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1. Introduction

We aim to study an operator calculus for a class of Schrödinger operators of the
form

(1.1) H = −∆+ V,

acting on functions on R3, where V is a real-valued function, subject to certain
hypotheses, which will be made below. We particularly want to include the case

(1.2) V (x) = −K

|x|
, K > 0,

arising when H is the Schrödinger operator associated to a hydrogen atom. For
such a V , the Friedrichs method yields a self-adjoint operator on L2(R3), with
domain given by

(1.3) D(H) = {u ∈ H1(R3) : −∆u+ V u ∈ L2(R3)}.

One ingredient of use to show that the Friedrichs method works includes the fol-
lowing estimate: for each ε > 0, there exists C(ε) <∞ such that

(1.4)

∫
R3

|V (x)| |u(x)|2 dx ≤ ε∥∇u∥2L2 + C(ε)∥u∥2L2 , ∀u ∈ H1(R3).

This holds for V of the form (1.2). When (1.4) holds, we have a self-adjoint operator
H with domain satisfying (1.3), and H is semi-bounded, i.e., there exists b ∈ R such
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that H + bI is positive definite. It is further the case that, when V has the form
(1.2), then

(1.5) D(H) = H2(R3).

Here and below, Hs(R3) denotes L2-Sobolev spaces of functions or distributions
on R3. We also use Hs,p(R3) to denote Lp-Sobolev spaces, for p ∈ (1,∞). We
formalize the following hypothesis that we place on V .

Hypothesis 1.1. V is a real-valued, measurable function on R3 satisfying (1.4),
and H = −∆+V is self-adjoint on L2(R3), with domain D(H) satisfying (1.3) and
(1.5).

For a demonstration that functions V of the form (1.2) satisfy Hypothesis 1.1, one
can consult Chapter 8, §7, of [T4].

Given a bounded, continuous function Φ : R → R, Φ(H) is defined via the
spectral theorem as a bounded operator on L2(R3). We want to examine conditions,
analogous to those that arise in the Marcinkiewicz theorem, that guarantee that
Φ(H) is bounded on Lp(R3) for 1 < p <∞. Actually, it is convenient to take

(1.6) H = H + aI,

where a > 0 is picked so that

(1.7) SpecH ⊂ [1,∞),

and examine Φ(
√
H). We will also assume that Φ(λ) is an even function of λ ∈ R,

which, in view of (1.7), is not a severe restriction.
We say Φ belongs to S0

1(R) provided that, for each k ∈ Z+,

(1.8) |Φ(k)(λ)| ≤ Ck(1 + |λ|)−k.

We aim to prove the following.

Theorem 1.1. Take H as in (1.6)–(1.7), and assume that Hypotheses 1.1, 2.1,
and 3.1 hold. Given a smooth, even function Φ : R → C,

(1.9)
Φ ∈ S0

1(R) ⇒ Φ(
√
H) : Lp(R3) → Lp(R3), ∀ p ∈ (1,∞)

and Φ(
√
H) is of weak type (1,1).

Hypothesis 1.1 has been stated above. Hypotheses 2.1 and 3.1 are stated in §§2
and 3, respectively.
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Techniques we will use to prove Theorem 1.1 include some that arose in the
works [T1], [T2], [CGT], [DST], [T3], [MMV], and [T5], among others. A first step
is to bring in the identity

(1.10) Φ(
√
H)f =

1√
2π

∫ ∞

−∞
Φ̂(t) cos t

√
H f dt,

where Φ̂ is the Fourier transform of Φ, so (1.10) is a consequence of the Fourier

inversion formula. We then split Φ(
√
H) into two pieces,

(1.11) Φ(
√
H) = Φ#(

√
H) + Φb(

√
H),

obtained by taking

(1.12) Φ(λ) = Φ#(λ) + Φb(λ),

where

(1.13) Φ̂#(t) = β(t)Φ̂(t), Φ̂b(t) = (1− β(t))Φ̂(t),

and where we take

(1.14) β ∈ C∞
0 ((−1, 1)), β(t) = β(−t), β(t) = 1 for |t| ≤ 1

2
.

The hypothesis Φ ∈ S0
1(R) implies Φb(λ) is rapidly decreasing, while Φ# also be-

longs to S0
1(R). In §2, we analyze Φb(

√
H) and show that, under Hypotheses 1.1

and 2.1,

(1.15) Φb(
√
H) : Lp(R3) −→ Lp(R3), ∀ p ∈ [1,∞].

