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Introduction

These notes were produced in the course of teaching the first semester of the
undergraduate Analysis sequence at UNC, as a supplement to the text I used,
Introduction to Analysis in One Variable. There are several categories of items.
Some beef up homework problems given in the text. Others present a different way
to prove some specific result. There are a couple of typos corrected.

One bit of new material concerns an extension of the fundamental theorem of
calculus, ∫ b

a

F ′(t) dt = F (b)− F (a).

Our extension of the textbook result, presented in the supplement to Section 4.2,
concerns cases where F is not differentiable on the whole interval I = (a, b), but
rather differentiable on I \K, where cont+ K = 0.
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Chapter 1. Numbers

§1.1. Another exercise: labeling the elements of N.

9. Complementing the definition of 1 as s(0), we have

2 = s(1), 3 = s(2), 4 = s(3),

5 = s(4), 6 = s(5), 7 = s(6),

8 = s(7), 9 = s(8), 10 = s(9).

From here, one proceeds to express larger integers in decimal notation, such as

20, 25, 251, 2516, 25163,

and so on. In general, with aj ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the string

anan−1 · · · a1a0

represents the number
a0 + 10a1 + · · ·+ 10nan.

For example,

25 = 2 · 10 + 5, 2516 = 2 · 103 + 5 · 102 + 1 · 10 + 6.

Establish the following.

Proposition. For each x ∈ N, there exist unique n ∈ Ñ and ak ∈ D, 0 ≤ k ≤ n,
an ̸= 0, such that

x =

n∑
k=0

ak · 10k.

Hint. To start, show that there exists a unique n ∈ Ñ such that

10n ≤ x < 10n+1.

If n = 0, x ∈ D. If n > 0, show that there exists a unique an ∈ D (necessarily
nonzero) such that

an · 10n ≤ x and x− an · 10n < 10n.

Proceed inductively to treat y = x− an · 10n.
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§1.6. Another approach to the proof of Proposition 1.5.6.

In §1.5 it is proved that |a| < 1 ⇒ ak → 0, or equivalently

(1) 0 < r < 1 =⇒ rk → 0,

as k → ∞. Here we provide an alternative approach to the proof of (1), using
Proposition 1.6.11.

Second proof of (1). Note that rk+1 = r · rk < rk, so (rk) is a monotone
sequence, satisfying 0 < rk < 1, hence a bounded monotone sequence. Proposition
1.6.11 implies this sequence converges,

(2) rk −→ s,

as k → ∞. We have s ∈ [0, 1). Now (2) implies

(3) rk+1 = r · rk −→ rs,

hence s = rs, so (1− r)s = 0, hence s = 0, as asserted.
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§1.9. Dense vs. discrete subgroups of R (exercises).

8. Let G ⊂ R be a subgroup (cf. (1.3.10)). Assume G ̸= {0}.
(a) Show that either {0} is an isolated point of G or G is dense in R.
Hint. If xν ∈ G, xν ̸= 0, |xν | = εν → 0, then {kxν : k ∈ Z} is “εν-dense” in R.
(b) If {0} is isolated, set α = inf{x ∈ G : x > 0}, so α > 0. Show that α ∈ G.
Hint. If α /∈ G, there exist distinct αν ∈ G such that αν → α, and then {αν − αµ}
has 0 as a limit point.
(c) In the setting of part (b), show that

G = {kα : k ∈ Z}.

9. Suppose ξ ∈ R is irrational. Show that

{j + kξ : j, k ∈ Z} is dense in R.
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Chapter 2. Spaces

§2.3. Another proof that (2.3.4) ⇒ (2.3.2).

Section 2.3 discusses the equivalence of several properties of a metric space X,
including

(2.3.2) Each infinite set S ⊂ X has an accumulation point,

and

(2.3.4) Every open cover {Uα} of X has a finite subcover.

