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1. Introduction

Let M be a compact Riemannian manifold, of dimension n ≥ 2, with volume
element dω and Laplace operator ∆. Set

(1.1) G(x, y) = γn(d(x, y)),

where d(x, y) is the Riemannian distance from x to y, and

(1.2)
γn(r) = r2−n, n ≥ 3,

log
A

r
, n = 2,

where A > diamM . An essentially equivalent specification of G is

(1.3) (1−∆)−1u(x) =

∫
M

G(x, y)u(y) dω(y).

The Kato class K(M) of integrable functions, introduced in [K], is defined as follows.

Definition. Given V ∈ L1(M), we say V ∈ K(M) provided

(1.4) lim
r→0

sup
x∈M

∫
Br(x)

G(x, y)|V (y)| dω(y) = 0.

Equivalent conditions are

(1.5) lim
λ→+∞

sup
x∈M

(λ−∆)−1|V |(x) = 0,

hence

(1.6) lim
λ→+∞

sup
∥u∥L1≤1

|(u, (λ−∆)−1|V |)| = 0,

hence

(1.7) lim
λ→+∞

sup
∥u∥L1≤1

|(|V |(λ−∆)−1u, 1)| = 0,

hence (since (λ−∆)−1 is positivity-preserving)

(1.8) lim
λ→+∞

∥V (λ−∆)−1∥L(L1(M)) = 0.

Here is another characterization (a consequence of Theorem 4.15 of [AS]).
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Proposition 1.1. If V ∈ L1(M), then

(1.9) V ∈ K(M) ⇐⇒ (1−∆)−1|V | ∈ C(M).

There is also the following property of MV (defined by MV u = V u), important
for defining −∆+ V as a self-adjoint operator.

Proposition 1.2. If V ∈ K(M), then

(1.10) MV : H1(M) −→ H−1(M),

and for each ε > 0, there exists C(ε) <∞ such that, for u ∈ H1(M),

(1.11)

∫
M

|V |u2 dω ≤ ε∥u∥2H1 + C(ε)∥u∥2L2 .

For a generalization involving fractional powers of 1 − ∆, see Theorem 4.2 of
[ZY].

The notion of Kato class for integrable functions given above has the following
natural extension (introduced in [BM]).

Definition. Let µ be a finite, signed Borel measure on M . We say µ ∈ K(M)
provided

(1.12) lim
r→0

sup
x∈M

∫
Br(x)

G(x, y) d|µ|(y) = 0,

where |µ| denotes the positive “total variation” measure associated with µ, via the
Hahn decomposition.

Lots of singular measures satisfy (1.12):

Proposition 1.3. Assume that there exists A <∞ such that, for all x ∈M, r > 0,

(1.13) |µ|(Br(x)) ≤ Arα, α > n− 2.

Then (1.12) holds.

Proof. We have

(1.14)

∫
Br(x)\Br/2(x)

G(x, y) d|µ|(y) ≤ Cγn(r)r
α.
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For n ≥ 3, this is dominated by

(1.15) Crα−(n−2),

and for n = 2 it is dominated by

(1.16) Crα log
A

r
.

In either case, we have (1.12).

Remark. In case n = 2, the condition (1.13) is

(1.17) |µ|(Br(x)) ≤ Arα, for some α > 0.

We see in Appendix A (which arose in the course of writing [CST]) that (1.17) holds
for various Cantor sets in a 2D manifold M , endowed with Hausdorff measure. It
is also seen in Chapter 7 of [T2] that (1.17) holds when µ is the maximal entropy
measure on a Julia set in S2, associated with a holomorphic map on S2 of degree
≥ 2. In Appendix A we show directly that

(1.18) Mµ : H1(M) −→ H−1(M) is compact,

whenever µ is a finite positive measure on an n-dimensional Riemannian manifold
M satisfying

(1.19) µ(Br(x)) ≤ Crα, α > n− 1− 1

n− 1
.

Returning to the description of our analysis of Kato-class measures, in §2 we
show that Propositions 1.1 and 1.2 extend from L1 functions V ∈ K(M) to finite,
signed measures µ ∈ K(M). We deduce that, for such µ, there exists a constant C
such that

(1.20) A = −∆+Mµ + C is a positive self-adjoint operator on L2(M),

satisfying

(1.21) D(A1/2) = H1(M).

