The Schrödinger Equation and the Fresnel Integral

Michael Taylor

Abstract

We treat the Schrödinger equation $$
\frac{\partial u}{\partial t}=i \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=f(x)
$$

applying the Fourier transform to write

$$
u(t, x)=S(t) f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t \xi^{2}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

which differs from the solution to the heat equation only in replacing $e^{-t \xi^{2}}$ by $e^{-i t \xi^{2}}$. Analytic continuation of the heat kernel $H_{t}(y)=$ $(4 \pi t)^{-1 / 2} e^{-y^{2} / 4 t}$ produces

$$
S(t) f(x)=\int_{-\infty}^{\infty} f(x-y) S_{t}(y) d y, \quad S_{t}(y)=(4 \pi i t)^{-1 / 2} e^{-y^{2} / 4 i t}
$$

Applying this formula to important special cases leads to the study of the Fresnel integral,

$$
\operatorname{Fr}(x)=(\pi i)^{-1 / 2} \int_{0}^{x} e^{i y^{2}} d y
$$

which is seen to be a smooth, odd function, with lots of oscillation, but nevertheless satisfying

$$
\lim _{x \rightarrow \pm \infty} \operatorname{Fr}(x)= \pm \frac{1}{2}
$$

Contents

1. Introduction
2. Relation to heat equation, and integral formula
3. The Fresnel integral
A. An Abelian theorem

1 Introduction

We discuss the 1D Schrödinger equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=i \frac{\partial^{2} u}{\partial x^{2}} \tag{1.1}
\end{equation*}
$$

for $t, x \in \mathbb{R}$, with initial condition

$$
\begin{equation*}
u(0, x)=f(x) \tag{1.2}
\end{equation*}
$$

Note that the partial Fourier transform

$$
\begin{equation*}
\hat{u}(t, \xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(t, x) e^{-i x \xi} d x \tag{1.3}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\partial_{t} \hat{u}(t, \xi)=-i \xi^{2} \hat{u}(t, \xi), \quad \hat{u}(0, \xi)=\hat{f}(\xi) \tag{1.4}
\end{equation*}
$$

so

$$
\begin{equation*}
\hat{u}(t, \xi)=e^{-i t \xi^{2}} \hat{f}(\xi) \tag{1.5}
\end{equation*}
$$

and we have

$$
\begin{equation*}
u(t, x)=\mathcal{F}^{*} e^{-i t \xi^{2}} \mathcal{F} f(x) \tag{1.6}
\end{equation*}
$$

Since, by the Plancherel theorem, the Fourier transform

$$
\begin{equation*}
\mathcal{F}: L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R}) \tag{1.7}
\end{equation*}
$$

is bijective and norm preserving (i.e., unitary), with inverse \mathcal{F}^{*}, we see that (1.5)-(1.6) defines a solution

$$
\begin{equation*}
u(t, x)=S(t) f(x) \tag{1.8}
\end{equation*}
$$

to (1.1)-(1.2), for $f \in L^{2}(\mathbb{R})$. Furthermore, for each $t \in \mathbb{R}$,

$$
\begin{equation*}
S(t): L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R}) \tag{1.9}
\end{equation*}
$$

is unitary, with inverse

$$
\begin{equation*}
S(t)^{-1}=S(t)^{*}=S(-t) \tag{1.10}
\end{equation*}
$$

2 Relation to heat equation, and integral formula

We have defined the solution operator $S(t): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ to the Schrödinger equation in $\S 1$. If $f \in L^{2}(\mathbb{R})$ and also $\hat{f} \in L^{1}(\mathbb{R})$, then $S(t) f$ is given by the absolutely convergent integral

$$
\begin{equation*}
S(t) f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t \xi^{2}} \hat{f}(\xi) e^{i x \xi} d \xi \tag{2.1}
\end{equation*}
$$

We relate this to the solution operator

$$
\begin{equation*}
H(t) f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t \xi^{2}} \hat{f}(\xi) e^{i x \xi} d \xi \tag{2.2}
\end{equation*}
$$

for the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial t^{2}}, \quad u(0, x)=f(x) . \tag{2.3}
\end{equation*}
$$

