Dirichlet Problem for Wave Equations

Michael Taylor

Let M be a compact, n-dimensional Riemannian manifold, with Laplace operator Δ. We consider the following Dirichlet problem for the wave equation,

$$
\begin{align*}
& \left(\partial_{t}^{2}-\Delta\right) u=0, \quad 0 \leq t \leq T \\
& u(0, x)=f(x), \quad u(T, x)=g(x) \tag{1}
\end{align*}
$$

and aim to establish the following.
Proposition 1. Take $s>n$. Then, for a.e. $T \in(0, \infty)$, (1) has a unique solution for each $f, g \in H^{s}(M)$, satisfying

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{2}(M)} \leq C\left(\|f\|_{H^{s}(M)}+\|g\|_{H^{s}(M)}\right) . \tag{2}
\end{equation*}
$$

To get this, we let $\left\{u_{k}: k \geq 0\right\}$ be an orthonormal basis of $L^{2}(M)$, consisting of eigenfunctions of Δ,

$$
\begin{equation*}
\Delta u_{k}=-\lambda_{k}^{2} u_{k}, \quad 0 \leq \lambda_{0}<\lambda_{1}<\cdots \nearrow \infty . \tag{3}
\end{equation*}
$$

(Assume M is connected.) We seek a solution

$$
\begin{equation*}
u(t, x)=\left(a_{0}+b_{0} t\right) u_{0}+\sum_{k \geq 1}\left(a_{k} e^{i t \lambda_{k}}+b_{k} e^{-i t \lambda_{k}}\right) u_{k} \tag{4}
\end{equation*}
$$

We write

$$
\begin{equation*}
f=\sum \hat{f}(k) u_{k}, \quad g=\sum \hat{g}(k) u_{k}, \tag{5}
\end{equation*}
$$

with $\hat{f}(k)=\left(f, u_{k}\right)$. The boundary condition in (1) requires

$$
\begin{equation*}
a_{0}=\hat{f}(0), \quad a_{0}+b_{0} T=\hat{g}(0), \tag{6}
\end{equation*}
$$

and, for $k \geq 1$,

$$
\begin{align*}
a_{k}+b_{k} & =\hat{f}(k), \\
e^{i T \lambda_{k}} a_{k}+e^{-i T \lambda_{k}} b_{k} & =\hat{g}(k) . \tag{7}
\end{align*}
$$

From (7) we get

$$
\begin{equation*}
b_{k}=\frac{e^{i T \lambda_{k}} \hat{f}(k)-\hat{g}(k)}{2 i \sin T \lambda_{k}} . \tag{8}
\end{equation*}
$$

Thus our task is to show that, for a.e. $T>0,\left|\sin T \lambda_{k}\right|$ stays away from 0 , in a quantifiable way, for $k \geq 1$ (hence for $\lambda_{k} \geq \lambda_{1}=b>0$).

To this end, let us take $A \geq 1$ and $\gamma \in(0,1)$, and estimate

$$
\begin{equation*}
\int_{0}^{A}|\sin t \lambda|^{-\gamma} d t, \quad \text { for } \quad \lambda \geq b \tag{9}
\end{equation*}
$$

A change of variable shows that (9) is equal to

$$
\begin{equation*}
\frac{1}{\lambda} \int_{0}^{A \lambda}|\sin s|^{-\gamma} d s \leq C \tag{10}
\end{equation*}
$$

where $C=C_{\gamma, b} A$. Hence, if we fix $\sigma>0$ and set

$$
\begin{equation*}
X_{k, N}=\left\{t \in(0, A]:\left|\sin t \lambda_{k}\right|^{-\gamma} \geq N \lambda_{k}^{\sigma}\right\} \tag{11}
\end{equation*}
$$

we have, by Chebecheff's inequality,

$$
\begin{equation*}
m\left(X_{k, N}\right) \leq \frac{C}{N} \lambda_{k}^{-\sigma} . \tag{12}
\end{equation*}
$$

It follows that, for each N,

$$
\begin{equation*}
m\left(\bigcup_{k \geq 1} X_{k, N}\right) \leq \frac{C}{N} \sum_{k \geq 1} \lambda_{k}^{-\sigma}=\frac{C^{\prime}}{N} \tag{13}
\end{equation*}
$$

provided

$$
\begin{equation*}
C \sum_{k \geq 1} \lambda_{k}^{-\sigma}=C^{\prime}<\infty . \tag{14}
\end{equation*}
$$

We then get

$$
\begin{equation*}
m\left([0, A] \backslash \bigcup_{k \geq 1} X_{k, N}\right) \geq A-\frac{C^{\prime}}{N} \tag{15}
\end{equation*}
$$

Now, for T in the set measured in (15),

$$
\begin{equation*}
\left|\sin T \lambda_{k}\right|^{-1} \leq N^{1 / \gamma} \lambda_{k}^{\sigma / \gamma}, \quad \forall k \geq 1 . \tag{16}
\end{equation*}
$$

It follows that, for such T,

$$
\begin{equation*}
\left|b_{k}\right| \leq N^{1 / \gamma}(|\hat{f}(k)|+|\hat{g}(k)|) \lambda_{k}^{\sigma / \gamma}, \tag{17}
\end{equation*}
$$

with a similar estimate on $\left|a_{k}\right|$, so (2) holds as long as

$$
\begin{equation*}
\sum_{k \geq 1} \lambda_{k}^{-s}<\infty \tag{19}
\end{equation*}
$$

In view of the Weyl asymptotic formula

$$
\begin{equation*}
\lambda_{k} \sim C(M) k^{1 / n}, \quad k \nearrow \infty, \tag{19}
\end{equation*}
$$

this holds as long as $s>n$.
Remark 1. Once one has (17), we also have, for each $r \in \mathbb{R}$,

$$
\begin{equation*}
\|u(t, \cdot)\|_{H^{r}(M)} \leq C\left(\|f\|_{H^{r+s}(M)}+\|g\|_{H^{r+s}(M)}\right) \tag{20}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
\left\|\partial_{t} u(t, \cdot)\right\|_{H^{r-1}(M)} \leq \text { RHS }(20) . \tag{21}
\end{equation*}
$$

Furthermore, the solution to (1) holds for all $t \in \mathbb{R}$, not just for $t \in[0, T]$.
Remark 2. Note that the assertion that (18) holds for all $s>n$ is equivalent to the assertion that

$$
\begin{equation*}
(-\Delta+1)^{-s / 2} \text { is Hilbert-Schmidt on } L^{2}(M) \text {, for } s>n / 2 \text {, } \tag{22}
\end{equation*}
$$ hence a consequence of the fact that any continuous linear operator

$$
\begin{equation*}
T: L^{2}(M) \longrightarrow H^{s}(M), \quad s>\frac{n}{2} \tag{23}
\end{equation*}
$$

is Hilbert-Schmidt on $L^{2}(M)$. This is more elementary than a derivation of eigenvalue asymptotics (19).