Going further, in §3, we examine self-adjoint extensions of such operators as

(1.22) A = −∆+Mµ + FMν + C,

with µ and C as in (1.20), ν a positive measure on M satisfying

(1.23) Mν : H1(M) −→ H−1(M),

and

(1.24) F ≥ 1, F ∈ L1(M,ν).

In case µ = 0 and ν = ω, Proposition 3.2 specializes to a classical result of Friedrichs
(cf. [CFKS]), Chapter 1.

In §§4–5 we point to further results on Schrödinger operators with singular po-
tentials. We cite various papers that we have not digested.

Appendix A gives a general discussion of multipliers from H1(M) to H−1(M),
taken from [CST].
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2. Properties of measures in K(M)

Our first goal here is to extend Proposition 1.1. In preparation for this, let us
take G(x, y) as in (1.3) and write (for t > 0)

(2.1) (1−∆)−1et(∆−1)|µ|(x) =
∫
M

Gt(x, y) d|µ|(y),

and

(2.2) Rt(x, y) = G(x, y)−Gt(x, y),

so

(2.3)

∫
M

Rt(x, y) d|µ|(y) = (1−∆)−1(1− et(∆−1))|µ|(x)

=

∫ t

0

es(∆−1)|µ|(x) ds,

the last identity yielding Rt(x, y) ≥ 0. Comparison with (1.12) shows that

(2.4)

µ ∈ K(M) ⇐⇒ lim
t↘0

sup
x

∫
M

Rt(x, y) d|µ|(y) = 0

⇐⇒ lim
t↘0

∥∥(1− et(∆−1))(1−∆)−1|µ|
∥∥
sup

= 0.

As an aside, we mention that, if µ is a finite signed measure on M , then, for
each ε > 0, there exists δ > 0 such that

(2.5) ψ := (1−∆)−1|µ| ∈ H2−ε,1+δ(M), ψ ≥ 0.

Here is our extension of Proposition 1.1.

Proposition 2.1. Given that µ is a finite signed measure on M ,

(2.6) µ ∈ K(M) ⇐⇒ (1−∆)−1|µ| ∈ C(M).

Proof. Take ψ as in (2.5). Since {et(∆−1) : t ≥ 0} is a strongly continuous semigroup
on C(M) and, for each ψ ∈ D′(M), et(∆−1)ψ ∈ C∞(M) for all t > 0, we have

(2.7)
ψ ∈ C(M) ⇐⇒ lim

t↘0

∥∥(1− et(∆−1))ψ
∥∥
sup

= 0

⇐⇒ µ ∈ K(M),
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the last equivalence by (2.4).

Our next goal is to extend Proposition 1.2, and show that if µ is a finite signed
measure,

(2.8) µ ∈ K(M) =⇒Mµ : H1(M) → H−1(M),

accompanied by estimates of the form (1.11). Our analysis will be adapted from
the proof of Theorem 4.2 in [ZY], specialized from (−∆)−α/2 to the classical case
α = 2. To start, note that if µ = µ+ − µ− is the Hahn decomposition, µ ∈ K(M)
implies µ± ∈ K(M), so we can restrict attention to the case

(2.9) µ ∈ K(M) is a positive measure.

It will be convenient to pass to

(2.10) ν = µ+ ω,

where ω is the volume measure on M . Clearly also ν ∈ K(M). Parallel to (1.5), we
have, for λ > 0,

(2.11) sup
x∈M

(λ−∆)−1ν(x) ≤ ε(λ), ε(λ) → 0 as λ→ +∞.

In order to adapt arguments from [ZY], we set

(2.12) Vs = es∆ν, s > 0,

so Vs ∈ C∞(M), and

(2.13) Vs =Ws + 1, Ws = es∆µ ≥ 0.

Here, as is natural, we implement the identification C∞(M) ↪→ D′(M) by f 7→ fω.
Note that

(2.14) sup
x∈M

(λ−∆)−1Vs(x) ≤ ε(λ),

with ε(λ) exactly as in (2.11), since {es∆ : s ≥ 0} is a contraction semigroup on
C(M). In particular, the estimate (2.14) is independent of s ∈ (0,∞). Hence,
parallel to (1.8), we have

(2.15) ∥Vs(λ−∆)−1∥L(L1(M)) ≤ ε(λ).

