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1. Introduction

The surface quasigeostrophic (SQG) equation, for an active scalar θ(t, x) and
velocity u(t, x), x ∈ R2, takes the following form:

(1.1)
∂tθ +∇uθ = 0,

u = −J∇(∆)−1/2θ.

Here, J acts on vectors by counterclockwise rotation by 90◦. The vector field J∇θ
behaves somewhat like vorticity in 3D:

(1.2) (∂t +∇u)(J∇θ) = (∇u)(J∇θ),

and features of the solution to (1.1) are seen to describe behavior more closely
analogous to 3D fluid motion than the 2D Euler equations, while remaining in the
setting of 2D. That said, it is also folklore that (1.1) produces a better reflection of
fluid behavior in the tropics than at other latitudes. This suggests several extensions
of (1.1).

First, (1.1) as stated works fine when the Euclidean plane R2 is replaced by a
compact, oriented, 2D Riemannian manifold, such as the sphere S2. Going further,
it is natural to set this surface spinning and modify (1.1) to take account of the
Coriolis force. Here we investigate such a modification of SQG.

To set this up, we recall that SQG can be placed within a continuum of evolution
equations:

(1.3) ∂tθ +∇uθ = 0, u = −J∇(−∆)−βθ,

with β ∈ [1/2, 1]. The case β = 1/2 is SQG. The case β = 1 yields the vorticity
equation for 2D Euler, with θ = w = rotu. Now, 2D Euler with the Coriolis force
on an axially symmetric surface M ⊂ R3, rotating about the x3-axis, has the form

(1.4) ∂tu+∇uu = Ωχ(x)Ju−∇p, divu = 0,

with Ω ∈ R proportional to the angular velocity of M and

(1.5) χ(x) = e3 · ν(x),

ν(x) denoting the outward unit normal to M at x, and e3 the unit vector along the
positive x3-axis. This equation yields the following vorticity equation for w = rotu
(cf. [T]):

(1.6) (∂t +∇u)(w − Ωχ) = 0.
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In light of this, we propose the following surface quasigeostrophic equation with
Coriolis force (SQGC), on the rotating, axially symmetric surface M :

(1.7)
(∂t +∇u)(θ − Ωχ) = 0,

u = −J∇(−∆)−1/2θ,

with Ω ∈ R and χ ∈ C∞(M) given by (1.5).
It is of interest to reformulate the evolution equation as follows. Note that the

formula for u yields

(1.8) divu = 0.

Hence

(1.9) ∇uφ = div (φu),

for real-valued functions φ. Thus the evolution equation takes the form

(1.10) ∂tφ+ div (φu) = 0, φ = θ − Ωχ.

We can rewrite the latter half of (1.7) as

(1.11)
u = −J∇(−∆)−1/2(φ+Ωχ)

= R⊥(φ+Ωχ).

Then another formulation of (1.10) is

(1.12) ∂tφ+ div (φR⊥φ) = −Ωdiv (φR⊥χ),

with

(1.13) R⊥ = −J∇Λ−1, Λ = (−∆)1/2.

Note that

(1.14) R⊥ ∈ OPS0(M),

and

(1.15) (R⊥)∗R⊥ = I − P0,

where P0 : L2(M) → L2(M) is the orthogonal projection onto the space of constant
functions on M .
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A. Some conservation laws

The equation (1.7), with smooth initial data, has a short time smooth solution.
This will be established in §B. Here we take note of some conserved quantities that
such a solution possesses. First, directly from (1.7), we have

(A.1) ∥θ(t, ·)− Ωχ∥L∞(M) is independent of t.

Furthermore, thanks to (1.8),

(A.2)

∫
M

G(θ(t, x)− Ωχ(x)) dS(x) is independent of t,

for each continuous function G : R → R. Taking G(s) = s yields

(A.3)

∫
M

θ(t, x) dS(x) independent of t.

Note that if θ satisfies (1.7) and θ̃ = θ + a, a ∈ R, then θ̃ also satisfies (1.7), with
u unchanged. We will normalize so that

(A.4)

∫
M

θ(t, x) dS(x) ≡ 0.

