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1. Introduction

Let M ⊂ Rn be a k-dimensional submanifold, smooth of class C2, i.e., locally
the graph of C2 maps V → V ⊥, V ⊂ Rn a linear subspace of dimension k. We ask
the question

(1.1) how smooth is M?

This question might appear to be trivial, but actually it’s not. As we proceed, we
intend to show that M is smoother than you might think.

To start, we call local coordinates on M induced by such maps V → V ⊥ graph
coordinates. Each such graph coordinate yields a C2 coordinate chart

(1.2) φ : U −→M ⊂ Rn,

with U ⊂ Rk open, Dφ(x) : Rk → Rn injective. The metric tensor on M is given
in such local coordinates by

(1.3) (gjk(x)) = G(x) = Dφ(x)tDφ(x) ∈M(k,R).

In particular, the graph coordinates endow M with a C1 metric tensor. Thus one
answer to (1.1) is that M gets a C1 metric tensor. We’ll see that, in a certain more
optimal coordinate system, the metric tensor is substantially smoother. One key
to perceiving this is to show that the curvature tensor of M is continuous.

Now the curvature tensor of a Riemannian manifold involves second-order deriva-
tives of the metric tensor. Let’s see how the curvature tensor of a manifold with a
C1 metric tensor is defined. For starters (cf. (6.2.57) of [T8]),

(1.4) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.
1
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In local coordinates, featuring the vector fields Dj = ∂/∂xj , one has, using the
summation convention (cf. (6.1.69)–(6.1.70) of [T8]),

(1.5) ∇Dk
Db = Γa

bkDa,

where Γa
bk are the Christoffel symbols, given by

(1.6) gkℓΓ
ℓ
ij =

1

2

(
∂igjk + ∂jgik − ∂kgij

)
.

With R(Dj , Dk)Db = Ra
bjkDa, we obtain (cf. (6.2.65) of [T8])

(1.7) Ra
bjk = ∂jΓ

a
bk − ∂kΓ

a
bj + Γa

cjΓ
c
bk − Γa

ckΓ
c
bj .

Shorthand formulas arise as follows. We define k × k matrices

(1.8) Γj = (Γa
bj), Rjk = (Ra

bjk),

obtaining

(1.9) Rjk = ∂jΓk − ∂kΓj + [Γj ,Γk],

where [Γj ,Γk] is the matrix commutator. Going further, we can define a connection
1-form Γ and a curvature 2-form Ω by

(1.10) Γ =
∑
j

Γj dxj , Ω =
1

2

∑
j,k

Rjk dxj ∧ dxk,

and the formula (1.9) is equivalent to

(1.11) Ω = dΓ + Γ ∧ Γ.

Now suppose (gjk) is C
1. We have from (1.6) that Γ is continuous, so, by (1.11),

Ω is a distribution of the form

(1.12) Ω ∈ C−1.

The result (1.12) holds whenever the metric tensor is C1. In case M ⊂ Rn

is a C2 surface, we can show that the curvature is continuous by bringing in the
generalized theorema egregium, relating the curvature to the second fundamental
form. This is defined through the generalized Gauss map

(1.13)
P :M −→M(n,R),
P (x) = orthogonal projection of Rn onto TxM,

via

(1.14) (DXP )Y = II(X,Y ).

See §6.2 of [T8]. We have

(1.15) II :M −→ Hom(TM ⊗ TM, νM),

where νM denotes the normal bundle to M . The generalized theorema egregium
says

(1.16) ⟨R(X,Y )Z,W ⟩ = ⟨II(Y, Z), II(X,W )⟩ − ⟨II(X,Z), II(Y,W )⟩.
See Proposition 6.2.12 of [T8]. Consequently, we have
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Proposition 1.1. If M ⊂ Rn is a C2 surface, then P is smooth of class C1, hence
II is continuous, so (1.16) implies the Riemann tensor R is continuous.

Corollary 1.2. In the setting of Proposition 1.1, the Ricci tensor Ric of M is
continuous.

