Ω, u differs from its counterpart with Ω replaced by BS(0) by a function that is
C∞ near ∂Ω = ∂BS(0). Hence

(2.14) ∂νu = Λ0w, Λ0 − Λ ∈ OPS0(∂Ω),

so

(2.15) ∂νu + τΛu = (Λ0 + τΛ)u, Λ0 + τΛ = (1 + τ)Λ mod OPS0(∂Ω),

so Λ0 + τΛ is elliptic in OPS1(∂Ω) whenever τ 6= −1. Such ellipticity implies Lτ

in (2.10) is Fredholm whenever τ 6= −1. Since C \ {−1} is connected, the index is
constant on this set. When τ = 0 we have the Neumann boundary problem, which
is regular and self adjoint, hence Fredholm of index 0. ¤

Of course the case of direct interest in (2.8) is τ = +1. We now examine the
null space N (L1).

Lemma 2.3. Given u ∈ H2(Ω),

(2.16) u ∈ N (L1) =⇒ u is constant.

Proof. Without loss of generality, we can assume u is real valued. Green’s formula
gives, for u ∈ H2(Ω),

(2.17)
∫

Ω

|∇gu|2 dV = −
∫

Ω

u∆gu dV +
∫

∂Ω

u
∂u

∂ν
dS.

If u ∈ N (L1), then

(2.18)
∫

Ω

|∇gu|2 dV = −(u, Λu)L2(∂Ω).

The left side of (2.18) is ≥ 0 and the right side is ≤ 0, so both sides must vanish,
implying u is constant. ¤

From Lemmas 2.2–2.3 we have

(2.19) R(L1) has codimension 1 in Hk(Ω)⊕Hk+1/2(∂Ω).
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Taking k = 0, we want to identify the annihilator of R(L1) in L2(Ω)⊕H−1/2(∂Ω),
a space we know has dimension 1. To say (w, h) belongs to the annihilator of R(L1)
is to say that

(2.20) (∆gu,w) + (∂νu + Λu, h) = 0, ∀u ∈ H2(Ω).

We note that (w, h) = (1,−1) satisfies this condition. In fact, Green’s theorem
implies

(2.21) (∆gu, 1) =
∫

∂Ω

(∂νu) dS,

and

(2.22) (Λu, 1) = (u,Λ1) = 0.

The dimension count implies

(2.23) (w, h) = (1,−1) spans the annihilator of R(L1).

Corollary 2.4. If f ∈ L2(Ω) satisfies (2.1), then (f, 0) ∈ R(L1), hence there
exists u ∈ H2(Ω) satisfying (2.8).

If f ∈ C∞0 (Ω) satisfies (2.1), elliptic regularity yields u ∈ C∞(Ω). Fitting in
the construction (2.5)–(2.7), we have a smooth solution to (2.2), which tends to a
constant limit at infinity. Subtracting this constant gives a solution satisfying (2.3).
Uniqueness follows from the maximum principle.

Strengthening the uniqueness result, we have the following Liouville theorem.

Proposition 2.5. In the setting of Proposition 2.1, if u ∈ C∞(M) is bounded
and solves

(2.24) ∆gu = 0 on M,

then u is constant.

Proof. On R2 \B1(0), u must have the form (2.5), with v = u|S1 , and on Ω, u must
solve (2.8), with f = 0, so u ∈ N (L1). Hence, by Lemma 2.3, u is constant on
Ω, hence on ∂Ω = S1, and the representation (2.5) implies u is equal to the same
constant on R2 \Bp(0). ¤

See Appendix A for a much more general Liouville theorem.
We now extend the scope of Proposition 2.1.

Proposition 2.6. In the setting of Proposition 2.1, replace (2.1) by

(2.25)
∫

M

f(x) dV (x) = a.

Then there exists a unique solution u to ∆gu = f , satisfying

(2.26) u(x)− a

2π
log |x| → 0 as x →∞.

Proof. Pick ϕ ∈ C∞(R2) such that ϕ(x) = 0 for |x| ≤ 2, 1 for |x| ≥ 3. Define
G ∈ C∞(M) by

(2.27)
G(x) =

ϕ(x)
2π

log |x|, x ∈ R2 \B1(0),

0, x ∈ Ω.
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Then (with E0 as in (1.12))

(2.28)

∫

M

∆gG(x) dV (x) =
∫

R2\B1(0)

∆G(x) dx

=
∫

R2

∆E0(x) dx−
∫

R2

∆
(
(1− ϕ)E0

)
dx

= 1.

