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1. Introduction

Let P → M be a compact principal G bundle, over a Riemannian manifold M .
A gauge field on M is defined as a connection on P . Choose a bi-invariant metric
on G; then, since the base M has a fixed Riemannian metric, there is a bijective
correspondence between connections on P →M and G-invariant metrics on P that
make P → M into a Riemannian submersion, and that induce on every fiber the
same metric as the one induced by G. This correspondence goes as follows: a
metric and a connection correspond to each other iff for every p ∈ P the horizontal
space is orthogonal to the fiber, and at each point the differential of the projection
is an isometry when restricted to the horizontal subspace. Given a connection on
P , one obtains, for every irreducible representation πλ of G, a connection ∇λ :
C∞(M,Eλ) → C∞(M,T ∗M ⊗ Eλ) on sections of the associated vector bundle
Eλ →M . Here λ ∈ t∗ is the highest weight of the representation πλ, having chosen
a maximal torus T ⊂ G and an ordering of the roots. The bundle T ∗M ⊗ Eλ has
a product connection which we also denote ∇λ. If we compose these two operators
and follow the result with the map γ : T ∗M⊗T ∗M → R defined by the Riemannian
metric on M , we obtain a Laplace-Beltrami operator,

(1) H0
λ = −γ ◦ ∇λ ◦ ∇λ : C∞(M,Eλ) −→ C∞(M,Eλ).

This is the quantum Hamiltonian for a particle with configuration space M , charge
λ, and subject to the gauge field defined by the connection on P .

The semiclassical analysis we pursue, following previous work including [12, 16,
18, 26, 27], is of the following nature. (For the scalar potential case see for example
[2, 17, 24, 25].) Given V ∈ C∞(M), set

(2) Hλ = ℏ2H0
λ + V, ℏ = |λ+ δ|−1.

Here δ is half the sum of the positive roots. We are interested in the spectral
behavior of Hλ, as |λ| → ∞ in a Weyl chamber. Motivation to take ℏ−1 → ∞
and |λ| → ∞ at the same rate is discussed in [27, 28]. The particular choice
ℏ = |λ+ δ|−1 is related to the identity −πλ(∆G) = |λ+ δ|2 − |δ|2, where ∆G is the
Laplace operator on G,

(3) πλ(−∆G + |δ|2) = ℏ−2I.

As in [16, 27] the spectral behavior of Hλ as |λ| → ∞ can be analyzed in
terms of the joint spectrum of commuting operators on P , as follows. Let ∆P

G

denote the action on C∞(P ) derived from ∆G via the G-action on P . Let Dλ

denote the subspace of C∞(P ) on which G acts like copies of πλ. Then ∆P
G|Dλ

=
−|λ+ δ|2 + |δ|2I. Now the representation theory of G implies that

(4) Dλ ≈ sum of dλ copies of C∞(M,Eλ),
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where dλ is the dimension of Vλ, the representation space of πλ. Furthermore, if
we set

L = ∆+ V1(x)∆
P
G − |δ|2V (x),(5)

A = −∆P
G + |δ|2,(6)

where ∆ is the Laplace operator on P and V1 = V − 1, then the operators A and
L commute, both leave Dλ invariant, and we have

(7) A = |λ+ δ|2 = ℏ−2 on Dλ,

and, under the identification (4),

(8) −L
∣∣
Dλ

≈ sum of dλ copies of ℏ−2Hλ.

If V > I, then L is elliptic on P . Adding a constant to a general V can accomplish
this, so we will assume this has been arranged. Equations (7) and (8) show that
our semiclassical problem can be formulated as a joint eigenvalue problem for the
operators A and L.

In [27], (5)–(8) was used to write the trace of f(Hλ), with f ∈ S(R), in the form

(9) Tr f(Hλ) = d−1
λ Tr f(−A−1L)

∣∣
Dλ
,

and the right side of (9) was analyzed as follows. For a suitale class of operators K
on C∞(P ), with Schwartz kernel k(p, q), the G-trace of K is defined as the following
distribution on G:

(10) TrGK(g) =

∫
P

k(p · g, p) dVp.

One can show (cf. Section 3.1) that if K commutes with the G-action on C∞(P ),
TrGK is a central distribution on G, and if χλ ∈ C∞(G) is the character of πλ,
then

(11) 〈TrGK,χλ〉 = d−1
λ TrK

∣∣
Dλ
.

Thus if we define β(λ+ δ) by

(12) dλβ(λ+ δ) = 〈TrG f(−A−1L), χλ〉,

then (9) becomes

(13) d−1
λ Tr f(Hλ) = β(λ+ δ).
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One of the main results of [27] is that, for f a Schwartz function on the line, the
G-trace of f(−A−1L) is a distribution conormal to {e}, where e ∈ G is the identity
element. More precisely,

(14) TrG f(−A−1L) ∈ Im+d/4(G;T ∗
eG); m = dimM, d = dimG.

Then (13) holds with

(15) β ∈ Sm(t∗),

and this leads to a complete asymptotic expansion of d−1
λ Tr f(Hλ) as λ→ ∞ in a

Weyl chamber.
The asymptotic analysis of (13) involves looking at a part of the spectrum of Hλ

of fixed width as |λ| → ∞. Hörmander’s classic paper [19] does such an analysis
(in the setting G = {e}) with spectral width of the order of ℏ. It is our aim here to
obtain a result of similar sharpness, incorporating ideas developed by Duistermaat
and Guillemin [5]. Results on this spectral width were obtained in [13–16] as λ→ ∞
along a ray within a Weyl chamber. The results here amalgamate those of [16, 27],
in simultaneously looking at this narrow spectral band and doing so as λ → ∞ in
a cone contained in a Weyl chamber.

Specifically, we will analyze the asymptotic behavior of

(16) Tr f(ℏ−1H
−1/2
λ (Hλ − c)), ℏ = |λ+ δ|−1,

as |λ| → ∞, for a given c ∈ R. This is a measure of the dietribution of the spectrum
of Hλ about c. In view of the discussion above, (16) is equal to

(17) d−1
λ Tr f(Q)

∣∣
Dλ

= 〈TrG f(Q), χλ〉,

where

(18) Q = (−L)−1/2(−L− cA) ∈ OPS1(P )

is self adjoint. We will analyze this for f such that f̂ ∈ C∞
0 (R). We will also make

geometric assumptions implying that Q has simple characteristics, and that the
Hamilton vector field of its symbol on the characteristic manifold is nowhere radial,
so Q is an operator of real principal type.

