Product Manifolds with Small Weyl Remainders

Michael Taylor *

Abstract

We say a compact, ℓ-dimensional Riemannian manifold Y has spectral asymptotics with algebraically small Weyl remainder if the spctral counting function satisfies $$
\mathcal{N}\left(\Delta_{Y}, R\right)=C(Y) R^{\ell}+O\left(R^{\ell-1-\alpha}\right)
$$ for some $\alpha>0$. We show that if this holds, then each compact Cartesian product $M=X \times Y$ also has spectral asymptotics with algebraically small Weyl remainder.

Contents

1. Introduction
2. Reduction to the study of $\operatorname{Tr} \varphi_{R}(\Lambda)$
3. Analysis of $\operatorname{Tr} \varphi_{R}(\Lambda)$
A. Generalities on the wave trace
[^0]
1 Introduction

Let M be a compact, m-dimensional Riemannian manifold, with Laplace operator Δ_{M}. Then $L^{2}(M)$ has an orthonormal basis of eigenfunctions u_{j},

$$
\begin{equation*}
\Delta_{M} u_{j}=-\lambda_{j}^{2} u_{j}, \quad 0=\lambda_{1} \leq \cdots \leq \lambda_{j} \nearrow+\infty . \tag{1.1}
\end{equation*}
$$

We define the spectral counting function

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=\#\left\{j \in \mathbb{N}: \lambda_{j} \leq R\right\} \tag{1.2}
\end{equation*}
$$

It is classical that

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=C(M) R^{m}+O\left(R^{m-1}\right) \tag{1.3}
\end{equation*}
$$

See [5]. The unit sphere S^{m} is an example for which the remainder $O\left(R^{m-1}\right)$ cannot be improved. There are a number of results that do yield improved Weyl remainder estimates. In [4] it is shown that one can take $o\left(R^{m-1}\right)$ in case the geodesic flow on M has "not too many" periodic orbits. The paper [1] shows that under certain geometrical conditions, one can take

$$
\begin{equation*}
O\left(R^{m-1} / \log R\right) \tag{1.4}
\end{equation*}
$$

as a remainder estimate in (1.3). Recently [3] obtained such an improved remainder estimes for a much broader class of Riemannian manifolds. Among the results obtained there is that (1.4) holds whenever M is a Cartesian product, $M=X \times Y$, of two Riemannian manifolds, with the product metric.

Now it is classically known that one can obtain remainder estimates of the form

$$
\begin{equation*}
O\left(R^{m-1-\alpha}\right) \tag{1.5}
\end{equation*}
$$

with $\alpha>0$, when $M=\mathbb{T}^{m}$ is a flat torus. (Just how big one can take α is an unsolved problem; see [2].) Recently [6] have obtained remainder estimates of the form (1.5) whenever M is a product of spheres,

$$
\begin{equation*}
M=S^{d_{1}} \times \cdots \times S^{d_{k}}, \quad m=d_{1}+\cdots+d_{k} . \tag{1.6}
\end{equation*}
$$

Also, [9] has a remainder estimate of the form (1.5) for $\mathcal{N}\left(L_{a}, R\right)$, when $M=S^{2}$ and $L_{a}=X_{1}^{2}+X_{2}^{2}+a X_{3}^{2}, a \in(0,1) \cup(1, \infty)$, where X_{j} generates 2π-periodic rotation about the x_{j}-axis in \mathbb{R}^{3}. The classical analysis of $M=$ \mathbb{T}^{m}, uses lattice point estimates, and the analyses in [6] and [9] use certain weighted lattice point estimates, [9] bringing in results from [7].

In this paper we look further at Cartesian products,

$$
\begin{equation*}
M=X \times Y, \quad \operatorname{dim} X=n, \operatorname{dim} Y=\ell, m=n+\ell, \tag{1.7}
\end{equation*}
$$

and establish the following.
Theorem 1.1 Assume X and Y in (1.7) are compact Riemannian manifolds. Assume that, for some $\alpha \in(0,1)$,

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{Y}, \rho\right)=C(Y) \rho^{\ell}+R_{Y}(\rho), \quad R_{Y}(\rho)=O\left(\rho^{\ell-1-\alpha}\right) \tag{1.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=C(M) R^{m}+O\left(R^{m-1-\alpha}\right) \tag{1.9}
\end{equation*}
$$