In §3 we analyze Φ#(
√
H) and show that, if in addition Hypothesis 3.1 holds, then

Φ#(
√
H) has the properties ascribed to Φ(

√
H) in (1.9). As in the references cited

above, a major role in estimating these operators is played by finite propagation
speed, in the form

(1.16) supp f ⊂ K =⇒ supp cos t
√
H f ⊂ K|t|,

where, given K ⊂ R3,

(1.17) K|t| = {x ∈ R3 : dist(x,K) ≤ |t|}.

In §4 we put together the results of §§2–3 to complete the proof of Theorem 1.1.
Given that we do have Hypotheses 1.1, 2.1, and 3.1, there is the matter of

verifying them, in cases of interest. As stated above, Hypothesis 1.1 holds for
the hydrogen atom operator (1.1)–(1.2). In Appendix A, we show that actually
Hypothesis 1.1 implies Hypothesis 2.1. This leaves Hypothesis 3.1. We do not have
a proof of Hypothesis 3.1 for the hydrogen atom operator. In §5 we discuss efforts in
this direction, referring to [T7] for more on this. In Appendix B we give conditions
on V that do imply Hypothesis 3.1, though these conditions do not hold for the
hydrogen atom.



4

2. Estimates on Φb(
√
H)

Throughout this section, Hypothesis 1.1 will be in effect. We start out with a
simple but useful observation.

Proposition 2.1. Assume

(2.1) |Φb(λ)| ≤ C⟨λ⟩−2σ, σ >
3

2
.

Then Φb(
√
H) has an integral kernel Kb(x, y),

(2.2) Φb(
√
H)u(x) =

∫
R3

Kb(x, y)u(y) dy,

satisfying

(2.3) |Kb(x, y)| ≤ C <∞, ∀x, y ∈ R3.

Proof. We can wrie

(2.4) Φb(
√
H) = H−σ/2Ψ(

√
H)H−σ/2,

with Ψ(
√
H) bounded on L2(R3). By (1.5),

(2.5) H−1 : L2(R3) −→ H2(R3),

and interpolation and duality yield

(2.6) H−σ/2 : L2(R3) −→ Hσ(R3), H−σ/2 : H−σ(R3) −→ L2(R3),

for 0 ≤ σ ≤ 2. It follows that, if σ ≤ 2,

(2.7)

σ >
3

2
=⇒ {δy : y ∈ R3} bounded in H−σ(R3)

=⇒ {H−σ/2δy : y ∈ R3} bounded in L2(R3)

=⇒ {Ψ(
√
H)H−σ/2δy : y ∈ R3} bounded in L2(R3)

=⇒ {Φb(
√
H)δy : y ∈ R3} bounded in Hσ(R3)

=⇒ {Φb(
√
H)δy : y ∈ R3} bounded in C0(R3).
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Thus we have (2.2), with

(2.8) Kb(x, y) = Φb(
√
H)δy(x),

which gives (2.3).

Our next task is to obtain finer estimates on Kb(x, y), in terms of |x − y|, ex-
hibiting sufficient decay as |x− y| → ∞. For this, we bring in the formula

(2.9) Φb(
√
H) =

1√
2π

∫ ∞

−∞
φ̂(t) cos t

√
H dt,

with

(2.9A) φ̂(t) = Φ̂b(t) = Φ̂(t)(1− β(t)),

as in (1.13)–(1.14). To start, let us assume

(2.10) u ∈ L2(B1(x)), v ∈ L2(B1(y)), |x− y| = R+ 2.

Then, thanks to finite propagation speed for cos t
√
H,

(2.11)

(φ(
√
H)u, v) =

1√
2π

∫ ∞

−∞
φ̂(t) (cos t

√
Hu, v) dt

=
1√
2π

∫
|t|≥R

φ̂(t) (cos t
√
Hu, v) dt.

Consequently, since cos t
√
H has operator norm ≤ 1 on L2(R3),

(2.12) |(φ(
√
H)u, v)| ≤ 1√

2π

( ∫
|t|≥R

|φ̂(t)| dt
)
∥u∥L2∥v∥L2 .

