Remarks on the Hydrogen Atom Schrödinger Operator

MICHAEL TAYLOR, INFORMAL NOTES

Contents

- 1. Introduction
- 2. Domain of H^2
- 3. Conjectural semigroup and resolvent estimates
- 4. Domain of \mathcal{H}^{1+a}
- 5. Projection onto the negative spectrum of H

1. Introduction

The Schrödinger operator associated to the hydrogen atom has the form

(1.1)
$$H = -\Delta + V, \quad V(x) = -\frac{K}{|x|}, \quad K > 0,$$

acting on functions on \mathbb{R}^3 . More precisely, H is a self-adjoint operator on $L^2(\mathbb{R}^3)$, constructed by the Friedrichs process, with domain

(1.2)
$$\mathcal{D}(H) = \{ u \in H^1(\mathbb{R}^3) : -\Delta u - K |x|^{-1} u \in L^2(\mathbb{R}^3) \}.$$

We recall some well known facts about this operator, details on which can be found in §7 of [T], and then produce some additional results.

First (cf. Proposition 7.2 of [T]),

(1.3)
$$\mathcal{D}(H) = H^2(\mathbb{R}^3).$$

Here and below, $H^s(\mathbb{R}^3)$ will denote L^2 -Sobolev spaces of functions or distributions on \mathbb{R}^3 , and $H^{s,p}(\mathbb{R}^3)$ will denote L^p -Sobolev spaces. Next, (cf. Proposition 7.3 of [T]), the part of Spec H in $(-\infty, 0)$ is a discrete subset, consisting of eigenvalues of finite multiplicity. In more detail (cf. (7.15)–(7.38) of [T]), these eigenvalues are

(1.4)
$$E_n = -\frac{K^2}{4n^2}$$
, eigenspaces V_n , dim $V_n = n^2$,

for $n = 1, 2, 3, \dots$, and V_n has a basis consisting of functions of the form

(1.5)
$$p(x)q(|x|)e^{-2K|x|/n},$$

where p is a harmonic polynomial on \mathbb{R}^3 , homogeneous of degree k, and q is a polynomial on \mathbb{R} of degree j, with j + k + 1 = n.

As is clear from the formula (1.5), these eigenfunctions are Lipschitz, but, in cases where p(x) is constant, they have no higher regularity. In particular, $\mathcal{D}(H^2)$ is not contained in $H^4(\mathbb{R}^3)$. In [T] it is shown that

(1.6)
$$\mathcal{D}(H^2) \subset H^{5/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0.$$

This does not quite imply that

(1.7)
$$\mathcal{D}(H^2) \subset \operatorname{Lip}(\mathbb{R}^3).$$

In §2 we prove (1.7). Part of our motivation for doing this lies in our investigation of functional calculus for H, discussed in [T2]. It is shown that interesting Littlewood-Paley results follow if one has an estimate

(1.8)
$$||e^{-tH}||_{\mathcal{L}(L^2, \operatorname{Lip})} \le Ct^{-5/4}, \text{ for } t \in (0, 1].$$

We discuss conjectural results related to (1.8) in §3. Work there naturally motivates us to consider fractional powers \mathcal{H}^{1+a} , for $a \in (0, 1)$, where

(1.9)
$$\mathcal{H} = H + K^2/4 + 1,$$

a self-adjoint operator with spectrum in $[1,\infty)$. In §4 we show that, on the one hand,

(1.10)
$$\mathcal{D}(\mathcal{H}^{1+a}) \subset \operatorname{Lip}(\mathbb{R}^3), \quad \text{if} \ 1+a > \frac{5}{4},$$

and, on the other hand,

(1.11)
$$\mathcal{D}(\mathcal{H}^{1+a}) = H^{2(1+a)}(\mathbb{R}^3), \text{ if } 1+a < \frac{5}{4}.$$

Section 5 contains some results and conjectures on the orthogonal projection P of $L^2(\mathbb{R}^3)$ onto the direct sum of the eigenspaces associated with the negative spectrum of H.

