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Abstract

We treat the Schrödinger equation

∂u

∂t
= i

∂2u

∂x2
, u(0, x) = f(x),

applying the Fourier transform to write

u(t, x) = S(t)f(x) =
1√
2π

∫ ∞

−∞
e−itξ2 f̂(ξ)eix·ξ dξ,

which differs from the solution to the heat equation only in replacing
e−tξ2 by e−itξ2 . Analytic continuation of the heat kernel Ht(y) =

(4πt)−1/2e−y2/4t produces

S(t)f(x) =

∫ ∞

−∞
f(x− y)St(y) dy, St(y) = (4πit)−1/2e−y2/4it.

Applying this formula to important special cases leads to the study of
the Fresnel integral,

Fr(x) = (πi)−1/2

∫ x

0

eiy
2

dy,

which is seen to be a smooth, odd function, with lots of oscillation, but
nevertheless satisfying

lim
x→±∞

Fr(x) = ±1

2
.
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1 Introduction

We discuss the 1D Schrödinger equation

∂u

∂t
= i

∂2u

∂x2
, (1.1)

for t, x ∈ R, with initial condition

u(0, x) = f(x). (1.2)

Note that the partial Fourier transform

û(t, ξ) =
1√
2π

∫ ∞

−∞
u(t, x)e−ixξ dx (1.3)

satisfies
∂tû(t, ξ) = −iξ2û(t, ξ), û(0, ξ) = f̂(ξ), (1.4)

so
û(t, ξ) = e−itξ2 f̂(ξ), (1.5)

and we have
u(t, x) = F∗e−itξ2Ff(x). (1.6)

Since, by the Plancherel theorem, the Fourier transform

F : L2(R) −→ L2(R) (1.7)

is bijective and norm preserving (i.e., unitary), with inverse F∗, we see that
(1.5)–(1.6) defines a solution

u(t, x) = S(t)f(x) (1.8)

to (1.1)–(1.2), for f ∈ L2(R). Furthermore, for each t ∈ R,

S(t) : L2(R) −→ L2(R) (1.9)

is unitary, with inverse

S(t)−1 = S(t)∗ = S(−t). (1.10)
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2 Relation to heat equation, and integral formula

We have defined the solution operator S(t) : L2(R) → L2(R) to the Schrödinger
equation in §1. If f ∈ L2(R) and also f̂ ∈ L1(R), then S(t)f is given by the
absolutely convergent integral

S(t)f(x) =
1√
2π

∫ ∞

−∞
e−itξ2 f̂(ξ)eixξ dξ. (2.1)

We relate this to the solution operator

H(t)f(x) =
1√
2π

∫ ∞

−∞
e−tξ2 f̂(ξ)eixξ dξ (2.2)

for the heat equation

∂u

∂t
=

∂2u

∂t2
, u(0, x) = f(x). (2.3)

As seen in [1], §§3.3–3.5, we have, for t > 0,

H(t)f(x) =

∫
f(x− y)Ht(y) dy, (2.4)

with

Ht(y) =
1

2π

∫
e−tξ2+iyξ dξ

= (4πt)−1/2e−y2/4t, t > 0.

(2.5)

Now, we can extend (2.2) and (2.4)–(2.5), from t ∈ (0,∞) to complex t with
positive real part. Let us denote such a complex number by s + it, s >
0, t ∈ R. We have

H(s+ it)f(x) =
1√
2π

∫
e(s+it)ξ2 f̂(ξ)eixξ dξ

=
1√
2π

∫
f(x− y)Hs+it(y) dy,

(2.6)

with
Hs+it(y) =

[
2π(s+ it)

]−1/2
e−y2/4(s+it), s > 0, t ∈ R. (2.7)

The Fourier integral represenation (2.6), with the Plancherel theorem, gives

H(s+ it) : L2(R) −→ L2(R), ∥H(s+ it)∥L(L2) = 1, s > 0, t ∈ R, (2.8)
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and furthermore, for f ∈ L2(R),

S(t)f = lim
s↘0

H(s+ it)f, in L2-norm. (2.9)

Comparison with (2.1) shows that, if f ∈ L2(R) and also f̂ ∈ L1(R) (so
f ∈ C(R)), then, for each t ∈ R,