The proof divides into two pieces. First, if $\left\{v_{j}\right\}$ is an orthonormal basis of $L^{2}(X)$ such that

$$
\begin{equation*}
\Delta_{X} v_{j}=-\mu_{j}^{2} v_{j}, \quad \mu_{j} \nearrow+\infty \tag{1.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=\sum_{\mu_{j} \leq R} \mathcal{N}\left(\Delta_{Y}, \sqrt{R^{2}-\mu_{j}^{2}}\right) \tag{1.11}
\end{equation*}
$$

and we show in $\S 2$ that if the hypothesis (1.8) holds, then

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=C(Y) \sum_{\mu_{j} \leq R}\left(R^{2}-\mu_{j}^{2}\right)^{\ell / 2}+O\left(R^{m-1-\alpha}\right) \tag{1.12}
\end{equation*}
$$

Now the sum over $\mu_{j} \leq R$ on the right side of (1.12) is equal to

$$
\begin{equation*}
R^{\ell} \sum_{\mu_{j} \leq R}\left(1-\left(\frac{\mu_{j}}{R}\right)^{2}\right)^{\ell / 2}=R^{\ell} \operatorname{Tr} \varphi_{R}(\Lambda) \tag{1.13}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda=\sqrt{-\Delta_{X}}, \quad \varphi_{R}(\lambda)=\varphi(\lambda / R), \quad \varphi(\lambda)=\left(1-\lambda^{2}\right)_{+}^{\ell / 2} \tag{1.14}
\end{equation*}
$$

We show in $\S 3$ that, for φ as in (1.14), $\ell>0$,

$$
\begin{equation*}
\operatorname{Tr} \varphi_{R}(\Lambda)=C_{X}(\varphi) R^{n}+O\left(R^{n-1-\gamma}\right) \tag{1.15}
\end{equation*}
$$

with $\gamma=\ell / 2$, and thereby obtain (1.9).

2 Reduction to study of $\operatorname{Tr} \varphi_{R}(\Lambda)$

Here we show that the hypothesis (1.8) leads to (1.12). To start, we complement the orthonormal basis $\left\{v_{j}\right\}$ of $L^{2}(X)$, satisfying (1.10), by the orthonormal basis $\left\{w_{i}\right\}$ of $L^{2}(Y)$, satisfying

$$
\begin{equation*}
\Delta_{Y} w_{i}=-\nu_{i}^{2} w_{i}, \quad \nu_{i} \nearrow+\infty . \tag{2.1}
\end{equation*}
$$

Thus we have an orthonormal basis $\left\{u_{j i}\right\}$ of $L^{2}(M)$:

$$
\begin{equation*}
u_{j i}=v_{j} w_{i}, \quad \Delta_{M} u_{j i}=-\left(\mu_{j}^{2}+\nu_{i}^{2}\right) u_{j i}, \tag{2.2}
\end{equation*}
$$

giving the spectrum of Δ_{M} in terms of the joint spectrum of $\left(\Delta_{X}, \Delta_{Y}\right)$. We see that

$$
\begin{align*}
\mathcal{N}\left(\Delta_{M}, R\right) & =\#\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \mu_{j}^{2}+\nu_{i}^{2} \leq R^{2}\right\} \\
& =\#\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: \mu_{j} \leq R, \nu_{i} \leq\left(R^{2}-\mu_{j}^{2}\right)^{1 / 2}\right\} \tag{2.3}\\
& =\sum_{\mu_{j} \leq R} \mathcal{N}\left(\Delta_{Y}, \sqrt{R^{2}-\mu_{j}^{2}}\right)
\end{align*}
$$

Now we bring in the hypothesis (1.8), i.e.,

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{Y}, \rho\right)=C(Y) \rho^{\ell}+R_{Y}(\rho), \quad R_{Y}(\rho)=O\left(\rho^{\ell-1-\alpha}\right) \tag{2.4}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=\sum_{\mu_{j} \leq R}\left\{C(Y)\left(R^{2}-\mu_{j}^{2}\right)^{\ell / 2}+R_{Y}\left(\sqrt{R^{2}-\mu_{j}^{2}}\right)\right\}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{\mu_{j} \leq R}\left|R_{Y}\left(\sqrt{R^{2}-\mu_{j}^{2}}\right)\right| & \leq C \sum_{\mu_{j} \leq R}\left(R^{2}-\mu_{j}^{2}\right)^{(\ell-1-\alpha) / 2} \\
& \leq C R^{\ell-1-\alpha} \cdot \mathcal{N}\left(\Delta_{X}, R\right) \tag{2.6}\\
& \leq C_{2} R^{\ell-1-\alpha} \cdot R^{n}
\end{align*}
$$

in view of the analogue of (1.3) for X. Hence

$$
\begin{equation*}
(2.6) \leq C_{2} R^{m-1-\alpha}, \tag{2.7}
\end{equation*}
$$

