
Remarks on Nonsmooth Riemannian Manifolds

Michael Taylor

1. Introduction

We make a few observations about nonsmooth Riemannian manifolds. In §2
we show that a k-dimensional surface of class C2 in Rn has additional intrinsic
smoothness, and that this implies the geodesic flow is locally uniquely defined on
such a surface. This comes about because such a surface has bounded curvature.
Hence, in harmonic coordinates, the metric tensor is seen to be almost (but not
quite) of class C1,1. In §3 we produce a metric tensor on a region Ω ⊂ R2 such that
the curvature is bounded but the metric tensor is not of class C1,1 in any harmonic
coordinate system. In the standard coordinates on R2 we specify the metric tensor,
mod C3−ε, in §3, and in §4 we study it further, and specify it mod C5−ε. Section
5 is devoted to some idle speculations.

2. Intrinsic smoothness of C2 surfaces

Let M be a C2 surface of dimension k in Rn. That is (after a re-ordering of the
standard coordinates on Rn)M is locally the graph of a C2 function φ : U → Rn−k,
with U open in Rk. Note that the Riemannian metric tensor induced on U via φ
is only C1. Our first goal in this section is to establish the following.

Proposition 2.1. The manifold M is covered by local harmonic coordinate sys-
tems, in each of which the metric tensor satisfies

(2.1) ∇2gij ∈ bmo.

To begin the proof, we start with the coordinate system described above, in which
the metric tensor is C1. This is more than enough regularity for classical results
yielding local harmonic coordinate systems. In fact (cf. Proposition 9.5 in Chapter
3 of [T2]) we can say that these harmonic coordinate functions (as functions on
U ⊂ Rk) have 2 derivatives in Lp for each p <∞, and, in any harmonic coordinate
system, the metric tensor satisfies

(2.2) ∇gij ∈ Lp, ∀ p <∞.
1
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So far it seems we have lost ground, but now we bring in considerations of the
Riemann curvature tensor of M . Since M ⊂ Rn is of class C2, its Gauss map
is of class C1. Thus its Weingarten map is a well defined continuous section of
Hom(ν(M) ⊗ TM,TM). Thus, by the Gauss Theorema Egregium, the Riemann
curvature tensor of M is continuous. In particular its components are continuous
in any harmonic coordinate system, and so are the components of the Ricci tensor.

Now, in harmonic coordinates, the metric tensor and the Ricci tensor have a
relation of the form

(2.3) −1

2

∑
i,j

∂ig
ij(x)∂jgℓm +Qℓm(g,∇g) = Ricℓm,

which gives an elliptic system for (gℓm). Results going back to [DeTK] yield regu-
larity properties for gℓm. In the current setting, the result (2.2) allows us to apply
Propositions 10.1–10.2 in Chapter 3 of [T2], and we have the conclusion (2.1).

Remark 2.2. As mentioned, any local harmonic coordinate system on our C2

surface M is smooth of class H2,p (∀ p <∞) with respect to the coordinate system
φ : U → M . It follows from the chain rule that any two such local harmonic
coordinate systems are regular of class H2,p, ∀ p <∞, with respect to each other.
Now we can say more about how two local harmonic coordinate systems are related
when the metric tensor satisfies (2.1). Namely each harmonic coordinate system is
regular of class H3,p (∀ p <∞) with respect to any other one.

In fact it is worthwhile to keep in mind the following more general result. Sup-
pose (u1, . . . , uk) is a local harmonic coordinate system on O ⊂ M and suppose
(x1, . . . , xk) is another local coordinate system (harmonic or not) on which the
metric tensor hij satisfies ∇2hij ∈ bmo. Since the functions uν satisfy

(2.4) ∂i(h
1/2hij∂juν) = 0,

we have the map (x1, . . . , xk) 7→ (u1, . . . , uk) smooth of class H3,p, ∀ p <∞.
If k = 2, there is a special class of harmonic coordinate systems, namely isother-

mal coordinate systems, and Proposition 2.1 applies to these. Of course any two
isothermal coordinate systems on O ⊂ M are conformally related to each other,
and so they put on M the structure of a real-analytic manifold, with metric tensor
satisfying (2.1), if we start with a C2 two-dimensional surface M ⊂ Rn.