H(s+ it)f(x) −→ S(t)f(x), uniformly in x, as s ↘ 0. (2.10)

If, in addition, f ∈ L1(R), i.e.,

f ∈ A(R), (2.11)

then we can pass to the limit s ↘ 0 and write, for each t ∈ R \ 0,

S(t)f(x) =

∫
f(x− y)St(y) dy, (2.12)

with

St(y) =
1√
4π

(0 + it)−1/2e−y2/4it. (2.13)

Here

(0 + it)−1/2 = lim
s↘0

(s+ it)−1/2 = e−πi/4|t|−1/2, if t > 0,

eπi/4|t|−1/2, if t < 0.
(2.14)

Note that

eπi/4 =
1 + i√

2
. (2.15)

Having this formula for St(y), we can readily extend S(t) to act on f ∈
L1(R), for t ̸= 0, obtaining

S(t) : L1(R) −→ L∞(R), ∥S(t)f∥L∞ ≤ 1√
4π|t|

∥f∥L1 . (2.16)
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3 The Fresnel integral

We start this section off with a study of S(t)χa,b, where, for a, b ∈ R, a < b,
we set

χa,b(x) = 1, if a < x < b,

0, otherwise.
(3.1)

For simplicity, we take t > 0, though we note that, if f ∈ L1(R) or L2(R),

f real valued =⇒ S(−t)f = S(t)f. (3.2)

By (2.12)–(2.14), we have

S(t)χa,b(x) =
e−πi/4

√
4πt

∫ x−a

x−b
e−y2/4it dy. (3.3)

We are hence motivated to look at

e−πi/4

√
4πt

∫ x

0
e−y2/4it dy = (πi)−1/2

∫ x/
√
4t

0
eiu

2
du

= Fr
( x√

4t

)
,

(3.4)

where we bring in the Fresnel integral

Fr(x) =
e−πi/4

√
π

∫ x

0
eiy

2
dy. (3.5)

Using this special function, we have, for t > 0,

S(t)χa,b(x) = Fr
(x− a√

4t

)
− Fr

(x− b√
4t

)
. (3.6)

We are now motivated to study the special function Fr(x), defined by
(3.5). Clearly

Fr ∈ C∞(R), Fr(−x) = −Fr(x). (3.7)

We will show below that

lim
x→±∞

Fr(x) = ±1

2
. (3.8)

In particular, Fr is bounded,

|Fr(x)| ≤ A < ∞, ∀x ∈ R, (3.9)
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for some A < ∞. To get started, note the identity

∂y

(1
y
eiy

2
)
= 2ieiy

2 − 1

y2
eiy

2
, (3.10)

or equivalently

eiy
2
=

1

2i
∂y

(1
y
eiy

2
)
+

1

2iy2
eiy

2
, (3.11)

which gives, for 0 < x < R < ∞,∫ R

x
eiy

2
dy =

1

2i

(eiR2

R
− eix

2

x

)
+

1

2i

∫ R

x

1

y2
eiy

2
dy. (3.12)

Hence, for each x > 0,

lim
R→∞

Fr(R) = Fr(x) +
1

2i
(πi)−1/2

{
−eix

2

x
+

∫ ∞

x

1

y2
eiy

2
dy

}
. (3.13)

This shows that the limits on the left side of (3.8) exist. It remains to
identify them.

For this evaluation, we look at

I(a) =

∫ ∞

0
e−ay2 dy =

√
π

2
a−1/2, (3.14)

valid for a > 0 via the change of variable t = a1/2y. Now both the integral
defining I(a) and a−1/2 are holomorphic in {a ∈ C : Re a > 0}, so this
identity holds in the right half plane; cf. [2], §2.6. Hence we have∫ ∞

0
e−εy2eiy

2
dy = I(ε− i) =

√
π

2
(ε− i)−1/2

→
√
π

2
eπi/4, as ε ↘ 0.

(3.15)

We also know that ∫ R

0
eiy

2
dy −→ L, as R → ∞, (3.16)

for some L ∈ C. The result (3.8) follows from the fact that, if (3.16) holds,

lim
ε↘0

∫ ∞

0
e−εy2eiy

2
dy = L. (3.17)
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Figure 1: Graph of Frc(x)
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This implication is known as an Abelian theorem, and is discussed in Ap-
pendix A.