Thus, if we set

(2.29) F (x) = ∆gG(x),

then F ∈ C∞0 (M) and
∫

M
(f − aF ) dV = 0, so Proposition 2.1 applies, to give

w ∈ C∞(M) satisfying

(2.30) ∆gw = f − aF on M, w(x) → 0 as x →∞.

Hence

(2.31) ∆g(w + aG(x)) = f,

and u = w + aG is the desired solution. ¤

3. Asymptotic solutions to ∆gu = f

Here we look at

(3.1) ∆gu = f,

when the n-dimensional Riemannian manifold M is asymptotically flat, so that, for
some compact K ⊂ M , and S diffeomorphic to Sn−1,

(3.2) M \K ∼ (1,∞)× S,

and, on M \K,

(3.3) ∆gu = ∂2
ru + M(r)∂ru + r−2∆S(r)u,

where, as r →∞,

(3.4) M(r) ∼ n− 1
r

+
∑

`≥1

a`(ω)r−1−`,

and

(3.5) ∆S(r) ∼ ∆S +
∑

`≥1

r−`L`.

Here ω ∈ S, a` ∈ C∞(S), ∆S is the Laplace-Beltrami operator on S, and L` are
second-order differential operators on S. Cf. [1], p. 18. We take S = Sn−1, so

(3.6) Spec(−∆S) = {`2 + (n− 2)` : ` = 0, 1, 2, . . . },
though extensions to other compact, (n− 1)-dimensional Riemannian manifolds S
are possible.

We assume f has the form

(3.7) f ∼
∑

k≥1

r−k−2fk(ω),



8 MICHAEL TAYLOR

as r →∞, with fk ∈ C∞(S), and look for

(3.8) u ∼
∑

k≥1

uk(r, ω)

such that

(3.9) ∆gu ∼ f,

in the sense that ∆gu − f vanishes rapidly, with all derivatives, as r → ∞. In
(3.8), we want uk(r, ω) to decay roughly like r−k as r →∞, though as we will see,
formulas for uk(r, ω) can have a more complicated form than r−kuk(ω).

Plugging (3.7)–(3.9) into (3.3)–(3.5) gives

(3.10)

∑

k≥1

(
∂2

r +
n− 1

r
∂r +

1
r2

∆S

)
uk(r, ω)

∼
∑

k≥1

r−k−2fk(ω)−
∑

k,`≥1

(
a`(ω)r−`−1∂r + r−`−2L`

)
uk(r, ω).

We find it convenient to make a change of variable,

(3.11) vk(s, ω) = uk(r, ω), r = es,

so

(3.12)

uk(r, ω) = vk(log r, ω),

∂ruk(r, ω) =
1
r
∂svk(log r, ω),

∂2
ruk(r, ω) =

1
r2

∂2
svk(log r, ω)− 1

r2
∂svk(log r, ω),

and (3.10) becomes

(3.13)

∑

k≥1

(∂2
s + (n− 2)∂s + ∆S)vk(s, ω)

∼
∑

k≥1

e−ksfk(ω)−
∑

k,j≥1

e−js(aj(ω)∂s + Lj)vk(s, ω).

We seek vk(s, ω) in the form

(3.14) vk(s, ω) = pk(s, ω)e−ks,

where pk(s, ω) is a polynomial in s, with coefficients in C∞(S) (functions of ω).
The case k = 1 of (3.13) is

(3.15) (∂2
s + (n− 2)∂s + ∆S)v1(s, ω) = e−sf1(ω).

We expand both sides in terms of eigenfunctions of ∆S In case S = Sn−1 and (3.6)
holds, let

(3.16) V` =
{
h ∈ C∞(S) : −∆Sh = [`2 + (n− 2)`]h

}
.

If f1` is the component of f1 in V`, we want to solve

(3.17) (∂2
s + (n− 2)∂s + ν2

` )v1`(s) = e−s, ν2
` = `2 + (n− 2)`.

Then

(3.18) v1(s, ω) =
∑

`

v1`(s)f1`(ω).
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We rewrite (3.17) as

(3.19) (∂s − `)(∂s + ` + n− 2)v1`(s) = e−s.

At this point, let us pause and consider solving

(3.20) (∂s − `)v = p(s)e−ks,

when p(s) is a polynomial in s and k ∈ Z+. In (3.6), ` ∈ Z+ ∪ {0}, but let us more
generally take ` ∈ R. We write v(s) = q(s)e−ks, so (3.20) becomes

(3.21) (∂s − `− k)q(s) = p(s),

with solution

(3.22) q(s) = Jk+`p(s),

where the operators Jm, acting on polynomials in s, are given as follows, for m ∈ R.
First,

(3.23) J0p(s) =
∫ s

0

p(σ) dσ.

