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Abstract

We say a compact, ℓ-dimensional Riemannian manifold Y has spec-
tral asymptotics with algebraically small Weyl remainder if the spctral
counting function satisfies

N (∆Y , R) = C(Y )Rℓ +O(Rℓ−1−α),

for some α > 0. We show that if this holds, then each compact Carte-
sian product M = X × Y also has spectral asymptotics with alge-
braically small Weyl remainder.
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1 Introduction

Let M be a compact, m-dimensional Riemannian manifold, with Laplace
operator ∆M . Then L2(M) has an orthonormal basis of eigenfunctions uj ,

∆Muj = −λ2juj , 0 = λ1 ≤ · · · ≤ λj ↗ +∞. (1.1)

We define the spectral counting function

N (∆M , R) = #{j ∈ N : λj ≤ R}. (1.2)

It is classical that

N (∆M , R) = C(M)Rm +O(Rm−1). (1.3)

See [5]. The unit sphere Sm is an example for which the remainder O(Rm−1)
cannot be improved. There are a number of results that do yield improved
Weyl remainder estimates. In [4] it is shown that one can take o(Rm−1) in
case the geodesic flow on M has “not too many” periodic orbits. The paper
[1] shows that under certain geometrical conditions, one can take

O(Rm−1/ logR) (1.4)

as a remainder estimate in (1.3). Recently [3] obtained such an improved re-
mainder estimes for a much broader class of Riemannian manifolds. Among
the results obtained there is that (1.4) holds whenever M is a Cartesian
product, M = X × Y , of two Riemannian manifolds, with the product met-
ric.

Now it is classically known that one can obtain remainder estimates of
the form

O(Rm−1−α), (1.5)

with α > 0, whenM = Tm is a flat torus. (Just how big one can take α is an
unsolved problem; see [2].) Recently [6] have obtained remainder estimates
of the form (1.5) whenever M is a product of spheres,

M = Sd1 × · · · × Sdk , m = d1 + · · ·+ dk. (1.6)

Also, [9] has a remainder estimate of the form (1.5) for N (La, R), when
M = S2 and La = X2

1 +X2
2 + aX2

3 , a ∈ (0, 1) ∪ (1,∞), where Xj generates
2π-periodic rotation about the xj-axis in R3. The classical analysis of M =
Tm, uses lattice point estimates, and the analyses in [6] and [9] use certain
weighted lattice point estimates, [9] bringing in results from [7].
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In this paper we look further at Cartesian products,

M = X × Y, dimX = n, dimY = ℓ, m = n+ ℓ, (1.7)

and establish the following.

Theorem 1.1 Assume X and Y in (1.7) are compact Riemannian mani-
folds. Assume that, for some α ∈ (0, 1),

N (∆Y , ρ) = C(Y )ρℓ +RY (ρ), RY (ρ) = O(ρℓ−1−α), (1.8)

Then
N (∆M , R) = C(M)Rm +O(Rm−1−α). (1.9)

The proof divides into two pieces. First, if {vj} is an orthonormal basis
of L2(X) such that

∆Xvj = −µ2jvj , µj ↗ +∞, (1.10)

then
N (∆M , R) =

∑
µj≤R

N (∆Y ,
√
R2 − µ2j ), (1.11)

and we show in §2 that if the hypothesis (1.8) holds, then

N (∆M , R) = C(Y )
∑
µj≤R

(R2 − µ2j )
ℓ/2 +O(Rm−1−α). (1.12)

Now the sum over µj ≤ R on the right side of (1.12) is equal to

Rℓ
∑
µj≤R

(
1−

(µj
R

)2)ℓ/2
= RℓTrφR(Λ), (1.13)

with

Λ =
√
−∆X , φR(λ) = φ(λ/R), φ(λ) = (1− λ2)

ℓ/2
+ . (1.14)

We show in §3 that, for φ as in (1.14), ℓ > 0,

TrφR(Λ) = CX(φ)Rn +O(Rn−1−γ), (1.15)

with γ = ℓ/2, and thereby obtain (1.9).
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2 Reduction to study of TrφR(Λ)

Here we show that the hypothesis (1.8) leads to (1.12). To start, we com-
plement the orthonormal basis {vj} of L2(X), satisfying (1.10), by the or-
thonormal basis {wi} of L2(Y ), satisfying

∆Y wi = −ν2i wi, νi ↗ +∞. (2.1)

Thus we have an orthonormal basis {uji} of L2(M):

uji = vjwi, ∆Muji = −(µ2j + ν2i )uji, (2.2)

giving the spectrum of ∆M in terms of the joint spectrum of (∆X ,∆Y ). We
see that

N (∆M , R) = #{(i, j) ∈ N× N : µ2j + ν2i ≤ R2}

= #{(i, j) ∈ N× N : µj ≤ R, νi ≤ (R2 − µ2j )
1/2}

=
∑
µj≤R

N (∆Y ,
√
R2 − µ2j ).