2. Domain of H^2

We next examine the domain of H^2 , for H of the form (1.1). As shown in Proposition 7.7 of [T],

(2.1)
$$\mathcal{D}(H^2) \subset H^{5/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0.$$

Here we desire to prove the following, which is not quite implied by (2.1).

Proposition 2.1. We have

(2.2)
$$\mathcal{D}(H^2) \subset \operatorname{Lip}(\mathbb{R}^3).$$

Proof. We start by recalling the proof of Proposition 7.7 of [T]. Pick $\lambda \notin \text{Spec } H$. Take $u \in \mathcal{D}(H^2)$, and set $(H - \lambda)u = f \in \mathcal{D}(H) = H^2(\mathbb{R}^3)$. Also set $R_{\lambda} = (-\Delta - \lambda)^{-1}$. Then

(2.3)
$$u = -R_{\lambda}Vu + R_{\lambda}f, \quad R_{\lambda}f \in H^4(\mathbb{R}^3).$$

The next step taken in [T] is to use the fact that

(2.4)
$$M_V: H^2(\mathbb{R}^3) \longrightarrow H^{1/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0,$$

to deduce that $R_{\lambda}Vu \in H^{5/2-\varepsilon}(\mathbb{R}^3)$, yielding (2.1) from (2.3).

We modify the last part of this argument as follows. Pick

(2.5)
$$\chi \in C_0^{\infty}(\mathbb{R}^3), \quad \chi(x) = 1 \text{ for } |x| \le 1, \quad \chi(x) = 0 \text{ for } |x| \ge 2, \\ V = \chi V + (1 - \chi)V = V_0 + V_1.$$

Then

(2.6)
$$u \in \mathcal{D}(H) = H^2(\mathbb{R}^3) \Rightarrow V_1 u \in H^2(\mathbb{R}^3) \Rightarrow R_\lambda V_1 u \in H^4(\mathbb{R}^3).$$

Meanwhile, since

(2.7)
$$H^2(\mathbb{R}^3) \subset C^{\alpha}(\mathbb{R}^3), \quad \alpha = \frac{1}{2},$$

where, for $0 < \alpha < 1$,

(2.8)
$$\|v\|_{C^{\alpha}} = \|v\|_{L^{\infty}} + \sup\Big\{\frac{|v(x) - v(y)|}{|x - y|^{\alpha}} : x \neq y \in \mathbb{R}^3, \, |x - y| \le 1\Big\},$$

we can write, for $u \in \mathcal{D}(H)$,

(2.9)
$$u = u(0)\chi + u_1, \quad u_1 \in C^{\alpha}(\mathbb{R}^3), \ u_1(0) = 0$$

Hence, given $u \in \mathcal{D}(H)$,

(2.10)
$$R_{\lambda}V_0u = u(0)R_{\lambda}V_0\chi + R_{\lambda}V_0u_1$$

Now V_0u_1 is supported on $\{x : |x| \le 2\}$, and

(2.11)
$$|V_0(x)u_1(x)| \le C|x|^{\alpha-1},$$

for $\alpha = 1/2$.

In fact, given $u \in \mathcal{D}(H^2)$, we can use (2.1) to improve the conclusion of (2.9) to $u_1 \in C^{\alpha}(\mathbb{R}^3)$ for all $\alpha < 1$, and we also have (2.11) for all $\alpha < 1$. Consequently,

(2.12)
$$V_0 u_1 \in L^p(\mathbb{R}^n), \quad \forall p \in (1,\infty),$$

hence

(2.13)
$$R_{\lambda}V_0u_1 \in H^{2,p}(\mathbb{R}^3), \quad \forall p \in (1,\infty).$$

We deduce that, if $u \in \mathcal{D}(H^2)$, with $(H - \lambda)u = f \in \mathcal{D}(H)$, then

