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1. Introduction

The Schrödinger operator associated to the hydrogen atom has the form

(1.1) H = −∆+ V, V (x) = −K

|x|
, K > 0,

acting on functions on R3. More precisely, H is a self-adjoint operator on L2(R3),
constructed by the Friedrichs process, with domain

(1.2) D(H) = {u ∈ H1(R3) : −∆u−K|x|−1u ∈ L2(R3)}.

We recall some well known facts about this operator, details on which can be found
in §7 of [T], and then produce some additional results.

First (cf. Proposition 7.2 of [T]),

(1.3) D(H) = H2(R3).

Here and below, Hs(R3) will denote L2-Sobolev spaces of functions or distributions
on R3, and Hs,p(R3) will denote Lp-Sobolev spaces. Next, (cf. Proposition 7.3 of
[T]), the part of SpecH in (−∞, 0) is a discrete subset, consisting of eigenvalues of
finite multiplicity. In more detail (cf. (7.15)–(7.38) of [T]), these eigenvalues are

(1.4) En = −K2

4n2
, eigenspaces Vn, dimVn = n2,

for n = 1, 2, 3, · · · , and Vn has a basis consisting of functions of the form

(1.5) p(x)q(|x|)e−2K|x|/n,

where p is a harmonic polynomial on R3, homogeneous of degree k, and q is a
polynomial on R of degree j, with j + k + 1 = n.
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As is clear from the formula (1.5), these eigenfunctions are Lipschitz, but, in
cases where p(x) is constant, they have no higher regularity. In particular, D(H2)
is not contained in H4(R3). In [T] it is shown that

(1.6) D(H2) ⊂ H5/2−ε(R3), ∀ ε > 0.

This does not quite imply that

(1.7) D(H2) ⊂ Lip(R3).

In §2 we prove (1.7). Part of our motivation for doing this lies in our investigation of
functional calculus for H, discussed in [T2]. It is shown that interesting Littlewood-
Paley results follow if one has an estimate

(1.8) ∥e−tH∥L(L2,Lip) ≤ Ct−5/4, for t ∈ (0, 1].

We discuss conjectural results related to (1.8) in §3. Work there naturally motivates
us to consider fractional powers H1+a, for a ∈ (0, 1), where

(1.9) H = H +K2/4 + 1,

a self-adjoint operator with spectrum in [1,∞). In §4 we show that, on the one
hand,

(1.10) D(H1+a) ⊂ Lip(R3), if 1 + a >
5

4
,

and, on the other hand,

(1.11) D(H1+a) = H2(1+a)(R3), if 1 + a <
5

4
.

Section 5 contains some results and conjectures on the orthogonal projection
P of L2(R3) onto the direct sum of the eigenspaces associated with the negative
spectrum of H.
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2. Domain of H2

We next examine the domain of H2, for H of the form (1.1). As shown in
Proposition 7.7 of [T],

(2.1) D(H2) ⊂ H5/2−ε(R3), ∀ ε > 0.

Here we desire to prove the following, which is not quite implied by (2.1).

Proposition 2.1. We have

(2.2) D(H2) ⊂ Lip(R3).

Proof. We start by recalling the proof of Proposition 7.7 of [T]. Pick λ /∈ SpecH.
Take u ∈ D(H2), and set (H − λ)u = f ∈ D(H) = H2(R3). Also set Rλ =
(−∆− λ)−1. Then

(2.3) u = −RλV u+Rλf, Rλf ∈ H4(R3).

The next step taken in [T] is to use the fact that

(2.4) MV : H2(R3) −→ H1/2−ε(R3), ∀ε > 0,

to deduce that RλV u ∈ H5/2−ε(R3), yielding (2.1) from (2.3).
We modify the last part of this argument as follows. Pick

(2.5)
χ ∈ C∞

0 (R3), χ(x) = 1 for |x| ≤ 1, χ(x) = 0 for |x| ≥ 2,

V = χV + (1− χ)V = V0 + V1.

Then

(2.6) u ∈ D(H) = H2(R3) ⇒ V1u ∈ H2(R3) ⇒ RλV1u ∈ H4(R3).

Meanwhile, since

(2.7) H2(R3) ⊂ Cα(R3), α =
1

2
,

where, for 0 < α < 1,

(2.8) ∥v∥Cα = ∥v∥L∞ + sup
{ |v(x)− v(y)|

|x− y|α
: x ̸= y ∈ R3, |x− y| ≤ 1

}
,
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we can write, for u ∈ D(H),

(2.9) u = u(0)χ+ u1, u1 ∈ Cα(R3), u1(0) = 0.