As seen in [1], §§3.3-3.5, we have, for $t>0$,

$$
\begin{equation*}
H(t) f(x)=\int f(x-y) H_{t}(y) d y \tag{2.4}
\end{equation*}
$$

with

$$
\begin{align*}
H_{t}(y) & =\frac{1}{2 \pi} \int e^{-t \xi^{2}+i y \xi} d \xi \tag{2.5}\\
& =(4 \pi t)^{-1 / 2} e^{-y^{2} / 4 t}, \quad t>0 .
\end{align*}
$$

Now, we can extend (2.2) and (2.4)-(2.5), from $t \in(0, \infty)$ to complex t with positive real part. Let us denote such a complex number by $s+i t, s>$ $0, t \in \mathbb{R}$. We have

$$
\begin{align*}
H(s+i t) f(x) & =\frac{1}{\sqrt{2 \pi}} \int e^{(s+i t) \xi^{2}} \hat{f}(\xi) e^{i x \xi} d \xi \\
& =\frac{1}{\sqrt{2 \pi}} \int f(x-y) H_{s+i t}(y) d y \tag{2.6}
\end{align*}
$$

with

$$
\begin{equation*}
H_{s+i t}(y)=[2 \pi(s+i t)]^{-1 / 2} e^{-y^{2} / 4(s+i t)}, \quad s>0, t \in \mathbb{R} . \tag{2.7}
\end{equation*}
$$

The Fourier integral represenation (2.6), with the Plancherel theorem, gives

$$
\begin{equation*}
H(s+i t): L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R}), \quad\|H(s+i t)\|_{\mathcal{L}\left(L^{2}\right)}=1, \quad s>0, t \in \mathbb{R} \tag{2.8}
\end{equation*}
$$

and furthermore, for $f \in L^{2}(\mathbb{R})$,

$$
\begin{equation*}
S(t) f=\lim _{s \searrow 0} H(s+i t) f, \quad \text { in } L^{2} \text {-norm. } \tag{2.9}
\end{equation*}
$$

Comparison with (2.1) shows that, if $f \in L^{2}(\mathbb{R})$ and also $\hat{f} \in L^{1}(\mathbb{R})$ (so $f \in C(\mathbb{R})$), then, for each $t \in \mathbb{R}$,

$$
\begin{equation*}
H(s+i t) f(x) \longrightarrow S(t) f(x), \quad \text { uniformly in } x, \text { as } s \searrow 0 \tag{2.10}
\end{equation*}
$$

If, in addition, $f \in L^{1}(\mathbb{R})$, i.e.,

$$
\begin{equation*}
f \in \mathcal{A}(\mathbb{R}) \tag{2.11}
\end{equation*}
$$

then we can pass to the limit $s \searrow 0$ and write, for each $t \in \mathbb{R} \backslash 0$,

$$
\begin{equation*}
S(t) f(x)=\int f(x-y) S_{t}(y) d y \tag{2.12}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{t}(y)=\frac{1}{\sqrt{4 \pi}}(0+i t)^{-1 / 2} e^{-y^{2} / 4 i t} \tag{2.13}
\end{equation*}
$$

Here

$$
\begin{array}{r}
(0+i t)^{-1 / 2}=\lim _{s \searrow 0}(s+i t)^{-1 / 2}=e^{-\pi i / 4}|t|^{-1 / 2}, \quad \text { if } t>0, \tag{2.14}\\
e^{\pi i / 4}|t|^{-1 / 2}, \quad \text { if } t<0 .
\end{array}
$$

Note that

$$
\begin{equation*}
e^{\pi i / 4}=\frac{1+i}{\sqrt{2}} . \tag{2.15}
\end{equation*}
$$

Having this formula for $S_{t}(y)$, we can readily extend $S(t)$ to act on $f \in$ $L^{1}(\mathbb{R})$, for $t \neq 0$, obtaining

$$
\begin{equation*}
S(t): L^{1}(\mathbb{R}) \longrightarrow L^{\infty}(\mathbb{R}), \quad\|S(t) f\|_{L^{\infty}} \leq \frac{1}{\sqrt{4 \pi|t|}}\|f\|_{L^{1}} \tag{2.16}
\end{equation*}
$$