(2.14)
$$u = -R_{\lambda} (u(0)V_0\chi + V_0u_1) \mod H^4(\mathbb{R}^3)$$
$$= -u(0)R_{\lambda}(V_0\chi) \mod H^{2,p}(\mathbb{R}^3),$$

for all $p \in [2, \infty)$. Given that

(2.15)
$$\Delta |x| = 2|x|^{-1}, \text{ on } \mathbb{R}^3,$$

we have

(2.16)
$$R_{\lambda}(V_0\chi) = \frac{K}{2} |x|\chi^2 + \frac{\lambda K}{2} R_{\lambda}(|x|\chi^2) \mod \mathcal{S}(\mathbb{R}^3).$$

and

(2.16A)
$$R_{\lambda}(|x|\chi^2) \in \bigcap_{1 \le q < \infty} H^{3,q}(\mathbb{R}^3).$$

We hence have the following result, which is more precise than Proposition 2.1.

Proposition 2.2. We have

(2.17)
$$\mathcal{D}(H^2) \subset \operatorname{Span}(|x|\chi(x)) + \bigcap_{2 \le p < \infty} H^{2,p}(\mathbb{R}^3).$$

In view of the formula (1.5) for elements of V_n , which of course belong to $\mathcal{D}(H^k)$ for all k, this is a pretty good result. However, we take one more pass through the proof of Propositions 2.1 and 2.2, to obtain an improvement of (2.13)–(2.14). To begin, given $u \in \mathcal{D}(H^2)$, we can now say that u_1 in (2.9) satisfies

(2.18)
$$u_1 \in \operatorname{Lip}(\mathbb{R}^3), \quad u_1(0) = 0.$$

It follows that

(2.19)
$$|\nabla(V_0 u_1)| \le C|x|^{-1},$$

hence

(2.20)
$$\nabla(V_0 u_1) \in L^{3-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon \in (0,1],$$

 \mathbf{SO}

(2.21)
$$R_{\lambda}V_{0}u_{1} \in H^{3,3-\varepsilon}(\mathbb{R}^{3}), \quad \forall \varepsilon \in (0,1].$$

Note that this improves (2.13), since

(2.22)
$$\bigcap_{1 < q < 3} H^{1,q}(\mathbb{R}^3) \subset \bigcap_{1 < p < \infty} L^p(\mathbb{R}^3),$$

hence

(2.23)
$$\bigcap_{1 < q < 3} H^{3,q}(\mathbb{R}^3) \subset \bigcap_{1 < p < \infty} H^{2,p}(\mathbb{R}^3).$$

Also, since $H^1(\mathbb{R}^3) \subset L^6(\mathbb{R}^3)$, it follows that $H^4(\mathbb{R}^3) \subset H^{3,6}(\mathbb{R}^3) \cap H^{3,2}(\mathbb{R}^3) \subset H^{3,q}(\mathbb{R}^3)$, if $2 \leq q \leq 6$, so we improve (2.14) to

(2.24)
$$u = -u(0)R_{\lambda}(V_0\chi), \quad \text{mod } H^{3,q}(\mathbb{R}^3),$$

for each $q \in [2,3)$. In light of (2.16)–(2.16A), this gives:

Proposition 2.3. Improving Proposition 2.2,

(2.25)
$$\mathcal{D}(H^2) \subset \operatorname{Span}(|x|\chi) + \bigcap_{2 \le q < 3} H^{3,q}(\mathbb{R}^3).$$

3. Conjectural semigroup and resolvent estimates

Estimates on the semigroup e^{-tH} are of great significance. We state a conjecture which, if true, would have nice applications to Littlewood-Paley theory associated to the operator H.

Conjecture 3.1. The semigroup e^{-tH} satisfies, for $t \in (0, 1]$,

(3.1)
$$\|e^{-tH}\|_{\mathcal{L}(L^2,L^\infty)} \leq Ct^{-3/4}, \quad and \\ \|e^{-tH}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \leq Ct^{-3/4-1/2}.$$

In connection with this, we have the following.

