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Introduction

These notes treat selected topics in probability theory and the theory of random
processes, more or less related to variants of the theory of Brownian motion. They
can serve as a follow-up to an introductory account of such material, taking off from
such background in probability theory as is given in the following three chapters of
[MEAS]:

Chapter 14. Ergodic theory,
Chapter 15. Probability spaces and random variables,
Chapter 16. Wiener measure and Brownian motion.

These notes also make use of basic material on Fourier analysis and functional
analysis, such as can be found, for example, in the early sections of the following
chapter and appendix of [PDE]:

Chapter 3. Fourier analysis, distributions, and constant-coefficient linear PDE,
Appendix A. Outline of functional analysis.

The following chapter from [PDE], though not needed as background for these
notes, would nevertheless illuminate various subjects treated here:

Chapter 11. Brownian motion and potential theory.

Chapter 1 of this text treats the central limit theorem. The basic result is that
if {fj} is a sequence of independent, identically distributed random variables on a
probability space (Ω,F , µ), satisfying

(1) ‖fj‖2L2(Ω) = σ ∈ (0,∞),

∫
Ω

fj dµ = 0,

then the sequence of sums, suitably rescaled, has probability distributions that
converge to a Gaussian distribution on R.

In more detail, a random variable g on Ω induces a probability measure νg on

R̂ = R ∪ {∞}, by

(2) νg(S) = µ(g−1(S)),

where S ⊂ R̂ is a Borel set. If (1) holds, we set

(3) gk =
1√
k

k∑
j=1

fj ,
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and conclude that

(4) νgk −→ γσ, weak∗ in M(R̂),

where γσ is the Gaussian probability measure, satisfying

(5) 〈f, γσ〉 = 1√
2πσ

∫
R

f(x)e−x
2/2σ dx, f ∈ C(R̂).

The rescaling factor 1/
√
k in (3) arises so that ‖gk‖2L2(Ω) ≡ σ.

Going further, we look for various quantitative improvements of (4), including
associated estimates on the rate of convergence of the distribution functions

(6) Φk(y) = νgk((−∞, y]), G(y) = γσ((−∞, y]),

of the form

(7) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2,

under various hypotheses on fj , typically involving the characteristic function

(8) χfj (ξ) =

∫
Ω

e−iξfj dµ.

One guide to this involves a rather detailed analysis of the coin toss, in §2 of this
chapter. A particularly interesting case of (7) is the Berry-Esseen theorem, treated
in §5.

In §8 we produce a variant of the CLT, applicable to sequences of IID ran-
dom variables whose suitably scaled sums converge in distribution to certain non-
Gaussian distributions, arising in the study of fractional diffusions, a topic that is
taken up in detail in Chapters 3 and 7.

Appendix A to this chapter discusses an interesting functional analytic aspect
of passing from (4), which says

(9)

∫
f(x) dνgk(x) −→

∫
f(x) dγσ(x),

for f ∈ C(R̂), to Φk(y) → G(y), for y ∈ R, which says (9) holds when f(x) = 1 for
x ≤ y, 0 for x > y. We establish a general result that if (4) holds, then (9) holds

for each bounded Borel function f : R̂ → R that is Riemann integrable on R̂ ≈ S1.
Further aspects of this are pursued in Appendix B.

In Chapter 1 we have concentrated on sequences of real-valued random variables.
Later on we will deal with Rn-valued random variables. Regarding the CLT in this
more general context, see Appendix A of Chapter 5.
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Chapter 2 deals with stochastic operators and infinite dimensional versions of
the Perron-Frobenius theorem. The basic setup concerns bounded linear operators

(10) A : C(X) −→ C(X),

where X is a compact Hausdorff space. We say A is positive if

(11) f ∈ C(X), f ≥ 0 =⇒ Af ≥ 0.

A positive operator A is said to be a stochastic operator if

(12) A1 = 1.

A bounded operator A has the adjoint

(13) At : M(X) −→ M(X),

and if A is positive we have At : M+(X) → M+(X), the space of positive, finite,
regular Borel measures on X. If A is stochastic, we have

(14) At : P(X) −→ P(X),

the space of regular probability measures on X. We show that if A is a stochastic
operator on C(X), there exists µ ∈ P(X) such that

(15) Atµ = µ.

One Perron-Frobenius type theorem is the following:

Proposition 2.A. Let A be a compact, stochastic operator, and assume A is prim-
itive, i.e., some power Am is strictly positive. Then, as k → ∞,

(16) Ak −→ P, and (At)k −→ P t,

in operator norm, where P is the projection of C(X) onto Span(1) that annihilates

(17) V = {f ∈ C(X) : 〈f, µ〉 = 0}.

Note that

(18) Pf = 〈f, µ〉1, P tλ = 〈1, λ〉µ,

for f ∈ C(X), λ ∈ M(X).
This leads to the following result.
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Proposition 2.B. Let A be a compact stochastic operator on C(X), and assume
A is irreducible, i.e.,

(19) B =

∞∑
k=1

2−kAk is strictly positive.

Then the measure µ in (15) is unique.

The proof involves observing that, by Proposition 2.A, (Bt)k → P t, given by (18).
In §3 we consider variants, such as crypto-stochastic operators and operators

that are crypto-stochastic up to scaling.
In the classical Perron-Frobenius theorems, A is a real n × n matrix, so we are

in the setting (10) with X a set with n elements. Section 4 addresses the limiting
case of infinite matrices, yielding

(20) A : ℓ∞(N) −→ ℓ∞(N).

This can be converted to the setting of (1), with X being the Stone-Cech compact-
ification of N, or equivalently the maximal ideal space of the C∗-algebra ℓ∞(N).

Chapter 3 studies Lévy processes. These are variants of the Wiener process,
which models Brownian motion. For Brownian motion on Rn, we take

(21) p(t, x) = (2π)−n
∫
e−t|ξ|

2

eix·ξ dξ = (4πt)−n/2e−|x|2/4t.

One desires to specify a probability measure on the space of paths in Rn, having the
following property. Given 0 < t1 < t2 and given that ω(t1) = x1, the probability
density for the location of ω(t2) is p(t2− t1, x−x1). More generally, given 0 < t1 <
· · · < tk, and given Borel sets Ej ⊂ Rn, the probability that a path, starting at x0
at time t = 0, lies in Ej at time tj for each j ∈ {1, . . . , k} is

(22)

∫
E1

· · ·
∫
Ek

p(tk − tk−1, xk − xk−1) · · · p(t1, x1) dxk · · · dx1.

One elegant approach to the construction of Wiener measure is given in [Nel].
P. Lévy initiated extensions of this theory to non-Gaussian distributions. In this

chapter we will adapt the method of [Nel] to treat these Lévy processes. To start,
we replace (21) by

(23) p(t, x) = (2π)−n
∫
e−tψ(ξ)eix·ξ dξ = e−tψ(D)δ(x).

We take ψ(ξ) to have the property that

(24) p(t, x) ≥ 0, ∀ t > 0, x ∈ Rn,
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and we require ψ(0) = 0, so
∫
p(t, x) dx ≡ 1. The example ψ(ξ) = |ξ|2 gives the

Gaussian case, in (21). Other examples include

(25)
ψα(ξ) = |ξ|2α,
φα(ξ) = (|ξ|2 + 1)α − 1, α ∈ (0, 1),

as seen in §1 of Chapter 3. For α ∈ (0, 1), the operators −ψα(D) generate fractional
diffusions, mentioned in §8 of Chapter 1 as giving rise to variants of CLT. Another
family of examples is

(25A) ψ(ξ) = 1− e−iyξ,

generating Poisson processes. In this case,

(25B) e−tψ(D)δ(x) =

∞∑
k=0

tk

k!
e−tδky

is a family of probability measures (not absolutely continuous with respect to
Lebesgue measure). There is a general formula, the Lévy-Khinchin formula, for
functions ψ(ξ) such that (24) holds, discussed in Appendix A of Chapter 3, with
complements in Appendix B.

In §2 of Chapter 3 we construct a probability measure on the “path space”

(26) P =
∏
t∈Q+

Ṙn,

where Ṙn = Rn ∪ {∞}. This differs from [Nel], which took the Cartesian product
over t ∈ [0,∞). Using the countable Cartesian product involves more elementary
measure theory. We define

(27) E : C# −→ R,

where C# consists of continuous functions on P of the form

(28) φ(ω) = F (ω(t1), . . . , ω(tk)), t1 < · · · < tk,

with F continuous on
∏k

1 Ṙn and tj ∈ Q+, by a formula parallel to (22). We
verify that E is a positive linear functional on the linear space C# ⊂ C(P), satis-
fying E(1) = 1. Furthermore, C# satisfies the conditions of the Stone-Weierstrass
theorem, so (27) has a unique extension to a continuous, positive linear function
E : C(P) → R, giving rise to the desired probability measure.

We can define Xt : P → Ṙn for t ∈ Q+ by Xt(ω) = ω(t), and a calculation gives,
for 0 ≤ s < t, s, t ∈ Q+,

(29) E(|Xt −Xs|q) =
∫
p(t− s, y)|y|q dy.
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If, for example, ψ(ξ) = ψα(ξ), as in (25), one obtains

(30) E(|Xt −Xs|q) = Cnαq|t− s|q/2α, −n < q < 2α, 0 < α < 1.

In particular, we have, for t ∈ Q+,

(31) Xt ∈ Lq(P), 0 < q < 2α, 0 < α < 1,

and by (30) we can extend this uniquely to t ∈ R+, depending continuously on
t ∈ R+. (For 0 < q < 1, the space Lq(P) is not a normed space, but it is a
complete metric space.) We have ‖Xt‖Lq = ∞ for q ≥ 2α when ψ = ψα. By
contrast, when ψ(ξ) = φα(ξ) in (25), we get

(30A)
E(|Xt −Xs|2) = −∆e−|t−s|φα(ξ)

∣∣∣
ξ=0

= |t− s|∆φα(0),

and, more generally, for k ∈ N,

(30B)
E(|Xt −Xs|2k) = (−∆)ke−|t−s|φα(ξ)

∣∣∣
ξ=0

= −|t− s|(−∆)kφα(0) +O(|t− s|2),

as |t−s| → 0. Such results as (30), (30A), and (30B) express “stochastic continuity”
of Xt, when ψ = ψα or φα as in (25). The study of stochastic continuity is extended
to more general Lévy processes in §3.

For the Wiener process, almost all paths are continuous (more on which in Chap-
ter 4), but other Lévy processes do not have this property. This is apparent for
the Poisson processes, since by (25B) the only allowed moves are jumps, but also
such processes as those generated by −ψα(D) and −φα(D), as in (25), do not have
continuous paths. The probability distributions e−tψα(D)δ(x) have “heavy tails,”
examined in Appendix C of Chapter 3. Further examination of the short and long
time behavior of e−tψ(D)δ(x) is carried out in Appendix D, and other qualitative
studies of these probability distributions are made in Appendices E and F.

Appendix M of Chapter 3 extends the scope of this chapter, beyond the study of
random processes on Euclidean space Rn to other classes of manifolds. Appendix
N goes further, exploring a class of Markov processes

(32) etA : C(X) −→ C(X),

satisfying

(33) etA1 = 1, f ∈ C(X), f ≥ 0 ⇒ etAf ≥ 0,

which makes contact with material on stochastic operators in Chapter 2.
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Chapter 4 deals with the modulus of continuity of paths for the 1D Wiener
process. This has the basic form

(34) |Xt(ω)−Xs(ω)| ≤M1(ω)h(|t− s|),

for s, t ∈ [0, 1], with M1(ω) <∞ for a.e. ω ∈ P, and

(35) h(δ) =
(
δ log

1

δ

)1/2
,

for 0 < δ ≤ 1/e. We present a proof of this due to M. Pinsky, which makes use of
a representation of Xt(ω) as a Haar series, for t ∈ [0, 1]. This proof also gives the
classical estimate

(36) P (M1(ω) > λ) ≤ Ce−aλ
2

,

for some C, a ∈ (0,∞). Going further, we tweak the technique to establish the
following.

Proposition 4.A. Take K ∈ (0,∞), and set δ = e−K . Then there exist a =
a(K) > 0 and Cj = Cj(K) such that for t, s ∈ [0, 1], |t− s| ≤ δ,

(37) |Xt(ω)−Xs(ω)| ≤ AK(ω)h(|t− s|) +BK(ω)|t− s|,

with

(38) P (AK(ω) ≥ λ) ≤ C1e
−Kλ2

, P (BK(ω) ≥ λ) ≤ C2e
−aλ2

.

Chapter 5 treats stochastic integrals arising in the setting of square integrable,
n-dimensional Lévy processes. In more detail, we assume that (29) is finite for
q = 2 and that

(39) E(Xt) = 0,

which leads to

(40) E(|Xt −Xs|2) = A|t− s|, A = ∆ψ(0),

with ψ as in (23). We define the Wiener stochastic integral

(41) It(f) =

∫ t

0

f(x) dXs,

for f : R+ →M(n,R), and show that

(42) ‖Itf‖2L2(Ω) ≤ A‖f‖2L2([0,t]),
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with equality if f is scalar. Going further, we discuss more general Ito-type sto-
chastic integrals, such as

(43)

∫ t

0

f(s,Xs) dXs,

and bring in Ito formulas, which for the Wiener process, defined by (21), take the
form

(44) df(Xs) = f ′(Xs) dXs + f ′′(Xs) ds.

An appendix to Chapter 5 relates the large time behavior of the probability distri-
bution of

(44)
1√
t
Xt

to the CLT, when Xt is a square integrable Lévy process satisfying (39).
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Chapter 6 deals with multidimensional random fields, of the form

(45) Z : Fn −→ L2(Ω, µ),

where (Ω, µ) is a probability space and F = R or Z. (These are also known as
random processes indexed by Fn). We assume the map Z in (45) is continuous. To
such a field we associate a map

(46) F : Ω −→ O, F (ξ)(x) = Z(x)(ξ),

where O consists of functions Fn → R, and we endow O with the probability
measure ν, given by ν(S) = µ(F−1(S)). For example,

(47)

φ(η) = ψ(η(x1), . . . , η(xk))

⇒
∫
O

φdν = 〈ψ(Z(x1), . . . , Z(xk))〉,

where we set

(48) 〈X〉 = E(X) =

∫
Ω

X(ξ) dµ(ξ).

We have Fn acting on O by

(49) τyη(x) = η(x+ y), x, y ∈ Fn, η : Fn → R.

We say the random field Z is stationary if τy preserves the probability measure ν,
for each y. Note that stationarity implies

(50) 〈ψ(Z(x1 + y), . . . , Z(xk + y))〉 = 〈ψ(Z(x1), . . . , Z(xk))〉,

for all xj , y ∈ Fn. In particular,

(51) 〈Z(x1 + y)〉 = 〈Z(x1)〉, 〈Z(x1 + y)Z(x2 + y)〉 = 〈Z(x1)Z(x2)〉.

Note that if Z is stationary, then (51) implies

(52) ‖Z(x+ y)− Z(x)‖2L2(Ω) = 2‖Z(0)‖2L2 − 2〈Z(0)Z(y)〉.

If Z is stationary, we say Z is ergodic if the action {τy : y ∈ Fn} on (O, ν) is
ergodic. In §2 we consider implications of the ergodic theorem for ergodic random
fields. One useful tool is Proposition 2.2, which says that if Z : Rn → L2(Ω, µ) is
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continuous, then the action of {τy : y ∈ Rn} on L1(O, ν) is strongly continuous.
This allows us to apply classical ergodic theorems. Notable consequences are

(53)

〈Z(x1)〉 = lim
R→∞

1

V (R)

∫
BR

η(x1 + y) dy,

〈Z(x1)Z(x2)〉 = lim
R→∞

1

V (R)

∫
BR

η(x1 + y)η(x2 + y) dy,

for ν-almost all η ∈ O, provided Z is stationary and ergodic.
Sections 3 and 4 discuss Gaussian fields, for which all finite linear combinations∑
ajZ(xj) ∈ L2(Ω, µ) are Gaussian random variables. Proposition 3.1 shows that

a Gaussian field is stationary if and only if (51) holds. A key object associated to
a stationary Gaussian field is the covariance function C : Fn → R, satisfying

(54) C(x1 − x2) = 〈(Z(x1)−M)(Z(x2)−M)〉, M = 〈Z(x)〉 ≡ 〈Z(0)〉.

In Theorem 3.3 – Corollary 3.6, it is shown that if C : Rn → R is even, continuous,
and integrable, then there exists a stationary Gaussian field Z : Rn → L2(Ω, µ)

satisfying (54) provided the Fourier transform satisfies Ĉ(ξ) ≥ 0, for all ξ ∈ Rn.
Examples are given in (3.24)–(3.27) and in (3.32)–(3.33). In §4 it is shown that
all these examples yield ergodic Gaussian fields, except (3.32), which does not.
The positive results here are a consequence of Proposition 4.2, which shows that if
Z : Rn → L2(Ω, µ) is a stationary Gaussian field, with continuous covariance, and
if

(55) lim
R→∞

1

V (R)

∫
BR

|C(y)| dy = 0,

then Z is ergodic.
Section 5 expands the scope of the study of random fields to

(56) Z : G −→ L2(Ω, µ),

where G is a Lie group. There is a natural extension of the notion of stationarity,
in which (51) is replaced by

(57) 〈Z(gx1)〉 = 〈Z(x1)〉, 〈Z(gx1)Z(gx2)〉 = 〈Z(x1)Z(x2)〉,

for g, x1, x2 ∈ G. The covariance function is now C : G→ R, given by

(58) C(x−1y) = 〈Z(x)Z(y)〉 −M2, M = 〈Z(x)〉.



13

We concentrate on the case that G is compact. The Fourier transform appearing
in §3 is replaced by

(59) Cπ =

∫
G

C(x)π(x) dx, Zπ =

∫
G

Z(x)π(x) dx,

known as the spectral data of Z. Here π runs over the irreducible unitary repre-
sentations of G. In §6 we consider random fields on a compact homogeneous space
X = G/K,

(60) Y : X −→ L2(Ω, µ).

Use of the natural projection γ : G → X yields Z = Y ◦ γ, and the considerations
of §5 apply. Section 7 studies the inverse problem of producing Z(x) from spectral
data.

In §8 we take a finite-dimensional vector space V and discuss V -valued random
fields, first on a general homogeneous space X, then specializing to X = Rn, with
special attention to V = Rn, i.e., to random vector fields. In §9 we discuss random
divergence-free vector fields on Rn.

In §10 we discuss generalized random fields on Rn, which are distributions on
Rn with values in L2(Ω, µ). We define stationary generalized random fields and
develop some of their properties.

Chapter 6 has three appendices. Appendix A gives background on ergodic the-
orems, and Appendix B relates the criterion on the covariance function given in §4
to the behavior of its Fourier transform. Appendix C discusses the Fourier trans-
form of a continuous stationary field, first on Tn (obtaining a special case of results

of §5) and then on Rn, where we need to regard Ẑ as a vector-valued tempered
distribution.

In Chapter 7 we consider fractional diffusion equations, such as

(61) c∂βt u = −(−∆)αu, t ≥ 0, u(0, x) = f(x),

where α, β ∈ (0, 1), and c∂βt is the Caputo fractional derivative, given by

(62) c∂βt v(t) =
1

Γ(1− β)

∫ t

0

(t− s)−β∂sv(s) ds,

for β ∈ (0, 1). More generally, we consider

(63) c∂βt u = −Au, u(0) = f,

where A is a self adjoint operator with the property that e−tA is a semigroup of
stochastic operators, so

(64) f ≥ 0 ⇒ e−tAf ≥ 0,

∫
e−tAf(x) dx =

∫
f(x) dx.
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The Caputo operator (62) is a variant of the Riemann-Liouville fractional derivative,
better suited for initial value problems. Indeed, as seen in §3, applying the Laplace
transform to (63) gives

(65) (sβ +A)Lu(s) = sβ−1f,

yielding for the solution to (63) the formula

(66) u(t) = Stβf = Eβ(−tβA)f,

where Eβ(z) is the Mittag-Leffler function

(67) Eβ(z) =
∞∑
n=0

zn

Γ(βn+ 1)
,

and Eβ(−tβA) is defined via the spectral representation of A.
Section 2 is devoted to a brief treatment of the β = 1 limit of (63),

(68) ∂tu = −Au,

with A = Lα, α ∈ (0, 1), and, e.g., L = −∆, via subordination identities.
In Section 3 we tackle (63), obtaining (66) with

(69) Eβ(−s) =
∫ ∞

0

Mβ(r)e
−rs dr, s ≥ 0,

where

(70) βr−β−1Mβ(r
−β) = Φ1,β(r) ≥ 0,

and Φt,β given by (2.1)–(2.7). This analysis yields

(71) Mβ(r) ≥ 0, hence Eβ(−s) ≥ 0,

leading via (69)–(70) and (64) to

(72) f ≥ 0 ⇒ E(−tβA)f ≥ 0 ⇒ Stβf ≥ 0.

We also have

(73)

∫
Stβf(x) dx =

∫
f(x) dx.

We make a brief comment on an analogue of (63) for β ∈ (1, 2] in §4. Section
5 discusses operators A = ψ(D) that lead to stochastic semigroups e−tA, making
contact with material on Lévy processes in Chapter 3.
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In section 6 we consider systems of fractional diffusion-reaction equations, of the
form

(74)
∂u

∂t
= −Lu+X(u), u(0) = f,

where L is an ℓ×ℓ diagonal matrix whose diagonal entries are operators Aj yielding
stochastic semigroups e−tAj . Section 7 discusses numerical attacks on such systems,
based on a splitting method and the FFT, when Aj = ψj(D).

In §§9–11 we tackle fractional diffusion-reaction equations of the form

(75) c∂βt u = −Au+ F (u), u(0) = f.

Chapter 7 ends with 3 appendices. Appendix A has basic material on Riemann-
Liouville and Caputo fractional derivatives. Appendix B considers finite-dimensional
linear systems of fractional differential equations. Appendix C discusses the deriva-
tion of the power series (67) for the Mittag-Leffler function Eβ(z).
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1. Varieties of central limit theorems

0. Introduction

An eye-opening and side-splitting book review, [F], recently raised the interesting
question of just what hypotheses on a sequence of IID random variables are needed
for the sequence to satisfy a central limit theorem. One answer to this question is
that one gets different central limit theorems depending on the specific hypotheses
put forth. Our goal here is to describe explicitly some of the varieties of central
limit theorems that arise.

To set things up, suppose (Ω,F , µ) is a probability space (Ω a set, F a σ-algebra,
µ a probability measure) and that {fj} is a sequence of (real valued) independent,
identically distributed random variables on Ω, with mean 0 and variance σ, so

(0.1) fj ∈ L2(Ω, µ),

∫
Ω

fj dµ = 0,

∫
Ω

f2j dµ = σ > 0.

In such a case, the independence implies

(0.2) (fi, fj)L2 = 0, for i 6= j.

The weak law of large numbers says that, as k → ∞,

(0.3) Sk =
1

k

k∑
j=1

fj −→ 0, in L2-norm.

The proof is simple:

(0.4)
∥∥∥1
k

k∑
j=1

fj

∥∥∥2
L2

=
1

k2

k∑
i,j=1

(fi, fj)L2 =
σ

k
.

A standard presentation of the weak law says that Sk → 0 in measure, which follows
from (0.3) (or better, from (0.4)), via Chebychev’s inequality.

Kolmogoroff’s strong law of large numbers produces pointwise a.e. convergence,
and relaxes the L2 hypothesis, down to L1 (and then yields L1-norm convergence),
but we will not be concerned with that here. (Cf. Chapter 15 of [T] for a treatment,
making a connection to Birkhoff’s ergodic theorem.)

To proceed, each real-valued random variable f on Ω induces a probability mea-
sure νf on R, given by

(0.5) νf (S) = µ(f−1(S)),
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when S ⊂ R is a Borel set. Note that

(0.6)

f ∈ L1(Ω, µ) ⇐⇒
∫

|x| dνf (x) <∞,∫
Ω

f dµ =

∫
R

x dνf (x).

Similarly,

(0.7)

∫
Ω

f2 dµ =

∫
R

x2 dνf (x),

and, more generally, for p ∈ [1,∞),

(0.8)

∫
Ω

|f |p dµ =

∫
R

|x|p dνf (x).

Given f as above, the function

(0.9)

χf (ξ) =

∫
Ω

e−iξf dµ

=

∫
R

e−ixξ dνf (x)

=
√
2πν̂f (ξ)

is called the characteristic function of f . If {fj} are independent, then

(0.10) Gk =
k∑
j=1

fj =⇒ χGk
(ξ) = χf1(ξ) · · ·χfk(ξ).

A special class of probability distributions on R, called centered Gaussian dis-
tributions, has the form

(0.11) γσ(x) =
1√
2πσ

e−x
2/2σ.

One computes

(0.12)

∫
x γσ(x) dx = 0,

∫
x2 γσ(x) dx = σ.
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A random variable f on (Ω,F , µ) is said to be Gaussian if νf is Gaussian. A
standard Fourier transform calculation gives

(0.13)
√
2πγ̂σ(ξ) = e−σξ

2/2.

Hence f : Ω → R is Gaussian with mean 0 and variance σ if and only if

(0.14) χf (ξ) = e−σξ
2/2.

We note that

(0.15) γσ ∗ γτ = γσ+τ ,

and that if fj are independent, centered Gaussian random variables on Ω, then the
sum Gk = f1 + · · ·+ fk is also Gaussian.

Gaussian distributions are often approximated by distributions of the sum of a
large number of IID random variables, suitably rescaled. Theorems to this effect
are called Central Limit Theorems. As stated in the opening paragraph, our goal
is to present some of these theorems here.

Given that {fj} is IID and satisfies (0.1), the appropriate rescaling of f1+· · ·+fk
is suggested by the computation (0.4). We have

(0.16) gk =
1√
k

k∑
j=1

fj =⇒ ‖gk‖2L2 ≡ σ.

Note that if ν1 is the probability distribution of f1 (hence of fj for all j), then for
any Borel set B ⊂ R,

(0.17) νgk(B) = νk(
√
kB), νk = ν1 ∗ · · · ∗ ν1 (k factors).

Note that

(0.18)

∫
x2 dν1 = σ,

∫
x dν1 = 0.

In §1 we prove the following version of CLT:

Theorem 0.1. If {fj : j ∈ N} is IID on (Ω,F , µ), satisfying (0.1), and gk is given
by (0.16), then

(0.19) νgk −→ γσ, weak∗ in M(R̂) = C(R̂)′,

where R̂ = R ∪ {∞}, so

(0.20) C(R̂) = {u ∈ C(R) : u(x) → u∞ as |x| → ∞}.
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In §1 we also strengthen the conclusion (0.19) to

(0.21) (1 + x2)νgk −→ (1 + x2)γσ, weak∗ in M(R̂).

Remark 1. The weak∗ convergence (0.19) means

(0.22)

∫
f dνgk −→

∫
f dγσ,

for each f ∈ C(R̂). Since νgk are finite positive measures, and γσ is absolutely

continuous on R̂, it is an automatic consequence that (0.22) holds whenever f is a

bounded Borel function that is Riemann integrable on R̂ ≈ S1. See Appendix A
for a brief discussion of this fact.

Remark 2. In contrast to the law of large numbers, the central limit theorem does
not assert that {gk} converges to a random variable on Ω that is Gaussian with
variance σ. In fact, the set {σ−1/2fj} forms an orthonormal basis of a Hilbert space
H ⊂ L2(Ω, µ), and each gk is an element of H, and so is any limit. But, for each
fixed j,

(0.23) lim
k→∞

(fj , gk)L2 = 0,

so in fact, as k → ∞,

(0.24) gk −→ 0, weakly in L2(Ω, µ).

Remark 3. The review [F] seems to say that the proof of CLT on p. 194 of [GS]
requires all the moments of νf1 to be finite. We can only recommend that the
interested reader make an independent assessment of the proof given there. On the
other hand, we must acknowledge the gaffe made on line 6, p. 200, of [O], though
ignoring this errant phrase leaves a proof that is OK.

In §2 we study the coin toss, for which

(0.25) νfj =
1

2
(δ1 + δ−1).

The analysis of νgk for this case illustrates the “rough” manner in which the weak∗

limit (0.19) holds. Indeed, we have

(0.26) νgk =
1√
2π
Ĉk(x)λk,
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where λk is a sum of point masses supported at integer multiples of k−1/2 (see
(2.12)), and Ck(ξ) is given by (2.5) and (2.8). While this does illuminate rough
weak∗ convergence, we get a much more precise result than (0.19), namely, as
k → ∞,

(0.27) νgk − 1√
2π
e−x

2/2λk −→ 0 in TV norm on M(R).

This is proved as a consequence of the result that

(0.28) Ĉk(x) −→ e−x
2/2, uniformly, as k → ∞.

Going further, we show that, for each ℓ ∈ N,

(0.29) ∂ℓxĈk(x) −→ ∂ℓxe
−x2/2, uniformly, as k → ∞,

and also that

(0.30) xℓĈk(x) −→ xℓe−x
2/2, uniformly, as k → ∞,

where we start the sequence (0.30) at k = ℓ+1. We also have quantitative estimates
on the rate of convergence, such as

(0.31) sup
x∈R

|Ĉk(x)− e−x
2/2| ≤ C

k
,

refining (0.28), and

(0.32) ‖νgk − γ1 λk‖TV(R) ≤ C

√
log k

k
,

refining (0.27).
In §3, we return to more general IID sequences and examine the rate at which

νgk converges to γσ. We establish the following complement to Theorem 0.1.

Proposition 0.2. In the setting of Theorem 0.1, and under the additional hypoth-
esis that, for some a > 0,

(0.33) χfj (ξ) = e−σξ
2/2+ξ2β(ξ), for |ξ| ≤ a,

where |β(ξ)| ≤ σ/4 on this interval, and

(0.34) |β(ξ)| ≤ b|ξ|r, for some r ∈ (0, 2],

we have

(0.35) |〈νgk − γσ, v〉| ≤ Ck−r/2A(v) + |〈ψ(k−1/2D)νgk , v〉|,
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where

(0.36) A(v) =

∫ ∞

−∞
|v̂(ξ)|e−σξ

2/8|ξ|2+r dξ.

In (0.35), we take

(0.37) ψ ∈ C∞(R), ψ(ξ) = 0 for |ξ| ≤ a

2
, 1 for |ξ| ≥ a.

This result leads to the task of estimating the last term on the right side of
(0.35), which we denote Bk(v). One straightforward estimate, established in §3, is
that if v ∈ Lip(R), then

(0.38) Bk(v) ≤ Ck−1/2 Lip(v).

More generally, if v ∈ C(R) and ∂mx v ∈ L∞(R), we have

(0.39) Bk(v) ≤ C‖∂mx v‖L∞k−m/2.

In §4, we consider circumstances under which we can derive a rate at which

(0.40) Φk(y)−G(y) −→ 0,

as k → ∞, where

(0.41) Φk(y) = νgk((−∞, y]), G(y) = γσ((−∞, y]).

The magnitude of this difference is of the form (0.35), with v = vy the indicator
function of (−∞, y], but in this case the estimate of the last term in (0.35) is more
difficult than that covered by (0.38). To deal with this, we approximate vy by
smooth functions wy,h, equal to 0 for x ≥ y, to 1 for x ≤ y − h, taking values in
[0, 1] for y − h ≤ x ≤ y, and satisfying

(0.42) |∂mx wy,h(x)| ≤ Cmh
−m.

An elementary argument gives

(0.43) sup
y

|Φk(y)−G(y)| ≤ sup
y

|〈νgk − γσ, wy,h〉|+ Ch,

hence the left side of (0.43) is dominated by Ck−r/2+Cmk
−m/2h−m+Ch. Taking

h = k−m/2(m+1) yields

(0.44) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Cmk
−m/2(m+1),

in the setting of Proposition 0.2. In particular, taking m large enough, we have
that the left side of (0.44) is

(0.45) ≤ Ck−r/2, provided 0 < r < 1.

Such estimates were established by Liapunov.
In §5 we discuss the Berry-Esseen theorem, which treats the endpoint case of

(0.45):
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Theorem 0.3. In the setting of Proposition 0.2, under the hypothesis that (0.33)
holds with

(0.46) |β(ξ)| ≤ b|ξ|, for |ξ| ≤ a,

we have

(0.47) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

Note that the coin toss satisfies the hypotheses (0.33)–(0.34) with r = 2, but, as
is clear from the estimate (0.32), comparing νgk to the discretized Gaussian, in this
case the exponent −1/2 in (0.47) cannot be improved.

While the exponent in (0.47) is optimal for the coin toss, there are other inter-
esting cases where it is not. One example occurs when

(0.48) νf1 =
1

2
1[−1,1](x),

in which case

(0.49) χ(ξ) =
sin ξ

ξ
.

In §6 we estabish the following.

Proposition 0.4. In the setting of Proposition 0.2, particularly with (0.34) for
some r ∈ (0, 2], and with the additional hypotheses that

(0.50) sup
|ξ|≥a/2

|χ(ξ)| ≤ δ < 1, and

∫ ∞

−∞
|χ(ξ)|ℓ dξ <∞,

for some ℓ ∈ N, we have

(0.51) |〈νgk − γσ, v〉| ≤ CA(v)k−r/2 + CSk(v)δk−ℓk1/2,

with A(v) as in (0.36) and

(0.52) Sk(v) = sup
|ξ|≥(a/2)k1/2

|ṽ(ξ)|.

This applies to v = vy, the indicator function of (−∞, y], to yield

(0.53) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2,

under the hypotheses of Proposition 0.4. In particular, we treat the case (0.48),
obtaining (0.53) with r = 2.
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In §7 we turn our attention to tail estimates. The first result of this nature is
(0.21), which sharpens (0.19), in that it says more about the behavior of {νgk} far
out in (−∞,∞). Going further, we establish the following.

Proposition 0.5. In the setting of Theorem 0.1, assume also that, for some ℓ ∈
N, ℓ ≥ 2,

(0.54)

∫
x2ℓ dνf1(x) <∞.

Then

(0.55) (1 + x2ℓ)νgk −→ (1 + x2ℓ)γσ, weak∗ in M(R̂).

This result is complemented by the following.

Proposition 0.6. In the setting of Proposition 0.2, particularly including (0.34),

(0.56) ρ < r + 2 ⇒ (1 + x2)ρ/2νgk → (1 + x2)ρ/2γσ, weak∗ in M(R̂).

Furthermore, for such ρ,

(0.57) v ∈ Sρ(R) =⇒ |〈νgk − γσ, v〉| ≤ Ck−r/2.

Here,

(0.58) Sρ(R) = {v ∈ C∞(R) : |v(ℓ)(x)| ≤ Cℓ(1 + |x|)ρ−ℓ, ∀ ℓ ∈ Z+}.

In §8 we expand the scope of CLT beyond results on approximating Gaussians.
We look at probability measures on R arising from fractional diffusion equations
(considered further in Chapters 3 and 6):

(0.59) γtα(x) = e−t(−∂
2
x)

α/2

δ(x),

for t > 0, α ∈ (0, 2), and establish the following:

Theorem 0.7. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ) whose char-
acteristic function χ(ξ) satisfies

(0.60) χ(ξ) = 1− t|ξ|α + r(ξ), r(ξ) = o(|ξ|α), as ξ → 0,

for some t > 0, α ∈ (0, 2). Define gk by

(0.61) gk = k−1/α(f1 + · · ·+ fk).
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Then

(0.62) νgk −→ γtα, weak∗ in M(R̂).

We close with some appendices. Appendix A discusses the fact that if we have
a weak∗ convergent sequence of probability measures, νk → µ, so

(0.63)

∫
X

f dνk −→
∫
X

f dµ, as k → ∞,

for continuous f on X, then (0.63) automatically holds for a larger class of functions
f , namely bounded Borel functions f : X → R such that

(0.64) f ∈ R(X,µ),

a space of “Riemann integrable” functions. Here X denotes a compact metric
space, and µ is a probability measure on X. In the body of the text, this has

several applications when X = R̂, involving matters related to the Levy-Cramér

continuity theorem. In Appendix B we pursue this further when X = R̂ and µ has
no atoms, and apply it to results on uniform convergence of Φk → G.

In Appendix C we show that if fj are IID random variables satisfying (0.1) and
gk are as in (0.16), and if

(0.65) χgj (ξ) = e−σξ
2/2+ξ2β(ξ), |β(ξ)| ≤ σ

2
, for |ξ| ≤ a,

and

(0.66) |β(ξ)| ≤ b|ξ|r, for |ξ| ≤ a, r ∈ (0, 1],

then certain mollifications

(0.67) ϕ(k−s/2D)νgk −→ γσ, uniformly, as k → ∞,

provided s < r/(r + 2), with an estimate on the rate of convergence. This result
complements results brought to bear to establish the Berry-Esseen theorem.

1. General CLT for IID random variables with finite second moments

As advertised in the introduction, our first task in this section is to prove the
following.
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Theorem 1.1. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ), with mean
zero, and satisfying ‖fj‖2L2(Ω,µ) ≡ σ. Set

(1.1) gk =
1√
k

k∑
j=1

fj ,

and define γσ as in (0.11). Then

(1.2) νgk −→ γσ, weak∗ in M(R̂).

Proof. Applying the Fourier transform to the convolution identity in (0.17) yields

(1.3) χgk(ξ) = χ(k−1/2ξ)k,

where χ(ξ) =
√
2πν̂1(ξ). By (0.6)–(0.7) applied to (0.1), and the fact that the

Fourier transform intertwines multiplication by x and id/dξ, and that the Fourier
transform of a finite measure is a bounded, continuous function, we have

(1.4) χ ∈ C2(R), χ′(0) = 0, χ′′(0) = −σ.

Hence

(1.5) χ(ξ) = 1− σ

2
ξ2 + r(ξ), r(ξ) = o(ξ2), as ξ → 0.

Equivalently, there exists a > 0 such that, for |ξ| ≤ a,

(1.6) χ(ξ) = e−σξ
2/2+ξ2β(ξ), β(ξ) → 0, as ξ → 0.

Hence

(1.7) χgk(ξ) = e−σξ
2/2+ξ2β(k−1/2ξ), for |ξ| ≤ ak1/2,

with

(1.8) β(k−1/2ξ) −→ 0 as k → ∞, ∀ ξ ∈ R.

Therefore,

(1.9) lim
k→∞

ν̂gk(ξ) = γ̂σ(ξ), ∀ ξ ∈ R.

Now the functions ν̂gk(ξ) are uniformly bounded by 1/
√
2π. Making use of (1.9),

the Parseval identity for the Fourier transform, and the dominated convergence
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theorem, we obtain for each v ∈ S(R) (the Schwartz space of rapidly decreasing
functions) that

(1.10)

∫
v dνgk =

∫
v̂(ξ)ν̂gk(ξ) dξ

→
∫
v̂(ξ)γ̂σ(ξ) dξ

=

∫
v γσ dx.

An equivalent statement is that

(1.11) νgk −→ γσ in S ′(R),

where S ′(R) denotes the Schwartz space of tempered distributions. However, since
{νgk : k ∈ N} is bounded in M(R) and S(R) is dense in

(1.12) C∗(R) = {u ∈ C(R̂) : u(∞) = 0},

we also have

(1.13)

∫
v dνgk −→

∫
v γσ dx,

for all v ∈ C∗(R). Clearly (1.13) also holds for v = 1, so we have the conclusion
(1.2).

We can strengthen the conclusion of Theorem 1.1, by using

(1.14)

∫
x2 dνgk(x) = ‖gk‖2L2 ≡ σ.

In particular,

(1.15) {(1 + x2)νgk : k ∈ N} is bounded in M(R̂),

and we have from (1.11) that

(1.16) (1 + x2)νgk −→ (1 + x2)γσ,

in S ′(R), hence in C∗(R)′, and then, by (1.14), in C(R̂)′. This gives:
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Proposition 1.2. In the setting of Theorem 1.1, we have

(1.17) (1 + x2)νgk −→ (1 + x2)γσ, weak∗in M(R̂).

2. Coin toss

To model a fair coin toss, one takes X = {1,−1}, each point having measure
1/2, and forms the probability space

(2.1) Ω =
∏
j∈N

{1,−1},

with product Borel field and product measure. The random variables fj , given by

(2.2) fj(ω1, ω2, ω3, . . . ) = ωj ,

are independent and satisfy (0.1), with σ = 1. We have

(2.3) νfj = ν =
1

2
(δ1 + δ−1), χfj (ξ) = χ(ξ) = cos ξ,

and gk, given by (0.16), has characteristic function

(2.4) χgk(ξ) = χ(k−1/2ξ)k,

as in (1.3).
To analyze this, we set

(2.5)
C(ξ) = cos ξ for |ξ| ≤ π

2
,

0 otherwise,

so

(2.6) χ(ξ) =
∑
n∈Z

(−1)nC(ξ + nπ),

hence

(2.7) χgk(ξ) =
∑
n∈Z

(−1)knCk(ξ + k1/2nπ),

where we have set

(2.8) Ck(ξ) = C(k−1/2ξ)k.
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Note that the series (2.7) converges in S ′(R). Applying the Fourier transform gives

(2.9)
√
2π νgk = Ĉk(x)λk,

where

(2.10/11)

λk =
∑
n∈Z

(−1)kneink
1/2πx

=
∑
n∈Z

einπk
1/2(x+k1/2),

convergence also holding in S ′(R), on which Ĉk acts as a multiplier. The Poisson
summation formula gives

(2.12)

λk = 2k−1/2
∑
ℓ∈Z

δ2ℓk−1/2 , k even,

2k−1/2
∑
ℓ∈Z

δ(2ℓ+1)k−1/2 , k odd.

Thanks to (2.9), the task of producing a detailed asymptotic analysis of the

behavior of νgk is reduced to that of analyzing Ĉk(x). For this, we can use techniques

similar to those brought to bear in §1. These will yield stronger conclusions on Ĉk
than we obtained there for νgk . Parallel to (1.6), we can write

(2.13) C(ξ) = e−ξ
2/2+ξ2β(ξ), for |ξ| < π

2
,

with

(2.14) β ∈ C∞(I), β(ξ) = O(ξ2), I =
(
−π
2
,
π

2

)
.

We also have

(2.15) 0 ≤ C(ξ) ≤ e−aξ
2

, ∀ ξ ∈ R,
for some a > 0. It follows that

(2.16) Ck(ξ) = e−ξ
2/2+ξ2β(k−1/2ξ), for |ξ| < π

2
k1/2,

and furthermore

(2.17) 0 ≤ Ck(ξ) ≤ e−aξ
2

, ∀ ξ ∈ R.
Parallel to (1.9), we have from (2.16) and (2.14) that

(2.18) Ck(ξ) −→ e−ξ
2/2, ∀ ξ ∈ R.

The additional uniform bound (2.17) allows us to use the dominated convergence
theorem to deduce that

(2.19) Ck −→ e−ξ
2/2 in L1(R), as k → ∞.

Hence

(2.20) Ĉk(x) −→ e−x
2/2 =

√
2πγ1(x), uniformly, as k → ∞.

We are now in a position to establish the following, giving a much more precise
analysis of νgk than Theorem 1.1 does.
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Proposition 2.1. For Ω and fj given by (2.1)–(2.2), λk by (2.12), we have

(2.21) νgk − γ1(x)λk −→ 0 in M(R), in total variation norm.

Proof. By (2.9), our conclusion is equivalent to the assertion that

(2.22)
(
(2π)−1/2Ĉk(x)− γ1(x)

)
λk −→ 0, in total variation norm.

We can deduce this from (2.20) in concert with the facts that

(2.23) (2π)−1/2Ĉkλk = νgk are probability measures on R,

and

(2.24) γ1(x)λk are positive measures with mass mk → 1.

To see this, pick ε > 0. Pick A ∈ (0,∞) so that, for all k ∈ N, the total mass of
γ1λk outside [−A,A] is ≤ ε. Then pick K ∈ N so that

(2.25)

k ≥ K =⇒ |mk − 1| ≤ ε, and

max
|x|≤A

∣∣(2π)−1/2Ĉk(x)− γ1(x)
∣∣ ≤ ε

2A
.

It follows that, for k ≥ K, the total mass of the measure in (2.22) is ≤ 4ε, and we
deduce the asserted result.

To complement the results (2.20)–(2.21), let us note that (2.17)–(2.18) imply

(2.26)
ξℓCk(ξ) −→ ξℓe−ξ

2/2,

0 ≤ |ξ|ℓCk(ξ) ≤ |ξ|ℓe−aξ
2

, ∀ ξ ∈ R, ℓ ∈ N,

hence

(2.27) ∂ℓxĈk(x) −→ ∂ℓxe
−x2/2, uniformly, as k → ∞, ∀ ℓ ∈ N.

To proceed, we analyze the behavior of derivatives of Ck(ξ). Note that

(2.28) Ck ∈ Cℓ(R), ∀ ℓ < k.

Now (2.14) implies that, for each m ∈ N,

(2.29) {β(k−1/2ξ) : k ≥ m} −→ 0 in C∞(Im),
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as k → ∞, where

(2.30) Im =
{
ξ ∈ R : |ξ| < π

2
m1/2

}
.

We deduce from (2.16) that

(2.31) {Ck : k ≥ m} −→ e−ξ
2/2 in C∞(Im),

as k → ∞, and consequently, for each ℓ ∈ N,

(2.32) {C(ℓ)
k (ξ) : k > ℓ} −→ ∂ℓξe

−ξ2/2, ∀ ξ ∈ R.

Having this extension of (2.18), we seek uniform estimates on {C(ℓ)
k : k > ℓ},

parallel to (2.17). Indeed, differentiating

(2.33) Ck(ξ) = C(k−1/2ξ)k,

we have

(2.34)

C ′
k(ξ) = k1/2C ′(k−1/2ξ)C(k−1/2ξ)k−1

=
[
−k1/2 sin(k−1/2ξ)

]
C(k−1/2ξ)k−1

= − sin(k−1/2ξ)

k−1/2ξ
ξ C(k−1/2ξ)k−1,

so, by (2.17),

(2.35)
|C ′
k(ξ)| ≤ |ξ|e−a(1−1/k)ξ2

≤ |ξ|e−aξ
2/2, for k ≥ 2.

Next,

(2.36)
C ′′
k (ξ) = C ′′(k−1/2ξ)C(k−1/2ξ)k−1

+ (k − 1)C ′(k−1/2ξ)2C(k−1/2ξ)k−2,

and the analysis of k1/2C ′(k−1/2ξ) used in (2.34) yields

(2.37)

|C ′′
k (ξ)| ≤ C(k−1/2ξ)k−1 + ξ2C(k−1/2ξ)k−2

≤ (1 + ξ2)e−a(1−2/k)ξ2

≤ (1 + ξ2)e−aξ
2/3, for k ≥ 3.
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From (2.32), (2.35), (2.37), and the dominated convergence theorem, we have

(2.38) C
(ℓ)
k −→ ∂ℓξe

−ξ2/2 in L1(R), as k → ∞,

for ℓ = 1, 2, hence, complementing (2.20),

(2.39) xℓĈk(x) −→ xℓe−x
2/2, uniformly, as k → ∞,

for ℓ = 1, 2. This is enough to give an alternative proof of (2.22), hence of Propo-
sition 2.1.

