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Euler equation for ideal, incompressible flow

∂u

∂t
+∇uu = −∇p, div u = 0.

u = fluid velocity, p = pressure.

Valid on Rn, also on n-dimensional Riemannian manifold M.
Then ∇u denotes the covariant derivative.

If ∂M 6= ∅, u is tangent to ∂M.
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Euler equation on a rotating 2D surface M ⊂ R3.

∂u

∂t
+∇uu = Ωχ(x)Ju −∇p, div u = 0.

Assume constant angular velocity ω = −Ω/2, rotation about x3
axis.

Term Ωχ(x)Ju reflects Coriolis force.

χ(x) = e3 · ν(x).

Outward pointing normal ν(x) to x ∈ M.

M = S2 =⇒ χ(x) = x3.

J : TxM → TxM, counterclockwise rotation by 90◦.
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Standing hypotheses on M ⊂ R3.

M is diffeomorphic to S2 and has positive Gauss curvature.

M is rotationally symmetric about x3-axis.
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Conservation of energy.
Assume u solves the 2D rotational Euler equation. Then

1

2

d

dt
‖u(t)‖2L2 = (∂tu, u)

= −(∇uu, u)− (u,∇p) + Ω(Jχu, u).

We claim the three terms on the right are all zero. First,

∇∗
uv = −∇uv − (div u)v ,

for vector fields u and v . Next,

(u,∇p) = −(div u, p).

Finally,
Ju(x) ⊥ u(x), ∀ x ∈ M.

Consequently we have conservation of energy:

1

2

d

dt
‖u(t)‖2L2 = 0.
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Differential form presentation, u 7→ ũ (1-form).

∂ũ

∂t
+∇uũ = Ωχ ∗ ũ − dp, δũ = 0.

Alternative

∂ũ

∂t
+ Luũ = Ωχ ∗ ũ + d

(1
2
|u|2 − p

)
.

Lu is the Lie derivative. It commutes with the exterior derivative,
d .

Vorticity
dũ = w̃ = wα, w = rot u,

α is the area form on M.
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Vorticity Equation.

Apply d to the Euler equation. Get

∂w̃

∂t
+ Luw̃ = Ωd(χ ∗ ũ).

Right side equals Ω(dχ ∧ ∗ũ) = Ω〈dχ, u〉α = Ω∇uχ. Hence

∂w

∂t
+∇uw = Ω∇uχ.

Alternative
∂

∂t
(w − Ωχ) +∇u(w − Ωχ) = 0.

Conservation law.
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Stream function.

Given that H1(M) = 0,

div u = 0 =⇒ d ∗ ũ = 0

=⇒ ũ = ∗df
=⇒ u = J∇f ,

with f (the stream function) determined up to an additive
constant.

We have
w = ∆f ,

and the vorticity equation can be written as

∂w

∂t
+ 〈J∇f ,∇(w − Ωχ)〉 = 0.
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Another conservation law (from rotational symmetry of M).

X3 generates 2π-periodic rotation about xs -axis.

Generates flow by isometries on M. Hence divX3 = 0.

Hence there exists ξ ∈ C∞(M) such that

J∇ξ = −X3.

Note that
M = S2 =⇒ ξ = χ = x3.

More generally, under our hypotheses, ξ and χ are smooth
functions of x3, with positive x3-derivatives.
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Theorem. If u solves the rotational Euler equation and w = rot u,
then ∫

M

ξ(x)w(t, x) dS(x) is independent of t.

Proof uses the vorticity equation, and the fact that ∇u and X3 are
skew-adjoint on scalar functions. Also it brings in the stream
function f , and shows that

d

dt

∫
M

ξw(t) dS = (X3f ,∆f ) = 0.
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Another presentation of Euler’s equation. Eliminate the pressure.

∂ũ

∂t
+ P∇uũ = ΩBũ,

where
Bũ = P(χ ∗ Pũ).

The Leray projection

P : L2(M,Λ1) −→ {ũ ∈ L2(M,Λ1) : δũ = 0},

orthogonal projection that annihilates dp. Via Hodge
decomposition,

P = −δ∆−1
2 d .

We have
B∗ = −B, B ∈ OPS−1(M),

via
Bũ = −δ∆−1

2 d(χ ∗ Pũ) = −δ∆−1
2 (dχ ∧ ∗Pũ).
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Existence for initial value problem,

ũ(0) = ũ0 ∈ Hs(M), δũ0 = 0.

Construct mollified evolution equation, using

Jε = φ(ε∆1), φ ∈ C∞
0 (R), φ(0) = 1.

Solve
∂ũε
∂t

+ PJε∇uεJεũε = ΩJεBJεũε,

Pũε = ũε, ũε = Jεũ0.

