Spectral Asymptotics of $S^{2} \times S^{2}$

Michael Taylor

Abstract. We show that the spectral counting function of $S^{2} \times S^{2}$ satisfies

$$
\mathcal{N}\left(S^{2} \times S^{2}, R\right)=\frac{1}{2} R^{4}+O\left(R^{3-1 / 3}\right)
$$

1. Introduction

If M is a smooth, compact Riemannian manifold of dimension n, equipped with Laplace-Beltrami operator Δ, the Weyl formula specifies the asymptotic behavior as $R \rightarrow+\infty$ of

$$
\begin{equation*}
\mathcal{N}(M, R)=\sum_{\lambda_{k} \leq R} \operatorname{dim} V_{k} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{k}=\left\{u \in C^{\infty}(M): \Delta u=-\lambda_{k}^{2} u\right\} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\lambda_{0}^{2}<\lambda_{1}^{2}<\lambda_{2}^{2}<\cdots<\lambda_{j}^{2}<\cdots \nearrow+\infty \tag{1.3}
\end{equation*}
$$

are the eigenvalues of $-\Delta$. The general formula is

$$
\begin{equation*}
\mathcal{N}(M, R)=C_{n} \operatorname{Vol}(M) R^{n}+O\left(R^{n-1}\right), \quad C_{n}=\frac{(4 \pi)^{-n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} \tag{1.4}
\end{equation*}
$$

See $[H]$.
As is well known, the remainder estimate in (1.4) is sharp for spheres. For example, when $M=S^{2}$, the unit sphere $S^{2} \subset \mathbb{R}^{3}$, and we take

$$
\begin{equation*}
\Lambda=\left(-\Delta+\frac{1}{4} I\right)^{1 / 2} \tag{1.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{Spec} \Lambda=\left\{k+\frac{1}{2}: k \in \mathbb{Z}^{+}\right\} \tag{1.6}
\end{equation*}
$$

or equivalently, with λ_{k} as in (1.2),

$$
\begin{equation*}
\lambda_{k}^{2}=k(k+1) \tag{1.7}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\operatorname{dim} V_{k}=2 k+1, \tag{1.8}
\end{equation*}
$$

so the remainder estimate $O(R)$ cannot be improved in such a case.
For some time, people have looked for conditions on M that allow one to improve the remainder estimate $O\left(R^{n-1}\right)$. In [DG], it is shown that one can take $o\left(R^{n-1}\right)$ in case the geodesic flow on M has "not too many" periodic orbits. In [B] it is shown that if either $\operatorname{dim} M=2$ and there are no conjugate points, or $\operatorname{dim} M \geq 3$ and the sectional curvatures are all ≤ 0, then one can take

$$
\begin{equation*}
O\left(R^{n-1} / \log R\right) \tag{1.9}
\end{equation*}
$$

as a remainder estimate in (1.4). Recently [CG] has obtained such an improved remainder estimate for a much broader class of Riemannian manifolds. Among the results obtained there is the result that the remainder estimate (1.9) holds when M is a Cartesian product

$$
\begin{equation*}
M=X \times Y \tag{1.10}
\end{equation*}
$$

of two Riemannian manifolds (each of positive dimension), with the product metric.
In another vein, it has long been known that one can get a much better remainder estimate when $M=\mathbb{T}^{n}$ is the flat torus,

$$
\begin{equation*}
\mathbb{T}^{n}=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n} \tag{1.11}
\end{equation*}
$$

In such a case, the eigenvalues of $-\Delta$ are the square-lengths of the points of \mathbb{Z}^{n}, counted with multiplicity. One has remainder estimates of the form

$$
\begin{equation*}
O\left(R^{n-1-\alpha}\right), \tag{1.12}
\end{equation*}
$$

with $\alpha>0$. Just how big one can take α is an open problem. In case $n=2$, it is known that one can take $\alpha>1 / 3$ but one cannot take $\alpha=1 / 2$; see [He], p. 450.

In this note, we examine the Cartesian product

$$
\begin{equation*}
M=S^{2} \times S^{2} \tag{1.13}
\end{equation*}
$$

and observe the following.
Proposition 1.1. We have the Weyl formula

$$
\begin{equation*}
\mathcal{N}\left(S^{2} \times S^{2}, R\right)=C_{4} \operatorname{Vol}\left(S^{2} \times S^{2}\right) R^{4}+O\left(R^{3-1 / 3}\right) \tag{1.14}
\end{equation*}
$$

The analysis proceeds as follows. In $\S 2$ we use (1.5)-(1.8) to express the left side of (1.14) (or rather a closely related quantity) as a "weighted lattice point count." In $\S 3$ we show how results of $[R T]$ lead to an approximation to this weighted count, yielding the right side of (1.14).

