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Abstract

We show that if ∆ is the Laplace-Beltrami operator on the unit
2-sphere S2, and

L = ∆+ Z2,

where Z is the real vector field that generates 2π-periodic rotation
about the x3-axis, then the spectral counting function of L satisfies

N (L,R) =
π

4
R2 +O(R1−α),

with α = 1/3. Going further, we analyze the spectral counting func-
tions of

∆ + aZ2,

in the entire elliptic range a ∈ (−1,∞), and show that, for all such
nonzero a,

N (∆ + aZ2, R) = KaR
2 +O(R1−α),

with Ka given in §4. The proofs involve a variety of lattice point
estimates, established in §5.
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1 Introduction

As is well known, the Laplace operator ∆ on the unit sphere S2 ⊂ R3, with
its standard metric, exhibits spectral clustering. In fact,

Spec(−∆) = {k2 + k : k ∈ Z+}, (1.1)

and, if
Vk = {u ∈ C∞(S2) : −∆u = (k2 + k)u}, (1.2)

then
dimVk = 2k + 1. (1.3)

Going further, we can let Z denote the real vector field generating rotation
of S2 about the x3-axis, with period 2π, and set X = −iZ, so X is a
self-adjoint operator, commuting with ∆, and then Vk has an orthonormal
basis

Y ℓ
k , −k ≤ ℓ ≤ k, XY ℓ

k = ℓY ℓ
k . (1.4)

There are many places where such basic results on spherical harmonics can
be found. We mention in particular [9], Chapter 8, §4, and [10], Chapter 7,
§4.

One neat way to record the information in (1.1)–(1.4) is to bring in the
operators

Λ =
(
−∆+

1

4

)1/2
, Λ0 = Λ− 1

2
. (1.5)

Then
u ∈ Vk =⇒ Λ0v = kv. (1.6)

Hence the joint spectrum of Λ0 and X is given by

Spec(Λ0, X) = {(k, ℓ) ∈ Z× Z : k ≥ 0, |ℓ| ≤ k}, (1.7)

and each joint eigenspace is one dimensional, spanned by Y ℓ
k , satisfying

Λ0Y
ℓ
k = kY ℓ

k , XY ℓ
k = ℓY ℓ

k . (1.8)

See Figure 1.1.
For the Laplace operator ∆M on a compact Riemannian manifold M ,

one defines the spectral counting function

N (∆M , R) =
∑
λ≤R

dimVλ(∆M ), (1.9)
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Figure 1.1: Spec(Λ0, X) on S2
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where
Vλ(∆M ) = {u ∈ C∞(M) : ∆Mu = −λ2u}. (1.10)

In general,
N (∆M , R) = CnVol(M)Rn +O(Rn−1). (1.11)

See [6]. Spectral clustering for a sphere gives a case where the remainder
estimate cannot be improved. Conditions have been found that do lead to
improved remainder estimates. In [4] it is shown that one can take o(Rn−1)
in case the geodesic flow on M has “not too many” periodic orbits. In [1]
it is shown that if either dimM = 2 and there are no conjugate points, or
dimM ≥ 3 and the sectional curvatures are all ≤ 0, then one can take

O(Rn−1/ logR), (1.12)

as a remainder estimate in (1.11). Recently [3] has obtained an improved re-
mainder estimate for a much broader class of Riemannian manifolds. Among
the results obtained there is the result that the remainder estimate (1.12)
holds whenever M is a Cartesian product, M = X × Y of two Riemannian
manifolds, with the product metric.