We now bring in the following hypothesis:

Hypothesis 2.1. There exists C < ∞ such that, for each y ∈ R3, we have
uy, vy ∈ L2(R3) such that

(2.13)
suppuy, vy ⊂ B1(y), ∥uy∥L2 , ∥vy∥L2 ≤ C, and

δy = Huy + vy.

If this hypothesis holds, then Kb(x, y) in (2.2), (2.8) satisfies

(2.14)

Kb(x, y) = (φ(
√
H)δy, δx)

= (φ4(
√
H)uy, ux) + (φ2(

√
H)uy, vx)

+ (φ2(
√
H)vy, ux) + (φ(

√
H)vy, vx),

where φ4(
√
H) = H2φ(

√
H) and φ2(

√
H) = Hφ(

√
H), i.e.,

(2.15) φ4(λ) = λ4φ(λ), φ2(λ) = λ2φ(λ).

Hence, by (2.12), if |x− y| = R+ 2,

(2.16) |Kb(x, y)| ≤ C

∫
|t|≥R

{
|φ̂(t)|+ |φ̂2(t)|+ |φ̂4(t)|

}
dt.
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3. Estimates on Φ#(
√
H)

We now analyze

(3.1) Φ#(
√
H) =

1√
2π

∫ ∞

−∞
ψ(t) cos t

√
H dt,

with

(3.2) ψ(t) = Φ̂#(t) = Φ̂(t)β(t),

as in (1.13)–(1.14). Following a technique used in [MMV], and also in [T5], we
replace (2.1) by

(3.3) Φ#(
√
H) =

1

2

∫ ∞

−∞
ψk(t)Jk−1/2(t

√
H) dt,

where

(3.4) Jν(λ) = λ−νJν(λ),

Jν(λ) denoting the standard Bessel function, and

(3.5) ψk(t) =

k∏
j=1

(
−t d
dt

+ 2j − 2
)
ψ(t).

As is classical,

(3.6) J−1/2(λ) =

√
2

π
cosλ,

and then (3.3) follows from (3.1) by an integration by parts argument, using the
inductive formula

(3.7)
(
t
d

dt
+ 2ν

)
Jν(t

√
H) = Jν−1(t

√
H).

Compare (3.7)–(3.9) of [T5].
Given (3.2), we have

(3.8) suppψk ⊂ [−1, 1].
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Furthermore, the hypothesis (1.8) implies

(3.9) |(t∂t)jψ(t)| ≤ Cj |t|−1, 0 ≤ j ≤ 4.

This in turn implies

(3.10) |ψk(t)| ≤ Ck|t|−1, 0 ≤ k ≤ 4.

Other important ingredients for the analysis of Φ#(
√
H) arise from the classical

integral representation

(3.11) Jν(λ) = cν

∫ 1

−1

(1− s2)ν−1/2 cos sλ ds, ν > −1

2
.

One consequence is the estimate

(3.12) |Jk−1/2(λ)| ≤ Ck(1 + |λ|)−k, k > 0.

Another follows from

(3.13) Jk−1/2(t
√
H) = ck−1/2

∫ 1

−1

(1− s2)k−1 cos st
√
H ds.

Finite propagation speed gives

(3.14) supp f ⊂ K =⇒ supp cos t
√
H f ⊂ K|t|,

where, if K ⊂ R3,

(3.15) K|t| = {x ∈ R3 : dist(x,K) ≤ |t|}.

Then (3.13) gives

(3.16) supp f ⊂ K =⇒ suppJk−1/2(t
√
H)f ⊂ K|t|.

We apply these results to analyze the integral kernel K#(x, y) for Φ#(
√
H),

given by

(3.17) Φ#(
√
H)f(x) =

∫
R3

K#(x, y)f(y) dy.

By (3.3),

(3.18) K#(x, y) =

∫ 1

0

ψk(t)Bk(t, x, y) dt,
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where Bk(t, x, y) is the integral kernel of Jk−1/2(t
√
H):

(3.19) Jk−1/2(t
√
H)f(x) =

∫
R3

Bk(t, x, y)f(y) dy.

To proceed, we bring in the following hypothesis on the “heat semigroup” e−tH.

Hypothesis 3.1. For t > 0, the semigroup e−tH satisfies the estimates

(3.20)
∥e−tHf∥L∞ ≤ C(t−3/4 + 1)∥f∥L2 , and

∥∇e−tHf∥L∞ ≤ C(t−3/4−1/2 + 1)∥f∥L2 .