One advantage of the result (2.1) over the weaker result that ∇2gij ∈ Lp, ∀ p <
∞ is the following, of obvious geometrical significance.

Proposition 2.3. In the setting of Proposition 2.1, M has a uniquely defined local
geodesic flow.

Proof. We use a local harmonic coordinate system (u1, . . . , uk). The geodesic equa-
tions can be written in Hamiltonian form:

(2.5) u̇i = gij(u) ξj , ξ̇i = −1

2

∂gjℓ

∂ui
ξjξℓ.
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Hence we are considering the flow generated by a vector field whose components
have one derivative in bmo, if (2.1) holds. Such components might not quite be
Lipschitz, but they do have a log-Lipschitz modulus of continuity, which is enough
for Osgood’s theorem (cf. Chapter 1, Appendix A of [T1]) to apply, giving a uniquely
defined local flow.

Remark 2.4. We can easily extend the scope of this discussion from C2 surfaces
to surfaces of type C1,1 in Rn. In this more general setting, the Gauss map is
Lipschitz and the Riemann curvature tensor is bounded, and Propositions 2.1–2.3
continue to hold.

We can extend the scope of Proposition 2.1 as follows. Assume that Mk ⊂ Rn

is locally represented as the graph of a map φ : U → Rn−k satisfying

(2.6) φ ∈ C1,r(U) ∩H2,p(U), 2 < p <∞, 0 < r < 1.

Then the metric tensor on M pulled back to U via φ satisfies

(2.7) gij ∈ Cr ∩H1,p.

Generally, whenever (2.7) holds, the connection coefficients satisfy Γj
kℓ ∈ Lp, and

the curvature satisfies Rjkℓm ∈ H−1,p + Lp/2. We can also say there are local
harmonic coordinates in which the metric tensor satisfies (2.7). Moreover, under
our hypotheses onM ⊂ Rn, the Gauss map is of class Cr∩H1,p and the Weingarten
map is of class Lp, so Rjkℓm ∈ Lp/2, and also Ricij ∈ Lp/2. Hence, in harmonic
coordinates, we have

(2.8) gij ∈ H2,p/2.

When p > k, (2.8) is strictly stronger than (2.7).

3. Surfaces with bounded curvature: some examples

Here we will construct metric tensors of the form

(3.1) gjk = e2u δjk

on an open set Ω ⊂ R2, such that the Gauss curvature is bounded, but the metric
tensor gjk will not be of class C1,1 in the standard coordinate system on R2. In
fact the metric tensor will not be of class C1,1 in any harmonic coordinate system
covering Ω.



4

We recall that the Gauss curvature K of Ω, with metric (3.1), is given by

(3.2) ∆u = −K e2u,

where ∆ is the flat Laplacian, i.e., ∆u = ∂21u + ∂22u. Let us take Ω = {x ∈ R2 :
x21 + x22 < 1}. To construct gjk in (3.1), we will pick K ∈ L∞(Ω) and solve (3.2).
We pick K(x) as follows. Pick

(3.3) H ∈ C∞(R2 \ 0), homogeneous of degree 0, ‖H‖L∞ ≤ 1,

such that

(3.4) ∆−1H /∈ C1,1.

We will say more about the construction of such H below. Then set

(3.5) K(x) = −1− 1
2H(x).

Then K < 0 on Ω, and as is well known, if we pick φ ∈ C∞(∂Ω), there is a unique
solution u ∈ H1(Ω) to

(3.6) ∆u = −K e2u, u
∣∣
∂Ω

= φ.

Cf., e.g., Proposition 1.7 in Chapter 14 of [T1]. Other regularity results on u are
readily established:

(3.7) u ∈ C∞(Ω \ 0), u ∈ H2,p(Ω), ∀ p <∞.

To establish the latter result, note that u ∈ H1(Ω) ⇒ e2u ∈ Lp(Ω), ∀ p < ∞. At
this point we have u ∈ C2−ε(Ω) for all ε > 0; hence the right side of the PDE in
(3.6) is bounded, so we have

(3.8) ∂j∂ku ∈ bmo,

reproducing the conclusion of Proposition 2.1, in this more restricted setting.
To look more closely at u, we compare it with a solution v to

(3.9) ∆v = K, v
∣∣
∂Ω

= ψ,

where we take ψ ∈ C∞(∂Ω). As with (3.4), we will have v /∈ C1,1. Now set
A = e2u(0) and write (3.6) as

(3.10) ∆u = −AK +K(A− e2u).

