Generalized Eigenspace Decomposition

MICHAEL TAYLOR

Let V be a complex vector space, dim $V = n < \infty$, and take $T \in \mathcal{L}(V)$. The roots $\{\lambda_j\}$ of det $(\lambda I - T)$ are the eigenvalues of T. We set

(1)
$$\mathcal{GE}(T,\lambda_j) = \{ v \in V : (T-\lambda_j)^k v = 0 \text{ for some } k \}$$

We aim to show that

(2)
$$V = \bigoplus_{j} \mathcal{GE}(T, \lambda_j).$$

We follow the elegant argument in Lecture 9 of [G], with a few tweaks.

Start with generalities. For $A \in \mathcal{L}(V)$, set

(3)
$$\mathcal{N}^{\#}(A) = \bigcup_{k} \mathcal{N}(A^{k}), \quad \mathcal{R}^{\#}(A) = \bigcap_{k} \mathcal{R}(A^{k}),$$

where $\mathcal{N}(A)$ is the null space of A and $\mathcal{R}(A)$ is its range. We have stabilization: for some m,

(4)
$$\mathcal{N}^{\#}(A) = \mathcal{N}(A^m) = \mathcal{N}(S), \quad \mathcal{R}^{\#}(A) = \mathcal{R}(A^m) = \mathcal{R}(S),$$

where $S = A^m$. Note that

(5)
$$A, S : \mathcal{R}(S) \longrightarrow \mathcal{R}(S)$$
 are onto, hence isomorphisms.

Lemma 1. We have

(6)
$$V = \mathcal{N}(S) \oplus \mathcal{R}(S) = \mathcal{N}^{\#}(A) \oplus \mathcal{R}^{\#}(A).$$

Proof. The rank-nullity theorem (aka, the fundamental theorem of linear algebra) gives

(7)
$$\dim V = \dim \mathcal{N}(S) + \dim \mathcal{R}(S),$$

so it suffices to note that, when (5) holds,

(8)
$$\mathcal{N}(S) \cap \mathcal{R}(S) = \{0\}$$

We apply this to

(9)
$$A = T - \lambda_j I,$$

where we pick an eigenvalue λ_j of T. So (6) says

(10)
$$V = \mathcal{GE}(T, \lambda_j) \oplus \mathcal{R}^{\#}(T - \lambda_j I),$$

and (5) implies that

1)
$$T - \lambda_j I : \mathcal{R}^{\#}(T - \lambda_j I) \xrightarrow{\approx} \mathcal{R}^{\#}(T - \lambda_j I),$$

and consequently

(1

(12)
$$T: \mathcal{R}^{\#}(T - \lambda_j I) \longrightarrow \mathcal{R}^{\#}(T - \lambda_j I).$$

We are ready for the main result:

Theorem 2. The direct decomposition (2) holds.

Proof. Use induction on dim V. If λ_j is an eigenvalue, then dim $\mathcal{GE}(T, \lambda_j) \geq 1$, so (10)–(12) hold, with dim $\mathcal{R}^{\#}(T - \lambda_j I) < \dim V$. Inductively,

(13)
$$\mathcal{R}^{\#}(T-\lambda_j I) = \bigoplus_{k\neq j} \mathcal{GE}(T,\lambda_k),$$

and we are done.

REMARK. We have

(14)
$$\det(\lambda I - T) = \prod_{j} \det(\lambda I - T_{j}), \quad T_{j} = T|_{\mathcal{GE}(T,\lambda_{j})} \in \mathcal{L}(\mathcal{GE}(T,\lambda_{j})),$$

and each $T_j = \lambda_j I + N_j$, with N_j nilpotent, so $\mathcal{GE}(T, \lambda_j)$ has a basis in which the matrix of N_j is strictly upper triangular. Hence

(15)
$$\det(\lambda I - T_j) = (\lambda - \lambda_j)^{d_j}, \quad d_j = \dim \mathcal{GE}(T, \lambda_j).$$

REMARK 2. Generally, if N is nilpotent on a vector space of dimension d, then $N^d = 0$. In particular, $(T - \lambda_j I)^{d_j}|_{\mathcal{GE}(T,\lambda_j)} = 0$. Hence if $C_T(\lambda) = \det(\lambda I - T)$ denotes the characteristic polynomial of T, we have from (14)–(15), together with (2), that

(16)
$$C_T(T) = \prod_j (T - \lambda_j I)^{d_j} = 0,$$

which is the Cayley-Hamilton theorem.

References

[G] C. Grant, Theory of Ordinary Differential Equations, Lecture Notes for Math 634, Brigham Young Univ., available at http://www.math.byu.edu/~grant.
[T] M. Taylor, Introduction to Differential Equations, AMS 2011 (2nd ed. 2021).
[T2] M. Taylor, Linear Algebra, AMS, 2020.