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Let it be said at the outset that this is a very important collection of volumes
written by one of the modern masters of his subject. Many mathematicians, from
ambitious graduate students to researchers, will be learning aspects of the theory
of partial differential equations from these books. But they are more than that;
they contain a veritable Cours d’Analyse Moderne. Thus Chapter 1 contains the
basic theory of vector fields, flows, Hamiltonian flows, geodesics, differential forms,
and in particular symplectic forms. Chapter 3 on Fourier analysis contains an in-
troduction to the theory of distributions, including temtered distributions, special
functions, the finite Fourier transforms, including the fast algorithm for its evalua-
tion. Chapter 4 describes the L2 Sobolev spaces in Rn and on unbounded domains,
imbedding theorems, and the use of complex interpolation theorems. Chapter 7 de-
scribes the classical pseudodifferential operators, their properties, and how they are
used. Chapter 10 on index theory includes a discussion of Clifford algebras and spin
manifolds. Chapter 11 on Brownian motion defines Wiener measure, derives the
Feynman-Kac formula, discusses martingales, stochastic integrals, and stochastic
differential equations. Chapter 12 on the ∂-Neumann problem is a minicourse us-
ing PDE techniques on analytic functions of several complex variables. Chapter 13
reviews the Lp Sobolev spaces and derives the embedding theorems, including the
Gagliardo-Nirenberg-Moser estimates and Trudinger’s inequality. Paradifferential
operators are discussed, as well as the Young measure and Hardy space.

Further background information is given in three appendices. Appendix A is a
thorough review of functional analysis, including the theory of compact operators,
and a proof of the basic facts about Hilbert-Schmidt and trace-class operators. A
proof of Lidskii’s important theorem is to be found in Chapter 9. The appendix
concludes with the spectral theory of selfadjoint operators and the rudiments of
semigroup theory.

Appendix B is a compendium of the basics of manifold theory, vector bundles,
and Lie groups. The Campbell-Baker-Hausdorff formula is derived, and the basic
facts of the representation of Lie groups and algebras is outlined, with special
emphasis on the classical groups.

Appendix C is an introduction to differential geometry. Covariant differentiation
is defined, as is the curvature of a connection, as well as the curvature tensor of a
Riemannian manifold. First the classical, then a very general Gauss-Bonnet formula
is derived.

The author’s philosophy about the main subject is well summarized by the first
paragraph of the introduction.

“Partial differential equations is a many-faceted subject. Created to describe
the mechanical behavior of objects such as vibrating strings and blowing winds, it
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has developed into a body of material that interacts with many branches of math-
ematics, such as differential geometry, complex analysis, and harmonic analysis,
as well as a ubiquitous factor in the description and elucidation of problems in
mathematical physics.”

The materials are organized according to these principles. Chapter 2 introduces
the central linear PDEs of second order via a variational principle (Hamilton’s
principle). The wave equation and the equations of linear elasticity are derived
by appropriate linearizations. The Laplace operator on Riemannian manifolds is
defined and the associated wave equation is set up; uniqueness for the initial value
problem and finite propagation speed is proved by energy estimates, derived from
integration by parts. An extension to Lorentz manifolds is given. The chapter con-
cludes with a discussion of the Hodge Laplacian on forms and Maxwell’s equations.

Chapter 5 is devoted to the study of linear elliptic equations, regularity, and
boundary value problems. Starting with the Dirichlet and Neumann problems for
the Laplace operator, the treatment is extended to general equations and coer-
cive boundary conditions. The Hodge decomposition is derived for manifolds with
boundaries.

Chapter 6 deals with linear evolution equations; the heat equation, wave equa-
tion, and Maxwell’s equations are discussed in detail. The Cauchy-Kowalewski the-
orem is proved and used as approximating procedure for solving the initial value
problem for fairly general hyperbolic equations; convergence is proved using energy
estimates. The geometric optics description of solutions of the wave equation is dis-
cussed in detail, including the formation of caustics, amply illustrated by figures.

In Chapter 7 pseudodifferential operators are used to define and prove microlocal
regularity of solutions of elliptic equations and to construct a parametrix for elliptic
and parabolic equations.

Chapter 8 shows that the Laplace operator, properly defined as a Friedrichs
extension, is selfadjoint under various boundary conditions. Spectral asymptotics
is discussed via the heat equation. Concrete examples are presented in loving detail:
the spherical Laplacian, the Laplace operator on hyperbolic space, the harmonic
oscillator, and the Euclidean Laplacian with a Coulomb potential. The chapter
ends with a scherzo of special functions.

Chapter 9 discusses scatterings of solutions of the wave equation by obstacles.
The Lax-Phillips semigroup is used to relate the poles of the scattering matrix to the
large time asymptotic behavior of solutions of the wave equation. The uniqueness of
the inverse scattering problem is proved for smooth scatterers, and an approximate
inversion method is described.

In Chapter 10 the Dirac operator and its generalizations are introduced. The
Atiyah-Singer formula for the index of an elliptic operator is derived and is spe-
cialized to give a Gauss-Bonnet formula the the Riemann-Roch theorem. Spin
manifolds are spun.

In Chapter 11, probabilistic methods (Brownian motion, martingales, stochastic
differential equations) are used to study diffusions.