Note incidentally that, by the divergence theorem, the formula (1.5) for χ yields

(A.5)

∫
M

χ(x) dS(x) = 0.

Let us examine the not-quite-conservation law we get for ∥u(t)∥L2 . Since u =
R⊥θ,

(A.6) ∥u(t)∥2L2 = (R⊥θ(t), R⊥θ(t)) = ∥θ(t)∥2L2 ,

thanks to (1.15) and (A.4). Meanwhile, (A.2) implies the following is independent
of t:

(A.7) ∥θ(t)− Ωχ∥2L2 = ∥θ(t)∥2 − 2Ω(θ(t), χ) + ∥Ωχ∥2L2 ,

so

(A.8)

1

2

d

dt
∥θ(t)∥2L2 = Ω

d

dt
(θ(t), χ)

= Ω(∂tθ(t), χ)

= −Ω(∇uθ(t), χ)

= Ω(θ(t),∇uχ).



5

B. Short time existence

Here we establish existence of solutions to the equation

(B.1) ∂tφ+∇uφ = 0, φ(0) = φ0,

with

(B.2) φ = θ − Ωχ, u = R⊥θ

(as in (1.7)-(1.13)), on some interval |t| < A, given φ0 ∈ Hs(M), with conditions on
s described below. Such a result works basically like the case Ω = 0, which is well
known, but we include a treatment here for the sake of completeness. The method
we use is close to the treatment short-time existence for quasilinear symmetric
hyperbolic equations given in Chapter 16 of [T2] (and in Chapter 5 of [T3]).

Our approach is to take a mollifier Jε = ψ(ε∆), ψ real valued and in C∞
0 (R),

with ψ(0) = 1, and consider

(B.3)
∂φε

∂t
+ Jε∇uε

Jεφε = 0, φε(0) = Jεφ0,

where

(B.4) uε = R⊥(Jεφε +Ωχ), so div uε = 0.

Given ε > 0, the short-time solvability of (B.3) is elementary, since this is essentially
a finite system of ODEs. We aim to obtain estimates for φε(t) in Hs(M) for t in
some interval that is independent of ε, and pass to the limit, assuming φ0 ∈ Hs(M)
and s is large enough.

To start, we have

(B.5)

1

2

d

dt
∥φε(t)∥2L2 = (∂tφε, φε)

= −(Jε∇uεJεφε, φε)

= −(∇uε
Jεφε, Jεφε)

= 0,

the last identity holding because div uε = 0. This guarantees global existence of
solutions to (B.3), for each ε > 0.

To estimate higher-order Sobolev norms, we bring in

(B.6) As = (1−∆)s/2 ∈ OPSs(M), ∥φ∥Hs = ∥Asφ∥L2 .
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Then

(B.7)

1

2

d

dt
∥φε(t)∥2Hs = (As∂tφε, A

sφε)

= −(AsJε∇uεJεφε, A
sφε)

= −(As∇uε
Jεφε, A

sJεφε),

the latter identity holding since As and Jε commute. We can write the last line of
(B.7) as

(B.8) −(∇uε
AsJεφε, A

sJεφε)− ([As,∇uε
]Jεφε, A

sJεφε).

The first term in (B.8) vanishes since div uε = 0. Our next task is to estimate

(B.9) ∥[As,∇uε ]Jεφε∥L2 .

For this, we use the Kato-Ponce estimate, established in [KP] in the Euclidean
space setting, and in the manifold setting in §3.6 of [T3].

In more detail, the KP-estimate gives, for s > 0,

(B.10) ∥As(fv)− fAsv∥L2 ≤ C∥f∥C1∥v∥Hs−1 + C∥f∥Hs∥v∥L∞ .

We take v = Xφ, where X is a first-order differential operator, and write

(B.11) As(fXφ)− fX(Asφ) = As(fXφ)− fAs(Xφ) + f [As, X]φ.