From here, an inductive argument gives, for general ℓ ∈ N,

(2.40)

|C(ℓ)
k (ξ)| ≤ Aℓ(1 + |ξ|ℓ)C(k−1/2ξ)k−ℓ

≤ Aℓ(1 + |ξ|ℓ)e−a(1−ℓ/k)ξ
2

≤ Aℓ(1 + |ξ|ℓ)e−aξ
2/(ℓ+1), for k > ℓ.

From (2.32), (2.40), and the dominated convergence theorem, we have (2.38) for all
ℓ ∈ N, and applying the Fourier transform yields the following result.

Proposition 2.2. For each integer ℓ ≥ 0,

(2.41) xℓĈk(x) −→ xℓe−x
2/2, uniformly, as k → ∞,

where we start the sequence (2.41) at k = ℓ+ 1.

We next investigate the rate at which the uniform convergence (2.20) holds, and
its implications for an estimate for the rate at which norm convergence in (2.21)
holds. We start with a more hands-on approach to (2.19), estimating

(2.42)

∫ ∞

−∞
|Ck(ξ)− e−ξ

2/2| dξ.

To start, we use the estimate (2.17) to dominate the integrand in (2.42) by 2e−aξ
2

,
and use

(2.43)

∫
|ξ|≥r

e−aξ
2

dξ = 2

∫ ∞

r

e−aξ
2

dξ

≤ 2

r

∫ ∞

r

e−aξ
2

ξ dξ

=
1

ar
e−ar

2

,

to estimate the integral (2.42) over |ξ| ≥ r (a quantity to be chosen below). To
estimate the integral over |ξ| ≤ r, we use (2.16) (and (2.14)). We have

(2.44) Ck(ξ)− e−ξ
2/2 = e−ξ

2/2
(
eξ

2β(k−1/2ξ) − 1
)
,
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with

(2.45) |ξ2β(k−1/2ξ)| ≤ Ck−1ξ4, for |ξ| ≤ π

4
k1/2,

hence

(2.46)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ Ck−1ξ4, for |ξ| ≤ k1/4

We deduce that, with

(2.47) r(k) = k1/4,

we have

(2.48)

∫
|ξ|≤r(k)

|Ck(ξ)− e−ξ
2/2| dξ ≤ C

k

∫
|ξ|≤r(k)

e−ξ
2/2ξ4 dξ

≤ C

k

∫ ∞

−∞
e−ξ

2/2ξ4 dξ

=
C ′

k
.

Hence, if we take r = r(k) in (2.43), we have

(2.49) ‖Ck − e−ξ
2/2‖L1(R) ≤

C

k
.

This refines (2.20) to

(2.50) sup
x∈R

|Ĉk(x)− e−x
2/2| ≤ C

k
.

With this estimate in hand, we can tackle the quantitative refinement of Proposi-
tion 2.1, and estimate the total variation norm of (2.21). Let’s start by considering

(2.51) mk = ‖γ1λk‖TV.

We can deduce from Jacobi’s formula,

(2.52)

∑
ℓ∈Z

e−εℓ
2

=
(π
ε

)1/2∑
n∈Z

e−n
2π2/ε

=
(π
ε

)1/2 (
1 +O(e−π

2/ε)
)
,
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that

(2.53) |1−mk| ≤ Ce−bk
1/2

,

for some b > 0, C <∞. It will be convenient to bring in the sequence of probability
measures

(2.54) µk = m−1
k γ1(x)λk.

Now to the total variation estimate. By (2.22) and (2.50),

(2.55) ‖νgk − γ1 λk‖TV(Ik) ≤
C

k
ℓ(Ik),

where

(2.56) Ik = [−s(k), s(k)],

with s(k) to be selected shortly. Meanwhile, parallel to (2.43),

(2.57) ‖γ1 λk‖TV(R\Ik) ≤ Ce−s(k)
2/2.

It is hence tempting to take

(2.58) s(k) =
√

2 log k.

In light of (2.53)–(2.54), we have

(2.59) ‖νgk − µk‖TV(Ik) ≤ C

√
log k

k
, ‖µk‖TV(R\Ik) ≤

C

k
.

Also, since νgk and µk are both probability measures on R, we have

(2.60)

‖νgk‖TV(R\Ik) = 1− ‖νgk‖TV(Ik)

= 1− ‖µk‖TV(Ik) +O
(√log k

k

)
= ‖µk‖TV(R\Ik) +O

(√log k

k

)
.

Putting together (2.55)–(2.60), we have:

Proposition 2.3. In the setting of Proposition 2.1,

(2.61) ‖νgk − γ1(x)λk‖TV(R) ≤ C

√
log k

k
,

for k ≥ 2.
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3. Estimates on rate of approach of νgk to γσ

Here we derive some estimates on the rate at which

(3.1) 〈νgk − γσ, v〉 −→ 0,

as k → ∞, for νgk as in (0.17) and γσ as in (0.11). We retain the hypothesis
(0.1). We take v in various function spaces, and impose various conditions on νfj ,
beyond having a finite second moment. For example, we consider the condition
fj ∈ Lp(Ω, µ) for p = 2 + r > 2, or equivalently

(3.2)

∫
|x|2+r dνfj (x) <∞.

This implies that

(3.3) χ = χfj ∈ C2+r(R).

In such a case, we can refine (1.6) to

(3.4) χ(ξ) = e−σξ
2/2+ξ2β(ξ), for |ξ| ≤ a,

where

(3.5) |β(ξ)| ≤ b|ξ|r, provided r ∈ (0, 1].

If by chance (3.2) holds with r ≥ 1 and

(3.6)

∫
x3 dνfj = 0,

we can expand the scope of (3.5) to

(3.7) |β(ξ)| ≤ b|ξ|r, provided r ∈ (0, 2].

To start the estimate of (3.1), we have

(3.8)

√
2π〈νgk − γσ, v〉 =

√
2π〈ν̂gk − γ̂σ, ṽ〉

=

∫ [
χgk(ξ)− e−σξ

2/2
]
ṽ(ξ) dξ.

Now

(3.9) χgk(ξ)− e−σξ
2/2 = e−σξ

2/2
(
eξ

2β(k−1/2ξ) − 1
)
, for |ξ| ≤ ak1/2,
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and (3.5) (or (3.7)) implies

(3.10) |ξ2β(k−1/2ξ)| ≤ bk−r/2|ξ|2+r, for |ξ| ≤ ak1/2.

It follows that

(3.11)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ b̃k−r/2|ξ|2+r,

for k−r/2|ξ|2+r ≤ 1, or equivalently for

(3.12) |ξ| ≤ ke(r), e(r) =
r

2(2 + r)
.

Shrinking a if necessary, we also arrange that

(3.13) |β(k−1/2ξ)| ≤ σ

4
, for |ξ| ≤ ak1/2,

so

(3.14)
∣∣∣eξ2β(k−1/2ξ) − 1

∣∣∣ ≤ 2eσξ
2/4, for ke(r) ≤ |ξ| ≤ ak1/2.

We will make do with the estimate

(3.15) |χgk(ξ)| ≤ 1, for |ξ| ≥ ak1/2.

We therefore divide the range of integration R on the right side of (3.8) into
three pieces:

(3.16) |ξ| ≤ ke(r), ke(r) ≤ |ξ| ≤ ak1/2, |ξ| ≥ ak1/2,

and obtain the following result.

Proposition 3.1. In the setting of Theorem 1.1, and with the additional hypothesis
that (3.4) holds, with

(3.17) |β(ξ)| ≤ b|ξ|r, for some r ∈ (0, 2],

we have

(3.18)
√
2π
∣∣〈νgk − γσ, v〉

∣∣ ≤ Ak(v) +Bk(v) + Ck(v),

where

(3.19)

Ak(v) = b̃k−r/2
∫

|ξ|≤ke(r)

|ṽ(ξ)|e−σξ
2/2|ξ|2+r dξ,

Bk(v) = 2

∫
ke(r)≤|ξ|≤ak1/2

|ṽ(ξ)|e−σξ
2/4 dξ,

Ck(v) = 2

∫
|ξ|≥ak1/2

|ṽ(ξ)| dξ.



36

Note that

(3.20)

Ak(v) ≤ Ãk(v) = b̃k−r/2
∫ ∞

−∞
|ṽ(ξ)|e−σξ

2/2|ξ|2+r dξ,

Bk(v) ≤ B̃k(v) = 2e−(σ/8)k2e(r)
∫

|ξ|≥ke(r)

|ṽ(ξ)|e−σξ
2/8 dξ,

Ck(v) ≤ C̃k(v) =
4

a
k−1/2 sup

ξ
ξ2|ṽ(ξ)|.

Clearly the seminorms Ãk and B̃k are quite nicely behaved on rather wild func-

tions v. However, the seminorms Ck and C̃k are not finite on a number of test
functions v we would like to use. This provides motivation to modify the frequency
cutoffs. We hence bring in the functions φ and ψ, satisfying the following condi-
tions:

(3.21) φ,ψ ∈ C∞(R), φ(ξ) = 1 for |ξ| ≤ a

2
, 0 for |ξ| ≥ a, ψ = 1− φ.

We toss in the conditions

(3.22) 0 ≤ φ ≤ 1, φ(−ξ) = φ(ξ).

Now we have

(3.23) 〈νgk − γσ, v〉 = 〈φ(k−1/2D)(νgk − γσ), v〉+ 〈ψ(k−1/2D)(νgk − γσ), v〉,

and estimates arising in the proof of Proposition 3.1 imply

(3.24) |〈φ(k−1/2D)(νgk − γσ), v〉| ≤ Ck−r/2A(v),

where

(3.25) A(v) =

∫ ∞

−∞
|ṽ(ξ)|e−σξ

2/8|ξ|2+r dξ.

We also have

(3.26) |〈ψ(k−1/2D)γσ, v〉| = 1√
2π

|〈e−σξ
2/2, ψ(k−1/2ξ)ṽ(ξ)〉| ≤ Ce−bk

1/2

A(v).

This gives the following.
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Proposition 3.2. In the setting of Proposition 3.1,

(3.27) |〈νgk − γσ, v〉| ≤ Ck−r/2A(v) + |〈ψ(k−1/2D)νgk , v〉|.

Other ways to present the last term arise via the identities

(3.28)
〈ψ(k−1/2D)νgk , v〉 = 〈νgk , ψ(k−1/2D)v〉

= 〈ψ(2k−1/2D)νgk , ψ(k
−1/2D)v〉,

the latter via

(3.29) ψ(2ξ)ψ(ξ) = ψ(ξ).

We now have the task of estimating

(3.30) Bk(v) = |〈νgk , ψ(k−1/2D)v〉|.

Here is one straightforward result.

Proposition 3.3. Assume v is Lipschitz continuous, with Lipschitz constant Lip(v) =
L:

(3.31) |v(x)− v(y)| ≤ L|x− y|, ∀x, y ∈ R.

Then

(3.32) Bk(v) ≤ Ck−1/2 Lip(v).

Proof. Clearly

(3.33) Bk(v) ≤ sup
x

|ψ(k−1/2D)v(x)|.

With f =
√
2πφ̂, an element of S(R) that integrates to 1, we have, for all x ∈ R,

(3.34)

|ψ(k−1/2D)v(x)| =
∣∣∣∫ k1/2f(k1/2y)v(x− y)dy − v(x)

∣∣∣
=
∣∣∣∫ k1/2f(k1/2y)

[
v(x− y)− v(x)

]
dy
∣∣∣

≤ Lip(v)

∫
k1/2|f(k1/2y)y| dy

= k−1/2 Lip(v)

∫
|f(y)y| dy.

This gives (3.32).

The following result is a useful extension of Proposition 3.3.



38

Proposition 3.4. Let m ∈ N. Take v ∈ C(R) and assume

(3.35) ∂mx v ∈ L∞(R).

Then

(3.36) Bk(v) ≤ Cmk
−m/2Lm(v), Lm(v) = ‖∂mx v‖L∞(R).

Proof. Set

(3.37) ψm(ξ) = ξ−mψ(ξ),

and note that

(3.38) ψ̂m ∈ L1(R), for m ∈ N.

We have

(3.39) ψ(k−1/2D)v(x) = k−m/2ψm(k−1/2D)(i∂x)
mv(x),

so

(3.40) sup
x

|ψ(k−1/2D)v(x)| ≤ C‖ψ̂m‖L1(R)‖∂mx v‖L∞(R)k
−m/2,

and (3.36) follows.

4. Convergence of distribution functions – Liapunov estimates

In this section we study the rate of convergence of

(4.1) Φk(y) −→ G(y),

as k → ∞, where

(4.2) Φk(y) = νgk((−∞, y]), G(y) = γσ((−∞, y]).

We retain the hypotheses on gk in effect in Theorem 1.1, supplemented by those in
Proposition 3.1, especially that (3.4) and (3.17) hold, i.e., the characteristic function
χ(ξ) satisfies

(4.3) χ(ξ) = e−σξ
2/2+ξ2β(ξ), for |ξ| ≤ a,
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and

(4.4) |β(ξ)| ≤ b|ξ|r, with r ∈ (0, 2].

Recall that

(4.5) χgk(ξ) = χ(k−1/2ξ)k.

To put the desired analysis in the framework of Proposition 3.2, we have

(4.6) Φk(y)−G(y) = 〈νgk − γσ, vy〉,

where

(4.7)
vy(x) = 1, if x ≤ y,

0, if x > y.

Proposition 3.2 is applicable, and we have

(4.8) |Φk(y)−G(y)| ≤ Ck−r/2A(vy) + Bk(vy),

where

(4.9)
A(v) =

∫ ∞

−∞
|ṽ(ξ)|e−σξ

2/8|ξ|2+r dξ,

Bk(v) = |〈νgk , ψ(k−1/2D)v〉|.

Note that, with vy given by (4.7), the inverse Fourier transform ṽy is a principal
value distribution, with 1/ξ type blowup as ξ → 0, but this singularity is cancelled
out by the factor |ξ|2+r. We have ṽy = eiyξ ṽ0, so there is a uniform bound

(4.10) A(vy) ≤ A0 <∞, ∀ y ∈ R.

A direct estimate of Bk(vy) seems not so simple. Instead, we follow [V] and
sneak up on the problem of estimating (4.6) by bringing in

(4.11)

wy,h(x) = 0, if x ≥ y,

h−(x−y)
h , if y − h ≤ x ≤ y,

1, if x ≤ y − h.

For h ≥ 0, vy−h ≤ wy,h ≤ vy, so

(4.12) 〈νgk , vy−h〉 ≤ 〈νgk , wy,h〉 ≤ 〈νgk , vy〉,
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and

(4.13) −〈γσ, vy〉 ≤ −〈γσ, wy,h〉 ≤ −〈γσ, vy−h〉,

hence

(4.14) 〈νgk − γσ, wy,h〉 ≤ 〈νgk − γσ, vy〉+ 〈γσ, vy − vy−h〉,

and

(4.15) 〈νgk − γσ, vy−h〉 − 〈γσ, vy − vy−h〉 ≤ 〈νgk − γσ, wy,h〉.

Since 0 ≤ 〈γσ, vy − vy−h〉 ≤ Ch, we have

(4.16) sup
y

|〈νgk − γσ, vy〉| ≤ sup
y

|〈νgk − γσ, wy,h〉|+ Ch.

Estimates parallel to (4.10) apply to A(wy,h):

(4.17) A(wy,h) ≤ A1 <∞, ∀ y ∈ R, h > 0.

Since also Lip(wy,h) = 1/h, Propositions 3.2–3.3 apply, giving

(4.18) |〈νgk − γσ, wy,h〉| ≤ Ck−r/2A(wy,h) + Ck−1/2h−1,

Hence (4.16) yields

(4.19) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−1/2h−1 + Ch,

for all h > 0. We choose h = k−1/4 to balance the last two terms on the right side
of (4.19), and obtain the following.

Proposition 4.1. For νgk as in Proposition 3.1, in particular with (4.3)–(4.4)
holding, we have

(4.20) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−1/4.

Another way to represent the right side of (4.20) is as

(4.21) ≤ Ck−δ(r), δ(r) = min
(r
2
,
1

4

)
.

The exponent in (4.21) is sharp if r ∈ (0, 1/2], but for larger r, one can do better.
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For this, we want to replace the mollification wy,h of vy by the following. Take

(4.22) ζ ∈ C∞
0 (−1, 0), ζ ≥ 0,

∫
ζ(x) dx = 1,

set ζh(x) = h−1ζ(h−1x), and then set

(4.23) wy,h = ζh ∗ vy.
In common with (4.11), we have

(4.24)
wy,h(x) = 0, if x ≥ y,

1, if x ≤ y − h,

and

(4.25) 0 ≤ wy,h(x) ≤ 1, if y − h ≤ x ≤ y,

but now wy,h ∈ C∞(R), and, for m ∈ N,
(4.26) ‖∂mx wy,h‖L∞(R) = Amh

−m.

Estimates of the form (4.12)–(4.17) continue to hold. This time, we use (4.26) in
concert with Propositions 3.2 and 3.4 to obtain the following variant of (4.18):

(4.27) |〈νgk − γσ, wy,h〉| ≤ Ck−r/2A(wy,h) + Cmk
−m/2h−m,

which in concert with (4.16) gives the following variant of (4.19):

(4.28) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2 + Ck−m/2h−m + Ch,

for all h ∈ (0, 1]. This time we choose h to make k−m/2h−m = h, i.e.,

(4.29) h = k−m/2(m+1),

and we get the following extension of Proposition 4.1.

Proposition 4.2. In the setting of Proposition 4.1, we have, for each m ∈ N,
(4.30) sup

y
|Φk(y)−G(y)| ≤ Ck−r/2 + Cmk

−m/2(m+1).

Consequently, as long as (4.3)–(4.4) hold with

(4.31) 0 < r < 1,

we have

(4.32) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2.

One interesting corollary arises by writing

(4.33) νgk([y, y + k−r/2]) = Φk(y + k−r/2)− Φk(y),

using (4.32), and estimating G(y + k−1/2)−G(y). We obtain the following.

Corollary 4.3. In the setting of Proposition 4.2, particularly assuming (4.3)-(4.4)
hold and r ∈ (0, 1), there exists C <∞ such that

(4.34) νgk([y, y + k−r/2]) ≤ Ck−r/2, ∀ y ∈ R.
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5. The Berry-Esseen theorem

The Berry-Esseen theorem treats the endpoint case of the results established in
§4. Here is a statement.

Theorem 5.1. Assume fj are IID random variables satisfying (0.1), and define
gk as in (0.16), and Φk and G as in (0.41). Assume in addition that

(5.1)

∫
Ω

|fj |3 dµ = ρ <∞.

Then there exists C <∞ such that

(5.2) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

To start the proof, we are in the setting of Proposition 3.2, with r = 1. Hence
(4.8)–(4.10) hold, with r = 1 and vy given by (4.7). That is to say,

(5.3) |Φk(y)−G(y)| ≤ CA0k
−1/2 + Bk(vy),

and, recall,

(5.4) Bk(vy) = |〈νgk , ψ(k−1/2D)vy〉|,

with ψ as in (3.21).
To proceed, we take an approach to the estimate of Bk(vy) rather different from

that used in §4. Note that

(5.5) ψ(k−1/2D)vy(x) = ψ(k−1/2D)v0(x− y).

We have

(5.6) ψ(k−1/2D)v0(x) = v0(x)− φ(k−1/2D)v0(x) = V (k1/2x),

where V ∈ L∞(R) ∩ C∞(R \ 0) has a simple jump at x = 0 and V (x) is rapidly
decreasing as |x| → ∞. Then

(5.7) ψ(k−1/2D)vy(x) = V (k1/2(x− y)),

with

(5.8) |V (x)| ≤ Cn〈x〉−n, ∀n ∈ N.

The next key ingredient in the proof of Theorem 5.1 is the following useful
extension of the estimate (4.34) on νgk .
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Proposition 5.2. Assume fj are IID random variables satisfying (0.1) and define
gk as in (0.12). Then there exists C <∞ such that

(5.9) νgk([y, y + k−1/2]) ≤ Ck−1/2, ∀ y ∈ R, k ∈ N.

Once we have this, we get

(5.10) Bk(vy) ≤
∫

|V (k1/2(x− y))| dνgk(x),

and (5.8)–(5.9) imply this is ≤ Ck−1/2, as stated in (5.2). It remains to give the

Proof of Proposition 5.2. Pick ϕ satisfying

(5.11) ϕ ∈ C∞
0 ((−a, a)), ϕ ≥ 0, ϕ(0) = 1.

We desire to estimate

(5.12) ϕ(k−1/2D)νgk(x).

Note that its Fourier transform is

(5.13) ϕ(k−1/2ξ)χνk(ξ) = ϕ(k−1/2ξ)e−σξ
2+ξ2β(k−1/2ξ).

As in (3.13), we can assume

(5.14) |β(ξ)| ≤ σ

4
for |ξ| ≤ a,

so

(5.15) |ϕ(k−1/2ξ)χνk(ξ)| ≤ Ce−σξ
2/8, ∀ ξ ∈ R.

This gives an L1 bound that implies

(5.16) |ϕ(k−1/2D)νk(x)| ≤ C, ∀x ∈ R, k ∈ N.

Note that

(5.17) ϕ(k−1/2D)νgk(x) = ck1/2
∫
ϕ̂(k1/2(x− y)) dνgk(y).

We can pick ϕ satisfying (5.11) and also

(5.18) ϕ̂(x) ≥ 0, ∀x ∈ R.

Then also ϕ̂(x) is bounded away from 0 on some neighborhood of 0, so (5.16)–(5.17)
yield (5.9).

The proof of Theorem 5.1 is complete.
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6. Faster convergence for more regular νf1

The Berry-Esseen theorem gives the optimal rate of convergence of Φk to G for
general IID random variables fj ∈ Lp(Ω, µ), satisfying (0,1), for each p ≥ 3, namely

(6.1) sup
y

|Φk(y)−G(y)| ≤ Ck−1/2.

As we have noted, this estimate is optimal for the coin toss. However, one does
have faster convergence for lots of natural cases. Consider for example a case where
νfj is Lebesgue measure on R times

(6.2)
F (x) =

1

2
for |x| ≤ 1,

0 otherwise.

We have

(6.3) χ(ξ) =
sin ξ

ξ
,

and χ(k−1/2ξ)k tends to e−σξ
2/2 (with σ = 1/3) much more nicely than does its

counterpart for the coin toss. The following result distills features that lead to
improvements of (6.1).

Proposition 6.1. Take an IID sequence {fj} as in Theorem 1.1. As in Proposition
3.1, assume χ = χfj satisfies (for some a > 0)

(6.4) χ(ξ) = e−σξ
2/2+ξ2β(ξ), for |ξ| ≤ a,

where, for ξ in this interval,

(6.5) |β(ξ)| ≤ σ

4
, and |β(ξ)| ≤ C|ξ|r, for some r ∈ (0, 2].

Add the following hypotheses:

(6.6) sup
|ξ|≥a/2

|χ(ξ)| ≤ δ < 1,

and, for some ℓ ∈ N,

(6.7)

∫ ∞

−∞
|χ(ξ)|ℓ dξ <∞.
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Then, for k ≥ ℓ,

(6.8) |〈νgk − γσ, v〉 ≤ CA(v)k−r/2 + CSk(v)δk−ℓk1/2,

with A(v) as in (3.25), and

(6.9) Sk(v) = sup
|ξ|≥(a/2)k1/2

|ṽ(ξ)|.

Proof. By Proposition 3.2, it remains to estimate

(6.10) 〈ψ(k−1/2D)νgk , v〉 =
∫
ψ(k−1/2ξ)χ(k−1/2ξ)kṽ(ξ) dξ.

If k ≥ ℓ, this is bounded in absolute value by

(6.11)

∫
|ξ|≥(a/2)k1/2

|χ(k−1/2ξ)|k dξ · Sk(v)

≤ δk−ℓ
∫

|χ(k−1/2ξ)|ℓ dξ · Sk(v)

≤ Cδk−ℓk1/2Sk(v),

as desired.

We can apply Proposition 6.1 to v = vy, where

(6.12)
vy(x) = 1 for x ≤ y,

0 otherwise.

Then ṽy is a PV type distribution with 1/ξ type blowup at ξ = 0, and |ṽ(ξ)| ≤ C/|ξ|
on R \ 0. Thus we have A(vy) ≤ A <∞, uniformly in y, and also

(6.13) k1/2Sk(vy) ≤ S <∞, uniformly in y.

We deduce that, when νf1 satisfies the hypotheses of Proposition 6.1, then

(6.14) sup
y

|Φk(y)−G(y)| ≤ Ck−r/2,

and this works whenever (6.5) holds and r ∈ (0, 2].
For example, when νf1 is given by (6.2), then (6.14) holds with r = 2.
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7. Tail estimates

As seen in Proposition 1.2, we can sharpen the result νgk → γσ, weak∗ in M(R̂),
to

(7.1) (1 + x2)νgk −→ (1 + x2)γσ, weak∗ in M(R̂),

under the hypotheses of Theorem 1.1, especially
∫
x2 dνf1(x) = σ < ∞. Then

general results discussed in Appendix A yield

(7.2) Φ2,k(y) −→ G2(y), as k → ∞, ∀ y ∈ R,

where, complementing (0.41), we set

(7.3)

Φ2,k(y) =

∫ y

−∞
x2 dνgk(x),

G2(y) =

∫ y

−∞
x2γσ(x) dx.

Such results constitute tail estimates. Here we seek further tail estimates when we
have higher moments that are finite, i.e.,

(7.4)

∫
|x|p dνf1(x) <∞, p > 2.

We concentrate on the cases p = 2ℓ, ℓ ∈ N, ℓ > 1. In such a case, taking

(7.5) χ(ξ) =

∫
R

e−ixξ dνf1(ξ),

we have that, if (7.4) holds with p = 2ℓ, then χ ∈ C2ℓ(R) and

(7.6) χ(2ℓ)(0) = (−1)ℓ
∫
R

x2ℓ dνf1(x).

Conversely, if χ ∈ C(2ℓ)(R), then (7.4) holds, with p = 2ℓ, and we have (7.6).
Now, to obtain tail estimates, we start with the following observation.

Proposition 7.1. Assume fj are IID random variables satisfying (0.1), and define
gk as in (0.16). Fix ℓ ∈ N, ℓ > 1. If

(7.7)

∫
x2ℓ dνf1(x) <∞,
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then there exists A <∞, independent of k, such that

(7.8)

∫
x2ℓ dνgk(x) ≤ A, ∀ k.

Proof. As in (1.6), there exists a > 0 such that, for |ξ| ≤ a,

(7.9) χ(ξ) = eΨ(ξ), Ψ(0) = Ψ′(0) = 0.

If (7.7) holds, then χ ∈ C2ℓ(R), hence

(7.10) Ψ ∈ C2ℓ((−a, a)).

Now, as in (1.7), for |ξ| ≤ ak1/2,

(7.11) χgk(ξ) = eΨk(ξ), Ψk(ξ) = kΨ(k−1/2ξ).

We have

(7.12) Ψ
(j)
k (ξ) = k1−j/2Ψ(j)(k−1/2ξ),

for j ≤ 2ℓ, hence

(7.13) Ψ
(j)
k (0) = k1−j/2Ψ(j)(0), 0 ≤ j ≤ 2ℓ.

Note that the exponent in k1−j/2 is > 0 if and only if j = 0 or 1, and in these cases
the right side of (7.13) vanishes. It readily follows that there exists A < ∞ such
that

(7.14) |χ(2ℓ)
gk

(0)| ≤ A, ∀ k,

and this gives (7.8).

We can now extend Proposition 1.2.

Proposition 7.2. Under the hypotheses of Proposition 7.1,

(7.15) (1 + x2ℓ)νgk −→ (1 + x2ℓ)γσ, weak∗ in M(R̂),

as k → ∞.

Proof. We know from Theorem 1.1 that

(7.16) 〈(1 + x2ℓ)νgk , v〉 −→ 〈(1 + x2ℓ)γσ, v〉,
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as k → ∞, for all continuous v on R with compact support, hence, thanks to (7.8),

for all v ∈ C(R̂) satisfying v(∞) = 0. To get (7.15), it remains to obtain (7.16) for
v ≡ 1, hence to obtain

(7.17)

∫
R

x2ℓ dνgk(x) −→
∫
R

x2ℓγσ(x) dx, as k → ∞.

This is equivalent to

(7.18) χ(2ℓ)
gk

(0) −→
( d
dξ

)2ℓ
γσ(0), as k → ∞.

In turn, (7.18) follows from (7.9)–(7.13), supplemented by the identity

(7.19) Ψ′′(0) = −σ,

which follows from (0.1).

Results of Appendix A then yield the following.

Corollary 7.3. In the setting of Proposition 7.2, if v : R̂ → R is bounded, Borel,

and Riemann integrable on R̂, then

(7.20)

∫
R

v(x)(1 + x2ℓ) dνgk(x) −→
∫
R

v(x)(1 + x2ℓ)γσ(x) dx,

as k → 0.

Our next tail estimates will make use of results of §3. Recall from Proposition
3.2 that, if fj are IID random variables satisfying (0.1), and if (7.9) holds, with

(7.21)
Ψ(ξ) = −σ

2
ξ2 + ξ2β(ξ),

|β(ξ)| ≤ b|ξ|r, |β(ξ)| ≤ σ

4
,

for |ξ| ≤ a, and for some r ∈ (0, 2], then

(7.22) |〈νgk − γσ, v〉| ≤ Ck−r/2A(v) + ‖ψ(k−1/2D)v‖L∞ ,

with

(7.23) A(v) =

∫ ∞

−∞
e−σξ

2/8|ξ|2+r|v̂(ξ)| dξ,

and ψ as in (0.37). Hence

(7.24) |〈νgk , v〉| ≤ |〈γσ, v〉|+ Ck−r/2A(v) + ‖ψ(k−1/2D)v‖L∞ .
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To state our next result, we bring in the following spaces of functions, for ρ ∈ R:

(7.25) Sρ(R) = {v ∈ C∞(R) : |v(ℓ)(x)| ≤ Cℓ(1 + |x|)ρ−ℓ, ∀ ℓ ∈ Z+}.

Then (cf. Proposition 2.4 in [T1], Chapter 7, but note the roles of x and ξ are
switched), we have

(7.26)
|v̂(ξ)| ≤ C|ξ|−ρ−1, for |ξ| ≤ 1 (provided ρ > −1),

Cν |ξ|−ν , for |ξ| ≥ 1.

We see that

(7.27) v ∈ Sρ(R), ρ < r + 2 =⇒ A(v) <∞,

and

(7.28)
v ∈ Sρ(R), ρ ∈ R =⇒ |〈γσ, v〉| <∞, and

‖ψ(k−1/2D)v‖L∞ ≤ C ′
νk

−ν/2.

Note that, for each ρ ∈ R,

(7.29) (1 + x2)ρ/2 ∈ Sρ(R).

We now have the following.

Proposition 7.4. Assume fj are IID random variables, satisfying (0.1), (7.9),
and (7.21), for |ξ| ≤ a, and some r ∈ (0, 2]. Then

(7.30) ρ < r + 2 ⇒ (1 + x2)ρ/2νgk → (1 + x2)ρ/2γσ, weak∗ in M(R̂).

Furthermore, for such ρ,

(7.31) v ∈ Sρ(R) =⇒ |〈νgk − γσ, v〉| ≤ Ck−r/2.

Remark. When Proposition 7.2 applies, the result (7.15) is stronger than its
counterpart in (7.30), whose hypotheses hold with r = 2 if

∫
x3 dνf1 = 0, and with

r = 1 otherwise. On the other hand, (7.31) provides useful additional information.

8. CLT associated with a fractional diffusion

For 0 < α ≤ 2, the semigroups

(8.1) P tα = e−t(−∂
2
x)

α/2

, t ≥ 0,
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consist of positivity-preserving operators with the property that

(8.2)

∫
R

P tαu(x) dx =

∫
R

u(x) dx,

for u ∈ L1(R). They are convolution operators,

(8.3) P tαu(x) = γtα ∗ u(x),

where each γtα is a probability measure on R, whose characteristic function is

(8.4) χt,α(ξ) =

∫
e−ixξγtα(x) dx = e−t|ξ|

α

.

If α < 2, the measures γtα do not have finite second moments, and if α ≤ 1 they do
not have finite first moments.

For α = 2, the operators P t2 = et∂
2
x form the diffusion semigroup. For α < 2,

these are fractional diffusions. They give rise to stochastic processes belonging to
the family of Levy processes. For material on this, see Chapter 3 of this text, which
also treats the higher dimensional case.

Here we formulate and prove a version of CLT associated with such fractional
diffusion semigroups.

To begin, suppose fj : Ω → R are IID random variables on a probability space
(Ω,F , µ), inducing the probability measure ν on R, as in (1.6), with characteristic
function

(8.5) χ(ξ) =

∫
Ω

e−iξfj dµ =

∫
R

e−ixξ dν(ξ).

Extending the setting of Theorem 1.1, involving (1.5), we will fix t > 0, α ∈ (0, 2),
and make the hypothesis that

(8.6) χ(ξ) = 1− t|ξ|α + r(ξ), r(ξ) = o(|ξ|α), as ξ → 0,

or, equivalently, there exists a > 0 such that, for |ξ| ≤ a,

(8.7) χ(ξ) = e−t|ξ|
α+|ξ|αβ(ξ), β(ξ) → 0 as ξ → 0.

An example of (8.6) (with t = 1) is

(8.8) χ(ξ) = (1 + |ξ|α)−1 =

∫ ∞

0

e−s(1+|ξ|α) ds,

the second identity implying that χ is the characteristic function of a probability
measure on R.
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To proceed, we see that the characteristic function of f1 + · · ·+ fk is

(8.9)

∫
Ω

e−iξ(f1+···+fk) dµ = χ(ξ)k

= e−tk|ξ|
α+k|ξ|αβ(ξ), for |ξ| ≤ a.

This formula tells us how to normalize the sum f1 + · · ·+ fk. In place of (0.16), we
set

(8.10) gk = k−1/α(f1 + · · ·+ fk),

yielding

(8.11)

χgk(ξ) =

∫
Ω

e−iξk
−1/α(f1+···+fk) dµ

= χ(k−1/αξ)k

= e−t|ξ|
α+|ξ|αβ(k−1/αξ),

the last identity holding for

(8.12) |ξ| ≤ ak1/α.

Having this, we can formulate the following variant of Theorem 1.1.

Theorem 8.1. Assume {fj : j ∈ N} is an IID sequence on (Ω,F , µ) whose char-
acteristic function χ(ξ) satisfies (8.6), for some t > 0, α ∈ (0, 2). Define gk by
(8.10). Then

(8.13) νgk −→ γtα, weak∗ in M(R̂).

Proof. We see from (8.11)–(8.12) that

(8.14) lim
k→∞

ν̂gk(ξ) = γ̂tα(ξ), ∀ ξ ∈ R.

Arguing as in (1.10) yields

(8.15)

∫
v dνgk −→

∫
vγtα dx,

for all v ∈ S(R). Since νgk and γtα are probability measures, this gives (8.15) for

all v ∈ C∗(R), and also for v ≡ 1, hence for all v ∈ C(R̂), giving the asserted result
(8.13).
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Here is an illustration of Theorem 8.1, with α = 1. Define χ ∈ C(R) by

(8.16)
χ(ξ) = 1− 2

π
|ξ|, |ξ| ≤ π,

= χ(ξ + 2π), ∀ ξ ∈ R.

Then

(8.17) χ(ξ) =
4

π2

∑
k∈Z, odd

1

k2
eikξ,

so χ is the characteristic function of a random variable f satisfying

(8.18) νf =
4

π2

∑
k∈Z, odd

1

k2
δk.

It follows from Theorem 8.1 that if fj are IID random variables on (Ω,F , µ) for
which νfj satisfy (8.18), and we form

(8.19) gk =
1

k
(f1 + · · ·+ fk),

then

(8.20) νgk −→ γ
2/π
1 , weak∗ in M(R̂).

Note that

(8.21) γt1(x) =
1

π

t

x2 + t2
.

A. Natural extension of weak∗ convergence of measures

Let X be a compact metric space, µ a finite positive Borel measure on X. If
f : X → R is a bounded function, we say f ∈ R(X,µ) provided that, for each
ε > 0, there exist

(A.1) u, v ∈ C(X) such that u ≤ f ≤ v, and

∫
X

(v − u) dµ < ε.

If X = S1, the unit circle, and µ is Lebesgue measure, this class coincides with the
standard notion of Riemann integrable functions. See [T2] for some basic results
on this class of functions. The following is a useful result.



53

Proposition A.1. Take X,µ as above, and let νk be finite, positive Borel measures
on X. Assume

(A.2) νk −→ µ, weak∗ in M(X) = C(X)′.

Then, if f : X → R is a bounded, Borel function,

(A.3) f ∈ R(X,µ) =⇒
∫
f dνk →

∫
f dµ.

Proof. Given f ∈ R(X,µ), take ε > 0 and pick u, v such that (A.1) holds. Then

(A.4)

∫
f dνk ≤

∫
v dνk →

∫
v dµ <

∫
f dµ+ ε,

so

(A.5) lim sup
k→∞

∫
f dνk ≤

∫
f dµ.

Similarly

(A.6) lim inf
k→∞

∫
f dνk ≥

∫
f dµ,

so we have (A.3).

Example. Let X = R̂ = R∪{∞}, and let νk and µ be probability measures on R,
naturally extended to R̂, so that µ({∞}) = 0. Let

(A.7) f : R −→ R be a bounded, continuous function.

Then f extends to a bounded function on R̂, with only ∞ as a point of discontinuity.

Hence f ∈ R(R̂, µ), and (A.3) applies, so if (A.2) holds,

(A.8)

∫
f dνk −→

∫
f dµ,

for all f satisfying (A.7). The fact that (A.2) and (A.7) imply (A.8) is part of the
Levy-Cramér continuity theorem. See [V], p. 25.

B. Weak∗ convergence of measures and uniform convergence of distribu-
tion functions
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let νk and µ be probability measures on R. The conditions

(B.1)

νk → µ in D′(R),
νk → µ in S ′(R),

νk → µ weak∗ in M(R̂) = C(R̂)′

are all equivalent. They say

(B.2)

∫
f dνk −→

∫
f dµ,

for f ∈ C∞
0 (R), f ∈ S(R), and f ∈ C(R̂), respectively. Let us now assume

(B.3) µ has no atoms.

Then, by Proposition A.1, (B.2) holds for f = χ(−∞,x], for each x ∈ R. In other
words, if we set

(B.4) Φk(x) = νk((−∞, x]), G(x) = µ((−∞, x]),

we have

(B.5) Φk(x) −→ G(x), ∀x ∈ R.

We note the following useful (and well known) refinement.

Proposition B.1. If νk and µ are probability measures on R satisfying (B.1) and
(B.3), then

(B.6) Φk −→ G, uniformly on R.

Proof. If not, there exist ε > 0, kn → ∞, and xkn ∈ R such that

(B.7) |Φkn(xkn)−G(xkn)| ≥ ε.

If G(y0) = ε/4 and G(y1) − 1 − ε/4, then only finitely many xnk
can lie outside

[y0, y1]. Hence there is a subsequence (which we merely denote j) of (kn) such that

(B.8) xj → y ∈ [y0, y1], |Φj(xj)−G(xj)| ≥ ε.

Then there is either a further subsequence satisfying xj ↗ y or one satisfying
xj ↘ y. Let’s deal with the first possibility; a similar argument will handle the
second.
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To start, pick N so large that

(B.9) |Φj(y)−G(y)| < ε

4
, and |G(xj)−G(y)| < ε

4
, ∀ j ≥ N.

It follows that

(B.10) |Φj(y)−G(xj)| <
ε

2
, ∀ j ≥ N,

hence, if (B.8) holds,

(B.11) |Φj(xj)− Φj(y)| >
ε

2
, ∀ j ≥ N,

hence νj([xj , y]) > ε/2 for j ≥ N , and a fortiori

(B.12) νj([xN , y]) ≥
ε

2
, ∀ j ≥ N.

Now we take j → ∞ to conclude that

(B.13) µ([xN , y]) ≥
ε

2
,

i.e., G(y)−G(xN ) ≥ ε/2, contradicting (B.9). This finishes the proof.

Remark. Coming full circle, we can apply d/dx to (B.6) and obtain (B.1).
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C. Convergence of mollifications of νgk

As in §1, we assume fj are IID random variables satisfying (0.1) and define gk as
in (0.16). Proposition 5.2, useful for our proof of the Berry-Esseen theorem, stated
that in such a case there exists C <∞ such that

(C.1) νgk([y, y + k−1/2]) ≤ Ck−1/2, ∀ y ∈ R, k ∈ N.

In order to prove this, we took ϕ ∈ C∞(R), satisfying

(C.2) suppϕ ⊂ (−a, a), ϕ ≥ 0, ϕ(0) = 1, ϕ(−ξ) = ϕ(ξ), ϕ̂ ≥ 0,

with a as in (3.4) and (3.13), so

(C.3) χfj (ξ) = e−σξ
2/2+ξ2β(ξ), |β(ξ)| ≤ σ

2
, for |ξ| ≤ a,

and established in (5.16) that

(C.4) sup
x

|ϕ(k−1/2D)νgk(x)| ≤ C, ∀ k ∈ N.

This in turn yields (C.1).
It follows from (C.4) and Theorem 1.1 that

(C.5) ϕ(k−1/2D)νgk −→ γσ,

weak∗ in L∞(R), as k → ∞. A check on the behavior of νgk for the coin toss in §2
shows that one cannot expect ϕ(k−1/2D)νgk to converge to γσ uniformly as k → ∞.

Here we show that if in (C.3)

(C.6) |β(ξ)| ≤ b|ξ|r,

for |ξ| ≤ a, and some r ∈ (0, 1], then

(C.7) ϕ(k−s/2D)νgk −→ γσ,

uniformly, as k → ∞, if s ∈ (0, 1) is taken sufficiently small.
To start, we note that ϕ(k−s/2D)(νgk − γσ) is the Fourier transform of

(C.8)
ϕ(k−s/2ξ)[χgk(ξ)− e−σξ

2/2]

= ϕ(k−s/2ξ)
(
eξ

2β(k−1/2ξ) − 1
)
e−σξ

2/2.
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If (C.6) holds, then

(C.9) |β(k−1/2ξ)| ≤ bk−r/2|ξ|r,

for |ξ| ≤ akr/2. If 0 < s < r ≤ 1, then

(C.10)

|ξ| ≤ aks/2 ⇒ |ξ|rk−r/2 ≤ ak−(1−s)r/2

⇒ |β(k−1/2ξ)| ≤ ck−(1−s)r/2

⇒ ξ2|β(k−1/2ξ)| ≤ cks(1+r/2)k−r/2.

This is a useful result provided

(C.11) s
(
1 +

r

2

)
− r

2
= −τ < 0,

i.e., provided

(C.12) s <
r

r + 2
.

In such a case, we get

(C.13)
∣∣ϕ(k−s/2ξ)(eξ2β(k−1/2ξ) − 1

)∣∣ ≤ ck−τ ,

and hence, taking into account the factor e−σξ
2/2 in (C.8),

(C.14) ‖ϕ(k−s/2D)(νgk − γσ)‖L∞ ≤ ck−τ .

On the other hand, ϕ(k−s/2D)γσ − γσ is the Fourier transform of

(C.15) [ϕ(k−s/2ξ)− 1]e−σξ
2/2,

whose absolute value is

(C.16) ≤ Ck−sξ2e−σξ
2/2,

so

(C.17) ‖ϕ(k−s/2D)γσ − γσ‖L∞ ≤ Ck−s.

Putting (C.14) and (C.17) together, we have the following conclusion.

Proposition C.1. Under the hypotheses given above, particularly with r ∈ (0, 1]
satisfying (C.6), s > 0 satisfying (C.12), and τ > 0 given by (C.11), we have

(C.18) ‖ϕ(k−s/2D)νgk − γσ‖L∞ ≤ C(k−τ + k−s).

The structure of ϕ(k−s/2D)νgk and γσ as probability distributions allows us to
deduce the following from Proposition C.1.
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Corollary C.2. In the setting of Proposition C.1,

(C.19) ‖ϕ(k−s/2D)νgk − γσ‖L1 −→ 0, as k → ∞.

Proof. Set γk = ϕ(k−s/2D)νgk . Pick ε > 0. Then pick M <∞ such that

(C.20) ‖γσ‖L1(R\(−M,M)) < ε.

Now pick k(ε) such that

(C.21) k ≥ k(ε) =⇒ ‖γk − γσ‖L∞ <
ε

M
,

hence

(C.22) ‖γk − γσ‖L1((−M,M)) ≤ ε,

hence

(C.23)
∣∣∣∫ M

−M
γk(x) dx− 1

∣∣∣ ≤ ∣∣∣∫ M

−M
γσ(x) dx− 1

∣∣∣+ ε < 2ε.

Since γk and γ
σ are both ≥ 0 and integrate over R to 1, it follows that, for k ≥ k(ε),

(C.24) ‖γk‖L1(R\[−M,M ]) < 2ε,

so, by (C.20) and (C.22),

(C.25) ‖γk − γσ‖L1 < 4ε, for k ≥ k(ε).

This gives (C.19).

Finally, we can interpolate between (C.18) and (C.25).

Corollary C.3. In the setting of Proposition C.1, for each p ∈ [1,∞],

(C.26) ‖ϕ(k−s/2D)νgk − γσ‖Lp −→ 0, as k → ∞.

Proof. Writing Dk = ϕ(k−s/2D)νgk − γσ, we have

(C.27) ‖Dk‖pLp =

∫
R

|Dk|p−1|Dk| dx ≤ ‖Dk‖p−1
L∞ ‖Dk‖L1 .
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2. Stochastic operators and the Perron-Frobenius theorem
in infinite dimensions

1. Introduction

Let X be a compact Hausdorff space. The space C(X) of continuous, real-valued
functions on X is a Banach space, with norm

(1.1) ‖f‖sup = sup
x∈X

|f(x)|.

Let

(1.2) A : C(X) −→ C(X)

be a bounded linear map. We say A is positive if

(1.3) f ∈ C(X), f ≥ 0 =⇒ Af ≥ 0.

We say A is strictly positive if

(1.4) f ∈ C(X), f ≥ 0, f 6= 0 =⇒ Af(x) > 0, ∀x ∈ X.