Need to estimate ũε in Hs(M), for t ∈ I , independent of ε, and
take ε→ 0, for short time existence.

First step,

1

2

d

dt
‖ũε(t)‖2L2 = −(PJε∇uεJũε, ũε) + Ω(JεBJεũε, ũε) = 0.

Hence
‖ũε(t)‖L2 ≡ ‖Jεũ0‖L2 .
Michael Taylor Euler equation on a rotating surface



Higher order Sobolev estimates. Take A = (−∆1)
1/2.

1

2

d

dt
‖ũε(t)‖2Hs = −(AsPJε∇uεJũε,A

s ũε) + Ω(AsJεBJεũε,A
s ũε).

Need commutator estimates:

‖[As ,∇uε ]Jεũε‖L2 ≤ C‖ũε(t)‖C1‖ũε(t)‖Hs .

Moser estimates, for s = 2k ≥ 4. Kato-Ponce estimates, for real
s > 2.

Proposition. Given s > 2, ũ0 ∈ Hs(M), δũ0 = 0, there is a unique
solution to the Euler equation on an interval I about 0, satisfying

ũ ∈ C (I ,Hs(M)) ∩ C 1(I ,Hs−1(M)), ũ(0) = ũ0.

The solution depends continuously on the initial data ũ0.
Furthermore, if ũ is such a solution on I = (−a, b), then ũ
continues beyond the endpoints unless ‖ũ(t)‖C1(M) blows up at an
endpoint.
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Global existence.

Theorem. Given s > 2, ũ0 ∈ Hs(M), δũ0 = 0, the interval for
existence for the Euler equation is I = R. Furthermore, one has
the global estimate

‖ũ(t)‖2Hs ≤ C‖ũ0‖2Hs exp exp
(
CsA|t|

)
,

with
A = ‖ rot u0‖L∞ + C |Ω|+ 1.

Proof makes use of the estimate

d

dt
‖ũ(t)‖2Hs ≤ C‖ũ(t)‖C1‖ũ(t)‖2Hs + C |Ω| · ‖ũ(t)‖2Hs−1 ,

hence involves bounding ‖u(t)‖C1 .
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To start, vorticity equation yields

‖w(t)‖L∞ ≤ ‖w(0)‖L∞ + 2|Ω|, w(t) = rot u(t).

Now elliptic regularity gives

‖u(t)‖bmo1 ≤ C‖ rot u(t)‖L∞ ,

given div u(t) = 0, but it fails to produce such a bound for
‖u(t)‖C1 .

Beale-Kato-Majda approach, [BKM]. Bring in

‖u‖C1 ≤ C
(
log

A‖u‖Hs

‖ rot u‖L∞

)
‖ rot u‖L∞ ,

with s > 2 (dim M = 2).
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Then for y(t) = ‖ũ(t)‖2Hs , we have

dy

dt
≤ CsA(1 + log+ y(t))y(t),

and via Gronwall’s inequality we obtain the conclusion of the
theorem.
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Stationary solutions

∇uu = ΩχJu −∇p, div u = 0.

Vorticity equation for w = rot u,

∇u(w − Ωχ) = 0,

or
〈J∇f ,∇(ω − Ωχ)〉 = 0,

f = stream function,

w = ∆f , u = J∇f (ũ = ∗df ).

Equivalently
∇(∆f − Ωχ) ‖∇f .
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Zonal solutions.

M rotationally symmetric, Killing field X3, positive Gauss
curvature.

Definition. If X3f = 0 (so f = f (x3)), we say f is a zonal function.
Then u = J∇f is a zonal field.

Proposition. If f is a zonal function, then u = J∇f is a stationary
solution to the Euler equation.
Proof. We have

χ = χ(x3), f = f (x3), w = w(x3),

hence ∇f , and ∇(∆f − Ωχ) are both parallel to the x3-axis.
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Non-zonal solutions. Rossby-Haurwitz waves.

Specialize to M = S2. Look for solutions f to

∆f = ψ(f ) + Ωx3.

Take ψ(f ) = −λk f , k ≥ 2, where

Spec(−∆) = {λk = k2 + k : k = 0, 1, 2, . . . }.

Note that ∆x3 = −λ1x3 on S2. Solve

(∆ + λk)f = Ωx3,

Solution

f =
Ω

λk − 2
x3 + gk , gk ∈ Ker(∆ + λk).
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gk = restriction to S2 of harmonic polynomial, homogeneous of
degree k.

Examples:

k = 2, λk = 6, gk(x) = x21 − x22 ,

k = 3, λk = 12, gk(x) = Re(x1 + ix2)
3,

and so on.
Given such a stream function f , we have stationary Euler flow

u = − Ω

λk − 2
X3 + J∇gk .

