Regularity of Solutions to Nonlinear Overdetermined Elliptic PDE

Michael Taylor

Assume $r>0, m \in \mathbb{N}$, and $u \in C^{m+r}(\Omega)$ solves the nonlinear system of PDE

$$
\begin{equation*}
P\left(x, D^{m} u\right)=g . \tag{1}
\end{equation*}
$$

Also assume P is a smooth function of its arguments and

$$
\begin{equation*}
P\left(x, D^{m} u\right) \text { is overdetermined elliptic at } u . \tag{2}
\end{equation*}
$$

We aim to prove the following.
Proposition. Under the hypotheses stated above,

$$
\begin{equation*}
g \in C^{\infty}(\Omega) \Longrightarrow u \in C^{\infty}(\Omega) \tag{3}
\end{equation*}
$$

Proof. Assume also $P(x, 0)=0$ (otherwise, subtract this off). We apply the paralinearization method of J.-M. Bony (as tweaked by Y. Meyer) to write

$$
\begin{equation*}
F\left(x, D^{m} u\right)=M(u ; x, D) u \tag{4}
\end{equation*}
$$

See Proposition 3.3.A of [T]. Furthermore, as in (3.3.9)-(3.3.10) of [T], pick $\delta \in$ $(0,1)$ and apply symbol smoothing to obtain

$$
\begin{equation*}
M(u ; x, D)=M^{\#}(x, D)+M^{b}(x, D) \tag{5A}
\end{equation*}
$$

where, if $u \in C^{m+r}$,

$$
\begin{equation*}
M^{\#}(x, \xi) \in S_{1, \delta}^{m}, \quad M^{b}(x, \xi) \in S_{1,1}^{m-r \delta} \tag{5B}
\end{equation*}
$$

See also Chapter II, $\S \S 4-5$ of [T2]. The hypothesis (2) implies

$$
\begin{equation*}
M^{\#}(x, D) \text { is overdetermined elliptic. } \tag{6}
\end{equation*}
$$

Now (1) gives

$$
\begin{equation*}
M^{\#}(x, D) u=g-M^{b}(x, D) u=h, \tag{7}
\end{equation*}
$$

and Theorem 2.1.A of $[\mathrm{T}]$ gives

$$
\begin{gather*}
u \in C^{m+r} \Rightarrow M^{b}(x, D) u \in C_{*}^{r+r \delta} \Rightarrow h \in C_{*}^{r+r \delta} . \tag{8}\\
1
\end{gather*}
$$

Here C_{*}^{s} denotes a Zygmund space, equal to C^{s} if $s \in(0, \infty) \backslash \mathbb{N}$, and slightly different if $s \in \mathbb{N}$.

Now we exploit (6). We have

$$
\begin{equation*}
M^{\#}(x, D)^{*} M^{\#}(x, D) \in O P S_{1, \delta}^{2 m}, \quad \text { determined elliptic, } \tag{9}
\end{equation*}
$$

hence this operator has a parametrix $E \in O P S_{1, \delta}^{-2 m}$. We set

$$
\begin{equation*}
F=E M^{\#}(x, D)^{*} \in O P S_{1, \delta}^{-m}, \tag{10}
\end{equation*}
$$

giving

$$
\begin{equation*}
F M^{\#}(x, D)=I+R, \quad R \in O P S^{-\infty} \tag{11}
\end{equation*}
$$

Now, by Corollary 2.1.B of [T],

$$
\begin{equation*}
F: C_{*}^{s} \longrightarrow C_{*}^{s+m}, \quad \forall s \in \mathbb{R}, \tag{12}
\end{equation*}
$$

so we apply F to (7), obtaining $\left(\bmod C^{\infty}\right)$

$$
\begin{equation*}
u=F h \in C_{*}^{m+r+r \delta} . \tag{13}
\end{equation*}
$$

Having this improvement over the hypothesis $u \in C^{m+r}$, we iterate this argument, obtaining $u \in C_{*}^{m+s}$ for all $s<\infty$, hence (3).

References

[T] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhauser, Boston, 1991.
[T2] M. Taylor, Short Course on Pseudodifferential Operators, Notes, available at https://mtaylor.web.unc.edu/notes, item \#1.

