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Abstract

A compact, n-dimensional Riemannian manifold M has Weyl spec-
tral asymptotics with remainder EM (R), i.e., the spectral counting
function satisfies

N (∆M , R) = C(M)Rn + EM (R),

with EM (R) = o(Rn). Generally, one actually has EM (R) = O(Rn−1),
and one seeks conditions under which stronger estimates hold on the
remainder. We produce n-dimensional manifolds whose Weyl remain-
ders are o(Rn−1) but not O(Rn−1−α) for any α > 0.
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1 Introduction

If M is a compact, n-dimensional Riemannian manifold with Laplace op-
erator ∆M , then L2(M) has an orthonormal basis of eigenfunctions {uj},
satisfying

∆Muj = −λ2juj , λj ↗ ∞. (1.1)

We define the spectral counting function by

N (∆M , R) = #{j : λj ≤ R}. (1.2)

For this, there is the Weyl asymptotic formula

N (∆M , R) = C(M)Rn + EM (R), (1.3)

with EM (R) = o(Rn), the Weyl remainder. A classical improvement of this
estimate is

EM (R) = O(Rn−1), (1.4)

see [7]. Much work has been done to see when this estimate can be further
improved. In [5] it is shown that one can take

EM (R) = o(Rn−1) (1.5)

if M has “not too many” closed geodesics. It was shown in [1] that, under
certain geometric hypotheses involving no conjugate points, one can improve
(1.5) to

EM (R) = O(Rn−1/ logR). (1.6)

The recent paper [3] obtained such an estimate in much greater generality.
Going further, there are various examples for which one has

EM (R) = O(Rn−1−α), (1.7)

for some α > 0. We sayM has spectral asymptotics with algebraically small
Weyl remainder. The classical example for (1.7) is M = Tn, the flat torus
(the sharp value of α for which (1.7) holds is not known, cf. [2]). In [8], (1.7)
is established for Cartesian products of spheres (with at least 2 factors).
Other examples are studied in [13]–[14].

In this paper we produce examples of compact Riemannian manifolds
M for which the remainder estimate (1.5) holds, but for which the stronger
estimate (1.7) fails for each α > 0.

Before describing our main results on this, we recall the classical cases
for which the estimate (1.5) fails, namely the n-dimensional unit spheres
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Sn in Rn+1. In such cases, there are exact formulas for the eigenvalues of
∆Sn , and for the dimensions of the eigenspaces, and these dimensions are
seen to be sufficiently large that no improvement of (1.4) is possible. For
later use, we describe this situation for S2 in more detail. As is well known,
L2(S2) has an orthonormal basis {Y ℓ

k : k ∈ Z+, ℓ ∈ Z, |ℓ| ≤ k} (of “spherical
harmonics”), satisfying

∆S2Y ℓ
k = −k(k + 1)Y ℓ

k , XY ℓ
k = ℓY ℓ

k , k ∈ Z+, |ℓ| ≤ k, (1.8)

where
X = iY, (1.9)

and Y is the vector field generating 2π-periodic rotation of R3 about the
x3-axis. In this case, the −k(k+1)-eigenspace of ∆S2 has dimension 2k+1,
foreclosing the possibility of (1.5) holding.

To start with 2D examples, our construction of examples where (1.7)
fails will involve taking M = S2 as a manifold, but giving M a different
metric tensor. The new metric tensor (gij) will match up with the standard
metric (γij) of S2, to infinite order, at the equator x3 = 0, but will differ
from (γij) off x3 = 0. To show that (1.7) fails for such M , we will show that,
for each ρ ∈ (1/2, 1), the sequence of spaces

Wk(S
2) =W ρ

k (S
2) = Span{Y ℓ

k : k − kρ ≤ ℓ ≤ k}, k ∈ Z+, (1.10)

yields quasimodes for ∆M . One ingredient in this analysis is to examine how
the functions u ∈ Wk(S

2) concentrate on the equator x3 = 0 as k → ∞. In
§2 we establish such concentration results. For ν ∈ N, s ≥ 0, we obtain

u ∈Wk(S
2) ⇒ ∥xν3u∥Hs(S2) ≤ C∥u∥Hs−νδ/2(S2)