In another vein, [7] obtain remainder estimates of the form

O(Rn−1−α), (1.13)

for products of spheres,

M = Sd1 × · · · × Sdk , n = d1 + · · ·+ dk, (1.14)

with α > 0. The authors express N (∆M , R) as a weighted lattice count.
Here we produce some second-order differential operators on S2 whose

spectral counting functions have improved Weyl asymptotics of the form
(1.13). To start, we examine spectral asymptotics of the operators

L0 = −Λ2
0 + Z2, L = −Λ2 + Z2. (1.15)

Recall that Z is a real vector field and that Z2 = −X2.
Parallel to (1.9), we define the spectral counting function

N (L0, R) =
∑
λ≤R

dimVλ(L0), (1.16)

where
Vλ(L0) = {u ∈ C∞(S2) : L0u = −λ2u}, (1.17)
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and similarly define N (L,R). In §2 we see that

N (L0, R) =
π

4
R2 +

√
2

2
R+O(R1−α), (1.18)

where α = 1/3.
Now L0 is not a differential operator. Indeed, since

Λ2
0 = Λ2 − Λ +

1

4

= −∆− Λ +
1

2
,

(1.19)

we have

L0 = ∆+ Z2 + Λ− 1

2
, (1.20)

so L0 is an elliptic pseudodifferential operator, but not a differential opera-
tor. On the other hand,

L = ∆+ Z2 − 1

4
, (1.21)

which is an elliptic differential operator. In §3 we see that, with α as above,

N (L,R) =
π

4
R2 +O(R1−α). (1.22)

Note that (1.18) has two terms in its expansion, but this is not unusual
for a pseudodifferential modification of an elliptic differential operator. For
another class of examples, suppose M is a compact n-dimensional Rieman-
nian manifold whose Laplace operator ∆M has the property

N (∆M , R) = CRn + o(Rn−1). (1.23)

If we set A =
√
−∆M , then

N (−(A+ 1)2, R) = N (∆M , R+ 1), (1.24)

hence
N (∆M − 2A− 1, R) = CRn + nCRn−1 + o(Rn−1). (1.25)

The result (1.18) enters here because it is relatively easy to prove and it
provides a stepping stone to (1.22), via a curious cancellation effect, which
we discuss in §3. The main significance of (1.18) lies in exactly what that
second term is.

Going further, we examine the operators

L0a = −Λ2
0 + aZ2, La = −Λ2 + aZ2, (1.26)
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with a ∈ (0,∞) ∪ (−1, 0). Again, La is a differential operator,

La = ∆+ aZ2 +
1

4
. (1.27)

Parallel to (1.18) and (1.22), we show that

N (L0a, R) = KaR
2 + (1 + a)−1/2R+O(R1−α), (1.28)

and from there establish the following.

Theorem 1.1 For all nonzero a ∈ (−1,∞),

N (La, R) = KaR
2 +O(R1−α), (1.29)

for α = 1/3. Here
Ka = AreaO+

a (1), (1.30)

where O+
a (R) is a family of planar domains defined by (4.2).

The proof of (1.28) is somewhat parallel to that of (1.18), but more
effort is required to carry it out, since the domain Oa(R), defined by (4.4),
has some corners, and, for a ∈ (1,∞)∪ (−1, 0) is not convex. The deduction
of (1.29) from (1.28) (and of (1.22) from (1.18)) also involves a novel lattice
point estimate. These results are treated in §5.

Remark. It is elementary that, if (1.29) holds, so does its analogue with
La replaced by La − 1/4 = ∆+ aZ2.
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Figure 2.1: Counting Spec(−L0)

2 Spectral asymptotics of L0

Our goal here is to obtain an asymptotic evaluation of N (L0, R), defined by
(1.16). Referring to (1.7)–(1.15), and to Figure 2.1, we see that

N (L0, R) = #{(k, ℓ) ∈ Z× Z : k ≥ 0, |ℓ| ≤ k, k2 + ℓ2 ≤ R2}. (2.1)

By symmetry, we have

4N (L0, R) = D(R) + 4L(R)− 1, (2.2)

where
D(R) = #{(k, ℓ) ∈ Z× Z : k2 + ℓ2 ≤ R2}, (2.3)

and
L(R) = #{(k, ℓ) ∈ Z× Z : k ≥ 0, ℓ = k, k2 + ℓ2 ≤ R2}

= #{k ∈ Z+ : 2k2 ≤ R2}.
(2.4)
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Clearly

L(R) =
√
2

2
R+O(1). (2.5)

Meanwhile, the evaluation of D(R) is the classical circle problem. For this,
one has

D(R) = πR2 +O(R1−α). (2.6)

There are numerous partial results on this, but the optimal value of α has
not been established. It is known one can take α > 1/3, but one cannot
take α = 1/2. See [5], p. 450, for a discussion, and [2] for recent progress.