We say A is primitive if A is positive and some power Am is strictly positive. We
say A is irreducible if A is positive and

(1.5) f ∈ C(X), f ≥ 0, f 6= 0 =⇒ sup
k
Akf(x) > 0, ∀x ∈ X.

The dual of C(X) is

(1.6) M(X) = C(X)′,

where M(X) denotes the space of finite, signed, regular Borel measures on X. The
norm on M(X) is the total variation, which satisfies

(1.7) ‖µ‖TV = sup {〈f, µ〉 : f ∈ C(X), ‖f‖sup ≤ 1},

where

(1.8) 〈f, µ〉 =
∫
X

f dµ.

The operator A in (1.2) has the adjoint

(1.9) At : M(X) −→ M(X),
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satisfying

(1.10) 〈f,Atµ〉 = 〈Af, µ〉.

We have

(1.11) ‖At‖1 = ‖A‖∞,

where ‖A‖∞ denotes the operator norm of A on C(X) and ‖At‖1 that of At on
M(X). Note that, if A is positive, then

(1.12) At : M+(X) −→ M+(X),

where M+(X) denotes the set of positive, finite, regular Borel measures on X.
A positive operator A on C(X) is said to be a stochastic operator if, in addition,

(1.13) A1 = 1.

For such operators, we have

(1.14) At : P(X) −→ P(X),

where P(X) denotes the set of positive, regular Borel measures on X of total mass
1, i.e., probability measures on X.

The Perron-Frobenius theorem is a circle of results about the various sorts of op-
erators defined above. The classical setting is the finite-dimensional case, i.e., where
X is a finite point set. We establish such results here, in the infinite-dimensional
setting. For a number of these results, we make the additional hypothesis that A
in (1.2) is compact, which implies that At in (1.9) is compact.

In §2 we establish results in the Perron-Frobenius circle for stochastic operators.
We first show that if A is a stochastic operator on C(X), there exists µ ∈ P(X)
such that Atµ = µ. (For this, compactness is not needed.) It follows that

(1.15) A : V −→ V, where V = {f ∈ C(X) : 〈f, µ〉 = 0}.

We then show that if A is stochastic and strictly positive, then, for f ∈ C(X),

(1.16) f /∈ Span(1) =⇒ ‖Af‖sup < ‖f‖sup.

This is used to show in Propositions 2.3–2.4 that if A is a compact, stochastic
operator on C(X), and A is strictly positive, or more generally if A is primitive,
then AV = A|V has spectral radius ρ(AV ) < 1. Using this result, we establish the
following in Proposition 2.5.
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Proposition 1.1. Let A be a compact, stochastic operator, and assume A is prim-
itive. Then

(1.17) Ak −→ P, as k → ∞,

in operator norm, where P is the projection of C(X) onto Span(1) that annihilates
V .

It follows that

(1.18) (At)k −→ P t

in operator norm, and P t is the projection of M(X) onto Span(µ) that annihilates
W = {λ ∈ M(X) : 〈1, λ〉 = 0}. For P and P t, we have the formulas

(1.19) Pf = 〈f, µ〉1, P tλ = 〈1, λ〉µ,

given f ∈ C(X), λ ∈ M(X). Making use of Proposition 1.1, we establish in
Propositions 2.7–2.8 the following.

Proposition 1.2. Let A be a compact, stochastic operator on C(X), and assume
A is irreducible. Then the measure µ ∈ P(X) such that Atµ = µ is unique. Fur-
thermore, 1 is an eigenvalue of A of algebraic multiplicity one, i.e., the generalized
eigenspace GE(A, 1) is one-dimensional (equal to Span(1)).

In §3 we turn to other classes of positive operators. We say a positive operator
A on C(X) is crypto-stochastic provided there exists

(1.20) ψ ∈ C(X) such that ψ(x) > 0, ∀x ∈ X, and Aψ = ψ.

Then, with Mψf = ψf , Ã =M−1
ψ AMψ is stochastic, and results of §2 apply. More

generally, we say A is crypto-stochastic up to scaling if there exists λ ∈ (0,∞) such
that λ−1A is crypto-stochastic. Clearly a necessary condition for A to have this
property is that

(1.21) A1(x) = φ(x) > 0, ∀x ∈ X.

We show in Proposition 3.4 that if A is a positive, irreducible, compact operator on
C(X) satisfying three hypotheses, given as (H1)–(H3), then A is crypto-stochastic,
up to scaling.

Turning away from crypto-stochastic operators, we establish the following in
Proposition 3.5.

Proposition 1.3. Let A be a positive, compact operator on C(X). Assume that A
satisfies (1.21). Then there exists λ > 0 and µ ∈ P(X) such that Atµ = λµ.

In §4 we take a look at positive infinite matrices that define bounded linear maps

(1.22) A : ℓ∞(N) −→ ℓ∞(N).
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Such maps are treated in [Sen]. We show that their analysis fits into the material
developed in §§2–3, via the natural, positivity-preserving, isometric isomorphism

(1.23) ℓ∞(N) ≈ C(XN),

where XN is the Stone-Cech compactification of N, which can also be characterized
as the maximal ideal space of ℓ∞(N), viewed as a commutative C∗-algebra.

2. Stochastic operators

Our first result in the circle of Perron-Frobenius theorems is the following. Ac-
tually, this result does not require A to be compact (nor does Proposition 2.2).

Proposition 2.1. Assume A is a stochastic operator. Then there exists

(2.1) µ ∈ P(X) such that Atµ = µ.

Proof. The set P(X) is a compact, convex subset of M(X), endowed with the
weak∗ topology, and At is continuous on M(X) in this topology. Also,

(2.2) At : P(X) −→ P(X).

The existence of a fixed point µ ∈ P(X) is then a consequence of the Markov-
Kakutani fixed point theorem (cf. [DS], p. 456).

Given µ as in (2.1), we set

(2.3) V = {f ∈ C(X) : 〈f, µ〉 = 0},

a closed linear subspace of C(X), of codimension 1. We have a direct sum decom-
position

(2.4) C(X) = V ⊕ Span(1).

Also, whenever (2.1) holds,

(2.5) A : V −→ V,

since

(2.6) 〈Af, µ〉 = 〈f,Atµ〉 = 〈f, µ〉.
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Proposition 2.2. Let A be a stochastic operator. Assume in addition that A is
strictly positive, so (1.4) holds. Then, for f ∈ C(X),

(2.7) f /∈ Span(1) =⇒ ‖Af‖sup < ‖f‖sup.

Proof. It suffices to treat the case ‖f‖sup = 1, so −1 ≤ f ≤ 1. If f(x) < 1
for some x, there exists φ ∈ C(X) such that φ ≥ 0, φ(x) > 0, and f + φ ≤ 1.
Hence Af + Aφ ≤ 1. The hypothesis (1.4) implies Aφ(x) > 0 for all x ∈ X, so
supAf(x) < 1. Similarly, if f(x) > −1 for some x ∈ X, we have inf Af(x) > −1.
If −1 ≤ f ≤ 1 and f /∈ Span(1), both of these conditions hold, and we have (2.7).

Before stating the next result, we note that if A is a stochastic operator on C(X),
then

(2.8) ‖A‖∞ = ‖At‖1 = 1.

Also, having (2.5), let us denote the restriction of A to V by AV .

Proposition 2.3. Let A be a compact stochastic operator, and assume A is strictly
positive. Then

(2.9) α ∈ SpecAV =⇒ |α| < 1.

Hence the spectral radius of AV is < 1, i.e.,

(2.10) ρ(AV ) < 1.

Proof. Note that AV : V → V is compact, so each nonzero α ∈ Spec(AV ) must
be an eigenvalue. The conclusion (2.9) then follows directly from (2.7). Also,
compactness of AV implies that SpecAV is a countable subset of C, whose only
possible accumulation point is 0. Hence (2.10) follows from (2.9).

Remark. We recall the following useful formula for the spectral radius:

(2.11) ρ(AV ) = lim sup
k→∞

‖AkV ‖1/k.

The following result extends the scope of Proposition 2.3 a bit.

Proposition 2.4. Let A be a compact stochastic operator, and assume A is prim-
itive, i.e.,

(2.12) Am is strictly positive for some m ∈ N.

Then the conclusions (2.9)–(2.10) hold.
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Proof. We still have (2.5), and we can define AV as before. Also (AV )
m = (Am)V .

Now if α ∈ SpecAV , and α 6= 0, compactness implies α is an eigenvalue of AV ,
hence αm is an eigenvalue of (AV )

m = (Am)V . But Proposition 2.3 applies to Am,
so |αm| < 1. This gives (2.9), and (2.10) follows.

Remark. In case X = {1, 2} so C(X) = R2, the following is an example of a
stochastic matrix that is irreducible but not primitive:

(2.13) A =

(
0 1
1 0

)
.

Note that (2.9)–(2.10) fail for this matrix.

We can now prove the following key result.

Proposition 2.5. Let A be a compact stochastic operator, and assume A is prim-
itive. Then

(2.14) Ak −→ P, as k → ∞,

in operator norm on C(X), where P is the projection of C(X) onto Span(1) that
annihilates V .

Proof. We have

(2.15)
Ak = AkP +Ak(I − P )

= P +AkV (I − P ),

so

(2.16)
‖Ak − P‖∞ = ‖AkV (I − P )‖∞

≤ ‖AkV ‖∞ · ‖I − P‖∞,

and the fact that this converges to 0 (at an exponential rate) follows from (2.10)–
(2.11).

Corollary 2.6. In the setting of Proposition 2.5,

(2.17) (At)k −→ P t, as k → ∞,

in operator norm on M(X). In this case, P t is the projection of M(X) onto
Span(µ) that annihilates

(2.18) W = {λ ∈ M(X) : 〈1, λ〉 = 0}.



66

Proof. To get (2.17), just apply the transpose to (2.15)–(2.16):

(2.19) (At)k = P t + (AkV (I − P ))t,

and note that

(2.20) ‖(AkV (I − P ))t‖1 = ‖AkV (I − P )‖∞.

Let us note that P is given by the formula

(2.21) Pf = 〈f, µ〉1,

and then the identity

(2.22) 〈f, P tλ〉 = 〈Pf, λ〉 = 〈f, µ〉 〈1, λ〉

yields the formula

(2.23) P tλ = 〈1, λ〉µ, for λ ∈ M(X).

From (2.17) and (2.23), we deduce that, when A is a compact stochastic operator
that is primitive, the measure µ in (2.1) is unique. The following extends the scope
of this result.

Proposition 2.7. Let A be a compact stochastic operator on C(X), and assume
A is irreducible. Then the measure µ in (2.1) is unique.

Proof. Form

(2.24) B =
∞∑
k=1

2−kAk =
1

2
A
(
I − 1

2
A
)−1

,

which is a convergent series by (2.8), and defines a compact stochastic operator on
C(X). If A is irreducible, then B is strictly positive. Hence Proposition 2.3 and
Corollary 2.6 apply to B. On the other hand, Proposition 2.1 applies to A, and
clearly

(2.25) µ ∈ P(X), Atµ = µ =⇒ Btµ = µ.

By Corollary 2.6, applied to B, (Bt)k → P t, given by (2.23). This establishes
uniqueness of µ in (2.25).
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Proposition 2.8. Let A be a compact stochastic operator on C(X), and assume
A is irreducible. Then 1 is an eigenvalue of A of algebraic multiplicity 1, i.e., the
generalized eigenspace GE(A, 1) is 1-dimensional.

Proof. With B as in (2.24), we have B − I = (A− I)(I −A/2)−1, and hence

(2.26) f ∈ GE(A, 1) ⇐⇒ f ∈ GE(B, 1).

But Proposition 2.3 applies to B, and the conclusion (2.9) for BV implies GE(B, 1)
has dimension 1.

3. Other classes of positive compact operators

We move on from compact stochastic operators to other classes of positive com-
pact operators on C(X). To begin, we say a positive operator A on C(X) is
crypto-stochastic if there exists

(3.1) ψ ∈ C(X) such that ψ(x) > 0, ∀x ∈ X, and Aψ = ψ.

Then, with Mψf = ψf , we have the positive operator

(3.2) Ã =M−1
ψ AMψ, stochastic,

and the results of §2 apply to Ã. Note that if A is strictly positive, resp., primitive,

or irreducible, so is Ã. Note also that strict positivity of ψ is required in order that
M−1
ψ be a well defined, bounded operator on C(X). In connection with this, we

have the following.

Proposition 3.1. Assume the positive operator A is irreducible. Then

(3.3) ψ ∈ C(X), ψ ≥ 0, ψ 6= 0, Aψ = ψ =⇒ ψ(x) > 0, ∀x ∈ X.

Proof. Let

(3.4) E =
∞∑
k=1

1

k!
Ak = eA − I.

If A is irreducible, then E is strictly positive. Now

(3.5) Aψ = ψ =⇒ Eψ = (e− 1)ψ.

But ψ ≥ 0, ψ 6= 0 ⇒ Eψ(x) > 0 for all x ∈ X, so we have (3.5).
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Clearly a necessary condition for a positive operator A on C(X) to be crypto-
stochastic is that

(3.6) A1(x) = φ(x) > 0, ∀x ∈ X.

However, this condition is not sufficient. For example, in one picks a positive
λ 6= 1 and a strictly positive compact stochastic operator A0 on C(X), the operator
A = λA0 is positive and satisfies (3.6), but (3.1) cannot hold. This motivates the
definition of a more general class of operators. We say a positive operator A on
C(X) is crypto-stochastic up to scaling if there exist

(3.7) ψ ∈ C(X), λ ∈ (0,∞) such that ψ(x) > 0, ∀x ∈ X and Aψ = λψ.

In such a case, the operator A# = λ−1A is crypto-stochastic.
These considerations lead to the problem of determining when a positive, com-

pact operator on C(X) is crypto-stochastic, up to scaling. In connection with this,
we mention the following weaker problem.

Problem PF. Given a positive, compact operator on C(X), find

(3.8) ψ ∈ C(X), λ > 0 such that ψ ≥ 0, ψ 6= 0, and Aψ = λψ.

The weakening consists in not requiring ψ in (3.8) to be strictly positive. Part of
the classical Perron-Frobenius theory is that this problem is always solvable when
X is a finite point set, so, for some n ∈ N, C(X) ≈ Rn. Here is that result. We
phrase its formulation and proof in a way that lends itself to extension beyond the
finite case.

Proposition 3.2. Assume X has n points, n ∈ N, and A is a positive operator on
C(X). Assume

(3.9) f ∈ C(X), f ≥ 0, f 6= 0 =⇒ Af 6= 0.

Then there exist λ > 0 and ψ ∈ C(X) satisfying (3.8).

Proof. Let ν0 be the probability measure on X that assigns the mass 1/n to each
of its points. With the notation

(3.10) C+(X) = {f ∈ C(X) : f ≥ 0},

let

(3.11) Σ = {f ∈ C+(X) : 〈f, ν0〉 = 1}.

Thus Σ is a compact, convex subset of C(X). We define

(3.12) Φ : Σ −→ Σ
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by

(3.13) Φ(f) =
1

〈Af, ν0〉
Af.

The hypothesis (3.11) implies 〈Af, ν0〉 > 0 for all f ∈ Σ, and by compactness
we have a positive lower bound. Now the Brouwer fixed point theorem applies to
(3.13). (A proof of his result can be found in Chapter 1 of [T].) Hence there exists
f ∈ Σ such that

(3.14) Af = 〈Af, ν0〉f.

This proves Proposition 3.2.

Recalling Proposition 3.1, we see that if X is a finite point set, every positive,
irreducible A on C(X) is crypto-stochastic, up to scaling.

We return to cases where C(X) is infinite dimensional, and investigate ways
to extend the proof of Proposition 3.2 to cover positive, compact operators on
C(X), under some additional hypotheses. To start, we make the following three
hypotheses:

(H1) There is a measure ν ∈ P(X) such that ν(U) > 0 for each nonempty open
U ⊂ X. Equivalently,

(3.15) f ∈ C(X), f ≥ 0, f 6= 0 =⇒ 〈f, ν〉 > 0.

(H2) The positive operator A satisfies

(3.16) A : L1(X, ν) −→ C(X), compactly.

(H3) With C+(X) as in (3.10), and

(3.17) Σ = {f ∈ C+(X) : 〈f, ν〉 = 1},

there is a δ > 0 such that

(3.18) f ∈ Σ =⇒ ‖Af‖sup ≥ δ.

These hypotheses imply that A(Σ) is a relatively compact, convex subset of
C(X). The following is a useful improvement of (3.18).
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Lemma 3.3. Under hypotheses (H1)–(H3), there exists α > 0 such that

(3.19) f ∈ Σ =⇒ 〈Af, ν〉 ≥ α.

Proof. If (3.19) fails, there exist fk ∈ Σ such that 〈Afk, ν〉 ≤ 2−k. Since A(Σ)
is relatively compact in C(X), we have a subsequence fkj such that Afkj → g ∈
C+(X), uniformly. Consequently, 〈g, ν〉 = 0, which by (H1), implies g = 0. This
contradicts the condition (3.18) in (H3).

Now define

(3.20) Φ : Σ −→ Σ, Φ(f) =
1

〈Af, ν〉
Af.

By (3.19), this is a well defined, continuous map, and the relative compactness of
A(Σ) in C(X) yields

(3.21) Φ : Σ −→ K,

where K is a compact, convex subset of Σ ⊂ C(X). The Schauder fixed point
theorem (a proof of which can be found in Chapter 13 of [T]) applies, to yield
ψ ∈ K ⊂ Σ satisfying Φ(ψ) = ψ, hence Aψ = 〈Aψ, ν〉ψ. We have proved the first
part of the following.

Proposition 3.4. Let A : C(X) → C(X) be a positive operator. Assume hypothe-
ses (H1)–(H3). Then there exist λ > 0 and ψ ∈ C(X) such that (3.8) holds.

If also A is irreducible, then A# = λ−1A satisfies

(3.22) A#ψ = ψ, and ψ(x) > 0, ∀x ∈ X,

and hence A# is crypto-stochastic.

Proof. The first part was established above, and (3.22) follows from Proposition
3.1.

Suppose now that A0 is a compact, positive operator on C(X) and that (H1)–
(H3) hold for A = Am0 , for some m ∈ N. If A0 is irreducible, so is A, so, with λ as
in Proposition 3.4, Am1 = A# is crypto-stochastic, where A1 = λ−1/mA0, and we
have (3.22). It follows that there exists µ ∈ P(X) such that (A#)tµ = µ, and, with
V as in (2.3), ψ as in (3.22), we have

(3.23) C(X) = V ⊕ Span(ψ), A# : V → V.

If A# is primitive, so is A#. One deduces via Proposition 2.4 that A#
V = A#|V has

spectral radius ρ < 1, and

(3.24) GE(A#, 1) = Span(ψ).
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Note also that

(3.25) A#(A1ψ) = Am+1
1 ψ = A1(A

#ψ) = A1ψ,

hence A1ψ ∈ Span(ψ). If A1ψ = βψ, then A#ψ = βmψ = ψ, so βm = 1. Since A1

is positive, this implies β = 1, so

(3.26) A1ψ = ψ.

Consequently A1 itself is crypto-stochastic.

We temporarily leave results related to (H1)–(H3), and look directly for positive
measures on X that are eigenvectors of At.

Proposition 3.5. Let A be a positive, compact operator on C(X). Assume that
φ = A1 satisfies (3.6). Then there exist λ > 0 and µ ∈ P(X) such that

(3.27) Atµ = λµ.

Proof. First note that there exists δ > 0 such that

(3.28) 〈1, Atµ〉 = 〈φ, µ〉 ≥ δ, ∀µ ∈ P(X),

given (3.6). Hence we can define

(3.29) Ψ : P(X) −→ P(X), Ψ(µ) =
1

〈1, Atµ〉
Atµ,

and Ψ is continuous. Since At(P(X)) is a relatively compact, convex subset of
M+(X), we have

(3.30) Ψ : P(X) −→ K,

where K is a compact, convex subset of P(X). It follows from the Schauder fixed
point theorem that Ψ has a fixed point, say µ, in K, and then

(3.31) Atµ = 〈1, Atµ〉µ,

giving (3.27).

Having Proposition 3.5, we again make contact with (H1):
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Proposition 3.6. Let A be a positive operator on C(X). If A is irreducible and
µ ∈ P(X) satisfies (3.27), with λ > 0, then

(3.32) f ∈ C(X), f ≥ 0, f 6= 0 =⇒ 〈f, µ〉 > 0.

Proof. For each k ∈ N,

(3.33) λk〈f, µ〉 = 〈f, (At)kµ〉 = 〈Akf, µ〉,

hence, for E = eA − I as in (3.4) and f as in (3.32),

(3.34) (e− 1)〈f, µ〉 = 〈Ef, µ〉 > 0,

since irreducibility of A implies Ef(x) > 0 for all x ∈ X.

Remark. Compactness of A is not required for Proposition 3.6. This fact is
particularly significant in light of Proposition 2.1.

It follows from Propositon 3.6 that, in the setting of Proposition 3.5, and with
A irreducible, hypothesis (H1) holds with ν = µ. Furthermore, with

(3.35) Σ = {f ∈ C+(X) : 〈f, µ〉 = 1},

we have

(3.36) λ−1A : Σ −→ Σ,

so also (H3) and (3.19) hold. Thus Proposition 3.4 implies the following.

Proposition 3.7. Let A be a positive, compact, irreducible operator on C(X), and
assume φ = A1 satisfies (3.6). Take µ ∈ P(X) such that (3.27) holds. Assume
that (H2) holds with ν = µ, i.e.,

(3.37) A : L1(X,µ) −→ C(X), compactly.

Then λ−1A is crypto-stochastic.

4. Connections with infinite positive matrices

Here we look at infinite matrices A = (ajk), defined for j, k ∈ N, having a bound
on the row sums:

(4.1)
∞∑
k=1

|ajk| ≤ α <∞, ∀ j ∈ N.
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Then we have

(4.2) A : ℓ∞(N) −→ ℓ∞(N),

acting as a bounded operator, by

(4.3) (Af)j =

∞∑
k=1

ajkfk, ‖A‖∞ ≤ α.

Here, ℓ∞(N) denotes the space of bounded real sequences, i.e., the space of bounded
functions f : N → R, a Banach space with norm ‖f‖∞ = supk |fk|. We identify
fk = f(k). We say A is positive if ajk ≥ 0 for each j, k ∈ N. We say a positive
matrix is stochastic if each row sum is 1, i.e.,

∑
k ajk = 1 for each j, or equivalently

(4.4) A1 = 1,

where here 1 denotes the function on N that is identically 1.
To relate the study of such matrices to material in §§1–3, we use the natural

isometric isomorphism

(4.5) ℓ∞(N) ≈ C(XN),

where XN denotes the Stone-Cech compactification of N. This is a compact Haus-
dorff space. There is a natural inclusion

(4.6) N ⊂ XN,

as an open, dense subset. Since ℓ∞(N) is not separable, XN is not metrizable. Using
the isomorphism (4.5), we identify A in (4.2) with

(4.7) A : C(XN) −→ C(XN).

Positivity in (4.2) turns into positivity in (4.7), since the isomorphism (4.5) is also
positivity preserving. Also, if (4.4) holds on ℓ∞(N), it holds on C(XN).

As in (1.6), we have the duality

(4.8) ℓ∞(N)′ ≈ C(XN)
′ = M(XN),

where M(XN) is the space of finite, signed, regular Borel measures on XN. There
are a natural injection and a natural projection

(4.9) J : ℓ1(N) −→ M(XN), Π : M(XN) −→ ℓ1(N),

induced by (4.6).
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As in (1.9), the map (4.7) has a transpose

(4.10) At : M(XN) −→ M(XN).

We also have a map

(4.11) Aτ : ℓ1(N) −→ ℓ1(N),

given by

(4.12) Aτ = ΠAtJ.

Results of §§2–3 yield conditions under which At has an invariant measure µ ∈
P(XN). Such µ is also an invariant element of Aτ if and only if suppµ ⊂ N. We
will see examples below for which ℓ1(N) does not have a positive element that is
invariant under Aτ .

While At has a richer structure that Aτ , the operator Aτ does not lose informa-
tion about A. In fact, since ℓ∞(N) = ℓ1(N)′, a bounded operator on ℓ1(N) has a
transpose:

(4.13) B : ℓ1(N) → ℓ1(N) =⇒ Bt : ℓ∞(N) → ℓ∞(N),

and we see that, for A in (4.2),

(4.14) (Aτ )t = A.

Note also that ℓ1(N) is weak∗ dense in M(XN) (though not norm dense), and At

is the unique extension of Aτ to a linear operator on M(XN) that is continuous in
the weak∗ topology of M(XN).

At this point it is useful to note that, in place of the set of positive integers N,
we could use any countably infinite set S, and extend results derived above from
the setting of (4.2) to

(4.15) A : ℓ∞(S) → ℓ∞(S), ℓ∞(S) ≈ C(XS), C(XS)
′ = M(XS),

where XS is the Stone-Cech compactification of XS . Particularly useful examples
include

(4.16) Z, Zn, Sℓ(n,Z).

An example involving S = Z is

(4.17) A : ℓ∞(Z) −→ ℓ∞(Z), Af(k) = f(k + 1).

An element µ ∈ P(XZ) invariant under At defines a linear functional on ℓ∞(Z)
known as an invariant mean. The existence of such invariant means is a special
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case of Proposition 2.1. It is clear that such µ satisfies µ(Z) = 0, and there does not
exist an Aτ -invariant element of ℓ1(Z). Such results hold for a number of related
operators, such as

(4.18) A : ℓ∞(Z) −→ ℓ∞(Z), Af(k) =
1

2
f(k + 1) +

1

2
f(k − 1).

The Markov process associated to this operator is “the standard random walk” on
Z.

In many cases, the operator A might have special structure that allows one to
replace ℓ∞(S) by a smaller subspace, such as

(4.19)
ℓ∞# (N) = {f ∈ ℓ∞(N) : lim

k→∞
f(k) exists}, or

ℓ∞# (Z) = {f ∈ ℓ∞(Z) : lim
k→+∞

f(k) and lim
k→−∞

f(k) exist},

having natural isomorphisms

(4.20)
ℓ∞# (N) ≈ C(N̂), N̂ = N ∪ {∞},

ℓ∞# (Z) ≈ C(Ẑ), Ẑ = Z ∪ {+∞,−∞}.

For example, (4.18) has the variant

(4.21) A : ℓ∞# (Z) −→ ℓ∞# (Z), Af(k) =
1

2
f(k + 1) +

1

2
f(k − 1).

Using the same letter A in (4.18) and (4.21) is perhaps an abuse of notation, a
practice we continue by writing

(4.22) At : M(Ẑ) −→ M(Ẑ).

In the setting of (4.21), we can write the set of elements of P(Ẑ) that are invariant
under At as

(4.23) {aδ+∞ + (1− a)δ−∞ : 0 ≤ a ≤ 1}.

While Proposition 2.1 applies to the operators in (4.17), (4.18), and (4.21), most
of the rest of §2 does not. For one thing, the operators just mentioned are not
compact. Also, the operators in (4.18) and (4.21) have the weak irreducibility
property that

(4.24) f ∈ ℓ∞(Z), f ≥ 0, f 6= 0 =⇒ sup
m

Amf(k) > 0, ∀ k ∈ Z.

However, whenever f(k) → 0 as |k| → ∞, so does Amf(k) for eachm, so supm Amf

vanishes onXZ\Z in case (4.18), and on Ẑ\Z in case (4.21), for each such f , violating
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the condition (1.5) for irreducibility. This also explains why Proposition 3.6 does
not apply to A in (4.18) and (4.21). For a positive operator A : ℓ∞(S) → ℓ∞(S),
irreducibility in the sense of (1.5), for A : C(XS) → C(XS) (which, for emphasis,
we will call strong irreducibility) is equivalent to the property

(4.25) f ∈ ℓ∞(S), f ≥ 0, f 6= 0 =⇒ sup
m

Amf(k) ≥ δ(f) > 0, ∀ k ∈ S.

We next look at a family of operators on ℓ∞(N), examined in [Sen], given by the
infinite matrices

(4.26) A =


q1 p1 · · ·
q2 0 p2
q3 0 0 p3
...

. . .

 ,

with

(4.27) 0 < qj < 1, qj + pj = 1.

Note that

(4.28) {qj} bounded away from 0 =⇒ A is strongly irreducible,

as defined above, since then (4.25) holds. One also readily verifies that

(4.29) pj → 0 as j → ∞ =⇒ A is compact on ℓ∞(N).
One can further extend the scope of the approach to positive infinite matrices

described above. For example, we can consider bounded linear operators

(4.30) A : L∞(Y, σ) −→ L∞(Y, σ),

where (Y, σ) is a measure space. The positivity condition becomes

(4.31) f ∈ L∞(Y, σ), f ≥ 0 =⇒ Af ≥ 0.

This fits into the framework of §§2–3 as follows. The space L∞(Y, σ) is a commu-
tative C∗-algebra, and we have a natural, positivity-preserving, isometric isomor-
phism

(4.32) L∞(Y, σ) ≈ C(X),

where X is the maximal ideal space of the C∗-algebra L∞(Y, σ). In (4.2), we have
Y = N and σ = counting measure.
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3. Lévy Processes

1. Introduction

Wiener measure is a measure on the space of paths in Rn having the following
property. Consider the Gaussian probability distribution

(1.1)
p(t, x) = (2π)−n

∫
e−t|ξ|

2

eix·ξ dξ

= (4πt)−n/2e−|x|2/4t.

Given 0 < t1 < t2 and given that ω(t1) = x1, the probability density for the location
of ω(t2) is p(t2− t1, x−x1). More generally, given 0 < t1 < t2 < · · · < tk and given
Borel sets Ej ⊂ Rn, the probability that a path, starting at x = 0 at time t = 0,
lies in Ej at time tj for each j ∈ {1, . . . , k} is

(1.2)

∫
E1

· · ·
∫
Ek

p(tk − tk−1, xk − xk−1) · · · p(t1, x1) dxk · · · dx1.

It takes some effort to prove that there is a countably additive measure characterized
by these properties. This was first done by N. Wiener, who also proved that the
associated measure, called Wiener measure, is supported on the space of continuous
paths. One elegant approach to the construction of Wiener measure is due to [Nel].
Nelson’s approach is taken in Chapter 16 of [T2] and also in Chapter 11 of [T1].

Extensions of this theory to non-Gaussian distributions have been pursued by
many people, notably P. Lévy. Our main purpose here is to extend the method of
[Nel] to treat these Lévy processes. To start, we replace (1.1) by

(1.3)
p(t, x) = (2π)−n

∫
e−tψ(ξ)eix·ξ dξ

= e−tψ(D)δ(x).

Here ψ(ξ) is a function with the property that

(1.4) p(t, x) ≥ 0, ∀ t > 0, x ∈ Rn.

We require ψ(0) = 0, so

(1.5)

∫
p(t, x) dx = 1, ∀ t > 0.

Note also that

(1.6)

∫
p(t, x− y)p(s, y) dy = p(t+ s, x).
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The example ψ(ξ) = |ξ|2 gives the Gaussian case, as in (1.1). Other examples
include ψα(ξ) = |ξ|2α, for α ∈ (0, 1). The function pα(t, x) = e−tψα(D)δ(x) =
e−t(−∆)αδ(x) is related to (1.1) by the subordination identity

(1.7) e−tL
α

=

∫ ∞

0

Φt,α(s)e
−sL ds, 0 < α < 1,

valid for any positive self adjoint operator L, where Φt,α has the property

(1.8) e−tλ
α

=

∫ ∞

0

Φt,α(s)e
−sλ ds, λ > 0.

The fact that

(1.9) (−∂λ)ke−tλ
α

≥ 0, for λ, t > 0, k ∈ Z+,

implies

(1.10) Φt,α(s) ≥ 0, for s ∈ [0,∞),

given t ∈ (0,∞), α ∈ (0, 1). One also has

(1.11)

∫ ∞

0

Φt,α(s) ds = 1.

This is discussed in a more general context in §IX.11 of [Y]. The most familiar case
is the case α = 1/2, where

(1.12) Φt,1/2(s) =
t

2π1/2
e−t

2/4s s−3/2;

compare [T1], Chapter 3, (5.22)–(5.31).
The positivity (1.10) implies positivity in (1.4) when ψ(ξ) = |ξ|2α, α ∈ (0, 1).

There is a good characterization of functions ψ(ξ) for which (1.4) holds, the Lévy-
Khinchin formula. We discuss this in Appendix A of this chapter, with further
details on such homogeneous cases as |ξ|2α in Appendix B. Here we give another
example, arising from applying (1.7) to et(∆−1). This leads to

(1.13) φα(ξ) = (|ξ|2 + 1)α − 1, 0 < α < 1.

We contrast e−tφα(D)δ(x) with e−tψα(D)δ(x). The latter has a “heavy tail”:

(1.14) e−tψα(D)δ(x) ∼ Cnαt|x|−n−2α, |x| → ∞.

This is contrasted with the exponential decay:

(1.15) e−tφα(D)δ(x) ∼ C ′
nαte

−|x|, |x| → ∞,
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which is much more rapid decay than in (1.14), though not as rapid as the decay
in (1.1). Further results on heavy tails are given in Appendix C, and a detailed
analysis of the long-time and short-time behavior of (1.15) in Appendix D.

Appendix E discusses vanishing and superexponential decay on cones. Appendix
F treats regularity properties of the semigroup e−tψ(D).

Results mentioned above all deal with Levy processes on Euclidean space. Ap-
pendix M extends the notion to Riemannian manifolds. Here we emphasize con-
structions that extend elements arising in the Levy-Khinchin formula, but such
variants quickly lead further afield, and it becomes natural to include Appendix
N, discussing the production of more general Markov semigroups. Material here
includes continuous-time finite Markov chains and denumerable Markov chains, as
well as more general cases.

2. Construction of the probability measures

We will anticipate that the stochastic processes to be constructed here are de-
termined by their values at positive rational t. Thus we consider the set of “paths”

(2.1) P =
∏
t∈Q+

Ṙn.

Here Ṙn is the one point compactification of Rn. Thus P is a compact metrizable
space. For each ψ(ξ) such that (1.3)–(1.5) holds, we associate a probability measure
on P.

In order to construct this measure, we will construct a certain positive linear
functional E : C(P) → R, on the space C(P) of real valued continuous functions
on P, satisfying E(1) = 1, and a condition motivated by (1.2), which we give below.
We first define E on the space C# consisting of continuous functions on P of the
form

(2.2) φ(ω) = F
(
ω(t1), . . . , ω(tk)

)
, t1 < · · · < tk,

where F is continuous on
∏k

1 Ṙn, and tj ∈ Q+. Motivated by (1.2), we take

(2.3)
E(φ) =

∫
· · ·
∫
p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tk − tk−1, xk − xk−1)

F (x1, . . . , xk) dxk · · · dx1.

If φ(ω) in (2.2) actually depends on ω(tν) for some proper subset {tν} of {t1, . . . , tk},
there arises a formula for E(φ) with a different appearance from (2.3). The fact
that these two expressions are equal follows from the identity (1.6). From this it
follows that E : C# → R is well defined. It is also a positive functional, satisfying
E(1) = 1.
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Now, by the Stone-Weierstrass Theorem, C# is dense in C(P). Since E : C# → R
is a positive linear functional and E(1) = 1, it follows that E has a unique con-
tinuous extension to C(P), possessing these properties. The Riesz representation
theorem associates to E a probability measure W . Therefore we have:

Theorem 2.1. Given p(t, x) = e−tψ(D)δ(x) satisfying (1.4)–(1.5), there is a unique
probability measure W on P such that (2.3) is given by

(2.4) E(φ) =

∫
P

φ(ω) dW (ω),

for each φ(ω) of the form (2.2) with F continuous on
∏k

1 Ṙn. In such a case,
(2.3) then holds for any bounded Borel function F , and also for any positive Borel

function F , on
∏k

1 Ṙn.

Let us do some basic examples of calculations of (2.4). Define functions Xt on

P, taking values in Ṙn, by

(2.5) Xt(ω) = ω(t).

We see that if 0 < s < t, q ∈ R,

(2.6)

E(|Xt −Xs|q) =
∫∫

p(s, x1)p(t− s, x2 − x1) |x2 − x1|q dx2 dx1

=

∫
p(t− s, y)|y|q dy,

making the change of variable y = x2 − x1, z = x1 and using (1.5).
Let us specialize to ψ(ξ) = ψα(ξ) = |ξ|2α, i.e.,

(2.7) p(t, x) = e−t(−∆)αδ(x), 0 < α < 1.

Then p(t, ·) is bounded and continuous on Rn for each t > 0 and we have the
asymptotic behavior (1.14) as |x| → ∞. We also have

(2.8) p(t, x) = t−n/2α p(1, t−1/2αx),

and hence

(2.9)

∫
p(t, y)|y|q dy = t−n/2α

∫
p(1, t−1/2αy)|y|q dy

= Cnαq t
q/2α,

where

(2.10) Cnαq =

∫
p(1, y)|y|q dy.
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Since p(1, y) is bounded and

(2.11) p(1, y) ∼ Cα|y|−n−2α, |y| → ∞,

we have

(2.12) Cnαq <∞ ⇐⇒ −n < q < 2α,

given 0 < α < 1. Of course, in the Gaussian case α = 1 one has Cnαq < ∞ for all
q ∈ (−n,∞). In light of (2.6), we have

(2.13) E(|Xt −Xs|q) = Cnαq|t− s|q/2α, −n < q < 2α, 0 < α < 1.

If α = 1 this extends to all q ∈ (−n,∞).
The identity (2.13) measures the distance from Xt to Xs in L

q(P,W ), provided
q > 0 and the hypotheses hold to yield Cnαq < ∞. Note that Lq(P,W ) is a
Banach space for q ∈ [1,∞). For q ∈ (0, 1), it is not a Banach space, but it is still
a metric space. We see that t 7→ Xt extends continuously from Q+ to R+, yielding
a continuous function of t with values in Lq(P,W ), for q ∈ (0, α/2).

The following is a useful generalization of (2.6); if G : Rn → R is positive or
bounded (and Borel measurable) and 0 < s < t,

(2.14)

E(G(Xt −Xs)) =

∫∫
p(s, x1)p(t− s, x2 − x1)G(x2 − x1) dx2 dx1

=

∫
p(t− s, y)G(y) dy

= E(G(Xt−s)).

In other words, Xt −Xs has the same statistical behavior as Xt−s. The following
result asserts that if t > s ≥ 0 then Xt −Xs is independent of Xσ for σ ≤ s.

Proposition 2.2. Assume 0 < s1 < · · · < sk < s < t and consider functions on P
of the form

(2.15) φ(ω) = F
(
ω(s1), . . . , ω(sk)

)
, ψ(ω) = G

(
ω(t)− ω(s)

)
.

Then

(2.16) E(φψ) = E(φ)E(ψ).

Proof. Note that E(ψ) is given by (2.14). Meanwhile, we have

(2.17)

E(φψ) =

∫
p(s1, x1)p(s2 − s1, x2 − x1) · · · p(sk − sk−1, xk − xk−1)

p(s− sk, y1 − xk)p(t− s, y2 − y1)F (x1, . . . , xk)

G(y2 − y1) dx1 · · · dxk dy1 dy2.
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If we change variables to x1, . . . , xk, y1, z = y2 − y1, then comparison with (2.14)
shows that E(ψ) factors out of (2.17). Then use of

∫
p(s − sk, y1 − xk) dy1 = 1

shows that the other factor is equal to E(φ), so we have (2.16).

Note the characteristic function calculation

(2.18) E(eiξ·Xt) =

∫
p(t, y)eiy·ξ dy = e−tψ(ξ).

Then, by (2.14), we have

(2.19) E(eiξ·(Xt−Xs)) = e−|t−s|ψ(ξ),

and an iterative use of (2.16) shows that if 0 < t1 < · · · < tk and ξj ∈ Rn, then

(2.20)
E
(
eiξ1·Xt1+iξ2·(Xt2−Xt1 )+···+iξk·(Xtk

−Xtk−1
))

= e−t1ψ(ξ1)−(t2−t1)ψ(ξ2)−···−(tk−tk−1)ψ(ξk).

3. Stochastic continuity and regularity of paths

In §2 we constructed a probability space (P,W ) and a family Xt of random
variables on P, given by (2.5), when t ∈ Q+. We indicated how to extend Xt to
t ∈ R+ in case ψ(ξ) = |ξ|2α, 0 < α ≤ 1. We begin this section by making such
an extension for general ψ(ξ) treated in Theorem 2.1, obtaining a stochastically
continuous family of random variables on P.

This is obtained in a fashion parallel to (2.7)–(2.13), with |y|q replaced by a
different function G(y), namely

(3.1) G(y) = 1− e−|y| = 1− g(y).

By (2.14) we have (at first for s, t ∈ Q+),

(3.2)

E(G(Xt −Xs)) =

∫
p(|t− s|, y)G(y) dy

= 1−
∫
p(|t− s|, y)g(y) dy = ϑ(|t− s|).

Note that ĝ ∈ L1(Rn) and

(3.3)

∫
p(t, y)g(y) dy = (2π)−n

∫
e−tψ(ξ)ĝ(ξ) dξ.

Also, the function ψ satisfies

(3.4) Reψ(ξ) ≥ 0,
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so the Lebesgue dominated convergence theorem applies, to give limt↘0

∫
p(t, y)g(y) dy =

1, and hence

(3.5) E(G(Xt −Xs)) = ϑ(|t− s|), lim
t→0

ϑ(t) = 0.

Observe that

(3.6) ρ(X,Y ) = E(G(X − Y ))

yields a metric on the space M(P,W ) of equivalence classes of measurable Rn-
valued functions on P, as a consequence of the monotonicity and concavity of
r → 1− e−r on [0,∞). This metric defines the topology of convergence in measure
on P.

In fact, M(P,W ) is a complete metric space with the metric (3.6). Given
a Cauchy sequence, one can take a subsequence (Yj) satisfying ρ(Yj , Yj+k) ≤
4−j , ∀ k ≥ 1. This sequence converges pointwise a.e. to a limit Y ∈ M(P,W ), by
virtue of the estimate

W
(
{ω ∈ P : |Yj(ω)− Yj+k(ω)| ≥ 2−j}

)
≤ C 2−j ,

and convergence also takes place in ρ-metric.
Given this completeness, the estimate (3.5) implies there is a unique continuous

extension of t 7→ Xt from Q+ → M(P,W ) to R+ → M(P,W ). There results a
stochastically continuous process {Xt : t ∈ R+}.

The result (3.5) is quite general, but it is much weaker than such results as
(2.13). Here we mention some stronger results, valid for certain interesting classes
of Lévy processes.

Stochastic continuity of Poisson processes

The Poisson process has transition probabilities given by

(3.7) p(t, x) dx =

∞∑
k=0

tk

k!
e−tδky(x).

We can use the formula (2.6), and take q = 1, to get

(3.8)

E(|Xt −Xs|) =
∞∑
k=0

|t− s|k

k!
e−|t−s||yk|

= |y|
∞∑
k=1

|t− s|k

(k − 1)!
e−|t−s|

= |y| · |t− s|.
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Taking q = 2 in (2.6(, we have

(3.9)

E(|Xt −Xs|2) = |y|2
∞∑
k=0

|t− s|k

k!
k2e−|t−s|

= |y|2
∞∑
k=1

|t− s|k

(k − 1)!
ke−|t−s|

= |y|2
{
|t− s|e−|t−s| +

∞∑
k=2

|t− s|k

(k − 2)!

k

k − 1
e−|t−s|

}
≤ |y|2

{
|t− s|+ 2|t− s|2

}
.

Similarly one can estimate E(|Xt −Xs|k), for k ≥ 3.

Stochastic continuity of modified fractional diffusion processes

In (2.7)–(2.13) we looked at the fractional diffusion process, for which ψ(ξ) =
|ξ|2α, α ∈ (0, 1). Here we take ψ(ξ) = φα(ξ), where

(3.10) φα(ξ) = (|ξ|2 + 1)α − 1, α ∈ (0, 1).

In this case we get finite results for E(|Xt − Xs|q), for q larger than allowed in
(2.13). In fact, use of the Parseval identity for the Fourier transform gives

(3.11)
E(|Xt −Xs|2) = −∆e−|t−s|φα(ξ)

∣∣∣
ξ=0

= |t− s|∆φα(0),

and more generally, for k ∈ N,

(3.12)
E(|Xt −Xs|2k) = (−∆)ke−|t−s|φα(ξ)

∣∣∣
ξ=0

= −|t− s|(−∆)kφα(0) +O(|t− s|2),

as |t−s| → 0. This also works for α = 1, where φ1(ξ) = |ξ|2 and we get the Wiener
process. Note that

(3.13) k ≥ 2 =⇒ ∆kφ1(0) = 0,

which has a profound effect on the behavior of (3.12) as |t− s| → 0, for α = 1.
Appendix D of this chapter has further results on the behavior of E(|Xt−Xs|q),

for q in the range (−n, 2α), for these processes.

The issue of path continuity

Regarding the behavior of individual paths t 7→ Xt(ω), there is the following
result of Kolmogorov. For a proof see [Kry], p. 20.
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Proposition 3.1. Suppose there exist q, β > 0, C <∞ such that

(3.14) E(|Xt −Xs|q) ≤ C|t− s|1+β , ∀ s, t ≥ 0.

Then the process {Xt} has a modification almost all of whose paths are continuous.

Note that in (2.13) this estimate just barely fails, if one requires q < 2α. As
noted below (2.13), such an estimate works in the Gaussian case for all q ∈ (−n,∞),
so (3.14) works there, which gives pathwise continuity for the Wiener process. For
other Lévy processes, path continuity fails, but another result holds.

One says a path t 7→ γ(t) from R+ to Rn is cadlag provided that for each t ∈ R+,

(3.15) lim
s↘t

γ(s) = γ(t), and lim
s↗t

γ(s) exists,

though the latter limit need not equal γ(t). The following result is proven in [Kry],
p. 136.

Proposition 3.2. If {Xt : t ∈ R+} is a stochastically continuous process with
independent increments, then it admits a modification such that almost all paths
are cadlag.

4. Hausdorff dimension of Lévy paths and Lévy graphs

We restrict attention to Lévy processes on Rn generated by (−∆)α, with α ∈
(0, 1]. We estimate from below the Hausdorff dimension Hdim ω(I) for a typical
path ω(I) = {ω(t) : t ∈ I}, where I = [0, T ], T ∈ (0,∞). We will show that for
each such I,

(4.1) Hdimω(I) ≥ min(2α, n), for a.e. ω.

Actually it is known that equality holds (see [Sat]), but we will not establish the
reverse inequality. (For α = 1 the reverse inequality is an immediate consequence
of the modulus of continuity.) We will also estimate the Hausdorff dimension of a
graph:

(4.2) Zω(t) = (t, ω(t)).