Each of these properties expresses compactness ofX. Here we present an alternative
proof that (2.3.4) ⇒ (2.3.2).

So assume (2.3.4) holds and let S ⊂ X. If p ∈ X is not an accumulation point
of S, then there is an open set Op ∋ p that contains at most one point of S. If S
has no accumulation points, then {Op : p ∈ X} is an open cover of X, so by (2.3.4)
it has a finite subcover

{Opj : 1 ≤ j ≤ K}.

Thus S must be finite.
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Chapter 3. Functions

§3.1. Alternative proof of Proposition 3.1.5.

Proposition 3.1.5. Let X be a compact metric space. Assume f : X → Y is
continuous, one-to-one, and onto. Then the inverse g : Y → X is continuous.
That is, f is a homeomorphism.

Proof. Assume f(xk) = yk → y. We need to show that xk → g(y). If not, we
can pass to a subsequence and arrange that d(xk, g(y)) ≥ α > 0 for all k. Then X
compact⇒ some further subsequence xk → x. Then f continuous⇒ f(xk) → f(x),
hence f(x) = y, so x = g(y). Contradiction.
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Chapter 4. Calculus

§4.1. Alternative approach to the inverse function theorem.

We use the mean value theorem to produce a criterion for constructing the inverse
of a function. Let

(4.1.17) f : [a, b] −→ R, f(a) = α, f(b) = β.

Assume f is continuous on [a, b], differentiable on (a, b), and

(4.1.18) 0 < γ0 ≤ f ′(x) ≤ γ1 < ∞, ∀x ∈ (a, b).

We can apply Theorem 4.1.2 to f , restricted to the interval [x1, x2] ⊂ [a, b], to get

(4.1.19) γ0 ≤ f(x2)− f(x1)

x2 − x1
≤ γ1, if a ≤ x1 < x2 ≤ b,

or

(4.1.20) γ0(x2 − x1) ≤ f(x2)− f(x1) ≤ γ1(x2 − x1).

It follows that

(4.1.21) f : [a, b] −→ [α.β] is one-to-one.

The intermediate value theorem implies f : [a, b] −→ [α, β] is onto. Consequently
f has an inverse

(4.1.22) g : [α, β] −→ [a, b], g(f(x)) = x, f(g(y)) = y,

and (4.1.19) implies

(4.1.23)
1

γ1
≤ g(y2)− g(y1)

y2 − y1
≤ 1

γ0
, if α ≤ y1 < y2 ≤ β.

The following result is known as the inverse function theorem.

Theorem 4.1.3. If f is continuous on [a, b] and differentiable on (a, b), and (4.1.17)–
(4.1.18) hold, then its inverse g : [α, β] → [a, b] is differentiable on (α, β), and

(4.1.24) g′(y) =
1

f ′(x)
, for y = f(x) ∈ (α, β).

The same conclusion holds if in place of (4.1.18) we have

(4.1.25) −γ1 ≤ f ′(x) ≤ −γ0 < 0, ∀x ∈ (a, b),
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except that then β < α.

Proof. Fix y ∈ (α, β), and let x = g(y), so y = f(x). To say that f is differentiable
at x is to say

(4.1.26) lim
ξ→x

f(x)− f(ξ)

x− ξ
= f ′(x).

Now take η = f(ξ), so ξ = g(η), and note from (4.1.19) that

(4.1.27) ξ → x ⇐⇒ η → y.

Hence, by (4.1.18)–(4.1.19) and (4.1.23), we have

(4.1.28) lim
η→y

g(y)− g(η)

y − η
=

1

f ′(x)
,

which proves (4.1.24).

Remark. If one knew that g were differentiable, as well as f , then the identity
(4.1.24) would follow by differentiating g(f(x)) = x, and applying the chain rule.
However, an additional argument, such as given above, is necessary to guarantee
that g is differentiable.
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Comments on (4.1.33) and (4.1.34).