(2.3)

Now we bring in the hypothesis (1.8), i.e.,

N (∆Y , ρ) = C(Y )ρℓ +RY (ρ), RY (ρ) = O(ρℓ−1−α). (2.4)

We obtain

N (∆M , R) =
∑
µj≤R

{
C(Y )(R2 − µ2j )

ℓ/2 +RY (
√
R2 − µ2j )

}
, (2.5)

and ∑
µj≤R

∣∣∣RY (
√
R2 − µ2j )

∣∣∣ ≤ C
∑
µj≤R

(R2 − µ2j )
(ℓ−1−α)/2

≤ CRℓ−1−α · N (∆X , R)

≤ C2R
ℓ−1−α ·Rn,

(2.6)

in view of the analogue of (1.3) for X. Hence

(2.6) ≤ C2R
m−1−α, (2.7)

and (2.5) yields

N (∆M , R) = C(Y )
∑
µj≤R

(R2 − µ2j )
ℓ/2 +RXY (R),

|RXY (R)| ≤ C2R
m−1−α,

(2.8)
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as asserted in (1.12). As noted in §1, we can write (2.8) as

N (∆M , R) = C(Y )Rℓ TrφR(Λ) +RXY (R), (2.9)

with φR(Λ) given by (1.14).
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3 Analysis of TrφR(Λ)

We follow the results of §2 with an analysis of TrφR(Λ), with φR(λ) =
φ(λ/R), for a variety of functions φ, including

φ(λ) = (1− λ2)
ℓ/2
+ , (3.1)

particularly for ℓ ∈ N, but we will also consider more general cases. We look
at the following class of bounded, Borel functions φ. We assume that, for
each k ∈ N,

|φ(λ)| ≤ Ck⟨λ⟩−k, (3.2)

and we also assume that each λ ∈ R is a Lebesgue point of φ. Note that
(3.2) implies

φ̂ ∈ L2(R) ∩ C∞(R), φ̂(k) ∈ L∞(R), ∀ k ≥ 0. (3.3)

A major tool will involve wave equation techniques, coming from

ψ(Λ) =
1√
2π

∫ ∞

−∞
ψ̂(t)eitΛ dt, (3.4)

provided ψ̂ ∈ L1(R), which leads to the notion of the trace of U(t) = eitΛ,
as a tempered distribution, given by

⟨ψ̂,TrU⟩ =
√
2π Trψ(Λ), ψ ∈ S(R). (3.5)

See Appendix A for a general discussion of this approach. To apply this to
φR(Λ), it will be convenient to decompose φR(λ) into two pieces, making
use of

β ∈ C∞
0 ((−T0, T0)), such that β(λ) = 1 for |λ| ≤ T0/2, (3.6)

where T0 > 0 will be specified below. We write

φR = φ#
R + φb

R, φ̂#
R = βφ̂R. (3.7)

Hence
φR(Λ) = φ#

R(Λ) + φb
R(Λ), (3.8)

with

φ#
R(Λ) =

1√
2π

∫ ∞

−∞
φ̂(t)β(t)eitΛ dt, (3.9)
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an identity that fits into the mold (3.4). Thus, as in (3.5), we have

Trφ#
R(Λ) =

1√
2π

⟨φ̂R, v⟩, (3.10)

where
v = β TrU ∈ E ′(R), (3.11)

so v̂ ∈ C∞(R) and is polynomially bounded, and we have

Trφ#
R(Λ) =

1√
2π

∫ ∞

−∞
φR(λ)v̂(λ) dλ. (3.12)

To apply this, we make use of the fact that there exists T0 > 0 such that

TrU
∣∣
(−T0,T0)