3 The Fresnel integral

We start this section off with a study of $S(t) \chi_{a, b}$, where, for $a, b \in \mathbb{R}, a<b$, we set

$$
\begin{align*}
\chi_{a, b}(x)=1, & \text { if } a<x<b \tag{3.1}\\
0, & \text { otherwise }
\end{align*}
$$

For simplicity, we take $t>0$, though we note that, if $f \in L^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$,

$$
\begin{equation*}
f \text { real valued } \Longrightarrow S(-t) f=\overline{S(t) f} \tag{3.2}
\end{equation*}
$$

By (2.12)-(2.14), we have

$$
\begin{equation*}
S(t) \chi_{a, b}(x)=\frac{e^{-\pi i / 4}}{\sqrt{4 \pi t}} \int_{x-b}^{x-a} e^{-y^{2} / 4 i t} d y \tag{3.3}
\end{equation*}
$$

We are hence motivated to look at

$$
\begin{align*}
\frac{e^{-\pi i / 4}}{\sqrt{4 \pi t}} \int_{0}^{x} e^{-y^{2} / 4 i t} d y & =(\pi i)^{-1 / 2} \int_{0}^{x / \sqrt{4 t}} e^{i u^{2}} d u \tag{3.4}\\
& =\operatorname{Fr}\left(\frac{x}{\sqrt{4 t}}\right)
\end{align*}
$$

where we bring in the Fresnel integral

$$
\begin{equation*}
\operatorname{Fr}(x)=\frac{e^{-\pi i / 4}}{\sqrt{\pi}} \int_{0}^{x} e^{i y^{2}} d y \tag{3.5}
\end{equation*}
$$

Using this special function, we have, for $t>0$,

$$
\begin{equation*}
S(t) \chi_{a, b}(x)=\operatorname{Fr}\left(\frac{x-a}{\sqrt{4 t}}\right)-\operatorname{Fr}\left(\frac{x-b}{\sqrt{4 t}}\right) \tag{3.6}
\end{equation*}
$$

We are now motivated to study the special function $\operatorname{Fr}(x)$, defined by (3.5). Clearly

$$
\begin{equation*}
\operatorname{Fr} \in C^{\infty}(\mathbb{R}), \quad \operatorname{Fr}(-x)=-\operatorname{Fr}(x) \tag{3.7}
\end{equation*}
$$

We will show below that

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \operatorname{Fr}(x)= \pm \frac{1}{2} \tag{3.8}
\end{equation*}
$$

In particular, Fr is bounded,

$$
\begin{equation*}
|\operatorname{Fr}(x)| \leq A<\infty, \quad \forall x \in \mathbb{R} \tag{3.9}
\end{equation*}
$$

for some $A<\infty$. To get started, note the identity

$$
\begin{equation*}
\partial_{y}\left(\frac{1}{y} e^{i y^{2}}\right)=2 i e^{i y^{2}}-\frac{1}{y^{2}} e^{i y^{2}}, \tag{3.10}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
e^{i y^{2}}=\frac{1}{2 i} \partial_{y}\left(\frac{1}{y} e^{i y^{2}}\right)+\frac{1}{2 i y^{2}} e^{i y^{2}}, \tag{3.11}
\end{equation*}
$$

which gives, for $0<x<R<\infty$,

$$
\begin{equation*}
\int_{x}^{R} e^{i y^{2}} d y=\frac{1}{2 i}\left(\frac{e^{i R^{2}}}{R}-\frac{e^{i x^{2}}}{x}\right)+\frac{1}{2 i} \int_{x}^{R} \frac{1}{y^{2}} e^{i y^{2}} d y \tag{3.12}
\end{equation*}
$$

Hence, for each $x>0$,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \operatorname{Fr}(R)=\operatorname{Fr}(x)+\frac{1}{2 i}(\pi i)^{-1 / 2}\left\{-\frac{e^{i x^{2}}}{x}+\int_{x}^{\infty} \frac{1}{y^{2}} e^{i y^{2}} d y\right\} . \tag{3.13}
\end{equation*}
$$

This shows that the limits on the left side of (3.8) exist. It remains to identify them.