≤ Cks−νδ/2∥u∥L2 , δ = 1− ρ,
(1.11)

which is an effective concentration result when νδ/2 > s.
We bring in tools from microlocal analysis to establish (1.11) and related

estimates. In more detail, with ρ ∈ (1/2, 1) and Λ = (−∆S2 +1/4)1/2−1/2,
we set

F (Λ, X) = φ
(
(Λ−X)Λ−ρ

)
, (1.12)

where we pick

φ ∈ C∞
0 (R), φ(τ) = 1 for |τ | ≤ 1, 0 for |τ | ≥ 2. (1.13)

Results of [10] and [11], Chapter 12, imply that F (Λ, X) is a pseudodiffer-
ential operator (of non-classical type):

F (Λ, X) ∈ OPS0
ρ,δ, principal symbol f(x, ξ) = F (|ξ|x, ⟨Y (x), ξ⟩), (1.14)
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leading on the one hand to

u = F (Λ, X)u, for u ∈Wk(S
2), (1.15)

and on the other to
xν3F (Λ, X) ∈ OPS

−νδ/2
ρ,δ , (1.16)

from which we deduce (1.11).
We take up concentration estimates of the eigenfunctions of the Laplace

operator ∆S on Sn for n ≥ 3 in §3. In such a case, L2(Sn) is an orthogonal
direct sum of eigenspaces

Vk(S
n) = {u ∈ C∞(Sn) : ∆Su = −µ2ku}, µ2k = k2 + (n− 1)k. (1.17)

Here we look at the joint spectrum of the commuting operators ∆S and L,
a second order differential operator that acts like the Laplace operator on
(n− 1)-spheres. (For n = 2, L = −X2.) Instead of the pair (Λ, X), we take

(Λ,Λ0), Λ = (−∆S)
1/2, Λ0 = −LΛ−1, (1.18)

and instead of F (Λ, X), we use

G(Λ,Λ0) = φ
(
(Λ− Λ0)Λ

−ρ
)
, (1.19)

as before, with ρ ∈ (1/2, 1). Instead of (1.10), we take

Wk(S
n) =W ρ

k (S
n) =

⊕
j

{
Ṽkj(S

n) : µ2k − µ1+ρ
k ≤ σ2j ≤ µ2k

}
, (1.20)

where
Ṽkj(S

n) = {u ∈ Vk(S
n) : Lu = −σ2ju}, (1.21)

so

Vk(S
n) =

k⊕
j=0

Ṽkj(S
n), σ2j = j(j + n− 2). (1.22)

In place of (1.15)–(1.16), we have

u = G(Λ,Λ0)u, for u ∈Wk(S
n), (1.23)

and (again with δ = 1− ρ)

xνn+1G(Λ,Λ0) ∈ OPS
−νδ/2
ρ,δ . (1.24)
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To use the spaces Wk(S
n) in our search for manifolds M for which (1.7)

fails, it is important to have a good lower bound on their dimensions. We
show that

dimWk(S
n) ≥ Ck−δ dimVk(S

n), (1.25)

which is clear from (1.10) when n = 2. For n ≥ 3, we get this from the
isomorphism

Ṽkj(S
n) ≈ Vj(S

n−1), 0 ≤ j ≤ k, (1.26)

a result that can be restated in terms of an SO(n)-equivariant isomorphism

Vk(S
n) ≈

k⊕
ℓ=0

Vℓ(S
n−1). (1.27)

This is established in §3, with the help of a dimension count, done in Ap-
pendix A.

In §4 we introduce the following family of n-dimensional Riemannian
manifolds. We take M to be Sn, endowed with a metric tensor (gij) that
agrees with the standard metric tensor (γij) of S

n to order ν on the equator
(for some integer ν ≥ 2), i.e.,

gij = γij + σij , σij = O(xνn+1). (1.28)

In such a case, we have from (1.16) and (1.24) that

(∆S −∆M )G = Q ∈ OPS
2−νδ/2
ρ,δ , (1.29)

where G = F (Λ, X) for n = 2, G = G(Λ,Λ0) for n ≥ 3. We deduce from
(1.15) and (1.23) that

u ∈Wk(S
n) =⇒ (−∆M − µ2k)u = Qu, (1.30)

and hence

u ∈Wk(S
n) =⇒ ∥(ΛM − µk)u∥L2 ≤ Ck−σ∥u∥L2 , (1.31)

with

ΛM = (−∆M )1/2, σ =
νδ

2
− 1. (1.32)

Recall that we take ρ ∈ (1/2, 1), δ = 1 − ρ. If we pick ν sufficiently large,
then σ > 0. The estimate (1.31) establishes that elements of Wk(S

n) are
quasimodes for ∆M .
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Using this set of quasimodes, we establish Proposition 4.2, which shows
that for k sufficiently large, µ2k = k(k + n− 1), there is an orthonormal set