The analysis of (17) will be carried out in three steps. First we show that,
under suitable assumptions, f(Q) is a Fourier integral operator, and we compute
its canonical relation and symbol. Next we show that in good cases the G-trace of
an FIO is a Lagrangian distribution on G, and apply this to TrG f(Q). Next we
must explore the asymptotic behavior of the Fourier coefficients of the G-trace, i.e.,
of

(19) τ(λ) = 〈TrG f(Q), χλ〉,
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as |λ| → ∞.
In the analysis of (19), one would like to use the Weyl integration formula and

character formula to write

(20) 〈ν, χλ〉 = |W |−1
∑

w,w′∈W

(detww′)µ̂(w(λ+ δ)− w′(δ)),

where W is the Weyl group, of cardinality |W |, provided ν is central and µ is
the restriction of ν to the maximal torus T, with Fourier transform µ̂. Now, the
distribution ν = TrG f(Q) is too singular for its restriction to T to exist in the simple
sense of restricting a continuous function. Worse, the device of composing Fourier
integral distributions under clean intersection hypotheses on their Lagrangians,
which serves us so well up through the constructon of TrG f(Q), definitely tends to
break down at the step of restricting to T. In particular, (20) does not generally
work, with ν = TrG f(Q). However, we can write instead

(21)

〈ν, χλ〉 = |λ+ δ|s〈νs, χλ〉

= |λ+ δ|s|w|−1
∑

w,w′∈W

(detww′)µ̂s(w(λ+ δ)− w′(δ)),

where νs = (δ2 − ∆G)
−s/2ν, s is chosen so lrge that νs is continuous on G, and

µs = νs|T. Thus µs is well defined, but it might be a more complicated object than
a Lagrangian distribution on T.

We obtain information on TrG f(Q), and hence on (19), in terms of the flow
induced by the principal symbol of (−L)1/2 on the Poisson manifold

(22) W = T ∗P/G

(the Wong bundle, see [9, 29, 33, 34]), on the energy level σ−L = c2. Thus our major
result is a kind of Poisson formula, where the phase space is the Poisson manifold
W. Results on the geometry of the Wong flow, and its influence on TrG f(Q), are
given in Section 5. The nature of the singularities is governed by the periodic orbits

on the energy surface σ−L = c2, with periods contained in the support of f̂ . The
singular support of TrG f(Q) consists of elements g ∈ G which move the initial
point to the final point of an orbit in T ∗P projecting over a periodic trajectory
in W. We note here the (initially) surprising result that, when G has rank ≥ 2,
isolated periodic orbits are not the rule. Rather periodic orbits tend to come in
families. This is treated in Proposition 5.7. Depending on the geometry of the
Wong flow, µ̂s in (21) might have a simple asymptotic expansion derivable by the
stationary phase method, or it might have a “nonclassical” asymptotic behavior as
|λ| → ∞.

Our main conclusions on the asymptotic behavior of τ(λ), defined by (19), are

given in Section 6. In Theorem 6.1 we describe the behavior of τ(λ) when f̂ is
supported on an interval (−T, T ) containing no nontrivial periods of the Wong
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flow. In that case we show that τ(λ) = dλa(λ) with a(λ) ∈ Sm−1(t∗), having

leading term a0(λ) equal to f̂(0) times the Liouville volume of a natural object.
Here m = dimM = dimP − dimG. Theorem 6.3 deals with situations where
other periods of the Wong flow lead to Lagrangian singularities in the restriction of
TrG f(Q) to T, possibly with a microlocal cutoff applied. In Section 6.3 we present
a family of examples, involving particularly G = U(2), illustrating some types of
classical and non-classical asymptotics alluded to in the preceding paragraph.

We will also consider a generalization of (2),

(23) Hλ = ℏ2H0
λ + iℏπλ(X) + V,

where X is a section of the bundle gad = P ×ad g over M . The extra term iℏπλ(X)
arises from what is called a Higgs field. Modifications necessary to treat this case
will be discussed in Section 6.
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2. Functions of operators of real principal type

We begin by establishing some notation. For every smooth manifold X, we will
consider on the cotangent bundle of X, T ∗X, the symplectic form

(24) ω = −dθ,

where θ is the tautological one-form on T ∗X. (In the notation of classical me-
chanics, θ =

∑
pj dqj while ω =

∑
dqj ∧ dpj .) If Λ ⊂ T ∗X \ 0 is a closed conic

Lagrangian submanifold, we will use Hörmander’s notation Im(X,Λ) for the spaces
of Lagrangian distributions associated with Λ, see [20, Chap. XXV]. We will also
use the following standard notation and terminology: a canonical relation C from
the cotangent bundle of a manifold Y to the cotangent bundle of a manifold X is
a submanifold C ⊂ T ∗X \ 0× T ∗Y \ 0 such that

(25) C′ def
= {(x, ξ; y, η) ∈ T ∗X × T ∗Y : (x, ξ; y,−η) ∈ C}

is a Lagrangian submanifold. We will also use the following notation: if x = (x, ξ) ∈
T ∗X, we let x′ = (x,−ξ). If C is a closed conic canonical relation from T ∗Y \ 0 to
T ∗X \0, a Fourier integral operator associated with C is an operator F : C∞

0 (Y ) →
C∞(X) whose Schwartz kernel belongs to one of the spaces Im(X × Y ; C′).

2.1. f(Q) as a Fourier integral operator.

Throughout this section, X will be a compact manifold. Let Q ∈ OPS1(X) be
a self-adjoint operator whose (real) principal symbol has non-radial simple charac-
teristics. Specifically, this means that if q ∈ C∞(T ∗X \ 0) is the principal symbol
of Q, then zero is a regular value of q, and its Hamilton vector field Hq is nowhere
radial on Σ = q−1(0). If f : R → R is bounded and continuous, f(Q) is a bounded
operator on L2(X) given by the spectral theorem. In this section we will show that
in good cases f(Q) is an FIO. The result of principal symbol use for this paper is
the following, already advertised in [2].

Proposition 2.1. If f̂ ∈ C∞
0 (R), then

(26) f(Q) ∈ I−1/2(X,X; Λ′
f ),

where

(27)
(x, y; ξ, η) ∈ Λf

⇔ q(x, ξ) = 0 and ∃t ∈ supp f̂ such that φt(x, ξ) = (y, η),

where {φt} denotes the Hamilton flow of q.
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The set Λf , as defined by (27), is a closed, immersed canonical relation with
boundary. However, the Schwartz kernel of f(Q) will be microlocally supported in
the interior of Λ. With some care in defining symbols, the standard theory extends
to such operators, see below.

While we will not make direct use of it in this paper, we also note the following
result.

Proposition 2.2. If f ∈ Sm
1,0(R) and f̂ has compact support, then

(28) f(Q) ∈ I
−1/2,m+1/2
1,0 (X,X,∆′,Λ′).

Here ∆ is the graph of the identity canonical transformation on T ∗X \ 0, Λ
is defined by (27), and the class in (28) is the class of Fourier integral operators
associated with a pair of cleanly intersecting Lagrangians, as studied in [22,11].
The proof we give here parallels arguments for the case when Q is elliptic given by
Taylor [30,31], and Colin de Verdière [4]. We begin with the identity

(29) f(Q) = (2π)−1/2

∫
R

f̂(t)eitQ dt.

Considering the group of Fourier integral operators eitQ, we see that if the support

of f̂ is in (−ε, ε), ε small, then for a given u ∈ D′(X), f(Q)u moves the wave front
set of u by a small amount. This enables us to localize the analysis and reduce the
problem to the model case Q = Dt = −∂/∂x1 on Rn, n = dimX.