By duality,

(2.16) ∥(λ−∆)−1Vs∥L(L∞(M)) ≤ ε(λ).
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Now, following [ZY], we bring in weighted Lp-spaces,

(2.17) Lp
s(M) = Lp(M,Vs dω).

We see that M
V

1/p
s

: Lp
s(M) → Lp(M) is an isometric isomorphism. Hence

(2.18)
∥(λ−∆)−1Vs∥L(L1

s(M)) = ∥Vs(λ−∆)−1∥L(L1(M)) ≤ ε(λ),

∥(λ−∆)−1Vs∥L(L∞
s (M)) = ∥(λ−∆)−1Vs∥L(L∞(M)) ≤ ε(λ).

Therefore, by the Riesz-Thorin interpolation theorem,

(2.19) ∥(λ−∆)−1Vs∥L(L2
s(M)) ≤ ε(λ),

which translates to

(2.20) ∥V 1/2
s (λ−∆)−1V 1/2

s ∥L(L2(M)) ≤ ε(λ).

Hence, for f ∈ L2(M),

(2.21)

∥(λ−∆)−1/2V 1/2
s f∥2L2(M) = ((λ−∆)−1/2V 1/2

s f, (λ−∆)−1/2V 1/2
s f)

= (V 1/2
s (λ−∆)−1V 1/2

s f, f)

≤ ε(λ)∥f∥2L2(M),

so

(2.22) ∥(λ−∆)−1/2V 1/2
s ∥L(L2(M)) ≤ ε(λ)1/2,

and, by duality,

(2.23) ∥V 1/2
s (λ−∆)−1/2∥L(L2(M)) ≤ ε(λ)1/2.

Hence, for u ∈ L2(M),

(2.24)

(Vs(λ−∆)−1/2u, (λ−∆)−1/2u)

= (V 1/2
s (λ−∆)−1/2u, V 1/2

s (λ−∆)−1/2u)

≤ ε(λ)∥u∥2L2(M).

Let us set

(2.25) φ = (λ−∆)−1/2u, ∥φ∥H1(M) = ∥(1−∆)1/2φ∥L2(M).
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Then (2.24) gives (for λ > 1)

(2.26)

∫
M

Vsφ
2 dω ≤ ε(λ)∥(λ−∆)1/2φ∥2L2

= ε(λ)((λ−∆)φ,φ)

= ε(λ)
{
∥φ∥2H1(M) + (λ− 1)∥φ∥2L2(M)

}
.

Taking λ = 1 and applying Cauchy’s inequality gives, for φ,ψ ∈ H1(M),

(2.27)
∣∣∣∫
M

Vsφψ dω
∣∣∣ ≤ ε(1)∥φ∥H1(M)∥ψ∥H1(M),

hence MVs
: H1(M) → H−1(M) satisfies

(2.28) ∥MVs
φ∥H−1(M) ≤ ε(1)∥φ∥H1(M),

an estimate that is independent of s > 0. Taking s↘ 0 and applying a little basic
functional analysis yields the following.

Proposition 2.2. Let µ ∈ K(M) be a positive measure, and set ν = µ+ ω. Then

(2.29) Mν : H1(M) −→ H−1(M),

and, for all φ ∈ H1(M), λ > 1,

(2.30) (Mνφ,φ) ≤ ε(λ)
{
∥φ∥2H1(M) + (λ− 1)∥φ∥2L2(M)

}
,

with ε(λ) as in (2.11). Consequently,

(2.31) Mµ : H1(M) −→ H−1(M),

with a similar estimate.

If we denote by Qλ(φ) the quantity in brackets on the right side of (2.30), then
Cauchy’s inequality yields

(2.32) |(Mνφ,ψ)| ≤ ε(λ)Qλ(φ)
1/2Qλ(ψ)

1/2,

for φ,ψ ∈ H1(M), λ ≥ 1. Recalling the reduction to (2.9) via the Hahn decompo-
sition µ = µ+ − µ−, we have the following.
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Corollary 2.3. Let µ ∈ K(M) be a finite signed measure. Then (2.31) holds, and

(2.33) |(Mµφ,ψ)| ≤ ε(λ)Qλ(φ)
1/2Qλ(ψ)

1/2.