Putting together (2.2)–(2.6) gives

N (L0, R) =
π

4
R2 +

√
2

2
R+O(R1−α), (2.7)

as advertised in the Introduction.
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Figure 3.1: Counting Spec(−L)

3 Spectral asymptotics of L

Our goal here is to establish (1.22), i.e.,

N (L,R) =
π

4
R2 +O(R1−α), (3.1)

for α = 1/3. Having established (1.18) in §2, we are left with the task of
showing that

N (L0, R)−N (L,R) =

√
2

2
R+O(R1−α). (3.2)

As suggested by Figures 3.1–3.2, we can approach this as follows. Set

ER = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ x,

x2 + y2 ≤ R2, (x+ 1
2)

2 + y2 > R2}.
(3.3)

Then
N (L0, R)−N (L,R) = #(ER ∩ Z2). (3.4)
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Figure 3.2: A look at N (L0, R)−N (L,R)

Note that

AreaER =

√
2

2
R+O(1). (3.5)

Hence the desired estimate (3.2) is a consequence of the following, which
will be proved in §5.

Proposition 3.1 As R→ ∞,

#(ER ∩ Z2) = AreaER +O(R1−α). (3.6)
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Figure 4.1: Counting Spec(−L0a), 0 < a < 1

4 Spectral asymptotics of L0a and of La

Here we extend our study of the operators L0 and L, defined by (1.8), to
that of

L0a = −Λ2
0 + aZ2, La = −Λ2 + aZ2, (4.1)

with a ∈ (0,∞)∪ (−1, 0). In (1.8), the operators have this form with a = 1.
To start, if we set

O+
a (R) = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ x, x2 + ay2 ≤ R2}, (4.2)

then
N (L0a, R) = #

(
O+
a (R) ∩ Z2

)
. (4.3)

We seek a formula parallel to (2.2). That formula exploited symmetry of the
circle centered at 0. In the current setting, we need to impose symmetry.
We set

Oa(R) =

3∪
m=0

JmO+
a (R), (4.4)
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Figure 4.2: Counting Spec(−L0a), a > 1
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Figure 4.3: Counting Spec(−L0a), −1 < a < 0
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where J ∈M(2,R) is counterclockwise rotation by 90◦. See Figures 4.1–4.3,
depicting cases where 0 < a < 1, a > 1, and −1 < a < 0, respectively.
Then, parallel to (2.2)–(2.4), we have

4N (L0a, R) = Da(R) + 4La(R)− 1, (4.5)

where
Da(R) = #

(
Oa(R) ∩ Z2

)
, (4.6)

and
La(R) = #{k ∈ Z+ : (1 + a)k2 ≤ R2}. (4.7)

Clearly
La(R) = (1 + a)−1/2R+O(1). (4.8)

If a = 1, Oa(R) is a disc, and estimates on Da(R) are classical, as discussed
in §2. As indicated in Figures 4.1–4.3, Oa(R) has four corners if a ̸= 1. Also,
this domain is convex if a ∈ (0, 1), but not if a > 1 or a ∈ (−1, 0). We will
show in §5 that, whenever a ∈ (0,∞) ∪ (−1, 0),

Da(R) = AreaOa(R) +O(R1−α), (4.9)

for α = 1/3. This leads to the following result.

