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Take a, b ∈ N, b < a. The Euclidean algorithm computes

(A) γ = gcd(a, b)

and produces x, y ∈ Z such that

(B) ax+ by = γ.

We recall how this works and draw conclusions about the discrete group Sℓ(2,Z).
To start, set

(1) a = k1b+ a1, a1, k1 ∈ Z+, 0 ≤ a1 < b.

We have

(2) gcd(a, b) = gcd(a1, b).

Also

(3)

(
a1
b

)
=

(
a− k1b

b

)
=

(
1 −k1
0 1

)(
a

b

)
.

If a1 = 0, stop. If a1 > 0, write

(4) b = ℓ1a1 + b1, b1, ℓ1 ∈ Z+, 0 ≤ b1 < a1.

Then

(5) gcd(a1, b1) = gcd(a1, b) = gcd(a, b),

and

(6)

(
a1
b1

)
=

(
a1

b− ℓ1a1

)
=

(
1 0

−ℓ1 1

)(
a1
b

)
=

(
1 0

−ℓ1 1

)(
1 −k1
0 1

)(
a

b

)
.

If a1 = 0, just set ℓ1 = 0, b1 = b.
Now apply this process to the new pair (a1, b1). Continue until you get

(7)

(
aN
bN

)
=

(
1 0

−ℓN 1

)(
1 −kN
0 1

)
· · ·

(
1 0

−ℓ1 1

)(
1 −k1
0 1

)(
a

b

)
,

1



2

with either aN = 0 or bN = 0. The right side of (7) has the form

(8) AN

(
a

b

)
, AN ∈ Sℓ(2,Z).

We hence have

(9) AN

(
a

b

)
= γ

(
1

0

)
or γ

(
0

1

)
, γ = gcd(a, b).

Equivalently,

(10)
1

γ

(
a

b

)
= one column of A−1

N .

Note that

(11) A−1
N =

(
1 k1
0 1

)(
1 0
ℓ1 1

)
· · ·

(
1 kN
0 1

)(
1 0
ℓN 1

)
∈ Sℓ(2,Z).

In fact, each kj , ℓj ∈ Z+. If, for example, (10) is the first column of A−1
N , we have

(12) A−1
N =

(
a/γ −y
b/γ x

)
, x, y ∈ Z, 1 = detA−1

N =
1

γ
(ax+ by),

yielding (B). A similar calculation holds if (10) is the second column of A−1
N .

Using the calculations done above, we can establish the following.

Proposition 1. The group Sℓ(2,Z) is generated by the two elements

(13) U =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
.

Proof. Denote by G the subgroup of Sℓ(2,Z) generated by U and L. Take

(14) X =

(
a c
b d

)
∈ Sℓ(2,Z).

For now, we treat X under the additional hypothesis that

(14A) 0 < b < a.

We have gcd(a, b) = 1, and calculations yielding (10)–(11) apply, with γ = 1. Since

(15)

(
1 k
0 1

)
= Uk,

(
1 0
ℓ 1

)
= Lℓ,



3

we see that A−1
N ∈ G.

Suppose
(
a
b

)
is the left column of A−1

N , so

(16) A−1
N =

(
a −y
b x

)
.

We have

(17) X

(
1

0

)
= A−1

N

(
1

0

)
=

(
a

b

)
,

hence

(18) ANX

(
1

0

)
=

(
1

0

)
, so ANX =

(
1 ξ
0 η

)
, ξ, η ∈ Z.

Since detANX = 1, η = 1, so

(19) X = A−1
N

(
1 ξ
0 1

)
∈ G.

On the other hand, if
(
a
b

)
is the right column of A−1

N , so

(20) A−1
N =

(
y a
−x b

)
,

then

(21) X

(
1

0

)
= A−1

N

(
0

1

)
=

(
a

b

)
,

so

(22) ANX

(
1

0

)
=

(
0

1

)
, so ANX =

(
0 ξ
1 η

)
, ξ, η ∈ Z.

Since detANX = 1, ξ = −1, so

(23) X = A−1
N

(
0 −1
1 η

)
.

The proof that X ∈ G (under the hypothesis (14A)) is finished off by a calculation
yielding

(24)

(
0 −1
1 η

)
∈ G, ∀ η ∈ Z,

which which we will attend to presently.

At this point, to prove Proposition 1 we have two tasks remaining. One is to
establish (24), and the other is to remove the extra hypothesis (14A) on X.
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To this end, we record some general facts about Sℓ(2,Z), its special elements U
and L, and another special element,

(25) J =

(
0 −1
1 0

)
, J2 = −I, J3 = −J = J−1.

A calculation gives the following extension of (15),

(26) UkLℓ =

(
1 + kℓ k

ℓ 1

)
.

Then

(27) JU =

(
0 −1
1 1

)
= U−1L,

so

(28) J = U−1LU−1 ∈ G.

Hence, for k ∈ Z,

(29) JUk =

(
0 −1
1 0

)(
1 k
0 1

)
=

(
0 −1
1 k

)
∈ G,

and we have (24).
Hence indeed X ∈ G whenever X ∈ Sℓ(2,Z) satisfies (14A).
We also note that, by (28),

(30) −I = J2 ∈ G, so X ∈ G ⇔ −X ∈ G.

Furthermore, since U t = L,

(31) X ∈ G ⇐⇒ Xt ∈ G.

Moving beyond (14A), we see that if X is as in (14),

(32)
b = 0 =⇒ a = c = ±1, so ±X =

(
1 ξ
0 1

)
, ξ ∈ Z

=⇒ X ∈ G.

Next,

(33) b < 0 =⇒ −X =

(
−a −c
−b −d

)
,
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and (30) holds, so it suffices to show that

(34) X =

(
a c
b d

)
∈ Sℓ(2,Z), b > 0 =⇒ X ∈ G.

Indeed, for such X,

(35) UkX =

(
1 k
0 1

)(
a c
b d

)
=

(
a+ kb c+ kd

b a

)
=

(
ã c̃
b̃ d̃

)
= X̃,

and if k ∈ N is large enough, b > 0 ⇒ ã > b̃ > 0, and we are in the situation
covered by (14A). The argument in the first part of the proof of Proposition 1

implies X̃ ∈ G, hence

(36) X = U−kX̃ ∈ G,

and we are done with the proof of Proposition 1.
Here is another identity connecting U,L, and J :

(37) JUJ−1 =

(
1 0
−1 1

)
= L−1.

This leads to the following complement to Proposition 1.

Corollary 2. The group Sℓ(2,Z) is generated by the two elements

(38) U =

(
1 1
0 1

)
, J =

(
0 −1
1 0

)
.

For an alternative proof, note that (27) implies

(39) UJU = L.