We now discuss how to use these estimates to define −∆+Mµ as a self-adjoint
operator, when µ ∈ K(M) is a finite, signed measure. Let us rewrite the case ψ = φ
of (2.33) as

(2.34) |(Mµφ,φ)| ≤ ε∥φ∥2H1(M) + C(ε)∥φ∥2L2(M).

Set C#(ε) = C(ε) + 1. It follows that

(2.35) ([−∆+Mµ + C#(1/2)]φ,φ) ≥ 1

2
∥φ∥2H1(M).

This together with (2.34) implies (e.g., via the Lax-Milgram theorem) that the
self-adjoint map

(2.36) −∆+Mµ + C#(1/2) : H1(M) −→ H−1(M) is bijective,

with inverse

(2.37) [−∆+Mµ + C#(1/2)]−1 : H−1(M) −→ H1(M),

which is self adjoint. Restriction to L2(M) yields

(2.38) [−∆+Mµ + C#(1/2)]−1 : L2(M) −→ L2(M),

self adjoint and compact, and injective. We can hence apply the classical theory of
von Neumann/Friedrichs, to deduce the following.

Proposition 2.4. Let µ ∈ K(M) be a finite signed measure. Then

(2.39) A = −∆+Mµ + C#(1/2)

is a positive self-adjoint operator on L2(M), with domain

(2.40) D(A) = {u ∈ H1(M) : −∆u+Mµu ∈ L2(M)}.

This self-adjoint operator has compact resolvent, hence discrete spectrum. Further-
more,

(2.41) D(A1/2) = H1(M).
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3. More singular potentials

Take M as before, and take an operator L, satisfying

(3.1) L : H1(M)
≈−→ H−1(M), positive and self adjoint.

For example, we might have L = −∆+ 1, or more generally

(3.2) L = −∆+Mµ + C, µ ∈ K(M), finite signed measure,

and C ∈ (0,∞) sufficiently large. Such L gives rise to a positive, self-adjoint
operator on L2(M), with D(L1/2) = H1(M). To go further, take a finite, positive
measure ν on M such that

(3.3) Mν : H1(M) −→ H−1(M).

Next, take a Borel function F on M , satisfying

(3.4) F ≥ 1, F ∈ L1(M,ν).

Consider the space

(3.5) HFν(M) = {φ ∈ H1(M) : φ ∈ L2(M,Fν + ω)}

(where, recall, ω is volume measure on M), and set

(3.6) Q(φ,ψ) = (Lφ,ψ) +

∫
M

φψ (F dν + dω),

for φ,ψ ∈ HFν(M). We aim to prove the following.

Proposition 3.1. The quadratic form Q defined by (3.6), with form domain HFν(M),
is closed.

This result has the following implication.

Proposition 3.2. Under the hypotheses given in (3.1)–(3.6), we have a self-adjoint
operator

(3.7) A = L+MFν ,

satisfying

(3.8) D(A1/2) = HFν(M),
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and

(3.9) D(A) = {φ ∈ HFν(M) : Lφ+ FMνφ ∈ L2(M)}.

Proof of Proposition 3.1. Take φk ∈ HFν(M), and assume

(3.10) (φk) is Cauchy in the Q-norm.

Equivalently,

(3.11) (φk) is Cauchy in the H1(M)-norm,

and

(3.12) (φk) is Cauchy in the L2(M,Fν + ω)-norm.

Our task is to show that (φk) converges in the Q-norm to an element of HFν(M).
Now (3.11)–(3.12) imply that there exist

(3.13) φ ∈ H1(M) and ψ ∈ L2(M,Fν + ω)

such that

(3.14)
φk → φ, in H1(M), and

φk → ψ, in L2(M,Fν + ω).

Now, thanks to (3.3), the first part of (3.14) implies that

(3.15) φk −→ φ in L2(M,ν + ω).