{ψℓ
k : 1 ≤ ℓ ≤ dimWk(S

n)} ⊂ L2(M), (1.33)

of eigenfunctions of ∆M , satisfying

ΛMψ
ℓ
k = µkℓψ

ℓ
k, |µkℓ − µk| ≤ Ck−σ. (1.34)

Note that there are dimWk(S
n) elements in this set, and we have the esti-

mate (1.25).
This puts us in a position to show in §5 that, in such a situation, and

with the hypothesis on ν strengthened to

ν

2
> 1 +

1

δ
, (1.35)

so σ > δ in (1.34), then, if the remainder estimate holds, we must have
α ≤ 1 − ρ. Taking ρ ↗ 1 (δ ↘ 0), we obtain in Theorem 5.2 the following
result.

Theorem A. If M is an n-dimensional Riemannian manifold as described
above, and if its metric tensor matches the standard metric tensor on Sn to
infinite order at the equator, then the remainder estimate (1.7) in the Weyl
asymptotic formula (1.3) cannot hold for any α > 0.

Further tasks

It seems very likely that one can find Riemannian manifolds M of the
sort described in Theorem 5.2, having the property that the set of closed
geodesics has measure zero, so [5] implies EM (R) = o(Rn−1).

Going further, it is intriguing to guess that some of these can be shown
to satisfy the conditions in [3], yielding

EM (R) = O(Rn−1/ logR).

We intend to look into this in future work.
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2 Concentration of spherical harmonics on the equa-
tor of S2

Here we take ρ ∈ (1/2, 1), consider the family

Wk(S
2) = Span{Y ℓ

k : k − kρ ≤ ℓ ≤ k}, (2.1)

and examine how elements of Wk(S
2) concentrate on the equator x3 = 0 of

the sphere S2, as k → ∞. It is convenient to bring in the operator

Λ =
(
−∆S2 +

1

4

)1/2
− 1

2
, (2.2)

an elliptic, first-order pseudodifferential operator on S2 (we write Λ ∈
OPS1(S2)). Note that

ΛY ℓ
k = kY ℓ

k , XY ℓ
k = ℓY ℓ

k , (2.3)

for k ≥ 0, |ℓ| ≤ k. We next set

F (Λ, X) = φ
(
(Λ−X)Λ−ρ

)
, (2.4)

where we pick

φ ∈ C∞
0 (R), suppφ ⊂ [−2, 2], φ(τ) = 1 for |τ | ≤ 1. (2.5)

For convenience, we also assume

φ ≥ 0, φ(τ) ↘ for τ ≥ 0. (2.6)

Note that
Y ℓ
k ∈Wk(S

2) =⇒ F (Λ, X)Y ℓ
k = Y ℓ

k . (2.7)

What makes (2.7) effective for concentration estimates comes from the
analysis of F (Λ, X) as a pseudodifferential operator. Indeed, for ρ ∈ (0, 1],
the function

F (η) = φ
(
(η1 − η2)η

−ρ
1

)
(2.8)

satisfies estimates

|Dα
ηF (η)| ≤ Cα⟨η⟩−ρ|α|, on {η : η1 ≥ 1, |η2| ≤ η1}. (2.9)

Hence, for ρ ∈ (1/2, 1], one has

F (Λ, X) ∈ OPS0
ρ,δ(S

2), δ = 1− ρ, (2.10)
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with principal symbol

f(x, ξ) = F (|ξ|x, ⟨Y (x), ξ⟩), mod S
−(ρ−δ)
ρ,δ . (2.11)

The implication that, for ρ ∈ (1/2, 1],

(2.9) =⇒ (2.10)− (2.11)

is established in [10], and in [11], Chapter 11, Theorem 1.3, with comple-
ments in (1.2)–(1.4) on p. 297, in the broader setting of F (A1, . . . , Ak),
where Aj are commuting, self-adjoint operators in OPS1(M), satisfying the
ellipticity condition

A2
1 + · · ·+A2

k is elliptic in OPS2(M). (2.12)

This is also established in [9], for ρ = 1, but here we need it for 1/2 < ρ < 1.
The analysis in [10]–[11] involved representing eiy·A, for small y ∈ Rk, as

a family of Fourier integral operators,

eiy·Au(x) = (2π)−n/2

∫
b(y, x, ξ)eiφ(y,x,ξ)û(ξ) dξ, (2.13)

modulo smoothing operators, and deducing that, if F ∈ Sm
ρ (Rk),

F (A)u(x) = (2π)−n/2

∫
q(x, ξ)eix·ξû(ξ) dξ, (2.14)

modulo smoothing, where

q(x, ξ)eix·ξ = F (Dy)
[
b(y, x, ξ)eiφ(y,x,ξ)

