Row Rank = Column Rank

Michael Taylor

Let $A \in M(m \times n, \mathbb{F})$, defining a linear map $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$. Let $\operatorname{Row}(A) \subset \mathbb{F}^{n}$ denote the linear span of the rows of $A, \operatorname{Col}(A) \subset \mathbb{F}^{m}$ the linear span of the columns of A. Then we set

$$
\begin{equation*}
\operatorname{Rowrank}(A)=\operatorname{dim} \operatorname{Row}(A), \quad \operatorname{Colrank}(S)=\operatorname{dim} \operatorname{Col} A \tag{1}
\end{equation*}
$$

An important result in linear algebra is that $\operatorname{Rowrank}(A)$ and $\operatorname{Colrank}(A)$ are equal. One proof, involving showing that $\operatorname{dim} \mathcal{R}(A)=\operatorname{dim} \mathcal{R}\left(A^{t}\right)$, is sketched in Exercise 4 at the end of $\S 3.2$ in $[\mathrm{T}]$. Here we give another, based on row and column operations, but simpler than arguments based on reduced row echelon forms.

To start, as noted in (1.3.18) of [T],

$$
\begin{equation*}
\operatorname{Col}(A)=\mathcal{R}(A) \tag{2}
\end{equation*}
$$

the range of A. As shown in Proposition 1.6.2 of [T], applying a sequence of column operations to A does not alter its range, hence does not alter its column rank. Also, by Proposition 1.6.1 of [T], applying a sequence of row operations to A does not alter its null space $\mathcal{N}(A)$; it might alter its range, but it does not alter the dimension of the range, since one always has (cf. Proposition 1.3.6 of [T])

$$
\begin{equation*}
\operatorname{dim} \mathcal{R}(A)+\operatorname{dim} \mathcal{N}(A)=n \tag{3}
\end{equation*}
$$

We summarize:
Proposition 1. Applying a row operation or a column operation to A does not alter its column rank.

Replacing A by its transpose yields:
Proposition 2. Applying a row operation or a column operation to A does not alter its row rank.

Having these results, we can prove the following.
Theorem 3. Given $A \in M(m \times n, \mathbb{F})$,

$$
\begin{equation*}
\operatorname{Rowrank}(A)=\operatorname{Colrank}(A) \tag{4}
\end{equation*}
$$

Proof. If $A \neq 0$, there is a nonzero entry $a_{i j}$, and applying a row operation and a column operation moves it to the $(1,1)$ position. Then row operations set all the other entries in the first column equal to 0 , and column operations set all the other
entries in the first row equal to 0 . Hence a sequence of row operations and column operations transform A into

$$
\widetilde{A}=\left(\begin{array}{ll}
1 & \tag{5}\\
& B
\end{array}\right), \quad B \in M((m-1) \times(n-1), \mathbb{F})
$$

By Propositions 1-2, we have $\operatorname{Rowrank}(A)=\operatorname{Rowrank}(\widetilde{A})$ and $\operatorname{Colrank}(A)=$ $\operatorname{Colrank}(\widetilde{A})$. It remains to verify (4) with A replaced by B. But this follows by induction on $\min (m, n)$, since the result is clear for $m=1$ and for $n=1$.

Reference

M. Taylor, Linear Algebra, Undergratuate Text \#45, AMS, Providence RI, 2010.