Meanwhile, the second part of (3.14) implies

(3.16) φk −→ ψ in L2(M,ν + ω).

Hence

(3.17) φ = ψ, (ν + ω)-a.e., on M,

so we have

(3.18) φk −→ φ in Q-norm,

and Proposition 3.1 is proved.
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4. Schrödinger operators defined via Dirichlet forms

A number of papers, cited in “more references,” treat self-adjoint extensions of
−∆+Mµ for substantially more singular potentials than discussed in §§2–3. The
approach involves more general “Dirichlet forms.” To introduce this approach in a
simple fashion, we start with a quadratic form

(4.1) Q(φ,ψ) =

∫
M

⟨∇φ,∇ψ⟩ A2 dω,

where

(4.2) A ∈ C∞(M), A > 0.

We have

(4.3)

Q(φ,ψ) =

∫
M

⟨∇φ,A2∇ψ⟩ dω

=

∫
M

⟨φ,∇(A2ψ)− (∇A2)ψ⟩ dω

= −
∫
M

[
∆φ+ 2A−1∇A · ∇φ

]
ψA2 dω.

Under the hypotheses in (4.2), we see that Q is a closed quadratic form, with form
domain H1(M), determining the operator

(4.4) L = ∆+ 2A−1∇A · ∇,

as a self-adjoint operator on L2(M,A2 ω), with domain H2(M).
Now we have the unitary operator

(4.5) MA : L2(M,A2ω)
≈−→ L2(M,ω),

given by MAφ = Aφ, giving rise to a self-adjoint operator

(4.6) MALM
−1
A on L2(M,ω),

also with domain H2(M). A calculation gives

(4.7) ∆(Aφ) = A∆φ+ 2⟨∇A,∇φ⟩+ (∆A)φ,
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hence

(4.8) A−1∆(Aφ) = ∆φ+ 2A−1∇A · ∇φ+A−1(∆A)φ,

so

(4.9) M−1
A ∆MA = L+MA−1(∆A),

hence

(4.10) MALM
−1
A = ∆−MA−1(∆A).

If

(4.11) A = (−∆+ 1)−1γ,

with γ ∈ C∞(M), γ ≥ 0 (γ ̸= 0), we are in the setting of (4.2), and (4.10) becomes

(4.12)
MALM

−1
A = ∆−MA−1(∆A−A) − 1

= ∆+MA−1γ − 1.

Now if (4.11) holds for smooth γ ≥ 0, then the calculations leading to (4.12) are
simply a hugely indirect way of defining ∆ +MA−1γ as a self-adjoint operator on
L2(M,ω). To go further, we want to take γ to be singular.

For example, by Proposition 2.1,

(4.13) γ ∈ K(M), γ ≥ 0, γ ̸= 0 =⇒ A ∈ C(M), A > 0.

Under these conditions, again Q in (4.1) is a closed quadratic form, with form
domain H1(M), yielding a self-adjoint operator L on L2(M,A2ω) satisfying

(4.14) −(Lφ,ψ)L2(M,A2ω) = Q(φ,ψ),

with

(4.15) D((−L)1/2) = H1(M),

and

(4.16) D(L) = {φ ∈ H1(M) : |Q(φ,ψ)| ≤ C(φ)∥ψ∥L2(M,A2ω)}.

Now our principal object of interest is not L, but

(4.17) LA =MALM
−1
A ,



14

as a self-adjoint operator on L2(M,ω), with the idea of extending the identity
(4.12), and understanding its significance. In connection with this, we have from
(4.13) that

(4.18) γ ∈ K(M), γ ≥ 0, γ ̸= 0 =⇒ A−1γ ∈ K(M),

so the results of §2 apply to the operator on the right side of (4.12), in this setting.
For a clear connection from this to (4.14)–(4.15), it would be useful to have

(4.19) MA,M
−1
A : H1(M) −→ H1(M).

To see this, take φ ∈ H1(M). We have

(4.20)
∇(Aφ) = A∇φ+ (∇A)φ,

∇(A−1φ) = A−1∇φ−A−2(∇A)φ,

so (4.19) holds provided

(4.21) M∇A : H1(M) −→ L2(M).

That this holds is a consequence of Theorem 11.1.1 of [MS], which we state.