If m 6= 0, we take

(3.24)

Jmp(s) = (∂s −m)−1p(s)

= − 1
m

(
1− 1

m
∂s

)−1

p(s)

= − 1
m

∑

j≥0

( 1
m

∂s

)j

p(s),

the last sum being over j ≤ K if p(s) is a polynomial of degree K. Then (3.20) is
solved by

(3.25) v(s) = Jk+`p(s) · e−ks.

Returning to (3.18), we have the solution

(3.26)
v1`(s) = J1+2−`−nJ1+`(1) · e−s

= q`n(s)e−s,

where q`n(s) is a polynomial in s. Note that

(3.27) ` ≥ 0 =⇒ J1+`(1) = − 1
` + 1

,

and

(3.28) J3−`−n(1)

is constant if ` + n 6= 3, and a constant multiple of s if ` + n = 3. In this way, we
have a solution v1(s, ω) to (3.15).

From here, we find vk(s, ω) in (3.17) by induction, for k ≥ 2. It solves

(3.29) (∂2
s + (n− 2)∂s + ∆S)vk(s, ω) = e−ksϕk(s, ω),

where ϕk(s, ω) is a polynomial in s, with coefficients in C∞(S). Let

{fµ
` : 1 ≤ µ ≤ dim V`} be an orthonormal basis of V`.

Write

(3.30) ϕk(s, ω) =
∑

`,µ

ϕµ
k`(s)f

µ
` (ω).
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Then we want to solve

(3.31) (∂2
s + (n− 2)∂s + ν2

` )vµ
k`(s) = ϕµ

k`(s)e
−ks,

to obtain

(3.32) vk(s, ω) =
∑

`,µ

vµ
k`(s)f

µ
` (ω).

Equivalently, we solve

(3.33) (∂s − `)(∂s + ` + n− 2)vµ
k`(s) = ϕµ

k`(s)e
−ks,

so we take

(3.34) vµ
k`(s) = qµ

k`(s)e
−ks, qµ

k`(s) = Jk+2−`−nJk+`ϕ
µ
k`(s).

Thus qµ
k`(s) is a polynomial in s of degree at most 1 more than that of ϕµ

k`(s). That
vj(s, ω) in (3.32) is e−ks times a polynomial in s with coefficients in C∞(S) is a
straightforward consequence of the formulas (3.23)–(3.24). Let us formalize this:

(3.35) vk(s, ω) = qk(s, ω)e−ks,

where qk(s, ω) is a polynomial in s with coefficients in C∞(S). Rewinding (3.8)–
(3.11), we have an asymptotic solution to (3.9) of the form

(3.36) u(r, ω) ∼
∑

k≥1

qk(log r, ω)r−k.

Borel’s theorem on summing asymptotic series yields the following.

Proposition 3.1. Let M be an asymptotically Euclidean, Riemannian mani-
fold, of dimension n. Take f ∈ C∞(M) having the asymptotic expansion (3.7), with
fk ∈ C∞(S). Then there exists u ∈ C∞(M), having an asymptotic expansion of
the form (3.36), where each qk is a polynomial in log r with coefficients in C∞(S),
such that

(3.37) ∆gu− f = h ∈ S(M),

i.e., h and all its covariant derivatives vanish at infinity.

Given this, we are highly motivated to establish solvability of

(3.38) ∆gu = f

given f ∈ S(M), perhaps integrating to 0, and investigate asymptotic properties
of the solution. Sections 4–5 have results on this for quite general M , but they
require f ∈ C∞0 (M). They obtain u ∈ C∞(M)∩L∞(M), but they do not get finer
asymptotic results.

4. Poisson integral on a complete manifold with compact boundary

Let X be a complete, n-dimensional Riemannian manifold with compact bound-
ary ∂X, and interior X. We assume X is connected. We want to establish the
existence of a map

(4.1) PI : C∞(∂X) −→ C∞(X) ∩ L∞(X)

and record properties of the Dirichlet-to-Neumann map Λ, given by

(4.2) Λf = −∂ν PI f
∣∣
∂X

,
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where ν is the unit normal to ∂X, pointing inside X. We also define PI on other
function spaces on ∂X. We may as well assume X is not compact. Let Xk be an
increasing sequence of bounded open subsets of X, such that

(4.3) Xk ⊃ {x ∈ X : dist(x, ∂X) ≤ k}.
Write ∂Xk = ∂X ∪ Sk. We can assume Sk is smooth. We define

(4.4) Pk : C∞(∂X) −→ C∞(Xk)

by

(4.5) ∆gPkf = 0 on Xk, Pkf = f on ∂X, Pkf = 0 on Sk.