In local coordinates (see [T1], Appendix C, (3.23))

(1.17) Ricjk = Ra
jak.

Using (1.6)–(1.7), one can derive the formula

(1.18)
Ricjk = 1

2g
ℓm[−∂ℓ∂mgjk − ∂j∂kgℓm + ∂k∂mgℓj + ∂ℓ∂jgkm] +Mjk(g,∇g)

= − 1
2g

ℓm∂ℓ∂mgjk + 1
2gjℓ∂kλ

ℓ + 1
2gkℓ∂jλ

ℓ +Hjk(g,∇g),

where Mjk(g,∇g) and Hjk(g,∇g) are quadratic forms in ∇g, and

(1.19) λℓ = gjkΓℓ
jk.

Now the Laplace-Beltrami operator ∆ on M (acting on real valued functions) is
given by

(1.20) ∆u = gjku;j;k = gjk∂j∂ku− λℓ∂ℓu.

In particular, if (x1, . . . , xk) are the local coordinate functions on a local coordinate
patch,

(1.21) ∆xℓ = −λℓ.

Definition. A local coordinate system (x1, . . . , xk) on M is a system of harmonic
coordinates provided

∆xℓ = 0, 1 ≤ ℓ ≤ k.

Thus we see that, if we use local harmonic coordinates, the formula for the Ricci
tensor vastly simplifies. See [T1], Chapter 14, (4.94).

Proposition 1.3. In local harmonic coordinates,

(1.22)
Ricjk = − 1

2g
ℓm∂ℓ∂mgjk +Hjk(g,∇g)

= − 1
2∂ℓg

ℓm∂mgjk +Qjk(g,∇g),

where Qjk(g,∇g) is also a quadratic form in ∇g.

The key to further investigations is to turn this around, and write

(1.23) ∂ℓg
ℓm∂mgjk = −2Ricjk +2Qjk(g,∇g).
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This is a quasilinear elliptic PDE for the metric tensor. Elliptic theory will reveal
further important properties, given properties of the Ricci tensor (such as bound-
edness).

The structure of the rest of this note is as follows. In §2 we record the classical
result that if the metric tensor of M is class Cr with r > 0, there exist harmonic
coordinates. We proceed to analyze the equation (1.23) for the metric tensor. We
bring in the notion of symbol smoothing to treat this quasilinear elliptic equation,
and show that, if a priori the metric tensor is C1 and the Ricci tensor is bounded,
then, in local harmonic coordinates,

(1.24) gjk = −2E# Ricjk, mod Hs,p, ∀ s < 3, p <∞,

where E# is a pseudodifferential operator with symbol in the Hörmander class
S−2
1,δ , δ < 1. The condition that Ricjk be continuous is an endpoint case for pseu-

dodifferential operator estimates. It turns out that (1.24) implies, not gjk ∈ C2,
but

(1.25) ∇2gjk ∈ bmo,

a result we discuss in §3. One significant consequence, treated in §3, is that if M is
a Riemannian manifold with bounded Ricci tensor, then, in harmonic coordinates,
∇gjk has a log-Lipschitz modulus of continuity. We discuss in §4 how this leads to
a well defined geodesic flow on T ∗M .

In §§5–6 we look at the wave equation

(1.26) ∂2t u+ a∂tu−∆u = 0,

on R ×M , and present results of [T7] on propagation of singularities and energy
decay.

In §5 we describe propagation of singularities results in case M is a compact
Riemannian manifold with bounded Ricci tensor and a ∈ Cr−1 for some r > 1. In
§6 we assume in addition that a ≥ 0 on M , and

(1.27) a(x) ≥ a0 > 0 on U,

where U ⊂M is an open set. We discuss how, if U satisfies the control condition

(1.28)
there exists T0 <∞ such that each geodesic

on M of length T0 intersects U,

then solutions to (1.26) with initial data u(0) ∈ H1(M), ∂tu(0) ∈ L2(M) have a
uniform rate of exponential energy decay.



