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Preface

Linear algebra is an important gateway connecting elementary mathematics to more
advanced subjects, such as multivariable calculus, systems of differential equations,
differential geometry, and group representations. The purpose of this work is to
provide an introduction to this subject that will prepare the reader to tackle such
further material.

In Chapter 1 we define the class of vector spaces (real or complex) and discuss
some basic examples, including Rn and Cn, or, as we denote them, Fn, with F = R
or C. We then consider linear transformations between such spaces. In particular,
we look at an m×n matrix A as defining a linear transformation A : Fn → Fm. We
define the range R(T ) and null space N (T ) of a linear transformation T : V →W .
In §1.3 we define the notion of basis of a vector space. Vector spaces with finite
bases are called finite dimensional. We establish the crucial property that any
two bases of such a vector space V have the same number of elements (denoted
dimV ). We apply this to other results on bases of vector spaces, culminating in
the “fundamental theorem of linear algebra,” that if T : V → W is linear and V
is finite dimensional, then dimN (T ) + dimR(T ) = dimV , and discuss some of its
important consequences.

A linear transformation T : V → V is said to be invertible provided it is one-
to-one and onto, i.e., provided N (T ) = 0 and R(T ) = V . In §1.5 we define the
determinant of such T , detT (when V is finite dimensional), and show that T is
invertible if and only if detT ̸= 0. One useful tool in the study of determinants
consists of row operations and column operations. In §1.6 we pursue these opera-
tions further, and show how applying row reduction to an m × n matrix A works
to display a basis of its null space, while applying column reduction to A works to
display a basis of its range.

In Chapter 2 we study eigenvalues λj and eigenvectors vj of a linear transfor-
mation T : V → V , satisfying Tvj = λjvj . Results of §1.5 imply that λj is a root of
the “characteristic polynomial” det(λI − T ). Section 2.2 extends the scope of this
study to a treatment of generalized eigenvectors of T , which are shown to always
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x Preface

form a basis of V , when V is a finite-dimensional complex vector space. This ties
in with a treatment of properties of nilpotent matrices and triangular matrices, in
§2.3. Combining the results on generalized eigenvectors with a closer look at the
structure of nilpotent matrices leads to the presentation of the Jordan canonical
form for an n× n complex matrix, in §2.4.

In Chapter 3 we introduce inner products on vector spaces and endow them
with a Euclidean geometry, in particular with a distance and a norm. In §3.2 we
discuss two types of norms on linear transformations, the “operator norm” and the
“Hilbert-Schmidt norm.” Then, in §§3.3–3.4, we discuss some special classes on
linear transformations on inner product spaces: self-adjoint, skew-adjoint, unitary,
and orthogonal transformations. In §3.5 we establish a theorem of Schur that for
each n × n matrix A, there is an orthonormal basis of Cn with respect to which
A takes an upper triangular form. Section 3.6 establishes a polar decomposition
result, that each n×n complex matrix can be written as KP , with K unitary and P
positive semidefinite, and a related result known as the singular value decomposition
of a complex matrix (square or rectangular).

In §3.7 we define the matrix exponential etA, for A ∈ M(n,C), so that x(t) =
etAv solves the differential equation dx/dt = Ax, x(0) = v. We produce a power
series for etA and establish some basic properties. The matrix exponential is fun-
damental to applications of linear algebra to ODE. Here, we use this connection
to produce another proof that if A is an n× n complex matrix, then Cn has a ba-
sis consisting of generalized eigenvectors of A. The proof given here is completely
different from that of §2.2.

Section 3.8 takes up the discrete Fourier transform (DFT), acting on functions
f : Z → C that are periodic, of period n. This transform diagonalizes an important
class of operators known as convolution operators. This section also treats a fast
implementation of the DFT, known as the Fast Fourier Transform (FFT).

Chapter 4 introduces some further basic concepts in the study of linear algebra
on real and complex vector spaces. In §4.1 we define the dual space V ′ to a vector
space. We associate to a linear map A : V → W its transpose At : W ′ → V ′ and
establish a natural isomorphism V ≈ (V ′)′ when dimV < ∞. Section 4.2 looks at
convex subsets of a finite-dimensional vector space. Section 4.3 deals with quotient
spaces V/W when W is a linear subspace of V .

In §4.4 we study positive matrices, including the important class of stochastic
matrices. We establish the Perron-Frobenius theorem, which states that, under a
further hypothesis called irreducibility, a positive matrix has a positive eigenvec-
tor, unique up to scalar multiple, and draw useful corollaries for the behavior of
irreducible stochastic matrices.



Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

Z+ is the set of integers ≥ 0.

N is the set of integers ≥ 1 (the “natural numbers”).

Q is the set of rational numbers.

x ∈ R means x is an element of R, i.e., x is a real number.

(a, b) denotes the set of x ∈ R such that a < x < b.

[a, b] denotes the set of x ∈ R such that a ≤ x ≤ b.

{x ∈ R : a ≤ x ≤ b} denotes the set of x in R such that a ≤ x ≤ b.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.

z = x− iy if z = x+ iy ∈ C, x, y ∈ R.

xi



xii Some basic notation

f : A→ B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.

x→ x0 means the variable x tends to the limit x0.



Chapter 1

Vector spaces, linear
transformations, and matrices

This chapter introduces the principal objects of linear algebra and develops some
basic properties. These objects are linear transformations, acting on vector spaces.
A vector space V possesses the operations of vector addition and multiplication by
a scalar (a number, real or complex); that is, one has

u, v ∈ V, a ∈ F =⇒ u+ v, av ∈ V.

Here, F stands for either R (the set of real numbers) or C (the set of complex
numbers). In Chapter 6 we will bring in more general classes of scalars. A linear
transformation is a map T : V →W between two vector spaces that preserves these
vector operations.

Basic cases of vector spaces are the familiar Euclidean spaces Rn and their
complex counterparts. In these cases a vector is uniquely specified by its compo-
nents. More generally, vector spaces have bases, in terms of which one can uniquely
expand a vector. We show in §1.3 that any two bases of a vector space V have the
same number of elements. This number is called the dimension of V , and denoted
dimV .

Two basic objects associated to a linear transformation T : V →W are its null
space,

N (T ) = {v ∈ V : Tv = 0},

and its range,

R(T ) = {Tv : v ∈ V }.

These subspaces of V and W , respectively, are also vector spaces. The “fundamen-
tal theorem of linear algebra” is an identity connecting dimN (T ), dimR(T ), and
dimV .

1



2 1. Vector spaces, linear transformations, and matrices

Matrices provide a convenient representation of linear transformations. A ma-
trix is a rectangular array of numbers,

A =

a11 · · · a1n
...

...
am1 · · · amn

 .

We say A is an m × n matrix and write A ∈ M(m × n,F), if the entries ajk of A
are elements of F. In case m = n, we say A ∈ M(n,F). Horizontal arrays in A
are called rows, and vertical arrays are called columns. The composition of linear
transformations can be expressed in terms of matrix products.

One fundamental question is how to determine whether an n × n matrix is
invertible. In §1.5 we introduce the determinant, and show that A ∈ M(n,F) is
invertible if and only if detA ̸= 0. We introduce the determinant by three simple
rules. We show that these rules uniquely specify the determinant, and lead to a
formula for detA as a sum of products of the entries ajk of A. An important
ingredient in our development of the determinant is an investigation of how detA
transforms when we apply to A a class of operations called row operations and
column operations.

Use of these operations is explored further in §1.6. One application is to a
computation of the inverse A−1, via a sequence of row operations. This is called
the method of Gaussian elimination. Going further, for A ∈M(m×n,F), we show
that the null space N (A) is invariant under row operations and the range R(A) is
invariant under column operations. This can be used to construct bases of N (A)
and of R(A).

The process of applying a sequence of row operations to an invertible n × n
matrix A to compute its inverse has the effect of representing A as a product of
matrices of certain particularly simple forms (cf. (1.6.12)). We also make use of
this in §1.6 to derive the following geometrical interpretation of the determinant of
an invertible matrix A ∈M(n,R). Namely, if Ω ⊂ Rn is a bounded open set,

Vol(A(Ω)) = |detA|Vol(Ω).
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Figure 1.1.1. Vector operations on R2

1.1. Vector spaces

Vector spaces arise as a natural setting in which to make a mathematical study of
multidimensional phenomena. The first case is the Euclidean plane, which, in the
Cartesian system, consists of points that are specified by pairs of real numbers,

(1.1.1) v = (v1, v2).

We denote the Cartesian plane by R2. Similarly, the three-dimensional space of
common experience can be identified with R3, the set of triples v = (v1, v2, v3) of
real numbers.

More generally we have n-space Rn, whose elements consist of n-tuples of real
numbers:

(1.1.2) v = (v1, . . . , vn).

There is vector addition; if also w = (w1, . . . , wn) ∈ Rn,

(1.1.3) v + w = (v1 + w1, . . . , vn + wn).

There is also multiplication by scalars; if a is a real number (a scalar),

(1.1.4) av = (av1, . . . , avn).

Figure 1.1.1 illustrates these vector operations on the Euclidean plane R2.



4 1. Vector spaces, linear transformations, and matrices

Figure 1.1.2. Multiplication by i in C

We could also use complex numbers, replacing Rn by Cn, and allowing a ∈ C
in (1.1.4). Recall that a complex number z ∈ C has the form z = x+ iy, x, y ∈ R.
If also w = u+ iv, we have

(1.1.5) z + w = (x+ u) + i(y + v),

similar to vector addition on R2. In addition, there is complex multiplication,

(1.1.6)
zw = (x+ iy)(u+ iv)

= (xu− yv) + i(xv + yu),

governed by the rule

(1.1.7) i2 = −1.

See Figure 1.1.2 for an illustration of the operation z 7→ iz in the complex plane C.
We will use F to denote R or C.
Above we represented elements of Fn as row vectors. Often we represent ele-

ments of Fn as column vectors. We write

(1.1.8) v =

v1...
vn

 , av + w =

av1 + w1

...
avn + wn

 .
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There are other mathematical objects that have natural analogues of the vector
operations (1.1.3)–(1.1.4). For example, let I = [a, b] denote an interval in R and
let C(I) denote the set of functions f : I → F that are continuous. We can define
addition and multiplication by a scalar on C(I) by

(1.1.9) (f + g)(x) = f(x) + g(x), (af)(x) = af(x).

Similarly, if k is a positive integer, let Ck(I) denote the set of functions f : I → F
whose derivatives up ot order k exist and are continuous on I. Again we have the
“vector operations” (1.1.9). Other examples include P, the set of polynomials in
x, and Pn, the set of polynomials in x of degree ≤ n. These sets also have vector
operations given by (1.1.9). In the case of polynomials in Pn,

f(x) = anx
n + · · ·+ a1x+ a0,

g(x) = bnx
n + · · ·+ b1x+ b0,

the formulas (1.1.9) also yield

(f + g)(x) = (an + bn)x
n + · · ·+ (a1 + b1)x+ (a0 + b0),

(cf)(x) = canx
n + · · ·+ ca1x+ ca0,

closely parallel to (1.1.3)–(1.1.4).

The spaces just described are all examples of vector spaces.

We define this general notion now. A vector space over F is a set V , endowed
with two operations, that of vector addition and multiplication by scalars. That is,
given v, w ∈ V and a ∈ F, then v + w and av are defined in V . Furthermore, the
following properties are to hold, for all u, v, w ∈ V, a, b ∈ F. First there are laws
for vector addition:

Commutative law : u+ v = v + u,(1.1.10)

Associative law : (u+ v) + w = u+ (v + w),(1.1.11)

Zero vector : ∃ 0 ∈ V, v + 0 = v,(1.1.12)

Negative : ∃ − v, v + (−v) = 0.(1.1.13)

Next there are laws for multiplication by scalars:

Associative law : a(bv) = (ab)v,(1.1.14)

Unit : 1 · v = v.(1.1.15)

Finally there are two distributive laws:

a(u+ v) = au+ av,(1.1.16)

(a+ b)u = au+ bu.(1.1.17)

The eight rules just set down are rules that, first of all, apply to the cases
V = R and V = C, and as such are familiar rules of algebra in that setting. One
can readily verify these rules also for Rn and Cn, and for the various function spaces
such as Ck(I) and Pn, with vector operations defined by (1.1.9),



6 1. Vector spaces, linear transformations, and matrices

A number of other simple identities are automatic consequences of the rules
given above. Here are some, which the reader is invited to verify:

(1.1.18)

v + w = v ⇒ w = 0,

v + 0 · v = (1 + 0)v = v,

0 · v = 0,

v + w = 0 ⇒ w = −v,
v + (−1)v = 0 · v = 0,

(−1)v = −v.

We mention some other ways to produce vector spaces. For one, we say a subset
W of a vector space V is a linear subspace provided

(1.1.19) wj ∈W, aj ∈ F =⇒ a1w1 + a2w2 ∈W.

Then W inherits the structure of a vector space. For example, Ck(I) is a linear
subspace of Cℓ(I) if k > ℓ, and Pn is a linear subspace of Pm if n < m. Further
examples of linear subspaces will arise in subsequent sections. This notion will be
seen to be a fundamental part of linear algebra.

A further class of vector spaces arises as follows, extending the construction of
Fn as n-tuples of elements of F. To begin, let V1, . . . , Vn be vector spaces (over F).
Then we define the direct sum

(1.1.20) V1 ⊕ · · · ⊕ Vn

to consist of n-tuples

(1.1.21) v = (v1, . . . , vn), vj ∈ Vj .

If also w = (w1, . . . , wn) with wj ∈ Vj , we define vector addition as in (1.1.3) and
multiplication by a ∈ F as in (1.1.4). The reader can verify that the direct sum V
so defined satisfies the conditions for being a vector space.
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Exercises

1. Show that the results in (1.1.18) follow from the basic rules (1.1.10)–(1.1.17).
Hint. To start, add −v to both sides of the identity v + w = v, and take account
first of the associative law (1.1.11), and then of the rest of (1.1.10)–(1.1.13). For
the second line of (1.1.18), use the rules (1.1.15) and (1.1.17). Then use the first
two lines of (1.1.18) to justify the third line...

2. Demonstrate that the following results hold for every vector space V . Take
a ∈ F, v ∈ V .

a · 0 = 0 ∈ V,

a(−v) = −av.
Hint. Feel free to use the results of (1.1.18).

Let V be a vector space (over F) and W,X ⊂ V linear subspaces. We say

(1.1.22) V =W +X

provided each v ∈ V can be written

(1.1.23) v = w + x, w ∈W, x ∈ X.

We say

(1.1.24) V =W ⊕X

provided each v ∈ V has a unique representation (1.1.23).

3. Show that

V =W ⊕X ⇐⇒ V =W +X and W ∩X = 0.

4. Take V = R3. Specify in each case below whether V = W + X and whether
V =W ⊕X.

W = {(x, y, z) : z = 0}, X = {(x, y, z) : x = 0},
W = {(x, y, z) : z = 0}, X = {(x, y, z) : x = y = 0},
W = {(x, y, z) : z = 0}, X = {(x, y, z) : y = z = 0}.

5. If V1, . . . , Vn are linear subspaces of V , extend (1.1.22) to the notion

(1.1.25) V = V1 + · · ·+ Vn,

and extend (1.1.24) to the notion that

(1.1.26) V = V1 ⊕ · · · ⊕ Vn.

6. Compare the notion of V1 ⊕ · · ·⊕Vn in Exercise 5 with that in (1.1.20)–(1.1.21).
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1.2. Linear transformations and matrices

If V and W are vector spaces over F (R or C), a map

(1.2.1) T : V −→W

is said to be a linear transformation provided

(1.2.2) T (a1v1 + a2v2) = a1Tv1 + a2Tv2, ∀ aj ∈ F, vj ∈ V.

We also write T ∈ L(V,W ). In case V = W , we also use the notation L(V ) =
L(V, V ).

Linear transformations arise in a number of ways. For example, an m × n
matrix, i.e., a rectangular array

(1.2.3) A =

a11 · · · a1n
...

...
am1 · · · amn

 ,

with entries in F, defines a linear transformation

(1.2.4) A : Fn −→ Fm,

by

(1.2.5)

a11 · · · a1n
...

...
am1 · · · amn


b1...
bn

 =

Σa1ℓbℓ
...

Σamℓbℓ

 .

We say A ∈M(m×n,F) when A is given by (1.2.3). If m = n, we say A ∈M(n,F).
See Figure 1.2.1 for an illustration of the action of the transformation

(1.2.6) A : R2 −→ R2, A =

(
3 −1
−1 3

)
,

showing the distinguished vectors e1 = (1, 0)t and e2 = (0, 1)t, and their images
Ae1, Ae2. We also display the circle x2 + y2 = 1 and its image under A. A further
examination of the structure of linear transformations in Chapter 2 will lead to Fig-
ure 2.1.1, displaying additional information on the behavior of this transformation.

We also have linear transformations on function spaces, such as multiplication
operators

(1.2.7) Mf : Ck(I) −→ Ck(I), Mfg(x) = f(x)g(x),

given f ∈ Ck(I), I = [a, b], and the operation of differentiation:

(1.2.8) D : Ck+1(I) −→ Ck(I), Df(x) = f ′(x).

We also have integration:

(1.2.9) I : Ck(I) −→ Ck+1(I), If(x) =
∫ x

a

f(y) dy.

Note also that

(1.2.10) D : Pk+1 −→ Pk, I : Pk −→ Pk+1,

where Pk denotes the space of polynomials in x of degree ≤ k.



1.2. Linear transformations and matrices 9

Figure 1.2.1. Action of the linear transformation A in (1.2.6)

Two linear transformations Tj ∈ L(V,W ) can be added:

(1.2.11) T1 + T2 : V −→W, (T1 + T2)v = T1v + T2v.

Also T ∈ L(V,W ) can be multiplied by a scalar:

(1.2.12) aT : V −→W, (aT )v = a(Tv).

This makes L(V,W ) a vector space.

We can also compose linear transformations S ∈ L(W,X), T ∈ L(V,W ):

(1.2.13) ST : V −→ X, (ST )v = S(Tv).

For example, we have

(1.2.14) MfD : Ck+1(I) −→ Ck(I), MfDg(x) = f(x)g′(x),

given f ∈ Ck(I). When two transformations

(1.2.15) A : Fn −→ Fm, B : Fk −→ Fn

are represented by matrices, e.g., A as in (1.2.3)–(1.2.5) and

(1.2.16) B =

b11 · · · b1k
...

...
bn1 · · · bnk

 ,
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then

(1.2.17) AB : Fk −→ Fm

is given by matrix multiplication:

(1.2.18) AB =

Σa1ℓbℓ1 · · · Σa1ℓbℓk
...

...
Σamℓbℓ1 · · · Σamℓbℓk

 .

For example,

(1.2.19)

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Another way of writing (1.2.18) is to represent A and B as

(1.2.20) A = (aij), B = (bij),

and then we have

(1.2.21) AB = (dij), dij =

n∑
ℓ=1

aiℓbℓj .

To establish the identity (1.2.18), we note that it suffices to show the two sides have
the same effect on each ej ∈ Fk, 1 ≤ j ≤ k, where ej is the column vector in Fk

whose jth entry is 1 and whose other entries are 0. First note that

(1.2.22) Bej =

b1j...
bnj

 ,

which is the jth column in B, as one can see via (1.2.5). Similarly, if D denotes
the right side of (1.2.18), Dej is the jth column of this matrix, i.e.,

(1.2.23) Dej =

Σa1ℓbℓj
...

Σamℓbℓj

 .

On the other hand, applying A to (1.2.22), via (1.2.5), gives the same result, so
(1.2.18) holds.

Associated with a linear transformation as in (1.2.1) there are two special linear
spaces, the null space of T and the range of T . The null space of T is

(1.2.24) N (T ) = {v ∈ V : Tv = 0},

and the range of T is

(1.2.25) R(T ) = {Tv : v ∈ V }.

Note that N (T ) is a linear subspace of V and R(T ) is a linear subspace of W . If
N (T ) = 0 we say T is injective; if R(T ) = W we say T is surjective. Note that T
is injective if and only if T is one-to-one, i.e.,

(1.2.26) Tv1 = Tv2 =⇒ v1 = v2.
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If T is surjective, we also say T is onto. If T is one-to-one and onto, we say it is an
isomorphism. In such a case the inverse

(1.2.27) T−1 :W −→ V

is well defined, and it is a linear transformation. We also say T is invertible, in such
a case.

We illustrate the notions of surjectivity and injectivity with the following ex-
ample. Take Pn, the space of polynomials of degree ≤ n (with coefficients in F).
Pick distinct points aj ∈ F, 1 ≤ j ≤ n+ 1, and define

(1.2.28) ES : Pn −→ Fn+1, ESp =

 p(a1)
...

p(an+1)

 .

Here S = {a1, . . . , an+1}. Here is our surjectivity result.

Proposition 1.2.1. The map ES in (1.2.28) is surjective.

Proof. For j ∈ {1, . . . , n+ 1}, define qj ∈ Pn by

(1.2.29) qj(t) =
∏
ℓ̸=j

(t− aℓ).

Then

(1.2.30) qj(ak) = 0 ⇐⇒ k ̸= j.

We can define

(1.2.31) FS : Fn+1 −→ Pn

by

(1.2.32) FS

 b1
...

bn+1

 =

n+1∑
j=1

bj
qj(aj)

qj ,

and see from (1.2.30) that

(1.2.33) p = FS

 b1
...

bn+1

 =⇒ p(ak) = bk, ∀ k ∈ {1, . . . , n+ 1}.

In other words,

(1.2.34) ESFS = I on Fn+1.

This establishes surjectivity. �

The formula (1.2.32) for FS , satisfying (1.2.33), is called the Lagrange interpo-
lation formula.

As a companion to Proposition 1.2.1, we have

Proposition 1.2.2. The map ES in (1.2.28) is injective.
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Proof. A polynomial p ∈ Pn belongs to N (ES) if and only if

(1.2.35) p(aj) = 0, ∀ j ∈ {1, . . . , n+ 1}.
Now we can divide t− a1 into p(t), obtaining p1 ∈ Pn−1 and r1 ∈ P0 such that

(1.2.36) p(t) = (t− a1)p1(t) + r1,

and plugging in t = a1 yields r1 = 0, so in fact

(1.2.37) p(t) = (t− a1)p1(t), p1 ∈ Pn−1.

Proceeding inductively, we have

(1.2.38) p(t) = (t− a1) · · · (t− an)pn, pn ∈ P0,

so

(1.2.39) p(an+1) = 0 ⇒ pn = 0 ⇒ p = 0,

and we have injectivity. �

Remark. In §1.3 we will see that Pn and Fn+1 both have dimension n + 1, and
hence, as a consequence of the fundamental theorem of linear algebra, injectivity
of ES and surjectivity of ES are equivalent. At present, we have from Propositions
1.2.1–1.2.2 that E−1

S = FS , hence

(1.2.40) FSES = I on Pn.
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Exercises

1. Using the definitions given in this section, show that the linear system of equa-
tions

ax+ by = u,

cx+ dy = v

is equivalent to the matrix equation(
a b
c d

)(
x

y

)
=

(
u

v

)
.

2. Consider A,B : R3 → R3, given by

A =

0 1 0
0 0 1
0 0 0

 , B =

0 0 0
1 0 0
0 1 0

 .

Compute AB and BA.

3. In the context of Exercise 2, specify

N (A), N (B), R(A), R(B).

4. We say two n × n matrices A and B commute provided AB = BA. Note that
AB ̸= BA in Exercise 2. Pick out the pair of commuting matrices from this list:(

0 −1
1 0

)
,

(
1 0
0 −1

)
,

(
1 −1
1 1

)
.

5. Let A ∈M(n,F). Define Ak for k ∈ Z+ by

A0 = I, A1 = A, Ak+1 = AAk.

Show that A commutes with Ak for each k. (Hint. Use associativity.)

6. Show that (1.2.5) is a special case of matrix multiplication, as defined by the
right side of (1.2.18).

7. Show, without using the formula (1.2.18) identifying compositions of linear trans-
formations and matrix multiplication, that matrix multiplication is associative, i.e.,

(1.2.41) A(BC) = (AB)C,

where C : Fℓ → Fk is given by a k × ℓ matrix and the products in (1.2.41) are
defined as matrix products, as in (1.2.21).
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8. Show that the asserted identity (1.2.18) identifying compositions of linear trans-
formations with matrix products follows from the result of Exercise 7.
Hint. (1.2.5), defining the action of A on Fn, is a matrix product.

9. Define the transpose of an m × n matrix A = (ajk) to be the n × m matrix
At = (akj). Thus, if A is as in (1.2.3)–(1.2.5),

(1.2.42) At =

a11 · · · am1

...
...

a1n · · · amn

 .

For example,

A =

1 2
3 4
5 6

 =⇒ At =

(
1 3 5
2 4 6

)
.

Suppose also B is an n× k matrix, as in (1.2.16), so AB is defined, as in (1.2.17).
Show that

(1.2.43) (AB)t = BtAt.

10. Let

A =
(
1 2 3

)
, B =

2
0
2

 .

Compute AB and BA. Then compute AtBt and BtAt.

11. Let A,B,C be matrices satisfying C = AB. Denote by bk the kth column of
B, cf. (1.2.22), and similarly let ak and ck denote the kth columns of A and C,
respectively. Using the identity cjk =

∑
ℓ ajℓbℓk, verify the following formulas for

the kth column of C:

(1.2.44) ck = Abk, ck =
∑
ℓ

bℓkaℓ.

Note that the second identity represents the kth column of C as a linear combination
of the columns of A, with coefficients coming from the kth column of B.

12. With D and I given by (1.2.8)–(1.2.9), compute DI and ID. Specify

N (D), N (I), R(D), R(I).
Note. Calculations of DI and ID bring in the fundamental theorem of calculus.

13. As a variant of Exercise 12, define

T : C(I)⊕ C1(I) −→ C(I)⊕ C1(I), T (g, f) = (Df, Ig).
Here the direct sum C(I) ⊕ C1(I) is defined as in (1.1.20)–(1.1.21). Compute T 2.
Also, specify

N (T ), N (T 2), R(T ), R(T 2).
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14. For another variant, define

E : C1(I) −→ C(I)⊕ F, Ef = (f ′, f(a)),

J : C(I)⊕ F −→ C1(I), J (g, c)(t) = c+

∫ t

a

g(s) ds.

(Here I = [a, b].) Compute JE and EJ .

15. As an illustration of Propositions 1.2.1–1.2.2, specify the unique polynomial
p ∈ P4 such that

p(j) =
j

j2 + 1
, j ∈ {−2,−1, 0, 1, 2}.
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1.3. Basis and dimension

Given a finite set S = {v1, . . . , vk} in a vector space V , the span of S, denoted
SpanS, is the set of vectors in V of the form

(1.3.1) c1v1 + · · ·+ ckvk,

with cj arbitrary scalars, ranging over F = R or C. This set, denoted Span(S) is a
linear subspace of V . The set S is said to be linearly dependent if and only if there
exist scalars c1, . . . , ck, not all zero, such that (1.3.1) vanishes. Otherwise we say S
is linearly independent.

If {v1, . . . , vk} is linearly independent, we say S is a basis of Span(S), and that
k is the dimension of Span(S). In particular, if this holds and Span(S) = V , we
say k = dimV . We also say V has a finite basis, and that V is finite dimensional.

By convention, if V has only one element, the zero element, we say V = 0 and
dimV = 0.

It is easy to see that any finite set S = {v1, . . . , vk} ⊂ V has a maximal subset
that is linearly independent, and such a subset has the same span as S, so Span(S)
has a basis. To take a complementary perspective, S will have a minimal subset
S0 with the same span, and any such minimal subset will be a basis of Span(S).
Soon we will show that any two bases of a finite-dimensional vector space V have
the same number of elements (so dimV is well defined). First, let us relate V to
Fk.

So say V has a basis S = {v1, . . . , vk}. We define a linear transformation

(1.3.2)

JS : Fk −→ V, by

JS

c1...
ck

 = c1v1 + · · ·+ ckvk.

Equivalently,

(1.3.3) JS(c1e1 + · · ·+ ckek) = c1v1 + · · ·+ ckvk,

where

(1.3.4) e1 =


1
0
...
0

 , . . . . . . , ek =


0
...
0
1

 .

We say {e1, . . . , ek} is the standard basis of Fk. The linear independence of S is
equivalent to the injectivity of JS and the statement that S spans V is equivalent
to the surjectivity of JS . Hence the statement that S is a basis of V is equivalent
to the statement that JS is an isomorphism, with inverse uniquely specified by

(1.3.5) J−1
S (c1v1 + · · ·+ ckvk) = c1e1 + · · ·+ ckek.

We begin our demonstration that dimV is well defined, with the following
concrete result.

Lemma 1.3.1. If v1, . . . , vk+1 are vectors in Fk, then they are linearly dependent.
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Proof. We use induction on k. The result is obvious if k = 1. We can suppose the
last component of some vj is nonzero, since otherwise we can regard these vectors
as elements of Fk−1 and use the inductive hypothesis. Reordering these vectors, we
can assume the last component of vk+1 is nonzero, and it can be assumed to be 1.
Form

wj = vj − vkjvk+1, 1 ≤ j ≤ k,

where vj = (v1j , . . . , vkj)
t. Then the last component of each of the vectors w1, . . . , wk

is 0, so we can regard these as k vectors in Fk−1. By induction, there exist scalars
a1, . . . , ak, not all zero, such that

a1w1 + · · ·+ akwk = 0,

so we have
a1v1 + · · ·+ akvk = (a1vk1 + · · ·+ akvkk)vk+1,

the desired linear dependence relation on {v1, . . . , vk+1}. �

With this result in hand, we proceed.

Proposition 1.3.2. If V has a basis {v1, . . . , vk} with k elements and if the set
{w1, . . . , wℓ} ⊂ V is linearly independent, then ℓ ≤ k.

Proof. Take the isomorphism JS : Fk → V described in (3.2)–(3.3). The hypothe-
ses imply that {J−1

S w1, . . . ,J−1
S wℓ} is linearly independent in Fk, so Lemma 1.3.1

implies ℓ ≤ k. �
Corollary 1.3.3. If V is finite-dimensional, any two bases of V have the same
number of elements. If V is isomorphic to W , these spaces have the same dimen-
sion.

Proof. If S (with #S elements) and T are bases of V , we have #S ≤ #T and
#T ≤ #S, hence #S = #T . For the latter part, an isomorphism of V onto W
takes a basis of V to a basis of W . �

The following is an easy but useful consequence.

Proposition 1.3.4. If V is finite dimensional and W ⊂ V a linear subspace, then
W has a finite basis, and dimW ≤ dimV .

Proof. Suppose {w1, . . . , wℓ} is a linearly independent subset of W . Proposition
3.2 implies ℓ ≤ dimV . If this set spans W , we are done. If not, there is an element
wℓ+1 ∈W not in this span, and {w1, . . . , wℓ+1} is a linearly independent subset of
W . Again ℓ + 1 ≤ dimV . Continuing this process a finite number of times must
produce a basis of W . �

A similar argument establishes:

Proposition 1.3.5. Suppose V is finite dimensional,W ⊂ V a linear subspace, and
{w1, . . . , wℓ} a basis ofW . Then V has a basis of the form {w1, . . . , wℓ, u1, . . . , um},
and ℓ+m = dimV .

Having this, we can establish the following result, sometimes called the funda-
mental theorem of linear algebra.



18 1. Vector spaces, linear transformations, and matrices

Proposition 1.3.6. Assume V and W are vector spaces, V finite dimensional,
and

(1.3.6) A : V −→W

a linear map. Then

(1.3.7) dimN (A) + dimR(A) = dimV.

Proof. Let {w1, . . . , wℓ} be a basis of N (A) ⊂ V , and complete it to a basis

{w1, . . . , wℓ, u1, . . . , um}
of V . Set L = Span{u1, . . . , um}, and consider

(1.3.8) A0 : L −→W, A0 = A
∣∣
L
.

Clearly w ∈ R(A) ⇒ w = A(a1w1 + · · ·+ aℓwℓ + b1u1 + · · ·+ bmum) = A0(b1u1 +
· · ·+ bmum), so

(1.3.9) R(A0) = R(A).

Furthermore,

(1.3.10) N (A0) = N (A) ∩ L = 0.

Hence A0 : L → R(A0) is an isomorphism. Thus dimR(A) = dimR(A0) =
dimL = m, and we have (1.3.7). �

The following is a significant special case.

Corollary 1.3.7. Let V be finite dimensional, and let A : V → V be linear. Then

(1.3.11) A injective ⇐⇒ A surjective ⇐⇒ A isomorphism.

We mention that these equivalences can fail for infinite dimensional spaces. For
example, if P denotes the space of polynomials in x, then Mx : P → P (Mxf(x) =
xf(x)) is injective but not surjective, whileD : P → P (Df(x) = f ′(x)) is surjective
but not injective.

Next we have the following important characterization of injectivity and sur-
jectivity.

Proposition 1.3.8. Assume V and W are finite dimensional and A : V → W is
linear. Then

(1.3.12) A surjective ⇐⇒ AB = IW , for some B ∈ L(W,V ),

and

(1.3.13) A injective ⇐⇒ CA = IV , for some C ∈ L(W,V ).

Proof. Clearly AB = I ⇒ A surjective and CA = I ⇒ A injective. We establish
the converses.

First assume A : V →W is surjective. Let {w1, . . . , wℓ} be a basis of W . Pick
vj ∈ V such that Avj = wj . Set

(1.3.14) B(a1w1 + · · ·+ aℓwℓ) = a1v1 + · · ·+ aℓvℓ.

This works in (1.3.12).
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Next assume A : V → W is injective. Let {v1, . . . , vk} be a basis of V . Set
wj = Avj . Then {w1, . . . , wk} is linearly independent, hence a basis of R(A), and
we then can produce a basis {w1, . . . , wk, u1, . . . , um} of W . Set

(1.3.15) C(a1w1 + · · ·+ akwk + b1u1 + · · ·+ bmum) = a1v1 + · · ·+ akvk.

This works in (1.3.13). �

An m×n matrix A defines a linear transformation A : Fn → Fm, as in (1.2.3)–
(1.2.5). The columns of A are

(1.3.16) aj =

a1j
...

amj

 .

As seen in §1.2,
(1.3.17) Aej = aj ,

where e1, . . . , en is the standard basis of Fn. Hence

(1.3.18) R(A) = linear span of the columns of A,

so

(1.3.19) R(A) = Fm ⇐⇒ a1, . . . , an span Fm.

Furthermore,

(1.3.20) A
( n∑
j=1

cjej

)
= 0 ⇐⇒

n∑
j=1

cjaj = 0,

so

(1.3.21) N (A) = 0 ⇐⇒ {a1, . . . , an} is linearly independent.

We have the following conclusion, in case m = n.

Proposition 1.3.9. Let A be an n × n matrix, defining A : Fn → Fn. Then the
following are equivalent:

(1.3.22)

A is invertible,

The columns of A are linearly independent,

The columns of A span Fn.

If (1.3.22) holds, then we denote the inverse of A by A−1. Compare (1.2.27).
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Exercises

1. Suppose {v1, . . . , vk} is a basis of V . Show that

w1 = v1, w2 = v1 + v2, . . . , wj = v1 + · · ·+ vj , . . . , wk = v1 + · · ·+ vk

is also a basis of V .

2. Let V be the space of polynomials in x and y of degree ≤ 10. Specify a basis of
V and compute dimV .

3. Let V be the space of polynomials in x of degree ≤ 5, satisfying p(−1) = p(0) =
p(1) = 0. Find a basis of V and give its dimension.

4. Using Euler’s formula

(1.3.23) eit = cos t+ i sin t,

show that {eit, e−it} and {cos t, sin t} are both bases for the same vector space over
C. (See the end of §3.7 for a proof of Euler’s formula.)

5. Denote the space of m× n matrices with entries in F (as in (1.2.5)) by

(1.3.24) M(m× n,F).

If m = n, denote it by

(1.3.25) M(n,F).

Show that

dimM(m× n,F) = mn,

especially

dimM(n,F) = n2.

6. If V and W are finite dimensional vector spaces, n = dimV , m = dimW , what
is dimL(V,W )?

Let V be a finite dimensional vector space, with linear subspaces W and X. Recall
the conditions under which V =W+X or V =W⊕X, from §1.1. Let {w1, . . . , wk}
be a basis of W and {x1, . . . , xℓ} a basis of X.

7. Show that

V =W +X ⇐⇒ {w1, . . . , wk, x1, . . . , xℓ} spans V

V =W ⊕X ⇐⇒ {w1, . . . , wk, x1, . . . , xℓ} is a basis of V.
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8. Show that

V =W +X =⇒ dimW + dimX ≥ dimV,

V =W ⊕X ⇐⇒W ∩X = 0 and dimW + dimX = dimV.

9. Produce variants of Exercises 7–8 involving V = V1 + · · · + Vn and V = V1 ⊕
· · · ⊕ Vn, as in (1.1.25)–(1.1.26).

10. Let Vj be finite-dimensional vector spaces over F, and define V1 ⊕ · · · ⊕ Vn as
in (1.1.20)–(1.1.21). Show that

dimV1 ⊕ · · · ⊕ Vn = dimV1 + · · ·+ dimVn.

11. Let V be a vector space , W and X linear subspaces. Assume

n = dimV, k = dimW, ℓ = dimX.