Lemma 2.3. Propositions 2.1 and 2.2 hold for the operator Q = D1 = −i∂/∂x1,
acting on distributions on Rn.

Proof. Since on the Fourier side D1 is the operator of multiplication by ξ1, the
Schwartz kernel Kf of f(D1) is

(30) K(x, y) =

∫
ei[(x1−y1)ξ1+(x′−y′)ξ′]f(ξ1) dξ,

where we are splitting the variables x = (x1, x
′) and ξ = (ξ1, ξ

′). This expression
does not exhibit Kf as an oscillatory integral of the standard type, because f(ξ1)
is not a symbol (as a function of (ξ1, ξ

′)). If we do the dξ1 integral, we obtain

(31) Kf (x, y) =

∫
ei(x

′−y′)·ξ′ f̂(y1 − x1) dξ
′.

Equation (26) follows immediately from this. Now (30) is of the form (2.1) in [6],
namely of the form

(32) k(x, y) =

∫
ei[(x1−y1)ξ1+(x′−y′)ξ′+sσ]a(x, y, s, ξ, σ) dσ ds dξ,
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with

(33) a(x, y, s, ξ, σ) = f(σ).

Generally, (32) defines k ∈ Ip,ℓ(Rn,Rn);∆′,Λ′
1) provided a ∈ Sp′,ℓ′ , with p′ =

p+ 1/2 and ℓ′ = ℓ− 1/2, which means a satisfies estimates of the form

(34) |Dα
ξD

β
σD

γ
x,y,sa| ≤ Cα,β,γ〈ξ〉p

′−|α|〈σ〉ℓ
′−|β|.

These estimates are certainly satisfied by (33) if f satisfies the assumptions in
Proposition 2.2 (with ℓ′ = m, p′ = 0), which finishes the proof.

We recall a few additional facts on the distribution k defined by (32) and (34).
It turns out that

(35) k ∈ Ip+ℓ(Rn,Rn;∆′ \ Γ′),

microlocally near ∆′ \ Γ′, where Γ = ∆ ∩ Λ1, and

(36) k ∈ Ip(Rn,Rn; Λ′
1 \ Γ′)

microlocally near Λ′ \ Γ′. Moreover, according to [1, 6, 7],

(37) Ip,ℓ ◦ Ip
′,ℓ′ ⊂ Ip+p′+1/2,ℓ+ℓ′−1/2

while each A ∈ Ip,ℓ defines a bounded operator

(38) A : Hs
comp −→ Hs+s0

loc

provided max(p + 1/2, p + ℓ) ≤ −s0. Out definition of order of f(Q) is consistent
with that of [6], except for an apparent misprint in [6]; in [6] the authors write
p′ = p− n/2− 1/2, which seems inconsistent with (35) and (36).

Let us now prove the propositions. The operator Q of real principal type is known
to be microlocally conjugate to D1. More precisely, forWF (u) in a sufficiently small
conic subset Γ of T ∗X \ 0, there exists a Fourier integral operator V , elliptic on a
neighborhood of Γ, such that

(39) V eitQu = eitD1V u, mod C∞

for t ∈ (−ε, ε). Therefore, for such u, we have

(40) V f(Q)u = f(D1)V u mod C∞.

Writing a general u ∈ D′(X) as a finite sum of distributions with small wave front
sets and using Lemma 2.3, we see that there is ε small enough so that (26) and

(28) hold for all functions f with supp f̂ ⊂ (−ε, ε). Using a partition of unity on R
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to write a general compactly supported f̂ as a finite sum of terms each supported
in a small interval, we can write

(41) f(Q) =
N∑
j=1

eitjQfj(Q), supp f̂j ⊂ (−ε, ε),

which leads to the proof of the propositions.
We note that the special case of Proposition 2.2 where f(Q) = Qλ, Reλ = m,

is given in [1].

2.2. Symbolic calculus.

We now turn to a description of the half-density part of the symbol of the

operator f(Q), when f̂ ∈ C∞
0 . When describing the symbol of f(Q), it is necessary

to be more precise about the immersed canonical relation Λf associated with f(Q).
We pause to describe this in more general terms, for future reference.

Let X be an n-dimensional manifold, and X̃ = T ∗X\0. First of all, if Θ ⊂ X̃ is a
conic Lagrangian submanifold which is not necessarily closed, denote by Im(X,Θ)
the space of distributions which are microlocally supported in the interior of Θ and
satisfy the standard estimates defining the Hörmander spaces Im(X; Θ) in case Θ
is closed. Now let Λ be an n-dimensional manifold together with a free action of
the multiplicative group R+. We will say that Λ is conic, and more generally, a
subset of Λ wil be called conic iff it is invariant under the R+ action. We also give
ourselves a smooth map

(42) Φ : Λ −→ X̃,

and assume that (a) it is a Lagrangian immersion, (b) it intertwines the given R+

action on Λ with fiber multiplication on X̃, and (c) it has clean self-intersections.

Definition 2.4. A distribution u ∈ D′(X) will be said to be in Im(X; Λ,Φ)
iff there is a finite colection of open conic subsets of Λ, {Uj}, such that (i) for
each j the restriction of Φ to Uj is an embedding, and (ii) there are distributions
uj ∈ Im(X; Φ(Uj)) such that

(43) u =
∑
j

uj .

The condition on the self-intersections of Φ to be clean enables us to define the
symbol of u ∈ Im(X; Λ,Φ) as a half-density on Λ with values on a version of the
Maslov bundle. This is based on the following lemma.

Lemma 2.5. Let U1, U2 ⊂ Λ be open conic subsets such that the restriction of Φ
to each of them is an embedding. Assume that uj , u

′
j ∈ I∗(X; Φ(Uj)) are such that
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u1 + u2 = u′1 + u′2. Then uj = u′j mod C∞, j = 1, 2, provided Φ(U1) ∩ Φ(U2) has
positive codimension in Φ(U1).

Proof. Letting vj = uj−u′j , we suppose v1+v2 = 0. Then the principal symbol of v1
vanishes on Φ(U1)\Φ(U2), hence on all of Φ(U1) by continuity, since by assumption
vj have classical symbols. Similarly, the principal symbol of v2 vanishes on all of
Φ(U2). By induction, the complete symbols of vj also vanish.

Having set up these general definitions, let us go back to the operators f(Q) of

the beginning of this section. Let Σ = q−1(0) ⊂ X̃,

(44) Λ = Σ× R,

and

(45) Φ : X̃ × R −→ X̃ × X̃

be defined by Φ(x, ξ; t) = (x, ξ;φt(x, ξ)
′). Then, by Proposition 2.1, for each f

with f̂ ∈ C∞
0 (R), f(Q) ∈ I−1/2(X ×X; Λ,Φ). We now describe the symbol of this

operator.

Lemma 2.6. The half-density part of the symbol of f(Q) is

(46) f̂(t)|σ|1/2 ⊗ |dt|1/2,

where σ denotes the Liouville measure on Σ.