Note added. I have learned that the paper [IW] has the result (1.14), in the more general setting of products of spheres, $S^{d_{1}} \times \cdots \times S^{d_{n}}$. The proof given there also involves a weighted lattice point count.

2. Analysis of $\mathcal{N}\left(S^{2} \times S^{2}\right)$ as a weighted lattice point count

Let us write the Laplace operator Δ on $S^{2} \times S^{2}$ as $\Delta=\Delta_{1}+\Delta_{2}$, where Δ_{j} are the Laplace operators on the two factors. Define $\Lambda_{j}=\left(-\Delta_{j}+1 / 4\right)^{1 / 2}$, parallel to (1.5), so

$$
\begin{equation*}
-\Delta=\Lambda_{1}^{2}+\Lambda_{2}^{2}-\frac{1}{2} I . \tag{2.1}
\end{equation*}
$$

We see that the spaces

$$
\begin{equation*}
V_{k \ell}=\left\{u(x) v(y): \Lambda_{1} u=\left(k+\frac{1}{2}\right) u, \Lambda_{2} v=\left(\ell+\frac{1}{2}\right) v\right\} \tag{2.2}
\end{equation*}
$$

defined for $k, \ell \in \mathbb{Z}^{+}$, yield an orthogonal decomposition

$$
\begin{equation*}
L^{2}\left(S^{2} \times S^{2}\right)=\bigoplus_{k, \ell \in \mathbb{Z}^{+}} V_{k \ell}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
w \in V_{k \ell} \Longrightarrow-\Delta w & =\lambda_{k \ell}^{2} w, \\
\lambda_{k \ell}^{2} & =\left(k+\frac{1}{2}\right)^{2}+\left(\ell+\frac{1}{2}\right)^{2}-\frac{1}{2} . \tag{2.4}
\end{align*}
$$

It follows that the spectral counting function

$$
\begin{equation*}
\mathcal{N}\left(S^{2} \times S^{2}, R\right)=\sum_{\lambda_{k \ell} \leq R} \operatorname{dim} V_{k \ell} \tag{2.5}
\end{equation*}
$$

is related to the weighted lattice point count

$$
\begin{equation*}
\widetilde{\mathcal{N}}(R)=\sum_{(k+1 / 2)^{2}+(\ell+1 / 2)^{2} \leq R^{2}} \operatorname{dim} V_{k \ell} \tag{2.6}
\end{equation*}
$$

by

$$
\begin{equation*}
\mathcal{N}\left(S^{2} \times S^{2}, R\right)=\tilde{\mathcal{N}}\left(\sqrt{R^{2}+\frac{1}{2}}\right) \tag{2.7}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(\sqrt{R^{2}+\frac{1}{2}}\right)^{4}=R^{4}+R^{2}+\frac{1}{4} \tag{2.8}
\end{equation*}
$$

the asserted result (1.14) is equivalent to the statement that

$$
\begin{equation*}
\tilde{\mathcal{N}}(R)=C_{4} \operatorname{Vol}\left(S^{2} \times S^{2}\right) R^{4}+O\left(R^{3-1 / 3}\right) \tag{2.9}
\end{equation*}
$$

We also note that, by (1.8),

$$
\begin{equation*}
\operatorname{dim} V_{k \ell}=(2 k+1)(2 \ell+1) . \tag{2.10}
\end{equation*}
$$

Here is another presentation of the function $\widetilde{\mathcal{N}}(R)$. Define the locally finite measure μ on \mathbb{R}^{2} by

$$
\begin{equation*}
\mu=\sum_{k, \ell \in \mathbb{Z}} \delta_{p_{k \ell}}, \quad p_{k \ell}=\left(k+\frac{1}{2}, \ell+\frac{1}{2}\right), \tag{2.11}
\end{equation*}
$$

define the function χ_{R} on \mathbb{R}^{2} by

$$
\begin{align*}
\chi_{R}(x)=1, & \text { if }|x| \leq R \tag{2.12}\\
0, & \text { otherwise }
\end{align*}
$$

and define the functions x_{j}^{+}on \mathbb{R}^{2} (with $\left.x=\left(x_{1}, x_{2}\right)\right)$ by

$$
\begin{align*}
x_{j}^{+}=x_{j}, & \text { if } \quad x_{j} \geq 0 \tag{2.13}\\
0, & \text { otherwise } .
\end{align*}
$$

Then

$$
\begin{equation*}
\tilde{\mathcal{N}}(R)=4 \int_{\mathbb{R}^{2}} x_{1}^{+} x_{2}^{+} \chi_{R}(x) d \mu(x) \tag{2.14}
\end{equation*}
$$