Show that
dimW ∩X ≥ (k + ℓ)− n.

Hint. Define T : W ⊕ X → V by T (w, x) = w − x. Show that W ∩ X ≈ N (T ).
Then apply the fundamental theorem of linear algebra.

12. Let W be a vector space over C, with basis {wj : 1 ≤ j ≤ n}. Denote by W
the set W, with vector addition unchanged, but with multiplication by a scalar a
restricted to a ∈ R, so W is a vector space over R. Show that {wj , iwj : 1 ≤ j ≤ n}
is a basis of W . We write

dimC W = n, dimRW = 2n.

13. Let V be a finite-dimensional vector space over R. Assume we have J ∈ L(V )
such that

J2 = −I.
Define the action of a+ ib ∈ C (with a, b ∈ R) on V by

(a+ ib) · v = av + bJv, v ∈ V.

Show that this yields a vector space over C. Call this complex vector space V.
Show that

dimC V = k =⇒ dimR V = 2k.

Remark. We say that J endows V with a complex structure.

14. Let V be a real vector space. We define VC to be V ⊕ V , consisting of ordered
pairs (u, v), with u, v ∈ V , and with multiplication by a complex scalar a+ ib ∈ C
given by

(a+ ib) · (u, v) = (au− bv, bu+ av).

Show that VC is a vector space over C. If we identify V ↪→ VC by u 7→ (u, 0), we
can write

(u, v) = u+ iv,
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and the action of multiplication by a+ ib as

(a+ ib) · (u+ iv) = (au− bv) + i(bu+ av).

Show that
dimR V = n =⇒ dimC VC = n.

Finally, show that J ∈ L(V ⊕ V ), given by

J(u, v) = (v,−u),
produces the same conplex structure on VC as defined above.
Remark. We call VC the complexification of V .
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1.4. Matrix representation of a linear transformation

We show how a linear transformation

(1.4.1) T : V −→W

has a representation as an m× n matrix, with respect to a basis S = {v1, . . . , vn}
of V and a basis Σ = {w1, . . . , wm} of W . Namely, define aij by

(1.4.2) Tvj =

m∑
i=1

aijwi, 1 ≤ j ≤ n.

The matrix representation of T with respect to these bases is then

(1.4.3) A =

a11 · · · a1n
...

...
am1 · · · amn

 .

Note that the jth column of A consists of the coefficients of Tvj , when this is
written as a linear combination of w1, . . . , wm. Compare (1.2.22).

If we want to record the dependence on the bases S and Σ, we can write

(1.4.4) A = MΣ
S (T ).

Equivalently given the isomorphism JS : Fn → V as in (1.3.2)–(1.3.3) (with n
instead of k) and its counterpart JΣ : Fm →W , we have

(1.4.5) A = MΣ
S (T ) = J−1

Σ TJS : Fn → Fm,

naturally identified with the matrix A as in (1.2.3)–(1.2.5).

The definition of matrix multiplication is set up precisely so that, ifX is a vector
space with basis Γ = {x1, . . . xk} and U : X → V is linear, then TU : X → W has
matrix representation

(1.4.6) MΣ
Γ (TU) = AB, B = MS

Γ(U).

Indeed, if we complement (1.4.5) with

(1.4.7) B = J−1
S UJΓ = MS

Γ(U),

we have

(1.4.8) AB = (J−1
Σ TJS)(J−1

S UJΓ) = J−1
Σ (TU)JΓ.

As for the representation of AB as a matrix product, see the discussion around
(1.2.17)–(1.2.23).

For example, if

(1.4.9) T : V −→ V,

and we use the basis S of V as above, we have an n× n matrix MS
S(T ). If we pick

another basis S̃ = {ṽ1, . . . , ṽn} of V , it follows from (1.4.6) that

(1.4.10) MS̃
S̃
(T ) = MS̃

S(I)MS
S(T )MS

S̃
(I).

Here

(1.4.11) MS
S̃
(I) = J−1

S JS̃ = C = (cij),
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where

(1.4.12) ṽj =

n∑
i=1

cijvi, 1 ≤ j ≤ n,

and we see (via (1.4.6)) that

(1.4.13) MS̃
S(I) = J−1

S̃
JS = C−1.

To rewrite (1.4.10), we can say that if A is the matrix representation of T with

respect to the basis S and Ã the matrix representation of T with respect to the

basis S̃, then

(1.4.14) Ã = C−1AC.

Remark. We say that n×n matrices A and Ã, related as in (1.4.14), are similar.

Example. Consider the linear transformation

(1.4.15) D : P2 −→ P2, Df(x) = f ′(x).

With respect to the basis

(1.4.16) v1 = 1, v2 = x, v3 = x2,

D has the matrix representation

(1.4.17) A =

0 1 0
0 0 2
0 0 0

 ,

since Dv1 = 0, Dv2 = v1, and Dv3 = 2v2. With respect to the basis

(1.4.18) ṽ1 = 1, ṽ2 = 1 + x, ṽ3 = 1 + x+ x2,

D has the matrix representation

(1.4.19) Ã =

0 1 −1
0 0 2
0 0 0

 ,

since Dṽ1 = 0, Dṽ2 = ṽ1, and Dṽ3 = 1 + 2x = 2ṽ2 − ṽ1. The reader is invited to
verify (1.4.14) for this example.
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Exercises

1. Consider T : P2 → P2, given by T p(x) = x−1
∫ x

0
p(y) dy. Compute the matrix

representation B of T with respect to the basis (1.4.16). Compute AB and BA,
with A given by (1.4.17).

2. In the setting of Exercise 1, compute DT and T D on P2 and compare their
matrix representations, with respect to the basis (1.4.16), with AB and BA.

3. In the setting of Exercise 1, take a ∈ R and define

(1.4.20) Tap(x) =
1

x− a

∫ x

a

p(y) dy, Ta : P2 −→ P2.

Compute the matrix representation of Ta with respect to the basis (1.4.16).

4. Compute the matrix representation of Ta, given by (1.4.20), with respect to the
basis of P2 given in (1.4.18).

5. Let A : C2 → C2 be given by

A =

(
1 1
−1 −1

)
(with respect to the standard basis). Find a basis of C2 with respect to which the
matrix representation of A is

Ã =

(
0 1
0 0

)
.

6. Let V = {a cos t+ b sin t : a, b ∈ C}, and consider

D =
d

dt
: V −→ V.

Compute the matrix representation of D with respect to the basis {cos t, sin t}.

7. In the setting of Exercise 6, compute the matrix representation of D with respect
to the basis {eit, e−it}. (See Exercise 4 of §1.3.)
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1.5. Determinants and invertibility

Determinants arise in the study of inverting a matrix. To take the 2×2 case, solving
for x and y the system

(1.5.1)
ax+ by = u,

cx+ dy = v

can be done by multiplying these equations by d and b, respectively, and subtracting,
and by multiplying them by c and a, respectively, and subtracting, yielding

(1.5.2)
(ad− bc)x = du− bv,

(ad− bc)y = av − cu.

The factor on the left is

(1.5.3) det

(
a b
c d

)
= ad− bc,

and solving (1.5.2) for x and y leads to

(1.5.4) A =

(
a b
c d

)
=⇒ A−1 =

1

detA

(
d −b
−c a

)
,

provided detA ̸= 0.

We now consider determinants of n × n matrices. Let M(n,F) denote the set
of n× n matrices with entries in F = R or C. We write

(1.5.5) A =

a11 · · · a1n
...

...
an1 · · · ann

 = (a1, . . . , an),

where

(1.5.6) aj =

a1j...
anj


is the jth column of A. The determinant is defined as follows.

Proposition 1.5.1. There is a unique function

(1.5.7) ϑ :M(n,F) −→ F,
satisfying the following three properties:

(a) ϑ is linear in each column aj of A,

(b) ϑ(Ã) = −ϑ(A) if Ã is obtained from A by interchanging two columns,
(c) ϑ(I) = 1.

This defines the determinant:

(1.5.8) ϑ(A) = detA.

If (c) is replaced by

(c′) ϑ(I) = r,
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then

(1.5.9) ϑ(A) = r detA.

The proof will involve constructing an explicit formula for detA by following
the rules (a)–(c). We start with the case n = 3. We have

(1.5.10) detA =

3∑
j=1

aj1 det(ej , a2, a3),

by applying (a) to the first column of A, a1 =
∑

j aj1ej . Here and below, {ej :

1 ≤ j ≤ n} denotes the standard basis of Fn, so ej has a 1 in the jth slot and 0s
elsewhere. Applying (a) to the second and third columns gives

(1.5.11)

detA =

3∑
j,k=1

aj1ak2 det(ej , ek, a3)

=

3∑
j,k,ℓ=1

aj1ak2aℓ3 det(ej , ek, eℓ).

This is a sum of 27 terms, but most of them are 0. Note that rule (b) implies

(1.5.12) detB = 0 whenever B has two identical columns.

Hence det(ej , ek, eℓ) = 0 unless j, k, and ℓ are distinct, that is, unless (j, k, ℓ) is a
permutation of (1, 2, 3). Now rule (c) says

(1.5.13) det(e1, e2, e3) = 1,

and we see from rule (b) that det(ej , ek, eℓ) = 1 if one can convert (ej , ek, eℓ) to
(e1, e2, e3) by an even number of column interchanges, and det(ej , ek, eℓ) = −1 if it
takes an odd number of interchanges. Explicitly,

(1.5.14)

det(e1, e2, e3) = 1, det(e1, e3, e2) = −1,

det(e2, e3, e1) = 1, det(e2, e1, e3) = −1,

det(e3, e1, e2) = 1, det(e3, e2, e1) = −1.

Consequently (1.5.11) yields

(1.5.15)

detA = a11a22a33 − a11a32a23

+ a21a32a13 − a21a12a33

+ a31a12a23 − a31a22a13.

Note that the second indices occur in (1, 2, 3) order in each product. We can
rearrange these products so that the first indices occur in (1, 2, 3) order:

(1.5.16)

detA = a11a22a33 − a11a23a32

+ a13a21a32 − a12a21a33

+ a12a23a31 − a13a22a31.

In connection with (1.5.16), we mention one convenient method to compute
3×3 determinants. Given A ∈M(3,F), form a 3×5 rectangular matrix by copying
the first two columns of A on the right. The products in (1.5.16) with plus signs
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are the products of each of the three downward sloping diagonals marked in bold
below:

(1.5.17)

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

 .

The products in (1.5.16) with a minus sign are the products of each of the three
upward sloping diagonals marked in bold below:

(1.5.18)

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

 .

This method can be regarded as an analogue of the method of computing 2 × 2
determinants given in (1.5.3). However, there is not a straightforward extension of
this method to larger determinants.

We now tackle the case of general n. Parallel to (1.5.10)–(1.5.11), we have

(1.5.19)

detA =
∑
j

aj1 det(ej , a2, . . . , an) = · · ·

=
∑

j1,...,jn

aj11 · · · ajnn det(ej1 , . . . ejn),

by applying rule (a) to each of the n columns of A. As before, (1.5.12) implies
det(ej1 , . . . , ejn) = 0 unless (j1, . . . , jn) are all distinct, that is, unless (j1, . . . , jn)
is a permutation of the set (1, 2, . . . , n). We set

(1.5.20) Sn = set of permutations of (1, 2, . . . , n).

That is, Sn consists of elements σ, mapping the set {1, . . . , n} to itself,

(1.5.21) σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},

that are one-to-one and onto. We can compose two such permutations, obtaining
the product στ ∈ Sn, given σ and τ in Sn. A permutation that interchanges just
two elements of {1, . . . , n}, say j and k (j ̸= k), is called a transposition, and
labeled (jk). It is easy to see that each permutation of {1, . . . , n} can be achieved
by successively transposing pairs of elements of this set. That is, each element
σ ∈ Sn is a product of transpositions. We claim that

(1.5.22) det(eσ(1), . . . , eσ(n)) = (sgnσ) det(e1, . . . , en) = sgnσ,

where

(1.5.23)
sgnσ = 1 if σ is a product of an even number of transpositions,

− 1 if σ is a product of an odd number of transpositions.

In fact, the first identity in (1.5.22) follows from rule (b) and the second identity
from rule (c).

There is one point to be checked here. Namely, we claim that a given σ ∈ Sn

cannot simultaneously be written as a product of an even number of transpositions
and an odd number of transpositions. If σ could be so written, sgnσ would not
be well defined, and it would be impossible to satisfy condition (b), so Proposition
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1.5.1 would fail. One neat way to see that sgnσ is well defined is the following. Let
σ ∈ Sn act on functions of n variables by

(1.5.24) (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

It is readily verified that if also τ ∈ Sn,

(1.5.25) g = σf =⇒ τg = (τσ)f.

Now, let P be the polynomial

(1.5.26) P (x1, . . . , xn) =
∏

1≤j<k≤n

(xj − xk).

One readily has

(1.5.27) (σP )(x) = −P (x), whenever σ is a transposition,

and hence, by (1.5.25),

(1.5.28) (σP )(x) = (sgnσ)P (x), ∀σ ∈ Sn,

and sgnσ is well defined.

The proof of (1.5.22) is complete, and substitution into (1.5.19) yields the
formula

(1.5.29) detA =
∑
σ∈Sn

(sgnσ)aσ(1)1 · · · aσ(n)n.

It is routine to check that this satisfies the properties (a)–(c). Regarding (b), note

that if ϑ(A) denotes the right side of (1.5.29) and Ã is obtained from A by applying

a permutation τ to the columns of A, so Ã = (aτ(1), . . . , aτ(n)), then

(1.5.30)

ϑ(Ã) =
∑
σ∈Sn

(sgnσ)aσ(1)τ(1) · · · aσ(n)τ(n)

=
∑
σ∈Sn

(sgnσ)aστ−1(1)1 · · · aστ−1(n)n

=
∑
ω∈Sn

(sgnωτ)aω(1)1 · · · aω(n)n

= (sgn τ)ϑ(A),

the last identity because

(1.5.31) sgnωτ = (sgnω)(sgn τ), ∀ω, τ ∈ Sn.

As for the final part of Proposition 1.5.1, if (c) is replaced by (c′), then (1.5.22)
is replaced by

(1.5.32) ϑ(eσ(1), . . . , eσ(n)) = r(sgnσ),

and (1.5.9) follows.

Remark. Some authors take (1.5.29) as a definition of the determinant. Our
perspective is that, while (1.5.29) is a useful formula for the determinant, it is a
bad definition, indeed one that has perhaps led to a bit of fear and loathing among
math students.
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Remark. Here is another formula for sgnσ, which the reader is invited to verify.
If σ ∈ Sn,

(1.5.33) sgnσ = (−1)κ(σ),

where

(1.5.34)
κ(σ) = number of pairs (j, k) such that 1 ≤ j < k ≤ n,

but σ(j) > σ(k).

Note that

(1.5.35) aσ(1)1 · · · aσ(n)n = a1τ(1) · · · anτ(n), with τ = σ−1,

and sgnσ = sgnσ−1, so, parallel to (1.5.16), we also have

(1.5.36) detA =
∑
σ∈Sn

(sgnσ)a1σ(1) · · · anσ(n).

Comparison with (1.5.29) gives

(1.5.37) detA = detAt,

where A = (ajk) ⇒ At = (akj). Note that the jth column of At has the same
entries as the jth row of A. In light of this, we have:

Corollary 1.5.2. In Proposition 1.5.1, one can replace “columns” by “rows.”

The following is a key property of the determinant.

Proposition 1.5.3. Given A and B in M(n,F),

(1.5.38) det(AB) = (detA)(detB).

Proof. For fixed A, apply Proposition 1.5.1 to

(1.5.39) ϑ1(B) = det(AB).

If B = (b1, . . . , bn), with jth column bj , then

(1.5.40) AB = (Ab1, . . . , Abn).

Clearly rule (a) holds for ϑ1. Also, if B̃ = (bσ(1), . . . , bσ(n)) is obtained from B

by permuting its columns, then AB̃ has columns (Abσ(1), . . . , Abσ(n)), obtained by
permuting the columns of AB in the same fashion. Hence rule (b) holds for ϑ1.
Finally, rule (c′) holds for ϑ1, with r = detA, and (1.5.38) follows. �

Corollary 1.5.4. If A ∈M(n,F) is invertible, then detA ̸= 0.

Proof. If A is invertible, there exists B ∈ M(n,F) such that AB = I. Then, by
(1.5.38), (detA)(detB) = 1, so detA ̸= 0. �

The converse of Corollary 1.5.4 also holds. Before proving it, it is convenient to
show that the determinant is invariant under a certain class of column operations,
given as follows.
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Proposition 1.5.5. If Ã is obtained from A = (a1, . . . , an) ∈ M(n,F) by adding
caℓ to ak for some c ∈ F, ℓ ̸= k, then

(1.5.41) det Ã = detA.

Proof. By rule (a), det Ã = detA + cdetAb, where Ab is obtained from A by
replacing the column ak by aℓ. Hence A

b has two identical columns, so detAb = 0,
and (1.5.41) holds. �

We now extend Corollary 1.5.4.

Proposition 1.5.6. If A ∈M(n,F), then A is invertible if and only if detA ̸= 0.

Proof. We have half of this from Corollary 1.5.4. To finish, assume A is not
invertible. As seen in §1.3, this implies the columns a1, . . . , an of A are linearly
dependent. Hence, for some k,

(1.5.42) ak +
∑
ℓ ̸=k

cℓaℓ = 0,

with cℓ ∈ F. Now we can apply Proposition 1.5.5 to obtain detA = det Ã, where

Ã is obtained by adding
∑
cℓaℓ to ak. But then the kth column of Ã is 0, so

detA = det Ã = 0. This finishes the proof of Proposition 1.5.6. �

Having seen the usefulness of the operation we called a column operation in
Proposition 1.5.5, let us pursue this, and list the following:

Column operations. For A ∈M(n,F), these include

(1.5.43)

interchanging two columns of A,

factoring a scalar c out of a column of A,

adding c times the ℓth column of A

to the kth column of A (ℓ ̸= k).

Of these operations, the first changes the sign of the determinant, by property (b) of
Proposition 1.5.1, the second factors a c out of the determinant, by property (a) of
Proposition 1.5.1, and the third leaves the determinant unchanged, by Proposition
1.5.5. In light of Corollary 1.5.2, the same can be said about the following:

Row operations. For A ∈M(n,F), these include

(1.5.44)

interchanging two rows of A,

factoring a scalar c out of a row of A,

adding c times the ℓth row of A to the kth row of A (ℓ ̸= k).
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We illustrate the application of row operations to the following 3× 3 determi-
nant:

(1.5.45)

det

0 3 5
2 4 6
3 5 8

 = −det

2 4 6
0 3 5
3 5 8


= −2 det

1 2 3
0 3 5
3 5 8


= −2 det

1 2 3
0 3 5
0 −1 −1

 .

From here, one can multiply the bottom row by 3 and add it to the middle row, to
get

(1.5.46) −2 det

1 2 3
0 0 2
0 −1 −1

 = −2 det

1 2 3
0 1 1
0 0 2

 ,

where for the last identity we have interchanged the last two rows and multiplied
one by −1. The last matrix is an upper triangular matrix, and its determinant is
equal to the product of its diagonal elements, thanks to the following result.

Proposition 1.5.7. Assume A ∈M(n,F) is upper triangular, i.e., A has the form
(1.5.5) with

(1.5.47) ajk = 0 for j > k.

Then detA is the product of the diagonal entries, i.e.,

(1.5.48) detA = a11a22 · · · ann.

Proof. This follows from the formula (1.5.29) for detA, involving a sum over σ ∈
Sn. The key observation is that if σ is a permutation of {1, . . . , n}, then
(1.5.49) either σ(j) = j for all j, or σ(j) > j for some j.

Hence, if (1.5.47) holds, every term in the sum (1.5.29) vanishes except the term
yielding the right side of (1.5.48). �

Remark. A second proof of Proposition 1.5.7 is indicated in Exercise 11 below.

Row operations and column operations have further applications, including
constructing the inverse of an invertible n × n matrix, constructing a basis of the
rangeR(A), via column operations, and constructing a basis of the null spaceN (A),
via row operations, given A ∈M(m× n,F). Material on this appears in §1.6.

Further useful facts about determinants arise in the following exercises.
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Exercises

1. Compute the determinants of the following matrices.

A =

 1 0 1
0 2 0
−1 0 1

 , B =

1 1 1
2 3 4
3 4 5

 , C =

2 1 3
0 1 2
0 0 3

 .

2. Given the matrices A,B, and C in Exercise 1, compute

AB, AC, det(AB), det(AC).

Compare these determinant calculations with the identities

det(AB) = (detA)(detB), det(AC) = (detA)(detC),

using Proposition 1.5.3.

3. Which matrices in Exercise 1 are invertible?

4. Use row operations to compute the determinant of

M =


1 2 1 2
3 0 3 0
0 1 2 1
1 1 1 1

 .

5. Use column operations to compute the determinant of M in Exercise 4.

6. Use a combination of row and column operations to compute detM .

7. Show that

(1.5.50) det


1 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = det


1 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = detA11

where A11 = (ajk)2≤j,k≤n.

Hint. Do the first identity using Proposition 1.5.5. Then exploit uniqueness for
det on M(n− 1,F).

8. Deduce that det(ej , a2, . . . , an) = (−1)j−1 detA1j where Akj is formed by delet-
ing the kth column and the jth row from A.



34 1. Vector spaces, linear transformations, and matrices

9. Deduce from the first sum in (1.5.19) that

(1.5.51) detA =

n∑
j=1

(−1)j−1aj1 detA1j .

More generally, for any k ∈ {1, . . . , n},

(1.5.52) detA =

n∑
j=1

(−1)j−kajk detAkj .

This is called an expansion of detA by minors, down the kth column.

10. Let ckj = (−1)j−k detAkj . Show that

(1.5.53)

n∑
j=1

ajℓckj = 0, if ℓ ̸= k.

Deduce from this and (1.5.52) that C = (cjk) satisfies

(1.5.54) CA = (detA)I.

Hint. Reason as in Exercises 7–9 that the left side of (1.5.53) is equal to

det (a1, . . . , aℓ, . . . , aℓ, . . . , an),

with aℓ in the kth column as well as in the ℓth column. The identity (1.5.54) is
known as Cramer’s formula. Note how this generalizes (1.5.4).

11. Give a second proof of Proposition 1.5.7, i.e.,

(1.5.55) det


a11 a12 · · · a1n

a22 · · · a2n
. . .

...
ann

 = a11a22 · · · ann,

using (1.5.50) and induction.

The next two exercises deal with the determinant of a linear transformation. Let
V be an n-dimensional vector space, and

(1.5.56) T : V −→ V

a linear transformation. We would like to define

(1.5.57) detT = detA,

where A = MS
S(T ) for some basis S = {v1, . . . , vn} of V .

12. Suppose S̃ = {ṽ1, . . . , ṽn} is another basis of V . Show that

(1.5.58) detA = det Ã,
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where Ã = MS̃
S̃
(T ). Hence (1.5.57) defines detT , independently of the choice of

basis of V .
Hint. Use (1.4.14) and (1.5.38).

13. If also U ∈ L(V ), show that

det(UT ) = (detU)(detT ).

Denseness of Gℓ(n,F) in M(n,F)

Given A ∈ M(n,F), we say A belongs to Gℓ(n,F) provided A is invertible. By
Proposition 1.5.6, this invertibility holds if and only if detA ̸= 0.

We say a sequence Aν of matrices in M(n,F) converges to A (Aν → A) if and
only if convergence holds for each entry: (aν)jk → ajk, for all j, k ∈ {1, . . . , n}.
The following is a useful result.

Proposition 1.5.8. For each n, Gℓ(n,F) is dense in M(n,F). That is, given
A ∈M(n,F), there exist Aν ∈ Gℓ(n,F) such that Aν → A.

The following steps justify this.

14. Show that det : M(n,F) → F is continuous, i.e., Aν → A implies that
det(Aν) → detA.
Hint. detA is a polynomial in the entries of A.

15. Show that if A ∈ M(n,F), δ > 0, and B is not invertible for all B ∈ M(n,F)
such that |bjk − ajk| < δ, for all j and k, then det : M(n,F) → F vanishes for all
such B.

16. Let p : Fk → F be a polynomial. Suppose there exists w ∈ F and δ > 0 such
that

z ∈ Fk, |wj − zj | < δ ∀ j ∈ {1, . . . , k} =⇒ p(z) = 0.

Show that p(z) is identically zero, for all z ∈ Fk.
Hint. Take q(z) = p(w + z), so q(z) = 0 provided |zj | < δ for all j. Show that this
implies all the coefficients of q vanish.

17. Using the results of Exercises 14–16, prove Proposition 1.5.8.



36 1. Vector spaces, linear transformations, and matrices

The Vandermonde
determinant

For n ≥ 2, the Vandermonde determinant is defined by

(1.5.59) Vn(x1, . . . , xn) = det


1 1 · · · 1
x1 x2 · · · xn
...

...
...

xn−1
1 xn−1

2 · · · xn−1
n

 .

We claim that

(1.5.60) Vn(x1, . . . , xn) =
∏

1≤j<k≤n

(xk − xj),

which, up to a sign, coincides with (1.5.26). We can prove this by induction on n,
starting at n = 2, where V2(x1, x2) = x2 − x1 is clear. To do the induction step, it
is convenient to change notation, and consider

(1.5.61) P (z) = Vn(a1, . . . , an−1, z) = det


1 1 · · · 1
a1 a2 · · · z
...

...
...

an−1
1 an−1

2 · · · zn−1

 ,

which is a polynomial in z of degree n− 1. Clearly P (aj) = 0 for each j, so

(1.5.62) P (z) = An−1

∏
1≤j<n

(z − aj),

where An−1 is the coefficient of zn−1 in P (z). Expansion of the determinant in
(1.5.61) by minors, down the nth column (cf. Exercise 9) yields

(1.5.63) An−1 = Vn−1(a1, . . . , an−1).

Reversion to the notation of (1.5.59) then gives

(1.5.64) Vn(x1, . . . , xn) = Vn−1(x1, . . . , xn−1)
∏

1≤j<n

(xn − xj),

which readily yields the inductive proof of (1.5.60).

Exercise

1. Use the Lagrange interpolation formula, discussed in Proposition 1.2.1, to derive
a formula for the inverse of the Vandermonde matrix, whose determinant is defined
in (1.5.59), or equivalently of

(1.5.65) A =


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

...
1 xn · · · xn−1

n

 ,
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given x1, . . . , xn distinct.
Hint. The columns of A have the form

(1.5.66)

pℓ(x1)...
pℓ(xn)

 , pℓ(x) = xℓ.

Relate this to the transformation ES , given by (1.2.28), with n replaced by n − 1
and with S = {x1, . . . , xn}. The column in (1.5.66) is ESpℓ.
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1.6. Applications of row reduction and column reduction

In §1.5 we introduced row operations and column operations on an n × n matrix,
and examined their effect on determinants. Here we explore their use in providing
further important information on matrices. We also expand the scope of these
operations, to m× n matrices.

Let A ∈M(m× n,F) be as in (1.2.5),

(1.6.1) A =

a11 · · · a1n
...

...
am1 · · · amn

 , A : Fn → Fm.

It will be useful to supplement the representation of A as an array of columns,

(1.6.2) A = (a1, . . . , an), aj =

a1j
...

amj

 ,

by a representation as an array of rows,

(1.6.3) A =

α1

...
αm

 , αj = (aj1, . . . , ajn).

Taking a cue from (1.5.44), we define the following row operations,

(1.6.4) ρσ, µc, εjkγ :M(m× n,F) −→M(m× n,F).

First,

(1.6.5) ρσ

α1

...
αm

 =

ασ(1)

...
ασ(m)

 , σ ∈ Sm.

Next,

(1.6.6) µc

α1

...
αm

 =

 c1α1

...
cmαm

 , c = (c1, . . . , cm), each cj ̸= 0.

Finally,

(1.6.7) εjkγ



α1

...
αj

...
αm

 =



α1

...
αj − γαk

...
αm

 , j ̸= k, γ ∈ F.

We note that all these transformations are invertible, with inverses

(1.6.8) ρ−1
σ = ρσ−1 , µ−1

c = µc−1 , ε−1
jkγ = εjk,−γ ,

where c−1 = (c−1
1 , . . . , c−1

m ).
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To illustrate the operations introduced in (1.6.4)–(1.6.7), we take

(1.6.9) A =

(
1 2
3 4

)
, σ(1) = 2, σ(2) = 1, c = (2,−1), jkγ = 121,

obtaining

(1.6.10) ρσ(A) =

(
3 4
1 2

)
, µc(A) =

(
2 4
−3 −4

)
, ε121(A) =

(
4 6
3 4

)
.

An important observation is that these row can be presented as left multipli-
cation by m×m matrices,

(1.6.11) ρσ(A) = PσA, µc(A) =McA, εjkγ(A) = EjkγA,

where Pσ,Mc, Ejkγ ∈M(m,F) are defined by

(1.6.12)

Pσ

 v1
...
vm

 =

 vσ(1)
...

vσ(m)

 Mc

 v1
...
vm

 =

 c1v1
...

cmvm

 ,

Ejkγ



v1
...
vj
...
vm

 =



v1
...

vj − γvk
...
vm

 ,

with v = (v1, . . . , vm)t ∈ Fm. To illustrate what these matrices are when m = 2
and σ, c, and (j, k, γ) are as in (1.6.9), we then have

(1.6.13) Pσ =

(
0 1
1 0

)
, Mc =

(
2

−1

)
, E121 =

(
1 −1
0 1

)
.

Returning to generalities, parallel to (1.6.8), we have

(1.6.14) P−1
σ = Pσ−1 , M−1

c =Mc−1 , E−1
jkγ = Ejk,−γ .

If Ã ∈ M(m × n,F) is obtained from A ∈ M(m × n,F) by a sequence of

operations of the form (1.6.4), we say that Ã is obtained from A by a sequence of
row operations. Since the m × m matrices Pσ,Mc, and Ejkγ in (1.6.11)–(1.6.12)
are all invertible, it follows that all the matrices ρσ(A), µc(A), and εjkγ(A) have
the same null space, N (A). This leads to the following.

Proposition 1.6.1. Applying a sequence of row operations to an m × n matrix
does not alter its null space.

We have a parallel set of column operations,

(1.6.15) ρ̃σ, µ̃c, ε̃jkγ :M(m× n,F) −→M(m× n,F),

given by

(1.6.16)

ρ̃σ(A) = (aσ(1), . . . , aσ(m)), σ ∈ Sn,

µ̃c(A) = (c1a1, . . . , cnan), c = (c1, . . . , cn), all cj ̸= 0,

ε̃jkγ(a1, . . . , aj , . . . , an) = (a1, . . . , aj − γak, . . . , an), j ̸= k.



40 1. Vector spaces, linear transformations, and matrices

Note that

(1.6.17)
ρ̃σ(A) = ρσ(A

t)t, µ̃c(A) = µc(A
t)t,

ε̃jkγ(A) = εjkγ(A
t)t.

Consequently,

(1.6.18) ρ̃σ(A) = AP t
σ, µ̃c(A) = AM t

c , ε̃jkγ(A) = AEt
jkγ ,

with P t
σ,M

t
c , E

t
jkγ ∈ M(n,F), all invertible. It follows that all the matrices in

(1.6.18) have the same range, R(A), so we have the following counterpart to Propo-
sition 1.6.1.

Proposition 1.6.2. Applying a sequence of column operations to an m×n matrix
does not alter its range.

To utilize Propositions 1.6.1–1.6.2, we want to apply a sequence of row opera-
tions (respectively, a sequence of column operations) that transform a given matrix
A into one that has a simpler form. When this is done, we say that we are apply-
ing row reduction (respectively, column reduction) to A. Here is one basic class of
matrices amenable to such reductions.

Proposition 1.6.3. Let A ∈M(n,F) be invertible. Then one can apply a sequence
of row operations to A that yield the n × n identity matrix I. Similarly, one can
apply a sequence of column operations to A that yield I.

Proof. Since A and At are simultaneously invertible, it suffices to deal with column
operations. As seen in §1.3, A is invertible if and only if its columns a1, . . . , an form
a basis of Fn. Thus we can write the first standard basis element e1 of Fn as a
linear combination,

e1 = c11a1 + · · ·+ c1nan.

If c11 ̸= 0, we can apply a sequence of column operations of the form ε̃1kγ to turn
the first column into be1, for some b ̸= 0, and then apply a column operation to
change b to 1. If c11 = 0 but c1k ̸= 0, one can apply a column operation of the
form ρ̃σ to interchange a1 and ak and proceed as before. Repeating such steps next
leads to putting e2 in the second column, and ultimately leads to I.

The corresponding passage from A to I via row operations is done similarly. �

A little later we describe a more “algorithmic” approach to applying row re-
ductions, in the more general setting of m× n matrices.

Gaussian elimination

The following is an important application of row reduction to the computation
of matrix inverses.

Proposition 1.6.4. Let A ∈ M(n,F) be invertible, and apply a sequence of row
operations to A to obtain the identity matrix I. Then applying the same sequence
of row operations to I yields A−1.
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Proof. Say you apply k row operations to A to get I. Applying the jth such row
operation amounts to applying a left multiplication by one of the matrices given in
(1.6.12) (here m = n); call it Sj . In other words,

(1.6.19) I = Sk · · ·S1A.

Consequently,

(1.6.20) Sk · · ·S1 = A−1,

and we have the proposition. �

Example. We take a 2× 2 matrix A, write A and I side by side, and perform the
same sequence of row operations on each of these two matrices, obtaining finally I
and A−1 side by side.

(1.6.21)

A =

(
1 2
1 3

) (
1 0
0 1

)
(
1 2
0 1

) (
1 0
−1 1

)
(
1 0
0 1

) (
3 −2
−1 1

)
= A−1.

Remark. This method of constructing A−1 is called the method of Gaussian
elimination. The method of Gaussian elimination is much more efficient than the
use of Cramer’s formula (1.5.54) as a tool for computing matrix inverses, though
Cramer’s formula is a useful tool for understanding the nature of the matrix inverse.

A related issue is that, for computing determinants of n×n matrices, for n ≥ 4,
it is computationally advantageous to utilize a sequence of row and/or column
operations, rather than using the formula (1.5.29), which contains n! terms.

Determinants and volumes

Here we will use Proposition 1.6.3 and its corollary (1.6.19) to derive the fol-
lowing identity relating determinants and volumes.

Proposition 1.6.5. Let Ω ⊂ Rn be a bounded open set, and let A ∈ M(n,R) be
invertible. Then

(1.6.22) Vol(A(Ω)) = |detA|Vol(Ω).

To say Ω is open is to say that, if x0 ∈ Ω, there exists ε > 0 such that
|x − x0| < ε ⇒ x ∈ Ω. The set A(Ω) = {Ax : x ∈ Ω} is the image of Ω under the
map A : Rn → Rn. It is also an open subset of Rn.

To derive this result, we use (1.6.19) to write

(1.6.23) A = T1 · · ·Tk, Tj = S−1
j .
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Each Tj ∈M(n,R) is a matrix of the form listed in (1.6.12), with m = n, i.e.,

(1.6.24)

Pσ(x1, . . . , xn)
t = (xσ(1), . . . , xσ(n))

t,

Mc(x1, . . . , xn)
t = (c1x1, . . . , cnxn)

t,

Ejkγ(x1, . . . , xn)
t = (x1, . . . , xj − γxk, . . . , xn),

with x = (x1, . . . , xn)
t ∈ Rn, σ ∈ Sn, and cj ∈ R \ 0. We have

(1.6.25) detPσ = sgn(σ) = ±1, detMc = c1 · · · cn, detEjkγ = 1.

By comparison, each transformation in (1.6.24) maps bounded open sets to bounded
open sets, and, if Ω is such a set, we have

(1.6.26)

Vol(Pσ(Ω)) = Vol(Ω),

Vol(Mc(Ω)) = |c1 · · · cn|Vol(Ω),
Vol(Ejkγ(Ω)) = Vol(Ω).

Comparing (1.6.25) and (1.6.26), and using the fact that

(1.6.27) detA = (detT1) · · · (detTk),

we have (1.6.22).

We have called the argument above a “derivation” of (1.6.22), rather than a
proof. We have not given a definition of Vol(Ω), and indeed such a task is rightly
part of a treatment of multivariable calculus. An approach to such a definition
would be to partition Ω into a countable collection of “cells,” i.e., rectangular
solids of the form R = I1 × · · · × In, a product of bounded intervals Iν ⊂ R, such
that two such cells would intersect only along faces. We take the volume of R to
be the product of the lengths of the intervals Iν . Then we set Vol(Ω) to be the
countable sum of the volumes of the cells in such a partition. One faces the task
of showing that Vol(Ω) is then well defined, independently of the choice of such a
partition.

Of the transformations listed in (1.6.24), the first two preserve the class of
rectangular solids, leading to the first two identities in (1.6.26). Such actions (with
n = 2) are illustrated in Figure 1.6.1, with σ interchanging 1 and 2, and with
c = (2, 1/2).

On the other hand, the transformations Ejkγ map rectangular solids to more
general sorts of parallelepipeds, so some further argument is needed to show these
maps preserve volume. In such a case, one can partition a cell R into smaller cells,
on each of which Ejkγ is approximately a translation, and then make a limiting
argument. See Figure 1.6.2 for an illustration of the action of E12γ .