∈ C∞((−T0, T0) \ 0) (3.13)

(cf. (A.22)), and use the seminal results of [5] and [4] (cf. (A.27)–(A.36))
that, if we take such T0 in (3.6), then v̂ ∈ Sn−1(R), satisfying

v̂(λ) ∼ (2π)−n
∑
k≥0

ckλ
n−1−k, λ→ +∞, (3.14)

(and v̂(λ) is rapidly decreasing as λ→ −∞), with

c0 = VolS∗X, ck = 0 for k odd. (3.15)

In connection with this, note that∫ ∞

0
φR(λ)λ

n−1−k dλ =

∫ ∞

0
φ
( λ
R

)
λn−1−k dλ

= Rn−k

∫ ∞

0
φ(λ)λn−1−k dλ,

(3.16)

provided
0 ≤ k ≤ n− 1. (3.17)

This yields the following.

Proposition 3.1 As R→ ∞,

Trφ#
R(Λ)− CX(φ)Rn = O(Rn−2), if n ≥ 3,

O(logR), if n = 2,
(3.18)

where

CX(φ) = (2π)−nVolS∗X

∫ ∞

0
φ(λ)λn−1 dλ. (3.19)
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We turn to an estimate of Trφb
R(Λ), where, by (3.7), φb

R is given by

φ̂b
R = (1− β)φ̂R, i.e., φb

R = φR − β̃ ∗ φR. (3.20)

We attack this using the Hörmander estimate (A.37), which is equivalent to

TrχI(Λ− µ) ≤ C⟨µ⟩n−1, I = [−1, 1]. (3.21)

From (3.21) we have:

Proposition 3.2 Assume that σR is a family of positive measures on R
such that

|φb
R(λ)| ≤

∫
χI(λ− µ) dσR(µ), for λ ≥ 0. (3.22)

Then

|Trφb
R(Λ)| ≤

∫
TrχI(Λ− µ) dσR(µ)

≤ C

∫
⟨µ⟩n−1 dσR(µ).

(3.23)

This leads to the following key estimate, which, together with (3.19),
establishes the result

TrφR(Λ) = CX(φ)Rn +O(Rn−1−γ), (3.24)

as advertised in (1.15). As noted there, (1.12)–(1.15) imply (1.9) and hence
prove Theorem 1.1.

Proposition 3.3 Assume that

φ(λ) = (1− λ2)γ+, γ ≥ 0. (3.25)

Then
|Trφb

R(Λ)| ≤ CRn−1−γ . (3.26)

Note that taking γ = 0 in (3.25) recovers, in the setting ofX, the classical
result (1.3). In this case,

φR(λ) = χ[−R,R](λ), (3.27)

and estimating φb
R(λ) is an exercise. For γ > 0, the exercise is perhaps a

little less elementary, and we describe one route to the desired estimate. In
the following analysis, we take γ > 0.
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Note that

φb
R(λ) = ψε

( λ
R

)
, (3.28)

where

ψε(λ) = φ(λ)− β̃ε ∗ φ(λ), β̃ε(λ) = Rβ̃(Rλ), ε =
1

R
. (3.29)

Equivalently,
ψ̂ε(t) =

(
1− β(εt)

)
φ̂(t). (3.30)

We claim that, outside layers of thickness ∼ ε about λ = ±1, ψε(λ) decays
rapidly to 0 as ε → 0, and has an amplitude ∼ εγ on these layers. To do
this analysis, it is convenient to use a partition of unity and split φ into
two pieces, each with just one singularity, one at λ = 1 and one at λ = −1.
Then translate to move the singularity to λ = 0. Having so modified φ, to
a function we denote ψ, we want to analyze ψε(λ), given by

ψ̂ε(t) =
(
1− β(εt)

)
ψ̂(t), (3.31)

where ψ ∈ E ′(R) ∩ C∞(R \ 0) satisfies

ψ̂ ∈ S−1−γ(R), ψ̂(±t) ∼
∑
k≥0

a±k t
−1−γ−k, t→ +∞. (3.32)

We write
ψ̂(t) ∼

∑
k≥0

ψ̂k(t), (3.33)

with ψ̂k(t) homogeneous of degree −1− γ − k on R \ 0. Then the principal
part of ψε(λ) is given by

εγΨ0(ε
−1λ), (3.34)

where Ψ̂0 ∈ S−1−γ(R) is given by (1− β(t))ψ̂0(t), i.e.,

Ψ̂0(t) = a±0
(
1− β(t)

)
|t|−1−γ , (3.35)

for ±t > 0. Note that Ψ̂0(t) vanishes near t = 0. It follows that Ψ0 is
continuous on R and smooth on R \ 0, with a conormal singularity of the
same sort as |λ|γ at λ = 0, and that Ψ0(λ) is rapidly decreasing, together
with all its derivatives, as |λ| → ∞.