Known as Rossby-Hauritz waves of degree k . (Particularly k = 2.)
Instability of such solutions impacts the difficulty of long-term
weather forecasting.
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Stability criterion for zonal flows.
Variant of Arn’old stability method. Seek stable critical points of

H(u) =

∫
M

{1

2
|u|2 + φ(w − Ωχ) + γξw

}
dS ,

with w = rot u, φ and γ tuned to the stationary solution u.
Note H(u(t)) independent of t when u(t) solves Euler equation.
Take u = J∇f ,w = ∆f , and rewrite functional as

H(f ) =

∫
M

{1

2
|∇f |2 + φ(∆f − Ωχ) + γξ∆f

}
dS .

Get

∂sH(f + sg)
∣∣
s=0

=

∫
M

{
−f + φ′(∆f − Ωχ) + γξ

}
∆g dS .

Vanishes for all g if and only if

f = φ(∆f − Ωχ) + γξ,

up to an additive constant, which we can take to be 0.
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Critical point condition

f = φ(∆f − Ωχ) + γξ.

If ∇f ‖∇ξ, the critical point condition implies

∇(∆f − Ωχ) ‖∇f ,

hence
〈J∇f ,∇(w − Ωχ)〉 = 0,

which is the stationary vorticity equation, implying that u = J∇f
is a stationary Euler flow. Works when f is zonal.

For f not zonal, this method works only if γ = 0, and yields weaker
results.
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For zonal f , write f = f (ξ), w = ∆f = w(ξ), and rewrite critical
point equation as

φ′(w(ξ)− Ωχ(ξ)) = f (ξ)− γξ.

Given γ ∈ R, this uniquely specifies φ′ provided

w ′(ξ)− Ωχ′(ξ) is bounded away from 0,

so
w(ξ)− Ωχ(ξ) is strictly monotone in ξ.

Call this Condition A. If it holds, φ is determined, up to an
additive constant, and

φ′′(w − Ωχ) =
γ − f ′(ξ)

Ωχ′(ξ)− w ′(ξ)
.
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Stability condition.

Assume f is zonal, and assume Condition A holds. Choose φ so
that critical point equation holds. Then

∂2sH(f + sg)
∣∣
s=0

=

∫
M

{
|∇g |2 + φ′′(∆f − Ωχ)(∆g)2

}
dS

=

∫
M

{
|∇g |2 + γ − f ′(ξ)

Ωχ′(ξ)− w ′(ξ)
(∆g)2

}
dS .

Give Condition A, either

Ωχ′(ξ)− w ′(ξ) is ≥ b > 0 or ≤ −b < 0

on M. In either case, can make

K (ξ) =
γ − f ′(ξ)

Ωχ′(ξ)− w ′(ξ)
≥ c > 0

on M, by taking γ sufficiently positive in the first case and
sufficiently negative in the second case.
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Conclusion. Let f be zonal and satisfy Condition A. Then one can
choose γ (and then φ) so that f is a critical point of H, and

∂2sH(f + sg)
∣∣
s=0

≥ ‖∇g‖2L2 + C‖∆g‖2L2 ,

with C > 0, for all g ∈ H2(M).

This implies stability of f (defined only up to an additive constant)
in H2(M).

Theorem. Given a smooth f (ξ), u = J∇f is a stable stationary
solution to the Euler equation in H1(M), as long as Ω is such that
Condition A holds, with w = ∆f .

Note. Condition A always holds for |Ω| sufficiently large.

Michael Taylor Euler equation on a rotating surface



Perturbations of stable zonal flows - other estimates.

If us is a zonal flow, uε(t) an Euler flow with uε(0) close to us ,
since H(uε(t)) is independent of t, the estimate

|H(uε(t))−H(us)| ≈ ‖uε(t)− us‖2H1 ,

which holds if the stability criterion holds, implies

‖uε(t)− us‖H1 ≤ C‖uε(0)− us‖H1 ,

for all t.

Next goal: look for bounds on

w ε(t) = uε(t)− us

in other norms.
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Tools for the analysis. [BKM] estimate

‖w‖C1 ≤ C
(
log

A‖w‖Hs

‖ rotw‖L∞

)
‖ rotw‖L∞ ,

and [BW] type estimate

‖w‖L∞ ≤ C
(
log

A‖ rotw‖L∞
‖ rotw‖L2

)1/2
‖ rotw‖L2 ,

with s > 2, in both cases assuming divw = 0. Then

‖ rotw‖L2 ≈ ‖w‖H1 , ‖ rotw‖L∞ ≥ ‖ rotw‖bmo ≈ ‖u‖bmo1 .