Then (B.10) applies to estimate the first two terms on the right side of (B.11), and
the L2-norm of the last term is bounded by C∥f∥L∞∥φ∥Hs , since

(B.12) [As, X] ∈ OPSs(M).

Thus

(B.13) ∥[As, fX]φ∥L2 ≤ C∥f∥C1∥φ∥Hs + C∥f∥Hs∥φ∥C1 .

Hence our estimate on (B.9) is

(B.14) ∥[As,∇uε
]Jεφε∥L2 ≤ C∥uε∥C1∥φε∥Hs + C∥uε∥Hs∥φε∥C1 .

Recalling that uε is related to φε by (B.4), and R⊥ ∈ OPS0(M), we have

(B.15)

∥uε∥Hs ≤ C∥φε∥Hs + C|Ω|,
∥uε∥C1 ≤ C∥φε∥C1 + C∥R⊥φε∥C1 + C|Ω|

=: C∥φε∥C1
#
+ C|Ω|.
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Returning to (B.7)–(B.9), we have

(B.16)

1

2

d

dt
∥φε(t)∥2Hs ≤ C

(
∥φε(t)∥C1

#
+ |Ω|

)
∥φε(t)∥2Hs

+ C∥φε(t)∥C1

(
∥φε(t)∥Hs + |Ω|

)
∥φε(t)∥Hs .

To proceed, fix a number

(B.17) σ > 2, so ∥φ∥C1
#
≤ C∥φ∥Hσ ,

and then (B.16) yields, for the solution φε to (B.3), the estimate

(B.18)
d

dt
∥φε(t)∥2Hσ ≤ Cσ

(
∥φε(t)∥3Hσ + |Ω|∥φε(t)∥2Hσ

)
,

with Cσ independent of ε ∈ (0, 1]. By Gronwall’s inequality, we have, for t ≥ 0,

(B.19) ∥φε(t)∥2 ≤ y(t),

where y(t) solves

(B.20)
dy

dt
= Cσ(y

3/2 + |Ω|y), y(0) = ∥φ0∥2Hσ .

In particular,

(B.21) {φε(t) : 0 ≤ t ≤ T} is uniformly bounded in Hσ(M),

independent of ε ∈ (0, 1], for

(B.22) T < T (y(0)) =
1

Cσ

∫ ∞

y(0)

dy

y3/2 + |Ω|y
.

For t in this interval, we have

(B.23)

∫ y(t)

y(0)

dy

y3/2 + |Ω|y
= Cσt.

In connection with this, note that

(B.24)

Ξ(y) =

∫ ∞

y

dη

η3/2 + |Ω|η
= 2

∫ ∞

y1/2

dt

(t+ |Ω|)t

=
2

|Ω|

∫ ∞

y1/2

(1
t
− 1

t+ |Ω|

)
dt

=
2

|Ω|
log(1 + |Ω|y−1/2),
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so

(B.25) T (y(0)) =
2

Cσ|Ω|
log

(
1 + |Ω|y(0)−1/2

)
.

Taking |Ω| → 0 yields

(B.26) T (y(0)) =
2

Cσ
y(0)−1/2,

in this case, which of course also follows directly from (B.22).
Similar estimates of φε(−t) allow us to elevate (B.21) to the result that

(B.27) {φε(t) : |t| ≤ T} is uniformly bounded in Hσ(M),

independently of ε ∈ (0, 1], provided (B.22) holds. In such a case, uε enjoys the
same sort of bound, and we have from (B.3) that

(B.28) {∂tφε(t) : |t| ≤ T} is uniformly bounded in Hσ−1(M).

Note that

(B.29) ∇uεJεφε = div(uεJεφε),

in such a case. Also, for σ > 2, Hσ−1(M) is an algebra under pointwise multipli-
cation.

Having these estimates, one can apply standard techniques, discussed in Chap-
ter 16 of [T2], and Chapter 5 of [T3], to obtain a solution φ to (B.1)–(B.2) in
C([−T, T ],Hs(M)), given initial data in Hs(M), as long as s ≥ σ and T satisfies
(B.22). We do not need to shrink the interval further for s > σ. Also estimates par-
allel to those produced above establish uniqueness of solutions φ(t) and continuous
dependence on the initial data φ0.
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2. Mock vorticity equation

Let us write the evolution equation (1.7) as

(2.1) (∂t + Lu)φ = 0, φ = θ − Ωχ.