For graphical purposes, it is convenient to write

Fr(x) = e−πi/4 1√
π

∫ x

0

[
cos y2 + i sin y2

]
dy

= e−πi/4
[
Frc(x) + iFrs(x)

]
.

(3.18)

Figure 1 depicts the graph of Frc(x).
Here is a variant of (3.6), which applies to a general class of initial data.

Proposition 3.1 If f ∈ C1
0 (R), then, for t > 0,

S(t)f(x) =

∫ ∞

−∞
Fr
( y√

4t

)
f ′(x− y) dy, (3.19)

with a similar formula for t < 0.

Proof. Denote the right side of (3.19) by v(t, x). Integration by parts gives

v(t, x) =

∫ ∞

−∞
∂y Fr

( y√
4t

)
f(x− y) dy. (3.20)

But

∂y Fr
( y√

4t

)
=

1√
4t

Fr′
( y√

4t

)
=

1√
4t

e−πi/4

√
π

eiy
2/4t

= St(y),

(3.21)

the second identity by (3.5), and the third by (2.13). Then (2.12) yields

v(t, x) = S(t)f(x), (3.22)

as asserted. �

We then have the following counterpart to (2.16).

Corollary 3.2 Given f ∈ C1
0 (R), A as in (3.9),

∥S(t)f∥L∞ ≤ A∥f ′∥L1 . (3.23)
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We next give a second proof of (3.8), taking off from (3.13), which shows
that

lim
x→±∞

Fr(x) = ±B, (3.24)

for some B ∈ C. We seek another proof that B = 1/2, not relying on the
Abelian theorem used above. Our reasoning proceeds as follows. From (3.6)
and (3.24), we know that

S(t)χa,b(x) −→ 2B, uniformly in x ∈ [a+ ε, b− ε], (3.25)

as t ↘ 0, for each ε > 0. On the other hand, we know that

S(t)χa,b −→ χa,b, in L2-norm, (3.26)

as t → 0. Comparison of (3.25) and (3.26) forces B = 1/2.

Remark. Given B = 1/2, we can rewrite (3.13) as

Fr(x)− 1

2
=

1

2i
(πi)−1/2

{eix
2

x
−
∫ ∞

x

1

y2
eiy

2
dy

}
, (3.27)

for x > 0. Going further, we can write∫ ∞

x

1

y2
eiy

2
dy =

1

2i

∫ ∞

x

1

y3
d(eiy

2
)

=
1

2i

{
−eix

2

x3
+ 3

∫ ∞

x

1

y4
eiy

2
dy

}
,

(3.28)

and proceed inductively to derive a complete asymptotic expansion, as x →
∞, of Fr(x).
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A An Abelian theorem

The following result justifies passing from (3.16) to (3.17), used to prove
(3.8). For more general Abelian theorems, see Appendix A.5 of [2].

Proposition A.1 Let f : R+ → C be bounded and continuous. Assume

lim
R→∞

∫ R

0
f(t) dt = L. (A.1)

Then

lim
ε↘0

∫ ∞

0
e−εtf(t) dt = L. (A.2)

Proof. Set g(s) =
∫ s
0 f(t) dt, so g(R) → L as R → ∞. Then, for ε > 0,∫ ∞

0
e−εtf(t) dt =

∫ ∞

0
e−εtg′(t) dt

= ε

∫ ∞

0
e−εtg(t) dt

= L+ ε

∫ ∞

0
e−εt[g(t)− L] dt.

(A.3)

Pick δ > 0 and then take K < ∞ such that

t ≥ K =⇒ |g(t)− L| ≤ δ. (A.4)

Then

ε

∫ ∞

0
e−εt|g(t)− L| dt

≤ ε

∫ K

0
e−εt|g(t)− L| dt+ εδ

∫ ∞

K
e−εt dt

≤
(
sup
t≤K

|g(t)− L|
)
Kε+ δ.

(A.5)

Hence

lim sup
ε↘0

∣∣∣∫ ∞

0
e−εtf(t) dt− L

∣∣∣ ≤ δ, ∀ δ > 0, (A.6)

and we have (A.2). �
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