This hypothesis will be in effect for the rest of this section. As a consequence, we
have the following related estimates.

Lemma 3.1. If G : R → R satisfies

(3.21) |G(λ)| ≤ C(1 + |λ|)−γ−1, γ >
3

2
,

then

(3.22) ∥G(t
√
H)∥L(L2,Lip) ≤ Ct−3/2−1, t ∈ (0, 1].

Proof. We can use

(3.23) G(t
√
H) = (1 + t2H)−σ(1 + t2H)σG(t

√
H), 2σ = γ + 1,

to reduce our task to showing that

(3.24) ∥(1 + t2H)−σ∥L(L2,Lip) ≤ C(t−3/2−1 + 1), if σ >
3

4
+

1

2
.

To prove (3.24), we use the identity

(3.25) (1 + t2H)−σ =
1

Γ(σ)

∫ ∞

0

e−se−st2Hsσ−1 ds.

Then, by (3.20),

(3.26)

∥(1 + t2H)−σ∥L(L2,Lip) ≤ C

∫ t−2

0

e−s(st2)−3/4−1/2sσ−1 ds

+ C

∫ ∞

t−2

e−ssσ−1 ds

≤ C1(t
−3/2−1 + 1),
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with C1 <∞ if σ > 3/4 + 1/2.

Now, by (3.12), Lemma 3.1 applies to G(λ) = Jk−1/2(λ), provided k > 3/2 + 1,
i/e., k ≥ 4, so

(3.27) ∥Jk+1/2(t
√
H)∥L(L2,Lip) ≤ Ct−3/2−1, for t ∈ (0, 1],

and hence, for k ≥ 4,

(3.28) ∥∇xBk(t, x, ·)∥L2 ≤ Ct−3/2−1, t ∈ (0, 1].

Since Bk(t, x, y) = Bk(t, y, x), we also have the following, analogous to Proposition
2.2 of [MMV]:

Corollary 3.2. If k ≥ 4,

(3.29) ∥∇yBk(t, ·, y)∥L2 ≤ Ct−3/2−1, for t ∈ (0, 1], y ∈ R3.

Using this, we estimate K#(x, y), arising in (3.17)–(3.18). In fact, using (3.29)
plus the fact that Bk(t, ·, y) is supported on the ball B|t|(y) in R3 (by (3.16)), we
have

(3.30) ∥∇yBk(t, ·, y)∥L2 ≤ C
(
Vol(B|t|(y))

)1/2

t−3/2−1 ≤ Ct−1.

Hence, from (3.18) and (3.10), we have, for k = 4,

(3.31)

∥∇yK
#(·, y)∥L1(B1(y)\Bs(y)) ≤

∫ 1

s

C

t
∥∇yBk(t, ·, y)∥L1 dt

≤ C

∫ 1

s

dt

t2

≤ C

s
.

This yields the following.

Lemma 3.3. There exists C < ∞, independent of s ∈ (0, 1] and of y, y′ ∈ R3,
such that

(3.32) |y − y′| ≤ s

2
=⇒ ∥K#(·, y)−K#(·, y′)∥L1(B1(y)\Bs(y)) ≤ C.

This leads to the following important conclusion.

Proposition 3.4. Let Φ# satisfy (1.13)–(1.14) and (1.8). Granted Hypothesis 3.1,

Φ#(
√
H) is of weak type (1, 1).

Proof. Given that Φ#(
√
H) is bounded on L2(R3), and its integral kernel satisfies

(3.32), the weak type (1,1) property is a consequence of Proposition 3.1 of [MMV],
which in turn is a natural variant of Theorem 2.4 in Chapter III of [CW].



10

4. Proof of the main theorem

Recall from §2 that Φb(
√
H) has integral kernel Kb(x, y), satisfying (2.3) and

(2.16), hence |Kb(x, y)| ≤ C for all x, y ∈ R3, and

(4.1) |Kb(x, y)| ≤ C

∫
t≥|x−y|−2

{
|φ̂(t)|+ |φ̂2(t)|+ |φ̂4(t)|

}
dt, |x− y| ≥ 2,

where

(4.2) φ̂(t) = (1− β(t))Φ̂(t), φ̂j(t) = ∂jt φ̂(t).