We apply the exterior derivative d and use the fact that dLu = Lud to obtain

(2.2) (∂t + Lu)(dφ) = 0.

Now, if X is a vector field on M ,

(2.3)

⟨Lu(dφ), X⟩ = Lu⟨dφ,X⟩ − ⟨dφ,LuX⟩
= Lu⟨∇φ,X⟩ − ⟨∇φ, [u,X]⟩
= ⟨∇u(∇φ), X⟩+ ⟨∇φ,∇uX⟩ − ⟨∇φ, [u,X]⟩.

In view of the identity ∇uX −∇Xu = [u,X], we get

(2.4) ⟨Lu(dφ), X⟩ = ⟨∇u(∇φ), X⟩+ ⟨∇φ,∇Xu⟩.

Thus (2.2) yields, for all vector fields X,

(2.5)
0 = ⟨(∂t + Lu)(dφ), X⟩
= ⟨∂t(∇φ), X⟩+ ⟨∇u(∇φ), X⟩+ ⟨∇φ, (∇u)X⟩,

hence

(2.6) (∂t +∇u)(∇φ) = −(∇u)t∇φ.

Note that the 2D surface M has the Kahler property,

(2.7) J∇uY = ∇u(JY ),

for each smooth vector fields u and Y . Hence (2.6) gives

(2.8) (∂t +∇u)(J∇φ) = −J(∇u)tJ−1(J∇φ).

This is the mock vorticity equation.
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3. Stationary solutions to SQGC

As before, M ⊂ R3 is a compact, smooth surface, axially symmetric about the
x3-axis, so the group of rotations about this axis acts on M . Then the function
χ ∈ C∞(M) defined in (1.5) is a zonal function, i.e., invariant under rotations about
the x3-axis. Hence ∇χ is orthogonal to the orbits of this rotation action (curves of
latitude), hence J∇χ is parallel to such orbits. Also, for θ ∈ C∞(M),

(3.1)

θ zonal =⇒ u = −J∇(−∆)−1/2θ parallel to curves of latitude

=⇒ ∇uψ = 0, ∀ zonal ψ

=⇒ ∇u(θ − Ωχ) = 0

=⇒ θ is a stationary solution to SQGC.

We next seek examples of stationary solutions to SQGC that are not zonal func-
tions. For this, let us write

(3.2) θ = Λf = (−∆)1/2f,

∫
M

f dS = 0,

and rewrite the equation ∇u(θ − Ωχ) = 0 as

(3.3) ⟨J∇f,∇(Λf − Ωχ⟩ = 0,

equivalently

(3.4) ∇f(x) ∥ ∇(Λf(x)− Ωχ(x)), ∀x ∈M,

a result that holds whenever

(3.5) Λf − Ωχ = ψ(f),

for some ψ ∈ C∞(R). For an example, we take

(3.6) ψ(f) = λkf, λk ∈ SpecΛ, λk > 0,

and seek a solution f to

(3.7) (Λ− λk)f = Ωχ.

If Ω ̸= 0, such a solution exists if and only if χ is orthogonal to Ker (Λ− λk).
To proceed, we specialize to M = S2, so

(3.8) χ(x) = x3,

which is an eigenfunction of Λ:

(3.9) −∆χ = 2χ, so Λχ = λ1χ, λ1 =
√
2.

As long as k ≥ 2, (3.7) has solutions

(3.10) f =
Ω

λ1 − λk
χ+ gk, gk ∈ Ker (Λ− λk).

We can pick gk not to be zonal, and then θ = Λf is a stationary solution to SQGC
that is not zonal.
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4. Another conservation law

As usual, M ⊂ R3 is a smooth compact surface that is invariant under the group
of rotations about the x3-axis, generated byX3. We also assumeM is diffeomorphic
to S2 and has positive Gauss curvature everywhere. As a consequence, χ is a smooth
function of x3 and

(4.1)
dχ

dx3
≥ b > 0, for x3 ∈ [−a, a],

where we arrange
a = max

M
x3, −a = min

M
x3.

