Local Regularity of Solutions to $\Delta u = f$

MICHAEL TAYLOR

Let M be a compact Riemannian manifold, with Laplace operator Δ . As seen in §5.1 of [T], we have an isomorphism

(1)
$$L: H^1(M) \xrightarrow{\approx} H^{-1}(M), \quad L = -\Delta + 1.$$

More generally,

(2)
$$L: H^{k+1}(M) \xrightarrow{\approx} H^{k-1}(M),$$

for $k \in \mathbb{Z}^+$, and then, by duality, for all $k \in \mathbb{Z}$. Furthermore, by interpolation (cf. [T], Chapter 5, (1.53)–(1.54)),

(3)
$$L: H^{s+1}(M) \xrightarrow{\approx} H^{s-1}(M), \quad \forall s \in \mathbb{R}.$$

Here, we establish a local regularity result. Here is our first version.

Proposition 1. If $\Omega \subset M$ is open, then, for each $s \in \mathbb{R}$,

(4)
$$u \in H^s_{\text{loc}}(\Omega), \ \Delta u = f \in H^{s-1}_{\text{loc}}(\Omega) \Longrightarrow u \in H^{s+1}_{\text{loc}}(\Omega).$$

Here, by definition,

(5)
$$u \in H^s_{\text{loc}}(\Omega) \iff \varphi u \in H^s(M), \ \forall \varphi \in C_0^{\infty}(\Omega).$$

Proof. Assume the hypothesis in (4) holds. Take $\varphi \in C_0^{\infty}(\Omega)$, so $\varphi u \in H^s(M)$. Then

(6)
$$\Delta(\varphi u) = \varphi \Delta u + [\Delta, \varphi]u,$$

where $[\Delta, \varphi] = X_{\varphi}$ is a first-order differential operator, whose coefficients are supported in supp $\varphi \subset \subset \Omega$. Hence

(7)
$$u \in H^s_{\text{loc}}(\Omega) \Longrightarrow X_{\varphi} u \in H^{s-1}(M).$$

We have

(8)
$$(\Delta - 1)(\varphi u) = \varphi \Delta u + X_{\varphi} u - \varphi u \in H^{s-1}(M),$$

so the isomorphism (3) implies $\varphi u \in H^{s+1}(M)$. This proves Proposition 1. Note that applying L^{-1} to (8) yields the estimate

(9)
$$\|\varphi u\|_{H^{s+1}(M)} \leq C \|\varphi \Delta u\|_{H^{s-1}(M)} + C \|X_{\varphi} u - \varphi u\|_{H^{s-1}(M)} \\ \leq C \|\varphi \Delta u\|_{H^{s-1}(M)} + C \|\psi u\|_{H^{s}(M)},$$

provided $\psi \in C_0^{\infty}$ satisfies $\psi > 0$ on $\operatorname{supp} \varphi$.

Iterating this argument yields the following.

Proposition 2. In the setting of Proposition 1, if $s < r \in \mathbb{R}$, then

(10)
$$u \in H^s_{\text{loc}}(\Omega), \ \Delta u = f \in H^{r-1}_{\text{loc}}(\Omega) \Longrightarrow u \in H^{r+1}_{\text{loc}}(\Omega),$$

and, for $\varphi, \psi \in C_0^{\infty}(\Omega), \ \psi > 0 \ on \ \operatorname{supp} \varphi$,

(11)
$$\|\varphi u\|_{H^{r+1}(M)} \le C \|\varphi \Delta u\|_{H^{r-1}(M)} + C \|\psi u\|_{H^s(M)}.$$

Proof. Given that s < r, the hypotheses of (10) yield

(12)
$$u \in H^{s+1}_{\text{loc}}(\Omega),$$

as an application of (4). Now if $s + 1 \leq r$, one can again apply (4), with s replaced by s + 1, to get $u \in H^{s+2}_{loc}(\Omega)$. Continue until you get $u \in H^{s+\ell}_{loc}(\Omega)$ and $s + \ell \geq r$. Then you can apply (4) one last time, with s replaced by r, to get $u \in H^{r+1}_{loc}(\Omega)$. We leave it to the reader to carry out the estimate (11).

Reference

[T] M. Taylor, Partial Differential Equations, Vol. 1, Springer, NY, 1996 (2nd ed. 2011).