The identity (1.6.22) is the first step in an important change of variable formula
for multidimensional integrals, which goes as follows. Let O and Ω be open sets in
Rn, and let F : O → Ω be a bijective map. Assume F and its inverse F−1 : Ω → O
are both continuously differentiable. Let DF (x) denote the n× n matrix

(1.6.28) DF (x) =

(
∂fj
∂xk

)
,
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Figure 1.6.1. Actions of Pσ and Mc on a cell

where F = (f1, . . . , fn). The formula is

(1.6.29)

∫
Ω

u(x) dx =

∫
O

u(F (x))|detDF (x)| dx.

Such an identity is established first for u continuous and supported on a closed,
bounded setK ⊂ Ω, then for Riemann integrable u supported on suchK in Chapter
3 of [11], and more generally for all Lebesgue integrable u : Ω → R in Chapter 7 of
[14].

Row echelon forms and column echelon forms

We now describe more systematically how to apply a sequence of row reductions
to anm×nmatrix A ∈M(m×n,F), producing what is called a reduced row echelon
form of A.

To start, given such A, we aim to apply row operations to it to obtain a matrix
with 1 in the (1, 1) slot and zeros in the rest of the first column, if possible (but
only if possibie). This can be done if and only if some row of A has a nonzero first
entry, or equivalently if and only if the first column is not identically zero. (If the
first column is zero, skip along to the next step.) Say row j has a nonzero first
entry. If this does not hold for j = 1, switch row 1 and row j. (This is called a
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Figure 1.6.2. Action of E12γ on a cell

pivot.) Now divide (what is now) row 1 by its first entry, so now the first entry of
row 1 is 1. Re-notate, so that, at this stage,

(1.6.30) Ã =


1 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 .

Now, for 2 ≤ j ≤ m, replace row j by this row minus aj1 times row 1. Again
re-notate, so at this stage we have

(1.6.31) Ã =


1 a12 · · · a1n
0 a22 · · · a2n
...

...
0 am2 · · · amn

 ,

unless the first column is 0. Note that the a22 in (1.6.31) is typically different from
the a22 in (1.6.30).

To proceed, look at rows 2 through m. The first entry of each of these rows
is now zero. If the second entry of each such row is 0, skip to the next step. On
the other hand, if the second entry of the jth row is nonzero, (and j is the smallest
such index) proceed as follows. If j > 2, switch row 2 and row j (this is also called
a pivot). Now the second entry of row 2 is nonzero. Divide row 2 by this quantity,
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so now the second entry of row 2 is 1. Then, for each j ̸= 2, replace row j, i.e.,
(aj1, . . . , ajn), by that row minus aj2 times row 2. At this stage, we have

(1.6.32) Ã =


1 0 · · · a1n
0 1 · · · a2n
...

...
0 0 · · · amn

 .

This assumes that the first column of the original A was not 0 and the second

column of the matrix Ã in (1.6.31) (below the first entry) was not zero. Otherwise,
make the obvious adjustments. For example, if we achieve (1.6.31) but the second
entry of the jth column in (1.6.31) is 0 for each j ≥ 2, then, instead of (1.6.32), we
have

(1.6.33) Ã =


1 a12 · · · a1n
0 0 · · · a2n
...

...
...

0 0 · · · amn

 .

Continue in this fashion. When done, the matrix Ã, obtained from the original
A in (1.6.1), is said to be in reduced row echelon form. The jth row of the final

matrix Ã has a 1 as its first nonzero entry (if the row is not identically zero), and
the position of the initial 1 moves to the right as j increases. Also, each such initial
1 occurs in a column with no other nonzero entries.

Here is an example of a sequence of row reductions.

(1.6.34)

A =

1 2 0 1
2 4 2 4
1 2 1 2

 , Ã1 =

1 2 0 1
0 0 2 2
0 0 1 1

 ,

Ã2 =

1 2 0 1
0 0 1 1
0 0 0 0

 .

For this example, A : R4 → R3. It is a special case of Proposition 1.6.2 that the
three matrices in (1.6.34) all have the same null space. Clearly (x, y, z, w)t belongs

to N (Ã2) if and only if

x = −2y − w and z = −w.
Thus we can pick y and w arbitrarily and determine x and z uniquely. It follows

that dimN (Ã2) = 2. Picking, respectively, y = 1, w = 0 and y = 0, w = 1 gives

(1.6.35)


−2
1
0
0

 ,


−1
0
−1
1


as a basis of N (A), for A in (1.6.34).

More generally, suppose A is an m×n matrix, as in (1.6.1), and suppose it has

a reduced row echelon form Ã. Of the m rows of Ã, assume that µ of them are
nonzero, with 1 as the leading nonzero element, and assume that m−µ of the rows
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of Ã are zero. Hence the row rank of Ã is µ. It follows that the column rank of Ã

is also µ, so R(Ã) has dimension µ. Consequently

(1.6.36) dimN (Ã) = n− µ,

so of course dimN (A) = n − µ. To determine N (Ã) explicitly, it is convenient to

make the following construction. Permute the columns of Ã to obtain

(1.6.37) B̃ = ρ̃σ(Ã) =

(
I Y
0 0

)
,

where I is the µ× µ identity matrix and Y is a µ× (n− µ) matrix,

(1.6.38) Y =

y1,µ+1 · · · y1,n
...

...
yµ,µ+1 · · · yµ,n

 .

Since

(1.6.39)

(
I Y
0 0

)(
u

v

)
=

(
u+ Y v

0

)
,

we see that an isomorphism of Fn−µ with N (B̃) is given by

(1.6.40) Z : Fn−µ ≈−→ N (B̃) ⊂ Fn, Zv =

(
−Y v
v

)
.

Now, by (1.6.32),

(1.6.41) ρ̃σ(Ã) = ÃP t
σ,

so

(1.6.42) N (A) = N (Ã) = (P t
σ)

−1N (B̃) = (P t
σ)

−1Z(Fn−µ).

Note that each Pσ is an orthogonal matrix, so

(1.6.43) (P t
σ)

−1 = Pσ,

and we conclude that

(1.6.44) PσZ : Fn−µ ≈−→ N (A).

Note that, in the setting of (1.6.34), the construction in (1.6.37) becomes

(1.6.45) B̃ =

1 0 2 1
0 1 0 1
0 0 0 0

 , so Y =

(
2 1
0 1

)
.

The reader can check the essential equivalence of (1.6.44) and (1.6.35) in this case.

The systematic approach to row reduction described above is readily adapted
to column reduction. Indeed, column reduction of a matrix B can be achieved by
taking A = Bt, row reducing A, and then taking the transpose of the result. In
particular, taking the transpose of the reduced row echelon form of A yields the
reduced column echelon form of B. Of course, one need not actually take transposes;
simply use column operations instead of row operations. From the reduced column
echelon form of B one can read off a basis of R(B).
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Here is an example, related to (1.6.34) by taking transposes:

(1.6.46) B =


1 2 1
2 4 2
0 2 1
1 4 2

 , B̃1 =


1 0 0
2 0 0
0 2 1
1 2 1

 , B̃2 =


1 0 0
2 0 0
0 1 0
1 1 0

 .

Here, B̃2 is a reduced column echelon form of B. We read off from B̃2 that

(1.6.47) R(B) = Span
{

1
2
0
1

 ,


0
0
1
1

}
.

LU-factorization

We turn to the application of row reduction to the problem of taking a matrix
A ∈M(n,F) and writing it as

(1.6.48) A = LU,

where L ∈M(n,F) is lower triangular and U ∈M(n,F) is upper triangular. When
this can be done, it is called an LU-factorization of A. Here is a condition that
guarantees the existence of such a factorization.

Proposition 1.6.6. Take A ∈ M(n,F). Assume that A can be transformed to an
upper triangular matrix U via a sequence of row operations of the form

(1.6.49) εjkγ , j > k, γ ∈ F.

Then A has a factorization of the form (1.6.48), with L lower triangular.

Proof. As we have seen, for B ∈M(n,F),

(1.6.50) εjkγ(B) = EjkγB,

with Ejkγ as in (1.6.12) (with m = n). An examination of this matrix shows that

(1.6.51) Ejkγ is lower triangular, if j > k.

We deduce that, under the hypothesis of Proposition 1.6.6,

(1.6.52) U = Sℓ · · ·S1A,

where each Sν has the form (1.6.51). As seen in (1.6.14), E−1
jkγ = Ejk,−γ so each

matrix S−1
ν is also lower triangular. We thus have (1.6.48), with

(1.6.53) L = S−1
1 · · ·S−1

ℓ .

�

Here is a specific class of matrices to which Proposition 1.6.6 applies.

Proposition 1.6.7. Take A ∈ M(n,F) and for ℓ ∈ {1, . . . , n} let A(ℓ) denote the
ℓ× ℓ matrix forming the upper left corner of A, i.e.,

(1.6.54) A(1) = (a11), A(2) =

(
a11 a12
a21 a22

)
, . . . , A(n) = A.
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Assume each A(ℓ) is invertible, i.e.,

(1.6.55) detA(ℓ) ̸= 0 for 1 ≤ ℓ ≤ n.

Then Proposition 1.6.6 applies, so A has an LU-factorization (1.6.48).

Proof. We start with the hypothesis that a11 ̸= 0. Then we apply a sequence of
row operations of the form

εj1γ , j > 1, γ = a−1
11 aj1,

to clear out all the elements of the first column of A below a11. This yields a
sequence of row operations of the form (1.6.49) that take A to A1, and the first
column of A1 has a11 as its only nonzero element.

Before proceeding, we make the following useful observation.

Lemma. If A ∈M(n,F), then applying a row operation of the form (1.6.49) leaves
each quantity detA(ℓ) invariant.
Proof. Exercise.

To proceed, the hypothesis detA(ℓ) ̸= 0, together with the lemma, implies that
the 22-entry of A1 is nonzero. Thus we can apply a sequence of row operations of
the form εj2γ , with j > 2 and γ = a−1

22 aj2, to clear out all the entries of the second
column below the second one. Thus we have a further sequence of row operations of
the form (1.6.49), taking A1 to A2, and the first two columns of A2 are zero below
the diagonal. Also all the upper-left blocks of A2 have the same determinant as do
those of A. In particular, if n ≥ 3 and detA(3) ̸= 0, the 33-entry of A2 is nonzero.

Continuing, we see that Proposition 1.6.6 is applicable, under the hypotheses
of Proposition 1.6.7, so we have the LU-factorization (1.6.48). �

Sometimes when the condition given in Proposition 1.6.7 fails for A, it can be
restored by permuting the rows of A. Then the condition holds for PA, where P
is a permutation matrix (i.e., of the form Pσ). Then we have

(1.6.56) PA = LU.

Obtaining this is called LU-factorization with partial pivoting. We have the follow-
ing result.

Proposition 1.6.8. If A ∈M(n,F) is invertible, then one can permute its rows to
obtain a matrix to which Proposition 1.6.7 applies.

Proof. It suffices to show that a permutation of the rows of A produces a matrix B
for which B(n−1) is invertible, since then an inductive argument finishes the proof.

Now invertibility of A implies its rows α1, . . . , αn are linearly independent n-
vectors. With αj = (aj1, . . . , ajn), set

α′
j = (aj1, . . . , aj,n−1),

so αj = (α′
j , ajn). Then {α′

1, . . . , α
′
n} spans Fn−1, so some subset forms a basis;

this subset must have n − 1 elements. A permutation that makes the first n − 1
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elements a basis then induces a permutation of the rows of A, yielding B with the
desired property. �

We have discussed how row operations applied to A ∈M(n,F) allow for conve-
nient calculations of detA and of A−1 (when A is invertible). The LU factorization
(1.6.48), or more generally (1.6.56), also lead to relatively efficient calculations of
these objects. For one, detL and detU are simply the products of the diagonal
entries of these matrices. Furthermore, computing L−1 amounts to solving

(1.6.57)

L11

...
. . .

Ln1 · · · Lnn


v1...
vn

 =

w1

...
wn

 ,

i.e., to solving

(1.6.58)

L11v1 = w1,

L21v1 + L22v2 = w2,

...
...

Ln1v1 + · · ·+ Lnnvn= wn.

One takes v1 = w1/L11, plugs this into the second equation and solves for v2, and
proceeds iteratively. Inversion of U is done similarly.

Suppose A ∈M(n,F) is invertible and has an LU -factorization, as in (1.6.48).
We consider the extent to which such a factorization is unique. In fact,

(1.6.59) A = L1U1 = L2U2

implies

(1.6.60) L−1
2 L1 = U2U

−1
1 .

Now the left side of (1.6.60) is lower triangular and the right side is upper triangular.
Hence both sides are diagonal. This leads to the following variant of (1.6.48):

(1.6.61) A = L0DU0,

where D is diagonal, L0 is lower triangular, U0 is upper triangular, and both L0

and U0 have only 1s on the diagonal. If A is invertible and has the form (1.6.48),
one easily writes L = L0Dℓ and U = DrU0, and achieves (1.6.61) with D = DℓDr.
Then an argument parallel to (1.6.59)–(1.6.60) shows that the factorization (1.6.61)
is unique.

This uniqueness has further useful consequences. Suppose A = (ajk) ∈M(n,F)
is invertible and symmetric, i.e. A = At, or equivalently ajk = akj , and A has the
form (1.6.61). Applying the transpose gives A = At = U t

0DL
t
0, which is another

factorization of the form (1.6.61). Uniqueness implies L0 = U t
0, so

(1.6.62) A = At = L0DL
t
0.

Similarly, suppose A is invertible and self-adjoint, i.e., A = A∗, or ajk = akj
(see §3.2), and A has the form (1.6.61). Taking the adjoint of (1.6.61) yields
A = A∗ = U∗

0D
∗L∗

0, and now uniqueness implies L0 = U∗
0 and D = D∗ (i.e., D is

real), so

(1.6.63) A = A∗ = L0DL
∗
0, D real.
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Exercises

1. Use Gaussian elimination to compute the inverse of the following matrix.

X =

1 1 1
2 1 1
3 0 1

 .

2. Construct a reduced row echelon form for each of the following matrices.

A =

1 1 1
2 1 0
3 2 1

 , B =

1 2 3
1 1 2
1 0 1

 .

3. Construct a basis of the null space of each of the matrices in Exercise 2.

4. Construct a reduced column echelon form for each of the matrices in Exercise 2.

5. Construct a basis of the range of each of the matrices in Exercise 2.

6. Construct an LU-factorization of the matrix X in Exercise 1. Construct the
inverse of each factor, and use this to obtain another calculation of X−1.

7. Apply the method of Gaussian elimination to compute A−1, for

A =

(
c −s
s c

)
, c, s ∈ (−1, 1), c, s ̸= 0, c2 + s2 = 1.

Use this calculation to derive the identity(
c s
−s c

)
=M(1/c,1)E12,−sM(1/s,1)E211M(s,c).

Explain the relevance of this identity to the issue of how the transformation A
affects areas of planar domains.

8. Let A,B ∈ M(n,F) and assume A is invertible. Show that if you apply a
sequence of row reductions to A, taking it to I, and then apply the same sequence
of row operations to B, it takes

B to A−1B.



Chapter 2

Eigenvalues, eigenvectors, and
generalized eigenvectors

Eigenvalues and eigenvectors provide a powerful tool with which to understand
the structure of a linear transformation on a finite-dimensional vector space. Give
A ∈ L(V ), if v ∈ V is nonzero and Av = λv, we say v is an eigenvector of A, with
eigenvalue λ. This concept motivates us to bring in the eigenspace

(2.0.1) E(A, λ) = {v ∈ V : (A− λI)v = 0}.

This is nonzero if and only if A− λI is not invertible, i.e., if and only if

(2.0.2) KA(λ) = det(λI −A) = 0.

The polynomial KA(λ) is called the characteristic polynomial of A. A key result
called the Fundamental Theorem of Algebra (presented in Appendix 2.A) implies
it has complex roots.

One application of results on eigenvalues and eigenvectors arises in the study
of first-order systems of differential equations of the form

(2.0.3)
dx

dt
= Ax,

for x(t) ∈ V, A ∈ L(V ). A fruitful attack involves seeking solutions of the form

(2.0.4) x(t) = eλtv,

with v ∈ V, λ ∈ C. Applying d/dt to both sides yields the equation

(2.0.5) eλtAv = λeλtv,

and dividing by eλt shows that we have a solution of (2.0.3) if and only if v ∈
E(A, λ). We can hence obtain solutions to (2.0.3), in the form of linear combinations
of solutions of the type (2.0.4), with arbitrary initial data, if and only if each vector
in V can be written as a linear combination of eigenvectors of A.

51
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This illustrates a natural problem: given A ∈ L(V ), when does V have a basis
of eigenvectors of A? Consider the following three examples:

(2.0.6) A =

1 0 1
0 1 0
1 0 1

 , B =

1 0 −1
0 1 0
1 0 1

 , C =

1 0 −1
0 1 0
1 0 −1

 .

Methods developed in §2.1 will show that C3 has a basis of eigenvectors for A, and
it has a basis of eigenvectors for B, but it does not have a basis of eigenvectors for
C.

To delve further into the structure of a linear transformation A ∈ L(V ), we
look at generalized eigenvectors of A, associated to the eigenvalue λ, i.e., to nonzero
elements of the generalized eigenspace

(2.0.7) GE(A, λ) = {v ∈ V : (A− λI)kv = 0, for some k ∈ N}.
In §2.2 we show that if V is a finite-dimensional complex vector space and A ∈ L(V ),
then V has a basis consisting of generalized eigenvectors of A.

One can also use generalized eigenvectors of A to obtain solutions to (2.0.3), of
a form a little more complicated than (2.0.4). We take this up in §3.7.

The restriction N of A− λI to W = GE(A, λ) yields N ∈ L(W ) satisfying

(2.0.8) Nk = 0.

We say N is nilpotent. In §2.3 we analyze nilpotent transformations as precisely
those linear transformations that can be put in strictly upper triangular form,
with respect to an appropriate choice of basis. This, combined with results of
§2.2, implies that each A ∈ L(V ) can be put in upper triangular form (with the
eigenvalues on the diagonal), with respect to a basis of generalized eigenvectors,
whenever V is a finite-dimensional complex vector space.

In §2.4 we show that if N ∈ L(W ) is nilpotent and dimW < ∞, then W has
a basis with respect to which the matrix form of N consists of blocks, each block
being a matrix of all 0s, except for a string of 1s right above the diagonal, e.g., such
as

(2.0.9)


0 1 0 0

0 1 0
0 1

0

 .

In concert with results of §2.3, this establishes a Jordan canonical form for each
A ∈ L(V ), whenever V is a finite-dimensional complex vector space.
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2.1. Eigenvalues and eigenvectors

Let T : V → V be linear. If there is a nonzero v ∈ V such that

(2.1.1) Tv = λjv,

for some λj ∈ F, we say λj is an eigenvalue of T , and v is an eigenvector. Let
E(T, λj) denote the set of vectors v ∈ V such that (2.1.1) holds. It is clear that
E(T, λj) is a linear subspace of V and

(2.1.2) T : E(T, λj) −→ E(T, λj).

The set of λj ∈ F such that E(T, λj) ̸= 0 is denoted Spec(T ). Clearly λj ∈ Spec(T )
if and only if T − λjI is not injective, so, if V is finite dimensional,

(2.1.3) λj ∈ Spec(T ) ⇐⇒ det(λjI − T ) = 0.

We call KT (λ) = det(λI − T ) the characteristic polynomial of T .

If F = C, we can use the fundamental theorem of algebra, which says every
non-constant polynomial with complex coefficients has at least one complex root.
(See Appendix 2.A for a proof of this result.) This proves the following.

Proposition 2.1.1. If V is a finite-dimensional complex vector space and T ∈
L(V ), then T has at least one eigenvector in V .

Remark. If V is real and KT (λ) does have a real root λj , then there is a real
λj-eigenvector.

Sometimes a linear transformation has only one eigenvector, up to a scalar
multiple. Consider the transformation A : C3 → C3 given by

(2.1.4) A =

2 1 0
0 2 1
0 0 2

 .

We see that det(λI −A) = (λ− 2)3, so λ = 2 is a triple root. It is clear that

(2.1.5) E(A, 2) = Span{e1},

where e1 = (1, 0, 0)t is the first standard basis vector of C3.

If one is given T ∈ L(V ), it is of interest to know whether V has a basis of
eigenvectors of T . The following result is useful.

Proposition 2.1.2. Assume that the characteristic polynomial of T ∈ L(V ) has
k distinct roots, λ1, . . . , λk, with eigenvectors vj ∈ E(T, λj), 1 ≤ j ≤ k. Then
{v1, . . . , vk} is linearly independent. In particular, if k = dimV , these vectors form
a basis of V .

Proof. We argue by contradiction. If {v1, . . . , vk} is linearly dependent, take a
minimal subset that is linearly dependent and (reordering if necessary) say this set
is {v1, . . . , vm}, with Tvj = λjvj , and

(2.1.6) c1v1 + · · ·+ cmvm = 0,
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Figure 2.1.1. Behavior of the linear transformation A in (2.1.8), with two

distinct real eigenvalues

with cj ̸= 0 for each j ∈ {1, . . . ,m}. Applying T − λmI to (6.6) gives

(2.1.7) c1(λ1 − λm)v1 + · · ·+ cm−1(λm−1 − λm)vm−1 = 0,

a linear dependence relation on the smaller set {v1, . . . , vm−1}. This contradiction
proves the proposition. �

See Figure 2.1.1 for an illustration of the action of the transformation

(2.1.8) A : R2 −→ R2, A =

(
3 −1
−1 3

)
,

with two distinct eigenvalues, and associated eigenvectors

(2.1.9) λ1 = 2, λ2 = 4, v1 =
1√
2

(
1

1

)
, v2 =

1√
2

(
1

−1

)
.

We also display the circle x2 + y2 = 1, and its image under A. Compare Figure
1.2.1.

For contrast, we consider the linear transformation

(2.1.10) A : R2 −→ R2, A =

(
1 −2
2 −1

)
,
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Figure 2.1.2. Action of the linear transformation (2.1.10) on R2, with purely
imaginary eigenvalues, and eigenvectors v± = u0 ∓ iu1

whose eigenvalues λ± are purely imaginary and whose eigenvectors v± are not real:

(2.1.11) λ± = ±i
√
3, v± =

1

2
√
2

(
1± i

√
3

2

)
.

We can write

(2.1.12) v− = u0 + iu1, u0 =
1

2
√
2

(
1

2

)
, u1 =

1

2
√
2

(
−
√
3

0

)
,

and capture the behavior of A as

(2.1.13) Au0 =
√
3u1, Au1 = −

√
3u0.

See Figure 2.1.2 for an illustration. This figure also displays the ellipse

(2.1.14) γ(t) = (cos t)u0 + (sin t)u1, 0 ≤ t ≤ 2π,

and its image under A.

For another contrast, we look at the transformation

(2.1.15) A : R2 −→ R2, A =

(
3 −1
1 1

)
,

for which λ = 2 is a double eigenvalue. We have

(2.1.16) A− 2I =

(
1 −1
1 −1

)
, E(A, 2) = Span{v1}, v1 =

1√
2

(
1

1

)
.
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Figure 2.1.3. Action of the transformation (2.1.15) on R2, with a double
eigenvalue and one-dimensional eigenspace

Figure 2.1.3 illustrates the action of this transformation on R2. It displays the unit
circle x2+ y2 = 1, containing v1, and the image of this circle under the map A (the
ellipse) and under the map 2I (the larger circle). These two image curves intersect
at 4 points, ±Av1 and ±Aw, where

(2.1.17) w =

√
9

10

(
−1/3

1

)
.

Thus this figure illustrates that there is not an eigenvector of A that is linearly
independent of v1.

Further information on when T ∈ L(V ) yields a basis of eigenvectors, and on
what one can say when it does not, will be given in the following sections.
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Exercises

1. Compute the eigenvalues and eigenvectors of each of the following matrices.(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1
0 0

)
,(

1 1
0 0

)
,

(
1 i
i 1

)
,

(
i i
0 1

)
.

In which cases does C2 have a basis of eigenvectors?

2. Compute the eigenvalues and eigenvectors of each of the following matrices. 0 −1 1
1 0 −2
−1 2 0

 ,

1 0 1
0 −1 0
1 0 1

 .

3. Let A ∈ M(n,C). We say A is diagonalizable if and only if there exists an
invertible B ∈M(n,C) such that B−1AB is diagonal:

B−1AB =

λ1 . . .

λn

 .

Show that A is diagonalizable if and only if Cn has a basis of eigenvectors of A.
Recall from (1.4.14) that the matrices A and B−1AB are said to be similar.

4. More generally, if V is an n-dimensional complex vector space, we say T ∈ L(V )
is diagonalisable if and only if there exists invertible B : Cn → V such that B−1TB
is diagonal, with respect to the standard basis of Cn. Formulate and establish the
natural analogue of Exercise 3.

5. In the setting of (2.1.1)–(2.1.2), given S ∈ L(V, V ), show that

ST = TS =⇒ S : E(T, λj) → E(T, λj).

6. Let A ∈ M(n,C), and assume A is not invertible, so 0 ∈ Spec(A). Show that
there exists δ > 0 such that if λ ̸= 0 but |λ| < δ, then A − λI is invertible. Use
this to deduce that Gℓ(n,C) is dense in M(n,C). Similarly deduce that Gℓ(n,R)
is dense in M(n,R). Compare the proof of Proposition 1.5.8 indicated in §1.5.

7. Given A ∈ M(n,C), let the roots of the characteristic polynomial of A be
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{λ1, . . . , λn}, repeated according to multiplicity, so

det(λI −A) =

n∏
k=1

(λ− λk).

Show that this is also given by

det(λI −A) =

n∑
k=0

(−1)kσk(λ1, . . . , λn)λ
n−k,

where σ0(λ1, . . . , λn) = 1, and, for 1 ≤ k ≤ n,

σk(λ1, . . . , λn) =
∑

1≤j1<···<jk≤n

λj1 · · ·λjk .

The polynomials σk are called the elementary symmetric polynomials.

8. If A,B ∈M(n,C), B invertible, and D = B−1AB, show that, for all k ∈ N,
Dk = B−1AkB.

9. Let A denote the first matrix in Exercise 2. Diagonalize A and use this to
compute

A100.

10. Let M ∈M(m+ n,C) have the form

M =

(
A C
0 B

)
, A ∈M(n,C), B ∈M(m,C).

Show that
detM = (detA)(detB),

and, more generally, for λ ∈ C,
det(M − λI) = det(A− λI) · det(B − λI).

11. Find the eigenvalues and eigenvectors of

M =


0 −1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

 .
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2.2. Generalized eigenvectors and the minimal polynomial

As we have seen, the matrix

(2.2.1) A =

2 1 0
0 2 1
0 0 2


has only one eigenvalue, 2, and, up to a scalar multiple, just one eigenvector, e1.
However, we have

(2.2.2) (A− 2I)2e2 = 0, (A− 2I)3e3 = 0.

Generally, if T ∈ L(V ), we say a nonzero v ∈ V is a generalized λj-eigenvector if
there exists k ∈ N such that

(2.2.3) (T − λjI)
kv = 0.

We denote by GE(T, λj) the set of vectors v ∈ V such that (2.2.3) holds, for some k,
and call it the generalized eigenspace. It is clear that GE(T, λj) is a linear subspace
of V and

(2.2.4) T : GE(T, λj) −→ GE(T, λj).

The following is a useful comment.

Lemma 2.2.1. For each λj ∈ F such that GE(T, λj) ̸= 0,

(2.2.5) T − µI : GE(T, λj) −→ GE(T, λj) is an isomorphism, ∀µ ̸= λj .

Proof. If T −µI is not an isomorphism in (2.2.5), then Tv = µv for some nonzero
v ∈ GE(T, λj). But then (T − λjI)

kv = (µ − λj)
kv for all k ∈ N, and hence this

cannot ever be zero, unless µ = λj . �

Note that if V is a finite-dimensional complex vector space, then each nonzero
space appearing in (2.2.4) contains an eigenvector, by Proposition 2.1.1. Clearly
the corresponding eigenvalue must be λj . In particular, the set of λj for which
GE(T, λj) is nonzero coincides with Spec(T ), as given in (2.1.3).

We intend to show that if V is a finite-dimensional complex vector space and
T ∈ L(V ), then V is spanned by generalized eigenvectors of T . One tool in this
demonstration will be the construction of polynomials p(λ) such that p(T ) = 0.
Here, if

(2.2.6) p(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0,

then

(2.2.7) p(T ) = anT
n + an−1T

n−1 + · · ·+ a1T + a0I.

Let us denote by P the space of polynomials in λ.

Lemma 2.2.2. If V is finite dimensional and T ∈ L(V ), then there exists a nonzero
p ∈ P such that p(T ) = 0.

Proof. If dimV = n, then dimL(V ) = n2, so {I, T, . . . , Tn2} is linearly dependent.
�
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Let us set

(2.2.8) IT = {p ∈ P : p(T ) = 0}.

We see that I = IT has the following properties:

(2.2.9)
p, q ∈ I =⇒ p+ q ∈ I,

p ∈ I, q ∈ P =⇒ pq ∈ I.

A set I ⊂ P satisfying (2.2.9) is called an ideal. Here is another construction of a
class of ideals in P. Given {p1, . . . , pk} ⊂ P, set

(2.2.10) I(p1, . . . , pk) = {p1q1 + · · ·+ pkqk : qj ∈ P}.

We will find it very useful to know that all nonzero ideals in P, including IT , have
the following property.

Lemma 2.2.3. Let I ⊂ P be a nonzero ideal, and let p1 ∈ I have minimal degree
amongst all nonzero elements of I. Then

(2.2.11) I = I(p1).

Proof. Take any p ∈ I. We divide p1(λ) into p(λ) and take the remainder, obtain-
ing

(2.2.12) p(λ) = q(λ)p1(λ) + r(λ).

Here q, r ∈ P, hence r ∈ I. Also r(λ) has degree less than the degree of p1(λ), so
by minimality we have r ≡ 0. This shows p ∈ I(p1), and we have (2.2.11). �

Applying this to IT , we denote by mT (λ) the polynomial of smallest degree in
IT (having leading coefficient 1), and say

(2.2.13) mT (λ) is the minimal polynomial of T.

Thus every p ∈ P such that p(T ) = 0 is a multiple of mT (λ).

Assuming V is a complex vector space of dimension n, we can apply the fun-
damental theorem of algebra to write

(2.2.14) mT (λ) =

K∏
j=1

(λ− λj)
kj ,

with distinct roots λ1, . . . , λK . The following polynomials will also play a role in
our study of the generalized eigenspaces of T . For each ℓ ∈ {1, . . . ,K}, set

(2.2.15) pℓ(λ) =
∏
j ̸=ℓ

(λ− λj)
kj =

mT (λ)

(λ− λℓ)kℓ
.

We have the following useful result.

Proposition 2.2.4. If V is an n-dimensional complex vector space and T ∈ L(V ),
then, for each ℓ ∈ {1, . . . ,K},

(2.2.16) GE(T, λℓ) = R(pℓ(T )).
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Proof. Given v ∈ V ,

(2.2.17) (T − λℓ)
kℓpℓ(T )v = mT (T )v = 0,

so pℓ(T ) : V → GE(T, λℓ). Furthermore, each factor

(2.2.18) (T − λj)
kj : GE(T, λℓ) −→ GE(T, λℓ), j ̸= ℓ,

in pℓ(T ) is an isomorphism, by Lemma 2.2.1, so pℓ(T ) : GE(T, λℓ) → GE(T, λℓ) is
an isomorphism. �

Remark. We hence see that each λj appearing in (2.2.14) is an element of SpecT .

We now establish the following spanning property.

Proposition 2.2.5. If V is an n-dimensional complex vector space and T ∈ L(V ),
then

(2.2.19) V = GE(T, λ1) + · · ·+ GE(T, λK).

That is, each v ∈ V can be written as v = v1 + · · ·+ vK , with vj ∈ GE(T, λj).

Proof. Let mT (λ) be the minimal polynomial of T , with the factorization (2.2.14),
and define pℓ(λ) as in (2.2.15), for ℓ = 1, . . . ,K. We claim that

(2.2.20) I(p1, . . . , pK) = P.
In fact we know from Lemma 2.2.3 that I(p1, . . . , pK) = I(p0) for some p0 ∈ P.
Then any root of p0(λ) must be a root of each pℓ(λ), 1 ≤ ℓ ≤ K. But these
polynomials are constructed so that no µ ∈ C is a root of all K of them. Hence
p0(λ) has no root so (again by the fundamental theorem of algebra) it must be
constant, i.e., 1 ∈ I(p1, . . . , pK), which gives (2.2.20), and in particular we have
that there exist qℓ ∈ P such that

(2.2.21) p1(λ)q1(λ) + · · ·+ pK(λ)qK(λ) = 1.

We use this as follows to write an arbitrary v ∈ V as a linear combination of
generalized eigenvectors. Replacing λ by T in (2.2.21) gives

(2.2.22) p1(T )q1(T ) + · · ·+ pK(T )qK(T ) = I.

Hence, for any given v ∈ V ,

(2.2.23) v = p1(T )q1(T )v + · · ·+ pK(T )qK(T )v = v1 + · · ·+ vK ,

with vℓ = pℓ(T )qℓ(T )v ∈ GE(T, λℓ), by Proposition 2.2.4. �

We next produce a basis consisting of generalized eigenvectors.

Proposition 2.2.6. Under the hypotheses of Proposition 2.2.5, let GE(T, λℓ), 1 ≤
ℓ ≤ K, denote the generalized eigenspaces of T (with λℓ mutually distinct), and let

(2.2.24) Sℓ = {vℓ1, . . . , vℓ,dℓ
}, dℓ = dimGE(T, λℓ),

be a basis of GE(T, λℓ). Then

(2.2.25) S = S1 ∪ · · · ∪ SK

is a basis of V .
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Proof. It follows from Proposition 2.2.5 that S spans V . We need to show that S is
linearly independent. To show this it suffices to show that if wℓ are nonzero elements
of GE(T, λℓ), then no nontrivial linear combination can vanish. The demonstration
of this is just slightly more elaborate than the corresponding argument in Propo-
sition 2.1.2. If there exist such linearly dependent sets, take one with a minimal
number of elements, and rearrange {λℓ}, to write it as {w1, . . . , wm}, so we have

(2.2.26) c1w1 + · · ·+ cmwm = 0,

and cj ̸= 0 for each j ∈ {1, . . . ,m}. As seen in Lemma 2.2.1,

(2.2.27) T − µI : GE(T, λℓ) −→ GE(T, λℓ) is an isomorphism, ∀ µ ̸= λℓ.

Take k ∈ N so large that (T − λmI)
k annihilates each element of the basis Sm

of GE(T, λm), and apply (T − λmI)
k to (2.2.26). Given (2.2.27), we will obtain a

non-trivial linear dependence relation involving m − 1 terms, a contradiction, so
the purported linear dependence relation cannot exist. This proves Proposition
2.2.6. �

Example. Let us consider A : C3 → C3, given by

(2.2.28) A =

2 3 3
0 2 3
0 0 1

 .

Then Spec(A) = {2, 1}, so mA(λ) = (λ − 2)a(λ − 1)b for some positive integers a
and b. Computations give

(2.2.29) (A− 2I)(A− I) =

0 3 9
0 0 0
0 0 0

 , (A− 2I)2(A− I) = 0,

hence mA(λ) = (λ− 2)2(λ− 1). Thus we have

(2.2.30) p1(λ) = λ− 1, p2(λ) = (λ− 2)2,

using the ordering λ1 = 2, λ2 = 1. As for qℓ(λ) such that (2.2.21) holds, a little
trial and error gives q1(λ) = −(λ− 3), q2(λ) = 1, i.e.,

(2.2.31) −(λ− 1)(λ− 3) + (λ− 2)2 = 1.

Note that

(2.2.32) A− I =

1 3 3
0 1 3
0 0 0

 , (A− 2I)2 =

0 0 6
0 0 −3
0 0 1

 .

Hence, by (2.2.16),

(2.2.33) GE(A, 2) = Span


1
0
0

 ,

0
1
0

 , GE(A, 1) = Span


 6
−3
1

 .

Alternatively, in place of (2.2.16), we can use

(2.2.34) GE(A, 2) = N ((A− 2I)2), GE(A, 1) = N (A− I),
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together with the calculations of A−I and (A−2I)2 in (2.2.32) to recover (2.2.33).
See Exercise 8 below for a more general result.

Remark. In general, for A ∈M(3,C), there are the following three possibilities.

(I) A has 3 distinct eigenvalues, λ1, λ2, λ3. Then λj-eigenvectors vj , 1 ≤ j ≤ 3,
span C3.

(II) A has 2 distinct eigenvalues, say λ1 (single) and λ2 (double). Then

(2.2.35) mA(λ) = (λ− λ1)(λ− λ2)
k, k = 1 or 2.

Whatever the value of k, p2(λ) = λ− λ1, and hence

(2.2.36) GE(A, λ2) = R(A− λ1I),

which in turn is the span of the columns of A− λ1I. We have

(2.2.37) GE(A, λ2) = E(A, λ2) ⇐⇒ k = 1.

In any case, C3 = E(A, λ1)⊕ GE(A, λ2).

(III) A has a triple eigenvalue, λ1. Then Spec(A− λ1I) = {0}, and
(2.2.38) GE(A, λ1) = C3.