Since X3 generates a flow by isometries on M , we have divX3 = 0 on M , so there
exists ξ ∈ C∞(M) such that

(4.2) J∇ξ = −X3.

Clearly X3ξ = 0. As a further consequence of our geometric hypotheses,

(4.3)

ξ is a smooth function of x3, and

dξ

dx3
≥ b > 0 for x3 ∈ [−a, a].

We note that

(4.4) M = S2 =⇒ χ = ξ = x3.

We aim to establish the following.

Proposition 4.1. Under the hypotheses on M made above, if θ, u satisfy (1.7),
then

(4.5)

∫
M

ξ(x)θ(t, x) dS(x) is independent of t.

Proof. Applying ∂t to (4.5) yields

(4.6)

∫
M

ξ ∂tθ dS =

∫
M

ξ∇u(Ωχ− θ) dS

= −
∫
M

ξ(∇uθ) dS +Ω

∫
M

ξ∇uχdS.
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Note that (4.1)–(4.3) imply that ξ is a smooth function of χ, with ξ = ξ(χ). Thus
ξ∇uχ = ∇uG(χ), where G

′(χ) = ξ(χ). Hence

(4.7)

∫
M

ξ∇uχdS =

∫
M

∇uG(χ) ds = 0,

sice div u = 0 implies ∇u is skew-adjoint and ∇u1 = 0, Next,

(4.8)

∫
M

ξ(∇uθ) dS = −
∫
M

(∇uξ)θ dS,

which we can analyze using

(4.9) θ = Λf, u = −J∇f

(defining f as the “stream function”). We have (4.8) equal to

(4.10)

∫
M

⟨J∇f,∇ξ⟩(Λf) dS

=

∫
M

(X3f)(Λf) dS

= (X3f,Λf).

Now, since X3 commutes with all powers of Λ, and is skew-adjoint,

(4.11) (X3f,Λf) = (X3Λ
1/2f,Λ1/2f) = 0.

It follows that

(4.12)
d

dt

∫
M

ξ(x)θ(t, x) dS(x) = 0,

proving Proposition 4.1.

As shown in §3.5 of [T], ifM has the geometrical properties hypothesized above,
then

(4.13) Ψ ∈ C∞(M), zonal =⇒ Ψ(x) = ψ(x3), with ψ ∈ C∞([−a, a]).
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5. Linearization about a stationary solution

Let M ⊂ R3 be a compact surface, rotationally symmetric about the x3-axis,
with positive Gauss curvature, and let θ be a stationary solution to SQGC, i.e.,

(5.1) ∇u(θ − Ωχ) = 0, u = −J∇f, θ = Λf, f = f(x).

Let us set

(5.2) fε(t) = f + εη(t) + · · · , θε(t) = θ + εζ(t) + · · · , ζ = Λη.

Inserting this into

(5.3) ∂tθε − ⟨J∇fε,∇(θε − Ωχ)⟩ = 0,

using (5.1), and discarding higher powers of ε produces the linearized equation

(5.4) ∂tζ − ⟨J∇f,∇ζ⟩ − ⟨J∇η,∇(θ − Ωχ)⟩ = 0.

Now

(5.5)
⟨J∇η,∇(θ − Ωχ)⟩ = −⟨∇η, J∇(θ − Ωχ)⟩

= −∇J∇(θ−Ωχ)η.

Since η = Λ−1ζ, where we define Λ−1 to annihilate constants and to have range
orthogonal to constants, (5.4) becomes the linear equation

(5.6)
∂ζ

∂t
= Γζ,

where

(5.7) Γζ = ∇J∇fζ −∇J∇(θ−Ωχ)Λ
−1ζ.
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6. Linearized stability – Rayleigh type criterion

The question of linear stability of a solution to (5.1) is the question of whether
the operator Γ, given by (5.7), generates a uniformly bounded group of operators
on

(6.1) L2
b(M) =

{
ζ ∈ L2(M) :

∫
M

ζ dS = 0
}
.