For this evaluation, we look at

$$
\begin{equation*}
I(a)=\int_{0}^{\infty} e^{-a y^{2}} d y=\frac{\sqrt{\pi}}{2} a^{-1 / 2} \tag{3.14}
\end{equation*}
$$

valid for $a>0$ via the change of variable $t=a^{1 / 2} y$. Now both the integral defining $I(a)$ and $a^{-1 / 2}$ are holomorphic in $\{a \in \mathbb{C}: \operatorname{Re} a>0\}$, so this identity holds in the right half plane; cf. [2], §2.6. Hence we have

$$
\begin{align*}
\int_{0}^{\infty} e^{-\varepsilon y^{2}} e^{i y^{2}} d y & =I(\varepsilon-i)=\frac{\sqrt{\pi}}{2}(\varepsilon-i)^{-1 / 2} \tag{3.15}\\
& \rightarrow \frac{\sqrt{\pi}}{2} e^{\pi i / 4}, \quad \text { as } \varepsilon \searrow 0 .
\end{align*}
$$

We also know that

$$
\begin{equation*}
\int_{0}^{R} e^{i y^{2}} d y \longrightarrow L, \quad \text { as } \quad R \rightarrow \infty \tag{3.16}
\end{equation*}
$$

for some $L \in \mathbb{C}$. The result (3.8) follows from the fact that, if (3.16) holds,

$$
\begin{equation*}
\lim _{\varepsilon \searrow 0} \int_{0}^{\infty} e^{-\varepsilon y^{2}} e^{i y^{2}} d y=L \tag{3.17}
\end{equation*}
$$

Figure 1: Graph of $\mathrm{Fr}_{c}(x)$

This implication is known as an Abelian theorem, and is discussed in Appendix A.

For graphical purposes, it is convenient to write

$$
\begin{align*}
\operatorname{Fr}(x) & =e^{-\pi i / 4} \frac{1}{\sqrt{\pi}} \int_{0}^{x}\left[\cos y^{2}+i \sin y^{2}\right] d y \tag{3.18}\\
& =e^{-\pi i / 4}\left[\operatorname{Fr}_{c}(x)+i \operatorname{Fr}_{s}(x)\right]
\end{align*}
$$

Figure 1 depicts the graph of $\operatorname{Fr}_{c}(x)$.
Here is a variant of (3.6), which applies to a general class of initial data.
Proposition 3.1 If $f \in C_{0}^{1}(\mathbb{R})$, then, for $t>0$,

$$
\begin{equation*}
S(t) f(x)=\int_{-\infty}^{\infty} \operatorname{Fr}\left(\frac{y}{\sqrt{4 t}}\right) f^{\prime}(x-y) d y \tag{3.19}
\end{equation*}
$$

with a similar formula for $t<0$.
Proof. Denote the right side of (3.19) by $v(t, x)$. Integration by parts gives

$$
\begin{equation*}
v(t, x)=\int_{-\infty}^{\infty} \partial_{y} \operatorname{Fr}\left(\frac{y}{\sqrt{4 t}}\right) f(x-y) d y . \tag{3.20}
\end{equation*}
$$

But

$$
\begin{align*}
\partial_{y} \operatorname{Fr}\left(\frac{y}{\sqrt{4 t}}\right) & =\frac{1}{\sqrt{4 t}} \operatorname{Fr}^{\prime}\left(\frac{y}{\sqrt{4 t}}\right) \\
& =\frac{1}{\sqrt{4 t}} \frac{e^{-\pi i / 4}}{\sqrt{\pi}} e^{i y^{2} / 4 t} \tag{3.21}\\
& =S_{t}(y),
\end{align*}
$$

the second identity by (3.5), and the third by (2.13). Then (2.12) yields

$$
\begin{equation*}
v(t, x)=S(t) f(x), \tag{3.22}
\end{equation*}
$$

as asserted.
We then have the following counterpart to (2.16).
Corollary 3.2 Given $f \in C_{0}^{1}(\mathbb{R}), A$ as in (3.9),

$$
\begin{equation*}
\|S(t) f\|_{L^{\infty}} \leq A\left\|f^{\prime}\right\|_{L^{1}} \tag{3.23}
\end{equation*}
$$

