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Let M ⊂ Rn be a k-dimensional submanifold, smooth of class C2, i.e., locally
the graph of C2 maps V → V ⊥, V ⊂ Rn a linear space of dimension k. We ask the
question

how smooth is M?

This question might appear to be trivial, but actually it’s not. In our talk we analyze
the question, bringing in the notions of harmonic coordinates, the Riemann tensor,
casting the Ricci curvature equation in harmonic coordinates, elliptic regularity,
Lp-Sobolev spaces, and bmo.

We draw conclusions about the geodesic flow on M , and, going further, about
microlocal propagation of singularities for the wave equation ∂2

t u − ∆u = f on
R×M , and on the decay of solutions to damped wave equations

∂2
t u+ a(x)∂tu−∆u = 0,

under control conditions (seen to be relevant due to results on the geodesic flow
hinted above). Results here would be inaccessible from a naive answer to the initial
question posed above.
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