We then extend Pkf by 0 on X \Xk, defining Pk : C∞(∂X) → C(X). If C∞+ (∂X)
denotes the class of f ≥ 0 in C∞(∂X), we have

(4.6) f ∈ C∞+ (∂X), uk = Pkf =⇒ 0 ≤ uk ≤ uk+1 ≤ sup f,

by the maximum principle, and from here and local elliptic regularity results, we
have

(4.7) uk −→ u ∈ C∞(X) ∩ L∞(X),

solving

(4.8) ∆gu = 0 on X, u
∣∣
∂X

= f.

We denote the limit by PI f . The construction (4.4)–(4.5) gives

(4.9) f, g ∈ C∞+ (∂X) =⇒ PI(f + g) = PI(f) + PI(g).

Given a general (real valued) f ∈ C∞(∂X), set

(4.10) f = f1 − f2, fj ∈ C∞+ (∂X),

and

(4.11) PI f = PI f1 − PI f2.

It follows from (4.9) that this is independent of the choice of fj such that (4.10)
holds. Note that if X̃k ↗ X also satisfies (4.3) and P̃k is defined analogously to
(4.5), then f ∈ C∞+ (∂X), Xj ⊂ X̃k ⊂ X` ⇒ Pjf ≤ P̃kf ≤ P`f , so PI is well
defined, independently of the choice of {Xk}.

The convergence (4.7) holds in C∞(Ω) for each compact Ω ⊂ X, given f ∈
C∞(∂X). The maximum principle yields an extension

(4.12) PI : C(∂X) −→ C(X) ∩ L∞(X).

Also, standard elliptic regularity results yield

(4.13) PI : Hs(∂X) −→ Hs+1/2(X1) ∩ C∞(X) ∩ L∞(X),

for s > (n− 1)/2. Shortly, we will extend (4.13) to a larger range of s.
Note that, for each f ∈ C(∂X), elliptic regularity implies

(4.14) PI f − P2f ∈ C∞(X1).

Also, a parametrix construction yields

(4.15) Λ ∈ OPS1(∂X),

elliptic, with

(4.16) Λ−
√
−∆S ∈ OPS0(∂X),
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where ∆S denotes the Laplace-Beltrami operator on S = ∂X.
We pause to consider the family of special cases

(4.17) X = Rn \B1, B1 = {x ∈ Rn : |x| < 1}.
Take n ≥ 2. In spherical polar coordinates x = rω, r ∈ [1,∞), ω ∈ Sn−1, we have

(4.18) ∆u =
∂2u

∂r2
+

n− 1
r

∂u

∂r
+

1
r2

∆Su,

where ∆S is the Laplace-Beltrami operator on Sn−1. If we set

(4.19) A =
(
−∆S +

(n− 2)2

4

)1/2

,

we have (cf. [11], Chapter 8, §4)

(4.20) Spec A =
{n− 2

2
+ k : k = 0, 1, 2 . . .

}
.

Separation of variables applied to (4.8) yields

(4.21)
PI f(rω) = r−A−(n−2)/2f(ω)

= r−Bf(ω),

with

(4.22) Spec B = {n− 2 + k : k = 0, 1, 2, . . . }.
The definition (4.2) gives

(4.23) Λ = B =
(
−∆s +

(n− 2)2

4

)1/2

+
n− 2

2
,

a result consistent with (4.16). Note that this is a self-adjoint, positive semi-definite
operator, with discrete spectrum, whose smallest eigenvalue is

(4.24) λ0 = n− 2,

which vanishes if n = 2 but is strictly positive if n ≥ 3. It follows that

(4.25) PI : C(∂X) −→ C∗(X)

if X = Rn \B1 with n ≥ 3, where

(4.26) C∗(X) = {u ∈ C(X) : lim
x→∞

u(x) = 0}.
However,

(4.27) X = R2 \B1 =⇒ PI(1) ≡ 1.

In [12] it is shown that (4.25) holds whenever X is asymptotically Euclidean and
has dimension n ≥ 3.