We start with the observation that, for j, k, ℓ,m ∈ Z, y > 0,

ykm = (yk)m, and yj+k = yjyk.

Regarding (4.1.33), we have, for x > 0, k, n ̸= 0,

(x1/kn)km = (x1/n)m ⇐⇒ (x1/kn)k = x1/n

⇐⇒ (x1/kn)kn = x.

Regarding (4.1.34), we have, for x > 0, r = m/n, s = j/k,

xr+s = x(km+jn)/nk = (x1/nk)km+jn

= (x1/nk)km(x1/nk)jn = xm/n xj/k.
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New exercise: alternative computation of dx1/n/dx.

11. Use the formula

(*) zn − wn = (z − w)(zn−1 + zn−2w + · · ·+ wn−1),

with
z = (x+ h)1/n, w = x1/n.

Plug these values in, divide by h, and use the continuity of f(x) = x1/n (cf. (4.1.42))
to take the limit as h → 0, thereby obtaining

d

dx
x1/n =

1

nx(n−1)/n
=

1

n
x(1/n)−1,

by a means different from (4.1.36). Note how the case n = 2 is worked out in
(4.1.37)–(4.1.41).

12. In the setting of Exercise 11 above, use (*) with

z = x+ h, w = x

to get another proof that
d

dx
xn = nxn−1,

for n ∈ N.
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§4.2A. One-sided derivatives, symmetric derivatives, and the fundamen-
tal theorem of calculus

If I = (a, b) and f : I → R, we say f is right-differentiable at x ∈ I, with right
derivative Drf(x), provided

(2A.1) lim
h↘0

f(x+ h)− f(x)

h
= Drf(x).

Similarly,

(2A.2) lim
h↘0

f(x)− f(x− h)

h
= Dℓf(x)

defines left differentiability.

For example, if we set

(2A.3)
f(x) = 1, for x ≥ 0,

0, for x < 0,

then

(2A.4) Drf ≡ 0, and Dℓf(x) = 0 for x ̸= 0,

but f is not left-differentiable at x = 0. This illustrates the fact that to get useful
results from one-sided differentiability, we want to impose the condition that f be
continuous. We propose to prove the following.

Proposition 2A.1. Assume f : I → R is continuous and right differentiable.
Then

(2A.5) Drf = g ∈ C(I) =⇒ f ∈ C1(I), and f ′ = g.

(A similar conclusion holds if f is left-differentiable.)

To start the proof, we apply the fundamental theorem of calculus to produce φ ∈
C1(I) such that φ′ = g. Then

(2A.6) f − φ ∈ C(I), and Dr(f − φ) ≡ 0.

The conclusion (2A.5) follows from the assertion that, if (2A.6) holds, then f − φ
is constant. This in turn is a consequence of part (c) of the following.



13

Lemma 2A.2. Assume f ∈ C(I) is right differentiable at each x ∈ I. Then

(a) Drf > 0 on I =⇒ f ↗,

(b) Drf < 0 on I =⇒ f ↘,

(c) Drf ≡ 0 on I =⇒ f is constant.

Proof. We start with part (a). If f is not ↗, then there exist x0 < x1 ∈ (a, b)
such that f(x1) < f(x0). Now f

∣∣
[x0,x1]

has a maximum, say at ξ ∈ [x0, x1]. This

maximum is not at x0, since Drf(x0) > 0. It is not at x1, since f(x1) < f(x0).
Hence f achieves a maximum at ξ ∈ (x0, x0). But f maximal at ξ ⇒ Drf(ξ) ≤ 0.
Contradiction.

The proof of (b) is similar.
Now for part (c). If Drf ≡ 0, set fε(x) = x + εx. For ε > 0, part (a) implies

fε ↗, hence (letting ε ↘ 0) f ↗. Also, part (b) implies fε ↘ for ε < 0, so (letting
ε ↗ 0) f ↘. We have part (c).