Proof. Appealing once again to the microlocal normal form for operators or real
principal type, it is enough to prove the lemma for the model operator Q = D1, on
Rn. Again the result is trivial in the model case.

2.3. A condition for Hq to be non-radial.

We now study when the operator we are primarily interested in, namely Q =
(−L)−1/2(−L− cA) of Section 1, has non-radial simple characteristics. It is imme-
diate that this is the case iff the principal symbol p(x, ξ) of the operator −L− cA
has a nowhere-radial Hamilton vector field Hp. We will give a useful criterion for
this condition to hold.

Note that
L+ cA = L0 + [V (x)− c]∆P

G + (lower order),

where L0 = ∆−∆P
G is doubly characteristic on the conormal space to the horizontal

lifts of TM to TP , while ∆P
G is doubly characteristic on H∗P , the conormal bundle

to the fibers of P → M . Thus the principal symbol p(x, ξ) of −L − cA has the
following form, which we will study. Consider now a symbol p(x, ξ) which is a
homogeneous polynomial of degree 2 in ξ, and of the form

(47) p(x, ξ) = a(x, ξ) + b(x)c(x, ξ).
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We assume

(48) 0 is a regular value of b,

which of course implies that σ = b−1(0) is a smooth manifold. For −L − cA, (48)
amounts to the assumption that c is a regular value of V . We also suppose

(49) a(x, ξ) ≥ 0, c(x, ξ) ≥ 0.

We will make the following further hypothesis, satisfied by −L− cA, on the nature
of a(x, ξ) and c(x, ξ). Namely, we suppose that at each x ∈ P , T ∗P splits as
V1x ⊕ V2x; write ξ = (ξ′, ξ′′) in this splitting. We suppose a(x, ξ) is a positive
definite quadratic form in ξ′, and C(x, ξ′′) a positive definite quadratic form in ξ′′.
We call this “hypothesis S.”

Under hypotheses (47)–(49) and S, we have that p is elliptic where b(x) > 0.
For b(x) < 0, p(x, ξ) is a non-degenerate quadratic form in ξ. Thus dξp can vanish
(with ξ 6= 0) only over σ. We will establish the following.

Proposition 2.7. Under hypotheses (47)–(49) and S, p(x, ξ) has simple charac-
teristics, on which Hp is nowhere radial, provided

(50) Char a(x, ξ) ∩N∗Σ \ 0 = ∅.

Proof. We only have to check whether dxp(x, ξ) can be proportional to the canonical
one-form α =

∑
j ξj dxj , for some (x, ξ) in the characteristic set of p with x ∈ Σ,

i.e., in case

(51) (x, ξ) ∈ Z = {(x, ξ) ∈ Char a : x ∈ Σ}.

Note that Z is the zero set of dξp. Now

(52) dxp(x, ξ) = c(x, ξ)db(x)

on Z. Hence if dp and α are parallel at (x, ξ) ∈ Z, it must be that (x, ξ) ∈ N∗Σ.
Under hypothesis (50), there are not any such (x, ξ), and conversely.

Note that this proposition applies to p(x, ξ) = ξ21 + x2ξ
2
2 , but not to ξ

2
1 + x2ξ

2
2 .

Corollary 2.8. The operator Q given by (18), with L and A given by (5), (6), is
of real principal type as long as c is a regular value of V ∈ C∞(M).
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3. The G-trace

In [26, 27], the G-trace was defined for the action of a compact Lie group G on
a principal bundle P → M for a class of pseudodifferential operators on P , and
the G-trace was analyzed as a pseudodifferential operator on G. The operators in
question were the A ∈ OPSm(P ) with complete symbol vanishing to infinite order
on the conormal bundle H∗P to the fibers of P →M . Here we extend this analysis
to a class of Fourier integral operators.

3.1. Generalities.

We begin with the definition of the G-trace, which we present here in a more
general context than that indicated above. Namely, let {U(g) : g ∈ G} be a unitary
representation of a Lie group G on a Hilbert space H, and B a bounded operator
on H. Roughly, the G-trace is that function on G defined by the formula

(53) TrGB(g) = TrU(g) ◦B.

This is clearly well defined if B is of trace class, but we want to consider other
cases, in which (53) leads to a distribution on G. Thus (53) is a formal description
for an object whose precise definition is the following: for v ∈ C∞

0 (G),

(54) 〈v,TrGB〉 = TrU(v) ◦B.

The condition required on B for this to make sense is that the map C∞
0 (G) → L(H)

given by v 7→ U(v)B be a continuous map from C∞
0 (G) into the Banach space of

trace class operators on H. Note that, if w ∈ C∞
0 (G), we have

(55) 〈(TrGB) ∗ v, w〉 = TrU(w ∗ v̌)B,

where v̌(g) = v(g−1).
We are primarily interested in the case where B commutes with all the U(g). In

that case, we have:

Proposition 3.1. Assume that, ∀ g ∈ G,B and U(g) commute. Then TrGB is
central, that is

(56) ∀ g, g1 ∈ G, TrGB(g−1g1g) = TrGB(g1).

Furthermore, if G is compact, B is trace class, {πλ} denotes the (equivalence classes
of) irreducible unitary representations of G and {χλ} their characters, then

(57) TrGB(g) =
∑
λ

d−1
λ (TrB|Dλ

)χλ(g),
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where Dλ denotes the maximal subspace of H on which G acts by copies of πλ, and
dλ is the dimension of the representation space of πλ.

Proof. The first statement follows from the following calculation. In al generality,

(58) TrGB(gg1) = TrU(g)U(g1)B = TrU(g1)BU(g).

Now, if U and B commute, this is equal to TrU(g1)U(g)B, i.e., to TrGB(g1g), and
(56) follows. For the proof of the second part, recall that the orthogonal projector,
Pλ : H → Dλ, is equal to

(59) Pλ = dλ

∫
G

χλ(g)U(g) dg.

Hence

(60) TrB
∣∣
Dλ

= dλ

∫
G

TrGB(g)χλ(g) dg.

Since TrGB is central, (57) follows from (60).

Having given a general description of the G-trace, we consider some examples.
Out first example is not of direct relevance to the main theme of this paper, but
it indicates one of several other contexts in which one could consider the G-trace.
Namely, U could be an irreducible unitary representation of a (noncompact) semi-
simple Lie group G. Then, as is known [32], U(v) itself is trace class for each
v ∈ C∞

0 (G), so TrGB is defined for any bounded operator B on H. In this case,
the distributional trace of U is known to be in L1

loc(G), so U(v) is trace class for
each v ∈ L∞

comp(G). From (55) it follows that, for any bounded B on H, convolution

with TrGB (on the left) maps L2
comp(G) → L2

loc(G).
Cases of greatest interest to us at present involve those in which U arises from

a (right) action of G as a group of isometries of a Riemannian manifold X; U acts
on L2(X) as

(61) U(g)f(x) = f(x · g), x ∈ X, g ∈ G.