and (2.5) yields

$$
\begin{gather*}
\mathcal{N}\left(\Delta_{M}, R\right)=C(Y) \sum_{\mu_{j} \leq R}\left(R^{2}-\mu_{j}^{2}\right)^{\ell / 2}+\mathcal{R}_{X Y}(R), \tag{2.8}\\
\\
\left|\mathcal{R}_{X Y}(R)\right| \leq C_{2} R^{m-1-\alpha},
\end{gather*}
$$

as asserted in (1.12). As noted in §1, we can write (2.8) as

$$
\begin{equation*}
\mathcal{N}\left(\Delta_{M}, R\right)=C(Y) R^{\ell} \operatorname{Tr} \varphi_{R}(\Lambda)+\mathcal{R}_{X Y}(R) \tag{2.9}
\end{equation*}
$$

with $\varphi_{R}(\Lambda)$ given by (1.14).

3 Analysis of $\operatorname{Tr} \varphi_{R}(\Lambda)$

We follow the results of $\S 2$ with an analysis of $\operatorname{Tr} \varphi_{R}(\Lambda)$, with $\varphi_{R}(\lambda)=$ $\varphi(\lambda / R)$, for a variety of functions φ, including

$$
\begin{equation*}
\varphi(\lambda)=\left(1-\lambda^{2}\right)_{+}^{\ell / 2}, \tag{3.1}
\end{equation*}
$$

particularly for $\ell \in \mathbb{N}$, but we will also consider more general cases. We look at the following class of bounded, Borel functions φ. We assume that, for each $k \in \mathbb{N}$,

$$
\begin{equation*}
|\varphi(\lambda)| \leq C_{k}\langle\lambda\rangle^{-k} \tag{3.2}
\end{equation*}
$$

and we also assume that each $\lambda \in \mathbb{R}$ is a Lebesgue point of φ. Note that (3.2) implies

$$
\begin{equation*}
\hat{\varphi} \in L^{2}(\mathbb{R}) \cap C^{\infty}(\mathbb{R}), \quad \hat{\varphi}^{(k)} \in L^{\infty}(\mathbb{R}), \quad \forall k \geq 0 \tag{3.3}
\end{equation*}
$$

A major tool will involve wave equation techniques, coming from

$$
\begin{equation*}
\psi(\Lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\psi}(t) e^{i t \Lambda} d t \tag{3.4}
\end{equation*}
$$

provided $\hat{\psi} \in L^{1}(\mathbb{R})$, which leads to the notion of the trace of $U(t)=e^{i t \Lambda}$, as a tempered distribution, given by

$$
\begin{equation*}
\langle\hat{\psi}, \operatorname{Tr} U\rangle=\sqrt{2 \pi} \operatorname{Tr} \psi(\Lambda), \quad \psi \in \mathcal{S}(\mathbb{R}) \tag{3.5}
\end{equation*}
$$

See Appendix A for a general discussion of this approach. To apply this to $\varphi_{R}(\Lambda)$, it will be convenient to decompose $\varphi_{R}(\lambda)$ into two pieces, making use of

$$
\begin{equation*}
\beta \in C_{0}^{\infty}\left(\left(-T_{0}, T_{0}\right)\right), \text { such that } \beta(\lambda)=1 \text { for }|\lambda| \leq T_{0} / 2, \tag{3.6}
\end{equation*}
$$

where $T_{0}>0$ will be specified below. We write

$$
\begin{equation*}
\varphi_{R}=\varphi_{R}^{\#}+\varphi_{R}^{b}, \quad \hat{\varphi}_{R}^{\#}=\beta \hat{\varphi}_{R} . \tag{3.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\varphi_{R}(\Lambda)=\varphi_{R}^{\#}(\Lambda)+\varphi_{R}^{b}(\Lambda) \tag{3.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi_{R}^{\#}(\Lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\varphi}(t) \beta(t) e^{i t \Lambda} d t \tag{3.9}
\end{equation*}
$$

an identity that fits into the mold (3.4). Thus, as in (3.5), we have

$$
\begin{equation*}
\operatorname{Tr} \varphi_{R}^{\#}(\Lambda)=\frac{1}{\sqrt{2 \pi}}\left\langle\hat{\varphi}_{R}, v\right\rangle \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\beta \operatorname{Tr} U \in \mathcal{E}^{\prime}(\mathbb{R}), \tag{3.11}
\end{equation*}
$$

so $\hat{v} \in C^{\infty}(\mathbb{R})$ and is polynomially bounded, and we have

$$
\begin{equation*}
\operatorname{Tr} \varphi_{R}^{\#}(\Lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi_{R}(\lambda) \hat{v}(\lambda) d \lambda . \tag{3.12}
\end{equation*}
$$