Further terms in the expansion (3.33) yield contributions to ψε(λ) of the
form

εγ+kΨk(ε
−1λ). (3.36)
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At some point, one can cut off the sum (3.33) and estimate the contribution
of the remainder in an elementary fashion. The behavior of (3.34) then
leads to an estimate of φb

R(λ), rapidly decreasing as R → ∞ outside layers
of thickness ∼ 1 about λ = ±R, allowing one to apply Proposition 3.2 and
observe the conclusion (3.22) in Proposition 3.3.
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A Generalities on the wave trace

Here we take X and Λ as in §1 (cf. (1.14)), though Λ could be a more
general ellipic, self-adjoint element of OPS1(X). If φ : R → C is a Borel
function, we define φ(Λ) via the spectral theorem. Combining Sobolev space
regularity and the Sobolev embedding theorem, we have

a >
n

2
, |φ(λ)| ≤ C⟨λ⟩−a =⇒ φ(Λ) : L2(X) → Ha(X) ⊂ C(X)

=⇒ φ(Λ) is Hilbert-Schmidt,
(A.1)

hence
b > n, |φ(λ)| ≤ C⟨λ⟩−b =⇒ φ(Λ) is trace class. (A.2)

Recall n = dimX. We use the trace norm

∥A∥Tr = Tr(A∗A)1/2. (A.3)

One convenient formula for φ(Λ) arises from combining the spectral the-
orem and the Fourier inversion formula:

φ(Λ) =
1√
2π

∫ ∞

−∞
φ̂(t)eitΛ dt, (A.4)

assuming
φ̂ ∈ L1(R). (A.5)

In particular, (A.4) works for φ ∈ S(R), and serves to define the wave trace
as a tempered distribution,

TrU ∈ S ′(R), U(t) = eitΛ, (A.6)

by
⟨φ̂,TrU⟩ =

√
2π Trφ(Λ), φ ∈ S(R). (A.7)

We want to use these constructions to study Trφ(Λ) in cases where
φ /∈ S(R), such as

φ(λ) = (1− λ2)
ℓ/2
+ , (A.8)

with ℓ > 0, introduced in (1.14), and its dilates φR(λ) = φ(λ/R). For now,
we will work with functions φ satisfying the following: each λ ∈ R is a
Lebesgue point of φ, and

|φ(λ)| ≤ Ck⟨λ⟩−k, ∀ k ∈ N. (A.9)
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This implies

φ̂ ∈ L2(R) ∩ C∞(R), φ̂(k) ∈ L∞(R), ∀ k ≥ 0. (A.10)

It does not imply (A.5), though the functions (A.8) do satisfy (A.5) for
ℓ > 0. But we also want to handle the limiting case ℓ = 0. To proceed, we
fix T0 ∈ (0,∞), take

β ∈ C∞
0 ((−T0, T0)), β(t) = 1 for |t| ≤ T0/2, (A.11)

and write

φ = φ# + φb, φ# = β̃ ∗ φ, i.e., φ̂#(t) = β(t)φ̂(t). (A.12)

Then φ# ∈ S(R), and

φ(Λ) = φ#(Λ) + φb(Λ), (A.13)

with

φ#(Λ) =
1√
2π

∫ ∞

−∞
φ̂(t)β(t)eitΛ dt. (A.14)

For judiciously chosen β we use (A.10) and results on the wave trace to
analyze Trφ#(Λ). We use other methods to estimate the trace of

φb(Λ), φb(λ) = φ(λ)− β̃ ∗ φ(λ). (A.15)

Let us set
v = β TrU ∈ E ′(R), (A.16)

so v̂ ∈ C∞(R), and is polynomially bounded. We therefore have the identity

Trφ#(Λ) =
1√
2π

⟨φ̂, v⟩

=
1√
2π

∫ ∞

−∞
φ(λ)v̂(λ) dλ.