If Rg : X → X is the map Rg(x) = x · g, then we are assuming that Re is the
identity and that Rg1 ◦Rg2 = Rg2g1 for all g1, g2 ∈ G, so that g 7→ U(g) is a group
homomorphism. We suppose that B has a (distributional) kernel b(x, y), so that

(62) Bf(x) =

∫
X

b(x, y)f(y) dV (y).

Thwn, formally, TrGB is given by

(63) TrGB(g) =

∫
X

b(x · g, x) dV (x),
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or, more precisely,

(64) 〈TrGB, v〉 =
∫
X

∫
G

v(g)b(x · g, x) dg dV (x).

The condition that B commute with U is

(65) ∀x, y ∈ X, g ∈ G, b(x, y) = b(x · g, y · g).

For such representations U , U(v) is of trace class for every v ∈ C∞
0 (G) provided

X is compact and U(v) has a smooth distributional kernel, which happens if G
acts transitively on X. In such a case, TrGB is well defined for all B bounded
on L2(X), indeed for any B : L2(X) → D′(X). This case is not disjoint from
the case of irreducible representations U of semisimple G, since principal series
representations arise in the form considered in he last paragraph. In such a case as
the principal series, we would want to consider a generalization, to G-actions on X
not preserving a volume element, in which case square roots of Jacobians appear
in (61) and (63).

In case X = P is a principal bundle, the transitivity condition mentioned above
does not hold. Restrictions on B are required to assure that U(v)B is of trace class
for every v ∈ C∞(G). We consider this in the next subsection.

3.2. Microlocal construction of TrGB.

Let us now investigate the construction of the G-trace of an operator from the
microlocal point of view. We place ourselves in the following setting, somewhat
more general than the one we have just considered. Let X be a compact manifold,
endowed with a smooth positive density, dV , and assume that G acts on X on the
right,

(66) X ×G −→ X, (x, g) 7→ x · g,

with x ·e = x and (x ·g1) ·g2 = x · (g1g2), and preserving the density dV . Then G is
unitarily represented onH = L2(X, dv), by (61). We will think of the representation
as a single operator U from C∞(X) to C∞(X ×G), by setting

(67) ∀ f ∈ C∞(X), U(f)(x, g) = f(x · g).

The Schwartz kernel of U is a distribution on (X × G) × X; it is cleary a delta
function along the graph of the action. More precisely, let

(68) G = {(x, g, y) : y = x · g} ⊂ X ×G×X.

Then the Schwartz kernel of U is a delta distribution along G, and in particular is
conormal with respect to G. We can write the Schwartz kernel of U symbolically
as follows:

(69) U(x, g, y) = δ(y − x · g).
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For future reference, we now describe the conormal bundle of G. In order to do
this, we need to (i) lift the action of G to the punctured cotangent bundle of

X, X̃ = T ∗X \ 0, and (ii) introduce the moment map of the lifted action. We refer
to [10] for details of what follows. To avoid introducing cumbersome notation, given
g ∈ G we will denote by the same letter the diffeomorphism of X defined by g and

the action. This diffeomorhism has a natural lift to X̃ defined by the recipe

(70) ∀x ∈ X, ξ ∈ T ∗
xX, (x, ξ) · g = (x · g, d(g)∗−1

x (ξ)).

The lifted diffeomorphism is symplectic, and if we restrict the lifted action to a
one-parameter subgroup of G, the resulting flow in in fact Hamiltonian. The mo-
ment map is a way to describe the corresponding Hamiltonians, all at once. More
precisely, let g be the Lie algebra of G, and, for each A ∈ g, let A# denote the
vector field on X defined by A and the action of G:

(71) A#
x =

d

dt
x · (exp tA)

∣∣
t=0

.

Then the monent map referred to above is the map Φ : X̃ → g∗ defined by the
identity

(72) ∀A. ∈ g, (x, ξ) ∈ X̃, 〈Φ(x, ξ), A〉 = 〈A#
x , ξ〉.

We cite a couple of its properties.

Lemma 3.2. (a) ∀A ∈ g, the one-parameter subgroup of symplectomorphisms of

X̃ which is the lifring of x 7→ x · exp(tA) has the function

(x, ξ) 7→ 〈Φ(x, ξ), A〉

for Hamiltonian, and (b) for all (x, ξ) and g,

(73) Φ((x, ξ) · g) = Ad∗g Φ(x, ξ).

Here Ad∗x is the transpose of the adjoint representation Adx : g → g given by
A 7→ d/dt[g(exptA)g−1]|t=0. We do not get that Φ is equivariant with respect to
the standard co-adjoint repesentation g 7→ Ad∗g−1 becaise we are working with a

right action. The proof of (73) is an easy exercise; for the proof of (a) see [10,
Eq. (29.2), p. 221].

As mentioned above, the moment map enters into the description of the conormal
bundle to the graph G of the action:

Lemma 3.3. Identify the cotangent bundle of the group, T ∗G, with G × g∗ using
left translations. Then the conormal bundle of G is equal to

(74) N∗G = {(x, ξ; g,Ad∗g Φ(x, ξ); (x,−ξ) · g : g ∈ G, (x, ξ) ∈ X̃}.

Let us now look at the construction of the G-trace of an operator on X, not
necessarily commuting with the action of G. We begin with smoothing operators.
Let b ∈ C∞(X×X), and denote by B the corresponding smoothing operator which
of course is of trace class since X is compact.
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Lemma 3.4. We have

(75) TrGB(g) =

∫
X

b(x · g, x) dV (x).

Proof. The Schwartz kernel of the composition U(g)B is the smooth function

(76) U(g)B(x, y) = b(x · g, y),

as one can easily check. As it is well known that the trace of a smoothing operator
on a compact manifold is obtained by integrating its Schwartz kernel along the
diagonal, (75) follows.

Let us denote by K : C∞(X ×X) → C∞(G) the operator defined by (75), that
is, K(b) = TrGB.

Lemma 3.5. As a distribution on G×X×X, the Schwartz kernel of K is obtained
from that of U the the following permutation of the variables:

(77) K(g, x, y) = U(y, g, x).

Hence the Schwartz kernel of K is a Lagrangian distribution in the space I−d/4(G×
X ×X; C′) where d = dimG and C is the canonical relation

(78) C = {(g,Ad∗g(x, ξ); (x, ξ) · g; (x,−ξ) : g ∈ G, (x, ξ) ∈ X̃}.

Proof. One has

(79)

TrGB(g) =

∫
X

dV (x)

∫
X

b(y, x)U(g, x, y) dV (y)

=

∫
X×X

U(g, y, x)b(x, y) dV (x) dV (y).

Interchanging the variables and “priming” in T ∗(X×X) transforms N∗G into (78).

We are now ready to discuss the problem of constructing the G-trace of more
general operators onX. Notice that C is not contained in (T ∗G\0)×(T ∗(X×X)\0),
which reflects the fact that K does not extend to all of D′(X ×X). The problem
arises from the points in Φ−1(0); microlocally away from this set K is a regular
Fourier integral operator. More precisely, we have:
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Corollary 3.6. Let Λ ⊂ X̃ × X̃ be a closed Lagrangian with the property that its
projection into the second factor has empty intersection with Φ−1(0). Then K has
a continuous extension to

(80) K : Im(X ×X; Λ) −→ D′(G),

that is, ∀ b ∈ Im(X × X; Λ), the G-trace of the corresponding operator B is a
well-defined distribution TrGB ∈ D′(B).