Proposition 3.2. Set

(3.2)
$$\mathcal{H} = H + \frac{K^2}{4} + 1,$$

which is self-adjoint with spectrum in $[1,\infty)$. Then there exists $C < \infty$ such that

(3.3)
$$\sup_{t\geq 1} \|e^{-t\mathcal{H}}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \leq C.$$

Proof. Let t = 1 + s, $s \ge 0$. Since $e^{-t\mathcal{H}} = e^{-\mathcal{H}}e^{-s\mathcal{H}}$ and $e^{-s\mathcal{H}}$ is a contraction on $L^2(\mathbb{R}^3)$, we have

(3.4)
$$\sup_{t\geq 1} \|e^{-t\mathcal{H}}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \leq \|e^{-\mathcal{H}}\|_{\mathcal{L}(L^2,\mathrm{Lip})}.$$

Since

(3.5)
$$e^{-\mathcal{H}} = \mathcal{H}^{-2}(\mathcal{H}^2 e^{-\mathcal{H}}),$$

and $\mathcal{H}^2 e^{-\mathcal{H}}$ is bounded on $L^2(\mathbb{R}^3)$, we have

(3.6)
$$\|e^{-\mathcal{H}}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \leq C_1 \|\mathcal{H}^{-2}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \leq C,$$

the last inequality by Proposition 2.1.

Using \mathcal{H} , we can rewrite the second conjectural estimate in (3.1) as

(3.7)
$$||e^{-t\mathcal{H}}||_{\mathcal{L}(L^2, \operatorname{Lip})} \le C(t^{-3/4 - 1/2} + 1), \quad t > 0.$$

It is useful to connect (3.7) to resolvent estimates.

Proposition 3.3. If (3.7) holds, then

(3.8)
$$\|(1+t^2\mathcal{H}^2)^{-1}\|_{\mathcal{L}(L^2,\mathrm{Lip})} \le C(t^{-3/4-1/2}+1), \quad t>0.$$

Proof. We can use

(3.9)
$$(1+t^2\mathcal{H}^2)^{-1} = (1+t\mathcal{H})^{-2}(1+t\mathcal{H})^2(1+t^2\mathcal{H}^2)^{-1}$$

to reduce our task to showing that (3.7) implies

(3.10)
$$\|(1+t\mathcal{H})^{-2}\|_{\mathcal{L}(L^2,\operatorname{Lip})} \leq C(t^{-3/4-1/2}+1).$$

To prove (3.10), we use the identity

(3.11)
$$(1+t\mathcal{H})^{-\sigma} = \frac{1}{\Gamma(\sigma)} \int_0^\infty e^{-s} e^{-st\mathcal{H}} s^{\sigma-1} ds.$$

Then, given (3.7),

(3.12)
$$\begin{aligned} \|(1+t\mathcal{H})^{-\sigma}\|_{\mathcal{L}(L^{2},\mathrm{Lip})} &\leq C \int_{0}^{t^{-2}} e^{-s} (st)^{-3/4-1/2} s^{\sigma-1} \, ds \\ &+ C \int_{t^{-2}}^{\infty} e^{-s} s^{\sigma-1} \, ds \\ &\leq C_{1} (t^{-3/4-1/2} + 1), \end{aligned}$$

with $C_1 < \infty$ if $\sigma > 3/4 + 1/2$. In particular, this applies for $\sigma = 2$.

We also have a converse, derivable via the following useful result.

Proposition 3.4. If (3.8) holds, then

(3.13)
$$\|\Phi(t\mathcal{H})\|_{\mathcal{L}(L^2, \operatorname{Lip})} \le C(t^{-3/4 - 1/2} + 1), \quad t > 0,$$

whenever $\Phi(\lambda)$ satisfies

(3.14)
$$|\Phi(\lambda)| \le C(1+|\lambda|)^{-2}.$$

Proof. Indeed,

(3.15)
$$\Phi(t\mathcal{H}) = (1 + t^2 \mathcal{H}^2)^{-1} (1 + t^2 \mathcal{H}^2) \Phi(t\mathcal{H}),$$

and the product of the last two factors is uniformly bounded on $L^2(\mathbb{R}^3)$.