Now

(4.3) Φ ∈ S0
1(R) =⇒ φ̂ ∈ S(R),

so we get

(4.4) |Kb(x, y)| ≤ CN (1 + |x− y|)−N , ∀N ∈ Z+.

This clearly implies

(4.5) Φb(
√
H) : Lp(R3) −→ Lp(R3), ∀ p ∈ [1,∞].

This result for p = 1 is stronger than having type (1,1).

As for Φ#(
√
H), Proposition 3.4 says it is of type (1,1). Since it is clearly

bounded on L2(R3), the Marcinkiewicz interpolation theorem yields

(4.6) Φ#(
√
H) : Lp(R3) −→ Lp(R3),

for p ∈ (1, 2], and then duality gives boundedness for p ∈ [2,∞). Together, (4.5)

and (4.6) yield the Lp-bounds for Φ(
√
H) in (1.9).
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5. The hydrogen atom Schrödinger operator

We briefly discuss how the material of §§1–4 applies to the hydrogen atom
Schrödinger operator, given by (1.1)–(1.2). As stated in §1, Hypothesis 1.1 ap-
plies to this case; a proof can be found in Chapter 8, §7, of [T4]. As we show in
Appendix A, Hypothesis 1.1 implies Hypothesis 2.1, so it also applies. This brings
us to Hypothesis 3.1.

We have not shown that Hypothesis 3.1 applies to the hydrogen atom. Material
bearing on this issue is discussed in [T7]. There is is shown that, for H as in (1.6),
with a = K2/4 + 1,

(5.1)
0 < b <

5

4
=⇒ D(Hb) = H2b(R3), and

b >
5

4
=⇒ D(Hb) ⊂ Lip(R3).

Note that

(5.2) Hs(R3) ⊂ Lip(R3) ⇐⇒ s >
5

2
.

Formulas for the eigenfunctions of H show that, if b > 5/4, then D(Hb) is not
contained in H2b(R3). We also note that

(5.3) ∥e−tH∥L(L2,D(H5/4)) = ∥H5/4e−tH∥L(L2) ≤ Ct−5/4,

which is similar to the conjectural estimate (3.20), but does not prove it.
Whether Hypothesis 3.1 holds for the hydrogen atom remains an open problem.
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A. Hypothesis 1.1 ⇒ Hypothesis 2.1

We assume Hypothesis 1.1, so

(A.1) H−1 : L2(R3) −→ H2(R3).

By duality,

(A.2) H−1 : H−2(R3) −→ L2(R3),

snd then, by interpolation,

(A.3) H−1 : H−2+s(R3) −→ Hs(R3), 0 ≤ s ≤ 2.

Now {δy : y ∈ R3} is a bounded subset of H−3/2−ε(R3), for each ε > 0, so

(A.4) wy = H−1δy is bounded in H1/2−ε(R3), ∀ ε > 0.

as y runs over R3. To get uy in (2.13), we want to set uy = φywy, where φy is
a cut-off. To show that this works, we need to establish further regularlty of wy,
away from y.

To this end, let ψ be smooth of class C2, and assume all its derivatives of
order ≤ 2 are bounded. If w ∈ Hs(R3), 0 ≤ s ≤ 2, then ψw ∈ Hs(R3), and
∆(ψw) = ψ∆w + (∆ψ)w + 2∇ψ · ∇w, hence

(A.5) H(ψw) = ψHw + (∆ψ)w + 2∇ψ · ∇w.

Let us take such ψ, equal to 0 for |x| ≤ a, equal to 1 for |x| ≥ 2a, where a > 0 is
small, set ψy(x) = ψ(x−y), and apply (A.5) with ψ replaced by ψy and w replaced
by wy, as in (A.4). Since ψyδy = 0, we have

(A.6) H(ψywy) = (∆ψy)wy + 2∇ψy · ∇wy ∈ H−1/2−ε(R3),

for all ε > 0, bounded in y. Hence, by (A.3),

(A.7) ψywy ∈ H3/2−ε(R3), ∀ ε > 0,

bounded in y. (Though it is not necessary,) we can iterate this argument. Take a

similar ψ̃, equal to 0 for |x| ≤ 2a and 1 for |x| ≥ 4a, and set ψ̃y(x) = ψ̃(x − y).
Then

(A.8) H(ψ̃ywy) = (∆ψ̃)wy + 2∇ψ̃y · ∇wy ∈ H1/2−ε(R3),

so, by (A.3),

(A.9) ψ̃ywy ∈ H2(R3), bounded in y.