Thus

(3.11) u = −Av + w,

where w solves

(3.12) ∆w = K(A− e2u), w
∣∣
∂Ω

= φ+Aψ.

Now we know that A − e2u is Lipschitz and vanishes at x = 0, so K(A − e2u) is
Lipschitz on Ω. Hence

(3.13) w ∈ H3,p(Ω), ∀ p <∞.

In particular w ∈ C3−ε(Ω) for all ε > 0. We are now in a position to establish:
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Proposition 3.1. The metric tensor on Ω ⊂ R2 constructed above has bounded
Gauss curvature but is not of class C1,1 in any harmonic coordinate system covering
Ω.

Proof. Granted that v /∈ C1,1, the result (3.13) implies that u is not of class C1,1

with respect to the standard coordinate functions (x1, x2) on R2 (which are har-
monic for metric tensors of the form (3.1)). Suppose now that (y1, y2) is another
harmonic coordinate system covering {x1 = x2 = 0}. Since yν are harmonic for
the metric tensor gjk = e2uδjk, they are also harmonic for the flat metric δjk, so
the map (x1, x2) 7→ (y1, y2) is a real-analytic diffeomorphism. If the metric ten-
sor were C1,1 in the (y1, y2)-coordinate system, it would have to be C1,1 in the
(x1, x2)-coordinate system, so Proposition 3.1 is proven.

Let us now describe a construction of a function H, satisfying (3.3)–(3.4). In
fact, setting

(3.14) v0(x) =
1

4
x1x2 log(x21 + x22),

we see that

(3.15) ∆v0(x) = 2
x1x2
x21 + x22

,

while

(3.16) ∂1∂2v0(x) =
1

4
log(x2 + y2) +G0(x),

with G0 smooth and homogeneous of degree zero on R2 \0. Thus we can take H(x)
in (3.3) to be given by the right side of (3.15), i.e.,

(3.17) K(x) = −1− x1x2
x21 + x22

.

Then we can take v(x) in (3.9) to be given as

(3.18)
v(x) = −1

2
v0(x)−

1

2
(x21 + x22)

= −1

8
x1x2 log(x21 + x22)−

1

2
(x21 + x22),

and we have the representation (3.11) for u in (3.1), with the remainder term
satisfying (3.13).
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4. Finer study of the metrics of §3

We want to look more closely at the behavior of the singularities of u and e2u,
with u solving (3.2), with K given by (3.17). So far we have

(4.1) u(x) = −1

8
x1x2 log(x21 + x22), mod C3−ε,

for all ε > 0. In other words, we can write

(4.2) u(x) = u(0) + β · x− 1

8
x1x2 log(x21 + x22) + x ·Qx+R(x),

with β ∈ R2, Q a symmetric 2× 2 matrix, and R ∈ C3−ε satisfying

(4.3) |R(x)| ≤ C|x|3−ε, |∇R(x)| ≤ C|x|2−ε, |∇2R(x)| ≤ C|x|1−ε.

A calculation gives

(4.4) e2u = A
(
1 + 2β · x− 1

4
x2x2 log(x21 + x22) + x · Q̃x

)
+R1(x),

where A = e2u(0), x · Q̃x = 2(β · x)2 + 2x · Qx, and R1 ∈ C3−ε satisfies estimates
like (4.3). Thus the equation (3.2) has the form

(4.5) ∆u = A
(
1 +

x1x2
x21 + x22

)(
1 + 2β · x− 1

4
x2x2 log(x

2
1 + x22) + x · Q̃x

)
+R2(x),

with similarly behaved R2(x). This yields a formula for u, mod C5−ε.
To analyze solutions to (4.5), we look more generally at equations of the form

(4.6) ∆u0 = h(x), ∆u1 = h(x) log |x|,

with h ∈ C∞(Rn \ 0) homogeneous, say of degree k − 2. Writing the Laplace
operator on Rn in spherical polar coordinates:

(4.7) ∆u =
∂2u

∂r2
+
n− 1

r

∂u

∂r
+

1

r2
∆Su,

where ∆S is the Laplace operator on Sn−1, we obtain, for φ ∈ C∞(Sn−1),

(4.8)

∆(rkφ(ω)) = rk−2
[
∆Sφ(ω) + k(k + n− 2)φ(ω)

]
,

∆(rk log r φ(ω)) = rk−2 log r
[
∆Sφ(ω) + k(k + n− 2)φ(ω)

]
+ (2k + n− 2)rk−2φ(ω).
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Recall that

(4.9) Spec (−∆S) = {νk = k(k + n− 2) : k = 0, 1, 2, . . . }.

