The Zak Transform

Michael Taylor

The Zak transform arises in the study of a pair of unitary operators on $L^{2}(\mathbb{R})$,

$$
\begin{equation*}
T u(x)=u(x+2 \pi), \quad M u(x)=e^{i x} u(x) . \tag{1}
\end{equation*}
$$

These two unitary operators commute, and one seeks a joint spectral representation. As an intermediate step, take

$$
\begin{equation*}
\mathcal{S} u(x, k)=u(x+2 \pi k), \quad x \in I=[0,2 \pi], k \in \mathbb{Z} . \tag{2}
\end{equation*}
$$

Then $\mathcal{S}: L^{2}(\mathbb{R}) \rightarrow L^{2}(I \times \mathbb{Z})$ is unitary and

$$
\begin{equation*}
\mathcal{S T u}(x, k)=u(x, k+1), \quad \mathcal{S} M u(x, k)=e^{i x} u(x, k) . \tag{3}
\end{equation*}
$$

The Zak transform is a unitary map

$$
\begin{equation*}
\mathcal{Z} f: L^{2}(\mathbb{R}) \longrightarrow L^{2}(I \times \mathbb{T}, d x d \varphi / 2 \pi), \quad \mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z} \tag{4}
\end{equation*}
$$

given by

$$
\begin{align*}
\mathcal{Z} u(x, \varphi) & =\sum_{k \in \mathbb{Z}} \mathcal{S} u(x, k) e^{i k \varphi} \\
& =\sum_{k \in \mathbb{Z}} u(x+2 \pi k) e^{i k \varphi}, \quad x \in I, \varphi \in \mathbb{T} . \tag{5}
\end{align*}
$$

We have

$$
\begin{equation*}
\mathcal{Z} T u(x, \varphi)=e^{-i \varphi} \mathcal{Z} u(x, \varphi), \quad \mathcal{Z} M u(x, \varphi)=e^{i x} \mathcal{Z} u(x, \varphi) \tag{6}
\end{equation*}
$$

The Fourier inversion formula gives

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{T}} \mathcal{Z} u(x, \varphi) e^{-i k \varphi} d \varphi=\mathcal{S} u(x, k)=u(x+2 \pi k) \tag{7}
\end{equation*}
$$

for $x \in I, k \in \mathbb{Z}$.
This setting has natural extensions. For example, let X be a Riemannian manifold, having a discrete group G of isometries. Assume there exists a fundamental domain $D \subset X$, having the property

$$
\begin{equation*}
X=\bigcup_{g \in G} D g, \quad m\left(D g_{1} \cap D g_{2}\right)=0 \text { for } g_{1} \neq g_{2} \tag{8}
\end{equation*}
$$

(We write the g-action as a right action.) Then we have a unitary map

$$
\begin{equation*}
\mathcal{S}: L^{2}(X) \longrightarrow L^{2}(D \times G), \quad \mathcal{S} u(x, g)=u(x g), \quad x \in D, g \in G \tag{9}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\mathcal{S} T_{h} u(x, g)=u(x, g h), \quad \mathcal{S} M_{a} u(x, g)=a(x) u(x, g), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{h} u(x)=u(x h), x \in X, h \in G, \quad M_{a} u(x)=a(x) u(x) \tag{11}
\end{equation*}
$$

and we require that the function a be G-invariant:

$$
\begin{equation*}
a(x g)=a(x), \quad \forall x \in X, g \in G . \tag{12}
\end{equation*}
$$

Then we define the Zak transform of u as a function on $D \times \widehat{G}$, where \widehat{G} consists of a complete set of irreducible unitary representations of G, by

$$
\begin{align*}
\mathcal{Z} u(x, \pi) & =\sum_{g \in G} \mathcal{S} u(x, g) \pi(g) \\
& =\sum_{g \in G} u(x g) \pi(g), \quad x \in D, \pi \in \widehat{G} . \tag{13}
\end{align*}
$$

We have

$$
\begin{equation*}
\mathcal{Z} T_{h} u(x, \pi)=\mathcal{Z} u(x, \pi) \pi(h)^{-1}, \quad \mathcal{Z} M_{a} u(x, \pi)=a(x) \mathcal{Z} u(x, \pi) . \tag{14}
\end{equation*}
$$