]∣∣
y=0

,

to which a stationary phase analysis applies, yielding

q(x, ξ) ∼ F (a(x, ξ)) +
∑
|α|≥1

F (α)(a(x, ξ))ψα(x, ξ),

ψα(x, ξ) ∈ S
[|α|/2]
cl ,

(2.15)

where a(x, ξ) = (a1(x, ξ), . . . , ak(x, ξ)) and [z] denotes the greatest integer
≤ z. Compare [6], Theorem 2.16.

Returning to the setting of (2.4)–(2.5), we have the following.

Proposition 2.1 Given ρ ∈ (1/2, 1), the operator F (Λ, X) defined by (2.4)–
(2.5) satisfies

F (Λ, X) ∈ OPS0
ρ,δ(S

2), δ = 1− ρ, (2.16)

with principal symbol

f(x, ξ) = φ
(
(1− ⟨Y (x), ξ̂⟩)|ξ|δx

)
, ξ̂ =

ξ

|ξ|x
. (2.17)
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To proceed, note that ⟨Y (x), ξ̂⟩ ≤ |Y (x)|, and hence

1− ⟨Y (x), ξ̂⟩ ≥ Cx23, (2.18)

so (2.17) yields
|f(x, ξ)| ≤ φ(cx23|ξ|δ), (2.19)

hence, for M ∈ (0,∞), (
x23|ξ|δ

)M |f(x, ξ)| ≤ CM . (2.20)

This leads to the following.

Proposition 2.2 In the setting of Proposition 2.1, we have, for each ν ∈ N,

xν3F (Λ, X) ∈ OPS
−νδ/2
ρ,δ (S2), δ = 1− ρ. (2.21)

In light of the Sobolev mapping property

P ∈ OPSm
ρ,δ(M) =⇒ P : Hs+m(M) → Hs(M), (2.22)

valid for 0 ≤ δ < ρ ≤ 1, hence for δ = 1−ρ, ρ ∈ (1/2, 1), we have, for ν ∈ N,

u ∈Wk(S
2) ⇒ ∥xν3u∥Hs = ∥xν3F (Λ, X)u∥Hs

≤ Cν∥u∥Hs−νδ/2

≤ Cνk
s−νδ/2∥u∥L2 ,

(2.23)

as advertised in (1.11). Note that, by (2.1),

dimWk(S
2) ≥ kρ. (2.24)
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3 Concentration of spherical harmonics on the equa-
tor of Sn

The Laplace operator ∆S on Sn has eigenspaces

Vk = {u ∈ L2(Sn) : −∆Su = µ2ku}, µ2k = k2 + (n− 1)k, (3.1)

mutually orthogonal spaces of dimension

dimVk =

(
k + n− 1

k

)
+

(
k + n− 2

k − 1

)
, (3.2)

spanning L2(Sn). We want to analyze how certain elements of Vk concen-
trate on the equator

Sn−1 = {ω ∈ Sn : ωn+1 = 0},

as k → ∞, extending results of §2. To do this, we bring in the second
order differential operator L on Sn, the image of the Laplace operator on
SO(n) under its action on Sn ⊂ Rn+1, via rotation in the (x1, . . . , xn)-plane,
normalized so that, for u ∈ C∞(Sn),

Lu
∣∣
Sn−1 = ∆Sn−1

(
u
∣∣
Sn−1

)
. (3.3)

The operators ∆S and L commute and are self adjoint on L2(Sn). In case
n = 2, L = Y 2. We can write

Vk =
⊕
ℓ

Vkℓ, Vkℓ = {u ∈ Vk : Lu = −ℓ2u}. (3.4)

(Here ℓ runs over R+; it need not be an integer.) We will obtain estimates
on how elements of Vkℓ concentrate on the equator for ℓ sufficiently close to
µk.