We next give a second proof of (3.8), taking off from (3.13), which shows that

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \operatorname{Fr}(x)= \pm B \tag{3.24}
\end{equation*}
$$

for some $B \in \mathbb{C}$. We seek another proof that $B=1 / 2$, not relying on the Abelian theorem used above. Our reasoning proceeds as follows. From (3.6) and (3.24), we know that

$$
\begin{equation*}
S(t) \chi_{a, b}(x) \longrightarrow 2 B, \quad \text { uniformly in } x \in[a+\varepsilon, b-\varepsilon], \tag{3.25}
\end{equation*}
$$

as $t \searrow 0$, for each $\varepsilon>0$. On the other hand, we know that

$$
\begin{equation*}
S(t) \chi_{a, b} \longrightarrow \chi_{a, b}, \quad \text { in } L^{2} \text {-norm, } \tag{3.26}
\end{equation*}
$$

as $t \rightarrow 0$. Comparison of (3.25) and (3.26) forces $B=1 / 2$.
Remark. Given $B=1 / 2$, we can rewrite (3.13) as

$$
\begin{equation*}
\operatorname{Fr}(x)-\frac{1}{2}=\frac{1}{2 i}(\pi i)^{-1 / 2}\left\{\frac{e^{i x^{2}}}{x}-\int_{x}^{\infty} \frac{1}{y^{2}} e^{i y^{2}} d y\right\} \tag{3.27}
\end{equation*}
$$

for $x>0$. Going further, we can write

$$
\begin{align*}
\int_{x}^{\infty} \frac{1}{y^{2}} e^{i y^{2}} d y & =\frac{1}{2 i} \int_{x}^{\infty} \frac{1}{y^{3}} d\left(e^{i y^{2}}\right) \\
& =\frac{1}{2 i}\left\{-\frac{e^{i x^{2}}}{x^{3}}+3 \int_{x}^{\infty} \frac{1}{y^{4}} e^{i y^{2}} d y\right\} \tag{3.28}
\end{align*}
$$

and proceed inductively to derive a complete asymptotic expansion, as $x \rightarrow$ ∞, of $\operatorname{Fr}(x)$.

A An Abelian theorem

The following result justifies passing from (3.16) to (3.17), used to prove (3.8). For more general Abelian theorems, see Appendix A. 5 of [2].

Proposition A. 1 Let $f: \mathbb{R}^{+} \rightarrow \mathbb{C}$ be bounded and continuous. Assume

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{0}^{R} f(t) d t=L \tag{A.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{\varepsilon \searrow 0} \int_{0}^{\infty} e^{-\varepsilon t} f(t) d t=L \tag{A.2}
\end{equation*}
$$

Proof. Set $g(s)=\int_{0}^{s} f(t) d t$, so $g(R) \rightarrow L$ as $R \rightarrow \infty$. Then, for $\varepsilon>0$,

$$
\begin{align*}
\int_{0}^{\infty} e^{-\varepsilon t} f(t) d t & =\int_{0}^{\infty} e^{-\varepsilon t} g^{\prime}(t) d t \\
& =\varepsilon \int_{0}^{\infty} e^{-\varepsilon t} g(t) d t \tag{A.3}\\
& =L+\varepsilon \int_{0}^{\infty} e^{-\varepsilon t}[g(t)-L] d t
\end{align*}
$$

Pick $\delta>0$ and then take $K<\infty$ such that

$$
\begin{equation*}
t \geq K \Longrightarrow|g(t)-L| \leq \delta \tag{A.4}
\end{equation*}
$$

Then

$$
\begin{align*}
& \varepsilon \int_{0}^{\infty} e^{-\varepsilon t}|g(t)-L| d t \\
& \leq \varepsilon \int_{0}^{K} e^{-\varepsilon t}|g(t)-L| d t+\varepsilon \delta \int_{K}^{\infty} e^{-\varepsilon t} d t \tag{A.5}\\
& \leq\left(\sup _{t \leq K}|g(t)-L|\right) K \varepsilon+\delta
\end{align*}
$$

Hence

$$
\begin{equation*}
\underset{\varepsilon \searrow 0}{\limsup }\left|\int_{0}^{\infty} e^{-\varepsilon t} f(t) d t-L\right| \leq \delta, \quad \forall \delta>0 \tag{A.6}
\end{equation*}
$$

and we have (A.2).

References

[1] M. Taylor, Partial Differential Equations, Vols. 1-3, Springer, NY 1996 (2nd ed. 2011).
[2] M. Taylor, Introduction to Complex Analysis, GSM \#202, AMS, Providence RI, 2019.