Proposition 4.1. Given γ ∈ D′(M), A = (−∆+ 1)−1γ, we have

(4.22) Mγ : H1(M) → H−1(M) ⇐⇒M∇A : H1(M) → L2(M).

Actually, the result of [MS] is done in the Euclidean space setting. We should
look into checking the manifold case. We note the following related result, Theorem
11.2.2 of [MS] (again, formulated here in the manifold setting).

Proposition 4.2. Given γ ∈ D′(M), B = (−∆+ 1)−1/2γ, we have

(4.23) Mγ : H1(M) → H−1(M) ⇐⇒MB : H1(M) → L2(M).

The proof in [MS] makes use of a result of [MV] that suggests the following.

Claim 4.3. Let B ∈ L2(M), P ∈ OPS0(M). Then

(4.24) MB : H1(M) → L2(M) =⇒MPB : H1(M) → L2(M).

In fact, the following result is suggested by Lemmas 12.1.3–12.1.4 of [MS] (which
cites [MV] for proofs):
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Claim 4.4. Assume

(4.25) p ∈ (1,∞), 0 < s <
n

p
.

Then, for B ∈ Lp(M), P ∈ OPS0(M),

(4.26) MB : Hs,p(M) → Lp(M) =⇒MPB : Hs,p(M) → Lp(M).

According to Theorem 2.3.2 of [MS], given m ∈ N, p ∈ (1,∞), and B ∈ Lp(M),
we have MB : Hm,p(M) → Lp(M) if and only if there exists a < ∞ such that, for
each compact set K,

(4.27)

∫
K

|B|p dV (x) ≤ aCp,m(K),

where Cp,m(K) is a certain capacity. One might also want to check whether this
characterization (in case m = 1, p = 2) is directly applicable to (4.21).

So we see that the approach via Dirichlet forms applies to potentials given by
measures in the Kato class. A number of works have gone beyond this, and treated
more singular potentials. Papers that do this include [AM], [ABR], [BM], [Br],
[BrT], [Her], [KT]. Unfortunately, lots of these papers are tucked away in conference
proceedings and are hard to access.
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5. Point scatterers in 2D and 3D

There seem to be treatments of this topic using Dirichlet forms in papers cited
at the end of §4, but I have not been able to verify their claims.

Another approach to point scattering in 2D and 3D can be found in [RU] and
[U]. I have not figured out how these papers tie in with other works.
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A. Measures that multiply H1(M) to H−1(M)

Let M be a compact, n-dimensional Riemannian manifold, and Ω ⊂ M a con-
nected open subset. Let µ be a finite, positive measure on Ω. We want to give
conditions that imply

(A.1) Mµ : H1
0 (Ω) −→ H−1(Ω), compactly, where Mµf = fµ.

It will actually be convenient to let µ be a positive finite measure on M , and ask
when

(A.2) Mµ : H1(M) −→ H−1(M), compactly.

Since H1
0 (Ω) is a closed linear subspace of H1(M), we always get (A.1) from (A.2),

by restriction (also restricting µ to Ω). We emphasize that the support of µ can
have nonempty intersection with ∂Ω.

Note that, if dimM = n ≥ 2,

(A.3)
f, g ∈ H1(M) ⇒ fg ∈ H1,p(M), for p =

n

n− 1
if n ≥ 3,

for all p < 2 if n = 2.

Since C(M) is dense in the duals of such spaces H1,p(M), we deduce that (A.2)
holds under the following conditions.

(A.4)
µ ∈ H1,n/(n−1)(M)∗ = H−1,n(M), if n ≥ 3,

µ ∈ H−1,r(M), for some r > 2, if n = 2.

We can use this to obtain the following class of singular measures satisfying (A.2).

Proposition A.1. Let a compact S ⊂M be locally a Lipschitz graph, of dimension
n − 1, equipped with surface measure, i.e., (n − 1)-dimensional Haudorff measure,
σS. Let

(A.5) µ = hσS ,

with

(A.6)
h ∈ Ln−1(S, dσS), if n ≥ 3,

h ∈ L1+δ(S, dσS), for some δ > 0, if n = 2.