Another tool, vorticity equation (conservation law):

‖ rot uε(t)− Ωχ‖L∞ ≡ ‖ rot uε(0)− Ωχ‖L∞ .

Follow strategy of [T2].
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First estimate on w ε(t) = uε(t)− us .

‖w ε(t)‖L∞ ≤ C
(
log

AK (uε(0), us)

‖w ε(0)‖H1

)1/2
‖w ε(0)‖H1 ,

with

K (uε(0), us) = ‖ rot uε(0)‖L∞ + ‖ rot us‖L∞ + 2|Ω|.

Second estimate.

‖ rotw ε(t)‖L∞ ≤ ‖ rotw ε(0)‖L∞ + K2(u
ε(0), us) · |t|,

with

K2(u
ε(0), us) = ‖ rot us − Ωχ‖C1 · sup

s
‖w ε(s)‖L∞ ,

last factor amenable to first estimate. Effective for

|t| . K2(u
ε(0), us)

−1.

Otherwise, just use vorticity conservation.
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Third estimate.

‖w ε(t)‖C1 ≤ C
(
log+ A‖w ε(t)‖Hs

)
‖ rotw ε(t)‖L∞

+ C
(
log+

1

‖ rotw ε(t)‖L∞

)
‖ rotw ε(t)‖L∞ .

Fix s > 2.

Double exponential estimate on ‖uε(t)‖Hs yields exponential
bound on ‖w ε(t)‖C1 .
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Appendix

To compute ∇∗
u, write∫

M

〈∇uv ,w〉 dV =

∫
M

[
∇u〈v ,w〉 − 〈v ,∇uw〉

]
dv .

To finish, use∫
M

(∇uf ) dV =

∫
M

〈u,∇f 〉 dV = −
∫
M

(div u)f dV .

Hence
∇∗

uv = −∇uv − (div u)v .
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To relate Luũ to ∇uũ, write

〈Luũ, v〉 = Lu〈ũ, v〉 − 〈ũ, [u, v ]〉
= ∇u〈ũ, v〉 − 〈ũ,∇uv −∇vu〉
= 〈∇uũ, v〉+ 〈ũ,∇vu〉
= 〈∇uũ, v〉+ 1

2∇v 〈u, u〉
= 〈∇uũ, v〉+ 1

2〈d |u|
2, v〉,

obtaining
Luũ = ∇uũ + 1

2d |u|
2.
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Variant of [BKM] estimate.

‖u‖C k ≤ C
(
log

A‖u‖Hs

‖u‖C k
∗

)
‖u‖C k

∗
,

for s > k + n/2, on n-dimensional M.

Take Ψ ∈ C∞
0 (R), Ψ(λ) = 1 for |λ| < 1, 0 for |λ| > 2.

u = Ψ(εD)u + (I −Ψ(εD))u.

Establish 2 estimates:

‖(I −Ψ(εD))u‖C k ≤ C‖(I −Ψ(εD))u‖Hs−δ

≤ Cεδ‖(I −Ψ(εD))u‖Hs ,

Ψ(εD)u‖C k ≤ C
(
log

1

ε

)
‖u‖C k

∗
.

Pick

εδ =
‖u‖C k

∗

‖u‖Hs
.

First estimate is elementary, second follows from Littlewood-Paley
characterization of C k

∗ .
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Variant of [BW] estimate.

‖u‖L∞ ≤ C
(
log

A‖u‖Hn/p,q

‖u‖Hn/p,p

)1−1/p
‖u‖Hn/p,p

on n-dimensional M, given 1 < p <∞, p < q <∞. Present case:
n = p = 2.

Take Ψ ∈ C∞
0 (R), Ψ(λ) = 1 for |λ| ≤ 1, 0 for |λ| > 2.

u = Ψ(εD)u + (I −Ψ(εD))u.

Establish 2 estimates:

‖(I −Ψ(εD))u‖L∞ ≤ Cεr‖u‖C r ≤ Cεr‖u‖Hn/p,q ,

with r = n/p − n/q > 0, and

‖Ψ(εD)u‖L∞ ≤ C
(
log

1

ε

)1−1/p
‖u‖Hn/p,p .

Pick

εr =
‖u‖Hn/p,p

‖u‖Hn/p,q

.
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For first estimate, use Littlewood-Paley characterization of C r .

For second, use

Λ−sv = Js ∗ v , Js(x) ∼ c|x |s−n for |x | ≤ 1,

for 0 < s < n, especially s = n/p. This yields

Ψ(εD)Λ−sv = Ks,ε ∗ v ,

with
|Ks,ε(x)| ≤ C εs−n, |x | ≤ ε,

C |x |s−n, |x | ∈ [ε, 1],

in turn giving the second estimate.
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