With Zω(I) = {Zω(t) : t ∈ I}, we obtain the following estimates on HdimZω(I).
Namely,

(4.3) n ≥ 2,
1

2
≤ α ≤ 1 =⇒ HdimZω(I) ≥ 2α,

for almost all ω, while

(4.4) n = 1,
1

2
< α ≤ 1 =⇒ HdimZω(I) ≥ 2− 1

2α
,

and for each n ≥ 1,

(4.5) 0 < α ≤ 1

2
=⇒ HdimZω(I) ≥ 1.

Perhaps one has equality in (4.3)–(4.5), for almost all ω, but we do not show this.
One tool we use to prove these estimates is the following (cf. [Fal], p. 78).
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Lemma 4.1. Let K ⊂ Rn be a compact set and take b ∈ (0,∞). Assume there is
a positive Borel measure µ 6= 0, supported on K, such that

(4.6)

∫∫
dµ(x) dµ(y)

|x− y|b
<∞.

Then the b-dimensional Hausdorff measure Hb(K) = ∞, so Hdim K ≥ b.

To prove (4.1), we use the following consequence of (2.13):

(4.7) E
(
|Xs −Xt|−b

)
= Cnαb|t− s|−b/2α, 0 < b < n,

with Cnαb <∞ in this range. Consequently

(4.8) E

(∫ T

0

∫ T

0

ds dt

|ω(t)− ω(s)|b

)
= C

∫ T

0

∫ T

0

ds dt

|t− s|b/2α
<∞,

provided 0 < b < 2α, so

(4.9) 0 < b < min(2α, n) =⇒
∫ T

0

∫ T

0

ds dt

|ω(t)− ω(s)|b
<∞, for W -a.e. ω.

Now we define the measure µω on ω([0, T ]) by

(4.10) µω(S) = m
(
{t ∈ [0, T ] : ω(t) ∈ S}

)
,

where m denotes Lebesgue measure on [0, T ]. Thus (4.9) becomes

(4.11)

∫
ω(I)

∫
ω(I)

dµω(x) dµω(y)

|x− y|b
<∞, for a.e. ω, if 0 < b < min(2α, n).

While ω(I) is not compact (unless α = 1), a modification of Lemma 4.1 should
apply, to yield (4.1).

Moving on to graphs, we have

(4.12)

E
(
|Z(s)− Z(t)|−b

)
=

∫
p(|t− s|, y)

(
|t− s|+ |y|

)−b
dy

= |t− s|−n/2α
∫
p(1, |t− s|−1/2αy)

(
|t− s|+ |y|

)−b
dy

=

∫
p(1, z)

(
|t− s|+ |t− s|1/2α|z|

)−b
dz.

Hence, since p(1, ·) is integrable,

(4.13)

E
(
|Z(s)− Z(t)|−b

)
= |t− s|−b/2α

∫
p(1, z)

(
|t− s|1−1/2α + |z|

)−b
dz

≤ C|t− s|−b/2α
[
1 +

∫ (
|t− s|1−1/2α + |z|

)−b
dz

]
.
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If 0 < b < n and 1 − 1/2α ≥ 0, the last integral is bounded independently of
s, t ∈ [0, T ], and one has
(4.14)

0 < b < n,
1

2
≤ α ≤ 1 =⇒ E

(
|Z(s)− Z(t)|−b

)
≤ C|t− s|−b/2α

=⇒ E

(∫ T

0

∫ T

0

ds dt

|Z(t)− Z(s)|b

)
≤ C

∫ T

0

∫ T

0

ds dt

|s− t|b/2α
,

which is < ∞ provided b < 2α. An argument parallel to that using (4.10)–(4.11)
then yields

(4.15) HdimZω(I) ≥ b, ∀ b < min(2α, n), if α ≥ 1

2
,

for almost all ω, which in turn gives (4.3).
Now assume that 1 = n < b, while α ∈ (1/2, 1]. To estimate the last integral in

(4.3), write

(4.16)

∫ T

0

(
|t− s|1−1/2α + z

)−b
dz ≤

∫ |t−s|γ

0

|t− s|−b(1−1/2α) dz +

∫ T

|t−s|γ
z−b dz

≤ C + |t− s|γ−b(1−1/2α) + C|t− s|γ(1−b).

Pick γ = 1− 1/2α to make the exponents both equal to (1 − b)(1− 1/2α). Hence

(4.17)
E
(
|Z(s)− Z(t)|−b

)
≤ C|t− s|−b/2α

(
1 + |t− s|(1−b)(1−1/2α)

)
≤ C|t− s|1−b−1/2α + C|t− s|−b/2α.

Thus

(4.18) E

(∫ T

0

∫ T

0

ds dt

|Z(s)− Z(t)|b

)
≤ C

∫ T

0

∫ T

0

[
ds dt

|t− s|b+1/2α−1
+

ds dt

|t− s|b/2α

]
,

which is < ∞ provided b < 2 − 1/2α. (Note that α ∈ (1/2, 1] ⇒ 2 − 1/2α < 2α.)
This plus another application of Lemma 4.1 (suitably modified) gives (4.4).

We now turn to the case α ∈ (0, 1/2]. In that case, replace (4.13) by

(4.19)
E
(
|Z(s)− Z(t)|−b

)
= |t− s|−b

∫
p(1, z)

(
1 + |t− s|1/2α−1|z|

)−b
dz

≤ C|t− s|−b.

Thus

(4.20) E

(∫ T

0

∫ T

0

ds dt

|Z(s)− Z(t)|b

)
≤ C

∫ T

0

∫ T

0

ds dt

|t− s|b
,
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which is < ∞ provided b < 1. Then a third application of Lemma 4.1 (suitably
modified) gives (4.5).

A. Generators of Lévy processes

Given a function ψ(ξ) on Rn, we say ψ(D) generates a Lévy process if p(t, x) =
e−tψ(D)δ(x) satisfies

(A.1) p(t, x) ≥ 0,

∫
p(t, x) dx = 1,

for all t > 0. (We allow p(t, ·) to be a positive measure.) Examples include ξ ·Aξ =∑
ajkξjξk, when A = (ajk) is a positive semi-definite matrix, yielding Gaussians.

Another family is ψ(ξ) = ib · ξ, generating translations. Still another type is

(A.2) ψ(ξ) = c(1− eiy·ξ),

given c ∈ (0,∞) and y ∈ Rn, generating a “Poisson process.” In such a case we
have

(A.3) e−tψ(ξ) =
∞∑
k=0

(ct)k

k!
e−ct eiky·ξ.

Hence e−tψ(D)δ(x) is a countable sum of point masses, supported on {ky : k =
0, 1, 2, . . . }.

In light of the identity

(A.4) e−t(ψ1(D)+ψ2(D)) = e−tψ1(D)e−tψ2(D),

it is clear that positive superpositions of the various generators described above
are also generators of Lévy processors. P. Lévy showed that this class, suitably
completed, yields all such generators. (His proof was simplified by Khinchin.) The
resulting formula

(A.5) ψ(ξ) = ξ ·Aξ + ib · ξ +
∫
Rn

(
1− eiy·ξ + iy · ξχB(y)

)
dµ(y)

is called the Lévy-Khinchin formula. Here χB is one on the unit ball B and zero
on the complement, and µ is a positive measure on Rn \ 0 satisfying

(A.6)

∫
(|y|2 ∧ 1) dµ(y) <∞.
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Often it is useful to modify the term iy · ξχB ; sometimes one will drop it altogether
(i.e., absorb it into the term ib · ξ). Examples of such modifications are given in
(B.2)–(B.3) of the next appendix, where we discuss homogeneous generators.

We end this section with a brief discussion of radial generators. If ψ(ξ) is a radial
function of the form (A.5), we have

(A.7) ψ(ξ) = a|ξ|2 +
∫ ∞

0

(1− ψn(s|ξ|)) dρ(s),

where a ≥ 0 and

(A.8)

∫
Sn−1

eiy·ξ dS(y) = ψn(|ξ|) = (2π)n/2|ξ|1−n/2 Jn/2−1(|ξ|).

Here ρ is a positive measure on (0,∞) satisfying
∫∞
0

(s2 ∧ 1) dρ(s) < ∞. In case
n = 1, (A.7) takes the form

(A.9) ψ(ξ) = aξ2 +

∫ ∞

0

(1− cos s|ξ|) dρ(s).

B. Homogeneous Lévy generators

Here we construct functions homogeneous of degree α ∈ (0, 2) for which p(t, x) =
e−tψ(D)δ(x) satisfies (A.1). Of course

(B.1) ψ(ξ) = |ξ|α, 0 ≤ α ≤ 2,

works, by the results of §1. We obtain further cases by specializing natural variants
of the Lévy-Khinchin formula (A.5). In this way we obtain the following such
homogeneous generators:

Φα,g(ξ) = −
∫
Rn

(eiy·ξ − 1)g(y)|y|−n−α dy, 0 < α < 1,(B.2)

Ψα,g(ξ) = −
∫
Rn

(eiy·ξ − 1− iy · ξ)g(y)|y|−n−α dy, 1 < α < 2.(B.3)

The function g is assumed to be positive, bounded, and homogeneous of degree 0,
i.e.,

(B.4) g ≥ 0, g ∈ L∞(Rn), g(ry) = g(y), ∀ r > 0.
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It is easy to verify that both integrals in (B.2)–(B.3) are absolutely convergent,
and, for r > 0,

(B.5)
Φα,g(rξ) = rαΦα,g(ξ), 0 < α < 1,

Ψα,g(rξ) = rαΨα,g(ξ), 1 < α < 2.

When g ≡ 1 we obtain a positive multiple of (B.1).
We now specialize to n = 1 and g = χR+ , so we look at

(B.6)

φα(ξ) = −
∫ ∞

0

(eiyξ − 1)y−1−α dy, 0 < α < 1,

ψα(ξ) = −
∫ ∞

0

(eiyξ − 1− iyξ)y−1−α dy, 1 < α < 2.

Clearly φα and ψα are holomorphic in {ξ ∈ C : Im ξ > 0}, and homogeneous of
degree α in ξ. Also, for η > 0,

(B.7)

φα(iη) = −
∫ ∞

0

(e−yη − 1)y−1−α dy > 0, 0 < α < 1,

ψα(iη) = −
∫ ∞

0

(e−yη − 1 + yη)y−1−α dy < 0, 1 < α < 2,

since, for r > 0, 1 − r < e−r < 1. It follows that φα(ξ) and ψα(ξ) are positive
multiples of

(B.8)
φ#
α (ξ) = (−iξ)α, 0 < α < 1,

ψ#
α (ξ) = −(−iξ)α, 1 < α < 2,

restrictions to R of functions holomorphic on {ξ ∈ C : Im ξ > 0}. Taking instead
g = χR− , we obtain positive multiples of

(B.9)
φbα(ξ) = (iξ)α, 0 < α < 1,

ψbα(ξ) = −(iξ)α, 1 < α < 2,

restrictions to R of functions holomorphic on {ξ ∈ C : Im ξ < 0}, satisfying

(B.10) φbα(−iη) > 0, ψbα(−iη) < 0, ∀ η > 0.

The functions in (B.8) and (B.9) are well known examples of homogeneous functions
ψ(ξ) for which e−tψ(D) satisfies (A.1). The associated operators ψ(D) are fractional
derivatives.

It is also useful to observe the explicit formulas
(B.11)

e−tφ
#
α (ξ) = e−t(cosπα/2)|ξ|

α
[
cos
(
t
(
sin

πα

2

)
|ξ|α

)
+ iσ(ξ) sin

(
t
(
sin

πα

2

)
|ξ|α

)]
.
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for t > 0, 0 < α < 1, where

(B.12) σ(ξ) = sgn ξ,

and
(B.13)

e−tψ
#
α (ξ) = et(cosπα/2)|ξ|

α
[
cos
(
t
(
sin

πα

2

)
|ξ|α

)
− iσ(ξ) sin

(
t
(
sin

πα

2

)
|ξ|α

)]
,

fior t > 0, 1 < α < 2. Note that

(B.14) 0 < α < 1 ⇒ cos
πα

2
> 0, 1 < α < 2 ⇒ cos

πα

2
< 0,

so of course we have decaying exponentials in both (B.11) and (B.13). We get
similar formulas with # replaced by b, since in fact

(B.15) φbα(ξ) = φ#
α (−ξ), ψbα(ξ) = ψ#

α (−ξ).

Returning to the general formulas (B.2)–(B.3), we can switch to polar coordi-
nates and write

(B.16)

Φα,g(ξ) = −
∫

Sn−1

∫ ∞

0

(eisω·ξ − 1)g(ω)s−1−α ds dS(ω),

Ψα,g(ξ) = −
∫

Sn−1

∫ ∞

0

(eisω·ξ − 1− isω · ξ)g(ω)s−1−α ds dS(ω),

and hence

(B.17)

Φα,g(ξ) =

∫
Sn−1

φα(ω · ξ)g(ω) dS(ω),

Ψα,g(ξ) =

∫
Sn−1

ψα(ω · ξ)g(ω) dS(ω).

We can extend the scope, replacing g(ω) dS(ω) by a general positive, finite Borel
measure on Sn−1. Taking into account the calculations yielding (B.8)–(B.9), we
obtain homogeneous generators satisfying (A.1), of the form

(B.18)

Φbα,ν(ξ) =

∫
Sn−1

(iω · ξ)α dν(ω), 0 < α < 1,

Ψbα,ν(ξ) = −
∫

Sn−1

(iω · ξ)α dν(ω), 1 < α < 2,
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where ν is a positive, finite Borel measure on Sn−1.
It remains to discuss the case α = 1. For n = 1 it is seen that positive multiples

of

(B.19) |ξ|+ iaξ, a ∈ R,

work. Hence the following functions on Rn work:

|ω · ξ|+ iaω · ξ, ω ∈ Sn−1, a ∈ R.

We can take positive superpositions of such functions and, in analogy with (B.18),
obtain generators of diffusion semigroups whose negatives are Fourier multiplication
by

(B.20) ib · ξ + Ξν(ξ),

where b ∈ Rn and

(B.21) Ξν(ξ) =

∫
Sn−1

|ω · ξ| dν(ω).

We now tie in results derived above with material given in Chapters 1–2 of [ST].
For such functions ψ(ξ), homogeneous of degree α ∈ (0, 2], as constructed above,
the probability distributions

(B.22) pt(x) = e−tψ(D)δ(x)

are known as α-stable distributions. In the notation (1.1.6) of [ST], consider

(B.23) ψ(ξ) = σα |ξ|α
(
1− iβ(sgn ξ) tan

πα

2

)
, ξ ∈ R.

Here

(B.24) σ ∈ (0,∞), β ∈ [−1, 1],

and α ∈ (0, 2) but α 6= 1. Also, take µ ∈ R. Then e−ψ(D)+iµDδ(x) is a probability
distribution on the line called an α-stable distribution with scale parameter σ,
skewness parameter β, and shift parameter µ. It is clear from (B.11)–(B.13) that
each function of the form (B.23) is a positive linear combination of φ#

α (ξ) and φ
b
α(ξ)

if α ∈ (0, 1) and a positive linear combination of ψ#
α (ξ) and ψ

b
α(ξ) if α ∈ (1, 2).

In case α = 1, one goes beyond ψ(ξ) homogeneous of degree 1 in ξ, to consider

(B.25) ψ(ξ) = σ |ξ|
(
1 + i

2β

π
(sgn ξ) log |ξ|

)
+ iµξ, ξ ∈ R,
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again with β ∈ [−1, 1], µ ∈ R. Then e−ψ(D)δ(x) is a probability distribution on R
called a 1-stable distribution, with scale parameter σ, skewness β, and shift µ. The
cases arising from (B.19) all have skewness β = 0.

Similarly, functions ψ(ξ) of the form (B.18) and (B.20)–(B.21) produce proba-
bility distributions e−ψ(D)δ(x) on Rn that are α-stable. These, plus analogues with
a shift incorporated, comprise all of them except when α = 1, in which case one
generalizes (5.21) to

(B.26) Ξ̃ν(ξ) =

∫
Sn−1

|ω · ξ|
(
1 +

2i

π
(sgnω · ξ) log |ω · ξ|

)
dν(ω).

Compare (2.3.1)–(2.3.2) in [ST].
We return to the case n = 1 and make some more comments on the probability

distributions

(B.27)
pαt (x) = e−tφ

#
α (D)δ(x), 0 < α < 1,

pαt (x) = e−tψ
#
α (D)δ(x), 1 < α < 2,

and their variants with # replaced by b, which are simply pαt (−x). Explicitly, we
have

(B.28) pαt (x) =
1

2π

∫ ∞

−∞
eix·ξ−tφ

#
α (ξ) dξ,

for 0 < α < 1, with φ#
α (ξ) replaced by ψ#

α (ξ) for 1 < α < 2. Recall that φ#
α and ψ#

α

are holomorphic in {ξ ∈ C : Im ξ > 0}. It follows from the Paley-Wiener theorem
that, for each t > 0,

(B.29) pαt (x) = 0, for x ∈ [0,∞), 0 < α < 1.

This theorem does not apply when α ∈ (1, 2), but a shift in the contour of integra-
tion to {ξ + ib : ξ ∈ R}, with arbitrary b > 0 yields

(B.30) pαt (x) = e−bx × bounded function of x,

for x ∈ R, whenever 1 < α < 2, hence

(B.31) pαt (x) = o(e−bx), ∀ b > 0, as x→ +∞, for 1 < α < 2.

A more precise asymptotic behavior is stated in (1.2.11) of [ST]. See also results in
§E.

We also note that, for α ∈ (1, 2), pαt (x) is real analytic in x ∈ R, and in fact
extends to an entire holomorphic function in x ∈ C, for each t > 0, due to rapidity
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with which Reψ#
α (ξ) → +∞ as |ξ| → ∞, which of course forbids (B.29) in this

case.

C. Asymptotic behavior of a class of stable distributions (heavy tails)

A fair number of Lévy generators ψ(D), producing probability distributions
p(t, x) = e−tψ(D)δ(x), have the following properties:

ψ ∈ C∞(Rn \ 0),(C.1)

Reψ(ξ) ≥ C|ξ|β , for some β ∈ (0, 2), C > 0,(C.2)

ψ(ξ) ∼
∑
k≥0

ak

( ξ
|ξ|

)
|ξ|γ+k, |ξ| → 0, for some γ ∈ (0, 2),(C.3)

with ak ∈ C∞(Sn−1), (C.3) implying that ψ(ξ)−
∑m
k=0 ak(ξ/|ξ|)|ξ|γ+k ∈ Cm(Rn)

for each m. Our goal is to derive the asymptotic behavior of p(t, x) as |x| → ∞,
for fixed t > 0, under these hypotheses.

To start, we can write

(C.4) e−tψ(ξ) = At(ξ) +Bt(ξ),

where, for each t > 0,

(C.5) At ∈ S(Rn), suppBt ⊂ {ξ : |ξ| ≤ 1},

and

(C.6) Bt(ξ) ∼ 1 +
∑

j≥1,k≥0

bjkt

( ξ
|ξ|

)
|ξ|jγ+k, |ξ| → 0.

In such a case,

(C.7) p(t, x) = Ât(x) + B̂t(x), Ât ∈ S(Rn),

so the asymptotic behavior of p(t, x) as |x| → ∞, for fixed t > 0, is given by that

of B̂t(x). Now if we set

(C.8) Bjkt(ξ) = bjkt

( ξ
|ξ|

)
|ξ|jγ+k, ξ ∈ Rn,

then Bjkt ∈ S ′(Rn), and if Φ ∈ C∞
0 (Rn), Φ(ξ) = 1 for |ξ| ≤ 1, then

(C.9) Bt(ξ)− Φ(ξ)
N∑
j=1

N∑
k=0

Bjkt(ξ)
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has a Fourier transform bounded by C|x|−M as |x| → ∞, with M = M(N) → ∞
as N → ∞. Meanwhile,

(C.10)
(
1− Φ(ξ)

)
Bjkt(ξ) ∈ Sjγ+k1 (Rn),

so its Fourier transform is rapidly decreasing as |x| → ∞. (Cf. [T1], Chapter 3,
Proposition 8.2.) Hence, for each t > 0,

(C.11) B̂t(x) ∼
∑

j≥1,k≥0

B̂jkt(x), |x| → ∞.

As for B̂jkt(x), since Bjkt(ξ) is a homogeneous element of S ′(Rn), of degree
jγ + k, and smooth on Rn \ 0, i.e.,

(C.12) Bjkt ∈ H#
jγ+k(R

n),

in the notation (8.8) of [T1], Chapter 3, we have

(C.13) B̂jkt ∈ H#
−n−jγ−k(R

n),

by Proposition 8.1 in [T1], Chapter 3, the proof using Proposition 8.2, cited above.
In other words,

(C.14) B̂jkt(x) = b#jkt

( x
|x|

)
|x|−n−jγ−k,

with

(C.15) b#jkt ∈ C∞(Sn−1).

There are integral formulas for b#jkt in terms of bjkt, jγ + k, and n, which we will

not record here. (See, e.g., calculations in [Zai].) We have the following conclusion.

Proposition C.1. If ψ(ξ) satisfies (C.1)–(C.3), then for each t > 0, p(t, x) =
e−tψ(D)δ(x) is C∞ in x and satisfies

(C.16) p(t, x) ∼
∑

j≥1,k≥0

b#jkt

( x
|x|

)
|x|−n−jγ−k, |x| → ∞.

In particular, the leading term is

(C.17) b#10t

( x
|x|

)
|x|−n−γ .
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Note that

(C.18)

∫
|x|≥1

|x|−n−γ+ℓ dx = An

∫ ∞

1

r−1−γ+ℓ dr,

which is +∞ for ℓ = 1 if γ ∈ (0, 1] and is finite for ℓ = 1 if γ ∈ (1, 2), but +∞ for
ℓ = 2 for all γ ∈ (0, 2). Consequently, as long as a0(ξ/|ξ|) is not ≡ 0 in (C.3), we
have, for each t > 0,

(C.19)

∫
p(t, x)|x|ℓ dx = ∞ if ℓ = 1 and γ ∈ (0, 1]

∞ if ℓ = 2 and γ ∈ (0, 2).

Note that the homogeneous generators of degree α considered in §B that satisfy
(C.1) and Reψ(ξ) > 0 for ξ 6= 0 also satisfy (C.2)–(C.3) with β = γ = α.

D. Short time and long time behavior of e−tψ(D)δ(x): examples

Here we examine the asymptotic behavior of

(D.1) p(t, x) = e−tψ(D)δ(x),

both as t↗ ∞ and as t↘ 0, for some specific examples of ψ(ξ).
The first example is

(D.2) ψ(ξ) = (|ξ|2 + 1)α − 1,

with α ∈ (0, 1). As noted in (1.15) we have, for each fixed t > 0,

p(t, x) ≤ Cnαt e
−|x|, |x| → ∞.

We first treat the large t behavior. In light of the estimate above, the Central Limit
Theorem applies. We have p(t, x) behaving like

(D.3) q(t, x) = eαt∆δ(x)

as t↗ ∞, over the region |x| ≤ Kt1/2, for each K ∈ (0,∞). More precisely, set

(D.4) p#(t, x) = tn/2p(t, t1/2x),

and compare it with

(D.5) q#(t, x) = tn/2q(t, t1/2x) = q(1, x).
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We have

(D.6) p#(t, x) = (2π)−n
∫
e−t[(1+|ξ|2/t)α−1]eix·ξ dξ,

and standard arguments to establish versions of the Central Limit Theorem (cf. [T1],
Chapter 3, §3, Exercises 7–13, or Chapter 1 of this text) yield

(D.7) p#(t, x) −→ q(1, x), as t↗ ∞,

both uniformly and in L1-norm.
By contrast, we claim that as t↘ 0, p(t, x) behaves like

(D.8) Q(t, x) = e−t(−∆)αδ(x).

To state this more precisely, in analogy with (D.4)–(D.7) we set

(D.9) pb(t, x) = tn/2αp(t, t1/2αx),

and compare it with

(D.10) Qb(t, x) = tn/2αQ(t, t1/2αx) = Q(1, x).

Then

(D.11)

pb(t, x) = (2π)−n
∫
e−t[(1+|ξ|2/t1/α)α−1]eix·ξ dξ

= (2π)−n
∫
e−[(t1/α+|ξ|2)α−t]eix·ξ dξ.

Now

(D.12) e−[(t1/α+|ξ|2)α−t] −→ e−|ξ|2α , as t↘ 0,

in L1(Rn) and uniformly. The L1-convergence implies

(D.13) pb(t, x) −→ Q(1, x), as t↘ 0,

uniformly, and the fact that pb(t, x) and Q(1, x) are all positive functions of x
integrating to 1 yields the convergence in L1-norm.

We can say more. Note that

(D.14)

e−tpb(t, x) = e−(−∆+t1/α)αδ(x)

=

∫ ∞

0

e−t
1/αs Φ1,α(s) e

s∆δ(x) ds,
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where we have used (1.7) with L = −∆+ t1/α. Consequently, we also have

(D.15) e−tpb(t, x) ↗ Q(1, x), t↘ 0.

We can apply this to estimate the modulus of continuity of the stochastic process
{Xt} given in Theorem 2.1, with ψ(D) given by (D.2). Recall (2.6):

(D.16) E(|Xt −Xs|q) =
∫
p(|t− s|, y)|y|q dy.

Using (D.9) we have, for −n < q < 2α,

(D.17)

∫
p(t, y)|y|q dy = tq/2α

∫
pb(t, x)|x|q dx,

and, by (D.15), as t↘ 0,

(D.18) e−t
∫
pb(t, x)|x|q dx↗

∫
Q(1, x)|x|q dx,

which is a number A ∈ (0,∞), by arguments mentioned in (2.10)–(2.12). Thus, as
|t − s| ↘ 0, E(|Xt − Xs|q) has the same asymptotic behavior for ψ(ξ) given by
(D.2) as it does for ψ(ξ) = |ξ|2α, given α ∈ (0, 1), for this range of q.

Our second example is

(D.19) ψ(ξ) = |ξ|2 + |ξ|.

To treat the large time behavior, this time we examine

(D.20)

p#(t, x) = tnp(t, tx)

= (2π)−n
∫
e−t(t

−2|ξ|2+t−1|ξ|)eix·ξ dξ

→ (2π)−n
∫
e−|ξ|eix·ξ dξ, as t↗ ∞.

In other words,

(D.21) p#(t, x) −→ e−
√
−∆δ(x) =

An
(|x|2 + 1)(n+1)/2

, as t→ ∞.

In this sense, et(∆−
√
−∆)δ(x) behaves like e−t

√
−∆δ(x) as t↗ ∞.

To treat small time behavior, we examine

(D.22)

pb(t, x) = tn/2p(t, t1/2x)

= (2π)−n
∫
e−t(t

−1|ξ|2+t−1/2|ξ|)eix·ξ dξ

→ (2π)−n
∫
e−|ξ|2eix·ξ dξ, as t↘ 0.
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In other words,

(D.23) pb(t, x) −→ e∆δ(x) = (4π)−n/2 e−|x|2/4, as t↘ 0.

In this sense, et(∆−
√
−∆)δ(x) behaves like et∆δ(x) as t↘ 0. However, one must be

cautioned that the paths for the process associated to et(∆−
√
−∆) are not continuous,

but rather cadlag, with jumps, so (D.23) does not tell the whole story about the
short time behavior.

Let us now estimate E(|Xt−Xs|q) for the process {Xt} generated by ψ(D) with
ψ(ξ) given by (D.19). As in (D.16), we have

(D.24) E(|Xt −Xs|q) =
∫
p(|t− s|, y)|y|q dy.

Using (D.22), we have the following analogue of (D.17):

(D.25)

∫
p(t, y)|y|q dy = tq/2

∫
pb(t, x)|x|q dx.

However, from here the argument is different from (D.18). We have

(D.26) pb(t, x) = e∆−t1/2
√
−∆δ(x) = h ∗ qt(x),

where

(D.27)

h(x) = (4π)−n/2 e−|x|2/4, qt(x) = t−n/2 q1(t
−1/2x),

q1(x) =
Cn

(1 + |x|2)(n+1)/2
, Cn = π−(n+1)/2 Γ

(n+ 1

2

)
.

We deduce that

(D.28) E(|Xt −Xs|q) ≤ Cq|t− s|q/2, −n < q < 2.

As noted in (2.13) and the remark following it, for the process generated by ∆ (i.e.,
Brownian motion) we have the estimate (D.28) over a larger range of q, namely
q ∈ (−n,∞). Note that one can apply the Kolomogorov criterion (3.7) for sample
path continuity as long as this estimate holds for some exponent q/2 > 1, but we
do not get this in the product case, and this process is only cadlag.

On the other hand, using (D.28) with q close to −n, we obtain the following
variant of (4.1), giving another respect in which the short time behavior of Xt in
this case is like that of Brownian motion.
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Proposition D.1. For the process generated by ∆ −
√
−∆, if n ≥ 2 we have for

each interval I = [0, T ], T > 0,

(D.29) Hdimω(I) ≥ 2, for a.e. ω.

Here, as in (2.5), ω(t) = Xt(ω). Presumably, one has equality in (D.29), but we
do not have a proof of this.

E. Vanishing and super-exponential decay on cones

Let us set

(E.1)
φα(x) = (ix+ i0)α, 0 < α < 1,

ψα(x) = −(ix+ i0)α, 1 < α < 2,

as in (B.9), i.e., φα is the boundary value on R of the function (iz)α and ψα that
of −(iz)α on {z : Im z < 0}, satisfying

(E.2) φα(−iy) > 0, ψα(−iy) < 0, ∀ y > 0.

As in (B.18), we consider

(E.3)

Φα,ν(ξ) =

∫
Sn−1

φα(ξ · ω) dν(ω), 0 < α < 1,

Ψα,ν(ξ) =

∫
Sn−1

ψα(ξ · ω) dν(ω), 1 < α < 2,

where ν is a positive, finite Borel measure on Sn−1, and we consider the associated
probability distributions

(E.4)
Pα,ν(t, x) = e−tΦα,ν(D)δ(x), 0 < α < 1,

Qα,ν(t, x) = e−tΨα,ν(D)δ(x), 1 < α < 2.

Here we extend to n dimensions the vanishing result (B.29) (for 0 < α < 1) and
the super-exponential decay result (B.31) (for 1 < α < 2), on a half-line, in case
n = 1 and the measure ν on S0 = {−1, 1} has support in one point. We start with
the extended vanishing result, when 0 < α < 1.
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Proposition E.1. Assume ν is a positive measure supported on Σ ⊂ Sn−1, and
let K ⊂ Rn be the convex hull of the cone over Σ. Then, for α ∈ (0, 1), t > 0,

(E.5) suppPα,ν(t, ·) ⊂ K.

Proof. In this case we have (B.2), i.e.,

(E.6) Φα,ν(ξ) =

∫
Σ

∫ ∞

0

(1− eiy·ξ)s−1−α ds dν(ω), y = sω.

This is a limit of finite, positive linear combinations of functions

(E.7) ψy(ξ) = 1− eiy·ξ, y = sω, ω ∈ Σ, s > 0.

Hence e−tΦα,ν(D) is a limit of compositions

(E.8) e−tc1ψy1
(D) · · · e−tcNψyN

(D),

and Pα,ν(t, ·) is a limit in S ′(Rn) of a sequence of distributions of the form

(E.9) ptc1,y1 ∗ · · · ∗ ptcN ,yN (x),

where

(E.10) ptcj ,yj (x) =
∞∑
k=0

(tcj)
k

k!
e−cjt δ(x− kyj).

Note that ptcj ,yj is supported on the ray through yj in Rn. Hence the support of
(E.9) is contained in the convex hull of the set of rays through {y1, . . . , yN} ⊂ Σ.
In the limit we get (E.5).

Next we establish super-exponential decay of Qα,ν(t, x), not on the complement
of K, but on the dual cone:

(E.11) L = {x ∈ Rn : x · ω < 0, ∀ω ∈ Σ}.

Proposition E.2. Assume ν is a positive measure supported on Σ ⊂ Sn−1. Also
assume that, for some C > 0,

(E.12) ReΨα,ν(ξ) ≥ C|ξ|α, ξ ∈ Rn.

Then, for α ∈ (1, 2), t > 0,

(E.13) Qα,ν(t, x) = o(e−b|x|), ∀ b > 0, as |x| → ∞, x ∈ L,
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where L (which might be empty) is given by (E.11).

Proof. Under the stated hypotheses,

(E.14) Ψα,ν(ξ + iη) =

∫
Σ

ψα(ω · ξ + iω · η) dν(ω)

is well defined and holomorphic on

(E.15) {ξ + iη : ξ ∈ Rn, η ∈ L}.

Furthermore,

(E.16) ReΨα,ν(ξ + iη) ≥ C|ξ|α − C ′|η|α,

with C > 0. Hence, for each η ∈ L,

(E.17)

Qα,ν(t, x) = (2π)−n
∫
eix·ξ−tΨα,ν(ξ) dξ

= (2π)−ne−x·η
∫
eix·ξ−tΨα,ν(ξ+iη) dξ.

Hence

(E.18) |Qα,ν(t, x)| ≤ Ct(η)e
−x·η.

If x ∈ L, we can pick η = 2bx/|x| and deduce (E.13).

As for when (E.12) holds, note that, for x ∈ R,

(E.19) Reψα(x) =
∣∣∣cos πα

2

∣∣∣ · |x|α,
(compare (B.13)–(B.14)), and hence, for ξ ∈ Rn, Aα = | cosπα/2|,

(E.20) ReΨα,ν(ξ) = Aα

∫
Σ

|ω · ξ|α dν(ω).

Thus

(E.21) (E.12) holds ⇐⇒
∫
Σ

|ω · ξ|α dν(ω) > 0, ∀ ξ ∈ Rn \ 0.

Remark. In light of (E.16), we can restate (E.18) more precisely as

(E.22) |Qα,ν(t, x)| ≤ Ct

( η
|η|

)
eC

′|η|αe−x·η.
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Hence, picking η = bx/|x|, we have

(E.23) |Qα,ν(t, x)| ≤ Ct

( x
|x|

)
e−b|x|+C

′tbα , b ∈ (0,∞).

Optimizing over b, we then have

(E.24) |Qα,ν(t, x)| ≤ Ct

( x
|x|

)
e−κ|x|

α/(α−1)/t1/(α−1)

, x ∈ L.

F. Regularity properties of the semigroup e−tψ(D)

Let e−tψ(D) be as in §1. In particular, we have (3.3)–(3.4). It is elementary that
for each t > 0, e−tψ(D) is a contraction on Lp(Rn) for each p ∈ [1,∞]. It is also a
contraction on BC(Rn), the space of bounded continuous functions on Rn, and on
the closed linear subspace UC(Rn) of bounded, uniformly continuous functions on
Rn, and on the space C∗(Rn) of continuous functions on Rn vanishing at infinity.
It is positivity preserving on all these spaces.

The family e−tψ(D) is a strongly continuous semigroup on most of these spaces,
though not on L∞(Rn) or BC(Rn). This continuity is quite elementary for L2(Rn),
by virtue of the identity

(F.1) e−tψ(D)u(x) = (2π)−n
∫
e−tψ(ξ)û(ξ)eix·ξ dξ

and the Plancherel theorem. Also, if u ∈ S(Rn), the integrand on the right side of
(F.1) is a continuous function of t ∈ [0,∞) with values in L1(Rn), so the Fourier
integral is a continuous function of t with values in C∗(Rn). Since S(Rn) is dense
in C∗(Rn), we have a strongly continuous semigroup on C∗(Rn). More generally,
given u ∈ S(Rn), e−tψ(ξ)û(ξ) is a continuous function of t with values in Lp(Rn)
for each p ∈ [1, 2], so (F.1) is a continuous function of t with values in Lp

′
(Rn).

The same density argument shows that we have a strongly continuous semigroup
on Lq(Rn) for each q ∈ [2,∞).

We next argue that e−tψ(D) is strongly continuous on Lp(Rn) for p ∈ [1, 2).
To begin, take u ∈ S(Rn) such that u ≥ 0. Then v(t) = e−tψ(D)u is ≥ 0 and∫
v(t, x) dx ≡

∫
u(x) dx. We already know v(t) → u uniformly as t ↘ 0. From

these facts it follows that v(t) → u in L1-norm. Hence for each u ∈ S(Rn) (without
the sign condition) we have e−tψ(D)u → u in L1-norm as t ↘ 0. We also know
this holds in L2-norm, so it holds in Lp-norm for each p ∈ [1, 2]. Again a density
argument yields the asserted strong continuity on Lp(Rn), at t = 0. As is well
known (cf. [Bob], p. 249) this suffices to establish strong continuity in t ∈ [0,∞).

Our next goal is to prove the following.
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Proposition F.1. The semigroup e−tψ(D) is strongly continuous on UC(Rn).

Proof. As noted above, it suffices to prove strong continuity at t = 0, so we need
to show that if u ∈ UC(Rn), then

(F.2) e−tψ(D)u→ u uniformly, as t↘ 0.

It suffices to show that (F.2) holds for u in a dense subspace of UC(Rn), and we take
Lip(Rn), which a mollifier argument shows to be dense. So suppose u is bounded
and

(F.3) |u(x+ y)− u(x)| ≤ L(|y| ∧ 1),

for all x, y ∈ Rn. As in (3.1), consider

(F.4) G(y) = 1− e−|y| = 1− g(y).

For each y ∈ Rn,

(F.5) u(y)− 2LG(x) ≤ u(x+ y) ≤ u(y) + 2LG(x), ∀x ∈ Rn,

so for each t > 0,

(F.6) u(y)− 2Le−tψ(D)G(x) ≤ e−tψ(D)u(x+ y) ≤ u(y) + 2Le−tψ(D)G(x),

so

(F.7)
∣∣e−tψ(D)u(y)− u(y)

∣∣ ≤ 2Le−tψ(D)G(0).

As seen in (3.3)–(3.5), the right side of (F.7) tends to 0 as t ↘ 0, so the proof is
complete.

M. Lévy processes on manifolds

Paralleling the study of translation invariant Lévy processes on Euclidean space
Rn, there is a theory of left (or right) invariant Lévy processes on Lie groups,
initiated by G. Hunt. There are also studies of Lévy processes on more general
Riemannian manifolds. Some articles in [BMR] discuss this, and give more refer-
ences. Our goal here is to present various generalizations of the generators of Lévy
processes given by the Lévy-Khinchin formula (A.5) that work in the manifold
context.
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The generators we seek are generators of semigroups P t = etA of positivity-
preserving operators on Cb(M) satisfying P t1 = 1. They have the form

(M.1) P tu(x) =

∫
M

pt(x, dy)u(y),

where pt(x, ·) is a family of probability measures on M .
One general observation is that if A and B generate such semigroups and the

Trotter product formula holds:

(M.2) et(A+B) = lim
n→∞

(
e(t/n)Ae(t/n)B

)n
,

then A + B generates such a semigroup. Extending this, if {A(y) : y ∈ Y } is a
family of generators of such semigroups, then (frequently) so is

(M.3)

∫
Y

A(y) dµ(y),

given a positive measure µ on Y (perhaps with some sort of bound). Let us now
get more specific.

The first two terms on the right side of (A.5) have well known generalizations to
second order differential operators on M . In local coordinates,

(M.4) L =
∑

ajk(x)∂j∂k +
∑

bj(x)∂j .

One makes various hypotheses, including
∑
ajk(x)ξjξk ≥ 0. There is a large liter-

ature on diffusion processes with such generators. See for example [Str].
We now point out various generators analogous to the last term in (A.5). To

start, let φ :M →M be a continuous map, and consider

(M.5) Tu(x) = u(φ(x)).

Now pick c ∈ (0,∞) and set

(M.6)

P tT,cu(x) = e−tc(I−T )u(x)

=

∞∑
k=0

(ct)k

k!
e−ct T ku(x).

This has the form (M.1) with

(M.7) pt(x, ·) =
∞∑
k=0

(ct)k

k!
e−ct δφk(x).
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One can impose further structure by requiring φ to be a diffeomorphism, or a
volume preserving map, or an isometry (with respect to some Riemannian metric),
etc. One can take a family φy :M →M of such maps and apply the process (M.3),
obtaining generators of the form

(M.8) −
∫
Y

(I − T (y)) dµ(y), T (y)u(x) = u(φy(x)).

To specialize this construction, let X1, . . . , Xm be smooth vector fields on M ,
and assume that for each y = (y1, . . . , ym) ∈ Rm, y · X = y1X1 + · · · + ymXm

generates a global flow on M . Given a positive measure µ on Rn, one has the
generator

(M.9) −
∫
Rm

(I − ey·X) dµ(y),

given some bounds on µ. For example, one might require
∫
(|y| ∧ 1) dµ(y) < ∞.

Then (M.9) would be convergent if each y ·X generated a volume preserving flow.
Otherwise, further restrictions on µ might be needed. One can allow more singular
behavior of µ near 0, i.e.,

∫
(|y|2 ∧ 1) dµ(y) <∞, upon replacing (M.9) by

(M.10) −
∫
Rm

(I − ey·X + χB(y) y ·X) dµ(y).

The operators (M.9) and (M.10) are often pseudodifferential operators of order
2α ∈ (0, 2), for various measures dµ(y) = P (y) dy, where P (y) is smooth on Rm \0,
supported near 0 (this requirement can often be relaxed) and having a conormal
singularity at 0, weaker than |y|−m−1. One needs to require that X2

1 + · · · + X2
m

be elliptic.
We mention the following problem. Suppose M has a Riemannian metric tensor,

whose Laplace operator ∆ generates a non-explosive diffusion, so et∆1 = 1 for t > 0.
For α ∈ (0, 1), one would like to write −(−∆)α in the form (M.9) or (M.10) (perhaps
with the term χB(y)y · X suitably modified). Surely this is well known in some
cases, but it would be nice to have a general result. It would also be interesting to
find such representations for variants, such as

1− (1−∆)α, α ∈ (0, 1).

Leaving (M.9)–(M.10), we note the following more general context for (M.6)–
(M.8). Namely T : Cb(M) → Cb(M) could be any positivity preserving operator
satisfying T1 = 1. Then

(M.11) T ku(x) =

∫
M

µk(x, dy)u(y),
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where µk(x, ·) is a family of probability measures, and one replaces (M.7) by

(M.12) pt(x, ·) =
∞∑
k=0

(ct)k

k!
e−ct µk(x, ·).

The processes associated to the semigroups e−tc(I−T ) for such T are called Feller’s
pseudo-Poisson processes; cf. [Ap], pp. 160–162.

N. Other Markov processes

The transition beyond Lévy processes in the Euclidean setting to Riemannian
manifolds, discussed in §M, motivates us to go a step further, and present some
general results about Markov semigroups. We say only a little about this big area,
referring to [D] for a more thorough introduction.

We start with continuous-time Markov processes on a finite set X, say with n
points, also called a finite Markov chain. We have C(X) isomorphic to Rn, and
Markov semigroups are given by n× n matrices,

(N.1) etA, A ∈M(n,R), t ≥ 0.

To say this is a Markov semigroup is to say

(N.2) etA1 ≡ 1, and v ∈ Rn, v ≥ 0 ⇒ etAv ≥ 0, for t ≥ 0.

Here v ≥ 0 means each component is ≥ 0, and

(N.3) 1 =

 1
...
1

 .

We can restate the positivity condition as

(N.4) etA =
(
pjk(t)

)
, pjk(t) ≥ 0, for t ≥ 0, j, k ∈ {1, . . . , n}.

The set of probability measures on X is given by P, where, for w ∈ Rn,

(N.5) w ∈ P ⇐⇒ w ≥ 0 and w · 1 = 1.

Then the action of the Markov semigroup on P is given by

(N.6) (etA)∗ : P −→ P , for t ≥ 0,

where, for B ∈M(n,R), B∗ is the transpose of B.
The following result characterizes the generators A of all such semigroups.
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Proposition N.1. Given A =
(
ajk
)
∈M(n,R), etA satisfies (N.2) if and only if

(N.7) A1 = 0,

and

(N.8) ajk ≥ 0 whenever j 6= k.

Proof. Noting that

(N.9)
d

dt
etA
∣∣∣
t=0

= A,

we see the relation etA1 ≡ 1 implies (N.7), and the positivity (N.8) follows from
(N.4) plus pjk(0) = 0 for j 6= k.

For the converse, if (N.8) is strengthened to ajk > 0 whenever j 6= k, then, via

(N.10) etA = I + tA+O(t2),

one has t0 > 0 such that etA ≥ 0 for 0 ≤ t ≤ t0, and positivity for all t ≥ 0
follows from ektA = (etA)k. Then the sufficiency of (N.7)–(N.8) in general can be
established by a limiting argument. We leave the details to the reader. Or see
[T3], p. 155, Proposition 4.4.10. An alternative approach to the converse, valid in
a much more general setting, is described below, in Proposition N.2.

Remark. Clearly the conditions (N.7)–(N.8) imply for the diagonal elements of A
that

(N.11) ajj ≤ 0, for j ∈ {1, . . . , n}.

Denumerable Markov chains are associated to processes on a countably infinite
set, such as N = {1, 2, 3, . . . }. One might have a semigroup

(N.12) etA : ℓ∞(N) −→ ℓ∞(N), t ≥ 0,

satisfying

(N.13) f ∈ ℓ∞(N), f ≥ 0 ⇒ etAf ≥ 0 and etA1 ≡ 1.

Alternatively, one might consider sequences f(n) that tend to a limit as n → ∞,
and

(N.14) etA : C(N̂) −→ C(N̂), t ≥ 0,

where N̂ is the one point compactification N ∪ {∞}.
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Extending the scope of (N.14), one can let X be a compact Hausdorff space, and
consider semigroups

(N.15) etA : C(X) −→ C(X), t ≥ 0,

satisfying

(N.16) etA1 ≡ 1, and f ∈ C(X), f ≥ 0 ⇒ etAf ≥ 0.

The class (N.15)–(N.16) actually contains (N.12)–(N.13) as a special case. In fact,
we can regard ℓ∞(N) as a commutative C∗ algebra and take X to be its maximal
ideal space. Then the Gelfand transform provides a positivity-preserving isometric
isomorphism ℓ∞(N) ≈ C(X).

The following result yields a large class of Markov semigroups. In particular,
it provides a far-reaching generalization of the result of Proposition N.1 that any
A ∈M(n,R) satisfying (N.7)–(N.8) generates a Markov semigroup on Rn.

Proposition N.2. Let X be a compact Hausdorff space. Let

(N.17) B : C(X) −→ C(X)

be continuous and positivity-perserving, i.e.,

(N.18) f ∈ C(X), f ≥ 0 =⇒ Bf ≥ 0.

Set φ = B1 ∈ C(X), and define

(N.19) A : C(X) −→ C(X), Au = −φu+Bu.