5

2. Harmonic coordinates and other matters involving elliptic PDE

Here is a classical result on the existence of harmonic coordinates.

Proposition 2.1. Let Ω ⊂ Rk be open, carrying a metric tensor (gjk), smooth of
class Cr, 0 < r < 1. Take p ∈ Ω. Then there is a neighborhood O of p and there
are harmonic functions uℓ on O, satisfying

(2.1) ∂ja
jk∂kuℓ = 0, 1 ≤ ℓ ≤ n, uℓ ∈ Cr+1,

with

(2.1A) ajk = g1/2gjk, g = det(gjk),

and forming a coordinate system on O. Furthermore, the metric tensor in the new
coordinate system is also of class Cr.

For a proof, see Proposition 9.1 in Chapter 3 of [T2]. We complement this with
the following.

Proposition 2.2. In the setting of Proposition 2.1, assume gjk ∈ C1. Then, on
O,

(2.2) uℓ ∈ H2,p, ∀ p <∞.

This is a special case of Proposition 9.4 in Chapter 3 of [T2]. One consequence,
observed in Proposition 9.5, is that, in the new coordinate system,

(2.3) gjk ∈ H1,p, ∀ p <∞.

The regularity conclusions follow from certain elliptic regularity results. While we
skip these arguments here, we will delve into the proofs of other elliptic regularity
results shortly.

At this point we are ready to investigate regularity for (gjk) when it satisfies
(1.23), i.e.,

(2.4) ∂ℓg
ℓm∂mgjk = −2Ricjk +2Qjk(g,∇g),

where Qjk(g,∇g) is a quadratic form in ∇g, and we have the information that (2.3)
holds. In particular, gjk ∈ Cr for all r < 1. Also

(2.5) fjk = 2Qjk(g,∇g) ∈ Lp, ∀ p <∞,



6

hence, if Ricjk ∈ L∞,

(2.6) ∂ℓg
ℓm∂mgjk = f̃jk ∈ Lp, ∀ p <∞.

To proceed, we write

(2.7) Aℓ(x,D) = gℓm∂m ∈ OPCrS1
1,0,

and bring in symbol smoothing, to write

(2.8) Aℓ(x, ξ) = A#
ℓ (x, ξ) +Ab

ℓ(x, ξ),

where we pick δ ∈ (0, 1) and set

(2.9) A#
ℓ (x, ξ) =

∞∑
i=0

JεiAℓ(x, ξ)ψi(ξ), εi = 2−iδ.

Here Jε = φ(εDx) is a Friedrichs mollifier (in the x variables) and {ψi} is a
Littlewood-Paley partition of unity, satisfying suppψi ⊂ {ξ ∈ Rk : ⟨ξ⟩ ∼ 2i}.
This process of symbol smoothing is treated in Chapter 13, §9 of [T1]. As shown
there, we have

(2.10) A#
ℓ (x, ξ) ∈ S1

1,δ, Ab
ℓ(x, ξ) ∈ CrS1−rδ

1,δ ,

where

(2.11) p(x, ξ) ∈ Sm
1,δ ⇔ |Dβ

ξD
α
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m+δ|β|,

and the more general symbol class CrSm
1,δ has a somewhat parallel definition, given

in (9.1)–(9.2), Chapter 13, of [T1]. We have

(2.11A) p(x, ξ) ∈ Sm
1,δ ⇒ p(x,D) : Hs+m,p → Hs,p, ∀ s ∈ R, p ∈ (1,∞),

and, as shown in Proposition 9.10, Chapter 13 of [T1],

(2.11B)
p(x, ξ) ∈ CrSm

1,δ ⇒ p(x,D) : Hs+m,p → Hs,p, for

p ∈ (1,∞), −(1− δ)r < s < r.