To apply this, we make use of the fact that there exists $T_{0}>0$ such that

$$
\begin{equation*}
\left.\operatorname{Tr} U\right|_{\left(-T_{0}, T_{0}\right)} \in C^{\infty}\left(\left(-T_{0}, T_{0}\right) \backslash 0\right) \tag{3.13}
\end{equation*}
$$

(cf. (A.22)), and use the seminal results of [5] and [4] (cf. (A.27)-(A.36)) that, if we take such T_{0} in (3.6), then $\hat{v} \in S^{n-1}(\mathbb{R})$, satisfying

$$
\begin{equation*}
\hat{v}(\lambda) \sim(2 \pi)^{-n} \sum_{k \geq 0} c_{k} \lambda^{n-1-k}, \quad \lambda \rightarrow+\infty \tag{3.14}
\end{equation*}
$$

(and $\hat{v}(\lambda)$ is rapidly decreasing as $\lambda \rightarrow-\infty$), with

$$
\begin{equation*}
c_{0}=\operatorname{Vol} S^{*} X, \quad c_{k}=0 \text { for } k \text { odd. } \tag{3.15}
\end{equation*}
$$

In connection with this, note that

$$
\begin{align*}
\int_{0}^{\infty} \varphi_{R}(\lambda) \lambda^{n-1-k} d \lambda & =\int_{0}^{\infty} \varphi\left(\frac{\lambda}{R}\right) \lambda^{n-1-k} d \lambda \tag{3.16}\\
& =R^{n-k} \int_{0}^{\infty} \varphi(\lambda) \lambda^{n-1-k} d \lambda
\end{align*}
$$

provided

$$
\begin{equation*}
0 \leq k \leq n-1 \tag{3.17}
\end{equation*}
$$

This yields the following.
Proposition 3.1 As $R \rightarrow \infty$,

$$
\begin{align*}
\operatorname{Tr} \varphi_{R}^{\#}(\Lambda)-C_{X}(\varphi) R^{n}=O\left(R^{n-2}\right), & \text { if } n \geq 3 \tag{3.18}\\
& O(\log R), \\
& \text { if } n=2,
\end{align*}
$$

where

$$
\begin{equation*}
C_{X}(\varphi)=(2 \pi)^{-n} \operatorname{Vol} S^{*} X \int_{0}^{\infty} \varphi(\lambda) \lambda^{n-1} d \lambda \tag{3.19}
\end{equation*}
$$

We turn to an estimate of $\operatorname{Tr} \varphi_{R}^{b}(\Lambda)$, where, by (3.7), φ_{R}^{b} is given by

$$
\begin{equation*}
\hat{\varphi}_{R}^{b}=(1-\beta) \hat{\varphi}_{R}, \quad \text { i.e., } \quad \varphi_{R}^{b}=\varphi_{R}-\tilde{\beta} * \varphi_{R} \tag{3.20}
\end{equation*}
$$

We attack this using the Hörmander estimate (A.37), which is equivalent to

$$
\begin{equation*}
\operatorname{Tr} \chi_{I}(\Lambda-\mu) \leq C\langle\mu\rangle^{n-1}, \quad I=[-1,1] . \tag{3.21}
\end{equation*}
$$

From (3.21) we have:
Proposition 3.2 Assume that σ_{R} is a family of positive measures on \mathbb{R} such that

$$
\begin{equation*}
\left|\varphi_{R}^{b}(\lambda)\right| \leq \int \chi_{I}(\lambda-\mu) d \sigma_{R}(\mu), \quad \text { for } \quad \lambda \geq 0 \tag{3.22}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|\operatorname{Tr} \varphi_{R}^{b}(\Lambda)\right| & \leq \int \operatorname{Tr} \chi_{I}(\Lambda-\mu) d \sigma_{R}(\mu) \\
& \leq C \int\langle\mu\rangle^{n-1} d \sigma_{R}(\mu) . \tag{3.23}
\end{align*}
$$

This leads to the following key estimate, which, together with (3.19), establishes the result

$$
\begin{equation*}
\operatorname{Tr} \varphi_{R}(\Lambda)=C_{X}(\varphi) R^{n}+O\left(R^{n-1-\gamma}\right) \tag{3.24}
\end{equation*}
$$

as advertised in (1.15). As noted there, (1.12)-(1.15) imply (1.9) and hence prove Theorem 1.1.

