Generalized Eigenspace Decomposition

Michael Taylor

Let V be a complex vector space, $\operatorname{dim} V=n<\infty$, and take $T \in \mathcal{L}(V)$. The roots $\left\{\lambda_{j}\right\}$ of $\operatorname{det}(\lambda I-T)$ are the eigenvalues of T. We set

$$
\begin{equation*}
\mathcal{G E}\left(T, \lambda_{j}\right)=\left\{v \in V:\left(T-\lambda_{j}\right)^{k} v=0 \text { for some } k\right\} . \tag{1}
\end{equation*}
$$

We aim to show that

$$
\begin{equation*}
V=\bigoplus_{j} \mathcal{G} \mathcal{E}\left(T, \lambda_{j}\right) . \tag{2}
\end{equation*}
$$

We follow the elegant argument in Lecture 9 of [G], with a few tweaks.
Start with generalities. For $A \in \mathcal{L}(V)$, set

$$
\begin{equation*}
\mathcal{N}^{\#}(A)=\bigcup_{k} \mathcal{N}\left(A^{k}\right), \quad \mathcal{R}^{\#}(A)=\bigcap_{k} \mathcal{R}\left(A^{k}\right), \tag{3}
\end{equation*}
$$

where $\mathcal{N}(A)$ is the null space of A and $\mathcal{R}(A)$ is its range. We have stabilization: for some m,

$$
\begin{equation*}
\mathcal{N}^{\#}(A)=\mathcal{N}\left(A^{m}\right)=\mathcal{N}(S), \quad \mathcal{R}^{\#}(A)=\mathcal{R}\left(A^{m}\right)=\mathcal{R}(S) \tag{4}
\end{equation*}
$$

where $S=A^{m}$. Note that

$$
\begin{equation*}
A, S: \mathcal{R}(S) \longrightarrow \mathcal{R}(S) \text { are onto, hence isomorphisms. } \tag{5}
\end{equation*}
$$

Lemma 1. We have

$$
\begin{equation*}
V=\mathcal{N}(S) \oplus \mathcal{R}(S)=\mathcal{N}^{\#}(A) \oplus \mathcal{R}^{\#}(A) \tag{6}
\end{equation*}
$$

Proof. The rank-nullity theorem (aka, the fundamental theorem of linear algebra) gives

$$
\begin{equation*}
\operatorname{dim} V=\operatorname{dim} \mathcal{N}(S)+\operatorname{dim} \mathcal{R}(S) \tag{7}
\end{equation*}
$$

so it suffices to note that, when (5) holds,

$$
\begin{equation*}
\mathcal{N}(S) \cap \mathcal{R}(S)=\{0\} \tag{8}
\end{equation*}
$$

We apply this to

$$
\begin{equation*}
A=T-\lambda_{j} I, \tag{9}
\end{equation*}
$$

where we pick an eigenvalue λ_{j} of T. So (6) says

$$
\begin{equation*}
V=\mathcal{G E}\left(T, \lambda_{j}\right) \oplus \mathcal{R}^{\#}\left(T-\lambda_{j} I\right), \tag{10}
\end{equation*}
$$

and (5) implies that

$$
\begin{equation*}
T-\lambda_{j} I: \mathcal{R}^{\#}\left(T-\lambda_{j} I\right) \xrightarrow{\approx} \mathcal{R}^{\#}\left(T-\lambda_{j} I\right), \tag{11}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
T: \mathcal{R}^{\#}\left(T-\lambda_{j} I\right) \longrightarrow \mathcal{R}^{\#}\left(T-\lambda_{j} I\right) \tag{12}
\end{equation*}
$$

We are ready for the main result:

Theorem 2. The direct decomposition (2) holds.
Proof. Use induction on $\operatorname{dim} V$. If λ_{j} is an eigenvalue, then $\operatorname{dim} \mathcal{G \mathcal { E }}\left(T, \lambda_{j}\right) \geq 1$, so (10)-(12) hold, with $\operatorname{dim} \mathcal{R}^{\#}\left(T-\lambda_{j} I\right)<\operatorname{dim} V$. Inductively,

$$
\begin{equation*}
\mathcal{R}^{\#}\left(T-\lambda_{j} I\right)=\bigoplus_{k \neq j} \mathcal{G} \mathcal{E}\left(T, \lambda_{k}\right) \tag{13}
\end{equation*}
$$

and we are done.

Remark. We have

$$
\begin{equation*}
\operatorname{det}(\lambda I-T)=\prod_{j} \operatorname{det}\left(\lambda I-T_{j}\right), \quad T_{j}=\left.T\right|_{\mathcal{G}\left(T, \lambda_{j}\right)} \in \mathcal{L}\left(\mathcal{G E}\left(T, \lambda_{j}\right)\right) \tag{14}
\end{equation*}
$$

and each $T_{j}=\lambda_{j} I+N_{j}$, with N_{j} nilpotent, so $\mathcal{G} \mathcal{E}\left(T, \lambda_{j}\right)$ has a basis in which the matrix of N_{j} is strictly upper triangular. Hence

$$
\begin{equation*}
\operatorname{det}\left(\lambda I-T_{j}\right)=\left(\lambda-\lambda_{j}\right)^{d_{j}}, \quad d_{j}=\operatorname{dim} \mathcal{G} \mathcal{E}\left(T, \lambda_{j}\right) \tag{15}
\end{equation*}
$$

Remark 2. Generally, if N is nilpotent on a vector space of dimension d, then $N^{d}=0$. In particular, $\left.\left(T-\lambda_{j} I\right)^{d_{j}}\right|_{\mathcal{G E}\left(T, \lambda_{j}\right)}=0$. Hence if $C_{T}(\lambda)=\operatorname{det}(\lambda I-T)$ denotes the characteristic polynomial of T, we have from (14)-(15), together with (2), that

$$
\begin{equation*}
C_{T}(T)=\prod_{j}\left(T-\lambda_{j} I\right)^{d_{j}}=0 \tag{16}
\end{equation*}
$$

which is the Cayley-Hamilton theorem.

References

[G] C. Grant, Theory of Ordinary Differential Equations, Lecture Notes for Math 634, Brigham Young Univ., available at http://www.math.byu.edu/~grant.
[T] M. Taylor, Introduction to Differential Equations, AMS 2011 (2nd ed. 2021).
[T2] M. Taylor, Linear Algebra, AMS, 2020.