Let us retain the hypotheses on M from §5. Then χ = χ(ξ), with ξ as in (4.2), i.e.,
J∇ξ = −X3. Let us also assume f is a zonal function, i.e., X3f = 0, so f = f(ξ).
This also implies X3θ = 0, hence θ = θ(ξ). Then

(6.2) J∇f = −f ′(ξ)X3, J∇(θ − Ωχ) =
[
Ωχ′(ξ)− θ′(ξ)

]
X3,

and (5.7) becomes

(6.3) Γζ = f ′(ξ)X3ζ −
[
Ωχ′(ξ)− θ′(ξ)

]
X3Λ

−1ζ.

In such a case, Γ commutes with X3. Hence we can decompose

(6.4) L2
b(M) =

⊕
k

Vk,

where, for k ∈ Z,

(6.5) Vk = {ζ ∈ L2
b(M) : X3ζ = ikζ},

and we have

(6.6) Γ =
⊕
k

Γk, Γk : Vk → Vk,

where

(6.7) Γkζ = ik
{
f ′(ξ)ζ −

[
Ωχ′(ξ)− θ′(ξ)

]
Λ−1ζ

}
.

Note also that

(6.8) Λ−1 : Vk −→ Vk is compact,

for each k, so each Γk is a compact perturbation of a bounded, skew-adjoint operator
on Vk. In light of this, basic analytic Fredholm theory yields the following.
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Proposition 6.1. For each k,

(6.9) Spec Γk ⊂ ikΣ ∪ Sk,

where

(6.10) Σ = {f ′(λ) : α0 ≤ λ ≤ α1}, α0 = min
M

ξ, α1 = max
M

ξ,

and Sk is a countable set of points in C whose accumulation points all must lie in
ikΣ. Each µ ∈ Sk is an eigenvalue of Γk, and the associated generalized eigenspace
is finite dimensional.

In fact, for each µ ∈ C \ ikΣ, Γk − µI is a bounded operator on Vk that is
Fredholm of index 0, and it is clearly invertible for |µ| > ∥Γk∥.

Corollary 6.2. Assume Γ has the form (6.3). If Spec Γ is not contained in the
imaginary axis, then some Γk has an eigenvalue with nonzero real part.

Now, having Spec Γ ⊂ iR would not guarantee that Γ generates a bounded group
of operators on L2

b(M), but not having this inclusion definitely guarantees (thanks
to Corollary 6.2) that the associated group of operators is not uniformly bounded.
Thus Corollary 6.2 points to an approach to finding cases that are linearly unstable.

Actually establishing such cases of linear instability is not so straightforward.
We proceed to derive some necessary conditions for such linear instability to hold,
i.e., for some Γk to have an eigenvalue with nonzero real part.

Of course Γ0 = 0. Suppose k ̸= 0 and Γk has an eigenvalue µ = ikβ, β /∈ R.
Then there exists a nonzero ζ ∈ Vk such that

(6.11) (f ′(ξ)− β)ζ =
[
Ωχ′(ξ)− θ′(ξ)

]
Λ−1ζ,

hence (with η = Λ−1ζ)

(6.12) Λη = −θ
′(ξ)− Ωχ′(ξ)

f ′(ξ)− β
η.

If β /∈ R, the denominator on the right side of (6.12) is nowhere vanishing. In
(6.11)–(6.12), ζ and η would not be real valued. Taking the inner product of both
sides of (6.12) with η yields

(6.13)

(Λη, η) = −
∫
M

θ′(ξ)− Ωχ′(ξ)

f ′(ξ)− β
|η|2 dS

= −
∫
M

θ′(ξ)− Ωχ′(ξ)

|f ′(ξ)− β|2
[
f ′(ξ)− β

]
|η|2 dS.
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Now (Λη, η) is real and positive, but Imβ ̸= 0. Hence taking the imaginary part of
(6.13) yields

(6.14)

∫
M

θ′(ξ)− Ωχ′(ξ)

|f ′(ξ)− β|2
|η|2 dS = 0.