Proposition 3.3 Assume that

$$
\begin{equation*}
\varphi(\lambda)=\left(1-\lambda^{2}\right)_{+}^{\gamma}, \quad \gamma \geq 0 . \tag{3.25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\operatorname{Tr} \varphi_{R}^{b}(\Lambda)\right| \leq C R^{n-1-\gamma} \tag{3.26}
\end{equation*}
$$

Note that taking $\gamma=0$ in (3.25) recovers, in the setting of X, the classical result (1.3). In this case,

$$
\begin{equation*}
\varphi_{R}(\lambda)=\chi_{[-R, R]}(\lambda), \tag{3.27}
\end{equation*}
$$

and estimating $\varphi_{R}^{b}(\lambda)$ is an exercise. For $\gamma>0$, the exercise is perhaps a little less elementary, and we describe one route to the desired estimate. In the following analysis, we take $\gamma>0$.

Note that

$$
\begin{equation*}
\varphi_{R}^{b}(\lambda)=\psi_{\varepsilon}\left(\frac{\lambda}{R}\right) \tag{3.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\varepsilon}(\lambda)=\varphi(\lambda)-\tilde{\beta}_{\varepsilon} * \varphi(\lambda), \quad \tilde{\beta}_{\varepsilon}(\lambda)=R \tilde{\beta}(R \lambda), \quad \varepsilon=\frac{1}{R} \tag{3.29}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\hat{\psi}_{\varepsilon}(t)=(1-\beta(\varepsilon t)) \hat{\varphi}(t) . \tag{3.30}
\end{equation*}
$$

We claim that, outside layers of thickness $\sim \varepsilon$ about $\lambda= \pm 1, \psi_{\varepsilon}(\lambda)$ decays rapidly to 0 as $\varepsilon \rightarrow 0$, and has an amplitude $\sim \varepsilon^{\gamma}$ on these layers. To do this analysis, it is convenient to use a partition of unity and split φ into two pieces, each with just one singularity, one at $\lambda=1$ and one at $\lambda=-1$. Then translate to move the singularity to $\lambda=0$. Having so modified φ, to a function we denote ψ, we want to analyze $\psi_{\varepsilon}(\lambda)$, given by

$$
\begin{equation*}
\hat{\psi}_{\varepsilon}(t)=(1-\beta(\varepsilon t)) \hat{\psi}(t), \tag{3.31}
\end{equation*}
$$

where $\psi \in \mathcal{E}^{\prime}(\mathbb{R}) \cap C^{\infty}(\mathbb{R} \backslash 0)$ satisfies

$$
\begin{equation*}
\hat{\psi} \in S^{-1-\gamma}(\mathbb{R}), \quad \hat{\psi}(\pm t) \sim \sum_{k \geq 0} a_{k}^{ \pm} t^{-1-\gamma-k}, \quad t \rightarrow+\infty \tag{3.32}
\end{equation*}
$$

We write

$$
\begin{equation*}
\hat{\psi}(t) \sim \sum_{k \geq 0} \hat{\psi}_{k}(t) \tag{3.33}
\end{equation*}
$$

with $\hat{\psi}_{k}(t)$ homogeneous of degree $-1-\gamma-k$ on $\mathbb{R} \backslash 0$. Then the principal part of $\psi_{\varepsilon}(\lambda)$ is given by

$$
\begin{equation*}
\varepsilon^{\gamma} \Psi_{0}\left(\varepsilon^{-1} \lambda\right) \tag{3.34}
\end{equation*}
$$

where $\widehat{\Psi}_{0} \in S^{-1-\gamma}(\mathbb{R})$ is given by $(1-\beta(t)) \hat{\psi}_{0}(t)$, i.e.,

$$
\begin{equation*}
\widehat{\Psi}_{0}(t)=a_{0}^{ \pm}(1-\beta(t))|t|^{-1-\gamma}, \tag{3.35}
\end{equation*}
$$

for $\pm t>0$. Note that $\widehat{\Psi}_{0}(t)$ vanishes near $t=0$. It follows that Ψ_{0} is continuous on \mathbb{R} and smooth on $\mathbb{R} \backslash 0$, with a conormal singularity of the same sort as $|\lambda|^{\gamma}$ at $\lambda=0$, and that $\Psi_{0}(\lambda)$ is rapidly decreasing, together with all its derivatives, as $|\lambda| \rightarrow \infty$.

Further terms in the expansion (3.33) yield contributions to $\psi_{\varepsilon}(\lambda)$ of the form

$$
\begin{equation*}
\varepsilon^{\gamma+k} \Psi_{k}\left(\varepsilon^{-1} \lambda\right) \tag{3.36}
\end{equation*}
$$

At some point, one can cut off the sum (3.33) and estimate the contribution of the remainder in an elementary fashion. The behavior of (3.34) then leads to an estimate of $\varphi_{R}^{b}(\lambda)$, rapidly decreasing as $R \rightarrow \infty$ outside layers of thickness ~ 1 about $\lambda= \pm R$, allowing one to apply Proposition 3.2 and observe the conclusion (3.22) in Proposition 3.3.