Consequently,

(2.12) A#
ℓ (x,D) : Hs+1,p −→ Hs,p, ∀ s ∈ R, p ∈ (1,∞),

and

(2.13)
Ab

ℓ(x,D) : Hs+1−rδ,p −→ Hs,p, for

p ∈ (1,∞), −(1− δ)r < s < r.
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Now we can write (2.4) as

(2.14) L#gjk = −∂ℓAb
ℓgjk − 2Ricjk +fjk,

(as before, using the summation convention) where

(2.15)
L# = ∂ℓA

#
ℓ ∈ OPS2

1,δ is elliptic,

with parametrix E# ∈ OPS−2
1,δ .

Hence, mod C∞,

(2.16) gjk = −E#∂ℓA
b
ℓgjk − E#(2Ricjk −fjk).

Thus

(2.17)
gjk ∈ H1,p ⇒ Ab

ℓgjk ∈ Hrδ,p

⇒ E#∂ℓA
b
ℓgjk ∈ H1+rδ,p,

by (2.13) with s = rδ. Since, by (2.5),

(2.18) E#fjk ∈ H2,p,

we see from (2.16) that

(2.19) gjk ∈ H1+rδ,p +H2,p, ∀ p <∞, r, δ < 1.

In other words,

(2.20) gjk ∈ Hr,p, ∀ r < 2, p <∞,

which is an improvement on (2.3). Consequently, gjk ∈ Cr for all r < 2, and

(2.22) fjk = 2Qjk(g,∇g) ∈ Cr−1, ∀ r < 2.

We now make a second pass through the PDE (2.6). In the symbol decomposition
(2.8), we now have

(2.23) Ab
ℓ(x, ξ) ∈ CrS1−rδ

1,δ , ∀ r < 2.

Thus gjk satisfies (2.16) with

(2.24) E#∂ℓA
b
ℓgjk ∈ Hs,p, ∀ s < 3, p ∈ (1,∞),

so

(2.25) gjk = −2E# Ricjk, mod Hs,p, ∀ s < 3, p <∞.

Now the mapping properties given in (2.11A) do not extend to the endpoint case
p = ∞. Rather, one has, for δ ∈ [0, 1),

(2.26) p(x, ξ) ∈ S0
1,δ =⇒ p(x,D) : L∞ → bmo,

where bmo denotes the John-Nirenberg space, introduced in [JN] and developed
into a major tool in analysis in [FS] (more precisely, bmo denotes the local version,
introduced in [G]). See the next section for further discussion of (2.26).

Given (2.25), it follows from (2.26) that

(2.27) Ricjk ∈ L∞ =⇒ ∇2gjk ∈ bmo .

We formally state the conclusion.
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Proposition 2.3. LetM be a k-dimensional C2 manifold, with a C1 metric tensor.
Assume its Ricci tensor is bounded. Then M has a system of harmonic coordinates,
and in such a coordinate system

(2.28) ∇2gjk ∈ bmo .

Corollary 2.4. Let M ⊂ Rn be a k-dimensional submanifold, smooth of class C2.
Then M has a system of harmonic coordinates, and in each such coordinate system
(2.28) holds.

Remark 1. As stated in Proposition 2.1, for a manifold with a C1 metric tensor,
one obtains local harmonic coordinates that have the regularity uℓ ∈ H2,p, for all
p < ∞, with respect to the original coordinates. One does not expect to have
uℓ ∈ C2 in general. However, as shown in Proposition 5.1 of [T4], if M ⊂ Rn is a
k-dimensional submanifold that is of class C2, then in fact

(2.29) uℓ ∈ C2.

This follows from the regularity (2.28) of the metric tensor in harmonic coordi-
nates, combined with Theorem 2.1 of [T4], relating regularity of metric tensors and
isometries.

Remark 2. Once one has local harmonic coordinates on M in which the metric
tensor has the regularity (2.28), then on coordinate overlaps the various harmonic
functions satisfy a PDE of the form (2.1) with ajk ∈ H2,p, for all p <∞, hence, as
noted in (10.25) in Chapter 3 of [T2], it follows from Proposition 1.13 in Chapter
3 of [T2] that (with respect to the new coordinates)

(2.30) uℓ ∈ H3,p, ∀ p <∞,

so in these harmonic coordinates M has the regularity structure given by (2.30).
Thus we see that, in the setting of Corollary 2.4, M gets an intrinsic structure a
good bit smoother than class C2!