Let Pk denote the orthogonal projection of L2(Sn−1) onto the νk-eigenspace of
−∆S . Assume k − 2 ∈ Z+, and say h(x) = rk−2ψ(ω). Then a solution u0 to the
first equation in (4.6) is given by

(4.10)
u0(x) = rk

(
∆S + k(k + n− 2)

)−1
(I − Pk)ψ(ω)

+ (2k + n− 2)−1rk log r Pkψ(ω),

and a solution u1 to the second equation in (4.6) is given by

(4.11)
u1(x) = rk log r

(
∆S + k(k + n− 2)

)−1
ψ(ω)

− (2k + n− 2)rk
(
∆S + k(k + n− 2)

)−1
ψ(ω),

in this case provided Pkψ = 0. However, this condition fails for

(4.12) ∆u1 = −1

4

x21x
2
2

x21 + x22
log(x21 + x22),

where k = 4 and ψ(ω) = cos2 ω sin2 ω = (1− cos 4ω)/4, ω ∈ S1 ≈ R/(2πZ). Thus
we must supplement (4.8) with

(4.13)

∆(rk(log r)2φ(ω)) = rk−2(log r)2
[
∆Sφ(ω) + k(k + n− 2)φ(ω)

]
+ 2(2k + n− 2)rk−2 log r φ(ω)

+ 2rk−2φ(ω).

Thus if ψ = ψk = Pkψk, a solution to the equation for u1 in (4.6) is given by

(4.14)
u1(x) = (4k + 2n− 4)−1rk(log r)2ψk(ω)

+ (2k + n− 2)−2rk(log r)ψk(ω).

Returning to the equation (4.8), we see that, mod C5−ε,

(4.15)
u(x) = − 1

8
x1x2 log(x

2
1 + x22) + h3(x) + p3(x) log(x

2
1 + x22)

+ h4(x) + h#4 (x) log(x
2
1 + x22) + p4(x)(log(x

2
1 + x22))

2,

where hℓ(x) and h
#
ℓ (x) are in C∞(R2 \ 0) and homogeneous of degree ℓ and pℓ(x)

is a polynomial, homogeneous of degree ℓ.
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5. Speculations

In §3 we constructed a metric tensor of the form e2uδjk on Ω ⊂ R2 whose
curvature is bounded but which is not of class C1,1 in any harmonic coordinate
system. There remains a question: could there be a non-harmonic coordinate
syatem (say (y1, y2)) in which the metric tensor is of class C1,1?

By results of §2, any coordinate system in which the metric tensor satisfies (2.1)
must be H3,p-equivalent to the standard coordinate system (x1, x2), for all p <∞.
Thus the induced coordinates on T ∗Ω are H2,p-equivalent, for all p < ∞. Now if
the metric tensor were of class C1,1 in the (y1, y2) coordinates, the geodesic flow
must be a flow of Lipschitz maps on T ∗Ω, both in the (y1, y2) coordinates and in
the (x1, x2) coordinates.

So we should test whether the geodesic flow arising from the metric produced in
§3 is Lipschitz. In this case the geodesic equations (2.5) take the form

(5.1) ẋj = e−2uξj , ξ̇j = e−2u ∂u

∂xj
(ξ21 + ξ22).

If we set

(5.2) z = x1 + ix2, ζ = ξ1 + iξ2,

we can write this system as

(5.3) ż = e−2uζ, ζ̇ = 2e−2u|ζ|2 ∂u
∂z
.

Here ∂u/∂z = (1/2)(∂u/∂x1 + i∂u/∂x2). Note that (5.3) yields

(5.4)
dζ

dz
= 2ζ

∂u

∂z
,

which can be rewritten as

(5.5)
dζ

ζ
= 2

∂u

∂z
dz.

This looks like variables are “separated,” but its significance is not clear.

Note. Actually the geodesic flow will be Lipschitz. See [Sm].
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