Then {etA : t ≥ 0} is a Markov semigroup on C(X).

Proof. First, clearly

(N.20) A1 = 0, so etA1 ≡ 1.

It remains to show that, for t ≥ 0, etA has the positivity property given in (N.16).
This follows from the Trotter product formula,

(N.21) etAf = lim
n→∞

(
e−tφ/ne(t/n)B

)n
f,

plus the fact that, for s ≥ 0, f ∈ C(X),

(N.22) f ≥ 0 =⇒ e−sφf ≥ 0 and esBf ≥ 0,

the latter via the power series expansion

(N.23) esB =
∞∑
k=0

sk

k!
Bk.
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4. Remarks on the modulus of continuity for Brownian paths

Let P be path space for Brownian motion on the line, with Wiener measure P .
It is classical (cf. [T], Proposition 16.5) that there is an estimate

(1) |Xt(ω)−Xs(ω)| ≤M1(ω)h(|t− s|),

valid for s, t ∈ [0, 1], with M1(ω) <∞ for almost all ω ∈ P. Here

(2) h(δ) =
(
δ log

1

δ

)1/2
for 0 < δ ≤ 1/e, and we set h(δ) = h(1/e) = 1/

√
e for δ ≥ 1/e. M. Pinsky [P]

produced a pleasant proof of this, using Ciesielski’s representation of Xt(ω) for
0 ≤ t ≤ 1 as a Haar series:

(3) Xt(ω) =

∞∑
N=1

ZN (ω)

∫ t

0

φN (s) ds,

where {φN : N ≥ 1} is the Haar orthonormal basis of L2([0, 1]). Path space over
0 ≤ t ≤ 1 is parametrized by

(4) Ω =
∏
N≥1

FN , FN =
(
R, (2π)−1/2e−x

2/2 dx
)
,

and ZN : Ω → R is projection onto the Nth factor, identified with R.
The estimate (1) can be compared and contrasted with the Lévy estimate

(5) lim sup
0≤s,t≤1,|s−t|↘0

|Xt(ω)−Xs(ω)|
h(|t− s|)

=
√
2,

valid for almost all ω ∈ P. For one, (5) implies (1), but with no effective bound on
M1(ω). In fact, M1(ω) cannot be essentially bounded on P; if it were, one would
have for some K <∞ an estimate

(6) |Xt(ω)−Xs(ω)| ≤ Kh(|t− s|),

valid for almost every ω ∈ P, for all s, t ∈ [0, 1]. In fact, for fixed s < t ∈ (0, 1] the
Gaussian statistics for Xt(ω)−Xs(ω) guarantee that (6) is violated for a set of ωs
of positive measure.

Maximal estimates on Gaussian processes, such as given in Theorem 1.3.3 of [F],
imply that once one has M1(ω) < ∞ almost everywhere in (1), then there is a
bound

(7) P
(
M1(ω) > λ

)
≤ Ce−aλ

2

,
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for some C < ∞, a > 0. There is even a sharp result on the optimal value of a in
(7).

Here we show that the method of proof of (1) in [P] can be pushed a little
further to establish (7) directly (though without a sharp estimate for a). On the
other hand, the estimate we establish in Proposition 1 below is in some ways more
precise than (7).

To get started, we recall the ingredients of the proof of (1) in [P]. One ingredient
is the following set of estimates on the Haar functions:

(8) ‖φN‖L∞(I) ≤ CN1/2,

and

(9) ‖φN‖L1(I) ≤ CN−1/2,

(where I = [0, 1]) plus the fact that, over each range 2ν−1 < N ≤ 2ν , the functions

(10) ψN (t) =

∫ t

0

φN (s) ds

have disjoint supports. Another ingredient is a study of the function

(11) A(ω) = sup
N≥2

|ZN (ω)|√
logN

.

It is shown in Lemma 1 of [P] that A(ω) <∞ for almost all ω ∈ Ω. Then the sum

(12) Xt(ω)−Xs(ω) =
∞∑
N=1

ZN (ω)[ψN (t)− ψN (s)]

is broken into two pieces and the estimate (1) is obtained, with M1(ω) ≤ 1+2A(ω).
Hence (7) will follow from an associated estimate on A(ω).

We find it of interest to consider more generally

(13) Aµ(ω) = sup
N≥µ

|ZN (ω)|√
logN

,

for µ ≥ 2. Now the nature of ZN as a Gaussian random variable gives

(14) P
(
|ZN (ω)| ≥ x

)
≤ e−x

2/2,

hence

(15) SN,λ = {ω ∈ Ω : |ZN (ω)| ≥ λ
√

logN} =⇒ P (SN,λ) ≤ N−λ2/2.
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Now

(16) {ω ∈ Ω : Aµ(ω) ≥ λ} =
⋃
N≥µ

SN,λ,

so

(17) P
(
Aµ(ω) ≥ λ

)
≤
∑
N≥µ

N−λ2/2.

The convexity of the function f(y) = y−s implies that, for s ≥ 2,

(18)
∑
N≥µ

N−s ≤ µ−s +

∫ ∞

µ+1/2

y−s dy ≤
(
µ+

3

2

)
µ−s,

so we have, for λ ≥ 2, µ ≥ 2,

(19) P
(
Aµ(ω) ≥ λ

)
≤
(
µ+

3

2

)
µ−λ2/2 ≤ Cµe

−K(µ)λ2

,

with Cµ = µ+ 3/2, K(µ) = (1/2) log µ.
The µ = 2 case of this estimate is already enough to establish (7), in view of the

estimate M1(ω) ≤ 1 + 2A2(ω) established in [P]. However, we will go further (in a
parallel fashion). Suppose µ = 2α + 1 and α ≥ 1. We will estimate

(20)
∑

2ν<N≤2ν+1

ZN (ω)[ψN (t)− ψN (s)] = Dν(t, s, ω)

for ν ≥ α. The observations in (8)–(10) imply the following two estimates:

(21)
|Dν(t, s, ω)| ≤ CAµ(ω)

√
ν2ν/2|t− s|,

|Dν(t, s, ω)| ≤ CAµ(ω)
√
ν2−ν/2.

Hence

(22)

∣∣∣∑
M≥µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣

≤
∑
ν≥α

|Dν(t, s, ω)|

≤ CAµ(ω)
[ ∑
α≤ν≤β

2ν/2ν1/2|t− s|+
∑
ν>β

2−ν/2ν1/2
]

≤ C2Aµ(ω)β
1/2
[
2β/2|t− s|+ 2−β/2

]
.

We can optimize this by picking β such that 2−β/2 ≈ |t−s|, as long as |t−s| ≤ 2−α/2,
say |t− s| ≤ µ−1/2. This gives

(23)
∣∣∣∑
N≥µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣ ≤ C3Aµ(ω)h(|t− s|),

with h(δ) as in (2). As for the rest of (12), we crudely have

(24)
∣∣∣∑
N<µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣ ≤ CBµ(ω)|t− s|, Bµ(ω) = µ1/2

∑
N<µ

|ZN (ω)|.

This establishes the following (with slight change in notation):
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Proposition 1. Fix K ∈ (0,∞) and set δ = e−K . There exists a = a(K) > 0 and
Cj = Cj(K) such that, for t, s ∈ [0, 1], |t− s| ≤ δ,

(25) |Xt(ω)−Xs(ω)| ≤ AK(ω)h(|t− s|) +BK(ω)|t− s|,

with

(26) P
(
AK(ω) ≥ λ

)
≤ C1e

−Kλ2

, P
(
BK(ω) ≥ λ

)
≤ C2e

−aλ2

.

Returning to the context of the estimate (1), we make a concluding comment.
It similarly follows that there is for each k ∈ Z+ an estimate

(27) |Xt(ω)−Xs(ω)| ≤Mk(ω)h(|t− s|), s, t ∈ [k − 1, k].

The functions Mk on P can be taken to be independent random variables that are
identically distributed.
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5. Stochastic integrals for square integrable Lévy processes

1. Introduction

Lévy processes were introduced in Chapter 3. We saw that if ψ : Rn → C is a
continuous function satisfying ψ(0) = 0, such that, for t ≥ 0, e−tψ(ξ) is a tempered
distribution, and

(1.1) e−tψ(D)δ(x) = p(t, x) ≥ 0,

for t ≥ 0 (or more generally is a positive probability measure), then there is a
probability space (Ω, µ) and a continuous map

(1.2) X : [0,∞) −→ M(Ω, µ,Rn),

the space of measurable functions on Ω (modulo identity µ-a.e.) with the property
that if Ej ⊂ Rn are Borel sets, and 0 < t1 < · · · < tk, the probability that Xtj ∈ Ej
for each j ∈ {1, . . . , k} is

(1.3)

∫
E1

· · ·
∫
Ek

p(tk − tk−1, xk − xk−1) · · · p(t1, x1) dxk · · · dx1.

Notable examples of such functions ψ(ξ) include

(1.4) ψ(ξ) = |ξ|2, e−tψ(D)δ(x) = (4πt)−n/2e−|x|2/4t,

yielding the Wiener process, and

(1.5) ψ(ξ) = c(1− eiy·ξ), e−tψ(D)δ(x) =
∞∑
k=0

(ct)k

k!
e−ctδky(x),

yielding Poisson processes, given y ∈ Rn, c > 0.
As seen in (2.6) of Chapter 3, for q ∈ R, 0 < s < t,

(1.6) E(|Xt −Xs|q) = E(|Xt−s|q) =
∫
p(t− s, x)|x|q dx.

One condition we impose on the Lévy processes treated here is square integrability:

(1.7)

∫
p(t, x)|x|2 dx <∞.
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This implies the Fourier transform of p(t, x)xα is bounded and continuous for |α| ≤
2, hence

(1.8) ∂αξ e
−tψ(ξ)

bounded and continuous for |α| ≤ 2, and

(1.9) E(|Xt|2) = −∆e−tψ(ξ)
∣∣∣
ξ=0

.

Note that

(1.10)
∂ke

−tψ(ξ) = −t(∂kψ)e−tψ(ξ),

∂2ke
−tψ(ξ) = −t(∂2kψ)e−tψ(ξ) + t2(∂kψ)

2e−tψ(ξ),

hence

(1.11) E(|Xt|2) = t∆ψ(0)− t2
∑
k

(∂kψ(0))
2.

It is convenient to impose the additional condition

(1.12) E(Xt) = 0, ∀ t ≥ 0.

Since Xt2 −Xt1 is independent of Xs for s < t1 < t2, this implies

(1.13) s < t1 < t2 =⇒ Xs ⊥ Xt2 −Xt1 ,

with respect to the inner product on L2(Ω, µ). A calculation parallel to (1.9) gives

(1.14) E(Xt) = i∇ξe
−tψ(ξ)

∣∣∣
ξ=0

= −it∇ψ(0),

so we require

(1.15) ∇ψ(0) = 0.

In such a case, (1.11) yields

(1.16) E(|Xt|2) = t∆ψ(0).

Thus we have

(1.17) X : R+ −→ L2(Ω, µ,Rn)
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continuous, satisfying, for 0 ≤ s < t,

(1.18) ‖Xt −Xs‖2L2(Ω) = A(t− s), A = ∆ψ(0).

Regarding the examples of ψ(ξ) given in (1.4) and (1.5), we note that both yield
square integrable Lévy processes. In (1.4), we have ∇ψ(0) = 0, but in (1.5) we
have ∇ψ(0) = −icy. Hence (1.15) fails for the Poisson process. We modify it by
adding a drift term, obtaining

(1.19) ψ(ξ) = c(1− eiy·ξ + iy · ξ).

This yields a Lévy process satisfying (1.18), with A = |y|2.
We recall some other examples of Lévy processes mentioned in Chapter 3. For

example,

(1.20) φα(ξ) = (|ξ|2 + 1)α − 1, α ∈ (0, 1)

arises in (3.10) of Chapter 3, and (3.11) there verifies (1.18) of this chapter, with
A = ∆φα(0). Clearly ∇φα(0) = 0. By contrast,

(1.21) ψα(ξ) = |ξ|2α, α ∈ (0, 1),

introduced above (1.7) of Chapter 3, yields p(t, x) with the behavior described in
(1.14) of Chapter 3, which implies that

∫
p(t, x)|x|2 dx = ∞ for such cases. One

says these probability distributions have heavy tails. Our treatment of stochastic
integrals in this chapter does not apply to such cases as arise from (1.21).

Before describing subsequent sections, we provide some useful complements to
the identities (1.9)–(1.18). Here we make the standing assumption that (1.7) and
(1.15) hold, hence (1.12) and (1.18) hold. Complementing this, we have

(1.22) E(X∗
tXt) =

∫
p(t, x)x∗x dx = C(t) ∈M(n,R),

where C(t) = (cjk(t)) is symmetric and positive semidefinite, and, parallel to (1.9)–
(1.16),

(1.23)

cjk(t) =

∫
p(t, x)xjxk dx

= −∂j∂ke−tψ(ξ)
∣∣∣
ξ=0

= t∂j∂kψ(0),

the latter identity using (1.15). Hence

(1.24) C(t) = Ct, C = (cjk) =
(
∂j∂kψ(0)

)
,
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Choose an orthonormal basis of Rn with respect to which C is diagonal,

(1.25) C =

 c11
. . .

cnn

 , cjj = ∂2jψ(0) =

∫
p(t, x)x2j dx.

We see that

(1.26) cjj = 0 =⇒ supp p(t, ·) ⊂ {x : xj = 0},

so p(t, x) is a singular measure. Effectively, we have a Lévy process taking values in
a linear subspace of Rn. We can eliminate the redundant variables, and re-notate,
so we are left with a positive definite matrix C. For example, if ψ(ξ) is given by
(1.19), we retain only one variable, thus arriving at the situation

(1.27) n = 1, ψ(ξ) = c(1− eiyξ + iyξ), y ∈ R.

We proceed to describe the rest of this chapter. In §2 we define the Wiener-type
stochastic integral

(1.28) It(f) =

∫ t

0

f(s) dXs,

when X is a Lévy process satisfying (1.12) and (1.18). If f is real valued, then we
have

(1.29) ‖Itf‖2L2(Ω) = A‖f‖2L2([0,t]).

More generally, if f takes values in M(n,R), we have

(1.30) ‖Itf‖2L2(Ω) ≤ A‖f‖2L2([0,t]).

We also devote some attention to Lévy-Langevin equations, of the form

(1.31) dYt = −LYt dt+ dXt,

with L ∈M(n,R), obtaining explicit formulas for the solution.
In §2 we treat more general Ito-type stochastic integrals, such as

(1.32) It(f) =

∫ t

0

f(s,Xs) dXs,

and extend the scope of (1.30) to

(1.33) ‖Itf‖2L2(Ω) ≤ C

∫ t

0

E
(
|f(s,Xs)|2

)
ds.
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We also present Ito formulas, such as

(1.34) f(Xt)− f(0) =

∫ t

0

f ′(Xs) dXs +

∫ t

0

f ′′(Xs) ds,

valid in the special case of the Wiener process.
Appendix A discusses the central limit theorem for an n-dimensional square-

integrable Lévy process, and presents it as a description of the long time behavior
of the probability distribution of the normalized process

(1.35)
1√
t
Xt,

converging in S ′(Rn), hence weak∗ in M(R̂n), to a Gaussian distribution, thus
making contact with material of Chapter 1.
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2. Wiener-Lévy stochastic integrals

As stated in §1, we are working with n-dimensional Lévy processes, of the form

(2.1) X : R+ −→ L2(Ω, µ,Rn)

(where (Ω, µ) is a probability space), satisfying, for 0 ≤ s < t,

(2.2) E(|Xt −Xs|2) = A|t− s|,

and, for t ≥ 0,

(2.3) E(Xt) = 0.

Since, for s ≤ t1 < t2,

(2.4) Xs and Xt2 −Xt1 are independent random variables,

we see that (2.3) implies

(2.5) Xt2 −Xt1 ⊥ Xs2 −Xs1 , for 0 ≤ s1 < s2 ≤ t1 < t2,

and we use the L2(Ω, µ) inner product. We aim to define the Wiener-type stochastic
integral

(2.6)

∫ t

0

f(s) dXs,

for certain classes of functions f . To start, we take f(s) to be real valued.
To proceed, we fix t ∈ (0,∞) and define (2.6) f in the space PK([0, t)) of

piecewise constant functions on [0, t), where

(2.7) f ∈ PK([0, t))

provided there exist tj , satisfying 0 = t0 < t1 < · · · < tk = t, such that f is constant
on each interval [tj , tj+1), 0 ≤ j ≤ k − 1. We define

(2.8) It : PK([0, t)) −→ L2(Ω, µ,Rn)

by

(2.9)

It(f) = f(0)(Xt1 −Xt0) + f(t1)(Xt2 −Xt1) + · · ·+ f(tk−1)(Xtk −Xtk−1
)

=
k−1∑
j=0

f(tj)(Xtj+1
−Xtj ).
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One can check that this is stable under further refinement of the partition of [0, t),
that It in (2.8) is linear, and that

(2.10)

f ∈ PK([0, t)) ⇒

‖Itf‖2L2(Ω) =
k−1∑
j=1

|f(tj)|2‖Xtj+1
−Xtj‖2L2(Ω)

= A
k−1∑
j=0

|f(tj)|2(tj+1 − tj)

= A

∫ t

0

|f(s)|2 ds.

This leads to the following.

Proposition 2.1. Let X be a Lévy process that satisfies (2.1)–(2.3). For each
t > 0, the map It in (2.8) has a unique continuous linear extension to

(2.11) It : L
2([0, t), dt) −→ L2(Ω, µ,Rn),

satisfying

(2.12) ‖Itf‖2L2(Ω) = A‖f‖2L2([0,t)).

For such f , we define

(2.13)

∫ t

0

f(s) dXs = It(f).

As a corollary, we have a well defined linear map

(2.14) It : C([0, t]) −→ L2(Ω, µ,Rn),

satisfying (2.12). It is routine to verify that, for f ∈ C([0, t]),

(2.15) It(f) = lim
k→∞

k−1∑
j=0

f(tj)(Xtj+1
−Xtj ), tj =

jt

k
,

the limit taken in L2(Ω, µ)-norm.

Note that applying summation by parts to (2.15) and making a limiting argument
yields the following.
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Proposition 2.2. Given f ∈ C1([0, t]),

(2.16)

∫ t

0

f(s) dXs = f(t)Xt −
∫ t

0

f ′(s)Xs ds.

More generally, (2.16) holds whenever f ∈ C([0, t]) has integrable weak derivative

(2.17) f ′ ∈ L1([0, t]).

More generally still, an approximation argument yields

Corollary 2.3. Given f ∈ BV([0, t]),

(2.18)

∫ t

0

f(x) dXs = f(t−)Xt −
∫

(0,t)

Xs df(s).

If we allow f(s) to take values in M(n,R),

(2.19) f : [0, t) −→M(n,R),

then most computations above extend. We simply replace (2.10) by

(2.20)

f ∈ PK([0, t),M(n,R)) ⇒

‖Itf‖2L2(Ω) =
k−1∑
j=0

‖f(tj)(Xtj+1
−Xtj )‖2L2(Ω)

≤
k−1∑
j=0

‖f(tj)‖2‖Xtj+1
−Xtj‖2L2(Ω)

= A

∫ t

0

‖f(s)‖2 ds,

where ‖f(s)‖ denotes the matrix operator norm of f(s) ∈ M(n,R). From this,
Proposition 2.1 extends, with (2.12) replaed by

(2.21) ‖Itf‖2L2(Ω) ≤ A‖f‖2L2([0,t),M(n,R)).

We continue to have Proposition 2.2 and Corollary 2.3, except that noncommuta-
tivity of matrix multiplication forces us to change (2.18) to

(2.22)

∫ t

0

f(s) dXs = f(t−)Xt −
∫

(0,t)

df(s)Xs.
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Lévy-Langevin equations

Let X be an n-dimensional Lévy process satisfying (2.1)–(2.3), and take L ∈
M(n,R). We consider Langevin equations, of the form

(2.23) dYt = −LYt dt+ dXt,

for a stochastic process Y : R+ → L2(Ω, µ,Rn), to be determined. Equivalently,

(2.24) Yt = Y0 −
∫ t

0

LYs ds+Xt.

Anticipating that arguments parallel to (2.15)–(2.16) apply to Yt, we write

(2.25) d(f(t)Yt) = f(t) dYt + f ′(t)Yt dt,

when f ∈ C1(R+,M(n,R)). We apply this with f(t) = etL, so

(2.26) d(etLYt) = etL(dYt + LYt dt).

Then (2.23) yields

(2.27) d(etLYt) = etLdXt,

which integrates to

(2.28) etLYt = Y0 +

∫ t

0

esL dXs.

Hence the solution to (2.24) is

(2.29)

Yt = e−tLY0 + e−tL
∫ t

0

esL dXs

= e−tLY0 +Xt − L

∫ t

0

e−(t−s)LXs ds,

the latter identity by (2.16).
In the Langevin theory it is also useful to consider the integrated process

(2.30) Zt =

∫ t

0

Yτ dτ.

In case Y0 = 0, we obtain from (2.29) that

(2.31) Zt =

∫ t

0

e−(t−s)LXs ds.
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In such a case,

(2.32) LZt = Xt −
∫ t

0

e−(t−s)L dXs = Xt −Rt,

and

(2.33) ‖Rt‖2L2(Ω) ≤ A

∫ t

0

‖e−(t−s)L‖2L(Rn) ds.

In particular, if, for some λ > 0,

(2.34) ‖etL‖2L(Rn) ≤ e−tλ,

then

(2.35) ‖Rt‖2L2(Ω) ≤ A
1− e−tλ

λ
.
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3. Ito-type stochastic integrals, basic case
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A. Square integrable Lévy processes vs. the CLT

Let X : R+ → L2(Ω, µ,Rn) be an n-dimensional Lévy process, satisfying (1.12)
and (1.18), hence (1.7), (1.15), and (1.16). If we fix t > 0 and let {Yt,j : j ∈ N} be
a family of IID random variables with the same probability distribution as Xt. the
central limit theorem applies to this family. An example would be

(A.0) Yt,j = Xjt −X(j−1)t.

This yields conclusions that at first glance might seem to be at odds with the Lévy-
process behavior of {Xt : t ∈ R+}, in the non-Gaussian case. Here we provide some
formulas that clarify the situation.

As explained in the introduction to this chapter, we can if necessary replace Rn
by a linear subspace and arrange that the semigroup e−tψ(D) has the property that

(A.1) C =
(
∂j∂kψ(0)

)
is positive definite.

We assume that done.
Now the probability distributions that arise for the sequence

(A.2)
1√
k

(
Yt,1 + · · ·+ Yt,k

)
,

e.g., the probability distributions of

(A.2A)
1√
k
Xkt,

in the case (A.0), have the form (cf. (1.3) of Chapter 1)

(A.3) e−ktψ(D/
√
k)δ(x) = qk(t, ·),

while those associated to the Lévy process Xt have the form

(A.4) e−tψ(D)δ(x) = p(t, ·).

We see that (A.3) and (A.4) are distinct objects. Let us examine the behavior of
(A.3) as k → ∞.

We have for the Fourier transform

(A.5) q̂k(t, ξ) = e−ktψ(ξ/
√
k) = e−tψk(ξ).

Note that

(A.6) Reψ(ξ) ≥ 0, ∀ ξ ∈ Rn,
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and, since ψ(0) = 0 and ∇ψ(0) = 0,

(A.7) ψ(ξ) = 1
2ξ · Cξ + o(|ξ|2), for |ξ| ≤ 1,

hence

(A.8)
ψk(ξ) =

1
2ξ · Cξ +Rk(ξ), for |ξ| ≤ k,

|Rk(ξ)| ≤ ρk|ξ|2, ρk → 0 as k → ∞.

Hence

(A.9) |e−tψk(ξ)| ≤ 1, e−tψk(ξ) → e−(t/2)ξ·Cξ,

as k → ∞, for each ξ ∈ Rn. It follows that

(A.10) e−tψk(ξ) −→ e−(t/2)ξ·Cξ in S ′(Rn),

so

(A.11) qk(t, ·) −→ h(t, ·) in S ′(Rn),

where

(A.12) h(t, x) = det(4πtC)−1e−x·C
−1x/4t.

Since qk(t, ·) and h(t, ·) are all probability measures on Rn, we also have

(A.13) qk(t, ·) −→ h(t, ·), weak∗ in M(R̂n).

We have thus reaffirmed the CLT for the random variables {Yt,j : j ∈ N}, and
seen in (A.3)–(A.4) how this fits in with the Lévy-process behavior of {Xt : t ∈ R+}.

Example 1. Take

(A.14) φα(ξ) = (|ξ|2 + 1)− 1, α ∈ (0, 1),

as in (1.20). Then

(A.15) e−ktφα(ξ/
√
k) −→ e−αt|ξ|

2

,

pointwise and boundedly, hence in S ′(Rn), as k → ∞.

Example 2. Take n = 1, y ∈ R, and consider the Poisson process, associated to

(A.16) ψ(ξ) = 1− eiyξ + iyξ.

Then

(A.17) e−ktψ(ξ/
√
k) −→ e−(y2/2)tξ2 ,

pointwise and boundedly, hence in S ′(R), as k → ∞.
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[Ap] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Univ.
Press, 2004.

[CW] K. Chung and R. Williams, Introduction to Stochastic Integration, Birkhauser,
Boston, 1990.

[I] K. Ito, On Stochastic Differential Equations, Memoirs AMS #4, 1951.
[K] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cam-

bridge Univ. Press, 1990.
[McK] Stochastic Integrals, Academic Press NY, 1977.

[T] M. Taylor, Partial Differential Equations, Vol. 2, Springer NY, 1996 (2nd
ed., 2011).



129

6. Multidimensional random fields: stationarity, ergodicity,
and spectral behavior

1. Introduction and definitions

A random field Z on n-dimensional Euclidean space Rn or the lattice Zn (also
called a random function, or a stochastic process indexed by Rn or Zn) assigns to
each x ∈ Rn (resp., Zn) a random variable Z(x) on some probability space (Ω, µ)
(where µ is a probability measure on the set Ω). For definiteness, let us say

(1.1) Z : Fn −→ L2(Ω, µ),

where L2(Ω, µ) denotes the space of square-integrable functions (random variables
with finite first and second moments) on Ω. Here and below, F denotes either R or
Z. We assume the random variables Z(x) are real valued, until §8.

We use Z to assign a probability measure ν on the set O = RFn

of all functions
from Fn to R, as follows. First, Z gives rise to a map

(1.2) F : Ω −→ O,

defined as follows. If ξ ∈ Ω, F (ξ) ∈ O is a function on Fn whose value at x ∈ Fn is
Z(x)(ξ), i.e.,

(1.3) F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ Fn.

(Recall that Z(x) is a function on Ω, for each x ∈ Fn.) Then ν is defined by

(1.4) ν(S) = µ(F−1(S)),

when S ⊂ O is a measurable set. The probability measure ν incorporates the joint
probability distributions of the random variables Z(x), as x runs over Fn, as we
indicate below. Another way to write (1.4) is as

(1.5)

∫
O

φ(η) dν(η) =

∫
Ω

φ(F (ξ)) dµ(ξ).

Let us consider some special cases. Pick x1, x2 ∈ Fn and set

(1.6) φ1(η) = η(x1), φ2(η) = η(x1)η(x2).

Then

(1.7) φ1(F (ξ)) = Z(x1)(ξ), φ2(F (ξ)) = Z(x1)(ξ)Z(x2)(ξ),
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so

(1.8)

∫
O

φ1 dν =

∫
Ω

Z(x1)(ξ) dµ(ξ) = 〈Z(x1)〉,

and

(1.9)

∫
O

φ2 dν =

∫
Ω

Z(x1)(ξ)Z(x2)(ξ) dµ(ξ) = 〈Z(x1)Z(x2)〉.

We see that (1.8) is the mean of the random variable Z(x1). The quantity (1.9)
together with the means of Z(x1) and of Z(x2) are ingredients in the formula for
the covariance of Z(x1) and Z(x2).

In further preparation for defining the concepts of stationarity and ergodicity,
we bring in the action of Fn on O,

(1.10) τy : O −→ O, y ∈ Fn,

defined as follows. If y ∈ Fn and η ∈ O (so η is a function, η : Fn → R), τyη ∈ O
is given by

(1.11) τyη(x) = η(x+ y), x, y ∈ Fn.

Definition 1.1. The random field Z is stationary provided τy preserves the prob-
ability measure ν, for each y ∈ Fn. Equivalently, if φ ∈ L1(O, ν),

(1.12)

∫
O

φ(τyη) dν(η) =

∫
O

φ(η) dν(η), ∀ y ∈ Fn.

An alternative label for such a field Z is homogeneous.
If φ1 and φ2 are defined as in (1.6), then

(1.13) φ1(τyη) = η(x1 + y), and φ2(τyη) = η(x1 + y)η(x2 + y),

so, parallel to (1.8)–(1.9), we have

(1.14)

∫
O

φ1(τyη) dν(η) =

∫
Ω

Z(x1 + y)(ξ) dµ(ξ)

= 〈Z(x1 + y)〉,

and

(1.15)

∫
O

φ2(τyη) dν(η) =

∫
Ω

Z(x1 + y)(ξ)Z(x2 + y)(ξ) dµ(ξ)

= 〈Z(x1 + y)Z(x2 + y)〉,
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so stationarity implies

(1.16) 〈Z(x1)〉 = 〈Z(x1 + y)〉, 〈Z(x1)Z(x2)〉 = 〈Z(x1 + y)Z(x2 + y)〉,

for each x1, x2, y ∈ Fn.

Definition 1.2. The action {τy : y ∈ Fn} on (O, ν) is ergodic provided it preserves
the measure ν and the following holds. If φ ∈ L1(O, ν) and

(1.17) φ ◦ τy = φ in L1(O, ν), ∀ y ∈ Fn,

then φ must be constant (ν-a.e.).

Definition 1.3. Assume Z is a stationary random field. Then Z is ergodic if and
only if the action {τy : y ∈ Fn} on (O, ν) is ergodic.

It is useful to introduce the following auxiliary random field, namely

(1.18) Z : Fn −→ L2(O, ν),

given by

(1.19) Z(x)(η) = η(x), x ∈ Fn, η ∈ O.

By (1.3),

(1.20) Z(x)(F (ξ)) = Z(x)(ξ), x ∈ Fn, ξ ∈ Ω.

The process Z has the same joint distributions as Z. In fact, given x1, . . . , xk ∈ Fn
and suitable ψ : Rk → R, we have

(1.21)

∫
O

ψ(Z(x1), . . . ,Z(xk)) dν

=

∫
Ω

ψ
(
Z(x1)(F (ξ)), . . . ,Z(xk)(F (ξ))

)
dµ(ξ)

=

∫
Ω

ψ(Z(x1), . . . , Z(xk)) dµ,

the first identity by (1.5) and the second by (1.20). It follows that the construction
described in the first paragraph yields again the same space (O, ν). In particular,
if Z is stationary and ergodic, so is Z.

The following sequence of identities will prove to be valuable:

(1.22) Z(x)(τyη) = (τyη)(x) = η(x+ y) = Z(x+ y)(η),
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valid for x, y ∈ Fn, η ∈ O.
The rest of this chapter is structured as follows. In §2 we relate spatial averages

and ensemble averages of quantities associated to a random field, particularly means
and covariances, when the field is ergodic. In §3 we discuss stationary Gaussian
fields, and in §4 we give a criterion, involving the behavior of the covariance, that
such fields are ergodic. We note that stationary Gaussian fields with covariances
given by (3.24), (3.25), (3.26), (3.27), or (when n > 1) by (3.33) are ergodic, while
those with covariance given by (3.32) are not ergodic.

In §5 we consider stationary random fields on Lie groups, and in §6 we consider
stationary random fields on homogeneous spaces. In §§5–6, we focus not on er-
godicity but on spectra. In §7 we consider the inverse problem of constructing a
random field on a compact homogeneous space, given spectral data. These sections
bring in basic concepts from the representation theory of Lie groups, which can be
found in [T3].

In §8 we take a finite-dimensional vector space V and discuss V -valued random
fields, defined first on a homogeneous space X, though we specialize to X = Rn,
with special attention to V = Rn, i.e., to random vector fields. In §9 we discuss
random divergence-free vector fields on Rn.

In §10 we discuss generalized random fields on Rn, which are distributions on
Rn with values in L2(Ω, µ). We define stationary generalized random fields and
develop some of their properties.

We have three appendices. Appendix A gives background on ergodic theorems,
and Appendix B relates the criterion on the covariance function given in §4 to the
behavior of its Fourier transform. Appendix C discusses the Fourier transform of a
continuous, stationary field, first on Tn (obtaining a special case of results of §5) and
then on Rn, where we need to regard Ẑ as a vector-valued tempered distribution.

2. Implications of the ergodic theorem

The significance of the property of ergodicity, defined in §1, arises from the
following result, known as the ergodic theorem. As before, F stands for R or Z.

Theorem 2.1. Let {τy : y ∈ Fn} consist of measure preserving maps on the prob-
ability space (O, ν), satisfying τy1+y2 = τy1τy2 , for y1, y2 ∈ Fn. Assume the action
is ergodic. Take φ ∈ L1(O, ν).

(A) If F = Z, then

(2.1) lim
R→∞

1

V (R)

∑
y∈Zn∩BR

φ(τyη) =

∫
O

φdν,

for ν-almost every η ∈ O.
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(B) If F = R, and if the action of τy on L1(O, ν) is strongly continuous in y, then

(2.2) lim
R→∞

1

V (R)

∫
BR

φ(τyη) dy =

∫
O

φdν,

for ν-almost every η ∈ O.

Here, BR = {y ∈ Rn : |y| ≤ R} is a ball and V (R) is its volume (which is a good
approximation to the number of points in Zn ∩ BR). The left sides of (2.1) and
(2.2) are spatial averages, and the right sides are ensemble averages.

We apply Theorem 2.1 to results discussed in §1. First, take F = Z, so Z : Zn →
L2(Ω, µ) is a random field on the discrete lattice Zn. We construct (O, ν) and
τy : O → O as in §1. If Z is stationary and ergodic, then (2.1) holds, for ν-almost
every η ∈ O. If φ1 and φ2 ∈ L1(O, ν) are defined as in (1.6), then (1.8)–(1.9) and
(1.13), in concert with (2.1), give, for each x1, x2 ∈ Zn,

(2.3) 〈Z(x1)〉 = lim
R→∞

1

V (R)

∑
y∈Zn∩BR

η(x1 + y),

and

(2.4) 〈Z(x1)Z(x2)〉 = lim
R→∞

1

V (R)

∑
y∈Zn∩BR

η(x1 + y)η(x2 + y),

for ν-almost every η ∈ O.
In case F = R, matters are not so simple, because the requirement that φ ◦ τy ∈

L1(O, ν) be continuous in y for φ ∈ L1(O, ν) can fail to hold. If this continuity did
hold it would apply to φ1 and φ2, given by (1.6). In such a case, (2.2) would yield,
for each x1, x2 ∈ Rn,

(2.5) 〈Z(x1)〉 = lim
R→∞

1

V (R)

∫
BR

η(x1 + y) dy,

and

(2.6) 〈Z(x1)Z(x2)〉 = lim
R→∞

1

V (R)

∫
BR

η(x1 + y)η(x2 + y) dy,

for ν-almost every η ∈ O, provided the random field Z is stationary and ergodic.
Suppose for example that the random variables Z(x) are identically distributed

and independent, as x runs over Rn, and that the distribution of Z(0) is not con-
centrated at a single point. Then ν is a product measure on O, an uncountable
product measure. With φ1 as above, we have

(2.7) ‖φ1 ◦ τy − φ1‖L1(O,ν) =

∫
O

|η(x1 + y)− η(x1)| dν(η)
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equal to 0 for y = 0, and to a nonzero constant independent of y if y 6= 0. It follows
that φ1 ◦ τy is an everywhere discontinuous function of y, with values in L1(O, ν).
Furthermore, we expect that, for ν-almost every η ∈ O, the function y 7→ η(y) is
not Lebesgue measurable, so the right sides of (2.5) and (2.6) are not well defined.

On the other hand, for many important random fields on Rn, matters are more
tractable.

Proposition 2.2. If Z : Rn → L2(Ω, µ) is stationary and continuous, then the
action of {τy : y ∈ Rn} on L1(O, ν) is strongly continuous.

Proof. Since {τy} is a group of isometries of L1(O, ν), it suffices to show that
y 7→ φ◦τy is continuous from Rn to L1(O, ν), for φ in a dense subspace of L1(O, ν).
We consider functions φ of the form

(2.8) φ(η) = ψ(η(x1), . . . , η(xk)),

where x1, . . . , xk ∈ Rn and ψ : Rk → R is globally Lipschitz.
We have

(2.9)

|φ ◦ τy(η)− φ(η)|
= |ψ(η(x1 + y), . . . , η(xk + y))− ψ(η(x1), . . . , η(xk))|

≤ C
k∑
j=1

|η(xj + y)− η(xj)|.

Hence

(2.10)

‖φ ◦ τy − φ‖L1(O,ν) ≤ C
∑
j

∫
O

|η(xj + y)− η(xj)| dν(η)

= C
∑
j

∫
O

|Z(xj + y)−Z(xj)| dν

= C
∑
j

∫
Ω

|Z(xj + y)− Z(xj)| dµ,

the first identity by (1.22) and the second by (1.21). The last line is bounded by
C
∑
j ‖Z(xj + y)− Z(xj)‖L2(Ω,µ), so Proposition 2.2 is proven.

Note that if Z : Rn → L2(Ω, µ) is stationary, then

(2.11)
‖Z(x+ y)− Z(x)‖2L2 = ‖Z(x+ y)‖2L2 + ‖Z(x)‖2L2 − 2〈Z(x)Z(x+ y)〉

= 2‖Z(0)‖2L2 − 2〈Z(0)Z(y)〉,

so Z is continuous if and only if

(2.12) lim
y→0

〈Z(0)Z(y)〉 = ‖Z(0)‖2L2 .
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When dealing with F = R, we will henceforth assume Z is continuous. However,
we note that [R] emphasizes the importance of such discontinuous examples as
described above to stochastic hydrogeology. This might point to some mathematical
problems that need further study.

3. Stationary Gaussian fields

A random field Z : Fn → L2(Ω, µ) is said to be a Gaussian field if the following
holds. For each xj ∈ Fn, aj ∈ R, k ∈ N,

(3.1)
k∑
j=1

ajZ(xj) is a Gaussian random variable.

The following important property is special to Gaussian fields.

Proposition 3.1. If Z is a Gaussian field, then Z is stationary provided

(3.2) 〈Z(x)〉 = 〈Z(0)〉, and 〈Z(x)Z(x+ y)〉 = 〈Z(0), Z(y)〉, ∀x, y,∈ Fn.

The proof uses the Gaussian property to obtain that, for each k ≥ 1,

(3.3) 〈Z(x1 + y) · · ·Z(xk + y)〉 is independent of y ∈ Fn, ∀x1, . . . , xk ∈ Fn.

This follows from the fact that the data

(3.4) {〈Z(x1)〉, 〈Z(x1)Z(x2)〉 : x1, x2 ∈ Fn}

uniquely determine the data

(3.5) {〈Z(x1) · · ·Z(xk)〉 : xj ∈ Fn, k ∈ N},

under the hypothesis (3.1). In fact, the data (3.4) determine the data

(3.6) {〈ei
∑

λjZ(xj)〉 : xj ∈ Fn, λj ∈ R},

which in turn determine (3.5). See (3.11A) below for more on (3.6).

The fact that (3.3) implies the stationarity asserted in Proposition 3.1 is a special
case of the following.
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Lemma 3.2. Let Z : Fn → ∩p<∞L
p(Ω, µ). If (3.3) holds for each k ∈ N, then Z

is stationary.

Sketch of proof. For a k-tuple x = (x1, . . . , xk), define φx ∈ L1(O, ν) by

(3.7) φx(η) = η(x1) . . . η(xk).

Then, via (1.21), (3.3) implies

(3.8)

∫
O

φx ◦ τy dν =

∫
O

φx dν, ∀ y ∈ Fn.

Now one can show that, in this situation, the set of functions of the form (3.7) has
dense linear span in L1(O, ν). This implies the desired stationarity.

We next consider existence of Gaussian fields with given first and second mo-
ments. The following is proven in [D], p. 72.

Theorem 3.3. Let M : Fn → R and R : Fn × Fn → R. Assume

(3.9) R(x, y) = R(y, x),

and, for all k ≥ 1, x1, . . . , xk ∈ Fn, and a1, . . . , ak ∈ C,

(3.10)
∑
i,j

R(xi, xj)aiaj ≥ 0.

Then there exists a Gaussian field Z : Fn → L2(Ω, µ) such that, for all x1, x2 ∈ Fn,

(3.11) 〈Z(x1)〉 =M(x1), 〈(Z(x1)−M(x1))(Z(x2)−M(x2))〉 = R(x1, x2).

We refer to [D] for the proof, but remark that one ingredient is the formula

(3.11A)
〈
ei
∑

λjZ(xj)
〉
= Exp

{
−1

2

∑
j,k

R(xj , xk)λjλk + i
∑
j

M(xj)λj

}
,

given x1, . . . , xℓ ∈ Fn, λ1, . . . , λℓ ∈ R, and ℓ ≥ 1.

Remark. The conditions (3.9)–(3.10) are necessary, as well as sufficient, for the
existence of such a field Z.

In concert with Proposition 3.1, Theorem 3.3 yields the following.
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Corollary 3.4. Let M ∈ R and let C : Fn → R satisfy

(3.12) C(x) = C(−x),

and, for each k ≥ 1, x1, . . . , xk ∈ Fn, and a1, . . . , ak ∈ C,

(3.13)
∑
i,j

C(xi − xj)aiaj ≥ 0.

Then there exists a stationary Gaussian field Z : Fn → L2(Ω, µ) such that, for each
x1, x2 ∈ Fn,

(3.14) 〈Z(x1)〉 =M,

and

(3.15) 〈(Z(x1)−M)(Z(x2)−M))〉 = C(x1 − x2).

Remark. Given (3.14), the condition (3.15) is equivalent to

〈Z(x1)Z(x2)〉 −M2 = C(x1 − x2).

Also, (2.11) implies

(3.16)
1

2
‖Z(x+ y)− Z(x)‖2L2 = C(0)− C(y).

One example of a function C : Rn → R satisfying (3.12)–(3.13) is

(3.17)
C(x) = 1 if x = 0,

0 if x 6= 0,

which yields a special case of the class of discontinuous random fields discussed in
the paragraph following (2.6). If C : Rn → R is continuous and satisfies (3.12)–
(3.13), then the stationary Gaussian field Z arising in Corollary 3.4 is continuous,
by (3.16).

The search for continuous functions C : Rn → R satisfying (3.12)–(3.13) is aided
by the Fourier transform, as we now discuss. (Note that, for such C, the restriction
to Zn also satisfies (3.12)–(3.13).) The Fourier transform of a function F ∈ L1(Rn)
is given by

(3.18) F̂ (x) = (2π)−n/2
∫
Rn

F (ξ)e−ix·ξ dξ.



138

In such a case, C = F̂ is continuous on Rn. If F is even (i.e., F (ξ) = F (−ξ)) and
real valued, so is C = F̂ , so (3.12) holds. Also,

(3.19)
∑
j,k

F̂ (xj − xk)ajak = (2π)−n/2
∫
Rn

F (ξ)B(ξ) dξ,

where

(3.20)

B(ξ) =
∑
j,k

ajake
−i(xj−xk)·ξ

=
∣∣∣∑
j

aje
−ixj ·ξ

∣∣∣2
≥ 0,

so we have the following.

Proposition 3.5. Let F ∈ L1(Rn) be even and real valued. If

(3.21) F (ξ) ≥ 0, ∀ ξ ∈ Rn,

then C(x) = F̂ (x) is a continuous function satisfying (3.12)–(3.13).

If C is also integrable, the Fourier inversion formula gives C̃(ξ) = F (ξ), where

(3.22) C̃(ξ) = (2π)−n/2
∫
Rn

C(x)eix·ξ dx.

If C is even, then C̃ = Ĉ, so we have the following.

Corollary 3.6. Assume C : Rn → R is even, continuous, and integrable. Then
(3.13) holds provided

(3.23) Ĉ(ξ) ≥ 0, ∀ ξ ∈ Rn.

Remark. If C is real, even, continuous, and integrable, (3.23) is known to be
necessary, as well as sufficient, for the validity of (3.13). When C satisfies all

these conditions, including (3.23), it can be shown that Ĉ ∈ L1(Rn). In fact,

‖Ĉ‖L1 = 2n/2C(0).

Here are some examples to which Corollary 3.6 applies.

C(x) = e−|x|2/2 =⇒ Ĉ(ξ) = e−|ξ|2/2,(3.24)

C(x) = e−|x| =⇒ Ĉ(ξ) = cn(|ξ|2 + 1)−(n+1)/2,(3.25)
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where cn = 2n/2π−1/2Γ((n+1)/2). These calculations can be found in many places,
e.g., Chapter 3 of [T]. Note that applying the Fourier inversion formula to (3.25)
gives

(3.26) C(x) = (|x|2 + 1)−(n+1)/2 =⇒ Ĉ(ξ) = c−1
n e−|ξ|.

Here is an example where C(x) is not ≥ 0 everywhere. Let χB(ξ) = 1 for |ξ| ≤ 1, 0
for |ξ| > 1. Then

(3.27) F (ξ) = χB(ξ) =⇒ C(x) = F̂ (x) = cn
Jn/2(|x|)
|x|n/2

,

where cn are positive constants, and Jν is the Bessel function of order ν.
Variations on these examples can be obtained by linear changes of variables. If

bj > 0, then

(3.28) Cb(x) = C(b1x1, . . . , bnxn) =⇒ Ĉb(ξ) = (b1 · · · bn)−1Ĉ(b−1
1 ξ1, . . . , b

−1
n ξn).

More generally, if T is an n× n real matrix and det T 6= 0,

(3.29) CT (x) = C(Tx) =⇒ ĈT (ξ) = | detT |−1Ĉ(T−1ξ).

The following extension of Proposition 3.5 yields more general covariance func-
tions for stationary Gaussian fields.

Proposition 3.7. If σ is a finite, positive measure on Rn, invariant under x 7→
−x, then

(3.30) C(x) = σ̂(x) = (2π)−n/2
∫
Rn

e−ix·ξ dσ(ξ)

is a continuous function satisfying (3.12)–(3.13).

The proof is a slight variant of that of Proposition 3.5. In place of (3.19), we
have

(3.31)
∑
j,k

C(xj − xk)ajak = (2π)−n/2
∫
Rn

B(ξ) dσ(ξ),

with B(ξ) as in (3.20).
The Bochner-Herglotz theorem implies that, conversely, if C is a continuous

function satisfying (3.12)–(3.13), then there exists a finite, positive measure σ such
that σ̂ = C.