Remark 3. When dimM = 2, Proposition 2.1 yields isothermal coordinates,
giving M the structure of a Riemann surface (C∞ smooth), uniquely determined
by its metric tensor. Of course, in these new coordinates, the metric tensor need
not be any smoother than guaranteed by results given above. If the Ricci tensor
(scalar curvature for k = 2) in the original coordinates is rough, you’re stuck.
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3. bmo-Sobolev spaces

For a function f on Rk, we define the BMO-seminorm

(3.1) ∥f∥BMO = sup
Q

1

V (Q)

∫
Q

|f − fQ| dx,

the sup taken over all k-dimensional cubes in Rk, where V (Q) is the volume of Q
and fQ denotes the mean value of f on Q. We then define the bmo-norm

(3.2) ∥f∥bmo = ∥f∥BMO + ∥Ψ0(D)f∥L∞ ,

with Ψ0 ∈ C∞
0 (Rk), Ψ0(0) ̸= 0. The space BMO was introduced in [JN], and

developed further in [FS], particularly with the duality

(3.3) H1(Rk)∗ = BMO(Rk),

and its counterpart, proved in [G],

(3.4) h1(Rk)∗ = bmo(Rk).

For definitions of the Hardy spaces H1 and h1, see Chapter 1, §2 of [T2]. The local
spaces h1 and bmo are well suited for presentation on compact manifolds. See also
[T6] for a study on a larger class of complete Riemannian manifolds.

One of the major results of [FS] involved the study of classical singular integral
operators on Hardy spaces and BMO. Going further, it is shown in (2.73) and (2.87)
in Chapter 1 of [T2] that

(3.5)
p(x, ξ) ∈ S0

1,δ, δ < 1 ⇒ p(x,D) : h1(Rk) → h1(Rk),

p(x,D) : bmo(Rk) → bmo(Rk),

the latter result following by duality from the former. Note that the later result in
(3.5) is a bit stronger than (2.26).

Now we can define bmo-Sobolev spaces on Rk,

(3.6) bmos(Rk) = (1−∆0)
−s/2 bmo(Rk),

where ∆0 = ∂21 + · · ·+ ∂2k, and obtain from (3.5) that

(3.7) p(x, ξ) ∈ Sm
1,δ, δ < 1 ⇒ p(x,D) : bmos+m(Rk) → bmos(Rk), ∀m, s ∈ R.

We can restate Proposition 2.3 as follows.
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Proposition 3.1. Let M be a C2 manifold with C1 metric tensor. Assume its
Ricci tensor is bounded. Then M has a system of harmonic coordinates, and in
such a coordinate system

(3.8) gjk ∈ bmo2 .

It is useful to relate bmo-Sobolev spaces to Zygmund spaces, defined as follows.
For s ∈ R, we define the Cs

∗-norm

(3.9) ∥f∥Cs
∗
= sup

k≥0
⟨k⟩s∥ψk(D)f∥L∞ ,

where {ψk : k ≥ 0} is the Littlewood-Paley partition of unity introduced in (2.9).
Parallel to (2.11A) and (3.7), we have

(3.10) p(x, ξ) ∈ Sm
1,δ, δ < 1 ⇒ p(x,D) : Cs+m

∗ (Rk) → Cs
∗(Rk), ∀m, s ∈ R.

See Corollary 9.2 in Chapter 13 of [T1]. In particular, parallel to (3.6),

(3.11) Cs
∗(Rk) = (1−∆0)

−s/2C0
∗(Rk).

One can show from the definition (3.1)–(3.2) above that

(3.12) ∥ψk(D)f∥L∞ ≤ C∥f∥bmo,

hence

(3.13) bmo(Rk) ⊂ C0
∗(Rk),

and consequently, for each s ∈ R,

(3.14) bmos(Rk) ⊂ Cs
∗(Rk).