Of course, much more is true; by the general composition theorem for Fourier
integral operators, if suitable clean intersection hypotheses are satisfied, given B ∈
I∗(X × X,Λ) with Λ as above, TrGB is in some space Im

′
(G; Γ), with Γ ⊂ T ∗G

an immersed Lagrangian. Before discussing the clean intersection condition, let us
say what Γ should be.

Lemma 3.7. Let b ∈ I∗(X×X,Λ), where Λ satisfies the assumptions of Corollary
3.6. Then WF TrGB ⊂ Γ, where

(81) Γ = {(g, γ) : ∃x ∈ X̃ such that (x · g, x′) ∈ Λ and γ = Ad∗g Φ(x)}.

(We have denoted points in X̃ with an overbar to distinguish them from points in
X.) Hence g ∈ G is in the projection of Γ iff

(82) N∗{(x · g, x) : x ∈ X} ∩ Λ 6= ∅.

Proof. That the wave front set of TrGB is contained in (81) follows from (78) and
the calculus of wave front sets. The second statement follows from te fact that

(83) N∗{(x · g, x) : x ∈ X} = {((x, ξ) · g, (x,−ξ)) : (x, ξ) ∈ X̃}.

The set Γ in general will not be connected, and in general K(b) will be a La-
grangian distribution whose order may vary from one connected component of Γ to
another.

Let us now discuss the clean intersection condition that ensures that TrGB, b ∈
I∗(X ×X,Λ), is a Lagrangian distribution. Let

(84) F = {(g, x) ∈ G× X̃ : (x · g, x′) ∈ Λ}.

Two bits of notation: for every v ∈ TxX̃, let v′ ∈ Tx′X̃ be the image of v under the
differential of the diffeomorphism y 7→ y′, and we continue to identify TG ≈ G× g
using left translations.
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Theorem 3.8. Let Λ satisfy the hypothesis of Corollary 3.6, and assume further-
more that

(a) F is a submanifold of G× X̃, and
(b) At every (g, x) ∈ F , the tangent space to F is equal to the set of all

(A, v) ∈ g× TxX̃ such that

(85) (dgx(v) +A#
x·g, v

′) ∈ T(x·g,x′)Λ.

Then ∀ b ∈ Im(X ×X; Λ) one has TrGB ∈ Is(G,Γ), with s = m − 3(dimG)/4 +
(dimF)/2.

Proof. The clean intersection condition ensuring that TrGB is a Lagrangian distri-
bution [20], is that the following should be a clean intersection diagram:

(86)

F# −−−−→ Cy y
T ∗G× Λ −−−−→ T ∗G× X̃ × X̃

Here F# ⊂ T ∗G×X̃×X̃ is the set of all (g,Ad∗g Φ(x);x·g;x′) such that (x·g, x′) ∈ Λ.
Now the map

(87)
G× X̃ → T ∗G× X̃ × X̃,

(g, x) 7→ (g,Ad∗g Φ(x);x · g;x′),

is an embedding whose image is C, and it induces a diffeomorphism of sets, F# ≈ F .
Thus F# is a submanifold iff F is, and (85) is simply the translation undet (87)
of the condition that (86) be clean. For the calculation of the order, note that the
excess of the diagram (86) is equal to dimF − dimG.

The case we are immediately concerned with is when the action of G on X̃ is
free. We will assume this is the case in the remainder of this section. This of course
includes the case where X = P is a principal g-bundle, but it is somewhat more
general (think of the action of S1 on the punctured cotangent bundle of the two-

sphere by rotations around the z-axis). We will keep the notation X̃ = T ∗X \ 0.
Let A satisfy the assumption of Corollary 3.6, and let

(88) I = {(x · g, x′) : x ∈ X̃, g ∈ G}.

Notice that, because the action of G on X̃ is free, I is a smooth submanifold of

X̃ × X̃, in fact diffeomorphic to G× X̃ via the map (g, x) 7→ (x · g, x′).
Recall that, if (M,ω) is a symplectic manifold, a submanifold Σ ⊂M is called co-

isotropic iff ∀x ∈ Σ the tangent space TxΣ contains its symplectic orthogonal. Then
there is a smooth foliation (called the null foliation) of Σ with the property that
∀x ∈ Σ the tangent space to the leaf through x is TxΣ

⊥. With this terminology,
we can re-state the clean intersection condition of the previous theorem as follows.
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Proposition 3.9. I is a coisotropic submanifold of the symplectic manifold X̃×X̃,
and the map

(89)
F : I → G× g∗ ≈ LT ∗G

(x · g, x′) 7→ (g,Ad∗g Φ(x)),

where G × g∗ ≈ LT ∗G is the trivialization using left translations, is a submersion
whose fibers are finite unions of leaves of the null foliation of I. Moreover, the
clean intersection condition [(a) and (b)] of Theorem 3.8 holds iff I and Λ intersect
cleanly, in which case the restriction of F to I ∩Λ is a map locally of constant rank
whose image is the immersed Lagrangian Γ of (81).

Proof. The tangent space to I at a point (x · g, x′) is the set of all vectors of the
form

(90) (dgx(v) +A#
x·g, v

′), v ∈ TxX̃, A ∈ g.

It follows easily that the symplectic orthogonal of this space consists of those vectors

of the form (dgx(w), w
′), where w ∈ TxX̃ satisfies

(91) ∀A ∈ g, ωx(A
#
x , w) = 0.

Such vectors are of the form (90), so I is co-isotropic. Moreover, the general theory
of the moment map implies that (91) is equivalent to dΦx(w) = 0. For every α ∈ g∗,
define the Kostant-Kirillov skew-symmetric bilinear form Ωα on g by

(92) ∀A,B ∈ g, Ωα(A,B) = 〈α, [A,B]〉.

Then a calculation shows that the differential of F is given by

(93)
dF(x·g,x′)(dgx(v) +A#

x·g, v
′)( · )

= (A,ΩAd∗
g(x)

(A, ·) + Ad∗g(dΦx(v))( · )).

Hence the kernel of dF is at every point the symplectic orthogonal of TI. Formula
(93) shows that F is a submersion iff Φ is, and this follows from the assumption

that the action of G on X̃ is free (it is known that the kernel of the transpose of
dΦx is the Lie algebra of the isotropy subgroup of x). This proves the first part of
the proposition.

To prove the second part, note that the embedding (g, x) 7→ (x ·g, x′) from G×X̃
to X̃ × X̃, which parametrizes I, induces a diffeomorphism of sets π : F → I ∩ Λ.
Thus I ∩ Λ is a manifold iff F is. The condition on the tangent spaces is easily
verified using the differential of π. To prove the last statement, we need a formula
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for the symplectic form on G × g∗ ≈ LT ∗G. Pick (g, α) ∈ G × g∗, and identify
TgG ≈ g using left translations. Then the symplectic form can be shown to be

(94)
(ωT∗G)(g,α)((A1, B1), (A2, B2))

= 〈β2, A1〉 − 〈β1, A2〉+Ωα(A1, A2).

