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Abstract. We show that the spectral counting function of S2 × S2 satisfies

N (S2 × S2, R) = 1
2R

4 +O(R3−1/3).

1. Introduction

If M is a smooth, compact Riemannian manifold of dimension n, equipped with
Laplace-Beltrami operator ∆, the Weyl formula specifies the asymptotic behavior
as R → +∞ of

(1.1) N (M,R) =
∑
λk≤R

dimVk,

where

(1.2) Vk = {u ∈ C∞(M) : ∆u = −λ2
ku},

and

(1.3) 0 = λ2
0 < λ2

1 < λ2
2 < · · · < λ2

j < · · · ↗ +∞

are the eigenvalues of −∆. The general formula is

(1.4) N (M,R) = Cn Vol(M)Rn +O(Rn−1), Cn =
(4π)−n/2

Γ(n2 + 1)
.

See [H].
As is well known, the remainder estimate in (1.4) is sharp for spheres. For

example, when M = S2, the unit sphere S2 ⊂ R3, and we take

(1.5) Λ =
(
−∆+

1

4
I
)1/2

,

we have

(1.6) SpecΛ =
{
k +

1

2
: k ∈ Z+

}
,

1



2

or equivalently, with λk as in (1.2),

(1.7) λ2
k = k(k + 1).

Furthermore,

(1.8) dimVk = 2k + 1,

so the remainder estimate O(R) cannot be improved in such a case.
For some time, people have looked for conditions on M that allow one to improve

the remainder estimate O(Rn−1). In [DG], it is shown that one can take o(Rn−1)
in case the geodesic flow on M has “not too many” periodic orbits. In [B] it is
shown that if either dimM = 2 and there are no conjugate points, or dimM ≥ 3
and the sectional curvatures are all ≤ 0, then one can take

(1.9) O(Rn−1/ logR)

as a remainder estimate in (1.4). Recently [CG] has obtained such an improved
remainder estimate for a much broader class of Riemannian manifolds. Among the
results obtained there is the result that the remainder estimate (1.9) holds when
M is a Cartesian product

(1.10) M = X × Y

of two Riemannian manifolds (each of positive dimension), with the product metric.
In another vein, it has long been known that one can get a much better remainder

estimate when M = Tn is the flat torus,

(1.11) Tn = Rn/2πZn.

In such a case, the eigenvalues of −∆ are the square-lengths of the points of Zn,
counted with multiplicity. One has remainder estimates of the form

(1.12) O(Rn−1−α),

with α > 0. Just how big one can take α is an open problem. In case n = 2, it is
known that one can take α > 1/3 but one cannot take α = 1/2; see [He], p. 450.

In this note, we examine the Cartesian product

(1.13) M = S2 × S2,

and observe the following.

Proposition 1.1. We have the Weyl formula

(1.14) N (S2 × S2, R) = C4 Vol(S
2 × S2)R4 +O(R3−1/3).

The analysis proceeds as follows. In §2 we use (1.5)–(1.8) to express the left side
of (1.14) (or rather a closely related quantity) as a “weighted lattice point count.”
In §3 we show how results of [RT] lead to an approximation to this weighted count,
yielding the right side of (1.14).

Note added. I have learned that the paper [IW] has the result (1.14), in the more
general setting of products of spheres, Sd1 × · · · × Sdn . The proof given there also
involves a weighted lattice point count.
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2. Analysis of N (S2 × S2) as a weighted lattice point count

Let us write the Laplace operator ∆ on S2 × S2 as ∆ = ∆1 +∆2, where ∆j are

the Laplace operators on the two factors. Define Λj = (−∆j + 1/4)1/2, parallel to
(1.5), so

(2.1) −∆ = Λ2
1 + Λ2

2 −
1

2
I.

We see that the spaces

(2.2) Vkℓ =
{
u(x)v(y) : Λ1u =

(
k +

1

2

)
u, Λ2v =

(
ℓ+

1

2

)
v
}
,

defined for k, ℓ ∈ Z+, yield an orthogonal decomposition

(2.3) L2(S2 × S2) =
⊕

k,ℓ∈Z+

Vkℓ,

and

(2.4)
w ∈ Vkℓ =⇒ −∆w = λ2

kℓw,

λ2
kℓ =

(
k +

1

2

)2

+
(
ℓ+

1

2

)2

− 1

2
.

It follows that the spectral counting function

(2.5) N (S2 × S2, R) =
∑

λkℓ≤R

dimVkℓ

is related to the weighted lattice point count

(2.6) Ñ (R) =
∑

(k+1/2)2+(ℓ+1/2)2≤R2

dimVkℓ

by

(2.7) N (S2 × S2, R) = Ñ
(√

R2 +
1

2

)
.

Since

(2.8)
(√

R2 +
1

2

)4

= R4 +R2 +
1

4
,
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the asserted result (1.14) is equivalent to the statement that

(2.9) Ñ (R) = C4 Vol(S
2 × S2)R4 +O(R3−1/3).

We also note that, by (1.8),

(2.10) dimVkℓ = (2k + 1)(2ℓ+ 1).