Compare results of the next section.
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Exercises

1. Consider the matrices

A1 =

 1 0 1
0 2 0
−1 0 −1

 , A2 =

1 0 1
0 2 0
0 0 1

 , A3 =

1 2 0
3 1 3
0 −2 1

 .

Compute the eigenvalues and eigenvectors of each Aj .

2. Find the minimal polynomial of Aj and find a basis of generalized eigenvectors
of Aj .

3. Consider the transformationD : P2 → P2 given by (1.4.15). Find the eigenvalues
and eigenvectors of D. Find the minimal polynomial of D and find a basis of P2

consisting of generalized eigenvectors of D.

4. Suppose V is a finite dimensional complex vector space and T : V → V . Show
that V has a basis of eigenvectors of T if and only if all the roots of the minimal
polynomial mT (λ) are simple.

5. In the setting of (2.2.3)–(2.2.4), given S ∈ L(V ), show that

ST = TS =⇒ S : GE(T, λj) → GE(T, λj).

6. Show that if V is an n-dimensional complex vector space, S, T ∈ L(V ), and ST =
TS, then V has a basis consisting of vectors that are simultaneously generalized
eigenvectors of T and of S.
Hint. Apply Proposition 2.2.6 to S : GE(T, λj) → GE(T, λj).

7. Let V be a complex n-dimensional vector space, and take T ∈ L(V ), with
minimal polynomial mT (λ), as in (2.2.13). For ℓ ∈ {1, . . . ,K}, set

Pℓ(λ) =
mT (λ)

λ− λℓ
.

Show that, for each ℓ ∈ {1, . . . ,K}, there exists wℓ ∈ V such that vℓ = Pℓ(T )wℓ ̸= 0.
Then show that (T − λℓI)vℓ = 0, so one has a proof of Proposition 2.1.1 that does
not use determinants.

8. In the setting of Exercise 7, show that the exponent kj in (2.2.14) is the smallest
integer such that

(T − λjI)
kj annihilates GE(T, λj).

Hint. Review the proof of Proposition 2.2.4.
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9. Show that Proposition 2.2.6 refines Proposition 2.2.5 to

V = GE(T, λ1)⊕ · · · ⊕ GE(T, λK).

10. Given A,B ∈M(n,C), define LA, RB :M(n,C) →M(n,C) by
LAX = AX, RBX = XB.

Show that if SpecA = {λj}, SpecB = {µk} (= SpecBt), then

GE(LA, λj) = Span{vwt : v ∈ GE(A, λj), w ∈ Cn},
GE(RB , µk) = Span{vwt : v ∈ Cn, w ∈ GE(Bt, µk)}.

Show that

GE(LA −RB , σ) = Span{vwt : v ∈ GE(A, λj), w ∈ GE(Bt, µk), σ = λj − µk}.

11. In the setting of Exercise 10, show that if A is diagonalizable, then GE(LA, λj) =
E(LA, λj). Draw analogous conclusions if also B is diagonalizable.

12. In the setting of Exercise 10, show that if SpecA = {λj} and SpecB = {µk},
then

Spec(LA −RB) = {λj − µk}.
Deduce that if CA :M(n,C) →M(n,C) is defined by

CAX = AX −XA,

then
SpecCA = {λj − λk}.
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2.3. Triangular matrices and upper triangularization

We say an n × n matrix A = (ajk) is upper triangular if ajk = 0 for j > k, and
strictly upper triangular if ajk = 0 for j ≥ k. Similarly we have the notion of lower
triangular and strictly lower triangular matrices. Here are two examples:

(2.3.1) A =

1 1 2
0 1 3
0 0 2

 , B =

0 1 2
0 0 3
0 0 0

 ;

A is upper triangular and B is strictly upper triangular; At is lower triangular and
Bt strictly lower triangular. Note that B3 = 0.

We say T ∈ L(V ) is nilpotent provided T k = 0 for some k ∈ N. The following
is a useful characterization of nilpotent transformations.

Proposition 2.3.1. Let V be a finite-dimensional complex vector space, N ∈ L(V ).
The following are equivalent:

N is nilpotent,(2.3.2)

Spec(N) = {0},(2.3.3)

There is a basis of V for which N is strictly upper triangular,(2.3.4)

There is a basis of V for which N is strictly lower triangular.(2.3.5)

Proof. The implications (2.3.4) ⇒ (2.3.2) and (2.3.5) ⇒ (2.3.2) are easy. Also
(2.3.4) implies the characteristic polynomial of N is λn (if n = dimV ), which is
equivalent to (2.3.3), and similarly (2.3.5) ⇒ (2.3.3). We need to establish a couple
more implications.

To see that (2.3.2) ⇒ (2.3.3), note that if Nk = 0 we can write

(2.3.6) (N − µI)−1 = − 1

µ

(
I − 1

µ
N
)−1

= − 1

µ

k−1∑
ℓ=0

1

µℓ
N ℓ,

whenever µ ̸= 0.

Next, given (2.3.3), N : V → V is not an isomorphism, so V1 = N(V ) has
dimension ≤ n − 1. Now N1 = N |V1

∈ L(V1) also has only 0 as an eigenvalue, so
N1(V1) = V2 has dimension ≤ n− 2, and so on. Thus Nk = 0 for sufficiently large
k. We have (2.3.3) ⇒ (2.3.2). Now list these spaces as V = V0 ⊃ V1 ⊃ · · · ⊃ Vk−1,
with Vk−1 ̸= 0 but N(Vk−1) = 0. Pick a basis for Vk−1, augment it as in Proposition
1.3.5 to produce a basis for Vk−2, and continue, obtaining in this fashion a basis
of V , with respect to which N is strictly upper triangular. Thus (2.3.3) ⇒ (2.3.4).
On the other hand, if we reverse the order of this basis we have a basis with respect
to which N is strictly lower triangular, so also (2.3.3) ⇒ (2.3.5). The proof of
Proposition 2.3.1 is complete. �

Remark. Having proven Proposition 2.3.1, we see another condition equivalent to
(2.3.2)–(2.3.5):

(2.3.7) Nk = 0, ∀ k ≥ dimV.



2.3. Triangular matrices and upper triangularization 67

Example. Consider

N =

0 2 0
3 0 3
0 −2 0

 .

We have

N2 =

 6 0 6
0 0 0
−6 0 −6

 , N3 = 0.

Hence we have a chain V = V0 ⊃ V1 ⊃ V2 as in the proof of Proposition 2.3.1, with

(2.3.8)

V2 = Span

 1
0
−1

 , V1 = Span


 1

0
−1

 ,

0
1
0

 ,

V0 = Span


 1

0
−1

 ,

0
1
0

 ,

1
0
0

 = Span{v1, v2, v3},

and we have

Nv1 = 0, Nv2 = −v1, Nv3 = 3v2,

so the matrix representation of N with respect to the basis {v1, v2, v3} is0 −1 0
0 0 3
0 0 0

 .

Generally, if A is an upper triangular n × n matrix with diagonal entries
d1, . . . , dn, the characteristic polynomial of A is

(2.3.9) det(λI −A) = (λ− d1) · · · (λ− dn),

by Proposition 1.5.7, so Spec(A) = {dj}. If d1, . . . , dn are all distinct it follows that
Fn has a basis of eigenvectors of A.

We can show that whenever V is a finite-dimensional complex vector space and
T ∈ L(V ), then V has a basis with respect to which T is upper triangular. In
fact, we can say a bit more. Recall what was established in Proposition 2.2.6. If
Spec(T ) = {λℓ : 1 ≤ ℓ ≤ K} and Sℓ = {vℓ1, . . . , vℓ,dℓ

} is a basis of GE(T, λℓ), then
S = S1 ∪ · · · ∪ SK is a basis of V . Now look more closely at

(2.3.10) Tℓ : Vℓ −→ Vℓ, Vℓ = GE(T, λℓ), Tℓ = T
∣∣
Vℓ
.

The result (2.2.5) says Spec(Tℓ) = {λℓ}, i.e., Spec(Tℓ−λℓI) = {0}, so we can apply
Proposition 2.3.1. Thus we can pick a basis Sℓ of Vℓ with respect to which Tℓ−λℓI
is strictly upper triangular, hence in which Tℓ takes the form

(2.3.11) Aℓ =

λℓ ∗
. . .

0 λℓ

 .
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Then, with respect to the basis S = S1 ∪ · · · ∪ SK , T has a matrix representation
A consisting of blocks Aℓ, given by (2.3.11). It follows that

(2.3.12) KT (λ) = det(λI − T ) =

K∏
ℓ=1

(λ− λℓ)
dℓ , dℓ = dimVℓ.

This matrix representation also makes it clear that KT (T )|Vℓ
= 0 for each ℓ ∈

{1, . . . ,K} (cf. (2.3.7)). This establishes the following result, known as the Cayley-
Hamilton theorem.

Proposition 2.3.2. If T ∈ L(V ), dimV < ∞, and KT (λ) is its characteristic
polynomial, then

(2.3.13) KT (T ) = 0 on V.

Consequently,

(2.3.14) KT (λ) is a polynomial multiple of mT (λ).

Recall that mT (λ), the minimal polynomial of T , introduced in (2.2.14), has the
property that I(mT ) consists of all polynomials p(λ) such that p(T ) = 0.

We next use the upper triangularization process described above to prove the
following.

Proposition 2.3.3. If A,B ∈M(n,C), then AB and BA have the same eigenval-
ues, with the same multiplicity. Consequently,

dimGE(AB, λj) = dimGE(BA, λj).

Proof. An equivalent conclusion is

(2.3.15) det(AB − λI) = det(BA− λI), ∀λ ∈ C,

in light of (2.3.12). Now if B is invertible, we have AB = B−1(BA)B, so AB and
BA are similar, and (2.3.15) follows. However, if neither A nor B is invertible, an
additional argument is needed. We proceed as follows. By Proposition 1.5.8, we
can find invertible Bν ∈M(n,C) such that Bν → B as ν → ∞. Then

(2.3.16) det(AB − λI) = lim
ν→∞

det(ABν − λI).

But for each ν, ABν and BνA are similar, so (2.3.16) is equal to

(2.3.17) lim
ν→∞

det(BνA− λI) = det(BA− λI),

so we have Proposition 2.3.3. �

Remark. From the hypotheses of Proposition 2.3.3 we cannot deduce that AB
and BA are similar. Here is a counterexample.

(2.3.18)

A =

(
0 1
0 1

)
, B =

(
0 1
0 0

)
=⇒ AB =

(
0 0
0 0

)
and BA =

(
0 1
0 0

)
.
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Companion matrices

Given a polynomial p(λ) of degree n,

(2.3.19) p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0, aj ∈ C,

one associates the following n× n matrix,

(2.3.20) A =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1

 ,

with 1s above the diagonal and the negatives of the coefficients a0, . . . , an−1 of p(λ)
along the bottom row. This is called the companion matrix of p(λ). It has the
following significant property.

Proposition 2.3.4. If p(λ) is a polynomial of the form (2.3.19), with companion
matrix A, given by (2.3.20), then

(2.3.21) p(λ) = det(λI −A).

Proof. We look at

(2.3.22) λI −A =


λ −1 · · · 0 0
0 λ · · · 0 0
...

...
...

...
0 0 λ −1
a0 a1 · · · an−2 λ+ an−1

 ,

and compute its determinant by expanding by minors down the first column. We
see that

(2.3.23) det(λI −A) = λ det(λI − Ã) + (−1)n−1a0 detB,

where

(2.3.24)
Ã is the companion matrix of λn−1 + an−1λ

n−2 + · · ·+ a1,

B is lower triangular, with −1s on the diagonal.

By induction on n, we have det(λI − Ã) = λn−1 + an−1λ
n−2 + · · ·+ a1, while the

transpose of (1.5.55) implies detB = (−1)n−1. Substituting this into (2.3.23) gives
(2.3.21). �
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Exercises

1. Consider

A1 =

(
1 2
2 1

)
, A2 =

0 0 −1
0 1 0
1 0 0

 , A3 =

1 2 3
2 1 2
3 2 1

 .

Compute the characteristic polynomial of each Aj and verify that these matrices
satisfy the Caley-Hamilton theorem, (2.3.13).

2. Let Pk denote the space of polynomials of degree ≤ k in x, and consider

D : Pk −→ Pk, Dp(x) = p′(x).

Show that Dk+1 = 0 on Pk and that {1, x, . . . , xk} is a basis of Pk with respect to
which D is strictly upper triangular.

3. Use the identity

(I −D)−1 =

k+1∑
ℓ=0

Dℓ, on Pk,

to obtain a solution u ∈ Pk to

(2.3.25) u′ − u = xk.

4. Use the equivalence of (2.3.25) with

d

dx
(e−xu) = xke−x

to obtain a formula for ∫
xke−x dx.

5. The proof of Proposition 2.3.1 given above includes the chain of implications

(2.3.4) ⇒ (2.3.2) ⇔ (2.3.3) ⇒ (2.3.4).

Use Proposition 2.2.4 to give another proof that

(2.3.3) ⇒ (2.3.2).

6. Establish the following variant of Proposition 2.2.4. Let KT (λ) be the charac-
teristic polynomial of T , as in (2.3.12), and set

Pℓ(λ) =
∏
j ̸=ℓ

(λ− λj)
dj =

KT (λ)

(λ− λℓ)dℓ
.

Show that

GE(T, λℓ) = R(Pℓ(T )).
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7. Show that, if λj is a root of det(λI −A) = 0 of multiplicity dj , then

dimGE(A, λj) = dj , and GE(A, λj) = N ((A− λjI)
dj ).

For a refinement of the latter identity, see Exercise 4 in the sext section.
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2.4. The Jordan canonical form

Let V be an n-dimensional complex vector space, and suppose T : V → V . The
following result gives the Jordan canonical form for T .

Proposition 2.4.1. There is a basis of V with respect to which T is represented
as a direct sum of blocks of the form

(2.4.1)


λj 1

λj
. . .

. . . 1
λj

 .

These blocks are known as Jordan blocks. In light of Proposition 2.2.6 on
generalized eigenspaces, together with Proposition 2.3.1 characterizing nilpotent
operators and the discussion around (2.3.10), to prove Proposition 2.4.1 it suffices
to establish such a Jordan canonical form for a nilpotent transformationN : V → V .
(Then λj = 0.) We turn to this task.

Given v0 ∈ V , let m be the smallest integer such that Nmv0 = 0; m ≤ n.
If m = n, then {v0, Nv0, . . . , Nm−1v0} gives a basis of V putting N in Jordan
canonical form, with one block of the form (2.4.1) (with λj = 0). In any case, we
call {v0, . . . , Nm−1v0} a Jordan string (or string, for short). To obtain a Jordan
canonical form for N , it will suffice to find a basis of V consisting of a family of
strings. We will establish that this can be done by induction on dim V . This result
is clear for dim V ≤ 1.

So, given a nilpotent N : V → V , we can assume inductively that V1 = N(V )
has a basis that is a union of strings:

(2.4.2) {vj , Nvj , . . . , N ℓjvj}, 1 ≤ j ≤ d.

Furthermore, each vj has the form vj = Nwj for some wj ∈ V . Hence we have the
following strings in V :

(2.4.3) {wj , vj = Nwj , Nvj , . . . , N
ℓjvj}, 1 ≤ j ≤ d.

We claim that the vectors in (2.4.3) are linearly independent. To see this, we apply
N to a linear combination and invoke the independence of the vectors in (2.4.2).

In more detail, suppose there is a linear dependence relation,

(2.4.4)

d∑
j=1

bjwj +

d∑
j=1

ℓj∑
ℓ=0

ajℓN
ℓvj = 0.

Applying N yields

(2.4.5)

d∑
j=1

bjvj +

d∑
j=1

ℓj−1∑
ℓ=0

ajℓN
ℓ+1vj = 0.

This is a linear dependence relation among the vectors listed in (2.4.2), so

(2.4.6) bj = 0, ajℓ = 0, ∀ j ∈ {1, . . . , d}, ℓ ≤ ℓj − 1.
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Hence (2.4.4) yields

(2.4.7)

d∑
j=1

aj,ℓjvj = 0,

again a linear dependence relation among vectors listed in (2.4.2), so

(2.4.8) aj,ℓj = 0, ∀ j ∈ {1, . . . , d},

and we have linear independence of all the vectors listed in (2.4.3).

To proceed, note that the vectors in

(2.4.9) {N ℓjvj : 1 ≤ j ≤ d}

all belong to N (N) and are linearly independent. If this set does not span N (N),
complete it to a basis of N (N), by adding

(2.4.10) {ξ1, . . . , ξν}.

We now claim that the vectors listed in (2.4.3) and (2.4.10) are linearly independent.
Indeed, suppose there is a linear dependence relation

(2.4.11)

ν∑
i=1

ciξi +

d∑
j=1

bjwj +

d∑
j=1

ℓj∑
ℓ=0

ajℓN
ℓvj = 0.

Applying N yields an identity of the form (2.4.5), which in turn yields identities of
the form (2.4.6). Hence (2.4.11) yields

(2.4.12)

ν∑
i=1

ciξi +

d∑
j=1

aj,ℓjN
ℓjvj = 0,

thus yielding

(2.4.13) ci = 0, ∀ i ∈ {1, . . . , ν}, aj,ℓj = 0, ∀ j ∈ {1, . . . , d},

since (2.4.9)–(2.4.10) form a basis of N (N). We have the asserted linear indepen-
dence of

(2.4.14) {wj , vj , . . . , N
ℓjvj}, 1 ≤ j ≤ d, {ξ1, . . . , ξν}.

Finally, we claim this is a basis of V .

To see this, note that the number of vectors in (2.4.3) is dimR(N) + d, while
dimN (N) = d+ ν. Hence the number of vectors in (2.4.14) is

(2.4.15)
dimR(N) + d+ ν = dimR(N) + dimN (N)

= dimV.

Thus (2.4.14) yields a basis of V , and hence the strings (2.4.3) together with
{ξ1}, . . . , {ξν} form a string basis of V . This proves Proposition 2.4.1. �

There is some choice in producing bases putting T ∈ L(V ) in block form. So
we ask, in what sense is the Jordan form canonical? The answer is that the sizes
of the various blocks is independent of the choices made. To show this, again it
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suffices to consider the case of a nilpotent N : V → V . Let β(k) denote the number
of blocks of size k × k in a Jordan decomposition of N . Equivalently,

(2.4.16) β(k) = number of Jordan strings of length k,

in such a Jordan decomposition of N . Then

(2.4.17) β =
∑
k

β(k)

is the total number of Jordan blocks, and clearly

(2.4.18) β = dimN (N).

On the other hand, a direct inspection of the Jordan canonical form yields the
following.

Proposition 2.4.2. Let N ∈ L(V ) be nilpotent, dimV < ∞, and take a string
basis of V . If

(2.4.19) γ(k) = number of Jordan strings of length > k,

then

(2.4.20) γ(k) = dimN (Nk+1)− dimN (Nk).

To connect γ(k) with β(k), note that

(2.4.21) γ(k) =
∑
ℓ>k

β(ℓ),

so

(2.4.22) β(k) = γ(k − 1)− γ(k).

To illustrate the steps taken in the proof of Proposition 2.4.1, to treat nilpotent
N ∈ L(V ), we work through the following example. Take

(2.4.23) N =


0 1 1 1
0 0 0 0
0 0 0 1
0 0 0 0

 .

This matrix is strictly upper triangular, hence clearly nilpotent, but not in Jordan
canonical form. We seek a string basis. To start, we have

(2.4.24) R(N) = Span{e1, e3},
where {e1, . . . , e4} denotes the standard basis of C4. Note that

(2.4.25) N(e3) = e1, N(e1) = 0,

so {e3, e1} forms a string basis of R(N). Furthermore, e3 = N(e4 − e3), so

(2.4.26) {e4 − e3, e3, e1}
is a longer string in V = C4, as in (2.4.3). As noted above, e1 ∈ N (N). Since
R(N) is two-dimensional, so is N (N), and we can check that

(2.4.27) N (N) = Span{e1, e2 − e3}.
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Consequently, a string basis of C4 consists of two strings:

(2.4.28) {e4 − e3, e3, e1} and {e2 − e3}.
If we set

(2.4.29) v4 = e2 − e3, v3 = e4 − e3, v2 = e3, v1 = e1,

then the matrix representation of N with respect to the basis {v1, v2, v3, v4} is

(2.4.30) M =


0 1 0 0

0 1 0
0 0

0

 .

This is the Jordan canonical form for (2.4.23). There are two Jordan blocks:

(2.4.31)

0 1 0
0 1

0

 , and
(
0
)
.

Finally, one can calculate dimN (Nk) and check the formula (2.4.19)–(2.4.20) against
the size of the strings in (2.4.31).
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Exercises

1. Produce Jordan canonical forms for each of the following matrices.2 3 3
0 2 3
0 0 1

 ,

 1 0 1
0 2 0
−1 0 −1

 ,

1 2 0
3 1 3
0 −2 1

 ,

0 1 2
0 0 3
0 0 0

 .

2. Produce the Jordan canonical form for the companion matrix associated with
the polynomial p(λ) = λ(λ− 1)2.

3. In the setting of Exercise 2, take p(λ) = (λ− 1)3.

4. Assume A ∈ M(n,C) and, for each λj ∈ SpecA, the largest Jordan block of A,
of the form (2.4.1), has size kj × kj . Show that the minimal polynomial mA(λ) of
A is

mA(λ) =
∏
j

(λ− λj)
kj ,

and that
GE(A, λj) = N

(
(A− λjI)

kj
)
.

Show that mA(λ) = KA(λ) (the characteristic polynomial) if and only if each
λj ∈ SpecA appears in only one Jordan block.

5. Guided by Exercises 2–3, formulate a conjecture about the minimal polynomial
and the Jordan normal form of a companion matrix. See if you can prove it. Relate
this to Exercise 11 in §3.7 (when you get to that).
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2.A. The fundamental theorem of algebra

The following result is known as the fundamental theorem of algebra. It played a
crucial role in §2.1, to guarantee the existence of eigenvalues of a complex n × n
matrix.

Theorem 2.A.1. If p(z) is a nonconstant polynomial (with complex coefficients),
then p(z) must have a complex root.

Proof. We have, for some n ≥ 1, an ̸= 0,

(2.A.1)
p(z) = anz

n + · · ·+ a1z + a0

= anz
n
(
1 +R(z)

)
, |z| → ∞,

where

|R(z)| ≤ C

|z|
, for |z| large.

This implies

(2.A.2) lim
|z|→∞

|p(z)| = ∞.

Picking R ∈ (0,∞) such that

(2.A.3) inf
|z|≥R

|p(z)| > |p(0)|,

we deduce that

(2.A.4) inf
|z|≤R

|p(z)| = inf
z∈C

|p(z)|.

Since DR = {z : |z| ≤ R} is closed and bounded and p is continuous, there exists
z0 ∈ DR such that

(2.A.5) |p(z0)| = inf
z∈C

|p(z)|.

(For further discussion of this point, see Proposition 1.10.6 of [10].) The proof is
hence completed by the following lemma. �

Lemma 2.A.2. If p(z) is a nonconstant polynonial and (2.A.5) holds, then p(z0) =
0.

Proof. Suppose to the contrary that

(2.A.6) p(z0) = a ̸= 0.

We can write

(2.A.7) p(z0 + ζ) = a+ q(ζ),

where q(ζ) is a nonconstant polynomial in ζ, satisfying q(0) = 0. Hence, for some
k ≥ 1 and b ̸= 0, we have q(ζ) = bζk + · · ·+ bnζ

n, i.e.,

(2.A.8) q(ζ) = bζk + ζk+1r(ζ), |r(ζ)| ≤ C,

for |ζ| ≤ 1, so, with ζ = εω, ω ∈ S1 = {ω : |ω| = 1},

(2.A.9) p(z0 + εω) = a+ bωkεk + (εω)k+1r(εω), ε↘ 0.
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Pick ω ∈ S1 such that

(2.A.10)
b

|b|
ωk = − a

|a|
,

which is possible since a ≠ 0 and b ̸= 0. Then

(2.A.11) p(z0 + εω) = a
(
1−

∣∣∣ b
a

∣∣∣εk)+ (εω)k+1r(εω),

with r(ζ) as in (2.A.8), which contradicts (2.A.5) for ε > 0 small enough. Thus
(2.A.6) is impossible. This proves Lemma 2.A.2, hence Theorem 2.A.1. �

Now that we have shown that p(z) in (2.A.1) must have one root, we can show
it has n roots (counting multiplicity).

Proposition 2.A.3. For a polynomial p(z) of degree n, as in (2.A.1), there exist
r1, . . . , rn ∈ C such that

(2.A.12) p(z) = an(z − r1) · · · (z − rn).

Proof. We have shown that p(z) has one root; call it r1. Dividing p(z) by z − r1,
we have

(2.A.13) p(z) = (z − r1)p̃(z) + q,

where p̃(z) = anz
n−1+ · · ·+ ã0 and q is a polynomial of degree < 1, i.e., a constant.

Setting z = r1 in (2.A.13) yields q = 0, i.e.,

(2.A.14) p(z) = (z − r1)p̃(z).

Since p̃(z) is a polynomial of degree n− 1, the result (2.A.12) follows by induction
on n. �

Remark 1. The numbers rj , 1 ≤ j ≤ n, in (2.A.12) are the roots of p(z). If k of
them coincide (say with rℓ), we say rℓ is a root of multiplicity k. If rℓ is distinct
from rj for all j ̸= ℓ, we say rℓ is a simple root.

Remark 2. In complex analysis texts, like [15], one can find proofs of the funda-
mental theorem of algebra that are even shorter than that given above, but that
use more advanced techniques.



Chapter 3

Linear algebra on inner
product spaces

Many important problems in linear algebra arise in the setting of vector spaces
equipped with an additional structure, an inner product, which gives them metric
properties familiar in Euclidean geometry. The first examples are Euclidean spaces
Rn, with the dot product, defined for vectors v = (v1, . . . , vn) and w = (w1, . . . , wn)
by

(3.0.1) v · w = v1w1 + · · ·+ vnwn.

On Cn one has a Hermitian inner product,

(3.0.2) (v, w) = v1w1 + · · ·+ vnwn.

More general inner products on finite-dimensional real or complex vector spaces are
introduced in §3.1. A norm is defined by

(3.0.3) ∥v∥2 = (v, v).

This in turn defines the distance between vectors v and w, as ∥v − w∥. Results on
the inner product lead to the triangle inequality,

(3.0.4) ∥v + w∥ ≤ ∥v∥+ ∥w∥.

We show that if V is an n-dimensional inner product space, it has an orthonormal
basis {v1, . . . , vn}, i.e., a basis satisfying

(3.0.5) (vj , vk) = δjk.

Such a basis gives rise to an isomorphism of V with Rn or Cn (depending on whether
V is a real or a complex vector space), taking the inner product on V to that on
Fn given above.

Inner products and norms on vector spaces give rise to norms on linear transfor-
mations, both the operator norm ∥A∥ and the Hilbert-Schmidt norm ∥A∥HS. These

79
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norms satisfy triangle inequalities. As for compositions, we have

(3.0.6) ∥AB∥ ≤ ∥A∥ · ∥B∥, ∥AB∥HS ≤ ∥A∥ · ∥B∥HS ≤ ∥A∥HS∥B∥HS,

as seen in §3.2. Also associated to a linear map A : V →W between inner product
spaces is the adjoint, A∗ :W → V , satisfying

(3.0.7) (Av,w) = (v,A∗w), ∀ v ∈ V, w ∈W.

There are several special classes of linear transformations on an inner product
space V , defined by the relation between such an operator A and its adjoint A∗.
We say A is self adjoint if A∗ = A, skew adjoint if A∗ = −A. If A∗ = A−1, we say
A is orthogonal if V is a real vector space, and unitary if V is a complex vector
space. We study these classes in §§3.3–3.4. We show that in all these cases, V has
an orthonormal basis of eigenvectors of A, is V is complex. If V is a real vector
space, it has an orthonormal basis of eigenvectors of A when A is self adjoint, and
special orthonormal bases of a different sort (involving 2 × 2 blocks) if A is skew
adjoint or orthogonal.

In §3.5 we establish a result of Schur: if V is a complex inner product space
of dimension n and A ∈ L(V ), then V has an orthonormal basis with respect to
which A is in upper triangular form. This has some of the flavor of the upper trian-
gularization result of §2.3, but there are also significant differences, and the proofs
are completely different. There follows in §3.6 a result on polar decomposition: if
A ∈ L(V ) is invertible, it can be factored as

(3.0.8) A = KP,

with K unitary and P positive definite. This factorization is then extended to a
“singular value decomposition.”

In §3.7 we take up the matrix exponential. This arises to solve n× n systems
of differential equations,

(3.0.9)
dx

dt
= Ax, x(0) = v,

with A ∈ M(n,C), v ∈ Cn. We construct a solution to (3.0.9) as a power series,
yielding

(3.0.10) x(t) = etAv, etA =

∞∑
k=0

tk

k!
Ak.

Convergence of such a power series follows from operator norm estimates established
in §3.2, including (3.0.6). In Chapter 2 we noted that (3.0.9) is solved by x(t) = etλv
provided v is a λ-eigenvector of A, i.e., v ∈ E(A, λ), and we advertised an extension
to more general v ∈ GE(A, λ) here. The use of the matrix exponential provides a
very natural approach to such a formula.

Going in the opposite direction, we use the matrix exponential as a tool to
obtain a second proof that, if A ∈ M(n,C), then Cn has a basis of generalized
eigenvectors of A, a proof that is completely different from that given in Chapter
2.

Section 3.8 deals with the discrete Fourier transform (DFT), which acts on func-
tions f : Z → C that are periodic of period n, or equivalently functions on Z/(n),
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which consists of equivalence classes of integers “mod n.” The translation operator
Tf(k) = f(k + 1) is a unitary operator on this space, and the DFT represents f
in terms of an orthonormal basis of eigenvectors of T . The DFT diagonalizes an
important class of operators known as convolution operators. We describe the Fast
Fourier Transform (FFT), which in turn allows for a fast evaluation of convolution
operators.
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3.1. Inner products and norms

Vectors in Rn have a dot product, given by

(3.1.1) v · w = v1w1 + · · ·+ vnwn,

where v = (v1, . . . , vn), w = (w1, . . . , wn). Then the norm of v, denoted ∥v∥, is
given by

(3.1.2) ∥v∥2 = v · v = v21 + · · ·+ v2n.

The geometrical significance of ∥v∥ as the distance of v from the origin is a version
of the Pythagorean theorem. If v, w ∈ Cn, we use

(3.1.3) (v, w) = v · w = v1w1 + · · ·+ vnwn,

and then

(3.1.4) ∥v∥2 = (v, v) = |v1|2 + · · ·+ |vn|2;
here, if vj = xj + iyj , with xj , yj ∈ R, we have vj = xj − iyj , and |vj |2 = x2j + y2j .

The objects (3.1.1) and (3.1.3) are special cases of inner products. Generally,
an inner product on a vector space (over F = R or C) assigns to vectors v, w ∈ V
the quantity (v, w) ∈ F, in a fashion that obeys the following three rules:

(a1v1 + a2v2, w) = a1(v1, w) + a2(v2, w),(3.1.5)

(v, w) = (w, v),(3.1.6)

(v, v) > 0, unless v = 0.(3.1.7)

If F = R, then (3.1.6) just means (v, w) = (w, v). Note that (3.1.5)–(3.1.6) together
imply

(3.1.8) (v, b1w1 + b2w2) = b1(v, w1) + b2(v, w2).

A vector space equipped with an inner product is called an inner product space.
Inner products arise naturally in various contexts. For example,

(3.1.9) (f, g) =

∫ b

a

f(x)g(x) dx

defines an inner product on C([a, b]). It also defines an inner product on P, the
space of polynomials in x. Different choices of a and b yield different inner products
on P. More generally, one considers inner products of the form

(3.1.10) (f, g) =

∫ b

a

f(x)g(x)w(x) dx,

on various function spaces, where w is a positive, integrable “weight” function.

Given an inner product on V , one says the object ∥v∥ defined by

(3.1.11) ∥v∥ =
√
(v, v)

is the norm on V associated with the inner product. Generally, a norm on V is a
function v 7→ ∥v∥ satisfying

∥av∥ = |a| · ∥v∥, ∀a ∈ F, v ∈ V,(3.1.12)

∥v∥ > 0, unless v = 0,(3.1.13)

∥v + w∥ ≤ ∥v∥+ ∥w∥.(3.1.14)
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Here |a| denotes the absolute value of a ∈ F. The property (3.1.14) is called the
triangle inequality. A vector space equipped with a norm is called a normed vector
space.

If ∥v∥ is given by (3.1.11), from an inner product satisfying (3.1.5)–(3.1.7), it is
clear that (3.1.12)–(3.1.13) hold, but (3.1.14) requires a demonstration. Note that

(3.1.15)

∥v + w∥2 = (v + w, v + w)

= ∥v∥2 + (v, w) + (w, v) + ∥w∥2

= ∥v∥2 + 2Re (v, w) + ∥w∥2,

while

(3.1.16) (∥v∥+ ∥w∥)2 = ∥v∥2 + 2∥v∥ · ∥w∥+ ∥w∥2.

Thus to establish (3.1.14) it suffices to prove the following, known as Cauchy’s
inequality:

Proposition 3.1.1. For any inner product on a vector space V , with ∥v∥ defined
by (3.1.11),

(3.1.17) |(v, w)| ≤ ∥v∥ ∥w∥, ∀ v, w ∈ V.

Proof. We start with

(3.1.18) 0 ≤ ∥v − w∥2 = ∥v∥2 − 2Re (v, w) + ∥w∥2,

which implies

(3.1.19) 2Re (v, w) ≤ ∥v∥2 + ∥w∥2, ∀ v, w ∈ V.

Replacing v by αv for arbitrary α ∈ F of absolute value 1 yields 2Reα(v, w) ≤
∥v∥2 + ∥w∥2. This implies

(3.1.20) 2|(v, w)| ≤ ∥v∥2 + ∥w∥2, ∀ v, w ∈ V.

Replacing v by tv and w by t−1w for arbitrary t ∈ (0,∞), we have

(3.1.21) 2|(v, w)| ≤ t2∥v∥2 + t−2∥w∥2, ∀ v, w ∈ V, t ∈ (0,∞).

If we take t2 = ∥w∥/∥v∥, we obtain the desired inequality (3.1.17). (This assumes
v and w are both nonzero, but (3.1.17) is trivial if v or w is 0.) �

There are other norms on vector spaces besides those that are associated with
inner products. For example, on Fn, we have

(3.1.22) ∥v∥1 = |v1|+ · · ·+ |vn|, ∥v∥∞ = max
1≤k≤n

|vk|,

and many others, but we will not dwell on this here.

If V is a finite-dimensional inner product space, a basis {u1, . . . , un} of V is
called an orthonormal basis of V provided

(3.1.23) (uj , uk) = δjk, 1 ≤ j, k ≤ n,

i.e.,

(3.1.24) ∥uj∥ = 1, j ̸= k ⇒ (uj , uk) = 0.
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(When (uj , , uk) = 0, we say uj and uk are orthogonal.) When (3.1.23) holds, we
have

(3.1.25)
v = a1u1 + · · ·+ anun, w = b1u1 + · · ·+ bnun

⇒ (v, w) = a1b1 + · · ·+ anbn.

It is often useful to construct orthonormal bases. The construction we now describe
is called the Gramm-Schmidt construction.

Proposition 3.1.2. Let {v1, . . . , vn} be a basis of V , an inner product space. Then
there is an orthonormal basis {u1, . . . , un} of V such that

(3.1.26) Span{uj : j ≤ ℓ} = Span{vj : j ≤ ℓ}, 1 ≤ ℓ ≤ n.

Proof. To begin, take

(3.1.27) u1 =
1

∥v1∥
v1.

Now define the linear transformation P1 : V → V by P1v = (v, u1)u1 and set

(3.1.28) ṽ2 = v2 − P1v2 = v2 − (v2, u1)u1.

We see that (ṽ2, u1) = (v2, u1) − (v2, u1) = 0. Also ṽ2 ̸= 0 since u1 and v2 are
linearly independent. Hence we set

(3.1.29) u2 =
1

∥ṽ2∥
ṽ2.

Inductively, suppose we have an orthonormal set {u1, . . . , um} with m < n and
(3.1.26) holding for 1 ≤ ℓ ≤ m. Then define Pm : V → V (the orthogonal projection
of V onto Span(u1, . . . , um)) by

(3.1.30) Pmv = (v, u1)u1 + · · ·+ (v, um)um,

and set

(3.1.31)
ṽm+1 = vm+1 − Pmvm+1

= vm+1 − (vm+1, u1)u1 − · · · − (vm+1, um)um.

We see that

(3.1.32) j ≤ m⇒ (ṽm+1, uj) = (vm+1, uj)− (vm+1, uj) = 0.

Also, since vm+1 /∈ Span{v1, . . . , vm} = Span{u1, . . . , um}, it follows that ṽm+1 ̸= 0.
Hence we set

(3.1.33) um+1 =
1

∥ṽm+1∥
ṽm+1.

This completes the construction. �

Example. Take V = P2, with basis {1, x, x2}, and inner product given by

(3.1.34) (p, q) =

∫ 1

−1

p(x)q(x) dx.