If we were working with left actions, we would have that the pull-back by F of
this form is the restriction to I of the symplectic form on T ∗X × T ∗X. However,
since we are working with a right action, F ∗Ω = (ω)T∗X×T∗X |I , where Ω is the
two-form on G×g∗ obtained from (94) by changing the sign of the last term on the
right hand side. Thus the last statement follows from general facts of reduction of
Lagrangian submanifolds with respect to co-isotropic submanifolds.

3.3.Restricting the G-trace to a cone.

Assume the action of G onX = P is free, so that P →M is a principal G-bundle.
In the applications to particles in gauge fields, we will make dynamic assumptions
on the Wong flow implying that the clean intersection condition of Theorem 3.8
holds if we replace T ∗P by an open set of the form Φ−1(U), with U ⊂ g∗ an
Ad-invariant conic open set. As we will now see, this is enough to get a hold of
TrGB|Dλ

, for λ in an invariant conic open set U0 with U0 ⊂ U . Recall that an
element µ ∈ g∗ is called regular iff its isotropy subgroup is a maximal torus.

Theorem 3.10. Let U ⊂ g∗ be an invariant, conic open set containing only reg-
ular elements, and let U0 be a smaller invariant conic open set whose closure is
contained in U . Then there is a 0-order, self-adjoint, G-equivariant operator P,
on D′(P ), with the following three properties: (i) P is a pseudodifferential operator
microlocally away from the conormal bundle to the fibers of P → M , (ii) P is mi-
crolocally supported in Φ−1(U), and (iii) for every integral element µ ∈ U0, P|Dµ0

is the identity.

Proof. By standard results, established in Chapter XII, Section 6 of [30], there
exists a bi-invariant P0 ∈ OPS0(G) microlocally supported in U and equal to
the identity on the linear span in C∞(G) of all matrix elements of representations
πµ, µ ∈ U0. If we denote by πP the natural action of G on L2(P ), then P = πP (P0)
is the desired operator.

If we now apply Theorem 3.6 to an operator of the form B ◦ P , we obtain the
following result.

Corollary 3.11. Let Λ ⊂ X̃×X̃ (X̃ = T ∗P \0) be a closed homogeneous canonical
relation satisfying the hypotheses of Corollary 3.6. Let U and U0 be as in Theorem
3.10. Assume furthermore that the clean intersection condition of Theorem 3.8 is

met, with X̃ replaced by Φ−1(U). Then, ∀ b ∈ Im(P×P,Λ′) such that the associated
operator B commutes with G, there exists a central distribution ν ∈ Is(G,ΓU )
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having the same Fourier coefficients as TrGB on every integral µ ∈ U0, namely
TrB|Dµ . Here

(95) ΓU = {(g, γ) : ∃x ∈ Φ−1(U) such that (x · g, x′) ∈ Λ and γ = Ad∗g Φ(x)}.

Of course, ν = TrG(B ◦ P).
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4. Fourier analysis of the G-trace

4.1. Generalities.

Let ν ∈ D′(G) be a central Lagrangian distribution. Keeping the notation of
Section 3, let {πλ} be the set of irreducible unitary representations of G and {χλ}
the corresponding set of characters. Here we assume that we have chosen a maximal
torus T ⊂ G, and an ordering of the roots, and λ belongs to the highest weight
lattice (intersected with a Weyl chamber) in g∗. As any central distribution, ν can
be written in the form

(96) ν =
∑
λ

〈ν, χλ〉χλ.

In this section we discuss how the asymptotic behavior of 〈ν, χλ〉 as |λ| → ∞ is
governed by the microlocal picture of ν. Our primary interest is when ν is the
G-trace of an operator commuting with G. We can often analyze the behavior of
its Fourier coefficients in the interior of the positive Weyl chamber.

We begin by making the following general remarks. Assume ν is a central dis-
tribution in Hs(G) with s > d/2, d = dimG. Then ν ∈ C(G); let ν# denote the
restriction to T. By the Weyl integration formula,

(97) 〈ν, χλ〉 = |W |−1〈ν#, |D|2χλ〉T.

Here D is the Weyl denominator,

(98) D(g) =
∑
w∈W

(detw)ew(δ)(g),

where eλ : T → S1 is the character of T with differential 2πλ, W is the Weyl group,
and δ is half the sum of the positive roots. If we introduce now in (97) the Weyl
character formula,

(99) ∀ g ∈ T, χλ(g) = D(g)−1
∑
w∈W

(detw)ew(λ+δ)(g),

we get

(100) 〈ν, χλ〉 = |W |−1
〈
D · ν#,

∑
w∈W

(detw)ew(λ+δ)(θ)
〉
T
.

Introducing the definition of D, this becomes

(101) |W |−1
∑

w,w′∈W

(detww′)µ̂(w(λ+ δ)− w′(δ)),
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where µ̂ denotes the Fourier transform of µ = ν#. In many cases, the asymptotic
behavior of µ̂(w(λ + δ) − w′(δ)) as |λ| → ∞ can be studied via the method of
stationary phase. One expects that if ν is a Lagrangian distribution, this behavior
is governed by the symbol of ν.

The restriction that ν be represented by a continuous function can be lifted as
follows. Let ∆ denote the Laplace operator on G associated to a bi-invariant metric
with total volume one. Then any Ad-invariant distribution ν has the property that

(102) πλ((−∆+ |δ|2)s/2ν) = |λ+ δ|sπλ(ν),

for all s ∈ R. If ν ∈ Hσ(G), set ν1 = (|δ|2 −∆)s/2ν choosing s < σ − d/2. Then
ν1 ∈ C(G), and we can apply the analysis of the previous paragraph. Since, by
(102)

(103) 〈ν, χλ〉 = |λ+ δ|−s〈ν1, χλ〉,

asymptotic information on the Fourier coefficients of ν1 translates into information
on the Fourier coefficients of ν.

4.2. Fourier analysis of central conormal distributions.

To obtain uniform information on the Fourier coefficients of ν, it is natural to
try to restrict ν to the maximal torus T. Now the restriction operator,

(104) ρ : C∞
0 (G) −→ C∞

0 (T)

is not a regular Fourier integral operator because its Schwartz kernel is a Lagrangian
distribution with respect to

(105) C = {(x, ξ0;x, ξ) : x ∈ T, ξ0 = ξ|TxT},

and C ⊂ T ∗T× T ∗G contains covectors of the form (x, 0;x, ξ) with ξ 6= 0. Thus it
is the conormal bundle of T that contains the “bad” directions that prevent ρ from
having an extension to D′(G). On the other hand, if Γ ⊂ T ∗G \ 0 is a closed conic
Lagrangian satisfying

(106) Γ ∩N∗T = ∅,

then ρ has a continuous extension to Im(G; Γ), and, in fact, provided the standard

clean intersection condition is met, it maps this class into some Im
′
(T; C ◦ Γ).