Proposition 4.1 If a ∈ (0,∞) ∪ (−1, 0), then

N (L0a, R) = KaR
2 + (1 + a)−1/2R+O(R1−α), (4.10)

where
Ka = AreaO+

a (1). (4.11)

To proceed, parallel to (3.3)–(3.4), we have

N (L0a, R)−N (La, R) = #(Ea,R ∩ Z2), (4.12)

where
Ea,R = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ x,

x2 + ay2 ≤ R2, (x+ 1
2)

2 + ay2 > R2}.
(4.13)

In §5 we will show that

#(Ea,R ∩ Z2) = AreaEa,R +O(R1−α). (4.14)

Meanwhile, parallel to (3.5), we have

AreaEa,R = (1 + a)−1/2R+O(1). (4.15)

Therefore, given Proposition 4.1 and (4.12), we have Theorem 1.1.
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5 Lattice point estimates

Our goal here is to prove the lattice point estimates (3.6), (4.9), and (4.14).
As a tool for this, we will establish a generalization of Proposition 3.2 of
[8]. We describe the setup for this result. As done in [8], we work in n
dimensions, and specialize to n = 2 later. Let Tn = Rn/2πZn denote the
n-dimensional torus. We take

ν ∈ N, h =
2π

ν
, (5.1)

and aim to estimate how well the mean value

Mu = (2π)−n
∫
Tn

u(x) dx (5.2)

of a given bounded, Borel function u on Tn is approximated by

σhu(x) = ν−n
∑

ℓ∈(Z/ν)n
u(x+ hℓ), (5.3)

in terms of an estimate of the sup norm of

ρhu = σhu−Mu. (5.4)

A key identity for the analysis of (5.4) is

ρhu(x) =
∑

j∈Zn\0

û(νj)e−iνj·x, (5.5)

where û(k) are the Fourier coefficients,

û(k) = (2π)−n
∫
Tn

u(x)e−ik·x dx, k ∈ Zn. (5.6)

In light of this, the following scale of distributions makes a natural appear-
ance. Given u ∈ D′(Tn), we say

u ∈ F r(Tn) ⇐⇒ |û(k)| ≤ C⟨k⟩−r, ∥u∥F r = sup
k

⟨k⟩r|û(k)|, (5.7)

where ⟨k⟩ = (1 + |k|2)1/2. One simple consequence of (5.5) is the estimate

∥ρhu∥L∞ ≤ Chr∥u∥F r , if r > n, (5.8)
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but this will not suffice for our needs, which involve functions (or distribu-
tions) in F r(Tn) with r < n.

We will use the following strategy to estimate ∥ρhu∥L∞ when we have
u ∈ F r(Tn) and we also have some further information on u. Pick

φ ∈ S(Rn), φ(0) = 1, and set Jε = φ(εD). (5.9)

We estimate ∥ρhJεu∥L∞ in terms of ∥u∥F r , and then we apply another
method to estimate ∥ρh(u − Jεu)∥L∞ . We take ε = h1+γ for some γ > 0,
and find an optimal value of γ, where the two sorts of estimates have the
same order of magnitude. To start, one has

ρhJεu(x) =
∑
j ̸=0

û(νj)φ(νεj)eiνj·x. (5.10)

This leads to the following estimate, established in (3.3) of [8].

Lemma 5.1 If r ∈ (0, n), then

∥ρhJεu∥L∞ ≤ C1ε
r
(h
ε

)n
∥u∥F r

= C1h
r−(n−r)γ∥u∥F r ,

(5.11)

for all u ∈ F r(Tn), the second formula holding provided ε = h1+γ.

We move to an analysis of ρh(u−Jεu), in the following situation. Choose
φ satisfying (5.9) and also

φ(ξ) = ψ̂(ξ), suppψ ⊂ {x : |x| ≤ 1}, ψ ≥ 0. (5.12)

Let Ω ⊂ Tn be open, and assume

u vanishes outside Ω and is Lipschitz on Ω, with seminorm

LipΩ(u) = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|

.
(5.13)

Then
|u(x)− Jεu(x)| ≤ εLipΩ(u), x ∈ Tn \ Σε, (5.14)

where
Σε = {x ∈ Tn : dist(x, ∂Ω) ≤ ε}. (5.15)

Write
u− Jεu = (χTn\Σε

+ χΣε)(u− Jεu) = vε + wε, (5.16)
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so
|vε(x)| ≤ εLipΩ(u), ∀x ∈ Tn,
suppwε ⊂ Σε, ∥wε∥L∞ ≤ 2∥u∥L∞(Σ2ε).