Elements of C1
∗(Rk) are not quite Lipschitz. Instead, they have a log-Lipschitz

modulus of continuity:

(3.15) |f(x+ y)− f(x)| ≤ C|y| log 1

|y|
∥f∥C1

∗
, for x, y ∈ Rk, |y| ≤ 1

2
.

For a proof of this, see (1.22) in Chapter 1 of [T2], or (2.63) in Chapter 17 of [T1].
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4. Geodesic flows on manifolds with bounded Ricci tensor

The geodesic equation can be written in Hamiltonian form,

(4.1)
dxℓ
dt

=
∂E

∂ξℓ
,

dξℓ
dt

= − ∂E

∂xℓ
, E(x, ξ) =

1

2
gjk(x)ξjξk,

that is,

(4.2)
dxℓ
dt

= gjℓ(x)ξj ,
dξℓ
dt

= −∂g
jk

∂xℓ
ξjξk.

If one merely has gjk ∈ C1, the vector field arising in (4.2) is merely continuous
(in x). In such a case one does have local local existence of solutions to (4.2),
satisfying given initial conditions (see Proposition A.1 in Chapter 1 of [T1]), but
not necessarily uniqueness. On the other hand, if we know the Ricci tensor is
bounded, then in local harmonic coordinates we have

(4.3) gjk ∈ bmo2, hence
∂

∂xℓ
gjk ∈ bmo1 .

Thus, while the vector field arising in (4.2) might not quite be Lipschitz, it does
have the log-Lipschitz modulus of continuity, given by (3.15). In such a case, we
can use Osgood’s theorem, which says that a system of ODE of the form

(4.4)
dy

dt
= F (y), u(0) = y0,

has a unique solution, depending continuously on y0, provided F has a modulus of
continuity ω satisfying

(4.5)

∫ 1

0

ds

ω(s)
= ∞.

See Proposition A.2 in Chapter 1 of [T1]. This holds for

(4.6) ω(s) = s log
1

s
, 0 < s ≤ 1

e
.

Hence if M is a compact Riemannian manifold with bounded Ricci tensor (and
gjk ∈ C1 in some coordinate system), then we have a global geodesic flow on T ∗M .

Osgood’s theorem is established via Gronwall’s inequality. It is shown that if
|F (x1)− F (x2)| ≤ κω(|x1 − x2|), the flow F t generated by F satisfies

(4.7) |F tx1 −F tx2| ≤ ϑ(|x1 − x2|, t),
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where ϑ(a, t) is defined by

(4.8)

∫ ϑ(a,t)

a

ds

ω(s)
= κt.

In particular, if ω(s) is given by (4.6), then

(4.9) ϑ(a, t) = aexp(−κt),

so

(4.10) |F tx1 −F tx2| ≤ |x1 − x2|exp(−κt).

See §2.5 of [A-T] for examples of metric tensors on R2 satisfying

(4.11) gjk ∈
∩

p<∞
H2,p,

and such that ∇gjk has a modulus of continuity only slightly worse than log-
Lipschitz, with the property that there is branching of geodesics, hence no well
defined geodesic flow. A further investigation of geodesic branching, with some
unanswered questions, is given in [T5].



13

5. Propagation of singularities for wave equations on rough manifolds

For use in the next section, we want to describe propagation of singularities
results (or rather propagation of smoothness) for solutions u = u(t, x) to wave
equations of the form

(5.1) ∂2t u+ a∂tu−∆u = 0,

where ∆ is the Laplace operator on a Riemannian manifold with somewhat rough
metric tensor, and a = a(x) also has limited smoothness. In §3 of [T7] we found it
convenient to treat solutions to equations of the form

(5.2) ∂jA
jk∂ku+ ∂j(b

ju) = 0,

where Ajk and bj have limited regularity. To make (5.2) directly applicable to (5.1),
we write (5.1) in local coordinates as

(5.2A) ∂tg
1/2∂tu− ∂jg

1/2gjk∂ku+ ∂t(g
1/2au) = 0,

with t = x0.
The following result is Proposition 3.2 of [T7].