If p ∈ Rn \ 0 and δp is the point mass concentrated at p, then

(3.32) σ = δp + δ−p =⇒ C(x) = σ̂(x) =
( 2
π

)1/2
cos(p · x).
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If δ(|ξ| − 1) denotes the surface measure of the unit sphere Sn−1 = {ξ ∈ Rn : |ξ| =
1}, then

(3.33) σ = δ(|ξ| − 1) =⇒ C(x) = σ̂(x) = |x|1−n/2Jn/2−1(|x|),

where, as in (3.27), Jν is the Bessel function of order ν. The cases n = 1 and n = 3
yield

(3.34) |x|1/2J−1/2(|x|) =
( 2
π

)1/2
cos |x|, |x|−1/2J1/2(|x|) =

( 2
π

)1/2 sin |x|
|x|

.

Of course, the n = 1 case agrees with (3.32), with p = 1.

4. Ergodic Gaussian fields

Here we discuss conditions under which a stationary Gaussian field Z : Fn →
L2(Ω, µ) is ergodic, i.e., the action {τy} on (O, ν) is ergodic. The first result gives
a condition that implies this action is mixing, i.e.,

(4.1) lim
|y|→∞

〈φ ◦ τy ψ〉 = 〈φ〉 〈ψ〉, ∀φ,ψ ∈ L2(O, ν).

This condition implies ergodicity. Compare (4.10) below, and see Appendix A for
further discussion.

Proposition 4.1. Let Z : Fn → L2(O, ν) be a stationary Gaussian field, with
mean 〈Z(x)〉 =M and covariance

(4.2) C(y) = 〈Z(x)Z(x+ y)〉 −M2.

If F = R, assume C : Fn → R is continuous. If

(4.3) lim
|y|→∞

C(y) = 0,

then this field is mixing, i.e., (4.1) holds.

For the proof, there is no loss of generality to assume M = 0 (and it simplifies
some formulas). Also, it suffices to show that (4.1) holds for φ,ψ in some dense
subspace of L2(O, ν). We prove it for φ and ψ of the form

(4.3A) φ(η) = f(η(x1), . . . , η(xℓ)), ψ(η) = g(η(x1), . . . , η(xℓ)),

where ℓ ∈ N, x1, . . . , xℓ ∈ Fn, and f, g ∈ S(Rℓ). Applying the Fourier inversion
formula to f and g, we get

(4.4) φ ◦ τy(η) =
∫
f̂(v)ei

∑
η(xj+y)vj dv,
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and a similar formula for ψ(η), hence

(4.5) 〈φ ◦ τy ψ〉 =
∫∫

f̂(v)ĝ(w)
〈
ei
∑

η(xj+y)vjei
∑

η(xj)wj

〉
dv dw.

Now (3.11A), with R(xj , xk) = C(xj − xk) amd M(xj) ≡ 0, yields

(4.6)
〈
ei
∑

η(xj)λj

〉
= Exp

{
−1

2

∑
j,k

C(xj − xk)λjλk

}
,

hence

(4.7)

〈
ei
∑

η(xj+y)vjei
∑

η(xj)wj

〉
= e−

∑
C(xj−xk)vjwk/2e−

∑
C(xj−xk)wjwk/2

× e−
∑

C(xj+y−xk)vjwk .

In this setting, x1, . . . , xℓ ∈ Fn are fixed. The hypothesis (4.3) implies that, as
|y| → ∞, the last factor on the right side of (4.7) tends to 1, so

(4.8)

〈
ei
∑

η(xj+y)vjei
∑

η(xj)wj

〉
−→

〈
ei
∑

η(xj)vj
〉〈

ei
∑

η(xj)wj

〉
,

pointwise in v, w ∈ Rℓ. These quantities are ≤ 1 in absolute value, so the dominated
convergence theorem applies to (4.5), giving

(4.9)

lim
|y|→∞

〈φ ◦ τy ψ〉

=

∫∫
f̂(v)ĝ(w)

〈
ei
∑

η(xj)vj
〉〈

ei
∑

η(xj)wj

〉
dv dw

= 〈φ〉 〈ψ〉,

completing the proof of Proposition 4.1.
We move on to more general conditions on C that imply ergodicity. We will

work with F = R. The action of {τy} on (O, ν) is ergodic provided

(4.10) lim
R→∞

1

V (R)

∫
|y|≤R

〈φ ◦ τy ψ〉 dy = 〈φ〉 〈ψ〉, ∀φ,ψ ∈ L2(O, ν).

See Appendix A. Note that (4.1) implies (4.10). To establish (4.10), it suffices to
check it for φ,ψ in a dense subspace of L2(O, ν), such as functions of the form
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(4.3A). Via (4.5) and the dominated convergence theorem, we see that (4.10) holds
for such functions provided

(4.11)

lim
R→∞

1

V (R)

∫
|y|≤R

〈
ei
∑

η(xj+y)vj)ei
∑

η(xj)wj

〉
dy

=
〈
ei
∑

η(xj)vj
〉〈

ei
∑

η(xj)wj

〉
,

for each x1, . . . , xℓ ∈ Rn, v, w ∈ Rℓ, ℓ ∈ N. In turn, by (4.6)–(4.7), we see that
(4.11) holds provided

(4.12) lim
R→∞

1

V (R)

∫
|y|≤R

e−
∑

C(xj+y−xk)vjwk dy = 1,

for all such xj , v, w. This holds provided

(4.13) lim
R→∞

1

V (R)

∫
|y|≤R

Exp
{
−

ℓ∑
j=1

λjC(xj + y)
}
dy = 1,

for each ℓ ∈ N, x1, . . . , xℓ ∈ Rn, λ1, . . . , λℓ ∈ R. Note that

(4.14) |C(xj + y)| ≤ C(0), ∀xj , y ∈ Rn.

so the integrand in (4.13) is bounded by eC(0)
∑

|λj |. Now, for s ∈ R,

(4.15) es = 1 + ρ(s),

with ρ(0) = 0, ρ′(s) = es, hence

(4.16) |s| ≤ C(0)L =⇒ |ρ(s)| ≤ |s|eC(0)L.

We have the following.

Proposition 4.2. Let Z : Rn → L2(Ω, µ) be a stationary Gaussian field, with
continuous covariance. If

(4.17) lim
R→∞

1

V (R)

∫
|y|≤R

|C(y)| dy = 0,

then (4.10) holds, and Z is ergodic.

We remark that (4.17) is equivalent to

(4.18) lim
R→∞

1

V (R)

∫
|y|≤R

|C(y)|2 dy = 0,
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one implication by Cauchy’s inequality and the other by the bound (4.14). In turn,

(4.18) is equivalent to the assertion that the measure σ = Ĉ has no atoms. See
Appendix B. In such a case, we say Z has continuous spectrum. Thus we have that
Z is ergodic provided it has continuous spectrum. The converse is also true. A
stationary Gaussian field on Rn with continuous covariance is ergodic if and only
if it has continuous spectrum. This was proved in [M] and [G] when n = 1 and in
[BE] when n > 1.

In light of these results, we see that stationary Gaussian fields with covariances
given by (3.24), (3.25), (3.26), (3.27), or (when n > 1) by (3.33) are ergodic (in
fact, mixing), while those with covariance given by (3.32) are not ergodic.

There is a straightforward analogue of Proposition 4.2 for F = Z.

5. Stationary random fields on Lie groups

We consider a random field on a Lie group G,

(5.1) Z : G −→ L2(Ω, µ),

where (Ω, µ) is a probability space. We assume that the random variables Z(x) are
real-valued, and that Z is continuous. Parallel to (1.2), we have

(5.2) F : Ω −→ O = RG,

given by

(5.3) F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ G.

Then we get a probability measure ν on O:

(5.4) ν(S) = µ(F−1(S)),

so

(5.5)

∫
O

φ(η) dν(η) =

∫
Ω

φ(F (ξ)) dµ(ξ).

Formulas parallel to (1.6)–(1.9) hold. Parallel to (1.10)–(1.11), we have a g-action
on O:

(5.6) τg : O → O, τgη(x) = η(gx), x, g ∈ G.

We say Z is stationary if this G-action preserves ν, i.e.,

(5.7)

∫
O

φ(τgη) dν(η) =

∫
O

φ(η) dν(η), ∀φ ∈ L1(O, ν), g ∈ G.
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Parallel to (1.16), we see that stationarity implies

(5.8) 〈Z(gx1)〉 = 〈Z(x1)〉, 〈Z(gx1)Z(gx2)〉 = 〈Z(x1)Z(x2)〉,

for all g, x1, x2 ∈ G. Consequently

(5.9) 〈Z(x)〉 =M

is independent of x ∈ G and the covariance, given by

(5.10) R(x, y) = 〈Z(x)Z(y)〉 −M2,

satisfies

(5.11) R(x, y) = R(y, x), R(gx, gy) = R(x, y),

hence there exists C : G→ R such that

(5.12) R(x, y) = C(x−1y), C(x) = C(x−1), x, y ∈ G.

There is a positivity condition parallel to (3.10), which translates, for stationary
fields, to

(5.13)
∑
i,j

C(x−1
i xj)aiaj ≥ 0.

Note that if e ∈ G is the identity element,

(5.14)
‖Z(x)− Z(y)‖2L2 = ‖Z(e)− Z(x−1y)‖2L2

= 2C(e)− 2C(x−1y),

so the continuity of a stationary field Z : G → L2(Ω, µ) is equivalent to the con-
tinuity of C : G → R at e (and implies the continuity of C on G). As mentioned
above, we work under this continuity hypothesis.

Given such continuity, the condition (5.13) is equivalent to

(5.15)

∫
G

∫
G

C(x−1y)f(x)f(y) dx dy ≥ 0,

for all f ∈ C∞
0 (G), where dx denotes Haar measure on G. We henceforth assume

(5.16) G is unimodular,
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so left Haar measure and right Haar measure coincide. Note that, by (5.12), we
can replace C(x−1y) by C(y−1x) in (5.15). Now the convolution is defined by

(5.17) f ∗ C(x) =
∫
G

f(y)C(y−1x) dy,

so the condition (5.15) is equivalent to

(5.18) (f, f ∗ C)L2 ≥ 0,

for all f ∈ C∞
0 (G).

From here on in this section we will assume G is compact, which of course implies
unimodularity. The Peter-Weyl theorem yields a unitary isomorphism

(5.19) F : L2(G) −→
⊕
π∈Ĝ

End(V π),

where Ĝ consists of (equivalence classes of) the irreducible unitary representations
of G. This is given by

(5.20) F(f)(π) = π(f) =

∫
G

f(x)π(x) dx,

with Plancherel formula

(5.21) (f, g)L2 =
∑
π∈Ĝ

dπ Tr(π(f)π(g)∗),

and inversion formula

(5.22) f(x) =
∑
π∈Ĝ

dπ Tr(π(f)π(x)∗).

Since π(f ∗ g) = π(f)π(g), we get

(5.23) (f, f ∗ C)L2 =
∑
π∈Ĝ

dπ Tr(π(f)π(C)∗π(f)∗),

and the condition (5.18) on C ∈ C(G) becomes

(5.24) Tr(Aπ(C)∗A∗) ≥ 0, ∀π ∈ Ĝ, A ∈ End(V π).

Note that if A is an orthogonal projection, Av = (v, w)w, ‖w‖ = 1, then Aπ(C)∗A∗v
= (v, w)Aπ(C)∗w = (v, w)(π(C)∗w,w)w, so Tr(Aπ(X)∗A∗) = (π(C)∗w,w). Thus
(5.24) implies

(5.25) π(C) ≥ 0, ∀π ∈ Ĝ.
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The reverse implication is also readily established.
For compact G, a stationary random field Z : G → L2(Ω, µ) yields random

variables

(5.26) Zπij =

∫
G

Z(x)πij(x) dx ∈ L2(Ω, µ),

where πij(x) are the matrix entries of π(x), with respect to some given orthonormal
basis of V π. These entries fit together to produce

(5.27) Zπ =

∫
G

Z(x)π(x) dx ∈ L2(Ω, µ,End(V π)).

Let us assume

(5.28) 〈Z(x)〉 ≡M = 0.

Then

(5.29)

〈ZπijZ
π

kℓ〉 =
∫
G

∫
G

C(y−1x)πij(x)πkℓ(y) dx dy

=

∫
G

∫
G

C(z)πij(yz)πkℓ(y) dz dy

=
∑
m

∫
G

∫
G

C(z)πim(y)πmj(z)πkℓ(y) dz dy

=
1

dπ

∑
m

δikδmℓ

∫
G

C(z)πmj(z) dz

=
1

dπ
δik

∫
G

C(z)πℓj(z) dz

=
1

dπ
δik
(
π(C)

)
ℓj
.

If π and λ are distinct elements of Ĝ,

(5.30) 〈ZπijZ
λ

kℓ〉 ≡ 0.

The Peter-Weyl theorem gives

(5.31) Z(x) =
∑
π∈Ĝ

Zπ(x),
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with

(5.32) Zπ(x) = dπ
∑
i,j

Zπijπij(x) = dπ Tr(Z
ππ(x)∗).

We have

(5.33)

〈Zπ(x)Zπ(y)〉 = d2π
∑
i,j

∑
k,ℓ

〈ZπijZ
π

kℓ〉πij(x)πkℓ(y)

= dπ
∑
i,j

∑
k,ℓ

δik
(
π(C)

)
ℓj
πij(x)πkℓ(y)

= dπ
∑
j,k,ℓ

(
π(C)

)
ℓj
πkj(x)πkℓ(y)

= dπ
∑
j,k

(
π(y)π(C)

)
kj
πkj(x)

= dπ Tr
(
π(x)∗π(y)π(C)

)
= dπ Tr

(
π(x−1y)π(C)

)
,

and 〈Zπ(x)Zλ(y)〉 ≡ 0 if π and λ are distinct elements of Ĝ.

Note that, since Z(x) is real valued, Z
π
= Zπ, so

(5.34)
〈ZπijZπkℓ〉 = 〈ZπijZ

π

kℓ〉 if π = π,

0 if π 6= π.

Hence

(5.35)
〈Zπ(x)Zπ(y)〉 = 〈Zπ(x)Zπ(y)〉 if π = π,

0 if π 6= π.

Furthermore, 〈Zπ(x)Zλ(y)〉 ≡ 0 if π and λ are distinct elements of Ĝ.

Remark. The condition (5.8) is the condition that the field Z is “2-weakly station-
ary.” This condition is weaker than stationarity, but it suffices for all the results in
(5.9)–(5.35).

We now give a result that follows from stationarity but not from 2-weak sta-

tionarity. First, some notation. Let Y σ and Ỹ σ denote two families of elements of
L1(Ω, µ), indexed by σ ∈ Σ. We write

(5.36) Y σ ↔σ Ỹ σ

provided that, for arbitrary σ1, . . . , σN ∈ Σ, N ∈ N, the random variables

(5.37) {Y σ1 , . . . , Y σN } and {Ỹ σ1 , . . . , Ỹ σN }
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have the same joint distribution. Note that a field Z : G → L2(Ω, µ) is stationary
if and only if

(5.38) Z(gx) ↔g Z(x), ∀x ∈ X.

Now if Zπ is defined by (5.27), then

(5.39)

π(g)Zπ =

∫
G

Z(x)π(gx) dx

=

∫
G

Z(g−1y)π(y) dy,

so (5.38) gives

(5.40) π(g)Zπ ↔π Zπ, ∀ g ∈ G,

provided Z is stationary. This result does not follow from 2-weak stationarity.

6. Stationary random fields on homogeneous spaces

Let X be a Riemannian manifold with a transitive group G of isometries. If
K ⊂ G is the subgroup fixing a point p0 ∈ X, then K is compact and X ≈ G/K.
We have

(6.1) γ : G −→ X, γ(g) = g · p0.

Given a continuous random field

(6.2) Y : X −→ L2(Ω, µ),

we have

(6.3) Z = Y ◦ γ : G −→ L2(X,µ).

We say Y is stationary if Z is stationary. Note that a field Z : G → L2(Ω, µ) has
the form (6.3) if and only if

(6.4) Z(xk) = Z(x), ∀x ∈ G, k ∈ K.

In such a case, R(x, y) = 〈Z(x)Z(y)〉 −M2 satisfies

(6.5) R(xk1, yk2) = R(x, y), ∀ kj ∈ K, x, y ∈ G,
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so, given stationarity, with R(x, y) = C(x−1y), we have

(6.6) C((xk1)
−1yk2) = C(x−1y), ∀x, y,∈ G, kj ∈ K,

or equivalently

(6.7) C(k2xk1) = C(x), ∀x ∈ G, kj ∈ K.

In particular, we have a function

(6.8) C : X −→ R, C = C ◦ γ,

and

(6.9) C(kp) = C(p), ∀ k ∈ K, p ∈ X.

Conversely, given a continuous C : X → R satisfying (6.9), C = C ◦ γ satisfies (6.7).
A Riemannian manifold X might have more than one group of isometries acting

transitively, so one might use the phrase “G-stationary” to be more precise (though
we will not). For example, if X = Rn, one has G = Rn acting by translations, and
also the larger group G = E(n) of rigid motions, a semidirect product of Rn and
SO(n). For an Rn-stationary field on X = Rn to be E(n)-stationary ([MP] prefers
the term “isotropic”), one needs C : Rn → R to be radial. (And this condition
would suffice for Gaussian fields.) For another example, if X = Sn−1 is the unit
sphere in Rn, one has SO(n) acting transitively as a group of isometries, and if
n = 2k, one has the subgroups U(k) and SU(k) also acting transitively.

For the rest of this section, we assume X is compact, hence G is compact. As
shown in [Z], p. 80, the regular representation R of G on L2(X),

(6.10) R(g)f(p) = f(g−1p),

decomposes into a family of finite-dimensional representations,

(6.11) L2(X) =
⊕
π∈Ĝ0

L2
π(X).

Here Ĝ0 ⊂ Ĝ is defined by

(6.12) π ∈ Ĝ0 ⇔ V π0 = {φ ∈ V π : π(k)φ = φ, ∀ k ∈ K} 6= 0,

and we have isomorphisms

(6.13)
Ψπ : V π0 ⊗ V π −→ L2

π(X),

Ψπ(φ⊗ ψ)(g · p0) = (π(g)φ,ψ).
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Note that, given h ∈ G, φ ∈ V π0 , ψ ∈ V π,

(6.14)

R(h)Ψπ(φ⊗ ψ)(g · p0) = (π(h−1g)φ,ψ)

= (π(g)φ, π(h)ψ)

= Ψπ(φ⊗ π(h)ψ)(g · p0).

In other words, for each φ ∈ V π0 , we have

(6.15) Φφ : V π → L2(X), Φφ(ψ)(g · p0) = (π(g)φ,ψ),

and

(6.16) R(h)Φφ(ψ) = Φφ(π(h)ψ).

The case X = S2, G = SO(3) was emphasized in [MP]. Then (6.11) becomes

(6.17) L2(S2) =
⊕
j≥0

Vj ,

where Vj is an eigenspace of the Laplace-Beltrami operator on S2, of dimension
2j + 1, and SO(3) acts on Vj by the representation denoted Dj . Elements of Vj
are called spherical harmonics. In this case, Vj,0 is one dimensional, spanned by
the zonal harmonic in Vj . It is desired to understand the behavior of the spherical
harmonic expansion of the continuous function C : S2 → R arising from a stationary
field Y : S2 → L2(Ω, µ), via (6.2)–(6.8).

More generally, for a compact homogeneous space X = G/K, we want to un-

derstand the behavior of π(C), as π runs over Ĝ0. Results of §5 apply, of course,
particularly (5.25). Further structure arises from (6.7), which implies

(6.18) π(C) = π(k1)π(C)π(k2), ∀ kj ∈ K, π ∈ Ĝ.

Note that

(6.19) P0 =

∫
K

π(k) dk =⇒ P0 : V π → V π0 , orthogonal projection.

Integrating (6.18) yields

(6.20) π(C) = P0π(C)P0.

Conversely, (6.20) ⇒ (6.18). Note that if (6.18) holds, then

(6.21) C(x) =
∑
π∈Ĝ

dπ Tr
(
π(C)π(x)∗

)
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satisfies

(6.22) C(k2xk1) =
∑
π∈Ĝ

dπ Tr
(
π(C)π(k1)

∗π(x)∗π(k2)
∗) = C(x), ∀ kj ∈ K.

We also have

(6.23)

C(x−1) =
∑
π∈Ĝ

dπ Tr
(
π(C)π(x)

)
=
∑
π

dπ Tr
(
π(x)∗π(C)∗

)
= C(x),

given that C is real valued and that π(C), as a consequence of (5.25), is self-adjoint.
As we have mentioned, if X = S2, G = SO(3), then

(6.24) dimV π0 = 1,

for all π ∈ Ĝ0. This holds more generally for X = Sn−1, G = SO(n), but it does
not hold for X = S3, G = SU(2). When (6.24) holds, we can write (6.20) as

(6.25) π(C) = τπ(C)P0,

with

(6.26) τπ(C) = Trπ(C) =

∫
G

C(x)χπ(x) dx,

where χπ(x) = Trπ(x) is the character of the representation π. The positivity
condition (5.25) becomes

(6.26A) τπ(C) ≥ 0, ∀π ∈ Ĝ0.

Recall from (5.27) the construction of

(6.27) Zπ =

∫
G

Z(x)π(x) dx ∈ L2(Ω, µ,End(V π)).

If (6.4) holds, then

(6.28) Zπ = Zππ(k), ∀ k ∈ K,

and integration over k ∈ K gives

(6.29) Zπ = ZπP0,
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with P0 as in (6.19). Conversely, (6.29) ⇒ (6.28), which in turn implies that

(6.30) Z(x) =
∑
π∈Ĝ

dπ Tr
(
Zππ(x)∗

)

(note that the sum is actually over π ∈ Ĝ0) satisfies

(6.31) Z(xk) =
∑
π

dπ Tr
(
Zππ(k)∗π(x)∗

)
= Z(x), ∀ k ∈ K.

If (6.24) holds and M = 0, we deduce from (5.29) and (6.25) that

(6.32) 〈ZπijZ
π

kℓ〉 =
τπ(C)

dπ
δik(P0)ℓj (if dimV π0 = 1).

It would be typical to pick an orthonormal basis of V π such that (P0)ℓj = δℓ0δj0,
so

(6.33) 〈ZπijZ
π

kℓ〉 =
τπ(C)

dπ
δℓ0δj0δik.

We also have from (5.33) and (6.25) that

(6.34)
〈Zπ(x)Zπ(y)〉 = dπτπ(C) Tr(π(x

−1y)P0)

= dπτπ(C) Tr(P0π(x
−1y)P0).

Note that (5.34)–(5.35) apply to 〈ZπijZπkℓ〉 and 〈Zπ(x)Zπ(y)〉. We mention that,

for X = S2, G = SO(3) (more generally, for X = Sn−1, G = SO(n)) all the

representations π ∈ Ĝ0 are real, and Zπ(x) = Z
π
(x), for all x.

Remark. Parallel to the remark following (5.35), we mention that the results
(6.5)–(6.34) hold for Z as in (6.3), whenever Z is 2-weakly stationary (we then say
Y is 2-weakly stationary). This condition is weaker than the assumption that Y is
stationary. See the remarks at the end of §7 for more on this.

7. The inverse problem: constructing Z(x) from spectral data

As in the latter part of §6, X will be a compact Riemannian manifold, G a
transitive group of isometries of X, K ⊂ G the subgroup fixing a given point
p0 ∈ X. We are given data

(7.1) Cπ ∈ End(V π), Zπ ∈ L2(Ω, µ,End(V π)),
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for π ∈ Ĝ0, defined in (6.12). We want to specify the conditions on this data that
guarantee the existence of a continuous, real valued, Y : X → L2(Ω, µ) such that,
with Z = Y ◦ γ, as in (6.3), we have

(7.2)
Zπ =

∫
G

Z(x)π(x) dx, π(C) = Cπ,

〈Z(x)〉 = 0, 〈Z(x)Z(y)〉 = C(x−1y).

Necessary conditions follow from results of §§5–6. Here we want to show they are
sufficient. We start out in the general setting described above, but later on we
will make some simplifying assumptions, which are satisfied when X = Sn−1, G =
SO(n), n ≥ 3.

We begin by seeing what condition on {Cπ} gives rise to a continuous, positive-
definite function C on G satisfying

(7.3) C(k2xk1) = C(x), ∀x ∈ G, kj ∈ K.

As seen in §§5–6, a necessary condition is

(7.4) Cπ = P0C
πP0 ≥ 0, ∀π ∈ Ĝ0,

where P0 : V π → V π0 is the orthogonal projection. (For notational simplicity, we
do not record the dependence of P0 on π.) We now show that (7.4) is sufficient for
the existence of the desired function C (given appropriate decay of Cπ as π → ∞).
In fact, taking a cue from (5.22), we set

(7.5) C(x) =
∑
π∈Ĝ0

dπ Tr(Cππ(x)∗).

Given sufficient decay (cf. (7.34) below), this converges to C ∈ C(G), and

(7.6) π(C) = Cπ,

for all π. Furthermore, given kj ∈ K,

(7.7)

C(k2xk1) =
∑
π

dπ Tr(Cππ(k2)
∗π(x)∗π(k1)

∗)

=
∑
π

dπ Tr(π(k−1
1 )Cππ(k−1

2 )π(x)∗),

and (7.4) implies

(7.8) π(k−1
1 )Cππ(k−1

2 ) = Cπ, ∀ kj ∈ K,
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so (7.3) holds. By (7.6) and the argument around (5.25), the function C in (7.5) is
positive definite. Let us also note that if C(x) is given by (7.5), then

(7.9)

C(x−1) =
∑
π

dπ Tr(Cππ(x))

=
∑
π

dπ Tr(π(x)∗Cπ)

= C(x),

where we have used self-adjointness of Cπ. We want C(x) to be real valued, so we
will impose the following restriction:

(7.10) Each representation π ∈ Ĝ0 is real,

with respect to some orthonormal basis of V π. As mentioned in §6, this holds when
X = Sn−1, G = SO(n), n ≥ 3. We also complement (7.4) with the condition that

(7.11) Cπ is real,

with respect to such a basis of V π.
We move on to Zπ, with matrix entries Zπij ∈ L2(Ω, µ). We set

(7.12) Z(x) =
∑
π

dπ Tr(Zππ(x)∗),

which yields a continuous function Z : G → L2(Ω, µ), given appropriate decay of
{Zπ} as π → ∞, and we have

(7.13) Zπ =

∫
G

Z(x)π(x) dx.

Now

(7.14) 〈Z(x)〉 =
∑
π

dπ Tr(〈Zπ〉π(x)∗) = 0,

provided

(7.15) 〈Zπij〉 = 0, ∀ i, j, π.

As seen in §6, a necessary condition on Zπ is

(7.16) Zπ = ZπP0.
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This implies Zπ = Zππ(k) for all k ∈ K, hence

(7.17) Z(xk) =
∑
π

dπ Tr(Zππ(k)∗π(x)∗) = Z(x),

for all x ∈ G, k ∈ K.
At this point we bring in the following simplifying assumption.

(7.18) dimV π0 = 1, ∀π ∈ Ĝ0.

As mentioned in in §6, this holds for X = Sn−1, G = SO(n), n ≥ 3. Given (7.18),
(7.4) becomes

(7.19) Cπ = τπP0, τπ ∈ [0,∞).

It is common to take an orthonormal basis {vj} of V π for which (7.10) holds and
V π0 = Span(v0), so (P0)ij = δi0δj0. Then Z

π
ij = 0 unless j = 0, so

(7.20) Zπij = ζπi δj0, ζπi ∈ L2(Ω, µ) (real valued).

Finally, we need to make an appropriate hypothesis on ζπi . The condition (7.15)
gives

(7.21) 〈ζπi 〉 = 0, ∀ i, π,

and the formula (6.33) (plus (5.30)) yields the necessary condition

(7.22) 〈ζπi ζλk 〉 =
τπ
dπ
δikδπλ, π, λ ∈ Ĝ0.

It remains to check the covariance identity in (7.2). To break this down, we write
(7.12) as

(7.23) Z(x) =
∑
π

Zπ(x),

with

(7.24)

Zπ(z) = dπ Tr(Zππ(x)∗)

= dπ
∑
i,j

Zπijπij(x)

= dπ
∑
i

ζπi πi0(x),
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the last identity by (7.20). From here, we get the following. (We keep the bar, but

recall that in this setting Z
π
(y) = Zπ(y).)

(7.25)

〈Zπ(x)Zπ(y)〉 = d2π
∑
i,k

〈ζπi ζ
π

k 〉πi0(x)πk0(y)

= dπτπ
∑
i

πi0(x)πi0(y)

= dπτππ(x
−1y)00.

Hence (celebrating reality and dropping the bars),

(7.26)

〈Z(x)Z(y)〉 =
∑
π,λ

〈Zπ(x)Zλ(y)〉

=
∑
π

〈Zπ(x)Zπ(y)〉

=
∑
π

dπτππ(x
−1y)00,

the second identity by (7.22). Meanwhile,

(7.27)

C(x) =
∑
π

dπ Tr(Cππ(x)∗)

=
∑
π

dπτπ Tr(P0π(x)
∗)

=
∑
π

dπτπ Tr(P0π(x)P0)

=
∑
π

dπτππ(x)00,

so

(7.28) 〈Z(x)Z(y)〉 = C(x−1y).

We formulate our result.

Proposition 7.1. Assume on Ĝ0 that (7.10) and (7.18) hold. Take τπ ∈ [0,∞),
decreasing sufficiently rapidly as π → ∞, and define Cπ by (7.19). Let ζπj ∈
L2(Ω, µ) satisfy (7.21)–(7.22), and define Z(x) by (7.23)–(7.24) and C(x) by (7.5).
Then

(7.29) C : G→ R, Z : G→ L2(Ω, µ)

are continuous, Z(xk) = Z(k) for all x ∈ G, k ∈ K, and the identities in (7.2)
hold.
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Let us record just what decay is required on {τπ : π ∈ Ĝ0}. We have

(7.30) Z(x) =
∑
π∈Ĝ0

dπ
∑
i

ζπi πi0(x),

and {ζπi } consists of mutually orthogonal elements of L2(Ω, µ), with square norm
τπ/dπ. Hence

(7.31)

‖Z(x)‖2L2(Ω) =
∑
π

d2π
∑
i

τπ
dπ

|πi0(x)|2

=
∑
π

dπτπ,

since, by unitarity,

(7.32)
∑
i

|πi0(x)|2 ≡ 1.

Hence, as long as

(7.33)
∑
π∈Ĝ0

dπτπ <∞,

the infinite series (7.30) converges uniformly on G to a continuous function with
values in L2(Ω, µ).

Remark. The random field Z : G → L2(Ω, µ) constructed in Proposition 7.1
satisfies

(7.34) 〈Z(x)〉 = 0, 〈Z(gx)Z(gy)〉 = 〈Z(x)Z(y)〉, ∀x, y, g ∈ G.

As mentioned in §5, one says such a random field is “2-weakly stationary.” If {ζπj }
are mutually independent Gaussian random variables satisfying (7.22), then Z is a
Gaussian field, and arguments mentioned in §3 show that (7.34) implies stationarity.
In the non-Gaussian case, 2-weak stationarity does not imply stationarity.

Here is a result that follows from stationarity but not from 2-weak stationarity.
Namely, with respect to the orthonormal basis of V π mentioned below (7.19), the
elements ζπi ∈ L2(Ω, µ) introduced in (7.20) are the components of

(7.35) ζπ ∈ L2(Ω, µ, V π).

Then (5.40) implies

(7.36) π(g)ζπ ↔π ζπ, ∀ g ∈ G,
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provided G is stationary. (See (5.36)–(5.37) for the notation used in (7.36).) It
follows from (7.36) that

(7.37) Sπ1···πN
= 〈ζπ1 ⊗ · · · ⊗ ζπN 〉 ∈ V π1 ⊗ · · · ⊗ V πN

satisfies

(7.38) π1(g)⊗ · · · ⊗ πN (g)Sπ1···πN
= Sπ1···πN

, ∀ g ∈ G.

Let us note, parenthetically, that (7.20) is equivalent to

(7.39) Zπ = ζπ ⊗ vπ0 , V π0 = Span (vπ0 ), ‖vπ0 ‖ = 1,

that is,

(7.40) Zπv = (v, vπ0 )ζ
π, v ∈ V π.

In Chapter 6 of [MP] the following result is established, in the case X = S2, G =

SO(3). Assume Y : S2 → L2(X,µ) is stationary. Take π ∈ Ĝ and assume the
elements ζπi ∈ L2(Ω, µ) (known to be mutually orthogonal, as i varies, by (7.22)) are
actually independent. Then these random variables must be Gaussian. The proof
makes use of (7.36). This analysis is extended to general compact homogeneous
spaces X = G/K in [BMV].

Now we can find non-Gaussian ζπi , that are mutually independent and satisfy
the hypotheses of Proposition 7.1. Then this proposition yields a continuous field
Z : G → L2(Ω, µ) that is 2-weakly stationary, but (by the result of [MP] stated
above) not stationary.

Non-Gaussian stationary fields Z : G→ L2(Ω, µ) can be obtained from a Gauss-
ian stationary field ZG by taking

(7.41) Z(x) = F (ZG(x)),

where F : R → R is continuous and satisfies moderate bounds. Such a class
of stationary fields, called Gaussian-subordinated stationary fields, are studied in
[MP] (with X = S2, G = SO(3)).

8. V -valued random fields

To start, let X be a Riemannian manifold with a transitive group G of isometries.
Let V be a finite dimensional inner product space (over R) and π an orthogonal
representation of G on V . We take a continuous function

(8.1) Z : X −→ L2(Ω, µ),
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where (Ω, µ) is a probability space. We induce a measure ν on O = V X as follows.
We have a map

(8.2) F : Ω −→ O, F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ X,

giving rise to

(8.3) ν(S) = µ(F−1(S)).

Parallel to (1.10)–(1.11) and to (5.6), we have a G-action on O:

(8.4) τg : O −→ O, (τgη)(x) = π(g)−1η(gx), x ∈ X, g ∈ G, η ∈ O.

With this convention, τgh = τhτg. We say that Z is stationary (G-stationary, for
clarity, when needed) provided the action {τg} preserves ν. We say Z is ergodic if
in addition this action is ergodic on (O, ν).

We now specialize to X = Rn, and consider two cases of G:

(8.5) Rn, E(n) = SO(n)×φ Rn.

The group operation on E(n) is given by

(8.6) (g, x) · (h, y) = (x+ φ(g)y, gh), x, y ∈ Rn, g, h ∈ SO(n),

where φ is the standard action of SO(n) on Rn, i.e, φ(g)y = gy. In case G = Rn, we
take the trivial representation on V . In case G = E(n), we consider representations
of the form

(8.7) λ(g, x)v = π(g)v,

where π is a unitary representation of SO(n) on V . The resulting actions on
O = V Rn

are

(8.8) τyη(x) = η(x+ y), τ(g,y)η(x) = π(g)−1η(φ(g)x+ y).

Given a continuous Z : Rn → L2(Ω, µ, V ), in case G = Rn and Z is G-stationary,
we say Z is a homogeneous random field. In case G = E(n) and Z is G-stationary,
we say Z is an isotropic random field. A case of central importance is

(8.9) V = Rn, π = φ,

the standard action of SO(n) on Rn. Then we say Z is a random vector field. For
G = Rn or E(n), respectively, we say a G-stationary Z is a homogeneous random
vector field or, respectively, an isotropic random vector field.
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Let us return to the general setting (8.1) and note that we have expectations
and correlations,

(8.10) 〈Z(x)〉 ∈ V, 〈Z(x)⊗ Z(y)〉 = R(x, y) ∈ V ⊗ V, x, y ∈ X.

G-stationarity implies, in the language of (5.36)–(5.37),

(8.11) Z(gx) ↔g π(g)Z(x), ∀x ∈ X.

Hence G-stationarity implies

(8.12)
〈Z(gx)〉 = π(g)〈Z(x)〉,

R(gx, gy) = (π(g)⊗ π(g))R(x, y),

for all x, y ∈ X, g ∈ G.
The inner product on V gives rise to an isomorphism,

(8.13) j : V ⊗ V
≈−→ End(V ), j(v ⊗ w)u = (u,w)v.

We can also write j(v ⊗ w) = vwt, with wt(u) = (u,w). We then have

(8.14) R(x, y) = jR(x, y) ∈ End(V ),

for x, y ∈ X. A useful alternative notation is

(8.14A) R(x, y) = 〈Z(x)Z(y)t〉.

Note that, for A ∈ End(V ),

(8.15) j(π(g)⊗ π(h))j−1A = π(g)Aπ(h)−1.

Hence (8.12) implies

(8.16) R(gx, gy) = π(g)R(x, y)π(g)−1, ∀x, y ∈ X, g ∈ G.

Specializing to X = Rn, G = Rn, we have, for G-stationary Z,

(8.17)
〈Z(x)〉 = 〈Z(y)〉, ∀x, y ∈ Rn,
R(x, y) = C(x− y), C : Rn → End(V ).

If G = E(n), we also have (8.17), and in addition

(8.18)
〈Z(gx)〉 = π(g)〈Z(x)〉, hence π(g)〈Z(x)〉 = 〈Z(x)〉,
C(gx) = π(g)C(x)π(g)−1, ∀x ∈ Rn, g ∈ SO(n).
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Note. Our definition of C(x− y) as 〈Z(x)Z(y)〉 differs slightly from that in (4.2)
and (5.10), but the definitions coincide when 〈Z(x)〉 ≡ 0, which is the typical
situation.

Another symmetry property is the following. By (8.14A), R(y, x) = R(x, y)t

(the adjoint in End(V )), hence

(8.19) C(−x) = C(x)t, ∀x ∈ Rn.

We have a positivity property parallel to (3.10). Let k ≥ 1, x1, . . . , xk ∈ Rn, and
a1, . . . , ak ∈ C. Then

(8.20)

∑
i,j

R(xi, xj)aiaj = 〈WW ∗〉 ≥ 0 in End(V ),

W =
∑
i

aiZ(xi) ∈ L2(Ω, µ, V ).

Hence, in the setting of (8.17),

(8.21)
∑
i,j

C(xi − xj)aiaj ≥ 0 in End(V ).

Given that C : Rn → End(V ) is continuous, (8.21) is equivalent to

(8.22)

∫∫
C(x− y)f(x)f(y) dx dy ≥ 0, ∀ f ∈ S(Rn),

and also, via Bochner-Herglotz, to

(8.23) C̃ is a (finite) positive End(VC)-valued measure on Rn,

given (8.19), which implies

(8.24) C̃∗ = C̃ in S ′(Rn,End(VC)).

Also (8.19) implies

(8.25) C̃(−ξ) = C̃(ξ)t.

(Given A ∈ End(VC), A
∗ = A

t
.) Note that the Fourier transform of Cg(x) = C(gx)

is

(8.26) C̃g(ξ) = (2π)−n/2
∫
C(gx)e−ix·ξ dx = C̃(gξ),
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so (8.18) implies

(8.27) C̃(gξ) = π(g)C̃(ξ)π(g)−1.

It follows from (8.18) that if Z : Rn → L2(Ω, µ, V ) is isotropic, then the hypoth-
esis

(8.28) π does not contain a trivial representation of SO(n)

implies

(8.29) 〈Z(x)〉 ≡ 0,

and the hypothesis

(8.30) π acts irreducibly on VC

implies

(8.31) C(0) = αI, α ∈ R+.

Also, if C̃ is continuous in a neighborhood of 0 ∈ Rn, (8.30) implies

(8.32) C̃(0) = βI, β ∈ R+

(inclusion in R+ by (8.23)).
If π is the standard representation of SO(n) on Rn, then (8.28) holds whenever

n ≥ 2, and (8.30) holds whenever n ≥ 3. The hypothesis (8.30) fails for n = 2, but
nevertheless (8.31) continues to hold. In fact, if n = 2, (8.18) implies C(0) must
be a scalar multiple of a rotation on R2. Since also C(0) = 〈Z(0)Z(0)t〉 ≥ 0 in
End(R2), (8.31) follows. A similar argument applies to (8.32).

We continue to take X = Rn, G = E(n), V = Rn, and π the standard rep-
resentation of SO(n) on Rn. The result (8.18) on C implies that it is uniquely
specified by C(ren), r ∈ [0,∞), where {e1, . . . , en} is the standard basis of Rn.
If SO(n − 1) acts on Rn, fixing en and taking the standard SO(n − 1) action on
Span(e1, . . . , en−1) = Rn−1, then C is well defined on Rn \ 0 if and only if

(8.33) π(g)C(ren)π(g)
−1 = C(ren), ∀ g ∈ SO(n− 1),

the case of C(0) having been discussed above. Now Cn splits into two factors,
Cen and C-Span(e1, . . . , en−1), on each of which SO(n− 1) acts irreducibly. Hence
(8.33) is equivalent to

(8.34) C(ren) = A(r)Pen +B(r)(I − Pen),
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where, for x ∈ Rn,

(8.34A) Px = orthogonal projection of Rn onto Span(x),

and A and B are scalar. Now,

(8.35) g ∈ SO(n) =⇒ π(g)Penπ(g)
−1 = Pgen ,

so we get

(8.36) C(x) = A(|x|)Px +B(|x|)(I − Px).

From (8.31), we have A(0) = B(0) = α. In view of (8.27), a similar analysis holds

for C̃. Assuming C̃ is continuous on Rn \ 0, we have

(8.37) C̃(ξ) = A#(|ξ|)Pξ +B#(|ξ|)(I − Pξ),

with A# and B# scalar. If in addition C̃ is continuous in a neighborhood of 0, we
have A#(0) = B#(0) = β. To celebrate the positivity result (8.23), we also write

(8.38) C̃ = A#Pξ +B#(I − Pξ),

where

(8.39) A# and B# are finite, positive (scalar) radial measures on Rn.

Since Pξ is not continuous at ξ = 0, we elaborate on (8.38). We have

(8.40) C̃ = AbPξ +Bb(I − Pξ) + γIδ,

where Ab and Bb are finite, positive, scalar, rotationally invariant measures on Rn
with no atom at 0, and γ ≥ 0.

Note that (8.38)–(8.40) imply a reality condition, sharpening (8.24) to

(8.41) C̃∗ = C̃t = C̃ in S ′(Rn,End(Rn)),

in the isotropic case, and converting (8.25) to

(8.42) C̃(−ξ) = C̃(ξ).

9. Random divergence-free vector fields
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We take the setting of §8, with X = Rn, G = Rn or E(n), and V = Rn. As
usual, (Ω, µ) is a probability space. A continuous function

(9.1) Z : Rn −→ L2(Ω, µ)

is divergence-free provided divZ = 0, i.e., with Z = (Z1, . . . , Zn)
t,

(9.2)
∑
j

∂jZj = 0,

considered as an element of S ′(Rn, L2(Ω, µ)). Equivalently,

(9.3)

∫
Rn

Z(x) · ∇f(x) = 0, ∀ f ∈ C∞
0 (Rn).

Recall that if Z is homogeneous (i.e., Rn-stationary) and 〈Z(x)〉 ≡ 0, we have

(9.4) C(x) = 〈Z(x)Z(0)t〉 ∈ End(Rn), i.e., Cij(x) = 〈Zi(x)Zj(0)〉.

Then (9.2) implies

(9.5)
∑
i

∂iCij = 0, hence
∑
j

∂jCij = 0,

the latter identity following since Cji(x) = Cij(−x).
Applying the Fourier transform (cf. Appendix C) to (9.2) gives

(9.6)
∑
j

ξjẐj = 0 in S ′(Rn, L2(Ω, µ)),

and, in case Z is homogeneous, applying the Fourier transform to (9.5) gives

(9.7)
∑
i

ξiC̃ij(ξ) = 0,
∑
j

ξjC̃ij(ξ) = 0.

If Z is isotropic, then (8.40), i.e.,

(9.8) C̃ = AbPξ +Bb(I − Pξ) + γIδ,

plus (9.7) gives

(9.9) C̃ = Bb(I − Pξ) + γIδ,

where Bb is a finite, positive (scalar), rotationally invariant measure on Rn, with
no atom at 0 (hence no atoms at all), and γ ≥ 0. As shown in Appendix C, mild

decay conditions on C(x) as |x| → ∞ imply no atoms for C̃, hence γ = 0.
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We next discuss the existence of nontrivial homogeneous (or isotropic) divergence-
free vector fields. Take a continuous C : Rn → End(Rn) satisfying C(x) = C(−x)t
and C̃ positive, e.g., C̃ as in (9.8). Parallel to Theorem 3.3 and Corollary 3.4, there
is (no doubt) an existence result for a Gaussian random field Y : Rn → L2(Ω, µ,Rn)
such that

(9.10) 〈Y (x)〉 ≡ 0, 〈Y (x)Y (y)t〉 = CY (x− y),

and such a Gaussian field will be homogeneous (Rn-stationary). If CY (x) satis-

fies (8.18), e.g., if C̃Y is given by (9.8), then (no doubt) such a Gaussian field Y
will be isotropic (E(n)-stationary). (Justifying this would involve establishing a
generalization of Proposition 3.1.)

To get a random field satisfying (9.2), we might need to alter Y . Consider

(9.11) Z(x) = f ∗ Y (x) =

∫
f(x− y)Y (y) dy,

with

(9.12) f ∈ L1(Rn,End(Rn)).

Note that

(9.12A) Ẑ = f̂ Ŷ .

It easily follows from (9.11) that Z is homogeneous if Y is; compare similar results
in Appendix C. We next investigate when Z can be said to be isotropic, given that
Y is isotropic, i.e., Y is homogeneous, and, in the terminology of (5.36)–(5.37), with
g running over SO(n) and π the standard action of SO(n) on Rn,

(9.13) Y (gx) ↔g π(g)Y (x), ∀x ∈ Rn.

Note that

(9.14)

Z(gx) =

∫
f(gx− y)Y (y) dy

=

∫
f(g(x− y))Y (gy) dy

↔g

∫
f(g(x− y))π(g)Y (y) dy.

Thus, to achieve

(9.19) Z(gx) ↔g π(g)Z(x), ∀x ∈ Rn,
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we need f to satisfy

(9.16) f(gx) = π(g)f(x)π(g)−1,

or equivalently

(9.17) f̂(gξ) = π(g)f̂(ξ)π(g)−1.

Note that

(9.18) Pgξ = π(g)Pξπ(g)
−1, ∀ g ∈ SO(n), ξ ∈ Rn \ 0.