The Gramm-Schmidt construction gives first

(3.1.35) u1(x) =
1√
2
.
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Figure 3.1.1. Orthogonal polynomials

Then

(3.1.36) ṽ2(x) = x,

since by symmetry (x, u1) = 0. Now
∫ 1

−1
x2 dx = 2/3, so we take

(3.1.37) u2(x) =

√
3

2
x.

Next

(3.1.38) ṽ3(x) = x2 − (x2, u1)u1 = x2 − 1

3
,

since by symmetry (x2, u2) = 0. Now
∫ 1

−1
(x2 − 1/3)2 dx = 8/45, so we take

(3.1.39) u3(x) =

√
45

8

(
x2 − 1

3

)
.

See Figure 3.1.1 for graphs of these polynomials.
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Exercises

1. Let V be a finite dimensional inner product space, and letW be a linear subspace
of V . Show that any orthonormal basis {w1, . . . , wk} of W can be enlarged to an
orthonormal basis {w1, . . . , wk, u1, . . . , uℓ} of V , with k + ℓ = dimV .
Hint. First enlarge the basis of W to a basis of V . Then apply Gramm-Schmidt.

2. As in Exercise 1, let V be a finite dimensional inner product space, and let W
be a linear subspace of V . Define the orthogonal complement

(3.1.40) W⊥ = {v ∈ V : (v, w) = 0, ∀w ∈W}.

Show that

(3.1.41) W⊥ = Span{u1, . . . , uℓ},

in the context of Exercise 1. Deduce that

(3.1.42) (W⊥)⊥ =W.

3. In the context of Exercise 2, show that

dimV = n, dimW = k =⇒ dimW⊥ = n− k.

4. Take V and W as in Exercise 1, and let {w1, . . . , wk} be an orthonormal basis
of W . Define P ∈ L(V ) by

(3.1.43) Pv =

k∑
j=1

(v, wj)wj .

Show that

(3.1.44) P : V →W, P 2 = P, I − P : V →W⊥.

Show that the properties in (3.1.44) uniquely determine P , i.e., if Q ∈ L(V ) has
these properties, then Q = P . In particular, P is independent of the choice of
orthonormal basis of W .
Hint. Write v = Pv + (I − P )v = Qv + (I −Q)v as

Pv −Qv = (I −Q)v − (I − P )v.

The left side is an element of W .
We call P the orthogonal projection of V onto W .

5. Construct an orthonormal basis of the (n− 1)-dimensional vector space

V =
{v1...

vn

 ∈ Rn : v1 + · · ·+ vn = 0
}
.



Exercises 87

6. Take V = P2, with basis {1, x, x2}, and inner product

(p, q) =

∫ 1

0

p(x)q(x) dx,

in contrast to (3.1.34). Construct an orthonormal basis of this inner product space.

7. Take V , with basis {1, cosx, sinx}, and inner product

(f, g) =

∫ π

0

f(x)g(x) dx.

Construct an orthonormal basis of this inner product space.

8. Let A ∈ Gℓ(n,R) have columns a1, . . . , an ∈ Rn. Use the Gramm-Schmidt con-
struction to produce the orthonormal basis {q1, . . . , qn} of Rn such that Span{a1, . . . , aj} =
Span{q1, . . . , qj} for 1 ≤ j ≤ n. Denote by Q the matrix with columns q1, . . . , qn.
Show that

(3.1.45) A = QR,

where R is the upper triangular matrix

(3.1.46) R =


α11 α21 · · · αn1

α22 · · · αn2

...
αnn

 , αjk = (aj , qk).

This factorization is known as the QR factorization. See §3.4 for more. (We will
see that Q ∈ O(n).)
Hint. Show that

(3.1.47)

a1 = α11q1

a2 = α21q1 + α22q2

...

an = αn1q1 + · · ·+ αnnqn.

Exercises 9–12 make contact with topics in classical Euclidean geometry.

9. Recall that two vectors x, y ∈ Rn are orthogonal (we write x ⊥ y) if and only if
x · y = 0. Show that, for x, y ∈ Rn,

x ⊥ y ⇐⇒ ∥x+ y∥2 = ∥x∥2 + ∥y∥2.

10. Let e1, v ∈ Rn and assume ∥e1∥ = ∥v∥ = 1. Show that

e1 − v ⊥ e1 + v.

Hint. Expand (e1 − v) · (e1 + v).
See Figure 3.1.2 for the geometrical significance of this, when n = 2.
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Figure 3.1.2. Right triangle in a circle

11. Let S1 = {x ∈ R2 : ∥x∥ = 1} denote the unit circle in R2, and set e1 = (1, 0) ∈
S1. Pick a ∈ R such that 0 < a < 1, and set u = (1− a)e1. See Figure 3.1.3. Then
pick

v ∈ S1 such that v − u ⊥ e1, and set b = ∥v − e1∥.
Show that

(3.1.48) b =
√
2a.

Hint. Note that 1− a = u · e1 = v · e1, hence a = 1− v · e1.
Now expand b2 = (v − e1) · (v − e1).

12. Recall the approach to (3.1.48) in classical Euclidean geometry, using similarity
of triangles, leading to

a

b
=
b

2
.

What is the relevance of Exercise 10 to this?

Exercises 13–15 compare two different norms on a finite-dimensional vector space.
Let V be an n-dimensional vector space, with a norm ∥ · ∥.

13. Take a basis B = {u1, . . . , un} of V . Show that V has a unique inner product
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Figure 3.1.3. Geometric construction of b =
√
2a

( , ) with respect to which B is an orthonormal basis of V . Denote the associated
norm by | · |, so

|v|2 = (v, v).

14. Set M = max{∥u1∥, . . . , ∥un∥}. Show that

∥v∥ ≤ nM |v|.

Hint. Start with v = c1u1 + · · · + cnun, cj = (v, uj), and apply the triangle
inequality to the resulting formula for ∥v∥. Note that

|cj | ≤ |v|.

15. This exercise treats the reverse inequality. It uses concepts developed in Chap-
ters 2–3 of [10]. The reader who has access to this text can fill in the details of the
following argument.

(a) Consider S = {x ∈ V : |x| = 1}. This is a compact subset of V .

(b) Consider

φ : S −→ R, φ(v) = ∥v∥.
It follows from Exercise 14 that φ is continuous.
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(c) By (a) and (b), φ assumes a minimum on S. Hence there exists w0 ∈ V such
that

|w0| = 1, and ∥w0∥ = min{∥v∥ : |v| = 1}.
(d) Since ∥ · ∥ is a norm, ∥w0∥ = α > 0. We deduce that, for all v ∈ V ,

|v| ≤ 1

α
∥v∥.
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3.2. Norm, trace, and adjoint of a linear transformation

If V and W are normed linear spaces and T ∈ L(V,W ), we define

(3.2.1) ∥T∥ = sup {∥Tv∥ : ∥v∥ ≤ 1}.

Equivalently, ∥T∥ is the smallest quantity K such that

(3.2.2) ∥Tv∥ ≤ K∥v∥, ∀ v ∈ V.

To see the equivalence, note that (3.2.2) holds if and only if ∥Tv∥ ≤ K for all v
such that ∥v∥ = 1. We call ∥T∥ the operator norm of T . If V and W are finite
dimensional, this norm is finite for all T ∈ L(V,W ). We will make some specific
estimates below when V and W are inner product spaces.

Note that if also S :W → X, another normed vector space, then

(3.2.3) ∥STv∥ ≤ ∥S∥ ∥Tv∥ ≤ ∥S∥ ∥T∥ ∥v∥, ∀ v ∈ V,

and hence

(3.2.4) ∥ST∥ ≤ ∥S∥ ∥T∥.

In particular, we have by induction that

(3.2.5) T : V → V =⇒ ∥Tn∥ ≤ ∥T∥n.

This will be useful when we discuss the exponential of a linear transformation, in
§3.7.

We turn to the notion of the trace of a transformation T ∈ L(V ), given dimV <
∞. We start with the trace of an n × n matrix, which is simply the sum of the
diagonal elements:

(3.2.6) A = (ajk) ∈M(n,F) =⇒ TrA =

n∑
j=1

ajj .

Note that if also B = (bjk) ∈M(n,F), then

(3.2.7)

AB = C = (cjk), cjk =
∑
ℓ

ajℓbℓk,

BA = D = (djk), djk =
∑
ℓ

bjℓaℓk,

and hence

(3.2.8) TrAB =
∑
j,ℓ

ajℓbℓj = TrBA.

Hence, if B is invertible,

(3.2.9) TrB−1AB = TrABB−1 = TrA.

Thus if T ∈ L(V ), we can choose a basis S = {v1, . . . , vn} of V , if dimV = n, and
define

(3.2.10) TrT = TrA, A = MS
S(T ),

and (3.2.9) implies this is independent of the choice of basis.
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Next we define the adjoint of T ∈ L(V,W ), when V andW are finite-dimensional
inner product spaces, as the transformation T ∗ ∈ L(W,V ) with the property

(3.2.11) (Tv,w) = (v, T ∗w), ∀ v ∈ V, w ∈W.

If {v1, . . . , vn} is an orthonormal basis of V and {w1, . . . , wm} an orthonormal basis
of W , then

(3.2.12) A = (aij), aij = (Tvj , wi),

is the matrix representation of T , as in (1.4.2), and the matrix representation of
T ∗ is

(3.2.13) A∗ = (aji).

Now we define the Hilbert-Schmidt norm of T ∈ L(V,W ) when V and W are
finite-dimensional inner product spaces. Namely, we set

(3.2.14) ∥T∥2HS = TrT ∗T.

In terms of the matrix representation (3.2.12) of T , we have

(3.2.15) T ∗T = (bjk), bjk =
∑
ℓ

aℓjaℓk,

hence

(3.2.16) ∥T∥2HS =
∑
j

bjj =
∑
j,k

|ajk|2.

Equivalently, using an arbitrary orthonormal basis {v1, . . . , vn} of V , we have

(3.2.17) ∥T∥2HS =

n∑
j=1

∥Tvj∥2.

If also {w1, . . . , wm} is an orthonormal basis of W , then

(3.2.18)

∥T∥2HS =
∑
j,k

|(Tvj , wk)|2 =
∑
j,k

|(vj , T ∗wk)|2

=
∑
K

∥T ∗wk∥2HS .

This gives ∥T∥HS = ∥T ∗∥HS . Also, the right side of (3.2.18) is clearly independent
of the choice of the orthonormal basis {v1, . . . , vn} of V . Of course, we already
know that the right side of (3.2.14) is independent of such a choice of basis.

Using (3.2.17), we can show that the operator norm of T is dominated by the
Hilbert-Schmidt norm:

(3.2.19) ∥T∥ ≤ ∥T∥HS .

In fact, pick a unit v1 ∈ V such that ∥Tv1∥ is maximized on {v : ∥v∥ ≤ 1}, extend
this to an orthonormal basis {v1, . . . , vn}, and use

(3.2.20) ∥T∥2 = ∥Tv1∥2 ≤
n∑

j=1

∥Tvj∥2 = ∥T∥2HS .

Also we can dominate each term on the right side of (3.2.17) by ∥T∥2, so
(3.2.21) ∥T∥HS ≤

√
n∥T∥, n = dimV.
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Another consequence of (3.2.17)–(3.2.19) is

(3.2.22) ∥ST∥HS ≤ ∥S∥ ∥T∥HS ≤ ∥S∥HS∥T∥HS ,

for S as in (3.2.3). In particular, parallel to (3.2.5), we have

(3.2.23) T : V → V =⇒ ∥Tn∥HS ≤ ∥T∥nHS .
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Exercises

1. Suppose V and W are finite dimensional inner product spaces and T ∈ L(V,W ).
Show that

T ∗∗ = T.

2. In the context of Exercise 1, show that

T injective ⇐⇒ T ∗ surjective.

More generally, show that

N (T ) = R(T ∗)⊥.

(See Exercise 2 of §3.1 for a discussion of the orthogonal complement W⊥.)

3. Say A is a k × n real matrix and the k columns are linearly independent. Show
that A has k linearly independent rows. (Similarly treat complex matrices.)
Hint. The hypothesis is equivalent to A : Rk → Rn being injective. What does
that say about A∗ : Rn → Rk?

4. If A is a k × n real (or complex) matrix, we define the column rank of A to be
the dimension of the span of the columns of A. We similarly define the row rank of
A. Show that the row rank of A is equal to its column rank.
Hint. Reduce this to showing dimR(A) = dimR(A∗). Apply Exercise 2 (and
Exercise 3 of §3.1).

5. If V and W are normed linear spaces and S, T ∈ L(V,W ), show that

∥S + T∥ ≤ ∥S∥+ ∥T∥.

6. Suppose A is an n× n matrix and ∥A∥ < 1. Show that

(I −A)−1 = I +A+A2 + · · ·+Ak + · · · ,

a convergent infinite series.

7. If A is an n× n complex matrix, show that

λ ∈ Spec(A) =⇒ |λ| ≤ ∥A∥.

8. Show that, for any real θ, the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
has operator norm 1. Compute its Hilbert-Schmidt norm.
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9. Given a > b > 0, show that the matrix

B =

(
a 0
0 b

)
has operator norm a. Compute its Hilbert-Schmidt norm.

10. Show that if V is an n-dimensional complex inner product space, then, for
T ∈ L(V ),

detT ∗ = detT .

11. If V is an n-dimensional inner product space, show that, for T ∈ L(V ),

∥T∥ = sup{|(Tu, v)| : ∥u∥, ∥v∥ ≤ 1}.
Show that

∥T ∗∥ = ∥T∥, and ∥T ∗T∥ = ∥T∥2.

12. Show that if B ∈M(n,F),
d

dt
det(I + tB) = TrB.

13. Writing
det(A+ tB) = det(a1 + tb1, . . . , an + tbn),

with notation as in (1.5.5), and using linearity in each column, show that

d

dt
det(A+ tB)

∣∣
t=0

= det(b1, a2, . . . , an) + · · ·+ det(a1, . . . , bk, . . . , an)

+ · · ·+ det(a1, . . . , an−1, bn).

Use an appropriate version of (1.5.52) to deduce that

d

dt
det(A+ tB)

∣∣
t=0

=
∑
j,k

(−1)j−kbjk detAkj ,

with Akj as in Exercise 8 of §1.5, i.e., Akj is obtained by deleting the kth column
and the jth row from A. In other words,

d

dt
det(A+ tB)

∣∣
t=0

=
∑
j,k

bjkckj = TrBC,

with C = (cjk) as in Exercise 10 of §1.5, i.e., cjk = (−1)k−j detAjk.

14. If A is invertible, show that for each B ∈M(n,F),
d

dt
det(A+ tB)

∣∣
t=0

= (detA)
d

dt
(I + tA−1B)

∣∣
t=0

= (detA)Tr(A−1B).

Use Exercise 13 to conclude that

(detA)A−1 = C.

Compare the derivation of Cramer’s formula in Exercises 9–10 of §1.5.
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3.3. Self-adjoint and skew-adjoint transformations

If V is a finite-dimensional inner product space, T ∈ L(V ) is said to be self-adjoint
if T = T ∗ and skew-adjoint if T = −T ∗. If {u1, . . . , un} is an orthonormal basis of
V and A the matrix representation of T with respect to this basis, given by

(3.3.1) A = (aij), aij = (Tuj , ui),

then T ∗ is represented by A∗ = (aji), so T is self-adjoint if and only if aij = aji
and T is skew-adjoint if and only if aij = −aji.

The eigenvalues and eigenvectors of these two classes of operators have special
properties, as we proceed to show.

Lemma 3.3.1. If λj is an eigenvalue of a self-adjoint T ∈ L(V ), then λj is real.

Proof. Say Tvj = λjvj , vj ̸= 0. Then

(3.3.2) λj∥vj∥2 = (Tvj , vj) = (vj , T vj) = λj∥vj∥2,

so λj = λj . �

This allows us to prove the following result for both real and complex vector
spaces.

Proposition 3.3.2. If V is a finite-dimensional inner product space and T ∈ L(V )
is self-adjoint, then V has an orthonormal basis of eigenvectors of T .

Proof. Proposition 2.1.1 (and the comment following it in case F = R) implies
there is a unit v1 ∈ V such that Tv1 = λ1v1, and we know λ1 ∈ R. Say dimV = n.
Let

(3.3.3) W = {w ∈ V : (v1, w) = 0}.

Then dimW = n− 1, as we can see by completing {v1} to an orthonormal basis of
V . We claim

(3.3.4) T = T ∗ =⇒ T :W →W.

Indeed,

(3.3.5) w ∈W ⇒ (v1, Tw) = (Tv1, w) = λ1(v1, w) = 0 ⇒ Tw ∈W.

An inductive argument gives an orthonormal basis of W consisting of eigenvalues
of T , so Proposition 3.3.2 is proven. �

The following could be deduced from Proposition 3.3.2, but we prove it directly.

Proposition 3.3.3. Assume T ∈ L(V ) is self-adjoint. If Tvj = λjvj , T vk = λkvk,
and λj ̸= λk, then (vj , vk) = 0.

Proof. Then we have

λj(vj , vk) = (Tvj , vk) = (vj , T vk) = λk(vj , vk).

�
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If F = C, we have

(3.3.6) T skew-adjoint ⇐⇒ iT self-adjoint,

so Proposition 3.3.2 has an extension to skew-adjoint transformations if F = C.
The case F = R requires further study.

If V is a real n-dimensional inner product space and T ∈ L(V ) is skew adjoint,
then V does not have an orthonormal basis of eigenvectors of T , unless T = 0.
However, V does have an orthonormal basis with respect to which T has a special
structure, as we proceed to show. To get it, we consider the complexification of V ,

(3.3.7) VC = {u+ iv : u, v,∈ V },

which has the natural structure of a complex n-dimensional vector space, with
a Hermitian inner product. A transformation T ∈ L(V ) has a unique C-linear
extension to a transformation on VC, which we continue to denote by T , and this
extended transformation is skew adjoint on VC. Hence VC has an orthonormal basis
of eigenvectors of T . Say u+ iv ∈ VC is such an eigenvector,

(3.3.8) T (u+ iv) = iλ(u+ iv), λ ∈ R \ 0.

We have

(3.3.9)
Tu = −λv
Tv = λu.

In such a case, applying complex conjugation to (3.3.8) yields

(3.3.10) T (u− iv) = −iλ(u− iv),

and iλ ̸= −iλ, so Proposition 3.3.3 (applied to iT ) yields

(3.3.11) u+ iv ⊥ u− iv,

hence

(3.3.12)

0 = (u+ iv, u− iv)

= (u, u)− (v, v) + i(v, u) + i(u, v)

= ∥u∥2 − ∥v∥2 + 2i(u, v),

or equivalently

(3.3.13) ∥u∥ = ∥v∥, and u ⊥ v.

Now

(3.3.14) Span{u, v} ⊂ V

has an (n− 2)-dimensional orthogonal complement, W , and, parallel to (3.3.4), we
have

(3.3.15) T = −T ∗ =⇒ T :W →W.

We are reduced to examining the skew-adjoint transformation on a lower dimen-
sional inner product space. An inductive argument then gives the following.
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Proposition 3.3.4. If V is an n-dimensional real inner product space and T ∈
L(V ) is skew adjoint, then V has an orthonormal basis in which the matrix repre-
sentation of T consists of blocks

(3.3.16)

(
0 λj

−λj 0

)
,

plus perhaps a zero matrix, when N (T ) ̸= 0.

Example. Take V = R3 and

(3.3.17) T =

0 −1 0
1 0 −1
0 1 0

 .

Then det(T − λI) = −λ(λ2 + 2), so the eigenvalues of T are

(3.3.18) λ0 = 0, iλ± = ±
√
2i.

One readily obtains eigenvectors in VC = C3,

(3.3.19) v0 =

1
0
1

 , v± =

 1

∓
√
2i

−1

 ,

readily seen to be mutually orthogonal vectors in C3. We can write

(3.3.20) v+ = u+ iv, u =

 1
0
−1

 , v =

 0

−
√
2

0

 ,

and note that u and v ∈ R3 are orthogonal and each have norm
√
2. Furthermore,

a calculation gives

(3.3.21) Tu = −
√
2v, Tv =

√
2u.

Hence

(3.3.22) u1 =
1√
2
u, u2 =

1√
2
v, u3 =

1√
2
v0

gives an orthonormal basis of R3 with respect to which the matrix representation
of T is

(3.3.23) A =

 0
√
2

−
√
2 0

0

 .

Let us return to the setting of self-adjoint transformations. If V is a finite
dimensional inner product space, we say T ∈ L(V ) is positive definite if and only
if T = T ∗ and

(3.3.24) (Tv, v) > 0 for all nonzero v ∈ V.

We say T is positive semidefinite if and only if T = T ∗ and

(3.3.25) (Tv, v) ≥ 0, ∀ v ∈ V.

The following is a basic characterization of these classes of transformations.
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Proposition 3.3.5. Given T = T ∗ ∈ L(V ), with eigenvalues {λj},
(i) T is positive definite if and only if each λj > 0.
(ii) T is positive semidefinite if and only if each λj ≥ 0.

Proof. This follows by writing v =
∑
ajvj , where {vj} is the orthonormal basis of

V consisting of eigenvectors of T given by Proposition 3.3.2, satisfying Tvj = λjvj ,
and observing that

(3.3.26) (Tv, v) =
∑
j

|aj |2λj .

�

The following is a useful test for positive definiteness.

Proposition 3.3.6. Let A = (ajk) ∈M(n,C) be self adjoint. For 1 ≤ ℓ ≤ n, form
the ℓ× ℓ matrix Aℓ = (ajk)1≤j,k≤ℓ. Then

(3.3.27) A is positive definite ⇐⇒ detAℓ > 0, ∀ ℓ ∈ {1, . . . , n}.

Proof. Regarding the implication ⇒, note that if A is positive definite, then
detA = detAn is the product of its eigenvalues, all > 0, hence is > 0. Also,
in this case, it follows from the hypothesis of (3.3.27) that each Aℓ must be positive
definite, hence have positive determinant, so we have ⇒.

The implication ⇐ is easy enough for 2× 2 matrices. If A = A∗ and detA > 0,
then either both its eigenvalues are positive (so A is positive definite) or both are
negative (so A is negative definite). In the latter case, A1 = (a11) must be negative.
Thus we have ⇐ for n = 2.

We prove ⇐ for n ≥ 3, using induction. The inductive hypothesis implies that
if detAℓ > 0 for each ℓ ≤ n, then An−1 is positive definite. The next lemma then
guarantees that A = An has at least n − 1 positive eigenvalues. The hypothesis
that detA > 0 does not allow that the remaining eigenvalue be ≤ 0, so all of the
eigenvaules of A must be positive. Thus Proposition 3.3.6 is proven once we have
the following. �

Lemma 3.3.7. In the setting of Proposition 3.3.6, if An−1 is positive definite, then
A = An has at least n− 1 positive eigenvalues.

Proof. Since A = A∗, Cn has an orthonormal basis v1, . . . , vn of eigenvectors of A,
satisfying Avj = λjvj . If the conclusion of the lemma is false, at least two of the
eigenvalues, say λ1, λ2, are ≤ 0. Let W = Span(v1, v2), so

w ∈W =⇒ (Aw,w) ≤ 0.

Since W has dimension 2, Cn−1 ⊂ Cn satisfies Cn−1 ∩W ̸= 0, so there exists a
nonzero w ∈ Cn−1 ∩W , and then

(An−1w,w) = (Aw,w) ≤ 0,

contradicting the hypothesis that An−1 is positive definite. �
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We next apply results on LU-factorization, discussed in §1.6, to A ∈ M(n,C)
when A is positive definite. This factorization has the form

(3.3.28) A = LU,

where L,U ∈ M(n,C) are lower triangular and upper triangular, respectively; see
(1.6.48). As shown in §1.6, this factorization is always possible when the upper left
submatrices Aℓ described above are all invertible. Hence this factorization always
works when A is positive definite. Moreover, as shown in (1.6.63), in such a case it
can be rewritten as

(3.3.29) A = L0DL
∗
0,

where L0 is lower triangular with all 1s on the diagonal, and D is diagonal, with
real entries. Moreover, this factorization is unique. Since

(3.3.30) (Av, v) = (DL∗
0v, L

∗
0v),

we see that if A is positive definite, then all the diagonal entries dj of D must be
positive. Thus we can write

(3.3.31) D = E2,

where E is diagonal with diagonal entries
√
dj . Thus, whenever A ∈ M(n,C) is

positive definite, we can write

(3.3.32) A = LL∗, L = L0E, lower triangular.

This is called the Cholesky decomposition.

Symmetric bilinear forms

Let V be an n-dimensional real vector space. A bilinear form Q on V is a map
Q : V × V → R that satisfies the following bilinerity conditions:

(3.3.33)
Q(a1u1 + a2u2, v1) = a1Q(u1, v1) + a2Q(u2, v1),

Q(u1, b1v1 + b2v2) = b1Q(u1, v1) + b2Q(u1, v2),

for all uj , vj ∈ V, aj , bj ∈ R. We say Q is a symmetric bilinear form if, in addition,

(3.3.34) Q(u, v) = Q(v, u), ∀u, v ∈ V.

To relate the structure of such Q to previous material in this section, we pick a
basis {e1, . . . , en} of V and put on V an inner product ( , ) such that this basis is
orthonormal. Then we set

(3.3.35) ajk = Q(ej , ek),

and define A : V → V by

(3.3.36) Aej =
∑
ℓ

ajℓeℓ, so (Aej , ek) = Q(ej , ek).

It follows that

(3.3.37) Q(u, v) = (Au, v), ∀u, v ∈ V.
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The symmetry condition (3.3.34) implies ajk = akj , hence A
∗ = A. By Proposition

3.3.2, V has an orthonormal basis {f1, . . . , fn} such that

(3.3.38) Afj = λjfj , λj ∈ R.
Hence

(3.3.39) Q(fj , fk) = (Afj , fk) = λjδjk.

If Q is a symmetric bilinear form on V , we say it is nondegenerate provided
that for each nonzero u ∈ V , there exists v ∈ V such that Q(u, v) ̸= 0. Given
(3.3.37), it is clear that Q is nondegenerate if and only if A is invertible, hence if
and only if each λj in (3.3.38) is nonzero. If Q is nondegenerate, we have the basis
{g1, . . . , gn} of V , given by

(3.3.40) gj = |λj |−1/2fj .

then

(3.3.41) Q(gj , gk) = |λjλk|−1/2(Afj , fk) = εjδjk,

where

(3.3.42) εj =
λj
|λj |

∈ {±1}.

If p of the numbers εj in (3.3.42) are +1 and q of them are −1 (so p+ q = n), we
say the nondegenerate symmetric bilinear form Q has signature (p, q).

The construction (3.3.41)–(3.3.42) involved some arbitrary choices, so we need
to show that, given such Q, the pair (p, q) is uniquely defined. To see this, let V0
denote the linear span of the gj in (3.3.41) such that εj = +1 and let V1 denote the
linear span of the gj in (3.3.41) such that εj = −1. Hence

(3.3.43) V = V0 ⊕ V1

is an orthogonal direct sum, and we have Q positive definite on V0×V0, and negative
definite on V1 × V1. That the signature of Q is well defined is a consequence of the
following.

Proposition 3.3.8. Let Ṽ0 and Ṽ1 be linear subspaces of V such that

(3.3.44) Q is positive definite on Ṽ0 × Ṽ0, negative definite on Ṽ1 × Ṽ1.

Then

(3.3.45) dim Ṽ0 ≤ p and dim Ṽ1 ≤ q.

Proof. If the first assertion of (3.3.45) is false, then dim Ṽ0 > p, so dim Ṽ0 +

dimV1 > n = dimV . Hence there exists a nonzero u ∈ Ṽ0 ∩ V1. This would imply
that

(3.3.46) Q(u, u) > 0 and Q(u, u) < 0,

which is impossible. The proof of the second assertion in (3.3.45) is parallel. �
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Exercises

1. Verify Proposition 3.3.2 for V = R3 and

T =

1 0 1
0 1 0
1 0 1

 .

2. Verify Proposition 3.3.4 for

A =

 0 −1 2
1 0 −3
−2 3 0

 .

3. In the setting of Proposition 3.3.2, suppose S, T ∈ L(V ) are both self-adjoint
and suppose they commute, i.e., ST = TS. Show that V has an orthonormal basis
of vectors that are simultaneously eigenvectors of S and of T .

4. Let V be a finite-dimensional inner product space, W ⊂ V a linear subspace.
The orthogonal projection P of V onto W was introduced in Exercise 4 of §3.1.
Show that this orthogonal projection is also uniquely characterized as the element
P ∈ L(V ) satisfying

P 2 = 0, P ∗ = P, R(P ) =W.

5. If T ∈ L(V ) is positive semidefinite, show that

∥T∥ = max{λ : λ ∈ SpecT}.

6. If S ∈ L(V ), show that S∗S is positive semidefinite, and

∥S∥2 = ∥S∗S∥.

Show that

∥S∥ = max{λ1/2 : λ ∈ SpecS∗S}.

7. Let A ∈ M(n,C) be positive definite, with Cholesky decomposition A = L1L
∗
1,

as in (3.3.32). Show that A has another Cholesky decomposition A = L2L
∗
2 if and

only if

L1 = L2D,

with D diagonal and all diagonal entries dj satisfying |dj | = 1.
Hint. To start, we must have

L−1
2 L1 = L∗

2(L
∗
1)

−1,

both lower triangular and upper triangular, hence diagonal; call it D.
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8. If V is an n-dimensional real inner product space, and T ∈ L(V ), we say
T ∈ Skew(V ) if and only if T ∗ = −T . (Compare (3.3.7).) Show that

S, T ∈ Skew(V ) =⇒ [S, T ] ∈ Skew(V ),

where

[S, T ] = ST − TS.

9. Given T = T ∗ ∈ L(V ) and an orthonormal basis {vj} of V such that Tvj = λjvj ,
and given f : Spec(T ) → C, define f(T ) ∈ L(V ) by

f(T )vj = f(λj)vj .

Show that

f(t) = tk, k ∈ Z+ =⇒ f(T ) = T k,

that

h(t) = f(t)g(t) =⇒ h(T ) = f(T )g(T ),

and that

f(T ) = f(T )∗.

10. Let T = T ∗ ∈ L(V ), SpecT = {λj}, Ej = E(T, λj), and let Pj be the orthogonal
projection of V onto Ej . With f(T ) defined as in Exercise 9, show that

f(T ) =
∑
j

f(λj)Pj .

11. If A ∈M(n,C) is invertible, its condition number c(A) is defined to be

c(A) = ∥A∥ · ∥A−1∥.

Take the positive definite matrix P = (A∗A)1/2 (see Exercises 6 and 9). Show that

c(A) = c(P ) =
λmax(P )

λmin(P )
.

12. Let V be a finite-dimensional inner product space, W ⊂ V a linear subspace,
T ∈ L(V ). Show that

T :W →W =⇒ T ∗ :W⊥ →W⊥.

13. Let V be a finite-dimensional, real inner product space, with inner product
denoted ⟨ , ⟩. Assume we have J ∈ L(V ), satisfying

J2 = −I, J∗ = −J.
We can make V into a complex vector space (denoted V), with the action of a+ib ∈
C on V given by

(a+ ib) · v = av + bJv.

Then

dimC V = k =⇒ dimR V = 2k.
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(See Exercise 13 in §1.3.) Now set

(u, v) = ⟨u, v⟩+ i⟨u, Jv⟩, u, v ∈ V = V.
Show that this is a Hermitian inner product on the complex vector space V, espe-
cially

(v, u) = (u, v), (u, Jv) = −i(u, v).

14. In this exercise, let V be a finite-dimensional real inner product space, with
inner product ⟨ , ⟩. Let A ∈ L(V ), and assume

A∗ = −A, N (A) = 0.

(a) Show that dimR V must be even.

(b) Set
P = A∗A = −A2,

which is self adjoint and positive definite, and take

Q = P 1/2.

Show that Q and A commute.

Hint. Show that there is a polynomial p(λ) such that p(µj) = µ
1/2
j for each µj ∈

SpecP , hence Q = p(P ).

(c) Set
J = AQ−1.

Show that J = Q−1A and
J2 = −I, J∗ = −J.

In particular, J puts a complex structure on V . Denote the associated complex
vector space by V, so

dimC V =
1

2
dimR V.

(d) Show that
AJ = JA,

so A : V → V is C-linear.

(e) As in Exercise 13, for the Hermitian inner product on V,
(u, v) = ⟨u, v⟩+ i⟨u, Jv⟩.

Show that
(Au, v) = −(u,Av).

Thus A defines a skew-adjoint transformation on the complex inner product space
V.

(f) Say dimR V = 2k. By Proposition 3.3.2 and (3.3.6), V has an orthonormal
basis {uj : 1 ≤ j ≤ k} (with respect to ( , )), consisting of eigenvectors of A ∈ L(V),
with eigenvalues iλj , so

Auj = λjJuj , 1 ≤ j ≤ k, λj ∈ R.
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Deduce from part (c) that

Quj = λjuj , hence each λj > 0.

(g) Note that Juj ∈ SpanC{uj}, and hence

(Juj , uℓ) = 0, for j ̸= ℓ.

Show that
⟨uj , uℓ⟩ = ⟨uj , Juℓ⟩ = ⟨Juj , Juℓ⟩ = 0, for j ̸= ℓ.

Then show that

{uj , Juj : 1 ≤ j ≤ k} is an orthonormal basis of V ,

with respect to ⟨ , ⟩. With respect to this basis,

Auj = λjJuj , AJuj = −λjuj .
Compare this with the conclusion of Proposition 3.3.4.
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3.4. Unitary and orthogonal transformations

Let V be a finite-dimensional inner product space (over F) and T ∈ L(V ). Suppose

(3.4.1) T−1 = T ∗.

If F = C we say T is unitary, and if F = R we say T is orthogonal. We denote by
U(n) the set of unitary transformations on Cn and by O(n) the set of orthogonal
transformations on Rn. More generally, we use the notations U(V ) and O(V ). Note
that (3.4.1) implies

(3.4.2) |detT |2 = (detT )(detT ∗) = 1,

i.e., detT ∈ F has absolute value 1. In particular,

(3.4.3) T ∈ O(n) =⇒ detT = ±1.

We set

(3.4.4)
SO(n) = {T ∈ O(n) : detT = 1},
SU(n) = {T ∈ U(n) : detT = 1}.

As with self-adjoint and skew-adjoint transformations, the eigenvalues and
eigenvectors of unitary transformations have special properties, as we now demon-
strate.

Lemma 3.4.1. If λj is an eigenvalue of a unitary T ∈ L(V ), then |λj | = 1.

Proof. Say Tvj = λjvj , vj ̸= 0. Then

(3.4.5) ∥vj∥2 = (T ∗Tvj , vj) = (Tvj , T vj) = |λj |2∥vj∥2.
�

Next, parallel to Proposition 3.3.2, we show unitary transformations have eigen-
vectors forming a basis.

Proposition 3.4.2. If V is a finite-dimensional complex inner product space and
T ∈ L(V ) is unitary, then V has an orthonormal basis of eigenvectors of T .

Proof. Proposition 2.1.1 implies there is a unit v1 ∈ V such that Tv1 = λ1v1. Say
dimV = n. Let

(3.4.6) W = {w ∈ V : (v1, w) = 0}.
As in the analysis of (3.3.3) we have dimW = n− 1. We claim

(3.4.7) T unitary =⇒ T :W →W.

Indeed,

(3.4.8) w ∈W ⇒ (v1, Tw) = (T−1v1, w) = λ−1
1 (v1, w) = 0 ⇒ Tw ∈W.

Now, as in Proposition 3.3.2, an inductive argument gives an orthonormal basis of
W consisting of eigenvectors of T , so Proposition 3.4.2 is proven. �

Next we have a result parallel to Proposition 3.3.3:

Proposition 3.4.3. Assume T ∈ L(V ) is unitary. If Tvj = λjvj and Tvk = λkvk,
and λj ̸= λk, then (vj , vk) = 0.



3.4. Unitary and orthogonal transformations 107

Proof. Then we have

λj(vj , vk) = (Tvj , vk) = (vj , T
−1vk) = λk(vj , vk),

since λ
−1

k = λk. �

If V is a real, n-dimensional, inner product space and T ∈ L(V ) satisfies (3.4.1),
we say T is an orthogonal transformation and write T ∈ O(V ). In such a case, V
typically does not have an orthonormal basis of eigenvectors of T . However, V does
have an orthonormal basis with respect to which such an orthogonal transforma-
tion has a special structure, as we proceed to show. To get it, we construct the
complexification of V ,

(3.4.9) VC = {u+ iv : u, v ∈ V },

which has a natural structure of a complex n-dimensional vector space, with a Her-
mitian inner product. A transformation T ∈ O(V ) has a unique C-linear extension
to a transformation on VC, which we continue to denote by T , and this extended
transformation is unitary on VC. Hence VC has an orthonormal basis of eigenvectors
of T . Say u+ iv ∈ VC is such an eigenvector,

(3.4.10) T (u+ iv) = e−iθ(u+ iv), eiθ /∈ {1,−1}.

(Peek ahead to (3.7.77) for the use of the notation eiθ.) Writing eiθ = c+is, c, s ∈ R,
we have

(3.4.11)
Tu+ iTv = (c− is)(u+ iv)

= cu+ sv + i(−su+ cv),

hence

(3.4.12)
Tu = cu+ sv,

Tv = −su+ cv.