(5.17)

Then ρh(u− Jεu) = ρhvε + ρhwε, and clearly

|ρhvε(x)| ≤ 2εLipΩ(u). (5.18)

The estimate (5.18) can sometimes be improved by noting that vε(x) = 0
for dist(x,Ω) ≥ ε, and hence

supp vε ⊂ Ω. (5.19)

We return to this point below.
For now we turn to an estimate on ρhwε, given the information on wε

in (5.17). Let us abstract the situation, and suppose w is a bounded Borel
function on Tn, satisfying

suppw ⊂ K, sup |w| = ∥w∥L∞ , (5.20)

with K ⊂ Tn compact. We want an estimate on ∥ρhw∥L∞ that takes care-
ful account of metric properties of K. As (5.17) suggests, we expect to
encounter situations where K is rather “thin” and do not expect cancella-
tions between Mw and σhw, so our task here is actually to estimate these
quantities separately. The first is easy:

|Mw| ≤ (2π)−n(VolK)∥w∥L∞ . (5.21)

To estimate σhw, we bring in the following quantities. First, we set

Nh(K,x) = #{λ ∈ Λh : x+ λ ∈ K}, where

Λh = {hℓ ∈ Tn : ℓ ∈ (Z/ν)n}.
(5.22)

Recall from (5.1) that h = 2π/ν. Then we set

Nh(K) = sup
x

Nh(K,x), Vh(K) = hnNh(K). (5.23)

Let us note that

Nh(K,x) =
∑
λ∈Λh

χK−λ(x)

=⇒ (2π)−n
∫
Tn

Nh(K,x) dx = (2π)−n
∑
λ∈Λh

VolK = h−nVolK

=⇒ Vh(K) ≥ VolK.

(5.24)
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It follows directly from the definitions of Nh(K,x) and of σhw(x) that

∥σhw∥L∞ ≤ (2π)−nVh(K) ∥w∥L∞ , (5.25)

hence
∥ρhw∥L∞ ≤ (2π)−n

{
VolK + Vh(K)

}
∥w∥L∞ . (5.26)

Returning to the source of our interest in the estimate (5.26), given
(5.20), we apply this to wε, defined in (5.16) and described in (5.17). Then
(5.26) yields

∥ρhwε∥L∞ ≤ 2(2π)−n
{
VolΣε + Vh(Σε)

}
∥u∥L∞(Σ2ε), (5.27)

under the hypothesis (5.13) on u, and with Σε given by (5.15). In combina-
tion with the estimate (5.18) on ρhvε, we have

∥ρh(u− Jεu)∥L∞

≤ 2εLipΩ(u) + 2(2π)−n
{
VolΣε + Vh(Σε)

}
∥u∥L∞(Σ2ε).

(5.28)

This is to be combined with the estimate (5.11) on ρhJεu, under the further
hypothesis that u ∈ F r(Tn), for some r ∈ (0, n).

As we will see, the occasion also arises to let Ω depend on h and/or ε,
and then it is useful to sharpen (5.18) to the estimate

∥ρhvε∥L∞ ≤ 2(2π)−n
{
VolΩ + Vh(Ω)

}
εLipΩ(u), (5.29)

and to make the corresponding adjustment on the right side of (5.28).
At this point we bring together various estimates established above, and

record the following result, which generalizes Proposition 3.2 of [8].

Proposition 5.2 Let Ω ⊂ Tn be open, and assume u is a bounded function
on Tn satisfying (5.13). Also assume u ∈ F r(Tn), for some r ∈ (0, n).
Then, for ε, h ∈ (0, 1],

∥ρhu∥L∞ ≤ 2(2π)−n
{
VolΩ + Vh(Ω)

}
εLipΩ(u)

+ 2(2π)−n
{
VolΣε + Vh(Σε)

}
∥u∥L∞(Σ2ε)

+ C1ε
r
(h
ε

)n
∥u∥F r .