Proposition 5.1. Take r ∈ (1, 2). Assume Ω ⊂ Rk is open and

(5.3) u ∈ H
σ−(rδ−1)
loc (Ω)

solves (5.2) on Ω, where Ajk = Akj are real valued and satisfy

(5.4) |∇Ajk(x)−∇Ajk(y)| ≤ C|x− y| log 1

|x− y|
,

for |x− y| small, and bj ∈ Cr−1(Ω) are real valued. Assume

(5.5) δ ∈ (0, 1), δr > 1, and − (1− δ)(r − 1) < σ < r − 1.

Assume O ⊂ T ∗Ω \ 0 is a conic open set and

(5.6) u ∈ Hσ
mcl(O).

Take

(5.7) p1(x, ξ) = Ajk(x)ξjξk|ξ|−1,
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and let

(5.8) (x0, ξ0) ∈ O, p1(x0, ξ0) = 0.

Let γ be the orbit of the Hamiltonian vector field Hp0 through (x0, ξ0).
Then there is a conic neighborhood Γ of γ such that

(5.9) u ∈ Hσ
mcl(Γ).

In particular, this conclusion holds for

(5.10) σ = 0.

Remark 1. We characterize (5.6) as follows. By definition, if O is an open conic
subset of T ∗Ω\0, a distribution u on Ω belongs to Hσ

mcl(O) provided φ(x,D)u ∈ Hσ

for each φ(x,D) ∈ OPS0
1,0 with total symbol supported in O.

Remark 2. Microlocal elliptic regularity applies on

(5.11) N = {(x, ξ) ∈ T ∗Ω \ 0 : p1(x, ξ) ̸= 0}.

Given that (5.2) holds, Ajk ∈ Cr, bj ∈ Cr−1, 1 < r < 2, we have

(5.12) u ∈ H1+σ
mcl (N ).

The case a ≡ 0 of Proposition 5.1 was established in Chapter 3, §11 of [T2].
Bringing in nontrivial a led to additional arguments in [T7], particularly in allowing
a ∈ Cr−1 instead of making the stricter hypothesis a ∈ Cr. The analysis leading
to the microlocal propagation result was patterned after the positive commutator
argument pioneered in [H]. It also involved a symbol smoothing, of the form

(5.13) P = ∂jA
#
j + ∂jA

b
j ,

somewhat parallel to that in (2.8)–(2.10), except that here the operator P is not
elliptic. As in [H], implementation of the positive commutator method involves a
use of a sharp Garding inequality:

Lemma 5.2. Let q(x, ξ) ∈ CsSm
1,0 be scalar and satisfy q(x, ξ) ≥ −C0. Then, for

all u ∈ C∞
0 ,

(5.14) Re(q(x,D)u, u) ≥ −C1∥u∥2L2 ,

provided

(5.15) s > 0, m ≤ 2s

2 + s
.

This result, in turn, is Proposition 2.4.A of [T0]. The proof given there makes use
of a symbol smoothing, q = q# + qb, and an application of the Fefferman-Phong
inequality to q#(x,D).
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6. Wave decay on manifolds with bounded Ricci tensor

The paper [T7] examined solutions to wave equations with dissipation,

(6.1) Lu = ∂2t u+ a(x)∂tu−∆u = 0,

on R ×M , when M is a compact, connected Riemannian manifold with Laplace
operator ∆, and a ≥ 0, and (following [RT]) sought conditions that guarantee
exponential decay of the energy

(6.2) E(u(t)) =
1

2

∫
M

{
|∇xu(t, x)|2 + |ut(t, x)|2

}
dV (x),

as t↗ +∞, given

(6.3) u(0) = f ∈ H1(M), ∂tu(0) = g ∈ L2(M).

This initial value problem has a unique solution u ∈ C(R,H1(M))∩C1(R, L2(M)),
and we have the dissipation identity

(6.4)
d

dt
E(u(t)) = −

∫
M

a(x)|∂tu(t, x)|2 dV (x).

