The Euclidean Algorithm and S¢(2,Z)

MICHAEL TAYLOR

Take a,b € N, b < a. The Euclidean algorithm computes
(A) v = ged(a, b)
and produces x,y € Z such that
(B) ax + by = .

We recall how this works and draw conclusions about the discrete group S¢(2,7Z).
To start, set

(1) a=kb+a, a,ki€Z", 0<a; <b.
We have

(2) ged(a, b) = ged(ag, b).

Also
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If a1 = 0, stop. If a; > 0, write

(4) b=/lia;+by, bi,li€Z, 0<b <a.
Then

(5) ged(ag, by) = ged(ag, b) = ged(a, b),
and

(6) ar\ _ ai _ 1 0 ary) _ 1 0 1 -k a
b1 b—ftiaq -0 1 b —¢; 1 0 1 b/’
If ay = O, just set 61 = O, b1 =b.
Now apply this process to the new pair (a1,b;). Continue until you get
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with either ay = 0 or by = 0. The right side of (7) has the form

(8) An (Z) Ay € SU2,7).

We hence have

) () =) o)) 7= sedtan)

Equivalently,
1/a 1
(10) — = one column of A .
v\ b
Note that

(11) A;Vlz((l) ’“f) (611 ?)((1) k{V) (ZV (1’) € S0(2,7).

In fact, each kj,¢; € ZT. If, for example, (10) is the first column of AI_Vl, we have

_ 1
12 A= (9 y) z,y€Z, 1=det Ay' = =(az + by),
I (A Y W= Lt t)

yielding (B). A similar calculation holds if (10) is the second column of Ay
Using the calculations done above, we can establish the following.

Proposition 1. The group S{(2,7) is generated by the two elements

(13) U:((l) 1) L:G (1))

Proof. Denote by G the subgroup of S¢(2,7Z) generated by U and L. Take

a ¢
(14) X = (b d> € 50(2,7).
For now, we treat X under the additional hypothesis that

(14A) 0<b<a.

We have ged(a, b) = 1, and calculations yielding (10)—(11) apply, with v = 1. Since
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we see that Ay € G.
Suppose (Z) is the left column of Aj_\,l, SO

-1_ (a =Y
" (2 )
We have
1 1 a
1 X = Ay =
a (o) =2(0)- ()
hence
y (1 (1 ¢
o a ()= () e = (] ) enen
Since det AX =1, n=1, so
a1 (1€
(19) X =Ay (0 1)€G.
On the other hand, if (Z) is the right column of Aj_\,l, SO
-1 Yy a
(20) = (20,
then
N, 1(0\  [a
@ (o) =4()- ()
SO
1y (0 (0 &
(22) ANX(O) = (1), so AnX = <1 77)’ &nel.
Since det AyX =1, = —1, so
1 (0 -1
o (0 ).

The proof that X € G (under the hypothesis (14A)) is finished off by a calculation
yielding

0 -1
(24) (Y ) )ec wiez

which which we will attend to presently.

At this point, to prove Proposition 1 we have two tasks remaining. One is to
establish (24), and the other is to remove the extra hypothesis (14A) on X.



To this end, we record some general facts about S¢(2,7Z), its special elements U
and L, and another special element,

(25) J:((l) _01> P=-I J=-J=J"

A calculation gives the following extension of (15),

(26) U’“H:(l?ke ’f)
Then

(27) JU = ((1) _11> =U'L,
SO

(28) J=U'LU eq.

Hence, for k € Z,

(0 =1\ /1 K\ (0 -1
(29) JU_(1 0)(01 (9 Nea
and we have (24).
Hence indeed X € G whenever X € S¢(2,7Z) satisfies (14A).
We also note that, by (28),
(30) —I=J%cG, so XeGe-Xed.
Furthermore, since U! = L,

(31) XecG= Xed.

Moving beyond (14A), we see that if X is as in (14),

b=0 — a=c= =1, so iX:(l 5), EeZ
(32)

— X € G.

Next,

—a —C
(33) b<0:>—X_<_b _d),



and (30) holds, so it suffices to show that

(34) X:(Z 2)@%(2,2), b>0= X €G.

Indeed, for such X,

(35) UkX:((l) ’;‘) <Z ;):(azkb czkd):(% 2)2)?7

and if £ € N is large enough, b > 0 = a > b > 0, and we are in the situation
covered by (14A). The argument in the first part of the proof of Proposition 1

implies X € G, hence
(36) X=U"*Xeaq,

and we are done with the proof of Proposition 1.
Here is another identity connecting U, L, and J:

(37) JUJ ! = <_11 (1)) _

This leads to the following complement to Proposition 1.

Corollary 2. The group S¢(2,7) is generated by the two elements

(38) U:((l) }) J:((l) _01)

For an alternative proof, note that (27) implies

(39) UJU = L.