(5.30)
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In this statement, recall that Σε is given by (5.15), and that ultimately
we will take ε = h1+γ , for some γ > 0.

Now it seems that, in the pursuit of one lattice point problem, we have
acquired two others. However, we need only upper bounds on Vh(Ω) and
Vh(Σε). When Ω is fat, as it will be in the proof of (4.9), we use the universal
bound

Vh(Ω) ≤ (2π)n. (5.31)

When Ω is thin, as in the proof of (3.6) and (4.14), we can take further
steps, as indicated in the discussion of Σε below, but in the case at hand,
LipΩ(u) = 0, and we do not need to do so.

As for Σε, the ε-neighborhood of ∂Ω, this is thin, if ∂Ω is sufficiently
smooth. We turn to an estimate of Vh(Σε). We assume ∂Ω is rectifiable,
and bring in the surface measure

µ = Hn−1⌋∂Ω. (5.32)

We also assume ∂Ω is lower Ahlfors regular, satisfying

x ∈ ∂Ω =⇒ µ(Bε/4(x)) ≥ b(∂Ω)εn−1, (5.33)

for ε ∈ (0, 1]. Now take φ and ψ as in (5.9) and (5.12), and arrange in
addition that

ψ(x) ≥ A, for |x| ≤ 1

2
. (5.34)

One can take A = 1/2Vol(B1/2), where B1/2 is a ball in Rn of radius 1/2.
As before, take Jε = φ(εD), so

Jεµ = ψε ∗ µ, ψε(x) = ε−nψ(ε−1x). (5.35)

The hypothesis (5.33) implies that

x ∈ Σε/4 =⇒ µ(Bε/2(x)) ≥ b(∂Ω)εn−1

=⇒ Jεµ(x) ≥ Ab(∂Ω)ε−1.
(5.36)

Hence
Nh(Σε/4, x) ≤

ε

Ab(∂Ω)

∑
λ∈Λh

Jεµ(x+ λ)

=
ενn

Ab(∂Ω)
σhJεµ(x).

(5.37)

Now
σhJεµ(x) =MJεµ+ ρhJεµ(x), MJεµ = Area ∂Ω. (5.38)
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Recalling (5.22)–(5.23), we obtain

Vh(Σε/4) ≤
ε

Ab(∂Ω)
(2π)n

{
Area ∂Ω+ ∥ρhJεµ∥L∞

}
. (5.39)

We now apply Lemma 5.1, with u replaced by µ, assumed to belong to
F r−1(Tn), obtaining

∥ρhJεµ∥L∞ ≤ C1ε
r−1

(h
ε

)n
∥µ∥F r−1 . (5.40)

Replacing ε/4 by ε, we have the following.

Proposition 5.3 Assume ∂Ω is rectifiable, with surface measure µ satisfy-
ing (5.33) and

µ ∈ F r−1(Tn), r − 1 ∈ (0, n). (5.41)

Then

Vh(Σε) ≤
4(2π)n

Ab(∂Ω)

{
εArea ∂Ω+ C2ε

r
(h
ε

)n
∥µ∥F r−1

}
, (5.42)

where C2 = 4r−1−nC1.

By (5.24), we can also take (5.42) as an upper bound for VolΣε. Fur-
thermore, Area ∂Ω = µ̂(0) ≤ ∥µ∥F r−1 . Plugging these estimates into (5.30)
gives an estimate of the form

∥ρhu∥L∞ ≤ C1ε+ C2ε
r
(h
ε

)n
, (5.43)

where Cj depend on a number of quantities associated to u,Ω, and µ. Note
that

ε = εr
(h
ε

)n
⇐⇒ εn+1−r = hn

⇐⇒ ε = h1+γ , with γ =
r − 1

n− (r − 1)
.

(5.44)

Using this value for ε in (5.43) then gives the following.