Then (A.4) holds, hence (A.2) holds.
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Proof. We can apply the trace theorem, followed by the embedding theorem,

(A.7) Tr : H1,p(M) −→ Bs
p,p(S) ⊂ Lq(S),

with

(A.8)

p =
n

n− 1
, s = 1− 1

p
,

q =
(n− 1)p

n− 1− sp
=
n− 1

n− 2
, q′ = n− 1,

if n ≥ 3. For n = 2, (A.7) applies for all p ∈ (1, 2), again with s = 1 − 1/p, and
taking p↗ 2 yields q ↗ ∞, hence q′ ↘ 1. Thus (A.5)–(A.6) imply (A.4).

Note. The trace result is perhaps better known when S is smooth. (Cf. [BL],
Theorem 6.6.1.) However, all the function spaces involved are invariant under bi-
Lipschitz maps.

Positive measures satisfying (A.2) can have much wilder support than a Lipschitz
surface. For example, one can take an infinite sequence of measures µk satisfying the
hypotheses of Proposition A.1, supported on surfaces Sk, and set µ =

∑∞
k=1 akµk,

with positive ak decreasing sufficiently fast.
Here is another class of examples. Let O ⊂ M be an open set whose boundary

∂O is locally the graph of a continuous function. Then one can take a smooth
vector field X on M , vanishing nowhere on ∂O, whose flow F t

X has the property
that, for each y ∈ ∂O, F t

Xy belongs to O for small t > 0. Then

(A.9) µ = XχO

is a positive measure, supported by ∂O, and it belongs to H−1,∞(M). The posi-
tivity of µ is a consequence of the fact that

(A.10) χO ◦ F t
X ≥ χO,

for all small t > 0, since

(A.11) t−1(χO ◦ F t
X − χO) −→ XχO in D′(M), as t→ 0.

In the last class of examples, (A.9), the support of µ has topological dimension
n − 1, but its Hausdorff dimension can be > n − 1. We next produce measures
satisfying (A.4) and supported on “fractal” sets of Hausdorff dimension < n − 1.
We make use of the following result, contained in Theorem 4.7.4 of [Zie]. Here,
Br(x) denotes the ball of radius r centered at x.
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Lemma. Let µ be a positive measure onM with the property that there exist A <∞
and ε > 0 such that

(A.12) µ(Br(x)) ≤ Arn−q+ε, ∀ r ∈ (0, 1], x ∈M.

Assume q ∈ (1, n). Then

(A.13) µ ∈ H−1,p(M), p = q′.

We then see that (A.4) holds whenever

(A.14) µ(Br(x)) ≤ Arα, α > n− 1− 1

n− 1
.

In particular, for n = 2, it suffices to have (A.14) for some α > 0.
We will give some explicit examples of a compactly supported measure on R2

satisfying (A.14). It will be clear that many other examples can be constructed.
We start with the Cantor middle third set K ⊂ [0, 1]. Now put [0, 1] ⊂ R ⊂ R2, say
as part of the x-axis, so now K ⊂ R2. As is well known (cf. [T], p. 170), there is
the α-dimensional Hausdorff measure computation

(A.15) Hα(K) = γα, for α =
log 2

log 3
≈ 0.6309,

with 0 < γα <∞ (in fact, γα = πα/22−α/Γ(α/2 + 1)). Set

(A.16) µ = Hα⌊K,

i.e., µ(S) = Hα(K∩ S), for Borel sets S ⊂ R2. The self similarity of K enables one
to show that

(A.17) µ(B3−k(x)) ≤ C 2−k,

which readily leads to (A.14), with α as in (A.15).
The Cantor middle third set described above is one of a family of Cantor sets

K(ϑ) ⊂ [0, 1], defined for ϑ ∈ (0, 1) as follows. Remove from [0, 1] = I the open
interval of length ϑℓ(I), with the same center as I, and repeat this process with
the other closed subintervals that remain. (Thus K = K(1/3).) This time (cf. [T],
p. 171), one has

(A.18) Hα(K(ϑ)) = γα, α =
log 2

log b
, b =

2

1− ϑ
,

and again self-similarity yields

(A.19) µ(Br(x)) ≤ Arα,
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with α as in (A.18), when

(A.20) µ = Hα⌊K(ϑ).