Back to generalities, take f, g ∈ C∞(∂X), set uk = Pkf as in (4.4)–(4.5), and
set vk = Pkg. Green’s formula gives

(4.28)
∫

Xk

∇uk · ∇vk dV = −
∫

∂Xk

uk(∂νvk) dS = −
∫

∂X

uk(∂νvk) dS,

the negative sign because ν points into X. The smooth convergence of uk to
u = PI f and of vk to v = PI g implies that the right side of (4.28) converges to

(4.29) −
∫

∂X

u(∂νv) dS =
∫

∂X

f(Λg) dS.
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Since the left side of (4.28) is symmetric in uk and vk, we have

(4.30)
∫

∂X

f(Λv) dS =
∫

∂X

(Λf)g dS,

for f, g ∈ C∞(∂X). In concert with (4.15)–(4.16), we deduce that Λ is self-adjoint,
with domain H1(∂X). Taking g = f gives vk = uk, and hence

(4.31)
∫

Xk

|∇uk|2 dV = −
∫

∂X

uk(∂νuk) dS.

Taking k →∞ and applying Fatou’s lemma to the left side of (4.31) gives

(4.32)
∫

X

|∇u|2 dV ≤ (f, Λf),

for u = PI f . This implies Λ is positive semidefinite. Also, by (4.15), (f, Λf) ≤
C‖f‖2

H1/2(∂X)
. This leads to the following result.

Proposition 4.1. Assume X is a complete Riemannian manifold with compact
boundary ∂X. The map PI extends uniquely from C∞(∂X) to

(4.33) PI : H1/2(∂X) −→
{

u ∈ C∞(X) :
∫

X

|∇u|2 dV < ∞
}

.

Proof. Given f ∈ H1/2(∂X), we take fj ∈ C∞(∂X) such that fj → f in H1/2

norm, and set uj = PI fj . Also set ujk = Pkfj . We have

(4.34) ‖∇uj‖2L2(X) ≤ (fj ,Λfj) ≤ C0‖f‖2H1/2(∂X).

Also

(4.35) ‖∇(uj − ujk)‖L2(Xk) ≤ Ck‖f‖H1/2(∂X),

and

(4.36) uj − ujk

∣∣
∂X

= 0,

so, by Poincaré’s inequality,

(4.37) ‖uj − ujk‖L2(Xk) ≤ C̃k‖f‖H1/2(∂X).

These uniform estimates readily yield the extension (4.33). ¤
An interpolation argument then extends (4.13) from s > (n− 1)/2 to s ≥ 1/2,

with L∞(X) replaced by L∞(X#), where X# = {x ∈ X : dist(x, ∂X) ≥ 1}.
Further extensions are possible, as we will see in §6.

Remark 1. The result (4.32) suggests the following problem.

Determine when one has equality in (4.32).

Remark 2. As we have seen in (4.17)–(4.27), when X = Rn \B1,

(4.38) PI : C(∂X) −→ C∗(X),

when n ≥ 3, but not when n = 2. Also, N (Λ) = 0 when n ≥ 3, butN (Λ) = Span(1)
when n = 2. In general, we can deduce the following, from (4.32).

Proposition 4.2. If f ∈ N (Λ), then PI f is constant.
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The conclusion implies f is constant. The converse need not hold, i.e., PI 1
might not be constant. It is constant if X = R2 \ B1; cf. (4.27). Perhaps PI 1 = 1
whenever X is asymptotically Euclidean, of dimension n = 2. By Proposition 4.2,

(4.39) PI(1) 6= 1 =⇒ N (Λ) = 0.

The implication

(4.40) PI(1) = 1 =⇒ N (Λ) ⊃ Span(1)

follows directly from the definition (4.2). This together with Proposition 4.2 gives

(4.41) PI(1) = 1 =⇒ N (Λ) = Span(1).

5. Solving ∆gu = f on a complete Riemannian manifold

Let M be a complete Riemannian manifold, of dimension n. Assume M is
connected. Given f ∈ C∞0 (M), we desire to find u such that

(5.1) ∆gu = f, u ∈ C∞(M) ∩ L∞(M).

This is easily done if M = Rn, for all such f , if n ≥ 3; for n = 2 one can find such
u provided

(5.2)
∫

M

f dV = 0.

We will study solvability of (5.1) under the general hypothesis stated above, and
look into when (5.2) is required.

To start, given f ∈ C∞0 (M), pick a smoothly bounded, connected, open set Ω
such that

(5.3) supp f ⊂ Ω

and Ω is compact. Set

(5.4) X = M \ Ω.