A Generalities on the wave trace

Here we take X and Λ as in $\S 1$ (cf. (1.14)), though Λ could be a more general ellipic, self-adjoint element of $O P S^{1}(X)$. If $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ is a Borel function, we define $\varphi(\Lambda)$ via the spectral theorem. Combining Sobolev space regularity and the Sobolev embedding theorem, we have

$$
\begin{align*}
a>\frac{n}{2},|\varphi(\lambda)| \leq C\langle\lambda\rangle^{-a} & \Longrightarrow \varphi(\Lambda): L^{2}(X) \rightarrow H^{a}(X) \subset C(X) \tag{A.1}\\
& \Longrightarrow \varphi(\Lambda) \text { is Hilbert-Schmidt },
\end{align*}
$$

hence

$$
\begin{equation*}
b>n,|\varphi(\lambda)| \leq C\langle\lambda\rangle^{-b} \Longrightarrow \varphi(\Lambda) \text { is trace class. } \tag{A.2}
\end{equation*}
$$

Recall $n=\operatorname{dim} X$. We use the trace norm

$$
\begin{equation*}
\|A\|_{\operatorname{Tr}}=\operatorname{Tr}\left(A^{*} A\right)^{1 / 2} \tag{A.3}
\end{equation*}
$$

One convenient formula for $\varphi(\Lambda)$ arises from combining the spectral theorem and the Fourier inversion formula:

$$
\begin{equation*}
\varphi(\Lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\varphi}(t) e^{i t \Lambda} d t \tag{A.4}
\end{equation*}
$$

assuming

$$
\begin{equation*}
\hat{\varphi} \in L^{1}(\mathbb{R}) \tag{A.5}
\end{equation*}
$$

In particular, (A.4) works for $\varphi \in \mathcal{S}(\mathbb{R})$, and serves to define the wave trace as a tempered distribution,

$$
\begin{equation*}
\operatorname{Tr} U \in \mathcal{S}^{\prime}(\mathbb{R}), \quad U(t)=e^{i t \Lambda} \tag{A.6}
\end{equation*}
$$

by

$$
\begin{equation*}
\langle\hat{\varphi}, \operatorname{Tr} U\rangle=\sqrt{2 \pi} \operatorname{Tr} \varphi(\Lambda), \quad \varphi \in \mathcal{S}(\mathbb{R}) \tag{A.7}
\end{equation*}
$$

We want to use these constructions to study $\operatorname{Tr} \varphi(\Lambda)$ in cases where $\varphi \notin \mathcal{S}(\mathbb{R})$, such as

$$
\begin{equation*}
\varphi(\lambda)=\left(1-\lambda^{2}\right)_{+}^{\ell / 2} \tag{A.8}
\end{equation*}
$$

with $\ell>0$, introduced in (1.14), and its dilates $\varphi_{R}(\lambda)=\varphi(\lambda / R)$. For now, we will work with functions φ satisfying the following: each $\lambda \in \mathbb{R}$ is a Lebesgue point of φ, and

$$
\begin{equation*}
|\varphi(\lambda)| \leq C_{k}\langle\lambda\rangle^{-k}, \quad \forall k \in \mathbb{N} . \tag{A.9}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\hat{\varphi} \in L^{2}(\mathbb{R}) \cap C^{\infty}(\mathbb{R}), \quad \hat{\varphi}^{(k)} \in L^{\infty}(\mathbb{R}), \quad \forall k \geq 0 . \tag{A.10}
\end{equation*}
$$

It does not imply (A.5), though the functions (A.8) do satisfy (A.5) for $\ell>0$. But we also want to handle the limiting case $\ell=0$. To proceed, we fix $T_{0} \in(0, \infty)$, take

$$
\begin{equation*}
\beta \in C_{0}^{\infty}\left(\left(-T_{0}, T_{0}\right)\right), \quad \beta(t)=1 \text { for }|t| \leq T_{0} / 2, \tag{A.11}
\end{equation*}
$$

and write

$$
\begin{equation*}
\varphi=\varphi^{\#}+\varphi^{b}, \quad \varphi^{\#}=\tilde{\beta} * \varphi, \quad \text { i.e., } \quad \hat{\varphi}^{\#}(t)=\beta(t) \hat{\varphi}(t) . \tag{A.12}
\end{equation*}
$$