A crude analysis of (2.14) readily yields

$$
\begin{equation*}
\widetilde{\mathcal{N}}(R)=K R^{4}+o\left(R^{4}\right) \tag{2.15}
\end{equation*}
$$

with

$$
\begin{align*}
K & =4 \int_{|x| \leq 1} x_{1}^{+} x_{2}^{+} d x \\
& =4 \int_{0}^{1} \int_{0}^{\pi / 2} r^{2} \sin \theta \cos \theta r d \theta d r \tag{2.16}\\
& =\int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta \\
& =\frac{1}{2}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\widetilde{\mathcal{N}}(R)=\frac{1}{2} R^{4}+o\left(R^{4}\right) \tag{2.17}
\end{equation*}
$$

consistent with the leading term in (2.9), since

$$
\begin{equation*}
C_{4} \operatorname{Vol}\left(S^{2} \times S^{2}\right)=\frac{(4 \pi)^{-2}}{\Gamma(3)}(4 \pi)^{2}=\frac{1}{2} . \tag{2.18}
\end{equation*}
$$

In $\S 3$ we make a finer analysis of (2.14), using material from [RT], and verify the remainder estimate in (2.9).

3. Approximation of $\widetilde{\mathcal{N}}(R)$ as a quadrature problem

Here we describe a result, Proposition 3.2 of [RT], and show that it applies to the formula (2.14) for $\widetilde{\mathcal{N}}(R)$ and yields (2.9) (which in turn implies Proposition 1.1). The general setting of $[\mathrm{RT}]$ takes $u \in L^{\infty}\left(\mathbb{T}^{n}\right), \mathbb{T}^{n}=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n}$, and examines the approximation of the mean value

$$
\begin{equation*}
M u=(2 \pi)^{-n} \int_{\mathbb{T}^{n}} u(x) d x \tag{3.1}
\end{equation*}
$$

by

$$
\begin{equation*}
\sigma_{h} u(x)=\nu^{-n} \sum_{\ell \in(\mathbb{Z} / \nu)^{n}} u(x+h \ell), \quad h=\frac{2 \pi}{\nu}, \tag{3.2}
\end{equation*}
$$

where $\nu \in \mathbb{N}$ and \mathbb{Z} / ν denotes the group of residue classes $\bmod \nu$. The goal is to examine the difference

$$
\begin{equation*}
\rho_{h} u(x)=\sigma_{h} u(x)-M u . \tag{3.3}
\end{equation*}
$$

An entry to this analysis is the basic identity

$$
\begin{equation*}
\rho_{h} u(x)=\sum_{j \in \mathbb{Z}^{n} \backslash 0} \hat{u}(\nu j) e^{i \nu j \cdot x}, \quad \nu=\frac{2 \pi}{h} . \tag{3.4}
\end{equation*}
$$

To state the result, we bring in the space F^{s}, defined for $s>0$ by

$$
\begin{gather*}
u \in F^{s} \Longleftrightarrow|\hat{u}(j)| \leq C(1+|j|)^{-s} \\
\|u\|_{F^{s}}=\sup _{j \in \mathbb{Z}^{n}}(1+|j|)^{s}|\hat{u}(j)| \tag{3.5}
\end{gather*}
$$

A key example is the following. Suppose
(3.6) $\Omega \subset \mathbb{T}^{n}$ is open, and $\partial \Omega=\Sigma$ is smooth and has positive Gauss curvature.

Then

$$
\begin{equation*}
\chi_{\Omega} \in F^{(n+1) / 2} \tag{3.7}
\end{equation*}
$$

where $\chi_{\Omega}=1$ on $\bar{\Omega}, 0$ on $\mathbb{T}^{n} \backslash \bar{\Omega}$. We denote by $\operatorname{PLip}(\Omega)$ the set of functions on \mathbb{T}^{n} that are Lipschitz on each component of $\mathbb{T}^{n} \backslash \Sigma$, with a jump across Σ. Here is Proposition 3.2 of [RT].