We turn to the symmetric derivative. We say a function f : I → R is s-
differentiable at x ∈ I, with s-derivative Dsf(x), provided

(2A.7) lim
h→0

f(x+ h)− f(x− h)

2h
= Dsf(x).

For example, if f(x) = |x|,

(2A.8) Dsf(x) = −1 for x < 0, 0 for x = 0, 1 for x > 0.

The following result parallels Proposition 2A.1.

Proposition 2A.3. Assume f : I → R is continuous and s-differentiable. Then

(2A.9) Dsf = g ∈ C(I) =⇒ f ∈ C1(I) and f ′ = g.

As in Proposition 2A.1, we pick φ ∈ C1(I) such that φ′ = g and analyze Ds(f−φ),
obtaining (2A.9) as a consequence of the following.

Lemma 2A.4. Assume f ∈ C(I) is s-differentiable at each x ∈ I. Then

(a) Dsf > 0 on I ⇒ f ↗,

(b) Dsf < 0 on I ⇒ f ↘,

(c) Dsf ≡ 0 on I ⇒ f is constant.
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As in Lemma 2A.2, the proof of part (b) is similar to that of part (a), and part (c)
follows from parts (a) and (b).

Proof of part (a). Pick α ∈ (a, b). We aim to show that

(2A.10) f(x) ≥ f(α), ∀x ∈ (α, b).

Pick δ > 0. Then pick α1 > α such that

(2A.11) x ∈ [α, α1] =⇒ |f(x)− f(α)| ≤ δ.

Now set

(2A.12) A = min
x∈[α,α1]

f(x),

and note that |A− f(α)| ≤ δ. Set

(2A.13) SA = {x ∈ [α1, b) : f(x) < A},

which is open in [α1, b). Note that

(2A.14) Dsf(α1) > 0 =⇒ f(x) > A for α1 < x ≤ α1 + ε1,

with ε1 > 0 sufficiently small. Hence

(2A.15) SA is disjoint from [α1, α1 + ε1].

If SA ̸= ∅, set

(2A.16) x1 = inf SA, so x1 ∈ (a1 + ε1, b).

We have

(2A.17) f(x1) = A,

and f(x) ≥ A for x < x1. Hence

(2A.18) Dsf(x1) > 0 =⇒ f(x1 + ε) > f(x1), for sufficiently small ε > 0.

But this says

(2A.19) x1 + ε /∈ SA

for such ε. Hence in fact SA = ∅, and we have

(2A.20) x ∈ [α, b) =⇒ f(x) ≥ A,

hence f(x) ≥ f(α)−δ, for all δ > 0, and this gives (2A.10), hence f ↗, as asserted.
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§4.2B. Another extension of the fundamental theorem of calculus: F not
differentiable everywhere.

One drawback to Proposition 4.2.10 is that it requires the function F to be differ-
entiable on the entire interval (a, b). Here is a natural extension.

Proposition 2B.1. With I = [a, b], assume F ∈ C(I) satisfies a Lipschitz condi-
tion

(2B.1) |F (x)− F (y)| ≤ L|x− y|, ∀x, y ∈ I,

for some L < ∞. Let g ∈ R(I). Assume K ⊂ I is compact, cont+ K = 0, and

(2B.2) F is differentiable on O = I \K, F ′ = g on O.

Then

(2B.3)

∫ b

a

g(t) dt = F (b)− F (a).

Proof. Assume |g| ≤ M on I. Pick ε > 0. Cover K by a finite number of open
intervals, J1, . . . , Jn, with disjoint closures, such that

∑
k ℓ(Jk) ≤ ε. Let

(2B.4) U = I \
⋃
k

Jk,

so U ⊂ O. The set U is a union of a finite number of closed intervals Ik = [αk, βk].
For each Ik, we have

(2B.5)

∫
Ik

g(t) dt = F (βk)− F (αk),

by Proposition 4.2.10. Meanwhine,

(2B.6)
∣∣∣∫ b

a

g(t) dt−
∑
k

∫
Ik

g(t) dt
∣∣∣ ≤ Mε.