Chapter 14 deals with nonlinear elliptic equations, from semilinear ones to quasi-
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linear and fully nonlinear ones. Variational methods are introduced, as well as
the Schauder degrees. The uniformization of Riemann surfaces is obtained as a
byproduct. Minimal surfaces are discussed in Euclidean space and in Riemann-
ian manifolds. The de Giorgi-Nash-Moser regularity theorem is proved as well as
the Krylov-Safonov estimates. Completely nonlinear equations, in particular the
Monge-Ampere equations, are discussed. There is more in this rich chapter than
can be done justice to in a brief review.

Chapter 15 on nonlinear parabolic equations starts with existence and regularity
results for semilinear parabolic equations; some of the existence theorems are used
to show the existence of harmonic maps. Semilinear parabolic systems are studied
as a model for reaction diffusion equations. The next topic is quasilinear parabolic
equations; using energy estimates in Sobolev norms and an approximation pro-
cedure employing mollifiers, a short-time existence theorem is proved for smooth
enough initial data. Global solutions exist if one can derive a global a priori bound;
this was done by Nash under the assumption of uniform ellipticity of the spatial
nonlinear second-order operator in the parabolic equation.

Chapter 16 is devoted to nonlinear hyperbolic equations, starting with quasi-
linear, symmetric and symmetrizable, hyperbolic systems. A short time existence
theorem, in any number of space dimensions, is not hard to derive using higher or-
der energy estimates and Sobolev imbedding theorems, provided the initial values
are smooth enough. It is not to be expected that smooth solutions can be extended
for all t, because of shock formation. As an application of the local theory Tay-
lor presents Garabedian’s beautiful reduction of the Cauchy-Kowalevsky theorem
for nonlinear analytic initian value problems to the previous result for nonlinear
symmetric hyperbolic equations.

Next the equations governing ideal incompressible fluids are derived; they are the
conservation of mass, momentum, and energy, and form a symmetrizable hyperbolic
system. A generalized solution of a conservation law satisfies the conservation law
in its integrated form; that is the same as saying that the differential equations
are satisfied in the sense of distributions. Such generalized solutions may contain
discontinuities, along which the Rankine-Hugoniot conditions must be satisfied.
Weak solutions are not uniquely determined by their initial values; the equation
must be supplemented by so-called entropy conditions. For scalar equations such
conditions were given by Kruzhkov; generalized solutions that satisfy Kruzhkov’s
conditions are L1 contractive, which implies uniqueness for the initial value problem.
Existence can be proved by the viscosity method.

For hyperbolic systems of conservation laws the situation is more complicated,
even in one space variable. There are entropy conditions; for 2×2 systems there are
enough entropies to show global existence of solutions, using Tartar’s beautiful idea
of compensated compactness. Another, earlier, way of constructing global solutions
has been given by Glimm, using a method of random choice, and the decrease of
an interaction function. This method, only alluded to in these volumes, can be
extended to systems bigger than 2 × 2, especially in Robin Young’s version. Many
examples of generalized solutions are given, generously illustrated with pictures.
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Alas, nothing is known about global existence of generalized solutions in more than
one space variable.

Chapter 17 is about incompressible fluid, governed by the Euler equations in the
absence of viscosity, and by Navier-Stokes for viscous flows. Short-time solutions in
Rn or Tn can be constructed by solving the initial value problem for the mollified
Euler equation; using higher energy estimates, the initial data are assumed to lie in
Hk, k > n/2 + 1, and be divergence free. The Beale-Kato-Majda result is proved
and is used to show that in two dimensions Euler flows exist for all time. These
results are then extended to flows in bounded regions, whose normal component on
the boundary is zero.

Next, the Navier-Stokes flows are studied on a compact Riemannian manifold.
Short-time solutions with smooth initial data are constructed as limits of a mollified
equation; this is precisely the method used by Leray to construct flows on R3. To
prove convergence, parabolic estimates are used. The solution exists for all time if
the initial data are small enough. Furthermore, solutions in a weak sense exist for
all time; this was proved by Leray in R3 and by E. Hopf for bounded domains. The
smoothness and uniqueness of these Leray-Hopf solutions is one of the fascinating
open problems of fluid dynamics.

The last chapter is on general relativity, an increasingly active research topic
today. Taylor derives the Einstein field equations and describes in some detail the
Schwarzschild solution. There is a brief discussion of the coupled Einstein-Maxwell
equations, and of relativistic fluid dynamics, including gravitational collapse. The
chapter ends with a study of the initial value problem.

Each section ends with a substantial list of problems; most of them are nonrou-
tine extensions of material discussed in the text.

The exposition is clear throughout the book; to be sure, some parts are easier
to absorb than others. This reviewer appreciated the author’s willingness, after an
invariant presentation of a topic, to relent and write out the equations in coordi-
nates.

The presentation in these volumes is ahistorical, but in generalcredit is given
where credit is due. There are some omissions: Friedrichs and Lewy are not ac-
knowledged as the originators of the idea of using energy estimates to prove the
existence of solutions of initial value problems for hyperbolic equations; nor is
Schauder named as the first to push through this idea. In the chapter on the ∂-
Neumann problem one misses the names of Garabedian and Spencer, its inventors.
In Chapter 8, on the asymptotics of the eigenvalues of the Laplace operator, Weyl
and Courant are not named, and Carleman is not identified as the originator of the
use of Tauberian theorems.

Among its predecessors this work is closest in spirit and organization to the two
volumes of Courant-Hilbert. Both have the attractive feature that the individual
chapters can be read separately.

To summarize: these volumes will be read by several generations of readers eager
to learn the modern theory of partial differential equations of mathematical physics
and the analysis in which this theory is rooted.
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