(A.17)

Remark. We can readily obtain a definite estimate on |v̂(λ)|, as follows.
First,

v̂(λ) =
1√
2π

⟨βe−iλt,TrU⟩

= Tr β̃λ(Λ),

(A.18)

where
β̃λ(µ) = β̃(µ− λ). (A.19)
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From (A.2) we have

∥ψ(Λ)∥Tr ≤ Cb sup
λ

⟨λ⟩b|ψ(λ)|, ∀ b > n, (A.20)

which leads to
|v̂(λ)| ≤ Cδ⟨λ⟩n+δ, ∀ δ > 0. (A.21)

If T0 in (A.11) is chosen appropriately, methods of microlocal analysis
yield much more precise information on v̂(λ). (For one thing, we can replace
n + δ by n − 1 in (A.21).) To start, results on propagation of singularities
show that if you pick T0 > 0 so small that, for each x ∈ X, the orbits of Hp1

in T ∗X \ 0, starting in T ∗
xX \ 0 (p1 denoting the principal symbol of Λ) do

not pass over x for 0 < |t| < T0, then

TrU
∣∣
(−T0,T0)

∈ C∞((−T0, T0) \ 0). (A.22)

A more refined result (cf. [4]) is that if T ∈ sing suppTrU , then either T = 0
or the flow generated by Hp1 has an orbit of period T . The seminal analysis
of [5] says that, perhaps on a smaller interval (−T1, T1), eitΛ is equal, modulo
a smoothing operator, to Q(t), given by

Q(t)f(x) = (2π)−n

∫∫
eiφ(x,y,ξ)+itp(y,ξ)q(t, x, y, ξ)f(y) dξ dy, (A.23)

where φ(x, y, ξ) is real valued and homogeneous of degree 1 in ξ, and satisfies

φ(x, y, ξ) = ⟨x− y, ξ⟩+O(|x− y|2|ξ|), (A.24)

and q is a classical symbol of order 0. This leads to a precise analysis of

v̂(λ) =
∑
j

β̃(λ− µj), (A.25)

with µj as in (1.10), whose neatest form is perhaps Proposition 2.1 and
(2.16) of [4]. The conclusion is that whenever β satisfies (A.11), with T0 as
in (A.22), and v is given by (A.16), then

v̂ ∈ Sn−1(R), (A.26)

with
v̂(λ) ∼ (2π)−n

∑
k≥0

ckλ
n−1−k, as λ→ +∞, (A.27)
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where
c0 = VolS∗X, (A.28)

where S∗X = {(x, ξ) ∈ T ∗X : p1(x, ξ) = 1}. If Λ2 is a differential operator
(e.g., Λ2 = −∆X), then

ck = 0, for k odd, (A.29)

and also
cn+2ℓ = 0, for ℓ ∈ N. (A.30)

Of course, as is clear from (A.25),

v̂(λ) is rapidly decreasing as λ→ −∞. (A.31)

Remark. By the use of (A.23), the results (A.26)–(A.30) are first estab-
lished under the hypothesis that (A.11) holds with T0 replaced by a smaller
quantity T1 ∈ (0, T0). The extension to the more general class described by
(A.11), with T0 as in (A.22), is straightforward.

Here is another straightforward extension of (A.26)–(A.27). Replace β
in (A.11) by ρ̂, where

ρ̂ ∈ C∞
0 ((−T0, T0)). (A.32)

The difference is that we do not assume ρ̂ = 1 for small |t|. We still have

vρ = ρ̂ TrU =⇒ v̂ρ ∈ Sn−1(R), (A.33)

hence ∑
j

ρ(λ− µj) ∼
∑
k≥0

c′kλ
n−1−k, as λ→ +∞. (A.34)

Proof. Pick β as in (A.11) with β(t) = 1 on supp ρ̂. Then vρ = ρ̂v, so

v̂ρ = ρ ∗ v̂. (A.35)

�
This extension is significant because we can pick ρ̂, satisfying (A.32), such
that

ρ ≥ 0 on R, ρ(λ) ≥ 1 for |λ| ≤ 1, (A.36)

and then (A.34) yields the important Hörmander estimate

#{j : |λ− µj | ≤ 1} ≤ C⟨λ⟩n−1. (A.37)
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