To proceed, we fix ρ ∈ (1/2, 1), take φ ∈ C∞
0 (R), satisfying (2.5)–(2.6),

and set
G(Λ,Λ0) = φ(−(∆S − L)Λ−1Λ−ρ)

= φ((Λ− Λ0)Λ
−ρ),

(3.5)

where
Λ =

√
−∆S , Λ0 = −LΛ−1 ∈ OPS1(Sn). (3.6)

Parallel to (2.10), we have

G(Λ,Λ0) ∈ OPS0
ρ,δ(S

n), δ = 1− ρ. (3.7)
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Note that

u ∈ Vkℓ =⇒ Λ0u =
ℓ2

µk
u

=⇒ (Λ− Λ0)λ
−ρu =

µ2k − ℓ2

µ1+ρ
k

u.

(3.8)

Hence, if we set

Wk =
⊕
ℓ

{Vkℓ : µ2k − ℓ2 ≤ µ1+ρ
k }, (3.9)

we have
u ∈Wk =⇒ G(Λ,Λ0)u = u. (3.10)

To apply (3.10) to estimate how elements of Wk concentrate on the
equator, we aim to bring in arguments parallel to those provided to prove
Propositions 2.1 and 2.2. First, parallel to (2.17), the operator G(Λ,Λ0) has
principal symbol

g(x, ξ) = φ((1− σ−L(x, ξ̂))|ξ|δx), ξ̂ =
ξ

|ξ|x
, (3.11)

with complete symbol expansion derived from (2.15). Next, parallel to
(2.18), we have

σ−L(x, ξ̂) ≤ 1− cx2n+1, (3.12)

hence
1− σ−L(x, ξ̂) ≥ cx2n+1, (3.13)

and therefore
|g(x, ξ)| ≤ φ(cx2n+1|ξ|δ), (3.14)

so, for M ∈ (0,∞),
(x2n+1|ξ|δ)M |g(x, ξ)| ≤ CM . (3.15)

This leads to the following.

Proposition 3.1 Given ρ ∈ (1/2, 1), the operator G(Λ,Λ0), defined by
(3.5)–(3.6), satisfies, for each ν ∈ Z+,

xνn+1G(Λ,Λ0) ∈ OPS
−νδ/2
ρ,δ (Sn), δ = 1− ρ. (3.16)

Having (3.16), we bring in (3.10) to deduce that, for ν ∈ N, s ∈ R,

u ∈Wk ⇒ ∥xνn+1u∥Hs = ∥xνn+1G(Λ,Λ0)u∥Hs

≤ Cν∥u∥Hs−νδ/2

≤ Cνµ
s−νδ/2
k ∥u∥L2 ,

(3.17)
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parallel to (2.23). As before, this estimate is particularly valuable for νδ/2 >
s.

At this point, it behooves us to establish a lower estimate on

dimWk, (3.18)

extending the estimate (2.24), done for n = 2. We aim to establish an
estimate of the form

dimWk ≥ C(dimVk)k
ρ−1. (3.19)

To tackle this, it is convenient to refine our notation a bit, relabeling Vk in
(3.1) as

Vk(S
n) = {u ∈ L2(Sn) : ∆Su = −k(k + n− 1)u}, (3.20)

and rewriting (3.4) as

Vk(S
n) =

k⊕
j=0

Ṽkj(S
n), (3.21)

where
Ṽkj(S

n) = {u ∈ Vk(S
n) : Lu = −j(j + n− 2)u}. (3.22)

We also relabel Wk as Wk(S
n), and, in place of (3.9), write

Wk(S
n) =

⊕
j

{
Ṽkj(S

n) : µ2k − µ1+ρ
k ≤ σ2j ≤ µ2k

}
,

µ2k = k(k + n− 1), σ2j = j(j + n− 2).

(3.23)

The following is key to our dimension estimate.

Proposition 3.2 For 0 ≤ j ≤ k, n ≥ 3,

Ṽkj(S
n) ≈ Vj(S

n−1). (3.24)

Proof. Note that the natural action of SO(n) on L2(Sn) leaves each
space Ṽkj(S

n) in (3.21) invariant. In view of (3.22), we see that, for each

j ∈ {0, . . . , k}, Ṽkj(Sn) is either 0 or a direct sum of spaces isomorphic to

Vj(S
n−1). Furthermore, Proposition 2.4 of [15] implies that, if Ṽkj(S

n) ̸= 0,
then

SO(n) acts irreducibly on Ṽkj(S
n). (3.25)

Hence either (3.24) holds or Ṽkj = 0.
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At this point, we see that Proposition 3.2 is equivalent to the assertion
that there is an SO(n)-equivariant isomorphism