Proposition 5.4 There is a constant C = C(n, r) with the following sig-
nificance. Let Ω ⊂ Tn be open, u satisfy (5.13), ∂Ω satisfy (5.32)–(5.33),
and assume

u ∈ F r(Tn), µ ∈ F r−1(Tn), for some r ∈ (1, n). (5.45)
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Then

∥ρhu∥L∞

≤ Ch1+γ
{
Vh(Ω) LipΩ(u) + b(∂Ω)−1∥µ∥F r−1∥u∥L∞ + ∥u∥F r

}
,

(5.46)

with

γ =
r − 1

n− (r − 1)
. (5.47)

Example. If ∂Ω is smooth and has nowhere vanishing Gauss curvature,
and if u ∈ C∞(Ω), classical stationary-phase arguments yield (5.45) with

r =
n+ 1

2
, hence γ =

n− 1

n+ 1
, (5.48)

and then (5.46) leads to the classical estimate

∥ρhu∥L∞ ≤ Ch2n/(n+1), (5.49)

which applies to (2.6) (with α = 1/3).

Proof of (4.9). Our strategy for this task will be to show that Proposition
5.4 is applicable, with

Ω = Oa(1), u = χΩ, (5.50)

and Oa(R) defined by (4.4) (a ∈ (0,∞) ∪ (−1, 0)). For a = 1, this is the
unit disk, but otherwise, as noted in §4, the region has four corners, and,
for a > 1 or a ∈ (−1, 0), it is not convex. Nevertheless, we will show that

u = χΩ ∈ F 3/2(T2), µ ∈ F 1/2(T2), (5.51)

where µ is arclength measure on ∂Ω. Once we have this, (5.46) gives

∥ρhu∥L∞ ≤ Ch4/3, (5.52)

which upon scaling, gives (4.9), with α = 1/3.
We start with the analysis of µ, and use the fact that ∂Ω is contained in

the union of two smooth curves with nowhere vanishing curvature, namely

γ0 = {(x, y) ∈ R2 : x2 + ay2 = 1},
γ1 = {(x, y) ∈ R2 : ax2 + y2 = 1},

(5.53)

which are ellipses if a > 0 and hyperbolas if −1 < a < 0. We can chop µ into
four pieces, µ = µ00 + µ01 + µ10 + µ11, with the property that µ00 and µ01
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are compactly supported on γ0, and µ10 and µ11 are compactly supported
on γ1. Each such measure is arclength measure, on the particular arc which
is its support. We have

µij = χijµi, (5.54)

where µi is arclength measure on γi and χij is the characteristic function of
the interval supporting µij . The result on µ stated in (5.51) will follow once
we establish that

µij ∈ F 1/2(R2). (5.55)

It is convenient to extend the setting a bit. Let γ ⊂ R2 be a smooth
curve with nowhere vanishing curvature, and let f : γ → R be a piecewise
smooth function with compact support and a finite number of simple jumps.
Let σ denote arc-length measure on γ, and set λ = fσ. We assert that
λ ∈ F 1/2(R2). Using a partition of unity, we see it suffices to assume f has
only one jump, say at p ∈ γ, and that f is supported on a small neighborhood
of p. Write

λ̂(ξ) =

∫
γ

ei|ξ|ψ(x,ζ)f(x) dσ(x), (5.56)

with ξ = |ξ|ζ, ψ(x, ζ) = x · ζ. It is elementary to check that, under the
hypotheses made above, λ̂(ξ) = O(|ξ|−1) outside a small conic neighborhood
of ±N(p), where, for y ∈ γ, N(y) denotes the outward-pointing unit normal.
The remaining task is to estimate |λ̂(ξ)| for ξ/|ξ| in a small neighborhood

of ±N(p). Since λ̂(−ξ) = λ̂(ξ), we can concentrate on ξ = |ξ|ζ, with ζ close
to N(p).