Hence, given u ∈ D(H),

(2.10) RλV0u = u(0)RλV0χ+RλV0u1.

Now V0u1 is supported on {x : |x| ≤ 2}, and

(2.11) |V0(x)u1(x)| ≤ C|x|α−1,

for α = 1/2.
In fact, given u ∈ D(H2), we can use (2.1) to improve the conclusion of (2.9) to

u1 ∈ Cα(R3) for all α < 1, and we also have (2.11) for all α < 1. Consequently,

(2.12) V0u1 ∈ Lp(Rn), ∀ p ∈ (1,∞),

hence

(2.13) RλV0u1 ∈ H2,p(R3), ∀ p ∈ (1,∞).

We deduce that, if u ∈ D(H2), with (H − λ)u = f ∈ D(H), then

(2.14)
u = −Rλ

(
u(0)V0χ+ V0u1

)
mod H4(R3)

= −u(0)Rλ(V0χ) mod H2,p(R3),

for all p ∈ [2,∞). Given that

(2.15) ∆|x| = 2|x|−1, on R3,

we have

(2.16) Rλ(V0χ) =
K

2
|x|χ2 +

λK

2
Rλ(|x|χ2) mod S(R3).

and

(2.16A) Rλ(|x|χ2) ∈
⋂

1≤q<∞

H3,q(R3).

We hence have the following result, which is more precise than Proposition 2.1.
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Proposition 2.2. We have

(2.17) D(H2) ⊂ Span(|x|χ(x)) +
⋂

2≤p<∞

H2,p(R3).

In view of the formula (1.5) for elements of Vn, which of course belong to D(Hk)
for all k, this is a pretty good result. However, we take one more pass through the
proof of Propositions 2.1 and 2.2, to obtain an improvement of (2.13)–(2.14). To
begin, given u ∈ D(H2), we can now say that u1 in (2.9) satisfies

(2.18) u1 ∈ Lip(R3), u1(0) = 0.

It follows that

(2.19) |∇(V0u1)| ≤ C|x|−1,

hence

(2.20) ∇(V0u1) ∈ L3−ε(R3), ∀ ε ∈ (0, 1],

so

(2.21) RλV0u1 ∈ H3,3−ε(R3), ∀ ε ∈ (0, 1].

Note that this improves (2.13), since

(2.22)
⋂

1<q<3

H1,q(R3) ⊂
⋂

1<p<∞
Lp(R3),

hence

(2.23)
⋂

1<q<3

H3,q(R3) ⊂
⋂

1<p<∞
H2,p(R3).

Also, since H1(R3) ⊂ L6(R3), it follows that H4(R3) ⊂ H3,6(R3) ∩ H3,2(R3) ⊂
H3,q(R3), if 2 ≤ q ≤ 6, so we improve (2.14) to

(2.24) u = −u(0)Rλ(V0χ), mod H3,q(R3),

for each q ∈ [2, 3). In light of (2.16)–(2.16A), this gives:

Proposition 2.3. Improving Proposition 2.2,

(2.25) D(H2) ⊂ Span(|x|χ) +
⋂

2≤q<3

H3,q(R3).
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3. Conjectural semigroup and resolvent estimates

Estimates on the semigroup e−tH are of great significance. We state a conjecture
which, if true, would have nice applications to Littlewood-Paley theory associated
to the operator H.

Conjecture 3.1. The semigroup e−tH satisfies, for t ∈ (0, 1],

(3.1)
∥e−tH∥L(L2,L∞) ≤ Ct−3/4, and

∥e−tH∥L(L2,Lip) ≤ Ct−3/4−1/2.

In connection with this, we have the following.

Proposition 3.2. Set

(3.2) H = H +
K2

4
+ 1,

which is self-adjoint with spectrum in [1,∞). Then there exists C < ∞ such that

(3.3) sup
t≥1

∥e−tH∥L(L2,Lip) ≤ C.

Proof. Let t = 1 + s, s ≥ 0. Since e−tH = e−He−sH and e−sH is a contraction on
L2(R3), we have

(3.4) sup
t≥1

∥e−tH∥L(L2,Lip) ≤ ∥e−H∥L(L2,Lip).

Since

(3.5) e−H = H−2(H2e−H),

and H2e−H is bounded on L2(R3), we have

(3.6) ∥e−H∥L(L2,Lip) ≤ C1∥H−2∥L(L2,Lip) ≤ C,

the last inequality by Proposition 2.1.