Vk(S
n) ≈

k⊕
j=0

Vj(S
n−1), (3.26)

and so far we know that the left side of (3.26) is isomorphic to an SO(n)-
invariant linear subspace of the right side. Hence the proof of Proposition
3.2 is done if we show that

dimVk(S
n) =

k∑
j=0

dimVj(S
n−1). (3.27)

This computation is carried out in Appendix A. □

To proceed toward a proof of (3.19), we have from (3.24) that

dimWk(S
n) =

∑
j

{
dimVj(S

n−1) : µk − µ1+ρ
k ≤ σ2j ≤ µ2k

}
. (3.28)

Note that the restriction on j (beyond 0 ≤ j ≤ k) can be written

µk

√
1− µρ−1

k ≤ σj ≤ µk, (3.29)

so in light of (3.23), the number of summands in (3.28) is

≈ 1

2
µρk ≈ 1

2
kρ, (3.30)

for large k. We bring in the asymptotics

dimVk(S
n) ∼ Cnk

n−1, as k → ∞, (3.31)

which follow from (3.2), and the variant

dimVj(S
n−1) ∼ Cn−1j

n−2. (3.32)

This leads to the estimate

dimWk(S
n) ≥ Ckn−2 · kρ

≥ C dimVk(S
n) kρ−1,

(3.33)

as asserted in (3.19).
Summarizing the main results of this section, we have the following.
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Proposition 3.3 Take ρ ∈ (1/2, 1), δ = 1 − ρ, n ≥ 2. For k ≥ 1, there
exist linear subspaces Wk(S

n) ⊂ Vk(S
n) satisfying

dimWk(S
n) ≥ Ck−δ dimVk(S

n), (3.34)

u ∈Wk(S
n) =⇒ G(Λ,Λ0)u = u, (3.35)

with G(Λ,Λ0) as in (3.5)–(3.7) and (3.16), and, for ν ∈ N, s ∈ R,

u ∈Wk(S
n) =⇒ ∥xνn+1u∥Hs ≤ Cνµ

s−νδ/2
k ∥u∥L2 . (3.36)

(Recall that µk ∼ k.)
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4 Elements of Wk(S
n) as quasimodes for perturbed

Laplace operators

As indicated in the introduction, we take the Riemannian manifold M to
be Sn, endowed with a metric tensor that is a perturbation of the standard
metric tensor of the unit sphere, and investigate how elements of Wk(S

n)
yield quasimodes for the Laplace-Beltrami operator ∆M . We start by ex-
amining how ∆S and ∆M are related. The metric tensors (gij) of M and
(γij) of S

n are related by

gij = γij + σij , σij
∣∣
xn+1=0

= 0, (4.1)

more precisely, we assume

σij = O(xνn+1), (4.2)

for some ν ∈ N (ν ≥ 2). Now we compare Laplace operators

∆Su = γ−1/2∂i(γ
1/2γij∂ju),

∆Mu = g−1/2∂i(g
1/2gij∂ju).

We obtain
−∆M = −∆S + hij∂i∂j + hj∂j ,

hij = O(xνn+1), hj = O(xν−1
n+1).

(4.3)

Consequently, by Proposition 2.2, with n = 2, ρ ∈ (1/2, 1), δ = 1 − ρ, and
F (Λ, X) as in (2.4)–(2.5),

(∆S −∆M )F (Λ, X) = Q ∈ OPS
2−νδ/2
ρ,δ . (4.4)

Similarly, by Proposition 3.1, with n ≥ 3, ρ ∈ (1/2, 1), δ = 1 − ρ, and
G(Λ,Λ0) as in (3.5)–(3.6),

(∆S −∆M )G(Λ,Λ0) = Q ∈ OPS
2−νδ/2
ρ,δ . (4.5)

Thanks to (2.7) for n = 2, (3.35), for n ≥ 3, we therefore have (with µk as
in (3.1))

u ∈Wk(S
n) =⇒ (−∆M − µ2k)u = Qu. (4.6)

Let us set

ΛM = (−∆M )1/2, so −∆M − µ2k = (ΛM + µk)(ΛM − µk). (4.7)
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It follows that for u ∈Wk(S
n),

∥(ΛM − λk)u∥L2 ≤ µ−1
k ∥(−∆M − µ2k)u∥L2

≤ Ck−1∥Qu∥L2

≤ ck−1∥u∥H−(νδ/2−2)

≤ Ck−(νδ/2−1)∥u∥L2 .

(4.8)

We record our quasimode estimate.