We are now ready for the main result of this appendix.
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Proposition A.1. Hypothesis 1.1 implies Hypothesis 2.1.

Proof. Take φ ∈ C∞
0 (B1(0)) such that φ(x) = 1 for |x| ≤ 1/2. Set φy(x) = φ(x−y),

and, with wy as in (A.4), set

(A.10) uy = φywy, bounded in H1/2−ε(R3).

Since φyδy = δy, we get from (A.5) that

(A.11) Huy = δy + vy,

with

(A.12) vy = (∆φy)wy + 2∇φy · ∇wy.

Since ∆φy = 0 and ∇φy = 0 on B1/2(y), we have from (A.9) that

(A.13) {vy : y ∈ R3} is bounded in H1(R3).

Remark. As we have stated, Hypothesis 1.1 holds for H as in (1.1), with V given
by (1.2). More generally, as shown in Theorem X.15 of [RS], one has H self adjoint,
with domain D(H) = H2(R3), when H is as in (1.1) and V : R3 → R satisfies

(A.14) V ∈ L2(R3) + L∞(R3).
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B. Sufficient conditions for Hypothesis 3.1

Here we derive a condition on H that is sufficient for Hypothesis 3.1 to hold, i.e.,
for t > 0, f ∈ L2(R3),

(B.1)
∥e−tHf∥L∞ ≤ C(t−3/4 + 1)∥f∥L2 ,

∥∇e−tHf∥L∞ ≤ C(t−5/4 + 1)∥f∥L2 .

In fact, since e−tH is a contraction semigroup on L2(R3), it suffices to treat t ∈ (0, 1].
Recall that

(B.2) H = −∆+W, W = V + a,

where a is a positive constant, chosen so that SpecH ⊂ [1,∞).
For our analysis, we write

(B.3) u(t) = e−tHf =⇒ ∂tu = ∆u−Wu,

so DuHamel’s formula gives

(B.4) u(t) = et∆f −
∫ t

0

e(t−s)∆Wu(s) ds.

An examination of the integral kernel (4πt)−3/2e−|x−y|2/4t of et∆ gives

(B.5)
∥et∆f∥L∞ ≤ Ct−3/4∥f∥L2 ,

∥∇et∆f∥L∞ ≤ Ct−5/4∥f∥L2 ,

for f ∈ L2(R3). Hence our remaining task is to estimate the second term on the
right side of (B.4).

To start, since ∥u(s)∥L2 ≤ ∥f∥L2 , we have

(B.6) ∥e(t−s)∆Wu(s)∥L∞ ≤ C(t− s)−3/4∥W∥L∞∥f∥L2 ,

and integrating over s ∈ (0, t) readily gives the first estimate in (B.1), provided

(B.7) W ∈ L∞(R3).

To proceed, we have

(B.8) ∥u(s)∥H1 ≤ C∥H1/2e−sHf∥L2 ≤ Cs−1/2∥f∥L2 .
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Hence, if we assume

(B.9) ∥Wg∥H1 ≤ M(W )∥g∥H1 , M(W ) <∞,

we have

(B.10) ∥Wu(s)∥H1 ≤ Cs−1/2M(W )∥f∥L2 .

Now

(B.11)
∥∇e(t−s)∆g∥L∞ = ∥e(t−s)∆∇g∥L∞

≤ C(t− s)−3/4∥∇g∥L2 ,

so

(B.12) ∥∇e(t−s)∆Wu(s)∥L∞ ≤ C(t− s)−3/4s−1/2M(W )∥f∥L2 ,

and integrating over s ∈ (0, t) gives

(B.13)
∥∥∥∇ ∫ t

0

e(t−s)∆Wu(s) ds
∥∥∥
L∞

≤ Ct−5/4M(W )∥f∥L2 .

We have established the following.

Proposition B.1. Assume W = V + a satisfies (B.7) and (B.9). Then (B.1)
holds, i.e., Hypothesis 3.1 holds.

Remark. For (B.9) to hold, it is necessary that W satisfy (B.7), and it is sufficient
that W satisfy both (B.7) and the following:

(B.14) ∇W ∈ L3(R3) + L∞(R3).
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