Now if J ⊂ I is an interval, with endpoints α, β, write

(2B.7) ∆F (J) = F (β)− F (α).

We have

(2B.8) F (b)− F (a) =
∑
k

∆F (Ik) +
∑
k

∆F (Jk).
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By (2B.5),

(2B.9)
∑
k

∫
Ik

g(t) dt =
∑
k

∆F (Ik).

Furthermore,

(2B.10)
∣∣∣∑

k

∆F (Jk)
∣∣∣ ≤ L

∑
k

ℓ(Jk) ≤ Lε.

Hence

(2B.11)
∣∣∣∫ b

a

g(t) dt−
{
F (b)− F (a)

}∣∣∣ ≤ Mε+ Lε.

Taking ε ↘ 0 gives (2B.3).

Remark 1. In the setting of Proposition 2B.1, we have, for each x ∈ I,∫ x

a

g(t) dt = F (x)− F (a).

We say F is an antiderivative of g.

Remark 2. As mentioned in the text, the Lebesgue theory yields substantially
stronger versions of the fundamental theorem of calculus. However, Proposition
2B.1 applies to many more interesting cases than does Proposition 4.2.10.

Example 1. Take I = [−1, 1],

F (t) = |t|, g(t) = sgn t.

Example 2. Take I = [0, 1], K ⊂ I the Cantor middle third set, and take

F (t) = dist(t,K).

Then Proposition 2B.1 applies with K = K ∪ {pk}, where pk are the midpoints of
the intervals Ik that make up I \ K, and g(t) = +1 on the left half of each such
interval, and −1 on the right half.

See comments on §4.6 for further results.
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4.3. Solution to Exercise 8.

The following exercise deals with a numerical evaluation of
√
2.

8. Note that
√
2 = 2

√
1− 1

2
.

Expand the right side in a power series, using (4.3.28)–(4.3.29). How many terms

suffice to approximate
√
2 to 12 digits?

Solution. Using (4.3.28)–(4.3.29) with r = −1/2 gives

(1)
√
1− t =

∞∑
k=0

ak
k!

tk, |t| < 1,

with

a0 = 1, a1 = −1

2
, a2 = −1

2
· 1
2
, ak = −1

2
· 1
2
· 3
2
· · ·

(
k − 3

2

)
.

By (4.3.30), we have a convenient iteration,

(2)
ak
k!

= αk, α0 = 1, αk+1 =
k − 1

2

k + 1
αk.

We next want to estimate the remainder

(3)
√
1− t =

n∑
k=0

αkt
k +Rn(t), with t =

1

2
.

As seen in (4.3.50), the Lagrange remainder formula does not provide an adequate
estimate. Instead, the Cauchy remainder formula gives, by (4.3.54),

(4) |t| < 1 =⇒ |Rn(t)| ≤ |bn| · |t|n+1,

in this case, where, by (4.3.45), bn = an+1/n!, in particular

b0 = −1

2
, b1 = −1

4
.

By (4.3.46),

bn+1

bn
=

n+ 1
2

n+ 1
,

so n ≥ 1 ⇒ |bn| ≤ 1/4. We have

|Rn(
1
2 )| ≤

1

4
· 2−n−1 = 2−n−3,
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so the error En in evaluating
√
2 satisfies

En ≤ 2−n−2.

Since 210 = 1024, we have

E40 ≤ 1

4
· 10−12, E38 ≤ 10−12.

Remark 1. Further computation reveals

|b32| ≤
1

20
,

and hence
E36 ≤ 10−12.

Remark 2. Here is an alternative approach, which yields a sharper result.
We know that (1) holds, with coefficients αk whose absolute values, by (2), are
monotonically decreasing. Hence, in (3), we can take

Rn(t) =
∞∑

k=n+1

αkt
k, |t| < 1,

and deduce that

|Rn(t)| ≤ |αn+1|
|t|n+1

1− |t|
,

and in particular
|Rn(

1
2 )| ≤ |αn+1|2−n.