Taking

(3.16)
$$\Phi(\lambda) = e^{-|\lambda|},$$

we see that

$$(3.8) \Longrightarrow (3.7).$$

REMARK. Having (3.7), we also see from (3.12) that the estimate (3.13) holds provided

(3.17)
$$|\Phi(\lambda)| \le C(1+|\lambda|)^{-\beta}, \quad \beta > \frac{5}{4}.$$

4. Domain of \mathcal{H}^{1+a}

By Proposition 3.4 and the subsequent remark, involving (3.17), we see that if Conjecture 3.1 is true, then the following must hold.

Proposition 4.1. Take \mathcal{H} as in (3.2). Then

(4.1)
$$\mathcal{D}(\mathcal{H}^{1+a}) \subset \operatorname{Lip}(\mathbb{R}^3), \quad for \ 1+a > \frac{5}{4}.$$

Our first goal here is to prove (4.1).

To start, take $a \in (0, 1)$ and $u \in \mathcal{D}(\mathcal{H}^{1+a})$, and write

(4.2)
$$\mathcal{H}u = f \in \mathcal{D}(\mathcal{H}^a) = H^{2a}(\mathbb{R}^3),$$

the last identification by (1.3) (which implies $\mathcal{D}(\mathcal{H}) = H^2(\mathbb{R}^3)$) and interpolation. Now $\mathcal{H} = H - \lambda$, with $\lambda = -1 - K^2/4 \notin \operatorname{Spec} H$, so, parallel to (2.3), we have

(4.3)
$$u = -R_{\lambda}Vu + R_{\lambda}f, \quad R_{\lambda}f \in H^{2(1+a)}(\mathbb{R}^3).$$

Note that $H^{2(1+a)}(\mathbb{R}^3) \subset \operatorname{Lip}(\mathbb{R}^3)$ precisely for 1 + a > 5/4. Taking $V = V_0 + V_1$, as in (2.5), we can rewrite (4.3) as

(4.4)
$$u = -R_{\lambda}V_{0}u - R_{\lambda}V_{1}u + R_{\lambda}f$$
$$= -R_{\lambda}V_{0}u \mod H^{2(1+a)}(\mathbb{R}^{3}),$$

since $u \in \mathcal{D}(\mathcal{H}) \Rightarrow R_{\lambda}V_1 u \in H^4(\mathbb{R}^3)$.

Next, parallel to (2.9),

(4.5)
$$u = u(0)\chi + u_1.$$

At this point, we can say the following about u_1 . Since

(4.6)
$$\mathcal{D}(\mathcal{H}) = H^2(\mathbb{R}^3) \subset C^{1/2}(\mathbb{R}^3), \text{ and } \mathcal{D}(\mathcal{H}^2) \subset \operatorname{Lip}(\mathbb{R}^3),$$

an interpolation argument gives, for $a \in (0, 1)$,

(4.7)
$$u \in \mathcal{D}(\mathcal{H}^{1+a}) \Longrightarrow u \in C^{(1+\alpha)/2}(\mathbb{R}^3), \quad \forall \alpha < a,$$

 \mathbf{SO}

(4.8)
$$u_1 \in C^{(1+\alpha)/2}(\mathbb{R}^3), \text{ and } u_1(0) = 0.$$

Now, by (4.4),

(4.10)
$$u = -u(0)R_{\lambda}(V_0\chi) - R_{\lambda}V_0u_1, \mod H^{2(1+a)}(\mathbb{R}^3),$$

and, by (4.8),

(4.11)
$$|V_0(x)u_1(x)| \le C\chi(x)|x|^{\beta-1}, \quad \forall \beta < \frac{1+a}{2}.$$