In such a case, applying complex conjugation to (3.4.10) yields

T (u− iv) = eiθ(u− iv),

and eiθ ̸= e−iθ if eiθ /∈ {1,−1}, so Proposition 3.4.3 yields

(3.4.13) u+ iv ⊥ u− iv,

hence

(3.4.14)

0 = (u+ iv, u− iv)

= (u, u)− (v, v) + i(v, u) + i(u, v)

= ∥u∥2 − ∥v∥2 + 2i(u, v),

or equivalently

(3.4.15) ∥u∥ = ∥v∥ and u ⊥ v.

Now

Span{u, v} ⊂ V

has an (n−2)-dimensional orthogonal complement, on which T acts, and an induc-
tive argument gives the following.



108 3. Linear algebra on inner product spaces

Proposition 3.4.4. Let V be an n-dimensional real inner product space, T : V →
V an orthogonal transformation. Then V has an orthonormal basis in which the
matrix representation of T consists of blocks

(3.4.16)

(
cj −sj
sj cj

)
, c2j + s2j = 1,

plus perhaps an identity matrix block if 1 ∈ SpecT , and a block that is −I if
−1 ∈ SpecT .

Example 1. Picking c, s ∈ R such that c2 + s2 = 1, we see that

B =

(
c s
s −c

)
is orthogonal, with detB = −1. Note that Spec(B) = {1,−1}. Thus there is an
orthonormal basis of R2 in which the matrix representation of B is(

1 0
0 −1

)
.

If A : R3 → R3 is orthogonal, it has either 1 or 3 real eigenvalues. Furthermore,
there is an orthonormal basis {u1, u2, u3} of R3 in which

(3.4.17) A =

c −s
s c

1

 or

c −s
s c

−1

 ,

depending on whether detA = 1 or detA = −1. Since c2 + s2 = 1, it follows that
there is an angle θ, uniquely determined up to an additive multiple of 2π, such that

(3.4.18) c = cos θ, s = sin θ.

If detA = 1 in (3.4.17) we say A is a rotation about the axis u3, through an angle
θ.

Example 2. Take V = R3 and

(3.4.19) T =

0 0 1
1 0 0
0 1 0

 .

Then det(T − λI) = −(λ3 − 1) = −(λ− 1)(λ2 + λ+ 1), with roots

(3.4.20) λ0 = 1, λ± = e±2πi/3 = −1

2
±

√
3

2
i.

We obtain eigenvectors in VC = C3,

(3.4.21) v0 =

1
1
1

 , v± =

− 1
2 ±

√
3
2 i

1

− 1
2 ∓

√
3
2 i

 =

e±2πi/2

1
e∓2πi/3

 ,
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readily seen to be mutually orthogonal in C3. We can write

(3.4.22) v+ = u+ iv,

with

(3.4.23) u =

− 1
2
1
− 1

2

 =

cos 2π
3

1
cos 2π

3

 , v =

√
3

2

 1
0
−1

 =

 sin 2π
3

0
− sin 2π

3

 ,

and note that u and v ∈ R3 are orthogonal (to each other and to v0), and each has

norm
√

3/2. One can then apply T in (3.4.19) to u and v in (3.4.23) and verify
directly that

(3.4.24) Tu = cu+ sv, Tv = −su+ cv,

with

(3.4.25) c = −1

2
= cos

2π

3
, s = −

√
3

2
= − sin

2π

3
,

consistent with (3.4.10)–(3.4.12), with λ+ = e−iθ.

Collecting these calculations, we see that, with v0 as in (3.4.21) and u, v as in
(3.4.23),

(3.4.26) u1 =

√
2

3
u, u2 =

√
2

3
v, u3 =

√
1

3
v0

form an orthonormal basis of R3 with respect to which the matrix form of T in
(3.4.19) becomes

(3.4.27) A =

 − 1
2

√
3
2

−
√
3
2 − 1

2
1

 .

Returning to the basic definitions, we record the following useful complemen-
tary characterization of unitary transformations.

Proposition 3.4.5. Let V be a finite-dimensional inner product space, T ∈ L(V ).
Then T is unitary if and only if it is an isometry on V , i.e., if and only if

(3.4.28) ∥Tu∥ = ∥u∥, ∀u ∈ V.

Proof. First,

(3.4.29) ∥Tu∥2 = (Tu, Tu) = (T ∗Tu, u),

so T ∗T = I ⇒ T is an isometry. For the converse, we see that if T is an isometry,
then A = T ∗T is a self-adjoint transformation satisfying

(3.4.30) (Au, u) = (u, u), ∀u ∈ V.

In particular, if u = uj is an eigenvector of A, satisfying Auj = µjuj , then

(3.4.31) µj∥uj∥2 = (Auj , uj) = ∥uj∥2,
so all eigenvalues of A are 1, hence A = I. �
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Figure 3.4.1. The cosine of an angle

Exercises

1. Let V be a real inner product space. Consider nonzero vectors u, v ∈ V . Show
that the angle θ between these vectors is uniquely defined by the formula

(u, v) = ∥u∥ · ∥v∥ cos θ, 0 ≤ θ ≤ π.

See Figure 3.4.1. Show that 0 < θ < π if and only if u and v are linearly indepen-
dent. Show that

∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2∥u∥ · ∥v∥ cos θ.

This identity is known as the Law of Cosines.
If u and v are linearly independent, produce a linear isomorphism from Span{u, v}
to R2 that preserves inner products and takes u to ∥u∥i. Peek ahead at §3.7, and
make contact with the characterization of cos and sin in (3.7.76).

For V as above, u, v, w ∈ V , we define the angle between the line segment from w
to u and the line segment from w to v to be the angle between u − w and v − w.
(We assume w ̸= u and w ̸= v.)
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2. Take V = R2, with its standard orthonormal basis i = (1, 0), j = (0, 1). Let

u = (1, 0), v = (cosφ, sinφ), 0 ≤ φ < 2π.

Show that, according to the definition of Exercise 1, the angle θ between u and v
is given by

θ = φ if 0 ≤ φ ≤ π,

2π − φ if π ≤ φ < 2π.

3. Let V be a real inner product space and let R ∈ L(V ) be orthogonal. Show that
if u, v ∈ V are nonzero and ũ = Ru, ṽ = Rv, then the angle between u and v is
equal to the angle between ũ and ṽ. Show that if {ej} is an orthonormal basis of
V , there exists an orthogonal transformation R on V such that Ru = ∥u∥e1 and
Rv is in the linear span of e1 and e2.

4. Consider a triangle as in Fig. 3.4.2. Show that

h = c sinA,

and also

h = a sinC.

Use these calculations to show that

sinA

a
=

sinC

c
=

sinB

b
.

This identity is known as the Law of Sines.

Exercises 5–11 deal with cross products of vectors in R3.

5. If u, v ∈ R3, we define the cross product u×v = Π(u, v) to be the unique bilinear
map Π : R3 × R3 → R3 satisfying

u× v = −v × u, and

i× j = k, j × k = i, k × i = j,

where {i, j, k} is the standard basis of R3.
Note. To say Π is bilinear is to say Π(u, v) is linear in both u and v.
Show that, for all u, v, w ∈ R3,

(3.4.32) w · (u× v) = det

w1 u1 v1
w2 u2 v2
w3 u3 v3

 ,

and show that this property uniquely specifies u× v. Explain how (3.4.32) can be
rewritten as

(3.4.33) u× v = det

 i u1 v1
j u2 v2
k u3 v3

 =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .
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Figure 3.4.2. Law of Sines

6. Recall that T ∈ SO(3) provided that T is a real 3× 3 matrix satisfying T tT = I
and det T > 0, (hence det T = 1). Show that

(3.4.34) T ∈ SO(3) =⇒ Tu× Tv = T (u× v).

Hint. Multiply the 3× 3 matrix in (3.4.32) on the left by T.

7. Show that, if θ is the angle between u and v in R3, then

(3.4.35) ∥u× v∥ = ∥u∥ · ∥v∥ · | sin θ|.

More generally, show that for all u, v, w, x ∈ R3,

(3.4.36)

(u× v) · (w × x) = (u · w)(v · x)− (u · x)(v · w)

= det

(
u · w u · x
v · w v · x

)
.

Hint. Check these identities for u = i, v = ai + bj, in which case u × v = bk, and
use Exercise 6 to show that this suffices.
Note that the left side of (3.4.36) is then

bk · (w × x) = det

0 w · i x · i
0 w · j x · j
b w · k x · k

 .
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Show that this equals the right side of (3.4.36).

8. Show that κ : R3 → Skew(3), the set of antisymmetric real 3×3 matrices, given
by

(3.4.37) κ(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 , y =

y1y2
y3

 ,

satisfies

(3.4.38) κ(y)x = y × x.

Show that, with [A,B] = AB −BA,

(3.4.39)
κ(x× y) =

[
κ(x), κ(y)

]
,

Tr
(
κ(x)κ(y)t

)
= 2x · y.

9. Show that if u, v, w ∈ R3, then the first part of (3.4.39) implies

(u× v)× w = u× (v × w)− v × (u× w).

Relate this to the identity

[[A,B], C] = [A, [B,C]]− [B, [A,C]],

for A,B,C ∈M(n,R) (with n = 3).

10. Show that, if u, v, w,∈ R3,

v × (u× w) = (v · w)u− (v · u)w.
Hint. Start with the observation that v×(u×w) is in Span{u,w} and is orthogonal
to v. Alternative. Use Exercise 6 to reduce the calculation to the case u = i, w =
ai+ bj.

11. Deduce from (3.4.32) that, for u, v, w ∈ R3,

u · (v × w) = (u× v) · w.

12. Demonstrate the following result, which contains both Proposition 3.3.2 and
Proposition 3.4.2. Let V be a finite dimensional inner product space. We say
T : V → V is normal provided T and T ∗ commute, i.e.,

(3.4.40) TT ∗ = T ∗T.

Proposition 3.4.6. If V is a finite dimensional complex inner product space and
T ∈ L(V ) is normal, then V has an orthonormal basis of eigenvectors of T .

Hint. Write T = A+ iB, A and B self adjoint. Then (3.4.40) ⇒ AB = BA. Apply
Exercise 3 of §3.3.

13. Show that if A ∈ O(n) and detA = −1, then −1 is an eigenvalue of A, with
odd multiplicity.
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Recall from §3.3 that if V is an inner product space, T ∈ L(V ) belongs to Skew(V )
if and only if T ∗ = −T . For such T , all eigenvalues are purely imaginary.

14. Show that

(3.4.41) C(T ) = (I − T )−1(I + T )

defines a map

(3.4.42) C : Skew(V ) −→ {A ∈ U(V ) : −1 /∈ SpecA},
with inverse

(3.4.43) C−1(A) = −(I +A)−1(I −A).

We call C the Cayley transform.
Hint. If A = C(T ), start by showing

A∗ = (I + T )∗
(
(I − T )−1

)∗
= (I − T )(I + T )−1.

15. Specializing Exercise 14 to V = Rn, show that (3.4.42) becomes

C : Skew(n) −→ {A ∈ SO(n) : −1 /∈ SpecA},
one-to-one and onto.

16. Extend the scope of Exercise 8 in §3.1, on QR factorization, as follows. Let
A ∈ Gℓ(n,C) have columns a1, . . . , an ∈ Cn. Use the Gramm-Schmidt construction
to produce an orthonormal basis {q1, . . . , qn} of Cn such that Span{a1, . . . , aj} =
Span{q1, . . . , qj} for 1 ≤ j ≤ n. Denote by Q ∈ U(n) the matrix with columns
q1, . . . , qn. Show that

A = QR,

where R is the same sort of upper triangular matrix as described in that Exercise
8.

17. Let A ∈ M(n,C) be positive definite. Apply to A1/2 the QR factorization
described in Exercise 16:

A1/2 = QR, Q ∈ U(n), R upper triangular.

Deduce that
A = LL∗, L = R∗ lower triangular.

This is a Cholesky decomposition. Use Exercise 7 of §3.3 to compare this with
(3.3.32).



3.5. Schur’s upper triangular representation 115

3.5. Schur’s upper triangular representation

Let V be an n-dimensional complex vector space, equipped with an inner product,
and let T ∈ L(V ). The following is an important alternative to Proposition 2.4.1.

Proposition 3.5.1. There is an orthonormal basis of V with respect to which T
has an upper triangular form.

Note that an upper triangular form with respect to some basis was achieved in
(2.3.11), but there the basis was not guaranteed to be orthonormal. We will obtain
Proposition 3.5.1 as a consequence of

Proposition 3.5.2. There is a sequence of vector spaces Vj of dimension j such
that

(3.5.1) V = Vn ⊃ Vn−1 ⊃ · · · ⊃ V1

and

(3.5.2) T : Vj → Vj .

We show how Proposition 3.5.2 implies Proposition 3.5.1. In fact, given (3.5.1)–
(3.5.2), pick un ⊥ Vn−1, a unit vector, then pick a unit un−1 ∈ Vn−1 such that
un−1 ⊥ Vn−2, and so forth, to achieve the conclusion of Proposition 3.5.1. Oth-
erwise said, {uj : 1 ≤ j ≤ n} is constructed to be an orthonormal basis of V
satisfying uj ∈ Vj for each j. We see that, for each j, Tuj is a linear combination
of {uℓ : ℓ ≤ j}, and this yields the desired upper triangular form. �

Meanwhile, Proposition 3.5.2 is a simple inductive consequence of the following
result.

Lemma 3.5.3. Given T ∈ L(V ) as above, there is a linear subspace Vn−1, of
dimension n− 1, such that T : Vn−1 → Vn−1.

Proof. We apply Proposition 2.1.1 to T ∗ to obtain a nonzero v1 ∈ V such that
T ∗v1 = λv1, for some λ ∈ C. Then the conclusion of Lemma 3.5.3 holds with
Vn−1 = (v1)

⊥. �

We illustrate the steps described above to achieve a “Schur normal form” with
the following example: V = C3 and

(3.5.3) T =

0 1 0
0 0 1
0 −1 2

 .

Note that

(3.5.4) det(λI −A) = λ3 − 2λ2 + λ = λ(λ− 1)2.

We have

(3.5.5) T ∗ =

0 0 0
1 0 −1
0 1 2

 ,
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and

(3.5.6) E(T ∗, 0) = Span
{ 1

−2
1

}
.

Thus, in the notation of the proof of Lemma 3.5.3, we have v1 = (1,−2, 1)t. Hence

(3.5.7) V2 = (v1)
⊥ = Span

{1
1
1

 ,

 1
0
−1

}
.

The unit vector u3 ⊥ V2 might as well be

(3.5.8) u3 =
1√
6

 1
−2
1

 .

We next need a one-dimensional subspace V1 ⊂ V2, invariant under T . In fact,

(3.5.9)

0 1 0
0 0 1
0 −1 2

1
1
1

 =

1
1
1

 ,

so we can take V1 to be the span of this vector. Thus V1 is spanned by the unit
vector

(3.5.10) u1 =
1√
3

1
1
1

 ,

and this, together with

(3.5.11) u2 =
1√
2

 1
0
−1

 ,

forms an orthonormal basis of V2. We have

(3.5.12)

Tu1 = u1,

Tu2 =
1√
2

 0
−1
−2

 = −
√

3

2
u1 + u2,

Tu3 =
1√
6

−2
1
4

 =
1√
2
u1 −

√
3u2.

Thus, with respect to the orthonormal basis {u1, u2, u3}, the matrix representation
of T is

(3.5.13) M =

1 −
√
3/2

√
1/2

0 1 −
√
3

0 0 0

 ,

and this is a Schur normal form of T .
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Recall from §3.2 that the Hilbert-Schmidt norm of a linear transformation is
independent of the choice of orthonormal basis. In this case, we readily verify that

(3.5.14)
∥T∥2HS = 1 + 1 + 1 + 4 = 7,

∥M∥2HS = 1 + 1 + 3
2 + 1

2 + 3 = 7.

Proposition 3.5.1 has uses that do not depend on knowing a specific Schur
normal form for T . Here is an example of such an application, known as Schur’s
inequality. It involves the Hilbert-Schmidt norm, introduced in §3.2 and mentioned
above.

Proposition 3.5.4. Let T ∈ L(V ), where V is a complex inner product space of
dimension n. Assume the eigenvlues of T are λ1, . . . , λn (repeated according to
multiplicity). Then

(3.5.15)

n∑
j=1

|λj |2 ≤ ∥T∥2HS.

Proof. Let A = (ajk) denote the matrix representation of T described in Propo-
sition 3.5.1. Since A is upper triangular, the eigenvalues of A are precisely the
diagonal entries, ajj . Hence

(3.5.16)

n∑
j=1

|λj |2 =

n∑
j=1

|ajj |2

≤
∑
j,k

|ajk|2

= ∥A∥2HS = ∥T∥2HS.

�

There is an interesting application of Proposition 3.5.4 to roots of a polynomial.
Take a polynomial of degree n,

(3.5.17) p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

with aj ∈ C. As shown in Proposition 2.3.4, we can form the companion matrix

(3.5.18) A =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 0 1

−a0 −a1 · · · −an−2 −an−1

 ,

and

(3.5.19) det(λI −A) = p(λ).

Thus the eigenvalues of A coincide with the roots λ1, . . . , λn of p(λ), repeated
according to multiplicity. Applying (3.5.15), we have the following.
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Corollary 3.5.5. If {λ1, . . . , λn} are the roots of the polynomial p(λ) in (3.5.17),
then

(3.5.20)

n∑
k=1

|λk|2 ≤ n− 1 +

n−1∑
j=0

|aj |2.

Remark. The matrix (3.5.3) is the companion matrix of the polynomial λ(λ−1)2,
arising in (3.5.4).
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Exercises

1. Put the following matrices in Schur upper triangular form. 1 0 1
0 2 0
−1 0 −1

 ,

0 2 0
3 0 3
0 −2 0

 .

2. Let D(n) ⊂ M(n,C) denote the set of matrices all of whose eigenvalues are
distinct. Show that D(n) is dense in M(n,C), i.e., given A ∈ M(n,C), there exist
Ak ∈ D(n) such that Ak → A.
Hint. Pick an orthonormal basis to put A in upper triangular form and tweak the
diagonal entries.

3. Fill in the details in the following proposed demonstration of the Cayley-
Hamilton theorem, i.e.,

KA(λ) = det(λI −A) =⇒ KA(A) = 0, ∀A ∈M(n,C).
First, demonstrate this for A diagonal, then for A diagonalizable, hence for A ∈
D(n). Show that Φ(A) = KA(A) defines a continuous map Φ on M(n,C). Then
use Exercise 2.

4. In the setting of Proposition 3.5.1, let S, T ∈ L(V ) commute, i.e., ST = TS.
Show that V has an orthonormal basis with respect to which S and T are simulta-
neously in upper triangular form.
Hint. Start by extending Lemma 3.5.3.

5. Let A ∈ L(Rn). Show that there is an orthonormal basis of Rn with respect to
which A has an upper triangular form if and only if all the eigenvalues of A are
real.

6. In the setting of Proposition 3.5.4, show that the inequality (3.5.15) is an equality
if and only if T is normal. (Recall Exercise 12 of §3.4.)
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3.6. Polar decomposition and singular value decomposition

For complex numbers, polar decomposition is the representation

(3.6.1) z = reiθ,

for a given z ∈ C, with r ≥ 0 and θ ∈ R. In fact, r = |z| = (zz)1/2. If z ̸= 0,
then r > 0 and eiθ is uniquely determined. The following is a first version of polar
decomposition for square matrices.

Proposition 3.6.1. If A ∈M(n,C) is invertible, then it has a unique factorization

(3.6.2) A = KP, K ∈ U(n), P = P ∗, positive definite.

Proof. If A has such a factorization, then

(3.6.3) A∗A = P 2.

Conversely, if A is invertible, then A∗A is self adjoint and positive definite, and, as
seen in §3.3, all its eigenvalues λj are > 0, and there exists an orthonormal basis
{vj} of Cn consisting of associated eigenvectors. Thus, we obtain (3.6.3) with

(3.6.4) Pvj = λ
1/2
j vj .

In such a case, we have A = KP if we set

(3.6.5) K = AP−1.

We want to show that K ∈ U(n). It suffices to show that

(3.6.6) ∥Ku∥ = ∥u∥

for all u ∈ Cn. To see this, note that, for v ∈ Cn,

(3.6.7) ∥KPv∥2 = ∥Av∥2 = (Av,Av) = (A∗Av, v) = (P 2v, v) = ∥Pv∥2.

This gives (3.6.6) whenever u = Pv, but P is invertible, so we do have (3.6.6) for
all u ∈ Cn. This establishes the existence of the factorization (3.6.2). The formulas
(3.6.4)–(3.6.5) for P and K establish uniqueness. �

Here is the real case.

Proposition 3.6.2. If A ∈M(n,R) is invertible, then it has a unique factorization

(3.6.8) A = KP, K ∈ O(n), P = P ∗, positive definite.

Proof. In the proof of Proposition 3.6.1, adapted to the current setting, Rn has an
orthonormal basis {vj} of eigenvectors of A∗A, so (3.6.4) defines a positive definite
P ∈ M(n,R). Then K = AP−1 is unitary and belongs to M(n,R), so it belongs
to O(n). �

We extend Proposition 3.6.1 to non-invertible matrices.

Proposition 3.6.3. If A ∈M(n,C), then it has a factorization of the form (3.6.2),
with P positive semidefinite.
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Proof. We no longer assert uniqueness of K in (3.6.2). However, P is still uniquely
defined by (3.6.3)–(3.6.4). This time we have only λj ≥ 0, so P need not be
invertible, and we cannot bring in (3.6.5). Instead, we proceed as follows. First,
somewhat parallel to (3.6.7), we have

(3.6.9) ∥Pv∥2 = (P 2v, v) = (A∗Av, v) = ∥Av∥2,

for all v ∈ Cn. Hence N (P ) = N (A), and we have the following orthogonal, direct
sum decomposition,

Cn = V0 ⊕ V1,

where

(3.6.10) V0 = R(P ) = Span{vj : λj > 0}, V1 = N (P ) = N (A),

with vj as in (3.6.4). We set

(3.6.11)
Q : V0 −→ V0, Qvj = λ

−1/2
j vj ,

K0 : V0 −→ Cn, K0v = AQv.

It follows that

(3.6.12) K0Pv = Av, ∀ v ∈ V0,

and that (3.6.7) holds for all v ∈ V0, so K0 : V0 → Cn is an injective isometry. Now
we can define

(3.6.13) K1 : V1 −→ R(K0)
⊥ = R(A)⊥

to be any isometric isomorphism between V1 and R(K0)
⊥, which have the same

dimension. Then we set

(3.6.14) K = K0 ⊕K1 : V0 ⊕ V1 −→ Cn,

which is an isometric isomorphism, hence an element of U(n). We have

(3.6.15) KPv = Av,

both for v ∈ V0, by (3.6.12), and for v ∈ V1 = N (P ) = N (A), thus proving
Proposition 3.6.3. �

Parallel to Proposition 3.6.2, there is the following analogue of Proposition 3.6.3
for real matrices.

Proposition 3.6.4. If A ∈M(n,R), then it has a factorization of the form (3.6.8),
with P positive semidefinite.

We give some examples to illustrate polar decomposition.

Example 1. Take

(3.6.16) A =

(
1 1
2 1

)
,
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which is invertible. We have

(3.6.17)

A∗A =

(
5 3
3 2

)
= P 2, with

P =

(
2 1
1 1

)
.

Then A = KP , with

(3.6.18) K = AP−1 =

(
1 1
2 1

)(
1 −1
−1 2

)
=

(
0 1
1 0

)
.

Example 2. Take

(3.6.19) A =

(
1 1
−1 −1

)
,

which is not invertible. We have

(3.6.20)

A∗A =

(
2 2
2 2

)
= P 2, with

P =

(
1 1
1 1

)
.

Following the treatment of Proposition 3.6.3, we have R2 = V0 ⊕ V1, with

(3.6.21) V0 = R(P ) = Span

(
1

1

)
, V1 = N (P ) = N (A) = Span

(
1

−1

)
.

As in (3.6.11), we take

(3.6.22) K0 : V0 → R2, K0v = AQv.

where Q inverts P on V0. Since P |V0
has the single eigenvalue 2, K0 is specified by

(3.6.23) K0

(
1

1

)
= 1

2A

(
1

1

)
=

(
1

−1

)
.

Next, we take

(3.6.24) K1 : V1 → R(K0)
⊥ = R(A)⊥ = Span

(
1

1

)
to be any isometric isomorphism. Since these vector spaces are 1-dimensional, there
are two choices:

(3.6.25) K1

(
1

−1

)
=

(
1

1

)
, or K1

(
1

−1

)
= −

(
1

1

)
.

We can now specify K = K0 ⊕K1 in the polar decomposition A = KP , via

(3.6.26)

K

(
1

0

)
= 1

2K0

(
1

1

)
+ 1

2K1

(
1

−1

)
,

K

(
0

1

)
= 1

2K0

(
1

1

)
− 1

2K1

(
1

−1

)
.

Hence, in the two respective cases given in (3.6.25),

(3.6.27) K =

(
1 0
0 −1

)
, or K =

(
0 1
−1 0

)
.
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In cases where dimV1 > 1 (i.e., where dimN (A) > 1, or F = C), one would have
an infinite number of possibilities for K in the polar decomposition of A.

Having treated polar decomposition, we now apply Propositions 3.6.3–3.6.4 to
the following factorization.

Proposition 3.6.5. If A ∈M(n,C), then we can write

(3.6.28) A = UDV ∗, U, V ∈ U(n), D ∈M(n,C) diagonal,

in fact,

(3.6.29) D =

d1 . . .

dn

 , dj ≥ 0.

If A ∈M(n,R), we have (3.6.28) with U, V ∈ O(n).

Proof. By Proposition 3.6.3 we have A = KP , with K ∈ U(n), P positive semi-
definite. By results of §3.3, we have P = V DV ∗, for some V ∈ U(n), D as in
(3.6.29). Hence (3.6.28) holds with U = KV . If A ∈ M(n,R), a similar use of
Proposition 3.6.4 applies. �

A factorization of the form (3.6.28)–(3.6.29) is called a singular value decom-
position (or SVD) of A. The elements dj in (3.6.29) that are > 0 are called the
singular values of A.

Finally, we extend the singular value decomposition to rectangular matrices.

Proposition 3.6.6. If A ∈M(m× n,C), so A : Cn → Cm, then we can write

(3.6.30) A = UDV ∗, U ∈ U(m), V ∈ U(n),

and

(3.6.31) D ∈M(m× n,C) diagonal, with diagonal entries dj ≥ 0.

Proof. We treat the case

(3.6.32) A : Cn −→ Cm, m = n+ k > n.

If m < n, one can apply the argument that follows to A∗.

When (3.6.32) holds, there exists

(3.6.33) K ∈ U(m), K : R(A) −→ Cn ⊂ Cm,

so that

(3.6.34) KA =

(
B

0

)
, B ∈M(n,C), 0 ∈M(k × n,C).

By Proposition 3.6.5, we can write

(3.6.35) B =WD0V
∗, W, V ∈ U(n), D0 diagonal,

so

(3.6.36) KA =

(
WD0V

∗

0

)
=

(
W

I

)(
D0

0

)
V ∗,
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and hence (3.6.30) holds with

(3.6.37) U = K−1

(
W

I

)
, D =

(
D0

0

)
.

�

There is a similar result for real rectangular matrices.

Proposition 3.6.7. If A ∈M(m× n,R), then we can write

(3.6.38) A = UDV ∗, U ∈ O(m), V ∈ O(n),

and D as in (3.6.31).

Remark. As in the setting of Proposition 3.6.5, the nonzero quantities dj in
(3.6.31) are called the singular values of A.

Having Propositions 3.6.6 and 3.6.7, we record some additional useful identities
associated to the decomposition (3.6.30), namely

(3.6.39) A∗A = V (D∗D)V ∗, AA∗ = U(DD∗)U∗,

and

(3.6.40) D∗D = D2
0, DD∗ =

(
D∗

0 0
0 0

)
.

Example. Take

(3.6.41) A =

1 −1
1 0
1 1

 .

We have

(3.6.42) A∗A =

(
3 0
0 2

)
, AA∗ =

2 1 0
1 1 1
0 1 2

 .

Hence we have the first identity in (3.6.39) with

(3.6.43) V = I, D∗D =

(
3 0
0 2

)
,

which yields

(3.6.44) D0 =

(√
3 √

2

)
, D =

√
3 0

0
√
2

0 0

 , DD∗ =

3
2

0

 .

To proceed, we have

(3.6.45) SpecAA∗ = {3, 2, 0},
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and

(3.6.46)

E(AA∗, 3) = Span

1
1
1

 , E(AA∗, 2) = Span

 1
0
−1

 ,

E(AA∗, 0) = Span

 1
−2
1

 .

The norms of these three vectors are
√
3,
√
2, and

√
6, respectively. If we take

(3.6.47) U =

1/
√
3 −1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6

1/
√
3 1/

√
2 1/

√
6

 ,

we verify that AA∗ = U(DD∗)U∗, and that the singular value decomposition
(3.6.30) holds, with V,D, and U given in (3.6.43), (3.6.44), and (3.6.47).

Returning to generalities, we record the following straightforward consequence
of (3.6.30).

Corollary 3.6.8. Assume A ∈M(m× n,C) has the SVD form (3.6.30)–(3.6.31).
Let {uj} denote the columns of U and {vj} the columns of V . Then, for w ∈ Cn,

(3.6.48) Aw =
∑
j

dj(w, vj)uj .

This result in turn readily leads to the following.

Proposition 3.6.9. In the setting of Corollary 3.6.8, assume

(3.6.49) j > J =⇒ dj ≤ δ.

Define AJ : Cn → Cm by

(3.6.50) AJw =
∑
j≤J

dj(w, vj)uj .

Then

(3.6.51) ∥A−AJ∥ ≤ δ.

Proof. We have

(3.6.52)

∥(A−AJ)w∥2 =
∑
j>J

d2j |(w, vj)|2

≤ δ2∥w∥2.
�

Proposition 3.6.9 is exploited in an approach to image compression, which we
can illustrate as follows. Suppose one has a picture of a scene, made up of 2000×
2000 pixels. The data can be regarded as encoded in a matrix A ∈ M(n,R), n =
2000. The entries could represent either a grey scale or a color scale. Take the
singular value decomposition of A, as in (3.6.30). Doing this is way beyond hand
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calculation, but various numerical software packages allow one to do this on a
computer, using a command with syntax like

(3.6.53) [U,D, V ] = SVD(A).

In the current case, D is a diagonal matrix with 2000 diagonal entries dj ≥ 0,
arranged in decreasing order, dj ↘. For a discussion of how this can be done, see
[3].

Now it has been observed that, for many such matrices arising from pictures
of typical scenes, the entries dj get quite small fairly quickly, so that AJ , given by
(3.6.50), is a useful approximation to A for J = 100, or maybe even smaller. The
task of storing the information needed to produce AJ for such a value of J involves
much less memory than is needed to store the original matrix A. This would allow
for the storage of many more pictures on a device with a given amount of memory.
For more on this, see pp. 332–333 of [9].
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Exercises

1. Produce polar decompositions for the following matrices.(
1 1
2 1

)
,

(
1 1
−1 −1

)
,

1 0 1
0 2 0
1 0 −1

 .

2. Produce singular value decompositions for the following matrices.(
1 1
2 1

)
,

1 0 1
0 2 0
1 0 −1

 ,

(
1 1 1
−1 0 1

)
.

3. Extend the results on polar decomposition given in this section from A ∈M(n,F)
to the setting of A ∈ L(V ), where V is a finite-dimensional inner product space
(over R or C).

4. Extend the results on SVDs given in this section from A ∈ M(m × n,F) to
the setting of A ∈ L(V,W ), where V and W are finite-dimensional inner product
spaces (over R or C).

5. Let P2 be the space of polynomials in x of degree ≤ 2, with inner product

(f, g) =
1

2

∫ 1

−1

f(x)g(x) dx,

and let A : P2 → P2 be given by

Af(x) = f ′(x) + f(x).

Give the polar decomposition of A.

6. In the setting of Exercise 5, give the singular value decomposition of A.
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3.7. The matrix exponential

Take A ∈ M(n,F), with F = R or C. The matrix exponential arises to represent
solutions to the differential equation

(3.7.1)
dx

dt
= Ax, x(0) = v,

for a function x : R → Fn, given v ∈ Fn. One way to approach (3.7.1) is to construct
the solution as a power series,

(3.7.2) x(t) =

∞∑
k=0

xkt
k,

with coefficients xk ∈ Fn. As shown in calculus courses, if (3.7.2) is absolutely
convergent on an interval |t| < T , then x(t) is differentiable on this interval, and
its derivative is obtained by differentiating the series term by term (cf. Chapter 4
of [10]). Anticipating that this will work, we write

(3.7.3) x′(t) =

∞∑
k=1

kxkt
k−1 =

∞∑
ℓ=0

(ℓ+ 1)xℓ+1t
ℓ.

Meanwhile,

(3.7.4) Ax(t) =

∞∑
ℓ=0

Axℓt
ℓ.

Comparing (3.7.3) and (3.7.4), we require

(3.7.5) xℓ+1 =
1

ℓ+ 1
Axℓ, ℓ ≥ 0.

Meanwhile, the initial condition x(0) = v forces x0 = v. Thus, inductively,

(3.7.6) x0 = v, x1 = Av, x2 =
1

2
A2v, . . . , xk =

1

k!
Akv, . . . ,

and we have the power series

(3.7.7) x(t) =

∞∑
k=0

tk

k!
Akv.

This power series is absolutely convergent for all t ∈ R. To see this, we use
(3.2.4) and the triangle inequality (3.1.14) to obtain the estimate

(3.7.8)
∥∥∥M+N∑
k=M

tk

k!
Akv

∥∥∥ ≤
M+N∑
k=M

|t|k

k!
∥A∥k∥v∥,

which together with the ratio test guarantees absolute convergence for all t ∈ R.
Thus the term by term differentiation of (3.7.7) is valid, and we have a solution to
(3.7.1). We write this solution as x(t) = etAv, where we set

(3.7.9) etA =

∞∑
k=0

tk

k!
Ak.
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This is the matrix exponential. Calculations parallel to (3.7.3) give

(3.7.10)
d

dt
etA = AetA = etAA.

In fact, etAv is the unique solution to (3.7.1). An essentially equivalent result
is that etA is the unique solution to the matrix ODE

(3.7.11) X ′(t) = AX(t), X(0) = I.

To see this, we apply the product rule

(3.7.12)
d

dt

(
B(t)X(t)

)
= B′(t)X(t) +B(t)X ′(t)

to B(t) = e−tA and X(t) as in (3.7.11). Thus, via (3.7.10), with A replaced by −A,

(3.7.13)
d

dt

(
e−tAX(t)

)
= −e−tAAX(t) + e−tAAX(t) = 0,

so e−tAX(t) is independent of t. Evaluation at t = 0 gives

(3.7.14) e−tAX(t) = I, ∀ t ∈ R,

whenever X(t) solves (3.7.11). Since etA solves (3.7.11), we get

(3.7.15) e−tAetA = I, ∀ t ∈ R,

i.e., e−tA is the matrix inverse to etA. Multiplying (3.7.14) on the left by etA then
gives

(3.7.16) X(t) = etA,

which is the asserted uniqueness.

A useful computation related to (3.7.13) arises by applying d/dt to the product
e(s+t)Ae−tA. We have

(3.7.17)
d

dt

(
e(s+t)Ae−tA

)
= e(s+t)AAe−tA − e(s+t)AAe−tA = 0,

so e(s+t)Ae−tA is independent of t. Evaluation at t = 0 gives

(3.7.18) e(s+t)Ae−tA = esA, ∀ s, t ∈ R.

Multiplying on the right by etA and using (3.7.15) (with t replaced by −t) gives

(3.7.19) e(s+t)A = esAetA, ∀ s, t ∈ R.

The following result generalizes (3.7.19).

Proposition 3.7.1. Given A,B ∈M(n,F), we have

(3.7.20) et(A+B) = etAetB , ∀ t ∈ R,

provided A and B commute, i.e.,

(3.7.21) AB = BA.
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Proof. This time we differentiate a triple product,

(3.7.22)

d

dt

(
et(A+B)e−tBe−tA

)
= et(A+B)(A+B)e−tBe−tA

− et(A+B)Be−tBe−tA

− et(A+B)e−tBAe−tA.

Next, we note that, for s ∈ R,

(3.7.23) esBA =

∞∑
k=0

sk

k!
BkA =

∞∑
k=0

sk

k!
ABk,

provided A and B commute, so

(3.7.24) AB = BA =⇒ esBA = AesB , ∀ s ∈ R.
Taking s = −t allows us to push A to the left in the third term on the right side
of (3.7.22), yielding 0. Hence the triple product is independent of t. Evaluating at
t = 0 gives

(3.7.25) et(A+B)e−tBe−tA = I, ∀ t ∈ R.
provided (3.7.21) holds. Multiplying on the right first by etA, then by etB , using
again (3.7.15), we obtain (3.7.20). �

Returning to (3.7.1), we have seen that solving this equation is equivalent to
evaluating etA. Typically, one does not want to do this by computing the infinite
series (3.7.9). We want to relate the evaluation of etAv to results in linear algebra.