Proposition 4.1 Take ρ ∈ (1/2, 1), δ = 1− ρ, and pick ν sufficiently large
that

σ =
νδ

2
− 1 (4.9)

is positive. Assume the metric tensor on M satisfies (4.1)–(4.2). Then

u ∈Wk(S
n) =⇒ ∥(ΛM − µk)u∥L2 ≤ Ck−σ∥u∥L2 . (4.10)

We next show that there is a sequence of actual eigenvalues of ΛM close
to µk. To start, it follows directly from (4.10) that there exists ψ1

k ∈ C∞(M)
such that

∥ψ1
k∥L2(M) = 1, ΛMψ

1
k = µk1ψ

1
k, |µk1 − µk| ≤ Ck−σ. (4.11)

Of course, ΛM need not leave Wk(S
n) invariant, and we cannot say that ψ1

k

is in, or even particularly close to, Wk(S
n). Set

Z1 = Spanψ1
k. (4.12)

Then
(1 + ΛM )−1 : Z⊥

1 −→ Z⊥
1 . (4.13)

We have
dimWk(S

n) ≥ 2 =⇒Wk(S
n) ∩ Z⊥

1 ̸= 0, (4.14)

in which case
∃ψ2

k ∈ Z⊥
1 , with unit norm, such that

ΛMψ
2
k = µk2ψ

2
k, |µk2 − µk| ≤ Ck−σ.

(4.15)

Continue, producing an orthonormal set ψℓ
k of smooth elements of L2(M),

satisfying
ΛMψ

ℓ
k = µkℓψ

ℓ
k, |µkℓ − µk| ≤ Ck−σ, (4.16)
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for 1 ≤ ℓ ≤ L, and set

ZL = Span(ψ1
k, . . . , ψ

L
k ), (4.17)

so (1 + ΛM )−1 : Z⊥
L → Z⊥

L . We have

dimWk(S
n) > L =⇒Wk(S

n) ∩ Z⊥
L ̸= 0, (4.18)

in which case

∃ψL+1
k ∈ Z⊥

L , with unit norm, such that

ΛMψ
L+1
k = µk,L+1ψ

L+1
k , |µk,L+1 − µk| ≤ Ck−σ.

(4.19)

We can do this right up to the point where

L = dimWk(S
n). (4.20)

This construction leads to the following result on eigenvalues of ∆M close
to −µ2k.

Proposition 4.2 Keep the setting of Proposition 4.1, including having the
metric tensor on M satisfying (4.1)–(4.2). Then, for k sufficiently large,
there exists an orthonormal set

{ψℓ
k : 1 ≤ ℓ ≤ dimWk(S

n)} ⊂ L2(M) (4.21)

of eigenfunctions of ∆M , satisfying (4.16). Furthermore,

dimWk(S
n) ≥ Ck−δ dimVk(S

n)

≥ C ′kn−1−δ.
(4.22)
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5 Necessary condition for an algebraically small
Weyl remainder

As in §4,M is a compact, n-dimensional Riemannian manifold, whose metric
tensor is a perturbation of that of the standard sphere Sn, satisfying (4.1)–
(4.2). We seek a necessary condition that

N (∆M , R) = C(M)Rn +O(Rn−1−α), (5.1)

for some α ∈ (0, 1). Having this, we deduce a sufficient condition for (5.1)
to fail for all α > 0. Recall further details of this set-up. We pick ρ ∈
(1/2, 1), δ = 1− ρ, and then take ν in (4.2) sufficiently large that

σ =
νδ

2
− 1 (5.2)

is positive.
To continue, if (5.1) holds for all (large) R, then, for b ∈ [0, 1],

N (∆M , R+ b)−N (∆M , R− b) = 2nC(M)bRn−1 +O(Rn−1−α). (5.3)

Let us take b = cR−σ, so

N (∆M , R+ cR−σ)−N (∆M , R− cR−σ)

= 2ncC(m)Rn−1−σ +O(Rn−1−α).
(5.4)

Proposition 4.2 implies there exists c ∈ (0,∞) such that, if R = µk, then

N (∆M , R+ cR−σ)−N (∆M , R− cR−σ) ≥ CRn−1−δ. (5.5)

We deduce that (for R = µk)

CRn−1−δ ≤ 2ncC(M)Rn−1−σ +O(Rn−1−α). (5.6)

At this point, we strengthen our hypothesis on ν, from σ > 0 to

σ > δ, i.e.,
ν

2
>
δ + 1

δ
. (5.7)

With this arranged, we see that (5.6) implies

α ≤ δ = 1− ρ. (5.8)

This establishes the following.
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Proposition 5.1 Let M be a compact, n-dimensional Riemannian mani-
fold. Pick ρ ∈ (1/2, 1), δ = 1 − ρ, and assume ν ∈ N satisfies (5.7). Then
assume the metric tensor on M satisfies (4.1)–(4.2), i.e., matches the stan-
dard metric tensor on Sn to order ν at the equator. In such a case, if the
Weyl asymptotic formula (5.1) holds, we must have α ≤ 1− ρ.