Next,

(4.12)

$$1 + a > \frac{5}{4} \Rightarrow |V_0(x)u_1(x)| \le C\chi(x)|x|^{-3/8+\varepsilon} \quad (\varepsilon > 0)$$

$$\Rightarrow V_0 u_1 \in L^8(\mathbb{R}^3)$$

$$\Rightarrow R_\lambda V_0 u_1 \in H^{2,8}(\mathbb{R}^3)$$

$$\Rightarrow R_\lambda V_0 u_1 \in C^{1+r}(\mathbb{R}^3), \quad \forall r < \frac{5}{8}.$$

Meanwhile, (2.16)–(2.16A) apply to $R_{\lambda}(V_0\chi)$, so we have the desired result (4.1).

Here is an interesting complement to Proposition 4.1.

Proposition 4.2. We have

(4.15)
$$\mathcal{D}(\mathcal{H}^{1+a}) = H^{2(1+a)}(\mathbb{R}^3), \quad for \ 1 \le 1+a < \frac{5}{4}.$$

Proof. First, take $u \in \mathcal{D}(\mathcal{H}^{1+a})$. The first part of the proof of Proposition 4.1 applies in this setting, to yield (4.10), i.e.,

(4.16)
$$u \in \mathcal{D}(\mathcal{H}^{1+a}) \Rightarrow u = -u(0)R_{\lambda}(V_0\chi) - R_{\lambda}V_0u_1 \mod H^{2(1+a)}(\mathbb{R}^3).$$

Also, $1+a \leq 5/4 \Rightarrow H^{2(1+a)}(\mathbb{R}^3) \supset H^{5/2}(\mathbb{R}^3)$, so (2.16)–(2.16A) implies $R_{\lambda}(V_0\chi) = (K/2)|x|\chi^2 \mod H^{2(1+a)}(\mathbb{R}^3)$. Meanwhile, for the Fourier transform of $|x|\chi^2$ we have

(4.17)
$$\mathcal{F}(|x|\chi^2)(\xi) \sim C\langle\xi\rangle^{-2} \mathcal{F}(|x|^{-1}\chi^2)(\xi) \\ \sim C\langle\xi\rangle^{-4},$$

and hence

(4.18)
$$|x|\chi^2 \in H^{5/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0.$$

Hence, as long as $1 \le 1 + a < 5/4$,

(4.19)
$$u \in \mathcal{D}(\mathcal{H}^{1+a}) \Rightarrow u = -R_{\lambda}V_0u_1 \mod H^{2(1+a)}(\mathbb{R}^3).$$

At this point, we have $u_1 \in \mathcal{D}(\mathcal{H}) = H^2(\mathbb{R}^3)$ and $V_0 = |x|^{-1}\chi$. Parallel to (4.17)–(4.18), $\widehat{V}_0(\xi) \sim C\langle \xi \rangle^{-2}$, so $V_0 \in H^{1/2-\varepsilon}(\mathbb{R}^3)$, $\forall \varepsilon > 0$, hence, for all $\varepsilon > 0$,

(4.20)
$$V_0 \in H^{1/2-\varepsilon}(\mathbb{R}^3), \text{ hence } V_0 u_1 \in H^{1/2-\varepsilon}(\mathbb{R}^3),$$

 \mathbf{SO}

(4.21)
$$u \in \mathcal{D}(\mathcal{H}) \Rightarrow R_{\lambda} V_0 u_1 \in H^{5/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0.$$

This proves that $\mathcal{D}(\mathcal{H}^{1+a}) \subset H^{2(1+a)}(\mathbb{R}^3)$ if $1 \leq 1 + a < 5/4$. Using

(4.22)
$$\mathcal{D}(\mathcal{H}^{1+a}) = \{ u \in \mathcal{D}(\mathcal{H}) : \mathcal{H}u \in \mathcal{H}^a \} \\ = \{ u \in H^2(\mathbb{R}^3) : \mathcal{H}u \in H^{2a}(\mathbb{R}^3) \},\$$

one can produce a similar argument to establish the converse.