For example, if v is an eigenvector of A, with eigenvalue λ, then

(3.7.26)

Av = λv =⇒ Akv = λkv

=⇒ etAv =

∞∑
k=0

tk

k!
λkv = etλv.

A related identity is that, if C ∈M(n,F) is invertible,

(3.7.27) A = C−1BC ⇒ Ak = C−1BkC ⇒ etA = C−1etBC.

If B is diagonal,

(3.7.28)

B =

λ1 . . .

λn

 ⇒ Bk =

λ
k
1

. . .

λkn


⇒ etB =

e
tλ1

. . .

etλn

 ,

which in conjunction with (3.7.27) gives

(3.7.29) etA = C−1

e
tλ1

. . .

etλn

C,
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if A = C−1BC with B as in (3.7.28), i.e., if A is diagonalizable.

As we know, not all matrices are diagonalizable. As discussed in §2.2, a vector
v ∈ Cn is a generalized eigenvector of A, associated to λ ∈ C, provided

(3.7.30) (A− λI)ℓv = 0, for some ℓ ∈ N,

the case ℓ = 1 making v an eigenvector. When (3.7.30) holds, we can compute etAv
as follows. First

(3.7.31)
etAv = et(A−λI)+tλIv

= etλet(A−λI)v,

the second identity via (3.7.20), with A − λI in place of A and λI in place of
B, noting that the identity matrix I ∈ M(n,C) commutes with every element of
M(n,C). Now the infinite series

(3.7.32) et(A−λI)v =

∞∑
k=0

tk

k!
(A− λI)kv

terminates at k = ℓ− 1, by (3.7.30), so we get

(3.7.33) etAv = etλ
ℓ−1∑
k=0

tk

k!
(A− λI)kv,

which has the form etλw(t), where w(t) is a polynomial, of degree ≤ ℓ, with coeffi-
cients in Cn. As shown in §2.2,

(3.7.34)
Given A ∈M(n,C), Cn has a basis

consisting of generalized eigenvectors of A.

Let us summarize our analysis on how to evaluate a matrix exponential.

How to compute etAv.

1. Find a basis {v1, . . . , vn} of Cn, consisting of generalized eigenvectors of A.

2. Find c1, . . . , cn ∈ C such that v = c1v1 + · · ·+ cnvn. Then

(3.7.35) etAv = c1e
tAv1 + · · ·+ cne

tAvn.

3. Here is how to compute etAvj .
A. If vj is an eigenvector, say Avj = λjvj , then

(3.7.36) etAvj = etλjvj .

B. If vj is a generalized eigenvector, satisfying (A− λjI)
ℓvj = 0, then

(3.7.37) etAvj = etλj

ℓ−1∑
k=0

tk

k!
(A− λjI)

kvj .

How to compute the n× n matrix etA.

The jth column of etA is etAej , where ej is the jth standard basis vector of Cn.

We work out a couple of examples.
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Example 1. Take

(3.7.38) A =

1 0 1
0 1 0
1 0 1

 .

Then SpecA = {0, 1, 2}, and

(3.7.39) E(A, 0) = Span

 1
0
−1

 , E(A, 1) = Span

0
1
0

 , E(A, 2) = Span

1
0
1

 .

Hence

(3.7.40) etA

 1
0
−1

 =

 1
0
−1

 , etA

0
1
0

 = et

0
1
0

 , etA

1
0
1

 = e2t

1
0
1

 .

Meanwhile,

(3.7.41)

1
0
0

 =
1

2

 1
0
−1

+
1

2

1
0
1

 ,

0
0
1

 =
1

2

1
0
1

− 1

2

 1
0
−1

 ,

hence

(3.7.42) etA

1
0
0

 =
1

2

 1
0
−1

+
e2t

2

1
0
1

 , etA

0
0
1

 =
e2t

2

1
0
1

− 1

2

 1
0
−1

 .

From this and the second identity in (3.7.40), we have

(3.7.43) etA =

 1
2 (e

2t + 1) 0 1
2 (e

2t − 1)
0 et 0

1
2 (e

2t − 1) 0 1
2 (e

2t + 1)

 .

Example 2. Take

(3.7.44) A =

 1 0 1
0 1 0
−1 0 −1

 .

Then SpecA = {0, 1}, and 0 is a double root of the characteristic polynomial of A.
We have

(3.7.45) E(A, 1) = Span

0
1
0

 , E(A, 0) = Span

 1
0
−1

 ,

and, noting that

(3.7.46) A2 =

0 0 0
0 1 0
0 0 0

 ,

we have

(3.7.47) GE(A, 0) = Span
{1

0
0

 ,

0
0
1

}
.



3.7. The matrix exponential 133

Hence

(3.7.48)

v ∈ GE(A, 0) ⇒ etAv = (I + tA)v

=

1 + t 0 t
0 1 + t 0
−t 0 1− t

 v.

It follows that

(3.7.49) etA =

1 + t 0 t
0 et 0
−t 0 1− t

 .

Returning to generalities, let us note from (3.7.34) that, for each v ∈ Cn, etAv
is a linear combination of terms of the form (3.7.33), with different λs. We have
the following.

Proposition 3.7.2. Given A ∈M(n,C), v ∈ Cn,

(3.7.50) etAv =
∑
j

eλjtvj(t),

where {λj} is the set of eigenvalues of A and vj(t) are Cn-valued polynomials.

It is now our goal to turn this reasoning around. We intend to give a proof
of Proposition 3.7.2 that does not depend on (3.7.34), and then use this result to
provide a new proof of (3.7.34), via an argument very different from that used in
§2.2.

Second proof of Proposition 3.7.2. To start, by (3.7.27) it suffices to show
that etB has such a structure for some B ∈ M(n,C) similar to A, i.e., satisfying
A = C−1BC for some invertible C ∈ M(n,C). We now bring in Schur’s result,
Proposition 3.5.1, which implies that A is similar to an upper triangular matrix.
We recall that the proof of Proposition 3.5.1 is very short, and makes no use of
concepts involving generalized eigenvectors. In view of this, we are reduced to
proving Proposition 3.7.2 when A has the form

(3.7.51) A =


a11 a12 · · · a1n

a22 · · · a2n
. . .

ann

 ,

with all zeros below the diagonal. It follows from (1.5.55), with A replaced by
A− λI, that the eigenvalues of A are precisely the diagonal entries ajj .

To proceed, set x(t) = etAv, solving

(3.7.52)
dx

dt
=

a11 ∗ ∗
. . . ∗

ann

x,
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with x(t) = (x1(t), . . . , xn(t))
t. We can solve the last ODE for xn, as it is just

(3.7.53)
dxn
dt

= annxn, so xn(t) = Ceannt.

We can obtain xj(t) for j < n inductively by solving inhomogeneous scalar differ-
ential equations

(3.7.54)
dxj
dt

= ajjxj + bj(t),

where bj(t) is a linear combination of xj+1(t), . . . , xn(t).

The equation (3.7.54) is a particularly easy sort, with solution given by

(3.7.55) xj(t) = etajjxj(0) + etajj

∫ t

0

e−sajj bj(s) ds.

See Exercise 1 below. Given xn(t) in (3.7.53), bn−1(t) is a multiple of eannt. If
an−1,n−1 ̸= ann, then xn−1(t) will be a linear combination of eannt and ean−1,n−1t,
but if an−1,n−1 = ann, xn−1(t) may be a linear combination of eannt and teannt.
Further integration will involve

∫
p(t)eαt dt, where p(t) is a polynomial. That no

other sort of function will arise is guaranteed by the following result.

Lemma 3.7.3. If p(t) is a polynomial of degree ≤ m and α ̸= 0, then

(3.7.56)

∫
p(t)eαt dt = q(t)eαt + C,

for some polynomial q(t) of degree ≤ m. (If α = 0, one also gets (3.7.56), with q(t)
of degree ≤ m+ 1.)

Proof. The map p = Tq defined by

(3.7.57)
d

dt
(q(t)eαt) = p(t)eαt

is a linear map on the (m+1)-dimensional vector space Pm of polynomials of degree
≤ m. In fact, we have

(3.7.58) Tq(t) = αq(t) + q′(t).

It suffices to show that T : Pm → Pm is invertible, when α ̸= 0. But D = d/dt is
nilpotent on Pm; Dm+1 = 0. Hence

(3.7.59) T−1 = α−1(I + α−1D)−1 = α−1(I − α−1D + · · ·+ α−m(−D)m).

This proves the lemma, and hence completes the proof of Proposition 3.7.2. �

Having Proposition 3.7.2, we proceed as follows. Given λ ∈ C, let Vλ denote
the space of Cn-valued functions of the form eλtv(t), where v(t) is a Cn-valued
polynomial in t. Then Vλ is invariant under the action of both d/dt and A, hence
of d/dt − A. Hence, if a sum V1(t) + · · · + Vk(t), Vj ∈ Vλj

(with λjs distinct) is
annihilated by d/dt−A, so is each term in this sum. (See Exercise 3 below.)

Therefore, if (3.7.5) is a sum over the distinct eigenvalues λj of A, it follows
that each term eλjtvj(t) is annihilated by d/dt−A, or, equivalently, is of the form
etAwj , where wj = vj(0). This leads to the following conclusion.
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Proposition 3.7.4. Given A ∈M(n,C), λ ∈ C, set

(3.7.60) Gλ = {v ∈ Cn : etAv = etλv(t), v(t) polynomial}.

Then Cn has a direct sum decomposition

(3.7.61) Cn = Gλ1 ⊕ · · · ⊕Gλk
,

where λ1, . . . , λk are the distinct eigenvalues of A. Furthermore, each Gλj
is in-

variant under A, and

(3.7.62) Aj = A
∣∣
Gλj

has exactly one eigenvalue, λj .

Proof. The decomposition (3.7.61) follows directly from Proposition 3.7.2. The
invariance of Gλj

under A is clear from the definition (3.7.60). It remains only to

establish (3.7.62), and this holds because etAv involves only the exponential eλjt

when v ∈ Gλj
. �

Having Proposition 3.7.4, we next claim that

(3.7.63)
Gλj

= GE(A, λj)

= {v ∈ Cn : (A− λjI)
kv = 0 for some k ∈ N},

the latter identity defining the generalized eigenspace GE(A, λj), as in (2.2.3). The
fact that

(3.7.64) GE(A, λj) ⊂ Gλj

follows from (3.7.33). Since Nj = Aj − λjI ∈ L(Gλj
) has only 0 as an eigenvalue,

we are led to the following result.

Lemma 3.7.5. Let W be a k-dimensional vector space over C and suppose N :
W →W has only 0 as an eigenvalue. Then N is nilpotent, in fact

(3.7.65) Nm = 0 for some m ≤ k.

Proof. The assertion is equivalent to the implication (2.3.3) ⇒ (2.3.4), given in
§2.3. We recall the argument. Let Wj = N j(W ). Then W ⊃ W1 ⊃ W2 ⊃ · · · is a
sequence of finite dimensional vector spaces, each invariant under N . This sequence
must stabilize, so for some m, N : Wm → Wm bijectively. If Wm ̸= 0, N has a
nonzero eigenvalue. �

Lemma 3.7.5 provides the reverse inclusion to (3.7.64), and hence we have
(3.7.63). Thus (3.7.61) yields the desired decomposition

(3.7.66) Cn = GE(A, λ1)⊕ · · · ⊕ GE(A, λk)

of Cn as a direct sum of generalized eigenspaces of A. This provides another proof
of Proposition 2.2.6.

Exponential and trigonometric functions
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When material developed above on the exponential of an n× n matrix is spe-
cialized to n = 1, we have the exponential of a complex number,

(3.7.67) ez =

∞∑
k=0

1

k!
zk, z ∈ C.

Then (3.7.10) specializes to

(3.7.68)
d

dt
eat = aeat, ∀ t ∈ R, a ∈ C.

Here we want to study

(3.7.69) γ(t) = eit, t ∈ R,
which is a curve in the complex plane. We claim γ(t) lies on the unit circle, i.e.,
|γ(t)| ≡ 1, where, for z = x+ iy, x, y ∈ R,
(3.7.70) |z|2 = x2 + y2 = z z, with z = x− iy.

It follows from (3.7.67) that

(3.7.71) ez = ez, ∀ z ∈ C,
so, for t ∈ R,
(3.7.72) eit = e−it, hence |γ(t)|2 = eite−it ≡ 1.

Next, we consider the velocity

(3.7.73) γ′(t) = ieit.

From (3.7.70) it follows that, if also w ∈ C, then |zw|2 = |z|2|w|2, so (3.7.73) yields

(3.7.74) |γ′(t)|2 = 1.

Thus γ(t) is a unit speed curve on the unit circle, starting at γ(0) = 1, in the upward
vertical direction γ′(0) = i. Thus the path from t0 = 0 to t travels a distance

(3.7.75) ℓ(t) =

∫ t

0

|γ′(s)| ds = t,

for t > 0. Now the ray from the origin 0 ∈ C to 1 meets the ray from 0 to γ(t) at
an angle which, measured in radians, is ℓ(t) = t. See Figure 3.7.1

Having this geometrical information on the curve γ(t), we bring in the basic
trigonometric functions sine and cosine. By definition, if t is the angle between the
two rays described above, and if we write γ(t) in terms of its real and imaginary
parts as γ(t) = c(t) + is(t), then

(3.7.76) cos t = c(t), sin t = s(t).

We have arrived at the important conclusion that

(3.7.77) eit = cos t+ i sin t,

which is known as Euler’s formula.
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Figure 3.7.1. The circle eit = c(t) + is(t)

Exercises

1. Given A ∈ C, b : R → C continuous, show that the solution to

dy

dt
= Ay + b(t), y(0) = y0,

is given by the following, called Duhamel’s formula:

y(t) = eAty0 + eAt

∫ t

0

e−Asb(s) ds.

Hint. Show that an equivalent differential equation for z(t) = e−Aty(t) is

dz

dt
= e−Atb(t), z(0) = y0.

2. Show that the result of Exercise 1 continues to hold in the setting

A ∈M(n,C), y0 ∈ Cn, b : R → Cn,

and one solves for y : R → Cn.
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3. Suppose vj(t) are Cn-valued polynomials, λ1, . . . , λk ∈ C are distinct, and

eλ1tv1(t) + · · ·+ eλktvk(t) ≡ 0.

Show that vj(t) ≡ 0 for each j ∈ {1, . . . , k}.

4. Examining the proof of Proposition 3.7.2, show that if A ∈M(n,C) is the upper
triangular matrix (3.7.51), then

etA =

e11(t) · · · e1n(t)
. . .

...
enn(t)

 , ejj(t) = etajj .

4A. Here is another approach to the conclusion of Exercise 4. Suppose A and
B ∈ M(n,C) are upper triangular, with A as in (3.7.51) and B of a similar form,
with ajk replaced by bjk. Show that C = AB is upper triangular, with diagonal
entries

cjj = ajjbjj .

Deduce that, for n ∈ N, An is upper triangular, with diagonal entries anjj . Shoe
that the conclusion of Exercise 4 follows from this.

5. Show that if A ∈M(n,C), then
det etA = et TrA.

Hint. Show that this follows from Exercise 4 (or 4A) if A is upper triangular. Then
show that it holds when A is similar to an upper triangular matrix.

6. Show that the identities
d

dt
cos t = − sin t,

d

dt
sin t = cos t

follow from (3.7.77) and (3.7.73).

7. Show that

J =

(
0 −1
1 0

)
=⇒ etJ =

(
cos t − sin t
sin t cos t

)
.

Equivalently,
etJ = (cos t)I + (sin t)J.

Relate this to Euler’s formula.

8. Show that

A =

(
0 1
1 0

)
=⇒ etA =

(
cosh t sinh t
sinh t cosh t

)
.

9. Show that, for A ∈M(n,C),

etA
∗
= (etA)∗, ∀ t ∈ R.

Note that this generalizes (3.7.71).
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10. Show that

A ∈M(n,R), A∗ = −A =⇒ etA ∈ SO(n), ∀ t ∈ R,

and

A ∈M(n,C), A∗ = −A =⇒ etA ∈ U(n), ∀ t ∈ R.
Note that this generalizes (3.7.72).

11. Let x : R → C solve the nth order ODE

x(n)(t) + an−1x
(n−1)(t) + · · ·+ a1x

′(t) + a0x(t) = 0.

Convert this to a first order n× n system for y : R → Cn, with

y(t) = (y0(t), . . . , yn−1(t))
t, yj(t) = x(j)(t).

Show that y(t) solves
dy

dt
= Ay,

where

A =


0 1 · · · 0 0
0 0 · · · 0 0
...
0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1

 ,

the companion matrix for the polynomial p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

introduced in (2.3.20).
Remark. x(t) = eλt solves the nth order ODE above if and only if p(λ) = 0,
which, by Proposition 2.3.4, is equivalent to det(λI −A) = 0.

12. Let B = λjI + N be a “Jordan block,” as in (2.4.1). Assume B ∈ M(k,C).
Show that

etB = eλjt
k−1∑
ℓ=0

tℓ

ℓ!
N ℓ.

13. If p(λ) = λn + an−1λ
n−1 + · · · + a0, and if λj is a root of p(λ) of multiplicity

kj , show that the nth order ODE introduced in Exercise 11 has solutions

tℓeλjt, 0 ≤ ℓ ≤ kj − 1.

Deduce that the Jordan normal form for the companion matrix A to p(λ), described
in Exercise 11, has just one Jordan block of the form (2.4.1), and it is a kj × kj
matrix.

14. Establish the following converse to Proposition 3.7.1.

Proposition 3.7.6. Given A,B ∈M(n,C),

et(A+B) = etAetB ∀ t ∈ R =⇒ AB = BA.
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Hint. Apply d/dt to both sides and deduce that the hypothesis implies

(A+B)et(A+B) = AetAetB + etABetB , ∀ t ∈ R.
Replacing et(A+B) by etAetB on the left, deduce that

BetA = etAB, ∀ t ∈ R.
Apply d/dt again, and set t = 0.

15. Take the following route to proving (3.7.24). Set

Z(s) = esBAe−sB .

Show that
AB = BA =⇒ Z ′(s) ≡ 0

=⇒ Z(s) ≡ A.

Deduce (3.7.24) from this (avoiding (3.7.23)).

16. Compute etA, etB , and etC in the following cases.

A =

(
1 1
0 2

)
, B =

(
1 1
0 1

)
, C =

1 1 1
1 1

2

 .
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3.8. The discrete Fourier transform

Here we look at a number of important linear transformations that arise on the
space of functions f : Z → C that are periodic, say of period n. It is convenient to
re-cast this function space as follows. We form

(3.8.1) Z/(n),

the set of equivalence classes of integers, “mod n,” where the equivalence relation
is

(3.8.2) j ∼ j′ ⇐⇒ j − j′

n
∈ Z.

Note that each integer j ∈ Z is equivalent to exactly one element of the set
{0, 1, . . . , n− 1}. We then form the vector space

(3.8.3) ℓ2(Z/(n)) = set of functions f : Z/(n) → C,

which we endow with the inner product

(3.8.4)

(f, g) =
1

n

∑
k∈Z/(n)

f(k)g(k)

=
1

n

n−1∑
k=0

f(k)g(k).

This is a complex inner product space. We will also be interested in the real vector
space,

(3.8.5) ℓ2R(Z/(n)) = set of functions f : Z/(n) → R,

with the same sort of inner product.

Special operators on these spaces arise from the fact that addition is well defined
on Z/(n):

(3.8.6) j, k ∈ Z/(n) =⇒ j + k ∈ Z/(n),

which follows from the observation that

(3.8.7) j ∼ j′, k ∼ k′ =⇒ j + k ∼ j′ + k′.

In particular, we have the translation operator

(3.8.8) Tf(k) = f(k + 1),

acting as a unitary operator on ℓ2(Z/(n)), and as an orthogonal operator on
ℓ2R(z/(n)). Thus ℓ2(Z/(n)) has an orthonormal basis of eigenvectors for T , which
we proceed to find.

Note that

(3.8.9) Tn = I,

so each eigenvalue of T is an element of

(3.8.10) {ωj : 0 ≤ j ≤ n− 1}, where ω = e2πi/n.

Note that an element ej ∈ ℓ2(Z/(n)) is an ωj-eigenvector if and only if

(3.8.11) ej(k) = T kej(0) = ωjkej(0),
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so setting ej(0) = 1 gives

(3.8.12) ej(k) = ωjk.

We have

(3.8.13) ej ∈ E(T, ωj), ∥ej∥2 =
1

n

n−1∑
k=0

|ωjk|2 = 1,

so our desired orthonormal basis of eigenvectors of T is

(3.8.14) {ej : 0 ≤ j ≤ n− 1}.
Note that

(3.8.15) j ∼ j′ =⇒ ωj = ωj′ ,

so we can also write this set as

(3.8.16) {ej : j ∈ Z/(n)}.
As a direct check on orthogonality, note that

(3.8.17) (ej , eℓ) =
1

n

∑
k∈Z/(n)

ω(j−ℓ)k,

and

(3.8.18)

ωm
∑

k∈Z/(n)

ωmk =
∑

k∈Z/(n)

ωm(k+1)

=
∑

k∈Z/(n)

ωmk,

since k + 1 runs once over Z/(n) when k does. We see that ωm ̸= 1 implies this
sum vanishes, hence if j ̸= ℓ in Z/(n), then the inner product (3.8.17) vanishes.

Using the orthonormal basis (3.8.16), we can write each f ∈ ℓ2(Z/(n)) as

(3.8.19) f =
∑

j∈Z/(n)

f̂(j)ej ,

where

(3.8.20) f̂(j) = (f, ej) =
1

n

∑
ℓ∈Z/(n)

f(ℓ)ω−jℓ.

Thus, for k ∈ Z/(n),

(3.8.21) f(k) =
∑

ℓ∈Z/(n)

f̂(j)ωjk.

This yields the discrete Fourier transform (or DFT)

(3.8.22) F : ℓ2(Z/(n)) −→ ℓ2(Z/(n)),
as

(3.8.23) Ff(k) = f̂(k).

By orthonormality of the basis {ej}, we have

(3.8.24) ∥f∥2 =
∑

j∈Z/(n)

|f̂(j)|2,
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hence

(3.8.25) ∥Ff∥2 =
1

n
∥f∥2,

i.e., n1/2F is a unitary operator on ℓ2(Z/(n)). The identity (3.8.21), which we call
the discrete Fourier inversion formula, is equivalent to

(3.8.26) F−1 = nF∗.

Another important operation on functions on Z/(n) is the convolution, defined
by

(3.8.27) f ∗ g(k) = 1

n

∑
ℓ∈Z/(n)

f(ℓ)g(k − ℓ).

We can compute the Fourier transform of f ∗ g as follows:

(3.8.28)

f̂ ∗ g(j) = 1

n

∑
k

(f ∗ g)(k)ω−jk

=
1

n2

∑
k,ℓ

f(ℓ)g(k − ℓ)ω−jk

=
1

n2

∑
k,ℓ

f(ℓ)ω−jℓg(k − ℓ)ω−j(k−ℓ),

and deduce that

(3.8.29) f̂ ∗ g(j) = f̂(j)ĝ(j).

One consequence is that

(3.8.30)

∥f ∗ g∥2 =
∑
j

|f̂ ∗ g(j)|2

=
∑
j

|f̂(j)ĝ(j)|2,

which implies

(3.8.31) ∥f ∗ g∥ ≤
(
max

j
|f̂(j)|

)
∥g∥.

The convolution product on functions on Z/(n) has many applications to prob-
lems in differential equations, in concert with the process of discretization. We refer
to Chapter 3 of [12] for a discussion of this. Here we look as another application,
involving multiplying polynomials. Say you have two polynomials of degree m− 1,

(3.8.32) p(z) =

m−1∑
j=0

ajz
j , q(z) =

m−1∑
j=0

bjz
j .
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Then

(3.8.33)

p(z)q(z) =

m−1∑
j,ℓ=0

ajbℓz
j+ℓ

=

2m−2∑
k=0

m−1∑
j=0

ajbk−jz
k.

Here we take n = 2m and regard a(j) = aj and b(j) = bj as functions on Z/(n)
that vanish outside {0, . . . ,m− 1}. Then

(3.8.34) p(z)q(z) = n

n−2∑
k=0

(a ∗ b)(k) zk,

where a ∗ b is the convolution of two functions on Z/(n). Since F : ℓ2(Z/(n)) →
ℓ2(Z/(n)) gives

(3.8.35) F(a ∗ b) = (Fa)(Fb),

we have

(3.8.36)
a ∗ b = F−1

(
(Fa)(Fb)

)
= nF∗((Fa)(Fb)).

A straightforward calculation of a ∗ b involves approximately m2 multiplications
and a comparable number of additions. If m = 1000, this adds up. If one has in
hand Fa and Fb, forming the product (Fa)(Fb) as a function on Z/(n) takes just n
multiplications. This leaves one with the problem of how many operations it takes
to compute Ff , for f ∈ ℓ2(Z/(n)). There is a “fast” way of doing this, which we
take up shortly.

First we mention an application of (3.8.34)–(3.8.26) to the “fast multiplication”
of large integers. Suppose p and q are 1024-digit integers:

(3.8.37) p =

m−1∑
j=0

aj10
j , q =

m−1∑
j=0

bj10
j , m = 210, 0 ≤ aj , bj ≤ 9.

Then (3.8.34) gives

(3.8.38) pq = n

2046∑
k=0

(a ∗ b)(k) 10k, n = 211,

with a ∗ b given by convolution on Z/(n), n = 211, satisfying (3.8.36). The FFT
described below leads to an efficient evaluation of a ∗ b on Z/(211). This does not
quite give the decimal representation of pq as a 2048-digit integer, since we only
know that

(3.8.39) 0 ≤ n(a ∗ b)(k) < 100 · 211.

However, a straightforward process of “carrying” yields from (3.8.38) a representa-
tion

(3.8.40) pq =

n−1∑
k=0

ck10
k, 0 ≤ ck ≤ 9, n = 211.
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The Fast Fourier Transform

We turn to the issue of providing an efficient evaluation of the Fourier transform
of a function f on Z/(n), which, recall, is given by

(3.8.41) f̂(j) =
1

n

∑
ℓ∈Z/(n)

f(ℓ)ω−jℓ, ω = e2πi/n.

For each fixed j, computing the right side of (3.8.41) involves n−1 additions and n
multiplications of complex numbers, plus n integer products jℓ = m and loooking
up ω−m and f(ℓ). If the computations for varying j are done independently, the
total effort to compute Ff involves n2 multiplications and n(n − 1) additions of
complex numbers, plus some further operations. The Fast Fourier Transform (or
FFT) is a method for computing Ff in Cn(log n) steps, when n is a power of 2.

The possibility of doing this arises from observing redundancies in the calcu-

lation of the Fourier coefficients f̂(j). To illustrate this in the case of functions on
Z/(4), we write

(3.8.42)
4f̂(0) = [f(0) + f(2)] + [f(1) + f(3)],

4f̂(2) = [f(0) + f(2)]− [f(1) + f(2)],

and

(3.8.43)
4f̂(1) = [f(0)− f(2)]− i[f(1)− f(3)],

4f̂(3) = [f(0)− f(2)] + i[f(1)− f(3)].

Note that each term in square brackets appears twice. Furthermore, (3.8.42) gives
the Fourier coefficients of a function on Z/(2). In fact, if

(3.8.44) f0(0) = f(0) + f(1), f0(1) = f(1) + f(3),

then

(3.8.45) 2f̂(2j) = f̂0(j), for j = 0 or 1.

Similarly, if we set

(3.8.46) f1(0) = f(0)− f(2), f1(1) = −i[f(1)− f(3)],

then

(3.8.47) 2f̂(2j + 1) = f̂1(j), for j = 0 or 1.

This phenomenon is a special case of a more general result, which leads to a fast
inductive procedure for evaluating Ff .

To proceed, assume n = 2k, and set

(3.8.48) Gk = Z/(n), n = 2k.

Given f : Gk → C, define the functions

(3.8.49) f0, f1 : Gk−1 −→ C
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by

f0(ℓ) = f(ℓ) + f(ℓ+ n/2),(3.8.50)

f1(ℓ) = ω−ℓ[f(ℓ)− f(ℓ+ n/2)], ω = e2πi/n.(3.8.51)

Note that the factor ω−ℓ in (3.8.51) makes f1(ℓ) well defined for ℓ ∈ Gk−1, i.e., the
right side of (3.8.51) is unchanged if ℓ is replaced by ℓ+ n/2. In other words,

(3.8.52) f ∈ ℓ2(Gk) yields f0, f1 ∈ ℓ2(Gk−1),

hence

(3.8.53) Ff ∈ ℓ2(Gk), and Ff0, Ff1 ∈ ℓ2(Gk−1).

The following result extends (3.8.42)–(3.8.43).

Proposition 3.8.1. Given f ∈ ℓ2(Gk), we have the following identities relating
the Fourier transforms of f0, f1, and f :

(3.8.54) 2f̂(2j) = f̂0(j),

and

(3.8.55) 2f̂(2j + 1) = f̂1(j),

for j ∈ {0, 1, . . . , 2k−1 − 1}.

Proof. Note that f̂0(j) and f̂1(j) are given by a formula parallel to (3.8.41), with
Z/(n) = Gk replaced by Gk−1 and ω replaced by ω2. Hence

(3.8.56)

nf̂(2j) =

2k−1∑
ℓ=0

f(ℓ)ω−2jℓ

=

2k−1−1∑
ℓ=0

[f(ℓ) + f(ℓ+ 2k−1)](ω2)−jℓ,

giving (3.8.54). Next, since ωn/2 = −1,

(3.8.57)

nf̂(2j + 1) =

2k−1∑
ℓ=0

f(ℓ)ω−ℓω−2jℓ

=

2k−1−1∑
ℓ=0

ω−ℓ[f(ℓ)− f(ℓ+ 2k−1)]ω−2jℓ,

giving (3.8.55). �

Thus the problem of computing Ff , given f ∈ ℓ2(Gk), is transformed after
n/2 multiplications and n additions of complex numbers in (3.8.50)–(3.8.51) to the
problem of computing the Fourier transforms of two functions on Gk−1. After n/4
new new multiplications and n/2 new additions for each of these functions f0 and
f1, i.e., after an additional total of n/2 new multiplications and n additions, this is
reduced to the problem of computing four Fourier transforms of functions on Gk−2.
After k iterations, we obtain 2k = n functions on G0 = Z/(1) = {0}, at which point
we have the Fourier coefficients of f . Doing this takes

kn = (log2 n)n additions and 1
2kn = 1

2 (log2 n)n multiplications
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of complex numbers, plus a comparable number of integer operations and fetching
from memory values of given or previously computed functions.

To describe explicitly this inductive procedure, it is convenient to bring in some
notation. To each j ∈ Z/(n), n = 2k, we assign the unique k-tuple

(3.8.58) J = (J1, J2, . . . , Jk)

of elements of {0, 1} such that

(3.8.59) J1 + J2 · 2 + · · ·+ Jk · 2k−1 = j mod n,

and set

(3.8.60) f#(J) = f̂(j).

Then the formulas (3.8.54)–(3.8.55) state that

(3.8.61)
2f#(0, J2, . . . , Jk) = f#0 (J2, . . . , Jk),

2f#(1, J2, . . . , Jk) = f#1 (J2, . . . , Jk).

The inductive procedure described above gives, from f0 and f1, defined on Gk−1,
the functions

(3.8.62) f00 = (f0)0, f01 = (f0)1, f10 = (f1)0, f11 = (f1)1,

defined on Gk−2, and so forth. We see from (3.8.60)–(3.8.61) that

(3.8.63) f̂(j) =
1

n
f#J (0) =

1

n
fJ(0).

From (3.8.50)–(3.8.51) we have an inductive formula for

(3.8.64) fJ1···JmJm+1
: Gk−m−1 −→ C,

given by

(3.8.65)
fJ1···Jm0(ℓ) = fJ1···Jm(ℓ) + fJ1···Jm(ℓ+ 2k−m−1),

fJ1···Jm1(ℓ) = ω−ℓ
m

[
fJ1···Jm(ℓ)− fJ1···Jm(ℓ+ 2k−m−1)

]
,

where ωm is defined by ω0 = ω = e2πi/n (n = 2k), ωm−1 = ω2
m, i.e.,

(3.8.66) ωm = ω2m .

For the purpose of implementing this procedure in a computer program, it is
perhaps easier to work with integers j than with m-tuples (J1, . . . , Jm). Therefore,
let us set

(3.8.67) Fm(j + 2mℓ) = fJ1···Jm(ℓ),

where

(3.8.68) j = J1 + J2 · 2 + · · ·+ Jm · 2m−1 ∈ {0, 1, . . . , 2m − 1},

and

(3.8.69) ℓ ∈ {0, 1, . . . , 2k−m − 1}.

This defines Fm on {0, 1, . . . , 2k − 1}. For m = 0, we have

(3.8.70) F0(ℓ) = f(ℓ), 0 ≤ ℓ ≤ 2k − 1.
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The iterative formulas in (3.8.65) translate to

(3.8.71)
Fm+1(j + 2m+1ℓ) = Fm(j + 2mℓ) + Fm(j + 2mℓ+ 2k−1),

Fm+1(j + 2m + 2m+1ℓ) = ω−ℓ
m

[
Fm(j + 2mℓ)− Fm(j + 2mℓ+ 2k−1)

]
,

for

(3.8.72) 0 ≤ ℓ ≤ 2k−m−1 − 1, 0 ≤ j ≤ 2m − 1.

The formula (3.8.63) for f̂ becomes

(3.8.73) f̂(j) =
1

n
Fk(j), 0 ≤ j ≤ 2k − 1.

Real DFT

We can construct an orthonormal basis for ℓ2R(Z/(n)) by taking the real and
imaginary parts of the elements ej ∈ ℓ2(Z/(n)). Let us set

(3.8.74) ej = cj + isj ,

where

(3.8.75)
cj(k) = Re e2πijk/n = cos

2π

n
jk,

sj(k) = Im e2πijk/n = sin
2π

n
jk.

Note that s0 ≡ 0 and, if n is even sn/2 ≡ 0. Otherwise, since Tej = ωjej and

ωj ̸= ω−j , ej ⊥ e−j in ℓ2(Z/(n)), so

(3.8.76)
0 = (cj + isj , cj − isj)

= ∥cj∥2 − ∥sj∥2 + 2i(cj , sj),

and we have

(3.8.77) ∥cj∥2 = ∥sj∥2 =
1

2
, cj ⊥ sj , for 0 < j <

n

2
.

If also 0 < k < n/2 and j ̸= k, we have ej orthogonal to ek and to e−k, hence to ck
and to sk. This yields the following.

Proposition 3.8.2. An orthonormal basis of ℓ2R(Z/(n)) is given by the following
set of vectors:

(3.8.78) e0 ≡ 1,
√
2cj ,

√
2sj , 1 ≤ j <

n

2
,

together with

(3.8.79) en/2,

if n is even.

Note that, if n is even

(3.8.80) en/2(k) = e2πik(n/2)/n = eπik = (−1)k.
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Computations such as done in Proposition 3.4.4 exhibit the behavior of T on
this basis. Let us set

(3.8.81)
ωj = αj + βj

= cos
2π

n
j + i sin

2π

n
j.

Then the identity Tej = ωjej yields

(3.8.82) Tcj + iTsj = (αj + iβj)(cj + isj),

hence

(3.8.83)
Tcj = αjcj − βjsj ,

T sj = βjcj + αjsj ,

a set of identities completed by

(3.8.84) Te0 = e0,

and, if n is even,

(3.8.85) Ten/2 = −en/2.

We now take the Fourier transform F on ℓ2(Z/(n)) and produce a pair of
transforms

(3.8.86) Fc, Fs : ℓ
2
R(Z/(n)) −→ ℓ2R(Z/(n)),

as follows. If f is real valued, we split f̂(j) into its real and imaginary parts,

(3.8.87) f̂(j) = f̂c(j) + if̂s(j),

where

(3.8.88)

f̂c(j) = (f, cj) =
1

n

∑
k∈Z/(n)

f(k) cos
2π

n
jk,

f̂s(j) = −(f, sj) = − 1

n

∑
k∈Z/(n)

f(k) sin
2π

n
jk.

Note that

(3.8.89) f real =⇒ f̂(−j) = f̂(j),

so, as in Proposition 3.8.2, we use (3.8.87)–(3.8.88) for 1 ≤ j < n/2. We also have

(3.8.90) f̂c(0) = (f, e0) =
1

n

∑
k∈Z/(n)

f(k),

and, if n is even,

(3.8.91) f̂c

(n
2

)
= (f, en/2) =

1

n

∑
k∈Z/(n)

(−1)kf(k).

We set f̂s(j) = 0 for j = 0 and (if n is even) for j = n/2. Then Fc and Fs in
(3.8.86) are defined by

(3.8.92) Fcf(j) = f̂c(j), Fsf(j) = f̂s(j).
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In light of Proposition 3.8.2, we have

(3.8.93) ∥f∥2 = |f̂c(0)|2 + 2
∑

1≤j<n/2

{
|f̂c(j)|2 + f̂s(j)|2

}
,

plus |f̂c(n/2)|2 if n is even.