Using H, we can rewrite the second conjectural estimate in (3.1) as

(3.7) ∥e−tH∥L(L2,Lip) ≤ C(t−3/4−1/2 + 1), t > 0.

It is useful to connect (3.7) to resolvent estimates.
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Proposition 3.3. If (3.7) holds, then

(3.8) ∥(1 + t2H2)−1∥L(L2,Lip) ≤ C(t−3/4−1/2 + 1), t > 0.

Proof. We can use

(3.9) (1 + t2H2)−1 = (1 + tH)−2(1 + tH)2(1 + t2H2)−1

to reduce our task to showing that (3.7) implies

(3.10) ∥(1 + tH)−2∥L(L2,Lip) ≤ C(t−3/4−1/2 + 1).

To prove (3.10), we use the identity

(3.11) (1 + tH)−σ =
1

Γ(σ)

∫ ∞

0

e−se−stHsσ−1 ds.

Then, given (3.7),

(3.12)

∥(1 + tH)−σ∥L(L2,Lip) ≤ C

∫ t−2

0

e−s(st)−3/4−1/2sσ−1 ds

+ C

∫ ∞

t−2

e−ssσ−1 ds

≤ C1(t
−3/4−1/2 + 1),

with C1 < ∞ if σ > 3/4 + 1/2. In particular, this applies for σ = 2.

We also have a converse, derivable via the following useful result.

Proposition 3.4. If (3.8) holds, then

(3.13) ∥Φ(tH)∥L(L2,Lip) ≤ C(t−3/4−1/2 + 1), t > 0,

whenever Φ(λ) satisfies

(3.14) |Φ(λ)| ≤ C(1 + |λ|)−2.

Proof. Indeed,

(3.15) Φ(tH) = (1 + t2H2)−1(1 + t2H2)Φ(tH),

and the product of the last two factors is uniformly bounded on L2(R3).

Taking

(3.16) Φ(λ) = e−|λ|,

we see that
(3.8) =⇒ (3.7).

Remark. Having (3.7), we also see from (3.12) that the estimate (3.13) holds
provided

(3.17) |Φ(λ)| ≤ C(1 + |λ|)−β , β >
5

4
.
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4. Domain of H1+a

By Proposition 3.4 and the subsequent remark, involving (3.17), we see that if
Conjecture 3.1 is true, then the following must hold.

Proposition 4.1. Take H as in (3.2). Then

(4.1) D(H1+a) ⊂ Lip(R3), for 1 + a >
5

4
.

Our first goal here is to prove (4.1).
To start, take a ∈ (0, 1) and u ∈ D(H1+a), and write

(4.2) Hu = f ∈ D(Ha) = H2a(R3),

the last identification by (1.3) (which implies D(H) = H2(R3)) and interpolation.
Now H = H − λ, with λ = −1−K2/4 /∈ SpecH, so, parallel to (2.3), we have

(4.3) u = −RλV u+Rλf, Rλf ∈ H2(1+a)(R3).

Note that H2(1+a)(R3) ⊂ Lip(R3) precisely for 1 + a > 5/4. Taking V = V0 + V1,
as in (2.5), we can rewrite (4.3) as

(4.4)
u = −RλV0u−RλV1u+Rλf

= −RλV0u mod H2(1+a)(R3),

since u ∈ D(H) ⇒ RλV1u ∈ H4(R3).
Next, parallel to (2.9),

(4.5) u = u(0)χ+ u1.

At this point, we can say the following about u1. Since

(4.6) D(H) = H2(R3) ⊂ C1/2(R3), and D(H2) ⊂ Lip(R3),

an interpolation argument gives, for a ∈ (0, 1),

(4.7) u ∈ D(H1+a) =⇒ u ∈ C(1+α)/2(R3), ∀α < a,

so

(4.8) u1 ∈ C(1+α)/2(R3), and u1(0) = 0.
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Now, by (4.4),

(4.10) u = −u(0)Rλ(V0χ)−RλV0u1, mod H2(1+a)(R3),

and, by (4.8),

(4.11) |V0(x)u1(x)| ≤ Cχ(x)|x|β−1, ∀β <
1 + a

2
.

Next,

(4.12)

1 + a >
5

4
⇒ |V0(x)u1(x)| ≤ Cχ(x)|x|−3/8+ε (ε > 0)

⇒ V0u1 ∈ L8(R3)

⇒ RλV0u1 ∈ H2,8(R3)

⇒ RλV0u1 ∈ C1+r(R3), ∀ r <
5

8
.

Meanwhile, (2.16)–(2.16A) apply to Rλ(V0χ), so we have the desired result (4.1).