REMARK. We have

(4.23)
$$\|e^{-t\mathcal{H}}\|_{\mathcal{L}(L^2,\mathcal{D}(\mathcal{H}^{5/4}))} = \|\mathcal{H}^{5/4}e^{-t\mathcal{H}}\|_{\mathcal{L}(L^2)} \le Ct^{-5/4},$$

an estimate that, in light of Propositions 4.1–4.2, is tantalizingly close to the conjectured estimate (3.1), but of course not quite on the mark.

5. Projection onto the negative spectrum of H

Let

(5.1)
$$P = \text{ orthogonal projection of } L^2(\mathbb{R}^3) \text{ onto } \bigoplus_{n \ge 1} V_n,$$

where the spaces V_n are the eigenspaces of H described in (1.4). Clearly

(5.2)
$$P: L^2(\mathbb{R}^3) \longrightarrow \bigcap_{k \ge 1} \mathcal{D}(H^k).$$

In particular,

(5.3)
$$P: L^2(\mathbb{R}^3) \longrightarrow H^{5/2-\varepsilon}(\mathbb{R}^3), \quad \forall \varepsilon > 0,$$

and

(5.4)
$$P: L^2(\mathbb{R}^3) \longrightarrow \operatorname{Lip}(\mathbb{R}^3).$$

A special case of (1.5) is

$$V_1 = \operatorname{Span} e^{-2K|x|},$$

so $\operatorname{Lip}(\mathbb{R}^3)$ cannot be replaced by $C^1(\mathbb{R}^3)$ in (5.4). Note that (5.3) implies

(5.6)
$$P: L^2(\mathbb{R}^3) \longrightarrow \bigcap_{2 \le p \le \infty} L^p(\mathbb{R}^3),$$

and

$$(5.7) P: L^2(\mathbb{R}^3) \longrightarrow C_0(\mathbb{R}^3).$$

By duality, since $P = P^*$,

(5.8)
$$P: L^q(\mathbb{R}^3) \longrightarrow L^2(\mathbb{R}^3), \quad \forall q \in [1,2],$$

and, since also $P^2 = P$, we then have

(5.9)
$$P: L^q(\mathbb{R}^3) \longrightarrow L^p(\mathbb{R}^3), \text{ for } 1 \le q \le 2 \le p \le \infty.$$

Note that each eigenfunction described in (1.5) belongs to $L^p(\mathbb{R}^3)$ for all $p \in [1, \infty]$. Nevertheless, we hazzard the following:

Conjecture 5.1. Given $p \in [1, \infty]$,

(5.10)
$$P: L^2(\mathbb{R}^3) \to L^p(\mathbb{R}^3) \Longrightarrow p \ge 2, \quad and$$

$$(5.11) P: L^p(\mathbb{R}^3) \to L^p(\mathbb{R}^3) \Longrightarrow p = 2.$$

Note that the operators $H^k P$ enjoy the mapping properties (5.2)–(5.4) and (5.6)–(5.9). Actually, these operators are milder than P. For example, it follows from (1.4) that

(5.12) HP is Hilbert-Schmidt, and H^2P is trace class, on $L^2(\mathbb{R}^3)$.

We therefore hazzard the following:

Conjecture 5.2. There exist $p_0, p_1 \in (1, 2)$ such that

- (5.13) $HP: L^2(\mathbb{R}^3) \longrightarrow L^p(\mathbb{R}^3), \text{ for } p \in (p_0, 2], \text{ and}$
- (5.14) $HP: L^p(\mathbb{R}^3) \longrightarrow L^p(\mathbb{R}^3), \text{ for } p \in (p_1, p'_1).$

- [T] M. Taylor, Spectral Theory, Chapter 8 of Partial Differential Equations, Vol. 2, Springer-Verlag, New York, 1996 (2nd ed., 2011).
- [T2] M. Taylor, Functional calculus and Littlewood-Paley theory for Schrödinger operators, Preprint, 2017.