We want to find v ∈ C∞(Ω) such that

(5.5) ∆gv = f on Ω, ∂νv = −Λv on ∂Ω,

where ν is the unit normal to ∂Ω = ∂X pointing out of Ω (and into X), and Λ is
the Dirichlet-to-Neumann map associated to X, discussed in §4 (cf. (4.2)). If we
have such a solution to (5.5), a solution to (5.1) is given by

(5.6)
u(x) = v(x), x ∈ Ω,

PI v
∣∣
∂X

, x ∈ X,

with PI as in (4.1). This clearly solves ∆gu = f on M \ ∂Ω, and has the property
that neither u nor ∇u have a jump across ∂Ω, so in fact (5.1) holds.

There is one minor point to address. In §4, we assumed X was connected.
Here, we do not want to impose this restriction. We allow X to have connected
components Xj , 1 ≤ j ≤ K. Then we have

(5.7)
PIj : C∞(∂Xj) −→ C∞(Xj) ∩ L∞(Xj),

Λjf = −∂ν PIj f, Λj ∈ OPS1(∂Xj),

and, in the obvious sense,

(5.8) PI = PI1⊕ · · · ⊕ PIK , Λ = Λ1 ⊕ · · · ⊕ ΛK .
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We also bring in

(5.9)
PI0 : C∞(∂Ω) −→ C∞(Ω),

Λ0f = ∂ν PI0 f, Λ0 ∈ OPS1(∂Ω).

Note the absence of a minus sign, since ν points out of Ω. As in (4.16), we have

(5.10) Λ0 −
√
−∆S ∈ OPS0(∂Ω),

where ∆S is the Laplace-Beltrami operator on ∂Ω = ∂X. Hence

(5.11) Λ0 − Λ ∈ OPS0(∂Ω).

To proceed, take k ∈ Z+ and define a family of operators

(5.12) Lτ : Hk+2(Ω) −→ Hk(Ω)⊕Hk+1/2(∂Ω)

for τ ∈ C, by

(5.13) Lτv = (∆gv, ∂νv + τΛv).

Lemma 5.1. When τ 6= −1, Lτ in (5.12) is Fredholm, of index zero.

Proof. The proof is the same as that of Lemma 2.2, except that (5.9)–(5.11) replaces
(2.14). ¤

Of course, the case of direct interest in (5.13) is τ = +1.

Lemma 5.2. Given v ∈ H2(Ω),

(5.14) v ∈ N (L1) =⇒ v is constant.

Proof. The proof is the same as that of Lemma 2.3. ¤
For the constant function 1 to belong to N (L1), it is necessary and sufficient

that Λ1 = 0, i.e.,

(5.15) Λj1 = 0, ∀ j ∈ {1, . . . , K},
with Λj as in (5.7). This leads to the following.

Lemma 5.3. If (5.15) holds, then N (L1) = Span(1). If (5.15) fails, then
N (L1) = 0.

Remark. In light of (4.39)–(4.41), we see that (5.15) is equivalent to

(5.16) PIj(1) = 1, ∀ j ∈ {1, . . . , K}.
We are ready for our first existence result.

Proposition 5.4. If (5.15) fails, then (5.1) has a solution for all f ∈ C∞0 (Ω).

Proof. By Lemmas 5.1–5.3, L1 is an isomorphism in (5.12). Hence, for each f ∈
C∞0 (Ω), there is a unique v ∈ Hk+1(Ω) such that L1v = (f, 0). Elliptic regularity
implies v ∈ C∞(Ω). Then the construction (5.6) produces the desired solution
u. ¤

The following result complements Proposition 5.4.

Proposition 5.5. If (5.15) holds, then (5.1) has a solution for all f ∈ C∞0 (Ω)
satisfying (5.2).
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Proof. By Lemmas 5.1–5.3, L1 is Fredholm of index 0 in (5.12), and

(5.17) N (L1) = Span(1).

Hence

(5.18) R(L1) has codimension one in Hk(Ω)⊕Hk+1/2(∂Ω).

Taking k = 0, we want to identify the annihilator of R(L1) in L2(Ω)⊕H−1/2(∂Ω),
a space we know has dimension 1. To say (w, h) belongs to the annihilator of R(L1)
is to say that

(5.19) (∆gv, w) + (∂νv + Λv, h) = 0, ∀ v ∈ H2(Ω).

We note that (w, h) = (1,−1) satisfies this condition. In fact, Green’s theorem
implies

(5.20) (∆gv, 1) =
∫

∂Ω

∂νv dS,

and

(5.21) (Λv, 1) = (v, Λ1) = 0,

the latter identity by (5.15). The dimension count implies

(5.22) (w, h) = (1,−1) spans the annihilator of R(L1).