It is fairly easy to show that E(u(t)) decays exponentially as t↗ +∞ for each (f, g)
as in (6.3), provided M has a continuous metric tensor and a ∈ L∞(M) satisfies
a(x) ≥ a0 > 0 for all x ∈M . It is of interest to assume instead that

(6.5) a(x) ≥ a0 > 0, ∀x ∈ U,

where U is some open subset ofM , and see when this condition implies exponential
energy decay. This was treated in [RT] when M has a smooth metric tensor and
a ∈ C∞(M) is ≥ 0 onM and satisfies (6.5). Then [RT] showed one has exponential
energy decay provided the following condition holds:

(6.6)
Control condition: There exists T0 <∞ such that

each geodesic in M of length T0 intersects U .

The necessity of such a condition follows from work of [Ral]. In outline, the argu-
ment of [RT] goes as follows. First, propagation of singularity results of [H], applied
to ∂tu, which also solves (6.1), yield, for some T1 > T0,

(6.7)

∫ T1

0

∫
M

|∂tu(s, x)|2 dV (x) ds

≤ C

∫ T1

0

∫
U

|∂tu(s, x)|2 dV (x) ds+ C∥ut∥2H−1([0,T1]×M).
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Then an argument incorporating functional analysis and unique continuation allows
one to drop the last term on the right side of (6.7), after perhaps enlarging T1, and
perhaps also expanding U slightly. Then, via (6.4), one obtains

(6.8) E(u(T1)) ≤ E(u(0))− C1∥∂tu∥2L2([0,T1]×M),

for all solutions to (6.1) and (6.3), with C1 independent of f and g. From here, a
further argument, pursued in greater generality in §2 of [T7], allows one to pass to

(6.9) E(u(T1)) ≤ E(u(0))− C2

∫ T1

0

E(u(s)) ds,

and since E(u(s)) ↘, by (6.4), this implies

(6.10) E(u(T1)) ≤ (1 + C2T1)
−1E(u(0)),

hence

(6.11) E(u(kT1)) ≤ (1 + C2T1)
−kE(u(0)),

yielding exponential energy decay.
The primary result of [T7] is the following.

Proposition 6.1. Let M be a compact manifold with metric tensor satisfying

(6.12) |∇gjk(x)−∇gjk(y)| ≤ C|x− y| log 1

|x− y|
,

for |x− y| small, and assume that a ≥ 0 on M , that

(6.13) a ∈ Cr−1(M),

for some r > 1, and that a satisfies (6.5). If the control condition (6.6) holds, then
there is a uniform exponential rate of decay of energy E(u(t)), for all solutions to
(6.1) with initial data as in (6.3).

The proof of Proposition 6.1 follows the outline of the smooth case, with some
necessary elaborations. To begin, one can take T ≥ T0 +2 and use Proposition 5.1
to deduce that there exists σ0 > 0 such that if 0 < σ < σ0 and v ∈ H−σ([0, T ]×M)
solves Lv = 0, then, with U as in (6.5)–(6.6),

(6.14)
v ∈ H−σ([0, T ]×M) ∩ L2([0, T ]× U)

=⇒ v ∈ L2([1, 2]×M),

with associated estimate

(6.15) ∥v∥L2([1,2]×M) ≤ C∥v∥L2([0,T ]×U) + C∥v∥H−σ([0,T ]×M).

As shown in Appendix A of [T7], we have an estimate

(6.16) ∥v∥L2([0,T ]×M) ≤ CT ∥v∥L2([1,2]×M),

hence

(6.17) ∥v∥L2([0,T ]×M) ≤ CT ∥v∥L2([0,T ]×U) + CT ∥v∥H−σ([0,T ]×M).

We apply this to v = ut and obtain a variant of (6.7). Then additional arguments
allow one to drop the last term on the right side of (6.17), and proceed to analogues
of (6.8)–(6.9), hence to (6.11).
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