Then $\varphi^{\#} \in \mathcal{S}(\mathbb{R})$, and

$$
\begin{equation*}
\varphi(\Lambda)=\varphi^{\#}(\Lambda)+\varphi^{b}(\Lambda), \tag{A.13}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi^{\#}(\Lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\varphi}(t) \beta(t) e^{i t \Lambda} d t . \tag{A.14}
\end{equation*}
$$

For judiciously chosen β we use (A.10) and results on the wave trace to analyze $\operatorname{Tr} \varphi^{\#}(\Lambda)$. We use other methods to estimate the trace of

$$
\begin{equation*}
\varphi^{b}(\Lambda), \quad \varphi^{b}(\lambda)=\varphi(\lambda)-\tilde{\beta} * \varphi(\lambda) . \tag{A.15}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
v=\beta \operatorname{Tr} U \in \mathcal{E}^{\prime}(\mathbb{R}), \tag{A.16}
\end{equation*}
$$

so $\hat{v} \in C^{\infty}(\mathbb{R})$, and is polynomially bounded. We therefore have the identity

$$
\begin{align*}
\operatorname{Tr} \varphi^{\#}(\Lambda) & =\frac{1}{\sqrt{2 \pi}}\langle\hat{\varphi}, v\rangle \tag{A.17}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(\lambda) \hat{v}(\lambda) d \lambda .
\end{align*}
$$

Remark. We can readily obtain a definite estimate on $|\hat{v}(\lambda)|$, as follows. First,

$$
\begin{align*}
\hat{v}(\lambda) & =\frac{1}{\sqrt{2 \pi}}\left\langle\beta e^{-i \lambda t}, \operatorname{Tr} U\right\rangle \tag{A.18}\\
& =\operatorname{Tr} \tilde{\beta}_{\lambda}(\Lambda),
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\beta}_{\lambda}(\mu)=\tilde{\beta}(\mu-\lambda) . \tag{A.19}
\end{equation*}
$$

From (A.2) we have

$$
\begin{equation*}
\|\psi(\Lambda)\|_{\operatorname{Tr}} \leq C_{b} \sup _{\lambda}\langle\lambda\rangle^{b}|\psi(\lambda)|, \quad \forall b>n, \tag{A.20}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
|\hat{v}(\lambda)| \leq C_{\delta}\langle\lambda\rangle^{n+\delta}, \quad \forall \delta>0 . \tag{A.21}
\end{equation*}
$$

If T_{0} in (A.11) is chosen appropriately, methods of microlocal analysis yield much more precise information on $\hat{v}(\lambda)$. (For one thing, we can replace $n+\delta$ by $n-1$ in (A.21).) To start, results on propagation of singularities show that if you pick $T_{0}>0$ so small that, for each $x \in X$, the orbits of $H_{p_{1}}$ in $T^{*} X \backslash 0$, starting in $T_{x}^{*} X \backslash 0$ (p_{1} denoting the principal symbol of Λ) do not pass over x for $0<|t|<T_{0}$, then

$$
\begin{equation*}
\left.\operatorname{Tr} U\right|_{\left(-T_{0}, T_{0}\right)} \in C^{\infty}\left(\left(-T_{0}, T_{0}\right) \backslash 0\right) \tag{A.22}
\end{equation*}
$$

A more refined result (cf. [4]) is that if $T \in \operatorname{sing} \operatorname{supp} \operatorname{Tr} U$, then either $T=0$ or the flow generated by $H_{p_{1}}$ has an orbit of period T. The seminal analysis of [5] says that, perhaps on a smaller interval $\left(-T_{1}, T_{1}\right), e^{i t \Lambda}$ is equal, modulo a smoothing operator, to $Q(t)$, given by

$$
\begin{equation*}
Q(t) f(x)=(2 \pi)^{-n} \iint e^{i \varphi(x, y, \xi)+i t p(y, \xi)} q(t, x, y, \xi) f(y) d \xi d y \tag{A.23}
\end{equation*}
$$

where $\varphi(x, y, \xi)$ is real valued and homogeneous of degree 1 in ξ, and satisfies

$$
\begin{equation*}
\varphi(x, y, \xi)=\langle x-y, \xi\rangle+O\left(|x-y|^{2}|\xi|\right) \tag{A.24}
\end{equation*}
$$

and q is a classical symbol of order 0 . This leads to a precise analysis of

$$
\begin{equation*}
\hat{v}(\lambda)=\sum_{j} \tilde{\beta}\left(\lambda-\mu_{j}\right), \tag{A.25}
\end{equation*}
$$

with μ_{j} as in (1.10), whose neatest form is perhaps Proposition 2.1 and (2.16) of [4]. The conclusion is that whenever β satisfies (A.11), with T_{0} as in (A.22), and v is given by (A.16), then