For this, we can bring in a family of coordinate charts χζ : I → O ⊂ γ,
where I is an interval in R and O is a neighborhood of supp f , satisfying

N(χζ(0)) = ζ, (5.57)

and

ψ(χζ(x), ζ) = ζ ·N−1(ζ)− |x|2

4
. (5.58)

Hence, for ξ = |ξ|ζ,

λ̂(ξ) =

∫
I

ei|ξ|(ζ·N
−1(ζ)−|x|2/4)f(χζ(x))Jζ(x) dx. (5.59)

We set
fζ(x) = f(χζ(x))Jζ(x), t = |ξ|−1, (5.60)
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and conclude that

λ̂(ξ) = ei|ξ|ζ·N
−1(ζ)(4πit)1/2eit∂

2
xfζ(0), (5.61)

where eit∂
2
x is the solution operator to the 1D Schrödinger equation. Here fζ

is a compactly supported function on R, piecewise smooth with one simple
jump, at χ−1

ζ (p). A straightforward argument involving the Fresnel integral
(cf. [11], Proposition 4.1) yields

sup
x,t

∣∣∣eit∂2xfζ(x)∣∣∣ ≤ C∥fζ∥BV(R). (5.62)

This then gives
|λ̂(ξ)| ≤ C|ξ|−1/2, (5.63)

hence λ ∈ F 1/2(R2). In particular, we have (5.55), so in (5.51) we have
µ ∈ F 1/2(T2).

We next check that χΩ ∈ F 3/2(T2) in (5.51). This is equivalent to the
assertion that

∂jχΩ ∈ F 1/2(R2), for j = 1, 2. (5.64)

In turn,
∂jχΩ = −(N · ej)µ, (5.65)

with µ as in (5.51), and N the unit outward pointing normal to ∂Ω. In
turn, it is readily verified that a decomposition and analysis parallel to
(5.54) applies to this situation, yielding (5.64), and completing the proof of
(4.9).

Proof of (3.6) and (4.14). We concentrate on (4.14), which is more general.
It is convenient to bring in an argument parallel to that involving (4.4), and
set

Ea,R =
3∪

m=0

JmEa,R. (5.66)

Then Area Ea,R = 4AreaEa,R, and, parallel to (4.5),

#(Ea,R ∩ Z2) = 4 ·#(Ea,R ∩ Z2) +O(1), (5.67)

so (4.14) is equivalent to the assertion that

#(Ea,R ∩ Z2) = Area Ea,R +O(R1−α). (5.68)
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We now form a family of domains Ω to which to apply Proposition 5.4.
For R > 1, take ν ∈ N such that

|ν − 2πR| < 1, (5.69)

as usual, take h = 2π/ν, and set

ΩbR = hEa,R, hR = 1 +O(R−1). (5.70)

Hence
#(Ea,R ∩ Z2) = #(ΩbR ∩ Λh). (5.71)

Each set ΩbR is an annular region, containing its outer boundary but not its
inner boundary. We denote the interior of ΩbR by ΩR, and its closure by ΩR.
Upon addressing the minor difference between ΩbR and ΩR (as we do below),
we have that (5.68) is equivalent to the estimate

∥ρhuR∥L∞ ≤ Ch1+α, uR = χΩR
. (5.72)

To deduce this from (5.46), with Ω = ΩR, with Ω = ΩR, u = uR, note that
LipΩR

(uR) = 0, so what we need to show (parallel to (5.51)) is that

uR ∈ F 3/2(T2), ∥uR∥F 3/2 ≤ C,

µR ∈ F 1/2(T2), ∥µR∥F 1/2 ≤ C,
(5.73)

where µR is arc-length measure on ∂ΩbR. First, µR is the sum of arc length
measures on the two connected components of ∂ΩR, and each of these is
amenable to an analysis similar to that done on arc length measure µ in
(5.51). Next, ∂juR has an analysis parallel to that described in (5.64)–
(5.65). Consequently, Proposition 5.4 yields (5.72). To relate this to (5.71),
it suffices to note that an analogue of Proposition 5.3 holds. Hence we have
the estimates (3.6) and (4.14).

The proof of Theorem 1.1 is complete.
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