Now |αn+1| = |bn|/(n+ 1), and an estimate on |b31| gives

|α32| ≤
1

600
,

hence

E32 ≤ 1

600
· 1
2
· 2−30 ≤ 10−12.

Remark 3. Exercises 9 and 11 deal with some much more rapid approximations
to

√
2, some using power series, some using another method.
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§4.4. Remark on the calculation of C ′(t)

In (4.4.33)–(4.4.39) we examine C(t) = (cos t, sin t). We apply d/dt to the identity
C(t) ·C(t) ≡ 1 and use the fact that also ∥C ′(t)∥ ≡ 1 to deduce in (4.4.37)–(4.4.38)
that, for each t ∈ R, either

(1) C ′(t) = (sin t,− cos t),

or

(2) C ′(t) = (− sin t, cos t).

We then argue that actually only (2) can hold.
To add a detail to that argument, note that since both sides of (1) and (2) are

continuous in t, the set A ⊂ R of t for which (1) holds and the set B ⊂ R of t
such that (2) holds are both closed. Of course, A and B are disjoint. Since R is
connected, one of them must be empty. Now, by (4.4.33), we have 0 ∈ B, so in fact
A = ∅, and (2) holds for all t ∈ R.

Typo in (4.4.54).

In (4.4.54), change x(t) = ρ(t) sin t to x(t) = ρ(t) cos t, as in (4.4.51).

Note. The point of (4.4.54) is to derive the formula (4.4.56) for arc length in
polar coordinates. See the neater formulation in this supplement, concerning §4.5,
exercise 57.
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§4.5. Extensions of exercises 7, 45, and 56, and addition of exercise 57.

7. Show that
π

6
=

∫ 1/2

0

dx√
1− x2

.

Use (4.4.27)–(4.4.31) to obtain a rapidly convergent infinite series for π.
Hint. Show that sin π/6 = 1/2. Use Exercise 2 and the identity eπi/6 = eπi/2e−πi/3.
Note that ak in (4.4.29)–(4.4.31) satisfies ak+1 = (k + 1/2)ak. Deduce that

(4.5.48) π =
∞∑
k=0

bk
2k + 1

, b0 = 3, bk+1 =
1

4

2k + 1

2k + 2
bk.

Note that bk ≤ 3 · 4−k. Deduce that

(4.5.49) pi(n) =
n∑

k=0

bk
2k + 1

=⇒ 0 < π − pi(n) <
1

n+ 1
2−2n−1.

In particular,

(4.5.50) π − pi(3) <
1

500
, π − pi(5) < 10−4, π − pi(20) < 10−13.

Compute pi(3) and pi(5) by hand, and show that

π ≈ 3.14, and then π ≈ 3.1416.

Use a calculator or computer to evaluate pi(20), and verify that

π ≈ 3.1415926535897 · · · .
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Revised version of Exercise
45. Evaluate

I(x) =

∫ x

0

dy

1 + y2

in two ways.

(a) Set y = tan t to obtain
I(x) = tan−1 x.

(b) Set y = sinhu to obtain

I(x) =

∫ sinh−1 x

0

du

coshu
.

Comparing these results, obtain∫ x

0

du

coshu
= tan−1(sinhx).

45A. Evaluate

I(x) =

∫ x

0

√
1 + y2 dy

in two ways.

(a) Set y = sinhu (z = sinh−1 x) to obtain

I(x) =

∫ z

0

cosh2 u du

=
1

4

∫ z

0

(e2u + 2 + e−2u) du

=
1

4
sinh 2z +

1

2
z.

Use sinh 2z = 2 sinh z cosh z to obtain

I(x) =
1

2
x
√
1 + x2 +

1

2
sinh−1 x.