From here, we have the following conclusion.

Theorem 5.2 In the setting of Proposition 5.1, if the metric tensor on M
matches the standard metric tensor on Sn to infinite order at the equator,
then (5.1) cannot hold for any α > 0.
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A Dimension counts

Work in §3 makes use of the SO(n)-equivariant isomorphism

Vk(S
n) ≈

k⊕
ℓ=0

Vℓ(S
n−1), (A.1)

where Vk(S
n) denotes the −k(k+n−1)-eigenspace of the Laplace operator on

Sn, and Vℓ(S
n−1) is similarly defined. As seen there, results on irreducibility

of certain SO(n) actions enable one to establish (A.1) once we have the
identity

dimVk(S
n) =

k∑
ℓ=0

dimVℓ(S
n−1). (A.2)

We establish this here.
In preparation, we recall a standard approach to computing the left side

of (A.2), using the isomorphism

Vk(S
n) ≈ Hk(Rn+1), (A.3)

the space of harmonic polynomials on Rn+1, homogeneous of degree k, and
the decomposition

Pk(Rn+1) = Hk(Rn+1)⊕ |x|2Pk−2(Rn+1). (A.4)

Here and below,

Pk(Rn+1) = space of polynomials on Rn+1, homogeneous of degree k,

Pk(Rn+1) = space of polynomials on Rn+1, of degree ≤ k,

dk(n+ 1) = dimPk(Rn+1).
(A.5)

Note that

dk(n+ 1) = dimPk(Rn) = dk(n) + dk−1(n) + · · ·+ d0(n), (A.6)

with a similar result for dj(m), for other values of j and m.
Using (A.3)–(A.6) yields

dimVk(S
n) = dk(n+ 1)− dk−2(n+ 1)

= dk(n) + dk−1(n).
(A.7)
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Similarly,

k∑
ℓ=0

dimVℓ(S
n−1) =

k∑
ℓ=0

{
dℓ(n− 1) + dℓ−1(n− 1)

}
. (A.8)

On the other hand, (A.6) (with n replaced by n− 1) gives

dk(n) =

k∑
ℓ=0

dℓ(n− 1), (A.9)

and similarly we have

dk−1(n) =

k−1∑
ℓ=0

dℓ(n− 1) =

k∑
ℓ=0

dℓ−1(n− 1). (A.10)

Together, (A.7)–(A.10) yield the desired identity (A.2).

Remark. There is the classical computation

dk(n) =

(
k + n− 1

k

)
. (A.11)

In light of this, the identity (A.9) is equivalent to

k∑
ℓ=0

(
ℓ+m

ℓ

)
=

(
k +m+ 1

k

)
(A.12)

(with m = n−2), which is sometimes given the whimsical label, the “hockey
stick identity.”
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[7] L. Hörmander, The spectral function of an elliptic operator, Acta
Math. 121 (1968), 193–218.

[8] A. Iosevich and E. Weyman, Weyl law improvement for products of
spheres, arXiv:1909.11844v1, IMRN, to appear.

[9] R. Strichartz, A functional calculus for elliptic pseudodifferential op-
erators, Amer. J. Math. 94 (1972), 711–722.

[10] M. Taylor, Fourier integral operators and harmonic analysis on com-
pact manifolds, in Proc. Symp. Pure Math., Vol. 35, pt. 2, pp. 115–136,
AMS, Providence, RI, 1979.

[11] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press,
Princeton NJ, 1981.

[12] M. Taylor, Partial Differential Equations, Springer, New York, 1996
(2nd ed. 2011).

[13] M. Taylor, Elliptic operators on S2 whose Weyl spectral asymptotics
have small remainders, Preprint, 2021.

22



[14] M. Taylor, Product manifolds with small Weyl remainders, Preprint,
2021.

[15] M. Taylor, Joint spectra of Riemannian manifolds with rotational sym-
metry, Preprint, 2021.

Michael E. Taylor
Mathematics Dept., UNC, Chapel Hill NC, 27599
email: met@math.unc.edu

23