Using this in (6.13) gives

(6.15) −(Λη, η) =

∫
M

θ′(ξ)− Ωχ′(ξ)

|f ′(ξ)− β|2
[
f ′(ξ)−K

]
|η|2 dS < 0, ∀K ∈ R.

We have (6.14) and (6.15) as necessary conditions for Γk to have an eigenvalue
with nonzero real part, with associated eigenfunction ζ = Λη, η ∈ Vk. These results
in turn imply the following.

Proposition 6.3. If Γ has an eigenvalue with nonzero real part, then

(6.16) θ′(s)− Ωχ′(s) must change sign in s ∈ (α0, α1),

with αj as in (6.10), and

(6.17)
∀K ∈ R, ∃ s ∈ (α0, α1) such that

(θ′(s)− Ωχ′(s)) (f ′(s)−K) < 0.

These results are parallel to classical results that apply to planar 2D Euler
flows, with Ω = 0. Indeed, (6.16) is the counterpart (in the SQGC setting) of
the “Rayleigh criterion” for linear instability, and (6.17) is the counterpart of the
“Fjortoft criterion.” See [R] and [MP], pp. 122–123.
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7. Arnold-type stability estimate

Let M ⊂ R3 be a compact, axially symmetric surface, with positive Gauss
curvature, and let θ ∈ C∞(M) be a zonal function (with mean value 0), yielding
a stationary solution of SQGC. We seek a condition yielding L2-stability of such a
solution. To this end, we bring in functionals of the form

(7.1) H(θ) =

∫
M

{
G(θ − Ωχ) + ξθ

}
dS,

with G ∈ C∞(R) to be determined, and ξ ∈ C∞(M) given by (4.2). As a con-

sequence of previous results on conservation laws, if θ̃(t) is a sufficiently smooth

solution to SQGC, then H(θ̃(t)) is independent of t. We want to produce H(θ), of
the form (7.1), such that θ is a critical point of H, and examine when it can be
arranged to have either positive definite or negative definite second derivative.

To begin, if ψ ∈ C∞(M) (also with mean value 0), we have

(7.2) ∂sH(θ + sψ) =

∫
M

{
G′(θ + sψ − Ωχ) + ξψ

}
dS,

hence

(7.3) ∂sH(θ + sψ)
∣∣
s=0

=

∫
M

{
G′(θ − Ωχ) + ξψ

}
dS,

and

(7.4) ∂2sH(θ + sψ)
∣∣
s=0

=

∫
M

G′′(θ − Ωχ)ψ2 dS.

From (7.3), we see that θ is a critical point of H provided

(7.5) G′(θ − Ωχ) = −ξ.

From our hypotheses on M and θ, we have θ = θ(ξ), χ = χ(ξ), and (7.5) becomes

(7.6) G′(θ(ξ)− Ωχ(ξ)) = −ξ.

We can find such a smooth function G provided the following holds:

(7.7) θ(ξ)− Ωχ(ξ) is strictly monotone in ξ,
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more precisely

(7.8) θ′(ξ)− Ωχ′(ξ) is bounded away from 0.

If (7.8) holds, we pick smooth G to satisfy (7.6), and then apply d/dξ to (7.6),
obtaining

(7.9) G′′(θ − Ωχ) = − 1

θ′(ξ)− Ωχ′(ξ)
,

which is smooth and bounded away from 0. In such a case, either

(7.10)
∂2sH(θ + xψ)

∣∣
s=0

≥ A∥ψ∥2L2 , or

∂2sH(θ + sψ)
∣∣
s=0

≤ −A∥ψ∥2L2 ,

for some A > 0. This implies stability of θ in L2(M) as a critical point of (7.1).
We summarize.

Proposition 7.1. Given a smooth θ(ξ) (with mean value 0), this is a stable sta-
tionary solution to SQGC, in L2(M), as long as Ω is such that (7.8) holds.
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