Proposition 3.1. Assume Ω satisfies (3.6), and assume $u \in L^{\infty}\left(\mathbb{T}^{n}\right)$ satisfies

$$
\begin{equation*}
u \in F^{s} \cap \operatorname{PLip}(\Omega), \quad s=\frac{n+1}{2} . \tag{3.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\rho_{h} u\right\|_{L^{\infty}} \leq C h^{2 n /(n+1)}\left(\|u\|_{F^{s}}+\|u\|_{L^{\infty}}+\|u\|_{\text {PLip }}\right) . \tag{3.9}
\end{equation*}
$$

In case $n=2$, (3.9) becomes

$$
\begin{equation*}
\left\|\rho_{h} u\right\|_{L^{\infty}} \leq C h^{4 / 3}\left(\|u\|_{F^{s}}+\|u\|_{L^{\infty}}+\|u\|_{\text {PLip }}\right) . \tag{3.10}
\end{equation*}
$$

To apply this result to $\widetilde{\mathcal{N}}(R)$, let us modify (2.11) to

$$
\begin{equation*}
\mu_{h}=\left(\frac{h}{2 \pi}\right)^{2} \sum_{k, \ell \in \mathbb{Z}} \delta_{h p_{k \ell}}, \quad h=\frac{2 \pi}{\nu}, \tag{3.11}
\end{equation*}
$$

with $\nu \in \mathbb{N}$. Then

$$
\begin{equation*}
\tilde{\mathcal{N}}(R)=(2 \pi)^{2} h^{-4} \int_{\mathbb{R}^{2}} 4 x_{1}^{+} x_{2}^{+} \chi_{r}(x) d \mu_{h}(x), \quad r=h R . \tag{3.12}
\end{equation*}
$$

As $R \rightarrow \infty$, pick $\nu=\nu(R) \in \mathbb{N}$ such that $2 \pi R / \nu(R) \in[1 / 2,3 / 2]$. Then the disk $D_{r}=\left\{x \in \mathbb{R}^{2}:|x| \leq r\right\}$ can be regarded as a subset of \mathbb{T}^{2}, and we can write

$$
\begin{equation*}
\widetilde{\mathcal{N}}(R)=(2 \pi)^{-2} h^{-4} \int_{\mathbb{T}^{2}} u_{r}(x) d \mu_{h}(x) \tag{3.13}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{r}(x)=4 x_{1}^{+} x_{2}^{+} \chi_{r}(x) . \tag{3.14}
\end{equation*}
$$

Comparison with (3.2) gives

$$
\begin{equation*}
\widetilde{\mathcal{N}}(R)=(2 \pi)^{2} h^{-4} \sigma_{h} u_{r}(h / 2, h / 2) . \tag{3.15}
\end{equation*}
$$

Now, parallel to (2.16), we have

$$
\begin{equation*}
M u_{r}=(2 \pi)^{-2} \frac{r^{4}}{2}=(2 \pi)^{-2} \cdot \frac{1}{2} \cdot h^{4} R^{4} \tag{3.16}
\end{equation*}
$$

so (compare (2.17))

$$
\begin{equation*}
(2 \pi)^{2} h^{-4} M u_{r}=\frac{1}{2} R^{4} . \tag{3.17}
\end{equation*}
$$

Consequently, our desired result (2.9) is equivalent to the statment that

$$
\begin{equation*}
\left|\rho_{h} u_{r}(h / 2, h / 2)\right| \leq C h^{4 / 3} . \tag{3.18}
\end{equation*}
$$

We claim that actually

$$
\begin{equation*}
\left\|\rho_{h} u_{r}\right\|_{L^{\infty}} \leq C h^{4 / 3} \tag{3.19}
\end{equation*}
$$

To verify (3.19), it suffices to check that u_{r} satisfies the hypotheses of Proposition 3.1, uniformly in $r \in[1 / 2,3 / 2]$. Clearly $\Omega=D_{r}$ satisfies (3.6), and $u_{r} \in \operatorname{PLip}\left(D_{r}\right)$. It remains to show that

$$
\begin{equation*}
u_{r} \in F^{3 / 2} . \tag{3.20}
\end{equation*}
$$

Since we know that $\chi_{r} \in F^{3 / 2}$, this is a special case of the following.
Lemma 3.2. Assume $s \in(0,2]$ and $v \in F^{s}$ has support in a disk D_{r} with $r<\pi$. Then

$$
\begin{equation*}
x_{j}^{+} v \in F^{s} . \tag{3.21}
\end{equation*}
$$

This follows from a convolution estimate that we leave to the reader.

References

[B] P. Berard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Zeit. 155 (1977), 249-276.
[CG] Y. Canzani and J. Galkowski, Weyl remainder estimates: an application of geodesic beams, Preprint, 2020.
[DG] J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 49-79.
[He] D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441-482.
[H] L. Hörmander, The spectral function of an elliptic operator, Acta. Math. 121 (1968), 193-218.
[IW] A. Iosevich and E. Weyman, Weyl law improvement for products of spheres, Preprint, 2019.
[RT] J. Rauch and M. Taylor, Quadrature estimates for multi-dimensional integrals, Houston J. Math. 36 (2010), 727-749.