We next examine how the convolution operator Cf , given by

(3.8.94) Cfg = f ∗ g,
behaves on the basis (3.8.78)–(3.8.79), when f is real valued. This follows from the
readily established identity

(3.8.95) Cfej = f̂(j)ej ,

valid for complex valued f (and essentially equivalent to (3.8.29)). Writing ej as in

(3.8.74) and f̂(j) as in (3.8.87), we have

(3.8.96) Cfcj + iCfsj = (f̂c(j) + if̂s(j))(cj + isj),

hence

(3.8.97)
Cfcj = f̂c(j)cj − f̂s(j)sj ,

Cfsj = f̂s(j)cj + f̂c(j)sj .
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Exercises

1. Define δj ∈ ℓ2(Z/(n)) by
δj(k) = 1, if j = k in Z/(n),

0, otherwise.

Show that, for all g ∈ ℓ2(Z/(n)),

g =
∑
j

g(j)δj =
∑
j

g(j)T−jδ0.

2. Show that
f ∗ g = g ∗ f =

∑
j

g(j)T−jf.

3. Given Cfg = f ∗ g, show that Cf commutes with T .

4. Assume S : ℓ2(Z/(n)) → ℓ2(Z/(n)) commutes with T . Show that

Sg = Cfg, for f = Sδ0.

5. Given f, g ∈ ℓ2R(Z/(n)), show that

Fc(f ∗ g)(j) = f̂c(j)ĝc(j)− f̂s(j)ĝs(j),

Fs(f ∗ g)(j) = f̂c(j)ĝs(j) + f̂s(j)ĝc(j).

Hint. Use F(f ∗ g)(j) = f̂(j)ĝ(j), together with

f̂(j) = f̂c(j) + if̂s(j),

etc.

In exercises below, we define multiplication operators Mu on ℓ2(Z/(n)) by
Muf(k) = u(k)f(k).

6. Show that
FCf =Mf̂F , FT =Me1F ,

where e1(j) = ωj . These identities are called intertwining relations.

7. Define forward and backward difference operator on ℓ2(Z/(n)) by
∂+f(k) = f(k + 1)− f(k), ∂−f(k) = f(k)− f(k − 1).

Show that
∂+ = T − I, ∂− = I − T−1, ∂∗+ = −∂−,

and that
F∂+ =Me1−1F , F∂− =M1−e1F .
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8. Set
∆ = ∂+∂−.

Show that
∆ = T − 2I + T−1,

and
F∆ = −M|ξ|2F ,

where

ξ(j) = ωj − 1, |ξ(j)|2 = 2
(
1− cos

2π

n
j
)
.

9. Define J on ℓ2(Z/(n)) by
J f(k) = f(−k).

Show that
F∗ = JF = FJ ,

and deduce via (3.8.26) that
F2 = n−1J .

10. Define the unitary operator Φ on ℓ2(Z/(n)) by

Φ = n1/2F .
Show that the various intertwining relations in Exercises 6–8 hold with F replaced
by Φ, and that

Φ2 = J , Φ4 = I.

11. Show that
∆ = −Φ−1M|ξ|2Φ.

12. Let
H = −∆+M|ξ|2 .

Show that
ΦHΦ−1 = H.

Hint. Reduce this to showing that

Φ2M|ξ|2 =M|ξ|2Φ
2,

i.e., JM|ξ|2 =M|ξ|2J .



Chapter 4

Further basic concepts:
duality, convexity, positivity

This chapter takes up four topics that are basic to linear algebra at the level we have
reached so far. Two of them, duality and quotient spaces, will play an important
role in the next chapter. The other two, convexity and positivity, are presented for
their intrinsic interest, with pointers to further literature on their applications.

Section 4.1 deals with duality. If V is a vector space over F, its dual, denoted
V ′, consists of linear maps from V to F; in other words, V ′ = L(V,F). We denote
the dual pairing by

(4.0.1) ⟨v, w⟩, v ∈ V, w ∈ V ′.

If dimV = n and {e1, . . . , en} is a basis of V , then V ′ has a basis {ε1, . . . , εn},
called the dual basis, satisfying

(4.0.2) ⟨ej , εk⟩ = δjk, 1 ≤ j, k ≤ n.

Also, if A ∈ L(V,W ), we have the transpose At ∈ L(W ′, V ′), satisfying

(4.0.3) ⟨Av,w⟩ = ⟨v,Atw⟩, v ∈ V, w ∈W ′.

Section 4.2 treats convex sets. If V is a vector space, a subset K ⊂ V is convex
provided that, for each x, y ∈ K, tx + (1 − t)y ∈ K for all t ∈ [0, 1], that is to
say, the line segment from x to y is contained in K. We concentrate on convex
sets that are closed and bounded, and assume dimV <∞. One result is that K is
equal to the intersection of all half-spaces that contain it. Another result involves
extreme points, i.e., points p ∈ K that must be an endpoint of each line segment in
K containing p. It is shown that whenever dimV <∞ and K ⊂ V is a convex set
that is closed and bounded, then each point in K is a limit of a sequence of convex
combinations of extreme points of K (we say K is the closed convex hull of the set
of extreme points).

Section 4.3 treats quotient spaces. If V is a vector space and W a linear
subspace, the quotient V/W consists of equivalence classes of elements of V , where

153
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we say v ∼ v′ ⇔ v − v′ ∈ W . The quotient V/W has the structure of a vector
space. When dimV <∞, we have

(4.0.4) dimV/W = dimV − dimW.

It is shown that if T ∈ L(V,X), then

(4.0.5) R(T ) ≈ V/N (T ).

Together, (4.0.4)–(4.0.5) imply the fundamental theorem of linear algebra, from
§1.3. Another result established in §4.3 is the isomorphism

(4.0.6) (V/W )′ ≈W⊥,

where, when W ⊂ V is a linear subspace,

(4.0.7) W⊥ = {v ∈ V ′ : ⟨w, v⟩ = 0, ∀w ∈W}.

Section 4.4 treats a class of matrices A ∈ M(n,R) whose entries ajk are all
≥ 0, i.e., positive matrices. We say A is strictly positive if each ajk > 0. We say a
positive matrix A is primitive if some power Ak is strictly positive, and we say it
is irreducible if

(4.0.8) A+
1

2
A2 +

1

3!
A3 + · · · is strictly positive.

A key result called the Perron-Frobenius theorem shows that if A is positive and
irreducible, then there exist

(4.0.9) λ > 0, v ∈ Rn strictly positive, such that Av = λv,

where to say v = (v1, . . . , vn)
t is strictly positive is to say each vj > 0. Under such

conditions, the adjoint At is also positive and irreducible, and one has

(4.0.10) µ > 0, w ∈ Rn strictly positive, such that Atw = µw,

and in fact

(4.0.11) µ = λ.

Of particular interest are positive matrices A whose rows all sum to 1. These
are called stochastic matrices, and (4.0.9) holds with λ = 1, v = 1 = (1, . . . , 1)t. If
such A is irreducible, then one has (4.0.10)–(4.0.11), so

(4.0.12) Atp = p, p ∈ Rn, strictly positive.

We can normalize p so that its components sum to 1 (i.e., p · 1 = 1), and regard
p as an invariant probability distribution on the set {1, . . . , n}. A further result
established in §4.4 is that if A is a primitive stochastic matrix, then

(4.0.13) Ak −→ P, as k → ∞,

where P ∈M(n,R) is a projection, given by

(4.0.14) P = 1pt.

Hence also (At)k → Pt = p1t.

Another topic treated in §4.4 is the notion of a Markov semigroup, which is a
set of matrices of the form

(4.0.15) {etX : t ≥ 0}, X ∈M(n,R),
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such that etX is a stochastic matrix for each t ≥ 0. We characterize exactly which
X ∈M(n,R) give rise to such a Markov semigroup.
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4.1. Dual spaces

If V is an n-dimensional vector space over F (R or C), its dual space V ′ is defined
to be the space of linear transformations

(4.1.1) w : V −→ F.
We often use the notation

(4.1.2) w(v) = ⟨v, w⟩, v ∈ V, w ∈ V ′,

to denote this action. The space V ′ is a vector space, with vector operations

(4.1.3) ⟨v, w1 + w2⟩ = ⟨v, w1⟩+ ⟨v, w2⟩, ⟨v, aw⟩ = a⟨v, w⟩.
If {e1, . . . , en} is a basis of V , then an element w ∈ V ′ is uniquely determined by
its action on these basis elements:

(4.1.4) ⟨a1e1 + · · ·+ anen, w⟩ =
∑

ajwj , wj = ⟨ej , w⟩.

Note that we can write

(4.1.5) w =

n∑
j=1

wjεj ,

where εj ∈ V ′ is determined by

(4.1.6) ⟨ej , εk⟩ = δjk,

where δjk = 1 if j = k, 0 otherwise. It follows that each w ∈ V ′ is written uniquely
as a linear combination of {ε1, . . . , εn}. Hence

(4.1.7) {ε1, . . . , εn} is a basis of V ′.

We say {ε1, . . . , εn} is the dual basis to {e1, . . . , en}. It also follows that

(4.1.8) dimV = n =⇒ dimV ′ = n.

Note that, not only is (4.1.2) linear in v ∈ V for each w ∈ V ′, it is also linear
in w ∈ V ′ for each v ∈ V . This produces a natural map

(4.1.9) j : V −→ (V ′)′.

Proposition 4.1.1. If dimV <∞, the map j in (4.1.9) is an isomorphism.

Proof. This follows readily from the material (4.1.4)–(4.1.8), as the reader can
verify. �

Remark. If dimV = ∞, it still follows that j in (4.1.9) is injective, though we do
not show this here. However, j is typically not surjective in such a case. In the rest
of this section, we assume all vector spaces under discussion are finite dimensional.

Remark. Given {ε1, . . . , εn} in (4.1.5)–(4.1.7) as the basis of V ′ dual to {e1, . . . , en},
its dual basis in turn is

(4.1.10) {e1, . . . , en},
under the identification

(4.1.11) V ≈ (V ′)′
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of Proposition 4.1.1.

We turn to associating to a linear map A : V → W between two finite dimen-
sional vector spaces the transpose,

(4.1.12) At :W ′ −→ V ′,

defined by

(4.1.13) ⟨v,Atω⟩ = ⟨Av, ω⟩, v ∈ V, ω ∈W ′.

It is readily verified that, under (4.1.11) and its counterpart (W ′)′ ≈W ,

(4.1.14) (At)t = A.

If also B :W → X, with transpose Bt : X ′ →W ′, then

(4.1.15) (BA)t = AtBt.



158 4. Further basic concepts: duality, convexity, positivity

Exercises

1. Show that if dimV <∞ and A ∈ L(V ), with transpose At ∈ L(V ′), then A and
At have the same characteristic polynomial and the same minimal polynomial,

SpecAt = SpecA, dim E(At, λ) = dim E(A, λ),
and dimGE(At, λ) = dimGE(A, λ).

2. Express the relation between the matrix representation of A ∈ L(V ) with respect
to a basis of V and the matrix representation of At with respect to the dual basis
of V ′.

3. Let Pn denote the space of polynomials in x of degree ≤ n. Consider the subset
{ψ0, ψ1, . . . , ψn} of P ′

n defined by

⟨p, ψk⟩ = p(k).

Show that this is a basis of P ′
n. Exhibit the dual basis (of Pn).

Hint. See the results on the Lagrange interpolation formula, in Proposition 1.2.1.

4. Take the following basis {δk : 0 ≤ k ≤ n} of P ′
n,

⟨p, δk⟩ = p(k)(0).

Express {ψk} as a linear combination of {δk}, and vice-versa.
Hint. For one part, write down the power series expansion of p(x) about x = 0,
and then evaluate at x = k ∈ {0, . . . , n}. Show that this yields

ψk =

n∑
ℓ=0

kℓ

ℓ!
δℓ.

Relate the task of inverting this both to the Lagrange interpolation formula and to
material on the Vandermonde determinant.

5. Given the basis {qk(x) = xk : 0 ≤ k ≤ n} of Pn, express the dual basis
{εk : 0 ≤ k ≤ n} of P ′

n as a linear combination of {ψk}, described in Exercise 3,
and also as a linear combination of {δk}, described in Exercise 4.

6. If dimV <∞, show that the trace yields natural isomorphisms

L(V )′ ≈ L(V ), L(V )′ ≈ L(V ′),

via

⟨A,B⟩ = TrAB, A,B ∈ L(V ),

and

⟨A,C⟩ = TrACt, C ∈ L(V ′).

7. Let V be a real vector space, of dimension n. Show that there is a natural
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one-to-one correspondence (given by (u, v) = ⟨u, ι(v)⟩) between
(A) inner products on V (as discussed in §3.1)
(B) isomorphisms ι : V → V ′ having the property that ι coincides with

ιt : V −→ V ′,

where we identify V ′′ with V as in (4.1.9), and the property that

0 ̸= u ∈ V =⇒ ⟨u, ι(u)⟩ > 0.
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4.2. Convex sets

Here V will be a vector space over R, of dimension n. We assume V is an inner
product space. We could just put V = Rn, carrying the standard dot product, but
it is convenient to express matters in a more general setting.

A subset K ⊂ V is called convex if

(4.2.1) x, y ∈ K, 0 ≤ t ≤ 1 =⇒ tx+ (1− t)y ∈ K.

In other words, we require that if x and y are in K, then the line segment joining x
and y is also in K. We will mainly be interested in closed convex sets. A set S ⊂ V
is closed if, whenever xν ∈ S and xν → x (we say x is a limit point), then x ∈ S.
The closure S of a set S contains S and all its limit points. It readily follows that
if K ⊂ V is convex, so is K.

Here is a useful result about convex sets.

Proposition 4.2.1. If K ⊂ V is a nonempty, closed, convex set and p ∈ V \K,
then there is a unique point q ∈ K such that

(4.2.2) |q − p| = inf
x∈K

|x− p|.

Proof. The existence of such a distance minimizer follows from basic properties of
closed subsets of Rn; cf. Chapter 2 of [10]. As for the uniqueness, if p /∈ K and
q, q′ ∈ K satisfy

(4.2.3) |q − p| = |q′ − p|,
and if q ̸= q′, then one verifies that q̃ = (q + q′)/2 satisfies

(4.2.4) |q̃ − p| < |q − p|.
�

The uniqueness property actually characterizes convexity:

Proposition 4.2.2. Let K ⊂ V be a closed, nonempty set, with the property that,
for each p ∈ V \ K, there is a unique q ∈ K such that (4.2.2) holds. Then K is
convex.

Proof. If x, y ∈ K, t0 ∈ (0, 1), and t0x + (1 − t0)y /∈ K, one can find t1 ∈ (0, 1)
and p = t1x+ (1− t1)y /∈ K equidistant from two distinct points q and q′ realizing
(4.2.2). Details are left to the reader. �

Closed convex sets can be specified in terms of which half-spaces contain them.
A closed half-space in V is a subset of V of the form

(4.2.5) {x ∈ V : α(x) ≤ α0} for some α0 ∈ R, some nonzero α ∈ V ′.

Here is the basic result.

Proposition 4.2.3. Let K ⊂ V be a closed convex set, and let p ∈ V \K. Then
there exists a nonzero α ∈ V ′ and an α0 ∈ R such that

(4.2.6)
α(p) > α0, α(x) ≤ α0, ∀x ∈ K, and

α(q) = α0 for some q ∈ K.
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Figure 4.2.1. Convex set K and three supporting hyperplanes

Proof. Using Proposition 4.2.1, take q ∈ K such that (4.2.2) holds. Then let
α(x) = (x, p− q) (the inner product). Then one can verify that (4.2.6) holds, with
α0 = (q, p− q). �

Corollary 4.2.4. In the setting of Proposition 4.2.3, given p ∈ V \K, there exists
a closed half-space H, with boundary ∂H = L, such that

(4.2.7) p /∈ H, K ⊂ H, K ∩ L ̸= ∅.

Corollary 4.2.5. If K ⊂ V is a nonempty, closed, convex set, then K is the
intersection of the collection of all closed half-spaces containing K.

A set L = ∂H, where H is a closed half-space satisfying K ⊂ H, K ∩L ̸= ∅, is
called a supporting hyperplane of K. If K is a compact, convex set, one can pick
any nonzero α ∈ V ′, and consider

(4.2.8) L = {x ∈ V : α(x) = α0}, α0 = sup
x∈K

α(x).

Such L is a supporting hyperplane for K. See Figure 4.2.1 for an illustration of
supporting hyperplanes.

Extreme points
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Figure 4.2.2. Convex set K, and its extreme points, E

Let K ⊂ V be a closed, convex set. A point x ∈ K is said to be an extreme
point of K if it must be an endpoint of any line segment in K containing x. See
Figure 4.2.2 for an illustration. If K ⊂ V is a linear subspace, then K has no
extreme points. Our goal is to show that if K ⊂ V is a compact (i.e., closed and
bounded) convex subset of V , then it has lots of extreme points. We aim to prove
the following, a special case of a result known as the Krein-Milman theorem.

Proposition 4.2.6. Let K ⊂ V be a compact, convex set. Let E be the set of
extreme points of K, and let F be the closed, convex hull of E, i.e., the closure of
the set of points

(4.2.9)
∑

ajxj , xj ∈ E, aj ≥ 0,
∑

aj = 1.

Then F = K.

We first need to show that E ̸= ∅. The following will be a convenient tool.

Lemma 4.2.7. Let K ⊂ V be a compact, convex set, and let L = ∂H be a sup-
porting hyperplane (so K1 = K ∩ L ̸= ∅). If x1 ∈ K1 is an extreme point of K1,
then x1 is an extreme point of K.

Proof. Exercise. �
Lemma 4.2.8. In the setting of Lemma 4.2.7, each supporting hyperplane of K
contains an extreme point of K.
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Proof. We proceed by induction on the dimension n = dimV . The result is clear
for n = 1, which requires K to be a compact interval (or a point). Suppose such
a result is known to be true when n < N (N ≥ 2). Now assume dimV = N . Let
L = ∂H be a supporting hyperplane of K, so K1 = L ∩ K ̸= ∅. Translating, we
can arrange that 0 ∈ L, so L is a vector space and dimL = N − 1. Arguing as in
(4.2.8), there is a supporting hyperplane L1 = ∂H1 of K1, so K2 = K1 ∩ L1 ̸= ∅.
By induction, K1 has an extreme point in L1. By Lemma 4.2.7, such a point must
be an extreme point for K. �

Proof of Proposition 4.2.6. Under the hypotheses of Proposition 4.2.6, we know
now that E ̸= ∅ and F is a (nonempty) compact, convex subset of K. Suppose F
is a proper subset of K, so there exists p ∈ K, p /∈ F . By Proposition 4.2.3, with
F in place of K, there exists α ∈ V ′ and α0 ∈ R such that

(4.2.10) α(p) > α0, α(x) ≤ α0, ∀x ∈ F.

Now let

(4.2.11) α1 = sup
x∈K

α(x), L̃ = {x ∈ V : α(x) = α1}.

Then L̃ is a supporting hyperplane forK, so by Lemma 4.2.8, L̃ contains an extreme

point of K. However, since α1 > α0, L̃ ∩ F = ∅, so L̃ ∩ E = ∅. This is a
contradiction, so our hypothesis that F is a proper subset of K cannot work. This
proves Proposition 4.2.6. �
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Exercises

1. Let A : V → W be linear and let K ⊂ V be a compact, convex set, E ⊂ K its
set of extreme points. Show that A(K) ⊂ W is a compact, convex set and A(E)
contains the set of extreme points of A(K).

2. Let Σ ⊂ Sn−1 be a proper closed subset of the unit sphere Sn−1 ⊂ Rn, and let
K be the closed convex hull of Σ. Show that K must be a proper subset of the
closed unit ball B ⊂ Rn.

3. Let K1 and K2 be compact, convex subsets of V that are disjoint (K1∩K2 = ∅).
Show that there exists a hyperplane L = ∂H separating K1 and K2, so, e.g.,
K1 ⊂ H, K2 ⊂ V \H.
Hint. Pick p ∈ K1, q ∈ K2 to minimize distance. Let L pass through the midpoint
of the line segment γ from p to q and be orthogonal to this segment.

4. Let K be the subset of L(Rn) consisting of positive-semidefinite, symmetric
matrices A with operator norm ∥A∥ ≤ 1. Describe the set of extreme points of K,
as orthogonal projections.
Hint. Diagonalize.

5. Consider the following variant of Exercise 4. Let A ∈ L(Rn) be a symmetric
matrix, let A ⊂ L(Rn) be the linear span of I and the powers of A, and let K
consist of positive semi-definite matrices in A, of operator norm ≤ 1. Describe the
set of extreme points of K.
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4.3. Quotient spaces

Let V be a vector space over F (R or C), and let W ⊂ V be a linear subspace.
The quotient space V/W consists of equivalence classes of elements of V , where, for
v, v′ ∈ V ,

(4.3.1) v ∼ v′ ⇐⇒ v − v′ ∈W.

Given v ∈ V , we denote its equivalence class in V/W by [v]. Then V/W has the
structure of a vector space, with vector operations

(4.3.2) [v1] + [v2] = [v1 + v2], a[v] = [av],

given v, v1, v2 ∈ V, a ∈ F. These operations are well defined, since

(4.3.3) v1 ∼ v′1, v2 ∼ v′2 =⇒ v1 + v2 ∼ v′1 + v′2

and

(4.3.4) v ∼ v′ =⇒ av ∼ av′.

As seen in §1.3, if dimV = n < ∞ and W ⊂ V is a linear subspace, then
dimW = m ≤ n (and m < n unless W = V ). Furthermore, given any basis
{w1, . . . , wm} of W , there exist vm+1, . . . , vn ∈ V such that

(4.3.5) {w1, . . . , wm, vm+1, . . . , vn}

is a basis of V . It readily follows that

(4.3.6) {[vm+1], . . . , [vn]} is a basis of V/W,

so

(4.3.7) dimV/W = dimV − dimW,

if dimV <∞.

We denote the quotient map by Π:

(4.3.8) Π : V −→ V/W, Πv = [v].

This is a linear map. We have R(Π) = V/W and N (Π) =W .

Proposition 4.3.1. Take W ⊂ V as above and let X be a vector space and T :
V → X be a linear map. Assume N (T ) ⊃ W . Then there exists a unique linear
map S : V/W → X such that

(4.3.9) S ◦Π = T.

Proof. We need to take

(4.3.10) S[v] = Tv.

Now, under our hypotheses,

(4.3.11) v ∼ v′ ⇒ v − v′ ∈W ⇒ T (v − v′) = 0 ⇒ Tv = Tv′,

so (4.3.10) is well defined, and gives rise to (4.3.9). �

Proposition 4.3.2. In the setting of Proposition 4.3.1,

(4.3.12) N (S) = N (T )/W.
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Corollary 4.3.3. If T : V → X is a linear map, then

(4.3.13) R(T ) ≈ V/N (T ).

In case dimV < ∞, we can combine (4.3.13) and (4.3.7) to recover the result
that

(4.3.14) dimV − dimN (T ) = dimR(T ),

established in §1.3.
If W ⊂ V is a linear subspace, we set

(4.3.15) W⊥ = {α ∈ V ′ : ⟨w,α⟩ = 0, ∀w ∈W}.
Applying Proposition 4.3.1 with X = F, we see that to each α ∈ W⊥ there corre-
sponds a unique α̃ : V/W → F (i.e., α̃ ∈ (V/W )′) such that

(4.3.16) α̃ ◦Π = α.

The correspondence α 7→ α̃ is a linear map:

(4.3.17) γ :W⊥ −→ (V/W )′.

Note that if α ∈W⊥, then α̃ ∈ (V/W )′ is defined by

(4.3.18) ⟨[v], α̃⟩ = ⟨v, α⟩,
so α̃ = 0 ⇔ α = 0. Thus γ in (4.3.17) is injective. Conversely, given β : V/W → F,
we have β = γ(α) with α = β ◦Π, so γ in (4.3.17) is also surjective. To summarize,

Proposition 4.3.4. The map γ in (4.3.17) is an isomorphism:

(4.3.19) W⊥ ≈ (V/W )′.
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Exercises

1. Let P denote the space of all polynomials in x. Let

Q = {p ∈ P : p(1) = p(−1) = 0}.
Describe a basis of P/Q. What is its dimension?

2. Let Pn be the space of polynomials in x of degree ≤ n. Let En ⊂ Pn denote
the set of even polynomials of degree ≤ n. Describe a basis of Pn/En. What is its
dimension?

3. Do Exercise 2 with En replaced by On, the set of odd polynomials of degree ≤ n.

4. Let A ∈M(n,C) be self adjoint (A = A∗). Let A ⊂M(n,C) be the linear span
of I and the powers of A. Let

B = {B ∈M(n,C) : AB = BA}.
Note that A ⊂ B. Describe

B/A
in terms of the multiplicity of the eigenvalues of A.

5. Do Exercise 4, with the hypothesis that A = A∗ replaced by the hypothesis that
A is nilpotent. Describe B/A in terms of the Jordan normal form of A.
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4.4. Positive matrices and stochastic matrices

Let A be a real n× n matrix, i.e.,

(4.4.1) A = (ajk) ∈M(n,R).
We say A is positive if ajk ≥ 0 for each j, k ∈ {1, . . . , n}. There is a circle of
results about certain classes of positive matrices, known collectively as the Perron-
Frobenius theorem, which we aim to treat here. We start with definitions of these
various classes.

We say A is strictly positive if ajk > 0 for each such j, k. We say A is primitive
if some power Am is strictly positive. We say A is irreducible if, for each j, k ∈
{1, . . . , n}, there exists m = m(j, k) such that the (j, k) entry of Am is > 0. An
equivalent condition for a positive A to be irreducible is that

(4.4.2) B =

∞∑
k=1

1

k!
Ak = eA − I

is strictly positive. Clearly

(4.4.3) A strictly positive ⇒ A primitive ⇒ A irreducible.

An example of a positive matrix A that is irreducible but not primitive is

(4.4.4) A =

(
0 1
1 0

)
.

We will largely work under the hypothesis that A is positive and irreducible.

Here is another perspective. With v = (v1, . . . , vn)
t denoting an element of Rn,

let

(4.4.5) Cn
+ = {v ∈ Rn : vj ≥ 0, ∀ j},

◦
C

n

+ = {v ∈ Rn : vj > 0, ∀ j}.
One verifies that, for A ∈M(n,R),
(4.4.6) A positive ⇐⇒ A : Cn

+ → Cn
+.

Also, given A positive

(4.4.7) A irreducible =⇒ A : Cn
+ \ 0 → Cn

+ \ 0.
In fact,

(4.4.8) B strictly positive =⇒ B : Cn
+ \ 0 →

◦
C

n

+,

and if B = eA − I, then Av = 0 ⇒ Bv = 0, so (4.4.7) follows from (4.4.8).

The first part of the Perron-Frobenius theorem is the following key result.

Proposition 4.4.1. If A ∈ M(n,R) is positive and satisfies the conclusion of
(4.4.7), then there exist

(4.4.9) λ > 0, v ∈ Cn
+ \ 0, such that Av = λv.

Proof. With ⟨ , ⟩ denoting the standard inner product on Rn, let

(4.4.10) Σ = {v ∈ Cn
+ : ⟨1, v⟩ = 1}, 1 =

1
...
1

 .
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Thus Σ is a compact, convex subset of Rn. We define

(4.4.11) Φ : Σ −→ Σ

by

(4.4.12) Φ(v) =
1

⟨1, Av⟩
Av.

Note that the hypotheses that A : Σ → Cn
+ \ 0 implies ⟨1, Av⟩ > 0 for v ∈ Σ. It

follows that Φ in (4.4.11) is continuous. We can invoke the following result.

Brouwer fixed point theorem. If Σ ⊂ Rn is a compact, convex set and Φ : Σ →
Σ is a continuous map, then Φ has a fixed point, i.e., there exists v ∈ Σ such that
Φ(v) = v.

A proof of this result is given in Chapter 5 of [11]. In the setting of (4.4.11),
we have a vector v ∈ Σ such that

(4.4.13) Av = ⟨1, Av⟩v.

This proves Proposition 4.4.1. �

From here, we have:

Proposition 4.4.2. If A is positive and irreducible, and (4.4.9) holds, then each

component of v is > 0, so in fact v ∈
◦
C

n

+.

Proof. If Av = λv, then Bv = (eλ − 1)v. Now (4.4.8) implies Bv ∈
◦
C

n

+, so

v ∈
◦
C

n

+. �

Clearly if A is positive and irreducible, so is its transpose, At, so we have the
following.

Proposition 4.4.3. If A is positive and irreducible, then there exist

(4.4.14) w ∈
◦
C

n

+ and µ > 0 such that Atw = µw.

It is useful to have the following more precise result.

Proposition 4.4.4. In the setting of Proposition 4.4.3, given (4.4.9) and (4.4.14),

(4.4.15) µ = λ.

Proof. We have

(4.4.16) λ⟨v, w⟩ = ⟨Av,w⟩ = ⟨v,Atw⟩ = µ⟨v, w⟩.

Since v, w ∈
◦
C

n

+ ⇒ ⟨v, w⟩ > 0, this forces µ = λ. �
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To proceed, let us replace A by λ−1A, which we relabel as A, so (4.4.9) holds
with λ = 1, and we have

(4.4.17) Av = v, v =

v1...
vn

 , vj > 0, ∀ j.

If we replace the standard basis {e1, . . . , en} of Rn by {f1, . . . , fn}, with fj = vjej ,
then, with respect to this new basis, A is a positive, irreducible matrix, and

(4.4.18) A1 = 1,

with 1 as in (4.4.10). A positive matrix A satisfying (4.4.18) is called a stochastic
matrix.

To continue, if A is an irreducible stochastic matrix, (4.4.14)–(4.4.15) yield a
vector p such that

(4.4.19) Atp = p, p =

p1...
pn

 , pj > 0,

and we can normalize this eigenvector so that

(4.4.20)
∑
j

pj = 1.

In connection with this, let us note that

(4.4.21) ⟨1, Atw⟩ = ⟨A1, w⟩ = ⟨1, w⟩,

so

(4.4.22) At : Σ −→ Σ,

with Σ as in (4.4.10).

We now introduce two norms on Rn:

(4.4.23) ∥v∥∞ = sup
j

|vj |, ∥v∥1 =
∑
j

|vj |,

given v = (v1, . . . , vj)
t ∈ Rn. We see that if A is a stochastic matrix, so (4.4.18)

holds, then

(4.4.24) ∥A∥∞ = 1, and ∥At∥1 = 1,

where ∥A∥∞ is the operator norm of A with respect to the norm ∥ ∥∞ on Rn, and
∥At∥1 is the operator norm of At with respect to the norm ∥ ∥1 on Rn. It follows
that all the eigenvalues of A and of At have absolute value ≤ 1.

Before stating the next result, we set up some notation. If A is an irreducible
stochastic matrix, and p is as in (4.4.19)–(4.4.20), let V ⊂ Rn be the orthogonal
complement of p:

(4.4.25) V = {v ∈ Rn : ⟨v,p⟩ = 0}.

It follows that

(4.4.26) Rn = V ⊕ Span1, A : V → V.
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Proposition 4.4.5. Let A ∈M(n,R) be a strictly positive stochastic matrix. Then

(4.4.27) ∥A|V ∥∞ < 1.

Proof. This follows from the observation that if A is strictly positive and its row
sums are all 1, then

(4.4.28) v ∈ Rn, v /∈ Span1 =⇒ ∥Av∥∞ < ∥v∥∞.

�

Recalling how we modified a positive, irreducible matrix to obtain a stochastic
matrix, we have the following.

Corollary 4.4.6. Let B ∈ M(n,R) be strictly positive, so B has an eigenvalue

λ > 0 with associated eigenvector v0 ∈
◦
C

n

+, and B
t has a λ-eigenvector w0 ∈

◦
C

n

+.
Let V be the orthogonal complement of w0, so

(4.4.29) Rn = V ⊕ Span v0 and B : V → V.

Then

(4.4.30) β ∈ SpecB|V =⇒ |β| < λ.

Corollary 4.4.7. In the setting of Corollary 4.4.6, λ is an eigenvalue of B of
algebraic multiplicity 1.

That is to say, the generalized eigenspace GE(B, λ) of B associated to the
eigenvalue λ is 1-dimensional, spanned by v0.

Proposition 4.4.8. Let A ∈ M(n,R) be an irreducible stochastic matrix. Then 1
is an eigenvalue of A of algebraic multiplicity 1.

Proof. Form B = eA − I, as in (4.4.2). Then B is strictly positive, so Corollaries
4.4.6–4.4.7 apply. Note that 1 is an eigenvector of B, with eigenvalue e − 1. Now
each vector in the generalized eigenspace GE(A, 1) of A is also in the generalized
eigenspace GE(B, e−1) of B. By Corollary 4.4.7, this latter space is 1-dimensional.

�

To state the next result, we bring in the following notation. Given the direct
sum decomposition (4.4.26), let P denote the projection of Rn onto Span1 that
annihilates V .

Proposition 4.4.9. Let A ∈ M(n,R) be a stochastic matrix, and assume A is
primitive. Then, given v ∈ Rn,

(4.4.31) Akv −→ Pv, as k → ∞.

Proof. The hypothesis implies that, for some m ∈ N, B = Am is a strictly positive
stochastic matrix. Proposition 4.4.5 applies, to give

(4.4.32) ∥BV ∥∞ = β < 1, BV = B|V .
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Now, given v ∈ Rn, j ∈ N, ℓ ∈ {0, . . . ,m− 1},

(4.4.33)

Ajm+ℓ = AℓAjmv

= AℓBjv

= Aℓ(Pv +Bj
V (I − P)v)

= Pv +AℓBj
V (I − P)v,

and

(4.4.34) ∥AℓBj
V (I − P)v∥∞ ≤ βj∥(I − P)v∥∞.

This completes the proof. �

Note. In the setting of Proposition 4.4.9, we also have

(4.4.35) (At)k −→ Pt, as k → ∞.

More precisely,

(4.4.36) (At)jm+ℓ = Pt + (AℓBj
V (I − P))t,

and

(4.4.37) ∥(AℓBj
V (I − P))t∥1 = ∥AℓBj

V (I − P)∥∞ ≤ βj∥I − P∥∞.

Note also that Pt is the projection of Rn onto Spanp that annihilates {u ∈ Rn :
⟨u,1⟩ = 0}. We also have

(4.4.38) P = 1pt, Pt = p1t.

If A is a stochastic matrix, the set {Ak : k ∈ Z+} is called a discrete-time
Markov semigroup. It is also of interest to consider the following continuous time
analogue.

Definition. Given X ∈M(n,R), we say

(4.4.39) {etX : t ≥ 0}

is a Markov semigroup provided etX is a stochastic matrix for each t ≥ 0. In such
a case, we say X generates a Markov semigroup.

The following result characterizes n× n Markov semigroups.

Proposition 4.4.10. A matrix X = (xjk) ∈ M(n,R) generates a Markov semi-
group if and only if

(4.4.40) X1 = 0,

and

(4.4.41) xjk ≥ 0 whenever j ̸= k.
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Proof. First, assume X generates a Markov semigroup. Since

(4.4.42)
d

dt
etX

∣∣∣
t=0

= X,

we see that the relation etX1 ≡ 1 implies (4.4.40). The positivity (4.4.41) follows
from (4.4.42) and the positivity

(4.4.43) ajk(t) ≥ 0, etX = A(t) =
(
ajk(t)

)
,

plus the fact that ajk(0) = 0 for j ̸= k.

For the converse, we first note that if (4.4.41) is strengthened to xjk > 0
whenever j ̸= k, then, via

(4.4.44) etX = I + tX +O(t2),

we have t0 > 0 such that etX is positive for 0 ≤ t ≤ t0. Then positivity for all t ≥ 0
follows from

(4.4.45) entX =
(
etX

)n
.

To deduce positivity of etX for general X ∈ M(n,R) satisfying (4.4.41), we can
argue as follows. Take Y = (yjk) with yjk ≡ 1, and consider X + εY . Then the

arguments above show that et(X+εY ) is positive for all t ≥ 0, ε > 0. Now we claim
that

(4.4.46) lim
ε↘0

et(X+εY ) = etX ,

which then yields positivity of etX . To see (4.4.46), note that Zε(t) = et(X+εY )

satisfies

(4.4.47)
d

dt
Zε(t) = XZε(t) + εY Zε(t), Zε(0) = I,

so, by Duhamel’s formula (cf. Exercise 1 of §3.7),

(4.4.48) Zε(t) = etX + ε

∫ t

0

e(t−s)XY Zε(s) ds,

which leads to (4.4.46), and completes the proof of this proposition. �

The study of discrete and continuous Markov semigroups is an important area
in probability theory. For more on this, see [8].
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Exercises

1. Show that the matrix A in (4.4.4) is an irreducible stochastic matrix for which
(4.4.31) fails.

2. Pick a ∈ (0, 1) and consider the stochastic matrix

A =

(
a 1− a
1 0

)
.

Show that A is primitive. Compute A100.

3. Let A ∈M(n,R) be a stochastic matrix, and set T = At. By (4.4.22), T : Σ → Σ,
with Σ as in (4.4.10). Pick v0 ∈ Σ, and set

vk = T kv0, wn =
1

n
(v0 + v1 + · · ·+ vn−1).

Note that vk, wn ∈ Σ. Show that

Twn = wn +
1

n
(vn − v0).

Since Σ ⊂ Rn is closed and bounded, {wn} has a convergent subsequence, wnj →
w ∈ Σ. (See [10], Chapter 2, for a proof.) Show that

Tw = w.

Compare this with the production of p in (4.4.19).
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