Hence, we take f ∈ L1(Rn,End(Rn)) such that

(9.19) f̂(ξ) = a(ξ)(I − Pξ),

with a : Rn → R radial, and sufficiently regular, and vanishing sufficiently as ξ → 0
and as |ξ| → ∞ to ensure that f is integrable. With such a choice of f , Z, defined
by (9.11), will be divergence free. It will be homogeneous if Y is, and it will be
isotropic if Y is.

We remark that if Y and Z are related by (9.11), then 〈Y (x)〉 ≡ 0 ⇒ 〈Z(x)〉 ≡ 0
and, with CY (x− y) as in (9.10) and

(9.20) CZ(x− y) = 〈Z(x)Z(y)t〉,

a calculation gives

(9.21) CZ = f ∗ CY ∗ f#, f#(x) = f(−x)t,

hence

(9.22)
C̃Z = (2π)nf̂(ξ)C̃Y f̂(−ξ)t

= (2π)nf̂(ξ)C̃Y f̂(ξ)
∗.

If f̂ is given by (9.19), we obtain

(9.23) C̃Z = (2π)na(ξ)(I − Pξ)C̃Y (I − Pξ)a(ξ).

Recall from (8.31)–(8.32) that if Z is an isotropic random vector field on Rn and
〈Z(x)〉 ≡ 0 and C = CZ is given by (9.20), then C(0) is a scalar multiple of the

identity. If C̃ is continuous on a neighborhood of 0, C̃(0) is also a scalar multiple
of the identity. We note that if Z is also divergence free, then

(9.24) C̃(ξ)ξ = 0 =⇒ C̃(0) = 0,
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given such continuity. Indeed, fixing ω ∈ Sn−1 ⊂ Rn, we have C̃(rω)ω = 0, for all

r > 0, and letting r → 0 yields C̃(0)ω = 0, for all ω ∈ Sn−1. (In fact, this argument
applies more generally to homogeneous, divergence-free random vector fields.)

On the other hand, there exist isotropic, divergence-free random fields on Rn for

which C̃ is continuous on Rn \ 0 and does not tend to 0 at the origin. Examples
can be obtained as follows. Set

(9.25) C̃Y (ξ) = |ξ|−ae−|ξ|I, a ∈ (0, n),

which is positive and integrable. Then there exists a homogeneous Gaussian random
vector field Y such that 〈Y (x)〉 ≡ 0 and (9.10) holds. Then form Z as in (9.11),
with

(9.26) f̂(ξ) = |ξ|a/2e−|ξ|(I − Pξ).

Then f ∈ C∞(Rn) and |f(x)| ≤ C(1 + |x|)−n−α/2, so f ∈ L1(Rn,End(Rn)). We
have an isotropic, divergence-free random vector field Z, and, by (9.23),

(9.27) C̃Z(ξ) = (2π)ne−3|ξ|(I − Pξ).

This is bounded, continuous on Rn \ 0, and has no limit as ξ → 0. If instead of

(9.26) we took f̂(ξ) = |ξ|b/2e−|ξ|(I−Pξ), with b ∈ (0, a), we would get an isotropic,

divergence-free random vector field Z for which C̃Z blows up at the origin.

10. Generalized random fields

As before, we fix a probability space (Ω, µ). Let us explicitly assume that
L2(Ω, µ) is separable. A generalized random field on Rn is an L2(Ω, µ)-valued
distribution, Z ∈ D′(Rn, L2(Ω, µ)), i.e., a continuous linear map

(10.1) Z : C∞
0 (Rn) −→ L2(Ω, µ).

More generally, we can take L2(Ω, µ, V ), as in §8, but for now we drop the V . Given
f ∈ C∞

0 (Rn), we have the convolution

(10.2)
f ∗ Z ∈ C∞(Rn, L2(Ω, µ)),

f ∗ Z(x) = Z(f̌x), f̌x = f(x− y).

Definition. A generalized random field Z is stationary if and only if f ∗ Z is
stationary (as a continuous random field) for all f ∈ C∞

0 (Rn).
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If Z ∈ D′(Rn, L2(Ω, µ)) is stationary, the continuous linear map

(10.3)
KZ : C∞

0 (B) −→ C∞(Rn, L2(Ω, µ)),

KZf(x) = f ∗ Z(x) = Z(f̌x),

where B = {x ∈ Rn : |x| ≤ 1}, has the property that

(10.4) KZ : C∞
0 (B) −→ L∞(Rn, L2(Ω, µ)).

It follows that KZ in (10.4) is a closed linear map from a Frechet space to a Banach
space, hence continuous. Thus there exist k ∈ N and C ∈ (0,∞) (depending on Z)
such that

(10.5) sup
x

‖Z(f̌x)‖L2(Ω,µ) ≤ C‖f‖Ck , ∀ f ∈ C∞
0 (B).

This estimate leads to an extension of the action of such Z, as follows. If Q = {Qα}
denotes the tiling of Rn by n-dimensional cubes with vertices in Zn, we can define

(10.6) f ∈ L1Ck(Rn) ⇔ f ∈ Ck(Rn) and ‖f‖L1Ck =
∑
Qα∈Q

‖f‖Ck(Qα) <∞.

A partition of unity argument leads from (10.5) to

(10.7) ‖Z(f)‖L2(Ω,µ) ≤ C‖f‖L1Ck ,

for all f ∈ C∞
0 (Rn), and from there to a continuous extension

(10.8) Z : L1Ck(Rn) −→ L2(Ω, µ),

whenever Z ∈ D′(Rn, L2(Ω, µ)) is stationary. In particular,

(10.9) Z : S(Rn) −→ L2(Ω, µ),

i.e.,

(10.9A) Z ∈ S ′(Rn, L2(Ω, µ)).

Furthermore, Kz in (10.3) extends to a continuous linear map

(10.10) KZ : L1Ck(Rn) −→ L∞ ∩ C(Rn, L2(Ω, µ)).

The following “Tauberian theorem” provides a useful characterization of station-
ary generalized random fields.
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Proposition 10.1. Let Z ∈ S ′(Rn, L2(Ω, µ)), and assume there exists a single

f ∈ S(Rn) such that f̂(ξ) is nowhere vanishing and

(10.11) f ∗ Z is stationary,

as a continuous random field. Then (10.11) holds for all f ∈ S(Rn), so Z is
stationary. Furthermore, given k ∈ N such that (10.7) holds, the result (10.11)
holds for all f ∈ L1Ck(Rn).

Proof. Given that Z ∈ S ′(Rn, L2(Ω, µ)), it suffices to show that (10.11) holds for
a set of functions with dense linear span in S(Rn). Thus it suffices to note that

if f ∈ S(Rn) and f̂(ξ) is nowhere vanishing, then {f̌x : x ∈ Rn} has dense linear
span in S(Rn), where f̌x(y) = f(x − y). The well known proof goes as follows. If

ω ∈ S ′(Rn) annihilates this span, then f ∗ ω = 0. This implies f̂ ω̂ = 0, which

implies ω = 0, given that f̂(ξ) never vanishes. The asserted density then follows
from the Hahn-Banach theorem.

We consider the following class of generalized random fields. Assume

(10.12) Z : Rn −→ L2(Ω, µ) is weakly continuous.

Assume Z is stationary, as an element of D′(Rn, L2(Ω, µ)). Take f1 ∈ C∞
0 (Rn),

satisfying f1 ≥ 0 and
∫
f dx = 1, let fk(x) = knf(kx), and set

(10.13) Zk = fk ∗ Z ∈ C∞(Rn, L2(Ω, µ)).

which are stationary as continuous random fields. We have 〈Z(x)〉 = 〈Z(x) 1〉,
continuous in x, and

(10.14) 〈Zk〉 = fk ∗ 〈Z〉 −→ 〈Z〉, locally uniformly on Rn.

Since each 〈Zk(x)〉 =Mk is constant, so is 〈Z(x)〉 ≡M = limMk. Subtracting M ,
we assume 〈Z(x)〉 ≡ 0, and then Mk ≡ 0.

Our aim is to prove the following.

Proposition 10.2. If Z satisfies (10.12) and is statinary, as a generalized random
field, then

(10.15) Z : Rn −→ L2(Ω, µ) is norm-continuous,

and Z is stationary, as a continuous random field.

To start the proof, using the constructions above, we define Zk as in (10.13) and
reduce to the case 〈Z(x)〉 ≡ 0, so 〈Zk(x)〉 ≡ 0. We have

(10.16) 〈Zk(x)φ〉 −→ 〈Z(x)φ〉, locally uniformly in x, ∀φ ∈ L2(Ω, µ).
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Stationarity of Zk implies

(10.17) ‖Zk(x)‖L2 ≡ Ek (independent of x).

Hence

(10.18) ‖Z(x)‖L2 ≤ lim inf
k→∞

Ek, ∀x ∈ Rn.

The Dunford-Pettis theorem implies

(10.19) Z : Rn −→ L2(Ω, µ) is strongly measurable.

Hence, for each x ∈ Rn,

(10.20) Zk(x) =

∫
fk(x− y)Z(y) dy

exists as a Bochner integral, and

(10.21) Ek ≡ ‖Zk(x)‖L2 ≤
∫
fk(x− y)‖Z(y)‖L2 dy.

Also, since y 7→ ‖Z(y)‖L2 is bounded (by (10.18)) and measurable,

(10.22)

∫
fk(x− y)‖Z(y)‖L2 dy −→ ‖Z(x)‖L2 , for a.e. x,

and hence

(10.23) lim sup
k→∞

Ek ≤ ‖Z(x)‖L2 , for a.e. x.

We are in a posiiton to establish the following.

Lemma 10.3. There exists S ⊂ Rn such that m(Rn \ S) = 0 and

(10.24) ‖Z(x)‖L2 = E = lim
k→∞

Ek, ∀x ∈ S,

(10.25) Zk(x) −→ Z(x) in L2(Ω, µ)-norm, ∀x ∈ S,

(10.26) 〈Zk(x)Zk(y)〉 −→ 〈Z(x)Z(y)〉, ∀x ∈ S, y ∈ Rn.

(10.27) 〈Zk(x− y)Zk(0)〉 −→ 〈Z(x− y)Z(0)〉, ∀x− y ∈ S.
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Proof. We get (10.24) from (10.18) and (10.23). Then (10.27) follows from (10.11)
and (10.24). Next, (10.26) follows from (10.16) and (10.25), and then (10.27) follows
from (10.26).

To proceed, we know that

(10.28) 〈Zk(x)Zk(y)〉 = Ck(x− y),

and Ck : Rn → R is continuous, for each k. Let us define

(10.29) C(x) = 〈Z(x)Z(0)〉,

so C : Rn → R is continuous, by (10.12). We want to show that

(10.30) 〈Z(x)Z(y)〉 = C(x− y), ∀x, y ∈ Rn.

Note that

(10.31) Ck(x) = 〈Zk(x)Zk(0)〉 −→ C(x), ∀x ∈ S,

by (10.26). As noted in (10.27), it follows that

(10.36) 〈Zk(x)Zk(y)〉 = 〈Zk(x− y)Zk(0)〉 → C(x− y), ∀x− y ∈ S.

Comparison with (10.26) yields

(10.33) 〈Z(x)Z(y)〉 = C(x− y), provided x, x− y ∈ S,

which is a special case of (10.30). Fixing x ∈ S and using (10.12) and the continuity
of C, we have

(10.34) 〈Z(x)Z(y)〉 = C(x− y), ∀x ∈ S, y ∈ Rn.

Then taking y ∈ Rn and applying a similar argument, we have (10.30).
From (10.30), the norm continuity (10.15) follows readily. We have

(10.35)
‖Z(x+ y)− Z(y)‖2L2 = 〈(Z(x+ y)− Z(y))(Z(x+ y)− Z(y))〉

= 2C(0)− 2C(y),

which tends to 0 as |y| → 0.

A. Multiparameter ergodic theory
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We assume {τy : y ∈ Fn} is a family of measure preserving transformations on
the probability space (O, ν), satisfying τy1+y2 = τy1 ◦ τy2 . To be definite, we take
F = R, and we assume the induced action on Lp(O, ν),

(A.1) U(y)φ(η) = φ(τy(η)),

is strongly continuous in y, for each p ∈ [1,∞). Note that U(y) is an invertible
isometry on Lp(O, ν) (unitary on L2(O, ν)) and U(y1 + y2) = U(y1)U(y2). We aim
to discuss ergodic theorems, dealing with averages of the form

(A.2) ARφ =
1

V (R)

∫
|y|≤R

U(y)φdy.

First, there is an abstract mean ergodic theorem, valid when {U(y) : y ∈ Rn} is a
strongly continuous unitary group on a Hilbert space H. It starts as follows.

Lemma A.1. We have the orthogonal direct sum H = K ⊕R, where

(A.3)

K = {φ ∈ H : U(y)φ = φ, ∀ y},

R =
⊕
y

Range (I − U(y)).

Proof. This follows from the observation that

(A.4) R⊥ =
⋂
y

Ker (I − U(y)∗) =
⋂
y

Ker (I − U(y)).

Here is the resulting abstract mean ergodic theorem.

Proposition A.2. For all φ ∈ H, ARφ→ Pφ in H-norm, where P is the orthog-
onal projection of H onto K.

Proof. Note that φ ∈ K ⇒ ARφ ≡ φ. Next, if φ = (I − U(y0))ψ, ψ ∈ H, then

(A.5)
1

V (R)

∫
|y|≤R

U(y)(I − U(y0))ψ dy → 0, as R→ ∞.

In view of Lemma A.1, this yields the asserted result.

Proposition A.2 applies to the case H = L2(O, ν), with U(y) given by (A.1). We
record the following extension.
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Proposition A.3. Let {τy : y ∈ Rn} satisfy the hypotheses given above, and take
U(y), AR as in (A.1)–(A.2). Then, for p ∈ [1, 2], P extends to a continuous
projection P : Lp(O, ν) → Lp(O, ν), and

(A.6) ARφ −→ Pφ in Lp-norm, ∀φ ∈ Lp(O, ν).

Proof. Note that ‖AR‖L(Lp) ≤ 1 and use denseness of L2(O, ν) in such Lp(O, ν).

Using other arguments, one can extend the scope of Proposition A.3 to all p ∈
[1,∞), but we omit details here.

The action of {τy} on (O, ν) is ergodic precisely when only constant functions
on O belong to K, defined in (A.3). Then, and only then,

(A.7) Pφ =
(∫
O

φdν
)
1, ∀φ ∈ L2(O, ν).

Note that this implies the criterion (4.10) for ergodicity.
It is of interest to extend Proposition A.2, replacing Rn by a broader class of Lie

groups. Let G be a Lie group, endowed with a right-invariant Haar measure. Let
U : G → L(H) be a strongly continuous unitary representation of G on a Hilbert
space H. Take, for R ∈ R+,

(A.8) fR ∈ L1(G), fR ≥ 0,

∫
G

fR(y) dy ≡ 1,

and set

(A.9) ARφ =

∫
G

fR(y)U(y)φdy.

We seek conditions that lead to a result of the form ARφ→ Pφ as R→ ∞.
To start, we note that Lemma A.1 holds in this more general setting, with y

running over G to define K and R as in (A.3). Again (A.4) provides the proof.
To proceed, clearly

(A.10) φ ∈ K =⇒ ARφ ≡ φ.

Next, if φ = (I − U(y0))ψ, ψ ∈ H, then

(A.11)

ARφ =

∫
G

fR(y)
(
U(y)− U(y)U(y0)

)
ψ dy

=

∫
G

[fR(y)− fR(yy
−1
0 )]U(y)ψ dy.
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We can deduce that

(A.12) ARφ −→ 0 as R→ ∞,

for all φ ∈ R, hence for all φ ∈ R, provided {fR} satisfies (A.8) and also

(A.13) lim
R→∞

∫
G

|fR(y)− fR(yy
−1
0 )| dy = 0, ∀ y0 ∈ G.

We record the conclusion.

Proposition A.4. Let {fR : R ∈ R+} satisfy (A.8) and define AR : H → H by
(A.9). For all φ ∈ H, ARφ→ Pφ in H-norm, where P is the orthogonal projection
of H on K, provided {fR} also satisfies (A.13).

A Lie group G for which a family {fR} satisfying (A.8) and (A.13) exists is said
to be amenable. For G = Rn, one can pick f1 ≥ 0 such that

∫
Rn f1(y) dy = 1 and

set fR(y) = R−nf(R−1y). Many non-abelian Lie groups are amenable, but not all
of them are.

So far, we have discussed mean ergodic theorems. The demonstrations given
above are straightforward variants of the classical case of the real line. (Compare
[T2], Chapter 14.) There are also pointwise a.e. results, known as Birkhoff ergodic
theorems, that are classical for Rn, having been extended from n = 1 to general n
in [W]. See [L] for treatments of some other groups.

B. Atoms of Ĉ

Let σ be a finite (possibly complex) measure on Rn. Its Fourier transform

(B.1) C(x) = σ̂(x) = (2π)−n/2
∫
e−ix·ξ dσ(ξ)

is a bounded, continuous function on Rn. We say σ has an atom at p ∈ Rn if
σ({p}) 6= 0. The set A(σ) of such points is countable, and we can write

(B.2) σ = σ0 +
∑

pj∈A(σ)

ajδpj ,

where σ0 has no atoms (we say σ0 is a continuous measure). Here we prove the
following result (due to N. Wiener), of interest in §4.
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Proposition B.1. With σ and C as above,

(B.3) lim
R→∞

1

V (R)

∫
|y|≤R

|C(y)|2 dy = (2π)−n
∑

|aj |2.

Proof. We show that, more generally, if f ∈ L1(Rn),
∫
f(y) dy = 1, and fR(y) =

f(y/R), then

(B.4) R−n
∫
fR(y)|σ̂(y)|2 dy −→ (2π)−n

∑
|aj |2, as R→ ∞.

In fact, the left side of (B.4) is equal to

(B.5)

(2πR)−n
∫
fR(y)

∫
eiy·ξ dσ(ξ)

∫
e−iy·η dσ(η) dy

= (2π)−n
∫∫ {∫

f(y)eiR(ξ−η)·y dy
}
dσ(ξ) dσ(η).

Since the expression in brackets is bounded by ‖f‖L1 , we can pass to the limit
under the integral sign. Now

∫
f(y)eiR(ξ−η)·y dy tends to 0 as R → ∞ if ξ 6= η, by

the Riemann-Lebesgue lemma, while the expression is 1 at ξ = η. Thus

(B.6) lim
R→∞

R−n
∫
fR(y)|σ̂(y)|2 dy = (2π)−n

∫∫
ξ=η

dσ(ξ) dσ(η) = (2π)−n
∑

|aj |2.

This completes the proof.

C. Fourier transform of a stationary field

If we have a real-valued, continuous, stationary field on the n-torus,

(C.1) Z : Tn −→ L2(Ω, µ),

it has a representation

(C.2) Z(x) =
∑
k∈Zn

Ẑ(k)eik·x,

with

(C.3) Ẑ : Zn −→ L2(Ω, µ), Ẑ(k) = (2π)−n
∫
Tn

Z(x)e−ik·x dx.
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Note that Ẑ is not stationary. However, the various random variables Ẑ(k) are
uncorrelated. In fact, in such a case,

(C.4)

〈Ẑ(k)Ẑ(ℓ)〉 = (2π)−2n

∫∫
〈Z(x)Z(y)〉e−ik·xeiℓ·y dx dy

= (2π)−2n

∫∫
C(x− y)e−ik·xeiℓ·y dx dy

= (2π)−nĈ(k)

∫
ei(ℓ−k)·y dy

= Ĉ(k)δkℓ.

This is a special case of (5.29). (Note also that Ẑ(ℓ) = Ẑ(−ℓ).)

Note. The characterization of C(x−y) as 〈Z(x)Z(y)〉 is equivalent to that in (4.2)
and (5.10) if and only if 〈Z(x)〉 ≡ 0. The same applies to (C.9).

Treating the Fourier transform of a real-valued, continuous, stationary field

(C.5) Z : Rn −→ L2(Ω, µ)

will require the use of vector-valued tempered distributions, since Z is bounded but
not integrable. We have

(C.6) Ẑ ∈ S ′(Rn, L2(Ω, µ)),

that is, Ẑ : S(Rn) → L2(Ω, µ), defined by

(C.7) Ẑ(f) = Z(f̂) =

∫
Z(x)f̂(x) dx, f ∈ S(Rn),

where S(Rn) denotes the Schwartz space of rapidly decreasing functions (cf. [T],
Chapter 3). Formally (i.e., informally),

(C.8) Ẑ(f) =

∫
Ẑ(ξ)f(ξ) dξ.

Now, parallel to (C.4), we have

(C.9)

〈Ẑ(f), Ẑ(g)〉 = 〈Z(f̂)Z(ĝ)〉

=

∫∫
〈Z(x)Z(y)〉f̂(x)ĝ(y) dx dy

=

∫∫
C(x− y)f̂(x)ĝ(y) dx dy.
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Note that

(C.10)

∫
C(x− y)f̂(x) dx = (2π)−n/2

∫∫
f(ξ)e−ix·ξC(x− y) dξ dx

=

∫
e−iy·ξĈ(ξ)f(ξ) dξ,

and

(C.11)

∫
e−iy·ξ ĝ(y) dy =

(∫
eiy·ξ ĝ(y) dy

)∗
= (2π)n/2g(ξ),

so

(C.12) 〈Ẑ(f)Ẑ(g)〉 = (2π)n/2
∫
C̃(ξ)f(ξ)g(ξ) dξ.

If we formally take f = δξ1 , g = δξ2 in (C.9), we get, formally,

(C.13)

〈Ẑ(ξ1)Ẑ(ξ2)〉 = (2π)−n
∫∫

C(x− y)e−ix·ξ1eiy·ξ2 dx dy

= (2π)−n/2
∫
Ĉ(ξ1)e

iy·(ξ2−ξ1) dy

= Ĉ(ξ1)δ(ξ1 − ξ2),

at least if Ĉ is continuous (which holds if C ∈ L1(Rn)). We have stated in §3 that

Ĉ is always a finite positive measure; call it σ. In this setting, we would write
(C.12) as

(C.14) 〈Ẑ(f), Ẑ(g)〉 = (2π)n/2
∫
f(ξ)g(ξ) dσ(ξ).

In such a case, the bottom line of (C.13) can be interpreted as a finite positive
measure on Rn × Rn.

We also note that, in case n = 1, we can write

(C.15) Ẑ =
d

dξ
F, (1 + |ξ|)−2F ∈ L2(R, L2(Ω, µ)),

and hence

(C.16) Z(x) = (2π)−1/2

∫
eixξ dF (ξ).
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To get this, we first note that (for general n) since Z : Rn → L2(Ω, µ) is bounded
and continuous,

(C.17) g ∈ L2(Rn) =⇒ Ẑ ∗ g ∈ L2(Rn, L2(Ω, µ)).

In case n = 1, we can take

(C.18)
g(ξ) = e−ξ, ξ > 0,

0, ξ < 0,

which satisfies g′ = δ − g, and then

(C.19) W = Ẑ ∗ g =⇒ Ẑ =W ′ +W, W ∈ L2(R, L2(Ω, µ)),

so (C.15) holds with

(C.20) F (ξ) =W (ξ) +

∫ ξ

0

W (η) dη.

It follows readily from (C.14) and a limiting argument that the increments F (ξ′)−
F (ξ) are uncorrelated over non-overlapping intervals.

A representation alternative to (C.16) is

(C.21) Z(x) = (2π)−1/2(1− ix)

∫
eixξW (ξ) dξ, W ∈ L2(R, L2(Ω, µ)),

with W as in (C.19). This has n-dimensional variants. We can take

(C.22) g(ξ) = (1−∆)−kδ(ξ), k >
n

4
,

so g ∈ L2(Rn) and (1−∆)kg = δ. Then

(C.23) W = Ẑ ∗ g =⇒ Ẑ = (1−∆)kW, W ∈ L2(Rn, L2(Ω, µ)),

and

(C.24) Z(x) = (1 + |x|2)k(2π)−n/2
∫
eix·ξW (ξ) dξ.

Returning to (C.6)–(C.7), we note that Ẑ has a more precise description than
being in S ′(Rn, L2(Ω, µ)). It is useful to introduce some notation. We fix the
probability space (Ω, µ) and associated Hilbert space L2(Ω, µ). We say

(C.25) Z ∈ Σ(Rn)
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provided Z : Rn → L2(Ω, µ) is a continuous, stationary field. We then set

(C.26) FΣ(Rn) = {Ẑ : Z ∈ Σ(Rn)} ⊂ S ′(Rn, L2(Ω, µ)).

One observation is that if Z ∈ Σ(Rn), then (C.7) extends to f̂ ∈ L1(Rn), i.e., to
f ∈ FL1(Rn). More generally, given

(C.27) ν ∈ M(Rn), ν̃ ∈ FM(Rn),

whereM(Rn) is the space of finite Borel measures on Rn, and ν̃(ξ) = (2π)−n/2
∫
eix·ξ dν(x)

is the inverse Fourier transform, we have

(C.28) Ẑ(ν̃) = Z(ν) =

∫
Z(x) dν(x) ∈ L2(Ω, µ),

so, extending (C.6), we have

(C.29) Ẑ : FM(Rn) −→ L2(Ω, µ),

if Z ∈ Σ(Rn).
Some related results arise as follows. First, given f ∈ L1(Rn),

(C.30) Z ∗ f(x) =
∫
Z(x− y)f(y) dy

is well defined, and

(C.31) f ∈ L1(Rn), Z ∈ Σ(Rn) =⇒ Z ∗ f ∈ Σ(Rn).

More generally, given ν ∈ M(Rn), we can set

(C.32) Z ∗ ν(x) =
∫
Z(x− y) dν(y),

and then

(C.33) ν ∈ M(Rn), Z ∈ Σ(Rn) =⇒ Z ∗ ν ∈ Σ(Rn).

Furthermore,

(C.34) FΣ(Rn) is a module over FL1(Rn),

and, more generally,

(C.35) FΣ(Rn) is a module over FM(Rn),
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under pointwise multiplication, and

(C.36) Ẑ ∗ f = f̂ Ẑ, Ẑ ∗ ν = ν̂ Ẑ.
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7. Fractional diffusion equations

1. Introduction

Work on non-Gaussian probability distributions has led people to consider “frac-
tional diffusion equations” of the following sort:

(1.1) c∂βt u = −(−∆)αu, t ≥ 0; u(0, x) = f(x),

with α, β ∈ (0, 1], the case α = β = 1 being the standard diffusion equation.
Here, ∆ is the Laplace operator, the fractional power (−∆)α is a positive self-

adjoint operator, defined by the spectral theorem, and c∂βt is a Caputo fractional
derivative (a variant of the Riemann-Liouville fractional derivative, better suited
for initial-value problems):

(1.2) c∂βt v(t) =
1

Γ(1− β)

∫ t

0

(t− s)−β ∂sv(s) ds,

if β ∈ (0, 1). There have been a number of recent papers on this topic, with
emphasis on the case ∆ = ∂2x, acting on functions on the line R. See, for example,
[CCL], [CCL2], [MPG], and references therein.

Here we point out that in a more general context the solution operator Stβ,α
to (1.1) yields a family of probability distributions, by virtue of being positivity-
preserving:

(1.3) f ≥ 0 =⇒ Stβ,αf ≥ 0,

and having the property

(1.4)

∫
Stβ,αf(x) dx =

∫
f(x) dx,

under appropriate hypotheses. This will hold, e.g., when ∆ is the Laplace operator
on Rn, or on a bounded domain Ω ⊂ Rn, with the Neumann boundary condition.
(With the Dirichlet boundary condition, (1.3) will hold, but not (1.4). In such
a case one would have a diffusion with absorption.) The key behind this is the
demonstration that

(1.5) Stβ,α =

∫ ∞

0

Ψtβ,α(s)e
s∆ ds,

where

(1.6) Ψtβ,α(s) ≥ 0 for s, t > 0, α, β ∈ (0, 1]
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(and (α, β) 6= (1, 1)), and

(1.7)

∫ ∞

0

Ψtβ,α(s) ds = 1.

It will be convenient to work in the more general setting of symmetric diffusion
semigroups. We also break up the analysis of positivity into two pieces. In §2 we
analyze the case β = 1 of (1.1), generalized to

(1.8) ∂tu = −Lαu, u(0) = f,

where L is a positive self-adjoint operator and e−tL a symmetric diffusion semi-
group. This analysis is classical and we merely sketch the results, described in
more detail in Chapter IX of [Y]. The basic conclusion is that e−tL

α

is also a sym-
metric diffusion semigroup, for α ∈ (0, 1). It will be useful to have this analysis for
the next step, tackled in §3:

(1.9) c∂βt u = −Au, u(0) = f,

where e−tA is a symmetric diffusion semigroup and β ∈ (0, 1). A familiar Laplace
transform analysis writes the solution operator Stβ to (1.9) as

(1.10) Stβ = Eβ(−tβA),

where Eβ(z) is a special function (the Mittag-Leffler function) and the right side
of (1.10) is defined by the functional calculus for self-adjoint operators. Known
Laplace transform identities involving Eβ(z) (cf. (3.6), (3.11)) serendipitously allow
us to deduce (1.5)–(1.7) (in a more general context, with −∆ replaced by L) from
the results of §2.

In §4 we consider an extension of (1.1) to β ∈ (1, 2]. In such a case (1.5)–(1.7)
fails. One still has (1.3) for α = 1 and ∆ = ∂2x on functions on R (as shown in
[MPG]), but we note that such positivity fails in higher dimension.

In §5 we construct functions ψ(ξ), homogeneous of degree α ∈ (0, 2), such that
e−tψ(D), acting on functions on Rn, satisfies (1.3), including as special cases (with
n = 1) various fractional derivatives. The probability distributions so obtained are
known as α-stable distributions. We mention connections with material in [ST],
and also Chapter 3 of this text.

In §6 we briefly discuss a class of fractional diffusion-reaction equations. In §7
we present the results of some numerical calculations of solutions to some linear dif-
fusion and fractional diffusion equations and fractional diffusion-reaction equations
of Fisher-Kolmogorov type, for functions u(t, x) defined on [0,∞)× S1.

In §8 we discuss formulas and estimates for the solution to inhomogeneous frac-
tional diffusion equations, of the form

(1.11) c∂βt u = −Au+ q(t), u(0) = f.
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In §9 we apply results of §8 to establish the short time existence to fractional
diffusion-reaction equations of the form

(1.12) c∂βt u = −Au+ F (u), u(0) = f, A = (−∆)m/2, 0 < m ≤ 2.

when β ∈ (0, 1), the case β = 1 having been discussed in §6. We consider the
cases f ∈ C(M) and f ∈ L6(M), when M is a compact n-dimensional Riemannian
manifold. The latter case requires the restriction n/2 < m ≤ 2. Also, for this result,
and for the results of §§10-11, we essentially require F (u) to be a cubic polynomial
in u, a situation that is popular in the study of reaction-diffusion equations.

In §10 we consider (1.12) for f ∈ L3q(M), when

(1.13) q > 1 and
3n

3q
< m ≤ 2.

In §11 we push this a bit, in the case n = 2, m = 2, and obtain local existence
given f ∈ Lp(M), p > 2.

In Appendix A we recall some basic material on Riemann-Liouville fractional
integrals and the Caputo fractional derivative, used in the main body of this chapter.
In Appendix B we briefly discuss results on finite linear systems, of the form

(1.14) c∂βt u = Lu, u(0) = f,

where

(1.15) f ∈ V, L ∈ End(V ), dimV <∞.

In Appendix C we provide several approaches to deriving the formula (1.10),
with the power series (3.5) for Eβ(z).

2. Subordination identities

Let L be a positive self-adjoint operator. By the spectral theorem, one has

(2.1) e−tL
α

=

∫ ∞

0

Φt,α(s)e
−sL ds, 0 < α < 1,

for t > 0, where Φt,α has the property

(2.2) e−tλ
α

=

∫ ∞

0

Φt,α(s)e
−sλ ds, λ > 0.

The fact that

(2.3) (−1)k∂kλe
−tλα

≥ 0 for λ, t > 0, k ∈ Z+
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implies

(2.4) Φt,α(s) ≥ 0, for s ∈ [0,∞),

given t ∈ (0,∞), α ∈ (0, 1). One also has

(2.5)

∫ ∞

0

Φt,α(s) ds = 1.

This is discussed in a more general context in §IX.11 of [Y].
We recall that the most familiar case is the case α = 1/2, where

(2.6) Φt,1/2(s) =
t

2π1/2
e−t

2/4s s−3/2.

This particular subordination identity has numerous applications to analysis; cf. [T],
Chapter 3, (5.22)–(5.31), and Chapter 11, (2.24), for some examples.

The positivity in (2.4) has the implication that if e−sL is a diffusion semigroup,
so is e−tL

α

, for each α ∈ (0, 1).
We record some further useful properties of Φt,α. First, a change of variable

gives

(2.7) Φt,α(s) = t−1/αΦ1,α(t
−1/αs).

Next, up to a constant factor,

(2.8) fα(ξ) = e−(iξ)α

is the Fourier transform of Φ1,α, extended by 0 on (−∞, 0]. For α ∈ (0, 1), fα is
rapidly decreasing, with all derivatives, as |ξ| → ∞. It follows that Φ1,α(s), so
extended, is C∞ on R, in particular, vanishing to all orders as s→ 0, as illustrated
in case α = 1/2 by

(2.9) Φ1,1/2(s) =
1

2π1/2
e−1/4ss−3/2, s > 0.

On the other hand, the nature of the singularity of fα at ξ = 0 implies that Φ1,α(s)
has the following asymptotic behavior as s→ +∞:

(2.10) Φ1,α(s) ∼
∑
k≥1

γαks
−kα−1, s→ +∞,

also illustrated by (2.9) in case α = 1/2.
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3. Fractional diffusion equations

Let A be a positive self-adjoint operator. We analyze the solution to

(3.1) c∂βt u = −Au, t > 0; u(0) = f,

given β ∈ (0, 1), and show that if e−sA is a diffusion semigroup the solution to (3.1)
is also given by a diffusion, i.e., a family of positivity-preserving operators. As is
standard, we use the fact that, with

(3.2) Lu(s) =
∫ ∞

0

e−stu(t) dt,

the equation (3.1) becomes

(3.3) (sβ +A)Lu(s) = sβ−1f.

Application of Laplace inversion (cf. [MPG], Appendix A) gives

(3.4) u(t) = Eβ(−tβA)f,

where Eβ(z) is the Mittag-Leffler function

(3.5) Eβ(z) =
∞∑
n=0

zn

Γ(βn+ 1)
,

and the linear operator Eβ(−tβA) in (3.4) is given by the standard operator calculus
for self-adjoint operators. As derived in (A.37) of [MPG], one has

(3.6) Eβ(−s) =
∫ ∞

0

Mβ(r)e
−rs dr, s > 0,

given β ∈ (0, 1), where

(3.7) Mβ(r) =
1

2πi

∫
γ

eζ−rζ
β dζ

ζ1−β
,

and γ can be taken as a vertical line {iσ + ε : σ ∈ R}, with small ε > 0. It follows
that

(3.8) Eβ(−tβA) =
∫ ∞

0

Mβ(r)e
−rtβA dr, t > 0, β ∈ (0, 1).

Some particular cases of Mβ(r), mentioned in (A.34)–(A.35) of [MPG], are

(3.9) M1/2(r) = π−1/2e−r
2/4, M1/3(r) = 32/3Ai(3−1/3r).

These examples illustrate the following important result.
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Proposition 3.1. Given 0 < β < 1, r ≥ 0, we have

(3.10) Mβ(r) ≥ 0.

Proof. This can be deduced from the following identity, due to [P], and noted in
(A.41) of [MPG]:

(3.11) β

∫ ∞

0

r−β−1Mβ(r
−β)e−rs dr = e−s

β

,

given β ∈ (0, 1). Comparison with (2.2) gives

(3.12) βr−β−1Mβ(r
−β) = Φ1,β(r).

Thus the positivity (3.10) follows from (2.4)

We are now able to prove the positivity assertion made in the introduction. We
merely plug (2.1) into (3.8) to obtain (1.5)–(1.7).

4. The case β ∈ (1, 2]

Work in [MPG] also considered (1.1) for β ∈ (1, 2]. Here the Caputo fractional

derivative c∂βt is given by

c∂βt v(t) =
1

Γ(2− β)

∫ t

0

(t− s)−β+1 ∂2sv(s) ds, 1 < β < 2.

One continues to get (3.4), i.e.,

(4.1) u(t) = Stβ,αf = Eβ(−tβA)f, A = (−∆)α.

One has in particular

(4.2) E2(−s) = cos s1/2,

and hence

(4.3) St2,α = cos t(−∆)α/2,

the solution operator to the Cauchy problem

(4.4)
(
∂2t + (−∆)α

)
u = 0, u(0) = f, ∂tu(0) = 0.
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For α = 1 one gets the wave equation:

(4.5) (∂2t −∆)u = 0, u(0) = f, ∂tu(0) = 0.

If A = −∂2x, acting on functions on the line, then, as shown in [MPG], one has
a diffusion. In fact, by (4.6) of [MPG], for β < 2,

(4.6) Eβ(t
β∂2x)δ(x) =

1

2t1/2
Mβ/2(t

−β/2|x|), x ∈ R,

for t > 0. For β ∈ (1, 2) we have β/2 ∈ (1/2, 1), and Proposition 3.1 yields positivity
of (4.6). As for the endpoint case, β = 2, one has

(4.7)
(
cos t

√
−∂2x

)
δ(x) =

1

2

[
δ(x+ t) + δ(x− t)

]
, x ∈ R.

Well known formulas for cos t
√
−∆ δ(x) with x ∈ Rn (cf. [T], Chapter 3, §5)

involve distributions that are not positive measures. Hence positivity fails for St2,1
on functions on Rn with n ≥ 2. It follows by continuity that positivity fails for Stβ,1
for β close to 2. One might investigate in more detail just how Stβ,α behaves on

functions on Rn for n ≥ 2, β ∈ (1, 2).

5. Diffusion semigroups with homogeneous generators

Here we consider semigroups of the form e−tψ(D), where ψ(D) acts on functions
on Rn via Fourier multiplication by ψ(ξ). We construct functions homogeneous of
degree α ∈ (0, 2) for which e−tψ(D) is positivity preserving and furthermore satisfies

(5.1) 0 ≤ f ≤ 1 =⇒ 0 ≤ e−tψ(D)f ≤ 1, ∀ t > 0.

Of course

(5.2) ψ(ξ) = |ξ|α, 0 ≤ α ≤ 2,

works, by the results of §2. We obtain further cases by specializing the Levy-
Khinchin formula (cf. [J], §3.7). In this way we obtain the following such homoge-
neous generators:

(5.3)

Φα,g(ξ) = −
∫
Rn

(eiy·ξ − 1)g(y)|y|−n−α dy, 0 < α < 1,

Ψα,g(ξ) = −
∫
Rn

(eiy·ξ − 1− iy · ξ)g(y)|y|−n−α dy, 1 < α < 2.
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The function g is assumed to be positive, bounded, and homogeneous of degree 0,
i.e.,

(5.4) g ≥ 0, g ∈ L∞(Rn), g(ry) = g(y), ∀ r > 0.

It is easy to verify that both integrals in (5.3) are absolutely convergent, and, for
r > 0,

(5.5)
Φα,g(rξ) = rαΦα,g(ξ), 0 < α < 1,

Ψα,g(rξ) = rαΨα,g(ξ), 1 < α < 2.

When g ≡ 1 we obtain a positive multiple of (5.2).
We now specialize to n = 1 and g = χR+ , so we look at

(5.6)

φα(ξ) = −
∫ ∞

0

(eiyξ − 1)y−1−α dy, 0 < α < 1,

ψα(ξ) = −
∫ ∞

0

(eiyξ − 1− iyξ)y−1−α dy, 1 < α < 2.

Clearly φα and ψα are holomorphic in {ξ ∈ C : Im ξ > 0}, and homogeneous of
degree α in ξ. Also, for η > 0,

(5.7)

φα(iη) = −
∫ ∞

0

(e−yη − 1)y−1−α dy > 0, 0 < α < 1,

ψα(iη) = −
∫ ∞

0

(e−yη − 1 + yη)y−1−α dy < 0, 1 < α < 2,

since, for r > 0, 1 − r < e−r < 1. It follows that φα(ξ) and ψα(ξ) are positive
multiples of

(5.8)
φ#
α (ξ) = (−iξ)α, 0 < α < 1,

ψ#
α (ξ) = −(−iξ)α, 1 < α < 2,

restrictions to R of functions holomorphic on {ξ ∈ C : Im ξ > 0}. Taking instead
g = χR− , we obtain positive multiples of

(5.9)
φbα(ξ) = (iξ)α, 0 < α < 1,

ψbα(ξ) = −(iξ)α, 1 < α < 2,

restrictions to R of functions holomorphic on {ξ ∈ C : Im ξ < 0}, satisfying

(5.10) φbα(−iη) > 0, ψbα(−iη) < 0, ∀ η > 0.
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The functions in (5.8) and (5.9) are well known examples of homogeneous functions
ψ(ξ) for which e−tψ(D) satisfies (5.1). The associated operators ψ(D) are fractional
derivatives.

It is also useful to observe the explicit formulas
(5.11)

e−tφ
#
α (ξ) = e−t(cosπα/2)|ξ|

α
[
cos
(
t
(
sin

πα

2

)
|ξ|α

)
+ iσ(ξ) sin

(
t
(
sin

πα

2

)
|ξ|α

)]
.

for t > 0, 0 < α < 1, where

(5.12) σ(ξ) = sgn ξ,

and

(5.13) e−tψ
#
α (ξ) = et(cosπα/2)|ξ|

α
[
cos
(
t
(
sin

πα

2

)
|ξ|α

)
− iσ(ξ) sin

(
t
(
sin

πα

2

)
|ξ|α

)]
,

fior t > 0, 1 < α < 2. Note that

(5.14) 0 < α < 1 ⇒ cos
πα

2
> 0, 1 < α < 2 ⇒ cos

πα

2
< 0,

so of course we have decaying exponentials in both (5.11) and (5.13). We get similar
formulas with # replaced by b, since in fact

(5.15) φbα(ξ) = φ#
α (−ξ), ψbα(ξ) = ψ#

α (−ξ).

Returning to the general formulas (5.3), we can switch to polar coordinates and
write

(5.16)

Φα,g(ξ) = −
∫

Sn−1

∫ ∞

0

(eisω·ξ − 1)g(ω)s−1−α ds dS(ω),

Ψα,g(ξ) = −
∫

Sn−1

∫ ∞

0

(eisω·ξ − 1− isω · ξ)g(ω)s−1−α ds dS(ω),

and hence

(5.17)

Φα,g(ξ) =

∫
Sn−1

φα(ω · ξ)g(ω) dS(ω),

Ψα,g(ξ) =

∫
Sn−1

ψα(ω · ξ)g(ω) dS(ω).

We can extend the scope, replacing g(ω) dS(ω) by a general positive, finite Borel
measure on Sn−1. Taking into account the calculations yielding (5.8)–(5.9), we
obtain homogeneous generators satisfying (5.1), of the form

(5.18)

Φbα,ν(ξ) =

∫
Sn−1

(iω · ξ)α dν(ω), 0 < α < 1,

Ψbα,ν(ξ) = −
∫

Sn−1

(iω · ξ)α dν(ω), 1 < α < 2,
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where ν is a positive, finite Borel measure on Sn−1.
It remains to discuss the case α = 1. For n = 1 it is seen that positive multiples

of

(5.19) |ξ|+ iaξ, a ∈ R,

work. Hence the following functions on Rn work:

|ω · ξ|+ iaω · ξ, ω ∈ Sn−1, a ∈ R.

We can take positive superpositions of such functions and, in analogy with (5.18),
obtain generators of diffusion semigroups whose negatives are Fourier multiplication
by

(5.20) ib · ξ + Ξν(ξ),

where b ∈ Rn and

(5.21) Ξν(ξ) =

∫
Sn−1

|ω · ξ| dν(ω).

We now tie in results derived above with material given in Chapters 1–2 of [ST].
For such functions ψ(ξ), homogeneous of degree α ∈ (0, 2], as constructed above,
the probability distributions

(5.22) pt(x) = e−tψ(D)δ(x)

are known as α-stable distributions. In the notation (1.1.6) of [ST], consider

(5.23) ψ(ξ) = σα |ξ|α
(
1− iβ(sgn ξ) tan

πα

2

)
, ξ ∈ R.

Here

(5.24) σ ∈ (0,∞), β ∈ [−1, 1],

and α ∈ (0, 2) but α 6= 1. Also, take µ ∈ R. Then e−ψ(D)+iµDδ(x) is a probability
distribution on the line called an α-stable distribution with scale parameter σ,
skewness parameter β, and shift parameter µ. It is clear from (5.11)–(5.13) that
each function of the form (5.23) is a positive linear combination of φ#

α (ξ) and φ
b
α(ξ)

if α ∈ (0, 1) and a positive linear combination of ψ#
α (ξ) and ψ

b
α(ξ) if α ∈ (1, 2).

In case α = 1, one goes beyond ψ(ξ) homogeneous of degree 1 in ξ, to consider

(5.25) ψ(ξ) = σ |ξ|
(
1 + i

2β

π
(sgn ξ) log |ξ|

)
+ iµξ, ξ ∈ R,
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again with β ∈ [−1, 1], µ ∈ R. Then e−ψ(D)δ(x) is a probability distribution on R
called a 1-stable distribution, with scale parameter σ, skewness β, and shift µ. The
cases arising from (5.19) all have skewness β = 0.

Similarly, functions ψ(ξ) of the form (5.18) and (5.20)–(5.21) produce probability
distributions e−ψ(D)δ(x) on Rn that are α-stable. These, plus analogues with a shift
incorporated, comprise all of them except when α = 1, in which case one generalizes
(5.21) to

(5.26) Ξ̃ν(ξ) =

∫
Sn−1

|ω · ξ|
(
1 +

2i

π
(sgnω · ξ) log |ω · ξ|

)
dν(ω).

Compare (2.3.1)–(2.3.2) in [ST].
We return to the case n = 1 and make some more comments on the probability

distributions

(5.27)
pαt (x) = e−tφ

#
α (D)δ(x), 0 < α < 1,

pαt (x) = e−tψ
#
α (D)δ(x), 1 < α < 2,

and their variants with # replaced by b, which are simply pαt (−x). Explicitly, we
have

(5.28) pαt (x) =
1

2π

∫ ∞

−∞
eix·ξ−tφ

#
α (ξ) dξ,

for 0 < α < 1, with φ#
α (ξ) replaced by ψ#

α (ξ) for 1 < α < 2. Recall that φ#
α and ψ#

α

are holomorphic in {ξ ∈ C : Im ξ > 0}. It follows from the Paley-Wiener theorem
that, for each t > 0,

(5.29) pαt (x) = 0, for x ∈ [0,∞), 0 < α < 1.