Hence, given f ∈ C∞0 (Ω),

(5.23)
∫

Ω

f dV = 0 =⇒ (f, 0) ∈ R(L1),

so there exists v ∈ H2(Ω) such that L1v = (f, 0). The end of the proof follows as
in Proposition 5.4. ¤

6. Rougher boundary values

Let M be a complete, n-dimensional Riemannian manifold with compact bound-
ary ∂M , and interior M . We assume M is connected. As shown in §4, we have

(6.1) PI : Hs(∂M) −→ Hs+1/2(M b) ∩ C∞(M) ∩ L∞(M#),

provided s ≥ 1/2. Here,

(6.2) M b = {x ∈ M : dist(x, ∂M) < 1}, M# = M \M b.

Our goal is to extend (6.1) to all s ∈ R.
To begin, a standard parametrix construction (cf. [10], Chapter 9, §2) yields

(6.3) P̃ : Hs(∂M) −→ Hs+1/2(M) ∩ C∞(M),

defined simultaneously for all s ∈ R, such that

(6.4)
h ∈ Hs(∂M) =⇒ supp P̃ h ⊂ M

b
, and

f = ∆gP̃ h ∈ C∞(M).

We construct PI in the form

(6.5) PI h = P̃ h−Qh,

where u = Qh satisfies

(6.6) ∆gu = f, u ∈ C∞(M) ∩ L∞(M), u = 0 on ∂M.
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This is like (5.1) except that now M has a boundary and we impose a Dirichlet
boundary condition. We parallel the construction of §5. In (6.6), we can take
arbitrary f ∈ C∞0 (M) (enlarging M b).

Let Ω ⊂ M be a smoothly bounded, connected open set that contains M b, with
compact closure Ω. Set X = M \Ω. We have ∂Ω = ∂M ∪∂X, and the construction
of §4 gives

(6.7) PI1 : C∞(∂X) −→ C∞(X) ∩ L∞(X),

extending to Hs(∂X) for s ≥ 1/2. We also have

(6.8) PI0 : C∞(∂X) −→ C∞(Ω),

given by

(6.9) u = PI0 h solves ∆gu = 0 on Ω, u
∣∣
∂M

= 0, u
∣∣
∂X

= h.

We define Λ0 and Λ1 by

(6.10) Λ1h = −∂νPI1h, Λ0h = ∂ν PI0 h,

where ν is the unit normal to ∂X pointing into X (out of Ω). Then Λ0, Λ1 ∈
OPS1(∂X) are elliptic, and

(6.11) Λ0 − Λ1 ∈ OPS0(∂X).

We want to find v ∈ C∞(Ω) such that

(6.12) ∆gv = f, v
∣∣
∂M

= 0, ∂νv = −Λ1v on ∂X,

given f ∈ C∞(M), supported on M
b
. If we have such a solution to (6.12), a solution

to (6.6) is given by

(6.13)
u(x) = v(x), x ∈ Ω,

PI1 v
∣∣
∂X

, x ∈ X.

To proceed, take k ∈ Z+ and define a family of maps

(6.14) Lτ : Hk+1
b (Ω) −→ Hk(Ω)⊕Hk+1/2(∂X)

for τ ∈ C, by

(6.15) Lτv = (∆gv, ∂νv + τΛ1v).

Here,

(6.16) Hk+2
b (Ω) = {v ∈ Hk+2(Ω) : v = 0 on ∂M}.

The argument used in Lemmas 2.2 and 5.1 gives the following.

Lemma 6.1. When τ 6= −1, Lτ in (6.14) is Fredholm, of index zero.

Then the argument used in Lemmas 2.3 and 5.2 gives the following.

Lemma 6.2. For k ≥ 0,

(6.17) N (L1) = 0.

Hence L1 is an isomorphism in (6.14).
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Proof. The argument in Lemma 2.3 works here to show that any v ∈ N (L1) must be
constant. Then the constraint v|∂M = 0 yields (6.17). The isomorphism property
follows from the index 0 property and (6.17). ¤

Solvability of (6.12) follows directly from Lemma 6.2 and elliptic regularity.
Then (6.13) produces the solution to (6.6), and the extension of (6.1) to all s ∈ R
is complete.

Appendix A. Harnack estimates, Liouville theorems, and
uniformization

The first Liouville theorem we establish is the following.

Proposition A.1. Let G(x) = (gij(x)) be a continuous symmetric n×n matrix
function, defining a metric tensor on Rn. Assume there exist B0, B1 ∈ (0,∞) such
that

(A.1) B0I ≤ G(x) ≤ B1I, ∀x ∈ Rn.

If u is a bounded solution to

(A.2) ∆gu = 0 on Rn,

then u is constant.

Before proving this, we deduce the following result.