Here is an interesting complement to Proposition 4.1.

Proposition 4.2. We have

(4.15) D(H1+a) = H2(1+a)(R3), for 1 ≤ 1 + a <
5

4
.

Proof. First, take u ∈ D(H1+a). The first part of the proof of Proposition 4.1
applies in this setting, to yield (4.10), i.e.,

(4.16) u ∈ D(H1+a) ⇒ u = −u(0)Rλ(V0χ)−RλV0u1 mod H2(1+a)(R3).

Also, 1+a ≤ 5/4 ⇒ H2(1+a)(R3) ⊃ H5/2(R3), so (2.16)–(2.16A) implies Rλ(V0χ) =
(K/2)|x|χ2 mod H2(1+a)(R3). Meanwhile, for the Fourier transform of |x|χ2 we
have

(4.17)
F(|x|χ2)(ξ) ∼ C⟨ξ⟩−2F(|x|−1χ2)(ξ)

∼ C⟨ξ⟩−4,

and hence

(4.18) |x|χ2 ∈ H5/2−ε(R3), ∀ ε > 0.

Hence, as long as 1 ≤ 1 + a < 5/4,

(4.19) u ∈ D(H1+a) ⇒ u = −RλV0u1 mod H2(1+a)(R3).
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At this point, we have u1 ∈ D(H) = H2(R3) and V0 = |x|−1χ. Parallel to (4.17)–

(4.18), V̂0(ξ) ∼ C⟨ξ⟩−2, so V0 ∈ H1/2−ε(R3), ∀ ε > 0, hence, for all ε > 0,

(4.20) V0 ∈ H1/2−ε(R3), hence V0u1 ∈ H1/2−ε(R3),

so

(4.21) u ∈ D(H) ⇒ RλV0u1 ∈ H5/2−ε(R3), ∀ ε > 0.

This proves that D(H1+a) ⊂ H2(1+a)(R3) if 1 ≤ 1 + a < 5/4. Using

(4.22)
D(H1+a) = {u ∈ D(H) : Hu ∈ Ha}

= {u ∈ H2(R3) : Hu ∈ H2a(R3)},

one can produce a similar argument to establish the converse.

Remark. We have

(4.23) ∥e−tH∥L(L2,D(H5/4)) = ∥H5/4e−tH∥L(L2) ≤ Ct−5/4,

an estimate that, in light of Propositions 4.1–4.2, is tantalizingly close to the con-
jectured estimate (3.1), but of course not quite on the mark.
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5. Projection onto the negative spectrum of H

Let

(5.1) P = orthogonal projection of L2(R3) onto
⊕
n≥1

Vn,

where the spaces Vn are the eigenspaces of H described in (1.4). Clearly

(5.2) P : L2(R3) −→
⋂
k≥1

D(Hk).

In particular,

(5.3) P : L2(R3) −→ H5/2−ε(R3), ∀ ε > 0,

and

(5.4) P : L2(R3) −→ Lip(R3).

A special case of (1.5) is

(5.5) V1 = Span e−2K|x|,

so Lip(R3) cannot be replaced by C1(R3) in (5.4). Note that (5.3) implies

(5.6) P : L2(R3) −→
⋂

2≤p≤∞

Lp(R3),

and

(5.7) P : L2(R3) −→ C0(R3).

By duality, since P = P ∗,

(5.8) P : Lq(R3) −→ L2(R3), ∀ q ∈ [1, 2],

and, since also P 2 = P , we then have

(5.9) P : Lq(R3) −→ Lp(R3), for 1 ≤ q ≤ 2 ≤ p ≤ ∞.

Note that each eigenfunction described in (1.5) belongs to Lp(R3) for all p ∈
[1,∞]. Nevertheless, we hazzard the following:
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Conjecture 5.1. Given p ∈ [1,∞],

P : L2(R3) → Lp(R3) =⇒ p ≥ 2, and(5.10)

P : Lp(R3) → Lp(R3) =⇒ p = 2.(5.11)

Note that the operatorsHkP enjoy the mapping properties (5.2)–(5.4) and (5.6)–
(5.9). Actually, these operators are milder than P . For example, it follows from
(1.4) that

(5.12) HP is Hilbert-Schmidt, and H2P is trace class, on L2(R3).

We therefore hazzard the following:

Conjecture 5.2. There exist p0, p1 ∈ (1, 2) such that

HP : L2(R3) −→ Lp(R3), for p ∈ (p0, 2], and(5.13)

HP : Lp(R3) −→ Lp(R3), for p ∈ (p1, p
′
1).(5.14)
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