This theorem does not apply when α ∈ (1, 2), but a shift in the contour of integra-
tion to {ξ + ib : ξ ∈ R}, with arbitrary b > 0 yields

(5.30) pαt (x) = e−bx × bounded function of x,

for x ∈ R, whenever 1 < α < 2, hence

(5.31) pαt (x) = o(e−bx), ∀ b > 0, as x→ +∞, for 1 < α < 2.

A more precise asymptotic behavior is stated in (1.2.11) of [ST].
We also note that, for α ∈ (1.2), pαt (x) is real analytic in x ∈ R, and in fact

extends to an entire holomorphic function in x ∈ C, for each t > 0, due to rapidity
with which Reψ#

α (ξ) → +∞ as |ξ| → ∞, which of course forbids (5.29) in this case.
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6. Fractional diffusion-reaction equations

We consider ℓ× ℓ systems of equations

(6.1)
∂u

∂t
= −Lu+X(u), u(0) = f,

where u = u(t, x) takes values in Rℓ, X is a real vector field on Rℓ, and L is a
diagonal operator,

(6.2) L =

A1

. . .

Aℓ

 ,

where each operator −Aj generates a diffusion semigroup, satisfying

(6.3) a ≤ f ≤ b =⇒ a ≤ e−tAjf ≤ b, ∀ t > 0.

In case the operators Aj are second order differential operators satisfying (6.3), the
system (6.1) is a reaction-diffusion equation. Recent studies have considered Aj
given by fractional derivatives. For example, [CCL3] considers the following scalar
equation (a modification of the Fisher-Kolmogorov equation):

(6.4)
∂u

∂t
= −ψbα(D)u+ u(1− u), u(0) = f,

where α ∈ (1, 2) and ψbα is given by (5.9).
Our next goal is to present an extension of Proposition 4.4 in Chapter 15 of [T],

giving a global existence result and some qualitative information on an important
class of systems of the form (6.1). Here is the set-up. We assume there is a family
{Ks : 0 ≤ s < ∞} of compact subsets of Rℓ such that each Ks has the invariance
property

(6.5) f(x) ∈ Ks ∀ x =⇒ e−tLf(x) ∈ Ks ∀ x.

For example, Ks could be a Cartesian product of intervals, and then (6.3) implies
(6.5). Furthermore, we assume that

(6.6) F t
X(Ks) ⊂ Ks+t, s, t ∈ R+,

where F t
X is the flow on Rℓ generated by X. Then we have the following result.
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Proposition 6.1. Under the hypotheses (6.5)–(6.6), if f(x) ∈ K0 for all x, then
(6.1) has a solution for all t ∈ [0,∞), and, for each t > 0,

(6.7) u(t, x) ∈ Kt, ∀ x.

The proof is basically the same as the proof of Proposition 4.4 mentioned above.
The key behind (6.7) is the nonlinear Trotter product formula:

(6.8) u(t) = lim
n→∞

(
e−(t/n)LF t/n

)n
f,

where

(6.9) F tf(x) = F t
X(f(x)).

As one application, in case ℓ = 1, we see that if 0 < a < b <∞, and if

(6.10) a ≤ f(x) ≤ b, ∀ x ∈ R,

then (6.4) has a solution for all t ∈ [0,∞), and

(6.11) lim
t→∞

u(t, x) ≡ 1.

With a little more work, we could allow a = 0 and obtain (6.11) as long as f is
not identially zero. In [CCL3] there is an intriguing discussion of finer qualita-
tive behavior of moving front solutions to (a variant of) (6.4), based on numerical
evidence. See §7 for some more on this.

One can consider various other reaction-diffusion equations, such as the Fitzhugh-
Nagumo equations, and variants, with ∂2x replaced by fractional derivatives, to
which Proposition 6.1 would be applicable. See Chapter 15, §4 of [T] for other
examples, which could be similarly generalized.

7. Numerical attack

Here we discuss numerical results on five linear (fractional) diffusion equations:

(7.1)
∂u

∂t
= −Lu, u(0) = f,

and five (fractional) diffusion-reaction equations of Fisher-Kolmogorov type:

(7.2)
∂u

∂t
= −Lu+X(u), u(0) = f,
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for u = u(t, x) defined on [0,∞) × S1, where S1 ≈ R/(2πZ) is the circle. In (7.2)
we take

(7.3) X(u) = 6u(1− u),

and the five operators L we consider are, respectively,

(7.4) − d2

dx2
,
(
− d2

dx2

)1/2
,
(
− d2

dx2

)1/4
, ψb3/2(D), φ#

1/2(D),

where ψbα(ξ) and φ
#
α (ξ) are given by (5.8)–(5.9). In all cases we take

(7.5)
f(x) = 1 if |x| < 2π

10
,

0 otherwise,

and we picture S1 = [−π, π], with the endpoints identified.
To solve (7.1), we represent the solution as a Fourier multiplier, namely Fourier

multiplication by e−tL(ξ), where L(ξ) is given, respectively, by

(7.6) ξ2, |ξ|, |ξ|1/2, ψb3/2(ξ), φ#
1/2(ξ).

In particular, by (5.11)–(5.15), we have

(7.7) e−tψ
b
3/2(ξ) = e−(

√
2/2)t|ξ|3/2

[
cos
(√2

2
t|ξ|3/2

)
+ iσ(ξ) sin

(√2

2
t|ξ|3/2

)]
,

and

(7.8) e
−tφ#

1/2
(ξ)

= e−(
√
2/2)t|ξ|1/2

[
cos
(√2

2
t|ξ|1/2

)
+ iσ(ξ) sin

(√2

2
t|ξ|1/2

)]
.

Our numerical approximation uses a 1024 point discrete Fourier transform, imple-
mented by an FFT.

To solve (7.2) numerically, we use Strang’s splitting method, a variant of (6.8)
given by

(7.9) u(t) = lim
n→∞

(
F t/2ne−(t/n)LF t/2n

)n
f,

which is formally second order accurate. More precisely, we fix a time step h = 0.001
and take

(7.10) u(nh) ≈
(
Fh/2e−hLFh/2

)n
f,
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for 0 ≤ n ≤ 500, so t = nh ∈ [0, 0.5]. We evaluate e−hL as above, via Fourier
multiplication, and we use a difference scheme to approximate the action of Fh/2.

Figures produced by these computations can be found on the author’s web site.
https://mtaylor.web.unc.edu/notes, item #6.

8. Inhomogeneous fractional diffusion equations

Here we consider equations of the form

(8.1) c∂βt u = −Au+ q(t), u(0) = f,

where A is a positive, self-adjoint operator on a Hilbert space H, f ∈ H, and

q ∈ C(R+,H). We assume 0 < β ≤ 1. The operator c∂βt is as in (1.2) if β ∈ (0, 1).
We have the Laplace transform identity

(8.2) L(c∂βt u)(s) = sβLu(s)− sβ−1u(0).

Hence (8.1) implies

(8.3) Lu(s) = (sβ +A)−1Lq(s) + sβ−1(sβ +A)−1f.

Recall that the Laplace transform of Eβ(−tβA) is sβ−1(sβ + A)−1, with Eβ as in
(3.5)–(3.8). In fact, if

(8.4) eβ(t) = Eβ(−tβ),

we have

(8.5)

∫ ∞

0

eβ(t)e
−st dt =

sβ−1

sβ + 1
.

It follows that

(8.6)

∫ ∞

0

eβ(tγ)e
−st dt =

sβ−1

sβ + γβ
,

which gives

(8.7)

∫ ∞

0

Eβ(−tβA)e−st dt = sβ−1(sβ +A)−1.

We also have

(8.8)

A1/β

∫ ∞

0

e′β(tA
1/β)e−st dt

= s

∫ t

0

eβ(tA
1/β)e−st dt+ eβ(tA

1/β)e−st
∣∣∣∞
0

= sβ(sβ +A)−1 − 1

= −A(sβ +A)−1.
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With this we can apply Laplace inversion to (8.3) and obtain

(8.9) u(t) = eβ(tA
1/β)f −A−1+1/β

∫ t

0

e′β(τA
1/β)q(t− τ) dτ,

using the fact that

(8.10) g(t) =

∫ t

0

h(τ)q(t− τ) dτ =⇒ Lg(s) = Lh(s)Lq(s).

A formula equivalent to (8.9) is

(8.11) u(t) = Eβ(−tβA)f + β

∫ t

0

τβ−1E′
β(−τβA)q(t− τ) dτ.

Compare (A.30) of [MPG] for the case A = 1, and (7.4) of [D] for the general
formula.

Recalling (3.6), we have

(8.12) E′
β(−s) =

∫ ∞

0

Mβ(r)re
−rs ds, s > 0,

with Mβ(r) given by (3.7), and also by (3.11)–(3.12). Hence (3.8), i.e.,

(8.13) Eβ(−tβA) =
∫ ∞

0

Mβ(r)e
−rtβA dr,

is complemented by

(8.14) E′
β(−tβA) =

∫ ∞

0

Mβ(r)re
−rtβA dr,

for t > 0, β ∈ (0, 1). Note that Mβ(r) and Mβ(r)r are positive and integrable on
R+. Hence, if {e−sA : s > 0} is positivity preserving, on H = L2(M), so are the
operators (8.13) and (8.14).

We desire to obtain some estimates on Eβ(−s) for s ∈ R+, hence on the operators
that appear in (8.11). Of course, the formula (3.5) implies this function is smooth
on [0,∞). We want to examine its asymptotic behavior as s↗ +∞. We first tackle
the behavior of eβ(t) as t↗ ∞. The key tool for is the identity (8.5), which is valid
for Re s ≥ 0. The evaluation for s = iξ, ξ ∈ R gives the Fourier transform of eβ(t)
(extended to vanish on R−):

(8.15) êβ(ξ) =
(iξ)β−1

(iξ)β + 1
, 0 < β < 1.
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This Fourier transform identity enables us to determine the behavior of eβ(t) as
t ↗ ∞, due to the (almost) classical conormal singularity of êβ at ξ = 0. We get,
as t↗ +∞,

eβ(t) ∼
∑
k≥1

aβkt
−kβ ,(8.16)

e′β(t) ∼ −
∑
k≥1

kβaβkt
−kβ−1.(8.17)

Equivalently, as s↗ +∞,

Eβ(−s) = eβ(s
1/β) ∼

∑
k≥1

aβks
−k,(8.18)

E′
β(−s) =

1

β
s1/β−1e′β(s

1/β) ∼ −
∑
k≥1

kaβks
−k−1,(8.19)

assuming β ∈ (0, 1). We emphasize the leading terms:

(8.20) Eβ(−s) ∼ aβ0s
−1 + · · · , E′

β(−s) ∼ −aβ0s−2 + · · · .

By contrast,

(8.21) E1(−s) = e−s.

We now collect some operator estimates on Eβ(−tβA) and E′
β(−tβA). First,

suppose B is a Banach space on which e−tA acts as a contraction semigroup:

(8.22) ‖e−tAf‖B ≤ ‖f‖B , ∀ t > 0.

Then (8.13)–(8.14), plus the positivity of Mβ(r) and the fact that Mβ(r) and
Mβ(r)r integrate to Eβ(0) and E

′
β(0), respectively, give

(8.23)

‖Eβ(−tβA)f‖B ≤ ‖f‖B ,

‖E′
β(−tβA)f‖B ≤ 1

βΓ(β)
‖f‖B .

Next, assume H is a Hilbert space and A is a positive, self-adjoint opera-
tor on H. Then (8.20) plus the smoothness of Eβ(−s) on [0,∞) imply that
sEβ(−s), sEβ(−s), and s2E′

β(−s) are bounded on [0,∞), hence

(8.24)
‖tβAEβ(−tβA)f‖H , ‖tβAE′

β(−tβA)f‖H , ‖t2βA2E′
β(−tβA)f‖H ≤ C‖f‖H ,

for t ∈ [0,∞). Interpolation with (8.23) (with B = H) yields further estimates,
such as

(8.25) ‖τσβE′
β(−τβA)‖L(H,D(Aσ)) ≤ C, τ > 0,
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given σ ∈ (0, 1), hence

(8.26) ‖τβ−1E′
β(−τβA)‖L(H,D(Aσ)) ≤ Cτ−1+(1−σ)β .

We begin to specialize. For the rest of this section, we assume M is a compact,
smooth Riemannian manifold, without boundary, and

(8.27) A = (−∆)m/2, 0 < m ≤ 2,

where ∆ is the Laplace-Beltrami operator on M . Then (8.22)–(8.23) hold for

(8.28) B = Lp(M), 1 ≤ p ≤ ∞, B = C(M),

and (8.24)–(8.26) hold for

(8.29) H = L2(M), D(Aσ) = Hσm,2(M).

We can go further, noting that

(8.30) Eβ(−s) ∈ S−1
1,0([0,∞)), E′

β(−s) ∈ S−2
1,0([0,∞)),

where to say F ∈ Sµ1,0([0,∞)) is to say F ∈ C∞([0,∞)) and

(8.31) |∂jsF (s)| ≤ Cj〈s〉µ−j , ∀ j ∈ Z+, s ∈ [0,∞).

Now (8.27) implies

(8.32) A ∈ OPSm(M)

is elliptic, as well as positive and self-adjoint. Results in Chapter 12 of [T2] then
imply that, given T0 ∈ (0,∞),

(8.33)

Eβ(−tβA), tβAEβ(−tβA),
E′
β(−tβA), tβAE′

β(−tβA), t2βA2E′
β(−tβA)

are bounded in OPS0
1,0(M), for t ∈ (0, T0].

Boundedness of elements of OPS0
1,0(M) on Lp(M) for 1 < p <∞ yield the following

estimates, for such p:

(8.34) ‖Eβ(−tβA)f‖Lp , tβ‖AEβ(−tβA)f‖Lp ≤ C‖f‖Lp ,

and

(8.35) ‖E′
β(−tβA)f‖Lp , tβ‖AE′

β(−tβA)f‖Lp , t2β‖A2E′
β(−tβA)f‖Lp ≤ C‖f‖Lp .
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Then elliptic regularity yields

(8.36) ‖Eβ(−tβA)‖L(Lp,Hm,p), ‖E′
β(−tβA)‖L(Lp,Hm,p) ≤ Ct−β ,

and

(8.37) ‖E′
β(t

−βA)‖L(Lp,H2m,p) ≤ Ct−2β ,

uniformly for t ∈ (0, T0]. As in (8.25), interpolation of (8.36) with some of the
estimates in (8.35) gives, for σ ∈ (0, 1), p ∈ (1,∞),

(8.38) ‖τσβE′
β(−τβA)‖L(Lp,Hσm,p) ≤ C,

hence

(8.39) ‖τβ−1E′
β(−τβA)‖L(Lp,Hσm,p) ≤ Cτ−1+(1−σ)β ,

uniformly for τ ∈ (0, T0]. We also get estimates on Zygmund spaces, such as

(8.40) ‖τβ−1E′
β(−τβA)‖L(C0

∗ ,C
σm
∗ ) ≤ Cτ−1+(1−σ)β ,

and similar estimates on other familite of Besov spaces.
We can produce another demonstration of (8.34)–(8.35), and extend the scope

of these estimates, using (8.13)–(8.14) in concert with the following result, which
for β = 1/2 and β = 1/3 is illustrated by (3.9).

Proposition 8.1. For β ∈ (0, 1), the function Mβ(r) in (8.13)–(8.14) satisfies

(8.41) Mβ ∈ S([0,∞)),

i.e., Mβ is smooth on [0,∞) and rapidly decreasing, with all its derivatives, at
infinity.

Proof. We make use of the identity (3.12),

βr−β−1Mβ(r
−β) = Φ1,β(r),

plus the results about Φ1,β established at the end of §2. The fact that Φ1,β(s) is
smooth on [0,∞) and vanishes to all orders as s → 0 implies Mβ is smooth on
(0,∞) and vanishes rapidly, with all derivatives, at ∞.

It remains to show that Mβ(r) is smooth up to r = 0. For this, we use the
asymptotic expansion (2.10), which implies

Mβ(r) =
1

β
r−1−1/βΦ1,β(r

−1/β) ∼ 1

β

∑
k≥1

γβkr
k−1,
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as r ↘ 0.

We can exploit Proposition 8.1 as follows. Given (8.41), we can write

(8.42)

sEβ(−s) = −
∫ ∞

0

Mβ(r)
∂

∂r
e−rs dr

=

∫ ∞

0

M ′
β(r)e

−rs dr +Mβ(0),

and deduce that, whenever B is a Banach space such that (8.22) holds, or more
generally

(8.43) ‖e−tAf‖B ≤ C‖f‖B , ∀ t > 0,

then

(8.44) ‖tβAEβ(−tβA)f‖B ≤ C‖f‖B .

Similarly,

(8.45) ‖tβAE′
β(−tβA)f‖B , ‖t2βA2E′

β(−tβA)f‖B ≤ C‖f‖B .

As advertised, this provides another demonstration of (8.34)–(8.35), and extends
the scope of these estimates.

9. Fractional diffusion-reaction equations – local existence

Here we study the initial-value problem

(9.1) c∂βt u = −Au+ F (u), u(0) = f,

on [0, T0] ×M , given a suitable f on M (perhaps with values in Rk). We assume
β ∈ (0, 1). As in the end of §8, we assume M is a compact Riemannian manifold,
and

(9.2) A = (−∆)m/2, 0 < m ≤ 2,

where ∆ is the Laplace-Beltrami operator on M .
Using (8.11), we rewrite (9.1) as

(9.3) u(t) = Eβ(−tβA)f + β

∫ t

0

τβ−1E′
β(−τβA)F (u(t− τ)) dτ.
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Hence we desire to solve

(9.4) Φu = u,

where

(9.5) Φu(t) = Eβ(−tβA)f + β

∫ t

0

τβ−1E′
β(−τβA)F (u(t− τ)) dτ.

Thus we seek a fixed point of

(9.6) Φ : X −→ X,

where X is a suitably chosen complete metric space.
To begin, we assume f ∈ C(M). We pick a ∈ (0,∞) and set

(9.7) X = {u ∈ C(I, C(M)) : u(0) = f, sup
t∈I

‖u(t)− f‖L∞ ≤ a}, I = [0, δ],

where δ > 0 will be specified below. We assume u takes values in Rk, F : Rk → Rk,
and

(9.8) u ∈ Rk, |u| ≤ A =⇒ |F (u)| ≤ K, |DF (u)| ≤ L.

Here | · | denotes some convenient norm on Rk and also the associated operator
norm on End(Rk). Now t 7→ Eβ(−tβA) is strongly continuous on C(M) (by (8.13)),
and Eβ(0) = I, so we can pick δ > 0 so small that

(9.9) t ∈ (0, δ] =⇒ ‖Eβ(−tβA)f − f‖L∞ ≤ 1

2
a.

To get Φ : X → X, it suffices to ensure that

(9.10) t ∈ I, u ∈ X ⇒ β

∫ t

0

τβ−1‖E′
β(−τβA)F (u(t− τ))‖L∞ dτ ≤ 1

2
a.

By (9.8), u ∈ X ⇒ ‖F (u(t − τ))‖L∞ ≤ K. Then (8.23), with B = C(M), implies
‖E′

β(−τβA)F (u(t− τ))‖L∞ ≤ K/βΓ(β), so (9.10) holds provided

(9.11) t ∈ I =⇒ K

Γ(β)

∫ t

0

τβ−1 dτ ≤ a

2
,

i.e., provided

(9.12) δβ ≤ βΓ(β)

2

a

K
.
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Hence Φ : X → X whenever (9.9) and (9.12) hold.
We next produce a condition that guarantees Φ is a contraction on X. Given

u, v ∈ X, t ∈ I, we have

(9.13) ‖Φu(t)−Φv(t)‖L∞ ≤ β

∫ t

0

τβ−1
∥∥E′

β(−τβA)[F (u(t−τ)−F (v(t−τ))]
∥∥
L∞ dτ.

Now

(9.14) F (u)− F (v) =

∫ 1

0

d

ds
F (su+ (1− s)v) ds = G(u, v)(u− v),

with

(9.15) G(u, v) =

∫ 1

0

DF (su+ (1− s)v) ds.

Hence t ∈ I, τ ∈ [0, t] imply, via (9.8),

(9.16) ‖F (u(t− τ))− F (v(t− τ))‖L∞ ≤ L‖u(t− τ)− v(t− τ)‖L∞ ,

so, again by (8.23), the right side of (9.13) is bounded by

(9.17)

L

Γ(β)

∫ t

0

τβ−1‖u(t− τ)− v(t− τ)‖L∞ dτ

≤ L

βΓ(β)
sup

0≤τ≤t
‖u(τ)− v(τ)‖L∞ tβ .

Thus we get

(9.18) sup
t∈I

‖Φu(t)− Φv(t)‖L∞ ≤ θ sup
t∈I

‖u(t)− v(t)‖L∞ ,

provided

(9.19) δβ ≤ βΓ(β)
θ

L
.

Hence, as long as δ satisfies (9.9), (9.12), and (9.18), with θ ∈ (0, 1), Φ is a con-
traction on X, given by (9.7). We record the local existence result.

Proposition 9.1. Assume M is a compact Riemannian manifold and A is given
by (9.2). Assume F : Rk → Rk satisfies (9.8). Take f ∈ C(M). Then (9.1) has a
solution in C([0, δ], C(M)) provided δ > 0 satisfies (9.9), (9.12), and (9.18), with
θ < 1.
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We look at situations with more singular initial data. Not to get too general, we
assume

(9.20) f ∈ L6(M).

The analysis will be dimension dependent; say

(9.21) dimM = n.

We again take a ∈ (0,∞) and set

(9.22) X = {u ∈ C(I, L6(M)) : u(0) = f, sup
t∈I

‖u(t)− f‖L6 ≤ a}, I = [0, δ],

with δ > 0 to be specified below. This time, we assume

(9.23) |F (u)| ≤ K(1 + |u|3), |DF (u)| ≤ L(1 + |u|2),

which holds if F (u) is a cubic polynomial in u. Again Φ is given by (9.5). We desire
to show that if δ > 0 is small enough, Φ : X → X and is a contraction. We will
succeed in case

(9.24)
n

3
< m ≤ 2,

with m as in (9.2). Note that this requires n ≤ 5.
To start, t 7→ Eβ(−tβA) is strongly continuous on L6(M), again by (8.13), so

we can pick δ > 0 so small that

(9.25) t ∈ (0, δ] =⇒ ‖Eβ(−tβA)f − f‖L6 ≤ a

2
.

To get Φ : X → X, it suffices to show that

(9.26) t ∈ I, u ∈ X ⇒ β

∫ t

0

τβ−1‖E′
β(−τβA)F (u(t− τ))‖L6 dτ ≤ a

2
.

By (9.23),

(9.27) u ∈ X =⇒ ‖F (u(t− τ))‖L2 ≤ C(a,K).

The estimate (8.26), with H = L2(M) (or (8.39), with p = 2) gives

(9.28) τβ−1‖E′(−τβA)F (u(t− τ))‖Hσm,2 ≤ Cτ−1+(1−σ)β ,

for σ ∈ (0, 1). Sobolev embedding theorems give

(9.29) Hσm,2(M) ⊂ L6(M), for some σ < 1,
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provided (9.24) holds. We mention parenthetically that Hσm,2(M) ⊂ L∞(M) for
some σ < 1 provided n/2 < m ≤ 2. Consequently, if (9.24) holds, we have the
integral in (9.26) bounded by

(9.30) Ct(1−σ)β ,

which is ≤ a/2 for all t ∈ (0, δ] if δ is small enough. This gives Φ : X → X.
We next want to show that Φ is a contraction on X if δ > 0 is small enough.

This would follow if we could show that, for u, v ∈ X,

(9.31)
β

∫ t

0

τβ−1‖E′
β(−τβA)[F (u(t− τ))− F (v(t− τ))]‖L6 dτ

≤ Ct(1−σ)β sup
0≤τ≤t

‖u(τ)− v(τ)‖L6 ,

since this would yield

(9.32) sup
t∈I

‖Φu(t)− Φv(t)‖L6 ≤ θ sup
t∈I

‖u(t)− v(t)‖L6 ,

for u, v ∈ X, for some θ < 1, if I = [0, δ] and δ > 0 is small enough.
To proceed, with notation as in (9.14)–(9.15), we have, for t, τ ∈ I, u = u(t −

τ), v = v(t− τ), elements of X,

(9.33)

‖F (u)− F (v)‖L2 = ‖G(u, v)(u− v)‖L2

≤ ‖G(u, v)‖L3‖u− v‖L6

≤ C(a)‖u− v‖L6 ,

the last inequality by the hypothesis (9.23) on DF (u). Hence the left side of (9.31)
is

(9.34) ≤ C(A)β

∫ t

0

τβ−1‖E′
β(−τβA)‖L(L2,L6)‖u(t− τ)− v(t− τ)‖L6 dτ.

Via (8.26) or (8.39), plus (9.29), we have

(9.35) τβ−1‖E′
β(−τβA)‖L(L2,L6) ≤ Cτ−1+(1−σ)β ,

provided (9.24) holds. Hence (9.34)–(9.35) yield the desired estimate (9.31), and
we have the contraction property. We record the result.

Proposition 9.2. Assume M is a compact Riemannian manifold of dimension n,
A is given by (9.2), and m satisfies (9.24). Let F : Rk → Rk satisfy (9.23). Take
f ∈ L6(M). Then (9.1) has a solution u ∈ C([0, δ], L6(M)) provided δ > 0 is
sufficiently small.
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10. More local existence results

Here we seek other complete metric spaces X for which Φ : X → X is a contrac-
tion, given Φ as in (9.5), i.e.,

(10.1) Φu(t) = Eβ(−tβA)f + β

∫ t

0

τβ−1E′
β(−τβA)F (u(t− τ)) dτ.

We continue to assume β ∈ (0, 1), A = (−∆)m/2, m ∈ (0, 2], and F : Rk → Rk
satisfies (9.23), i.e.,

(10.2) |F (u)| ≤ K(1 + |u|3), |DF (u)| ≤ L(1 + |u|2),

which holds if F is a cubic polnomial in u. We also continue to assume M is a
compact Riemannian manifold of dimension n. Generalizing (9.20)–(9.22), we pick
q ∈ (1,∞), a ∈ (0,∞),

(10.3) f ∈ L3q(M),

and set

(10.4) X = {u ∈ C(I, L3q(M)) : u(0) = f, sup
t∈I

‖u(t)− f‖L3q ≤ a}, I = [0, δ],

with δ > 0 to be specified.
Parallel to (9.25), since t 7→ Eβ(−tβA) is strongly continuous on L3q(M), we

can pick δ > 0 so small that

(10.5) t ∈ (0, δ] =⇒ ‖Eβ(−tβA)f − f‖L3q ≤ a

2
.

To get Φ : X → X, it suffices to show that

(10.6) t ∈ I, u ∈ X ⇒ β

∫ t

0

τβ−1‖E′
β(−τβA)F (u(t− τ))‖L3q dτ ≤ a

2
.

By (10.2),

(10.7) u ∈ X =⇒ ‖F (u(t− τ))‖Lq ≤ C(a,K).

The estimate (8.39) gives

(10.8) τβ−1‖E′
β(−τβA)F (u(t− τ))‖Hσm,q ≤ Cτ−1+(1−σ)β ,
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for σ ∈ (0, 1). We seek a condition implying

(10.9) Hσm,q(M) ⊂ L3q(M).

for some σ ∈ (0, 1). If n = dimM , Sobolev embedding results imply

(10.10)
Hσm,q(M) ⊂ L∞(M), for some σ < 1, if mq > n,

Lnq/(n−σmq)(M), if mq ≤ n.

Thus (10.9) holds provided either mq > n or mq ≤ n and nq/(n − σmq) ≥ 3q for
some σ ∈ (0, 1). Hence (10.9) holds provided

(10.11) 3q >
2n

m
.

As for how this constrains m, recalling that m ≤ 2, we require

(10.12)
2n

3q
< m ≤ 2.

This requires n < 3q. For q = 2, 3q = 6, this is (9.24). If (10.9) holds, (10.8) yields

(10.13) τβ−1‖E′
β(−τβA)F (u(t− τ))‖L3q ≤ Cτ−1+(1−σ)β ,

and we get (10.6), as long as δ > 0 is small enough. Hence Φ : X → X.
We next want to show that Φ is a contraction on X if δ > 0 is small enough.

Parallel to (9.31), this would follow if we could show that, for u, v ∈ X,

(10.14)
β

∫ t

0

τβ−1‖E′
β(−τβA)[F (u(t− τ))− F (v(t− τ))]‖L3q dτ

≤ Ct(1−σ)β sup
0≤τ≤t

‖u(τ)− v(τ)‖L3q .

To proceed, with notation as in (9.14)–(9.15), and parallel to (9.33), we have,
for t, τ ∈ I, u = u(t− τ), v = v(t− τ), elements of X,

(10.15)

‖F (u)− F (v)‖Lq = ‖G(u, v)(u− v)‖Lq

≤ ‖G(u, v)‖L3q/2‖u− v‖L3q

≤ C(a)‖u− v‖L3q ,

the last inequality by the hypothesis (10.2) on DF (u). Hence the left side of (10.14)
is

(10.16) ≤ C(a)β

∫ t

0

τβ−1‖E′
β(−τβA)‖L(Lq,L3q)‖u(t− τ)− v(t− τ)‖L3q dτ.

Via (10.8)–(10.10), we have

(10.17) τβ−1‖E′
β(−τβA)‖L(Lq,L3q) ≤ Cτ−1+(1−σ)β ,

provided (10.12) holds. Hence (10.16)–(10.17) yield the desired estimate (10.14),
and we have the contraction property. We record the result.
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Proposition 10.1. Assume M is a compact, n-dimensional, Riemannian mani-
fold, A = (−∆)m/2, f ∈ L3q(M), and m and q satisfy q > 1 and (10.12). Let
F : Rk → Rk satisfy (10.2). Then (9.1) has a solution u ∈ C([0, δ], L3q(M))
provided δ > 0 is small enough.

11. Further variants

Let us write the putative solution of (9.1) as

(11.1) u(t) = u0(t) + v(t), u0(t) = Eβ(−tβA)f.

Then the integral equation (9.3) is equivalent to

(11.2) v(t) = β

∫ t

0

τβ−1E′
β(−τβA)F (u0(t− τ) + v(t− τ)) dτ,

or

(11.3) Ψv = v,

where

(11.4) Ψv(t) = β

∫ t

0

τβ−1E′
β(−τβA)F (u0(t− τ) + v(t− τ)) dτ.

Thus we seek a complete metric space Z for which

(11.5) Ψ : Z −→ Z

is a contraction.
For example, picking q ∈ (1,∞), a ∈ (0,∞), we can take

(11.6) Z = {v ∈ C(I, L3q(M)) : v(0) = 0, sup
t∈I

‖v(t)‖L3q ≤ a}, I = [0, δ].

We assume F satisfies (10.2). We assume f ∈ L3q(M), so u0 ∈ C(I, L3q(M)).
Estimates parallel to those given in §10 show that if (10.12) holds, then, for δ > 0
small enough, (11.5) holds and Ψ is a contraction.

In a search for other candidates for the space Z, we investigate the behavior of
v1 = Ψ0, i.e., of

(11.7) v1(t) = β

∫ t

0

τβ−1E′
β(−τβA)F (u0(t− τ)) dτ.
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To start, let us take

(11.8) n = dimM = 2, f ∈ L2(M).

Then, for σ ∈ (0, 1],

(11.9) ‖u0(t− τ)‖Hσm,2 ≤ C(t− τ)−σβ .

We have

(11.10)
Hσm,2(M) ⊂ L∞(M), if σm > 1,

L4/(2−2σm), if σm < 1.

In particular, 4/(2− 2σm) = 6 if σm = 2/3, so

(11.11) ‖u0(t− τ)‖L6 ≤ C(t− τ)−σβ if σm ≥ 2

3
,

hence

(11.12) ‖F (u0(t− τ))‖L2 ≤ C(t− τ)−3σβ ,

for 0 < τ < t ≤ T0, if σm ≥ 2/3, while also σ ≤ 1, i.e., if

(11.13)
2

3m
≤ σ ≤ 1,

which is possible provided

(11.14)
2

3
≤ m ≤ 2.

In such a case,

(11.15) ‖v1(t)‖L2 ≤ C

∫ t

0

τβ−1(t− τ)−3σβ dτ,

which is finite provided

(11.16) 3σβ < 1.

This is consistent with (11.13) if

(11.17)
2

m
β < 1, i.e., 2β < m, or β <

m

2
.
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In such a case we can take

(11.18) σ =
2

3m
, so 3σβ =

2β

m
,

and (11.15) yields

(11.19)
‖v1(t)‖L2 ≤ C

∫ t

0

τβ−1(t− τ)−2β/m dτ

= C̃t−(2−m)β/m.

In particular,

(11.20) ‖v1(t)‖L2 ≤ C̃ if m = 2.

So let’s assume

(11.21) n = 2, f ∈ L2(M), m = 2, σ =
1

3
, β ∈ (0, 1).

In such a case, we have the conclusion (11.20). Under the hypotheses of (11.21),
let us pick a, b ∈ (0,∞) and set

(11.22)
Z = {v ∈ C(I, L2(M)) : v(0) = 0, ‖v(t)‖L2 ≤ a,

‖v(t)‖L6 ≤ bt−σβ , ∀ t ∈ I},

with I = [0, δ]. Then

(11.23)

v ∈ Z ⇒ ‖u0(t− τ) + v(t− τ)‖L6 ≤ C(t− τ)−σβ

⇒ ‖F (u0(t− τ) + v(t− τ))‖L2 ≤ C(t− τ)−3σβ

⇒ ‖Ψv(t)||L2 ≤ C

∫ t

0

τβ−1(t− τ)−3σβ dτ = C̃.

However, we cannot guarantee that C̃ ≤ a, even if we shrink I.
Nevertheless, we proceed to estimate ‖Ψv(t)‖L6 . We have

(11.24) ‖τβ−1E′
β(−τβA)F‖Hσm,2 ≤ Cτ−1+(1−σ)β‖F‖L2 .

Hence, from the L2 estimate of F in (11.23), if v ∈ Z,

(11.25)
τβ−1‖E′

β(−τβA)F (u0(t− τ) + v(t− τ))‖Hσm,2

≤ Cτ−1+(1−σ)β(t− τ)−3σβ ,
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under hypothesis (11.21), hence

(11.26)

‖Ψv(t)‖L6 ≤ C‖Ψv(t)‖Hσm,2

≤ C

∫ t

0

τ−1+(1−σ)β(t− τ)−3σβ dτ

= C̃t−β/3.

Again we get an estimate of C̃t−σβ , since σ = 1/3, but we cannot establish that

C̃ ≤ b. In other words, the hypothesis (11.21) seems to be of “critical” type.
We will try again, with the hypothesis f ∈ L2(M) replaced by

(11.27) f ∈ Lp(M), for some p > 2.

We already know that things work out if

(11.27A) p = 3q >
2n

m
= 2, when n = m = 2, provided also q > 1, i.e., p > 3.

Now we want to take p closer to 2, when n = m = 2. We need further estimates on
v1(t), in order to set up a replacement for the space (11.22).

To start, we need an estimate on

(11.28) ‖u0(t− τ)‖L3p ,

parallel to that in (11.11). Parallel to (11.9), we have

(11.29) ‖u0(t− τ)‖Hσm,p ≤ C(t− τ)−σβ ,

and, parallel to (11.10), we have (when n = 2)

(11.30)

Hσm,p(M) ⊂ L∞(M), if σm >
2

p
,

L2p/(2−σmp), if σm <
2

p
.

In particular, 2p/(2− σmp) = 3p if σm = 4/3p, so

(11.31) ‖u0(t− τ)‖L3p ≤ C(t− τ)−σβ if σm ≥ 4

3p
,

hence

(11.32) ‖F (u0(t− τ))‖Lp ≤ C(t− τ)−3σβ ,
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for 0 < τ < t ≤ T0, if σm ≥ 4/3p, while also σ ≤ 1, i.e., if

(11.33)
4

3pm
≤ σ ≤ 1,

or, assuming m = 2, if

(11.34)
2

3p
≤ σ ≤ 1,

which of course is true if p > 2, so we can take

(11.35) σ =
2

3p
, so 3σβ =

2β

p
,

and we have

(11.36)
‖v1(t)‖Lp ≤ C

∫ t

0

τβ−1(t− τ)−2β/p dτ

= C̃tβ(1−2/p).

Also (11.32) and the analogue of (11.25) with Hσm,2 replaced by Hσm,p, give

(11.37)

‖v1(t)‖Hσm,p ≤ C

∫ t

0

τ−1+(1−σ)β(t− τ)−2β/p dτ

= C̃t−β(8/3p−1)

= C̃t−β(4σ−1).

Compare (11.29). Note that 4σ−1 < σ ⇔ σ < 1/3, which by (11.35) holds if p > 2.
Hence ‖v1(t)‖Hσm,p has a gentler blow-up as t ↘ 0 than ‖u0(t)‖Hσm,p does (given
m = 2).

In light of these observations, under hypothesis (11.27), plus

(11.38) n = m = 2,

and with σ as in (11.35), it is natural to take a, b ∈ (0,∞), and set

(11.39)
Z = {v ∈ C(I, Lp(M)) : v(0) = 0, ‖v(t)‖Lp ≤ a,

‖v(t)‖L3p ≤ bt−σβ , ∀ t ∈ I},

with I = [0, δ]. We desire to show that, for δ > 0 small enough, Ψ, given by (11.4),
maps Z to itself, as a contraction.
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To start, under the hypotheses (11.27) and (11.38), and taking σ as in (11.35),
we have

(11.40)

v ∈ Z ⇒ ‖u0(t− τ) + v(t− τ)‖L3p ≤ C(t− τ)−σβ

⇒ ‖F (u0(t− τ) + v(t− τ))‖Lp ≤ C(t− τ)−3σβ

⇒ ‖Ψv(t)‖Lp ≤ C

∫ t

0

τβ−1(t− τ)−2β/p dτ = C̃tβ(1−2/p).

We require of δ that

(11.41) C̃δβ(1−2/p) ≤ a,

which is possible since p > 2.
Next we estimate ‖Ψv(t)‖Hσm,p , which leads to an estimate of ‖Ψv(t)‖L3p . We

have

(11.42) τβ−1‖E′
β(−τβA)F‖Hσm,p ≤ Cτ−1+(1−σ)β‖F‖Lp ,

hence, from the Lp estimates of F in (11.40), if v ∈ Z,

(11.43)
τβ−1‖E′

β(−τβA)F (u0(t− τ) + v(t− τ))‖Hσm,p

≤ Cτ−1+(1−σ)β(t− τ)−3σβ ,

under hypotheses (11.27) and (11.38). Hence, bringing in (11.35),

(11.44)

‖Ψv(t)‖L3p ≤ C‖Ψv(t)‖Hσm,p

≤ C

∫ t

0

τ−1+(1−σ)β(t− τ)−2β/p dτ

= C̃t−β(4σ−1),

parallel to (11.37). We require of δ that

(11.45) C̃δ−β(4σ−1) ≤ bδ−βσ,

which is possible since 4σ − 1 < σ. Then Ψ : Z → Z.
Similar estimates show that, with δ perhaps further shrunk, Ψ is a contraction

on Z. We omit the details. We record the resulting existence theorem.

Proposition 11.1. Let M be a compact, 2-dimensional Riemannian manifold,
A = −∆, and β ∈ (0, 1). Assume F satisfies (10.2). Assume f ∈ Lp(M) for some
p > 2. Then, for some δ > 0, the initial value problem (9.1) has a unique solution
u ∈ C(I, Lp(M)) of the form u = u0 + v, as in (11.1), such that v belongs to Z,
given by (11.39), with σ = 2/3p. Furthermore,

(11.46) ‖v(t)‖H2σ,p ≤ Ct−β(4σ−1).
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Note. For n = 2, m = 2, Proposition 10.1 requires p = 3q > 3, so Proposition
11.1 is an improvement.

A. Riemann-Liouville fractional integrals and Caputo fractional derivatives

For β > 0, the Riemann-Liouville fractional integral Jβ is defined by

(A.1) Jβf(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1f(τ) dτ,

for t ≥ 0, where f is a suitable function on [0,∞), say continuous on [0,∞) and
polynomially bounded. We mention that

(A.2) Jβ1(t) =
1

Γ(β + 1)
tβ+.

With the Laplace transform given by

(A.3) Lf(s) =
∫ ∞

0

f(t)e−st dt, Re s > 0,

we have

(A.4) u(s) =

∫ t

0

g(t− τ)f(τ) dτ =⇒ Lu(s) = Lg(s)Lf(s),

and

(A.5) gβ(t) = tβ−1
+ , β > 0 =⇒ Lgβ(s) = Γ(β)s−β .

Hence

(A.6) LJβf(s) = s−βLf(s).

For β ∈ (0, 1), the Riemann-Liouville fractional derivative is given by

(A.7) r∂βt f = ∂tJ
1−βf,

and the Caputo fractional derivative is given by

(A.8) c∂βt f = J1−β∂tf.
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One has

(A.9) r∂βt J
βf = f and c∂βt J

βf = f.

However, r∂βt and c∂βt are not identical. For example, given β ∈ (0, 1),

(A.10) c∂βt 1 ≡ 0, r∂βt 1 =
1

Γ(β)
tβ−1
+ .

We next consider how the Laplace transform interacts with these two fractional
derivatives. Note that

(A.11)
L∂tf(s) =

∫ ∞

0

f ′(t)e−s dt

= sLf(s)− f(0),

the last identity by integration by parts. It follows that, for β ⊂ (0, 1),

(A.12) L r∂βt f(s) = sβLf(s)− J1−βf(0),

and

(A.13) L c∂βt f(s) = sβLf(s)− sβ−1f(0).

Consequently, one can apply Laplace transform techniques conveniently to initial
value problems for fractional differential equations involving the Caputo fractional

derivative c∂βt , but not so well for those involving the Riemann-Liouville fractional

derivative r∂βt .

For application in Appendix C, we compute c∂βt t
γ , for β ∈ (0, 1), γ ≥ β. We

have

(A.14)

c∂βt t
γ = J1−β∂tt

γ

= γJ1−βtγ−1

= γΓ(γ)J1−βJγ−11(t),

the last identity by (A.2). Now (A.6) implies J1−βJγ−1 = Jγ−β , so

(A.15)

c∂βt t
γ = γΓ(γ)Jγ−β1(t)

=
Γ(γ + 1)

Γ(γ − β + 1)
tγ−β ,

invoking (A.2) again. In particular, for k ∈ N,

(A.16) c∂βt t
kβ =

Γ(kβ + 1)

Γ(kβ − β + 1)
t(k−1)β .
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(Recall (A.10) for the case k = 0.)

Remark. One can extend the conclusion of (A.15) to γ > 0 by a direct computation
of J1−βtγ−1, using (A.1).

B. Finite-dimensional linear fractional differential systems

Here we briefly discuss linear systems

(B.1) c∂βt u = Lu, u(0) = f,

when L is not necessarily a negative self adjoint operator on a Hilbert space, but
rather

(B.2) f ∈ V, L ∈ End(V ),

and V is a complex vector space of dimension k <∞. For more details, see [D].
Parallel to (3.4), the solution to (B.1) is given by

(B.3) u(t) = Eβ(t
βL)f.

Now we can write

(B.4) V =
⊕
j

Vj ,

where, for λj in the spectrum of L,

(B.5) L
∣∣∣
Vj

= λjI +Nj ,

with Nj nilpotent on Vj . Then, in the obvious sense,

(B.6) Eβ(t
βL) =

⊕
j

Eβ(t
β(λjI +Nj)).

Furthermore, standard holomorphic functional calculus gives, for nilpotent N and
λ ∈ C,

(B.7) Eβ(λI +N) =
∑
k≥0

1

k!
E

(k)
β (λ)Nk,

the sum being finite if N is nilpotent. Hence

(B.8) Eβ(t
β(λjI +Nj)) =

∑
k≥0

1

k!
E

(k)
β (tβλj)t

kβNk
j .
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Note that (8.20) extends to

(B.9) E
(k)
β (−s) ∼ akβs

−k−1 + · · · , s↗ +∞.

This implies decay of (B.8) as t→ +∞, when λj < 0, though only at a rate O(t−β),
when β ∈ (0, 1), not at an exponential rate, as for β = 1.

To go further, one can extend the scope of (B.9), by extending that of (8.15)–
(8.19). With

(B.10) ηβ(ξ) =
(iξ)β−1

(iξ)β + 1
,

as in (8.15), we have, up to a constant factor,

(B.11) η̂β(t) = eβ(t).

Analytic continuation arguments give

(B.12) E
(k)
β (z) ∼ akβ(−z)−k−1 + · · · , as |z| → ∞, for |Arg z| > πβ

2
.

See [D]. Hence

(B.13) Eβ(t
β(λjI +Nj)) −→ 0 as t↗ +∞,

provided

(B.14) |Argλj | >
πβ

2
.

C. Derivation of power series for Eβ(t)

We approach the solution to

(C.1) c∂βt u = au, u(0) = 1,

given β ∈ (0, 1), a ∈ C, taking a cue from (A.16), which suggests trying

(C.2) u(t) =
∑
k≥0

ckt
kβ .
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In fact, granted appropriate convergence, applying (A.16) to (C.2) yields

(C.3)

c∂βt u =
∑
k≥1

Γ(kβ + 1)

Γ(kβ − β + 1)
ckt

(k−1)β

=
∑
ℓ≥0

Γ(ℓβ + β + 1)

Γ(ℓβ + 1)
cℓ+1t

ℓβ .

Comparison with the series for au, given by multiplying (C.2) by a, yields

(C.4) cℓ+1 = a
Γ(ℓβ + 1)

Γ(ℓβ + β + 1)
cℓ.

Given c0 = 1, we have

(C.5) c1 =
a

Γ(β + 1)
, c2 =

a2

Γ(β + 1)

Γ(β + 1)

Γ(2β + 1)
, . . . ,

and inductively,

(C.6) ck =
ak

Γ(kβ + 1)
.

Hence we arrive at

(C.7) u(t) = Eβ(t
βa),

where

(C.8) Eβ(z) =
∞∑
k=0

zk

Γ(kβ + 1)
,

as the solution to (C.1).
To go backwards, note that, for β ∈ (0, 1),

(C.9)
Jβ c∂βt u(t) = J∂tu(t)

= u(t)− u(0),

so (C.1) implies

(C.10) u(t) = 1 + aJβu(t),

and in fact, by (A.9)–(A.10), (C.1) and (C.10) are equivalent. This suggests another
approach. Write (C.10) as

(C.11) (I − aJβ)u(t) = 1,
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and then

(C.12) u(t) =
∑
k≥0

akJkβ1(t),

which via (A.2) again leads to (C.7)–(C.8).
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