Proposition A.2. In the setting of Proposition A.1, if n = 2 and gjk is Hölder
continuous, then (R2, gjk) is conformally equivalent to the flat plane (R2, δjk).

Proof. Under these hypotheses, there are local isothermal coordinates, so (R2, gjk)
has the structure of a Riemann surface. By the uniformization theorem, it is con-
formally equivalent to

(A.3) the flat plane

or

(A.4) the Poincaré disk.

(See [2] for a careful treatment of the uniformization theorem. For a PDE proof, see
[7].) The case (A.4) holds if and only if there is a nonconstant bounded harmonic
function on (R2, gjk); otherwise the case (A.3) holds. By Proposition A.1, we know
case (A.4) cannot hold. ¤

Remark. While the setting of Proposition A.2 is much more general than that of
(1.8)–(1.11), as carried out in §2, Proposition A.2 does not imply the results given
there, since we have no large x asymptotics on the conformal diffeomorphism of
(R2, gjk) with (R2, δjk) given by Proposition A.2.

The proof of Proposition A.1 (which is perhaps well known) makes use of Har-
nack’s inequality. See [3], pp. 44–45, for a related argument. We use the following
form of Harnack’s inequality, which follows from Corollary 8.21 of [3].

Proposition A.3. Let A(x) = (ajk(x)) be a continuous, symmetric, n × n
matrix function on B2(0) ⊂ Rn. Assume there exist A0, A1 ∈ (0,∞) such that

(A.5) A0I ≤ A(x) ≤ A1I, ∀x ∈ B2(0).
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There exists C = C(A0, A1, n) with the property that, if u is a solution to

(A.6) ∂ja
jk(x)∂ku = 0 on B2(0), u ≥ 0 on B2(0),

then

(A.7) sup
B1(0)

u(x) ≤ C inf
B1(0)

u(x).

Proof of Proposition A.1. To begin, adding a constant to u, we can arrange

(A.8) u ≥ 0 on Rn, inf
Rn

u = 0.

Then the goal is to show that u ≡ 0. Note that (A.2) is equivalent to

(A.9) ∂ja
jk(x)∂ku = 0, ajk(x) = g(x)1/2gjk(x),

where (gjk(x)) = (gjk(x))−1, g = det G. The hypothesis (A.1) implies (A.5), for
all x ∈ Rn. Now, for R > 0, define vR in B2(0) by

(A.10) vR(x) = u(Rx).

We have

(A.11) ∂ja
jk(Rx)∂kvR(x) = 0 on B2(0).

Now this replacement of (A.6) has the same ellipticity constants as in (A.5), so
Proposition A.3 implies that there exists C = C(A0, A1, n) (independent of R)
such that

(A.12) sup
B1(0)

vR ≤ C inf
B1(0)

vR,

hence

(A.13) sup
BR(0)

u ≤ C inf
BR(0)

u.

Taking R →∞ yields supRn u = 0, hence u ≡ 0, as desired. ¤
Note that Proposition A.1 does not imply Proposition 2.5, since the latter

allows for nontrivial topology. The following extension of Proposition A.1 is strictly
stronger than Proposition 2.5.

Proposition A.4. In the setting of Proposition A.1, cut out B1(0) from Rn

and glue in Ω, a compact Riemannian manifold with boundary ∂Ω ≈ Sn−1, to
form a Riemannian manifold with continuous metric tensor (M, gjk), agreeing with
(Rn, gjk) on |x| ≥ 1. If u is a bounded solution of

(A.14) ∆gu = 0 on M,

then u is constant.

Proof. As in the proof of Proposition A.1, we can add a constant to u and arrange

(A.15) u ≥ 0 on M, inf
M

u = 0.

Then the goal is to show u ≡ 0. Note that there must exist xν ∈ M \Ω ≈ Rn\B1(0)
such that

(A.16) |xν | = Rν + 1 →∞, u(xν) = εν → 0
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(|xν | denotes the Euclidean norm on Rn), since otherwise u would have to assume
its minimum at a point of M (hence u ≡ 0). Now a Harnack inequality argument
like that used in the proof of Proposition A.1 gives

(A.17) sup
BRν /2(xν)

u ≤ Cεν .

Then (assuming Rν > 2) we can cover

(A.18) Aν = {x ∈ Rn : Rν ≤ |x| ≤ Rν + 1}
by Mn balls of radius Rν/2, and invoke the Harnack estimate repeatedly to get

(A.19) sup
Aν

u ≤ C̃εν .

That u ≡ 0 then follows by the maximum principle. ¤
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