(b) Set y = tan t to obatin

I(x) =

∫ tan−1 x

0

sec3 t dt.

Compare these results, to obtain∫ t

0

sec3 s ds = I(tan t) =
1

2
sec t tan t+

1

2
sinh−1 tan t.

Compare results of Exercises 13–14.
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56. In the implementation of the inequality

n! > e(n+1/2) log(n+1/2)e−(n+1/2)e−(3/2) log(3/2)e3/2

=
(n
e

)n[
e
(2
3

)3/2]√
n e(n+1/2) log(1+1/2n),

we never did make use of the estimate

log(1 + δ) > δ − 1
2δ

2,

valid for 0 < δ < 1. Actually, we might prefer

(1 + δ) log(1 + δ) > δ.

Bring this in, and show that

n! >
(n
e

)n(2e
3

)3/2√
n.

We have (2e
3

)3/2

<
√
2π < e.

Compute each of these three quantities to 5 digits of accuracy.
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Back to arc length

57. Looking at the analysis of a curve γ given in polar coordinates by r = ρ(θ), as
in (4.4.50)–(4.4.51), show that you can replace (4.4.54)–(4.4.55) by

γ(t) = ρ(t)eit ⇒ γ′(t) = [ρ′(t) + iρ(t)]eit

⇒ |γ′(t)|2 = ρ′(t)2 + ρ(t)2,

and rederive the arc length formula (4.4.56).
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§4.6A. Antiderivatives of unbounded integrable functions.

In §4.6 we extend the space R(I) of Riemann integrable functions (necessarily
bounded) on an interval I = [a, b] to a class of unbounded integrable functions,
denoted R#(I), defined in (4.6.3)–(4.6.12). Here we provide results that allow one
to extend the fundamental theorem of calculus to deal with integrands in R#(I).

Lemma 6A.1. Take I = [a, b], g ∈ R#(I). Then

F (x) =

∫ x

a

g(t) dt =⇒ F ∈ C(I).

Proof. Exercise.

Proposition 6A.2. Let g, gk ∈ R#(I), and set

Fk(x) =

∫ x

a

gk(t) dt, F (x) =

∫ x

a

g(t) dt.

Then
∥g − gk∥L1(I) → 0 =⇒ Fk → F, uniformly on I.

Proof. One has
|Fk(x)− F (x)| ≤ ∥gk − g∥L1(I), ∀x ∈ I.

Corollary 6A.3. Let g, gk ∈ R#(I). Set

Fk(x) =

∫ x

a

gk(t) dt.

Then

∥g − gk∥L1(I) → 0, Fk(x) → F (x), ∀x ∈ I =⇒
∫ x

a

g(t) dt = F (x).

Example. Take I = [−1, 1], r ∈ (0, 1),

g(t) = |t|−r, F (t) =
1

1− r
|t|1−r(sgn t).

Then ∫ x

−1

g(t) dt = F (x)− F (−1).
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New exercises: log(1 + x−2) ∈ R#(R+).

17. Define f : R+ → R by

f(x) = log
(
1 +

1

x2

)
.

Show that f ∈ R#(R+).
Hint. Examine f separately on (0, 1] and on [1,∞).

18. Following up Exercise 6, write∫
log(x2 + 1) dx = x log(x2 + 1) +G(x),

and compute G′(x) = −2x2/(x2 + 1), to get

G(x) = −2x+ 2 tan−1 x.

Deduce that ∫
log

(
1 +

1

x2

)
dx = x log

(
1 +

1

x2

)
+ 2 tan−1 x,

and hence that ∫ ∞

0

log
(
1 +

1

x2

)
dx = π.
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Chapter 5. Further topics in Analysis

§5.5. Revised exercises on Newton’s method.

Implement Newton’s method to get approximate solutions to the following equa-
tions.

2. ex = 2.

3. tanx = x, π < x < 3
2π.