$$
\begin{equation*}
\hat{v} \in S^{n-1}(\mathbb{R}) \tag{A.26}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{v}(\lambda) \sim(2 \pi)^{-n} \sum_{k \geq 0} c_{k} \lambda^{n-1-k}, \text { as } \lambda \rightarrow+\infty, \tag{A.27}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=\operatorname{Vol} S^{*} X, \tag{A.28}
\end{equation*}
$$

where $S^{*} X=\left\{(x, \xi) \in T^{*} X: p_{1}(x, \xi)=1\right\}$. If Λ^{2} is a differential operator (e.g., $\Lambda^{2}=-\Delta_{X}$), then

$$
\begin{equation*}
c_{k}=0, \quad \text { for } k \text { odd, } \tag{А.29}
\end{equation*}
$$

and also

$$
\begin{equation*}
c_{n+2 \ell}=0, \quad \text { for } \quad \ell \in \mathbb{N} . \tag{A.30}
\end{equation*}
$$

Of course, as is clear from (A.25),

$$
\begin{equation*}
\hat{v}(\lambda) \text { is rapidly decreasing as } \lambda \rightarrow-\infty . \tag{A.31}
\end{equation*}
$$

Remark. By the use of (A.23), the results (A.26)-(A.30) are first established under the hypothesis that (A.11) holds with T_{0} replaced by a smaller quantity $T_{1} \in\left(0, T_{0}\right)$. The extension to the more general class described by (A.11), with T_{0} as in (A.22), is straightforward.

Here is another straightforward extension of (A.26)-(A.27). Replace β in (A.11) by $\hat{\rho}$, where

$$
\begin{equation*}
\hat{\rho} \in C_{0}^{\infty}\left(\left(-T_{0}, T_{0}\right)\right) . \tag{A.32}
\end{equation*}
$$

The difference is that we do not assume $\hat{\rho}=1$ for small $|t|$. We still have

$$
\begin{equation*}
v_{\rho}=\hat{\rho} \operatorname{Tr} U \Longrightarrow \hat{v}_{\rho} \in S^{n-1}(\mathbb{R}) \tag{A.33}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sum_{j} \rho\left(\lambda-\mu_{j}\right) \sim \sum_{k \geq 0} c_{k}^{\prime} \lambda^{n-1-k}, \quad \text { as } \quad \lambda \rightarrow+\infty . \tag{A.34}
\end{equation*}
$$

Proof. Pick β as in (A.11) with $\beta(t)=1$ on supp $\hat{\rho}$. Then $v_{\rho}=\hat{\rho} v$, so

$$
\begin{equation*}
\hat{v}_{\rho}=\rho * \hat{v} . \tag{A.35}
\end{equation*}
$$

This extension is significant because we can pick $\hat{\rho}$, satisfying (A.32), such that

$$
\begin{equation*}
\rho \geq 0 \text { on } \mathbb{R}, \quad \rho(\lambda) \geq 1 \text { for }|\lambda| \leq 1, \tag{A.36}
\end{equation*}
$$

and then (A.34) yields the important Hörmander estimate

$$
\begin{equation*}
\#\left\{j:\left|\lambda-\mu_{j}\right| \leq 1\right\} \leq C\langle\lambda\rangle^{n-1} . \tag{A.37}
\end{equation*}
$$

References

[1] P. Berard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Zeit. 155 (1977), 249-276.
[2] B. Berndt, S. Kim, and A. Zaharescu, The circle problem of Gauss and the divisor problem - still unsolved, Amer. Math. Monthly 125 (2018), 99-114.
[3] Y. Canzani and J. Galkowski, Weyl remainder estimates: an application of geodesic beams, arXiv:2010.03969, 2020.
[4] J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 4979.
[5] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218.
[6] A. Iosevich and E. Weyman, Weyl law improvement for products of spheres, arXiv:1909.11844v1, IMRN, to appear.
[7] J. Rauch and M. Taylor, Quadrature estimates for multidimensional integrals, Houston J. Math. 36 (2010), 727-749.
[8] M. Taylor, Partial Differential Equations, Springer, New York, 1996 (2nd ed. 2011).
[9] M. Taylor, Elliptic operators on S^{2} whose Weyl spectral asymptotics have small remainders, Preprint, 2021.

Michael E. Taylor
Mathematics Dept., UNC, Chapel Hill NC, 27599
email: met@math.unc.edu

[^0]: ${ }^{*}$ MSC-2020 Math Subject Classification: 35P20, 42B05, 43A85. Key words. Laplace operator, spectrum, joint spectrum, spectral counting function, Weyl asymptotics, wave trace