Note that

(A.21) ϑ↘ 0 ⇒ α↗ 1, ϑ↗ 1 ⇒ α↘ 0.

As before, we put K(ϑ) ⊂ [0, 1] ⊂ R ⊂ R2, and regard µ in (A.20) as a compactly
supported measure on R2. Thus the push-forward of µ to a measure on a compact
two-dimensional manifold M , via a locally bi-Lipschitz map, yields a measure on
M satisfying (A.4), hence (A.2), whenever 0 < ϑ < 1.

One way to get measures on higher dimensional spaces satisfying (A.14) is to
take products. Say n = n1 + n2 and µj are compactly supported measures on Rnj

satisfying

(A.22) µj(Br(xj)) ≤ Cjr
αj , j = 1, 2, xj ∈ Rnj .

If x = (x1, x2) ∈ Rn, note that Br(x) ⊂ Br(x1)×Br(x2), so if

(A.23) µ = µ1 × µ2

is the product measure on Rn, we have

(A.24) µ(Br(x)) ≤ µ1(Br(x1))µ2(Br(x2)) ≤ C1C2r
α1+α2 , x ∈ Rn.

If α = α1+α2 satisfies the condition on α in (A.14), we get a compactly supported
measure on Rn whose push-forward to a measure on an n-dimensional compact
manifold M , via a locally bi-Lipschitz map, satisfies (A.14), hence (A.4), hence
(A.2).

For example, take ϑj ∈ (0, 1), and set

(A.25) µj = Hαj⌊K(ϑj),

with αj as in (A.18), i.e.,

(A.26) αj =
log 2

log bj
, bj =

2

1− ϑj
.

We regard µ1 as a measure on R2 and µ2 as a measure on R, via K(ϑ1) ⊂ [0, 1] ⊂
R ⊂ R2 and K(ϑ2) ⊂ [0, 1] ⊂ R. Thus µ = µ1 × µ2 is a compactly supported
measure on R3 (actually supported on a 2D linear subspace of R3). In this case,
the condition for (A.18) to hold is

(A.27) α1 + α2 >
3

2
.
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Looking at (A.15), we see that (A.27) fails when ϑ1 = ϑ2 = 1/3. In case ϑ1 = ϑ2 =
ϑ, the condition that (A.27) hold is that

(A.28) 2
log 2

log 2− log(1− ϑ)
>

3

2
,

or equivalently,

(A.29) ϑ < 1− 2−1/3 ≈ 0.2063.

Note. When the measures µj are given by (A.25), µ = µ1 × µ2 is supported on
K(ϑ1)×K(ϑ2), but it is generally not (α1 +α2)-dimensional Hausdorff measure on
this set. See pp. 70–74 of [Fal] for a discussion of this matter.

Returning to generalities, we mention that while (A.12) is a sufficient condition
for (A.13), it is not quite necessary. There is a (somewhat more elaborate) necessary
and sufficient condition for (A.13) to hold, provided 1 < q < n, given in terms of an
estimate on µ(Br(x)). See Theorem 4.7.5 of [Zie]. The condition is subtly weaker
than (A.12).

We also mention conditions for

(A.30) Mµ : H1(M) −→ H−1(M),

i.e., (A.2) but disregarding compactness. If we take f ∈ H1(M) and pairMµf with
f , since µ is a positive measure, a necessary condition for (A.30) is that

(A.31)

∫
M

|f |2 dµ ≤ C∥f∥2H1(M), ∀ f ∈ H1(M).

Applying Cauchy’s inequality to
∫
M
fg dµ, we see that (A.31) is also sufficient for

(A.30). Furthermore, it follows from Theorem 1.2.2 of [MS] that the existence of
A <∞ such that

(A.32) µ(S) ≤ ACap(S), ∀Borel S ⊂M

is necessary and sufficient for (A.31) to hold, hence for (A.30) to hold, where Cap(S)
is a varant of electrostatic capacity, appropriate for this situation.



22

References

[AS] M. Aizenman and B. Simon, Brownian motion and Harnack’s inequality for
Schrödinger operators, CPAM 35 (1982), 209–273.
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