Here is another presentation of the function Ñ (R). Define the locally finite
measure µ on R2 by

(2.11) µ =
∑
k,ℓ∈Z

δpkℓ
, pkℓ =

(
k +

1

2
, ℓ+

1

2

)
,

define the function χR on R2 by

(2.12)
χR(x) = 1, if |x| ≤ R,

0, otherwise.

and define the functions x+
j on R2 (with x = (x1, x2)) by

(2.13)
x+
j = xj , if xj ≥ 0,

0, otherwise.

Then

(2.14) Ñ (R) = 4

∫
R2

x+
1 x

+
2 χR(x) dµ(x).

A crude analysis of (2.14) readily yields

(2.15) Ñ (R) = KR4 + o(R4),

with

(2.16)

K = 4

∫
|x|≤1

x+
1 x

+
2 dx

= 4

∫ 1

0

∫ π/2

0

r2 sin θ cos θ r dθ dr

=

∫ π/2

0

sin θ cos θ dθ

=
1

2
,

i.e.,

(2.17) Ñ (R) =
1

2
R4 + o(R4),

consistent with the leading term in (2.9), since

(2.18) C4 Vol(S
2 × S2) =

(4π)−2

Γ(3)
(4π)2 =

1

2
.

In §3 we make a finer analysis of (2.14), using material from [RT], and verify the
remainder estimate in (2.9).
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3. Approximation of Ñ (R) as a quadrature problem

Here we describe a result, Proposition 3.2 of [RT], and show that it applies to

the formula (2.14) for Ñ (R) and yields (2.9) (which in turn implies Proposition
1.1). The general setting of [RT] takes u ∈ L∞(Tn), Tn = Rn/2πZn, and examines
the approximation of the mean value

(3.1) Mu = (2π)−n

∫
Tn

u(x) dx

by

(3.2) σhu(x) = ν−n
∑

ℓ∈(Z/ν)n
u(x+ hℓ), h =

2π

ν
,

where ν ∈ N and Z/ν denotes the group of residue classes mod ν. The goal is to
examine the difference

(3.3) ρhu(x) = σhu(x)−Mu.

An entry to this analysis is the basic identity

(3.4) ρhu(x) =
∑

j∈Zn\0

û(νj)eiνj·x, ν =
2π

h
.

To state the result, we bring in the space F s, defined for s > 0 by

(3.5)
u ∈ F s ⇐⇒ |û(j)| ≤ C(1 + |j|)−s,

∥u∥F s = sup
j∈Zn

(1 + |j|)s|û(j)|.

A key example is the following. Suppose

(3.6) Ω ⊂ Tn is open, and ∂Ω = Σ is smooth and has positive Gauss curvature.

Then

(3.7) χΩ ∈ F (n+1)/2,

where χΩ = 1 on Ω, 0 on Tn \ Ω. We denote by PLip(Ω) the set of functions on
Tn that are Lipschitz on each component of Tn \Σ, with a jump across Σ. Here is
Proposition 3.2 of [RT].
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Proposition 3.1. Assume Ω satisfies (3.6), and assume u ∈ L∞(Tn) satisfies

(3.8) u ∈ F s ∩ PLip(Ω), s =
n+ 1

2
.

Then

(3.9) ∥ρhu∥L∞ ≤ Ch2n/(n+1)
(
∥u∥F s + ∥u∥L∞ + ∥u∥PLip

)
.

In case n = 2, (3.9) becomes

(3.10) ∥ρhu∥L∞ ≤ Ch4/3
(
∥u∥F s + ∥u∥L∞ + ∥u∥PLip

)
.

To apply this result to Ñ (R), let us modify (2.11) to

(3.11) µh =
( h

2π

)2 ∑
k,ℓ∈Z

δhpkℓ
, h =

2π

ν
,

with ν ∈ N. Then

(3.12) Ñ (R) = (2π)2h−4

∫
R2

4x+
1 x

+
2 χr(x) dµh(x), r = hR.

As R → ∞, pick ν = ν(R) ∈ N such that 2πR/ν(R) ∈ [1/2, 3/2]. Then the disk
Dr = {x ∈ R2 : |x| ≤ r} can be regarded as a subset of T2, and we can write

(3.13) Ñ (R) = (2π)−2h−4

∫
T2

ur(x) dµh(x),

with

(3.14) ur(x) = 4x+
1 x

+
2 χr(x).

Comparison with (3.2) gives

(3.15) Ñ (R) = (2π)2h−4σhur(h/2, h/2).

Now, parallel to (2.16), we have

(3.16) Mur = (2π)−2 r
4

2
= (2π)−2 · 1

2
· h4R4,
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so (compare (2.17))

(3.17) (2π)2h−4Mur =
1

2
R4.

Consequently, our desired result (2.9) is equivalent to the statment that

(3.18) |ρhur(h/2, h/2)| ≤ Ch4/3.

We claim that actually

(3.19) ∥ρhur∥L∞ ≤ Ch4/3.

To verify (3.19), it suffices to check that ur satisfies the hypotheses of Proposition
3.1, uniformly in r ∈ [1/2, 3/2]. Clearly Ω = Dr satisfies (3.6), and ur ∈ PLip(Dr).
It remains to show that

(3.20) ur ∈ F 3/2.

Since we know that χr ∈ F 3/2, this is a special case of the following.

Lemma 3.2. Assume s ∈ (0, 2] and v ∈ F s has support in a disk Dr with r < π.
Then

(3.21) x+
j v ∈ F s.

This follows from a convolution estimate that we leave to the reader.
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