There are simple cases where condition (106) is violated; for example take Γ the
conormal space to the identity element! This is a very important case for us, as

TrG f(Q) has a big singularity at e whenever f̂(0) 6= 0. In this section we show
how to get around this problem. Out main tools will be the formulas (100)–(101),
supplemented by (102)–(103). More generally, in this section we take ν to be a
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central conormal distribution on G, with wave front set in the conormal bundle to
a smooth Ad-invariant submanifold X ⊂ G. We will assume that X intersects T
cleanly. Recall that this means that (a) the intersection Z = T ∩X is a manifold,
and that (b) ∀x ∈ Z, TxZ = TxT ∩ TxX. The excess of the intersection is defined
to be the non-negative integer

(107) e = dimG+ dimZ − [dimT+ dimX],

so that a clean intersection is transverse iff its excess is zero.

Proposition 4.1. Assue X intersects T cleanly, with excess e, and let r = dimT, d =
dimG. Let k denote the codimension of Z in T. Then, provided

(108) m < −d/4 + (k − e)/2,

the restriction operator ρ has a continuous extension to

(109) ρ : Im(G;N∗X) −→ Im
′
(T;N∗Z),

where

(110) m′ = m+ (d− r)/4 + e/2.

Proof. This follows from the characterization of conormal distributions with classi-
cal symbols in terms of their asymptotic behavior as the singular set is approached.
The condition (108) implies the restriction to T is integrable.

We now show how Proposition 4.1 together with (100)–(103) lead to an explicit
analysis of the case X = {e}, in effect giving an alternative derivation of the result
from [30] which led to the deduction of (15) in the introduction from (13)–(14).

Proposition 4.2. If ν ∈ Iµ+d/4(G;T ∗
e \ 0) is central, then 〈ν, χλ〉 has the form

(111) 〈ν, χλ〉 = dλq(λ+ δ),

with a Weyl-invariant q ∈ Sµ(t∗).

Proof. Using (102)–(103), we can assume without loss of generality that µ+d−r <
0, so Proposition 4.1 implies the restriction ν# of ν to T exists and

(112) ν# ∈ Iµ+r/4+d−r(T, T ∗
e T \ 0).

Now (100) implies

(113)
〈ν, χλ〉 = |W |−1

∑
w∈W

(detw)σ̂(w(λ+ δ))

= r(λ+ δ),
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where

(114) σ = D · ν# ∈ Iµ+r/4+(d−r)/2.

The extra smoothness of σ over ν# is due to the fact that D vanishes to order
(d− r)/2 at e, by the formula

(115) D(g) = eδ(g)
∏

α∈R+

(1− e−α(g)), g ∈ T,

where R+ denotes the set of positive roots of g. It follows that

(116) σ̂ ∈ Sµ+(d−r)/2(t∗).

Furthermore, we have

(117) r(w(λ+ δ)) = (detw)r(λ+ δ),

a property in common with the dimension formula

(118) dλ =
∏

α∈R+

〈λ+ δ, α〉
〈δ, α〉

.

In particular, r(λ+ δ) = 0 for λ+ δ in the walls of a Weyl chamber, so the quotient
r(λ+ δ)/dλ = q(λ+ δ) is smooth, hence a symbol, of order µ. This proves (111).

The case X = {e} is a special case of the situation where X is a single conjugacy
class. We say a little more about this here. Thus pick g0 ∈ T, and let X = {gg0g−1 :
g ∈ G} be the conjugacy class of g0. We are interested in restricting distributins on
G conormal to X to the maximal torus T, and so we must examine the intersection
X ∩ T. We will need several facts about roots of compact Lie groups, that we now
recall. Let R denote the set of real roots, and R+ the set of positive roots, and for
each α ∈ R, let eα be the character of T satisfying

(119) ∀H ∈ t, eα(exp(H)) = e2πiα(H).

Furthermore, for each α ∈ R+, let Mα ⊂ g denote the real α-isotypical summand
of the adjoint action of T on g. Then the Lie algebra of the centralizer Z(g0) of g0
is known to equal

(120) LZ(g0) = t⊕
⊕

α∈Rg0

Mα,

where

(121) Rg0 = {α ∈ R+ : g0 ∈ ker eα},

see [3, Proposition V.2.3]. We summarize what we need in the following:
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Proposition 4.3. If X ⊂ G is a conjugacy class, containing g0 ∈ T,

(122) X ∩ T =
⋃

w∈W

w(g0),

where W is the Weyl group. Moreover, the intersection is always clean, with excess
equal to

(123) ε(g0) = 2 ·#Rg0 .

Proof. The first statement is well known; see [3, Lemma IV.2.5]. We now verify
the clean intersection condition. After left translation to the identity by g−1

0 , what
we must show is that

(124) t ∩ {Adg−1
0

(A)−A : A ∈ g} = 0.

Let V = Adg−1
0

(A)−A. Assume V ∈ t, and let H ∈ t. Then

(125)

0 = [H,V ] = [H,Adg−1
0
A]− [H,A]

= Adg−1
0

[Adg0 H,A]− [H,A]

= Adg−1
0

[H,A]− [H,A].

Now B ∈ g is such that Adg−1
0

(B) = B iff B is in the Lie algebra of Z(g0), the

centralizer of g0. It follows that

(126) ∀H ∈ t, [H,A] ∈ t⊕
⊕

α∈Rg0

Mα,

but since the Mα are the isotypical summands of the AdT action on g, this implies
that A itself is in the right side of (126). By the previous remark, this means that
Adg−1

0
A = A, which implies V = 0, and cleanness follows. Finally, (123) follows

from (120) and the fact that for each α the dimension of Mα is 2.

In terms of the Weyl denominator, one has:

Corollary 4.4. The excess of the intersection (122) equals ε(g0) = 2j, where j is
the order of vanishing of D at g0 (normalized so that j = 0 if D(g0) 6= 0).

Proof. This follows from the denominator formula (115), together with (123).

If X is a conjugacy class, and ν ∈ Im(G;N∗X), the formula (113) for 〈ν, χλ〉
continues to hold, where σ = D ·ν# is a sum of conormal distributions associated to
an orbit of the Weyl group. Thus σ̂. is a sum of terms, each of which is a product
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of a symbol and an oscillatory factor. This is illustrated by the following simple
example. Take ν = νX homogeneous measure on X:

(127) 〈νX , f〉 =
∫
G

f(g−1g0g) dg.

In this case,

(128) 〈νX , χλ〉 = χλ(g0)

is a sum of oscillatory terms by Weyl’s formula (99).
The case N∗X where X is a conjugacy class other than {e} actually does not

arise so frequently as the conic Lagrangian of TrG f(Q), as we will see in Section 5.2,
Proposition 5.7. In fact, for g1 ∈ G to belong to the singular support of TrG f(Q),
we need g1 to take the initial point x to the final point in an integral curve of Hq in

T ∗P \0 = X̃ projecting over a closed orbit of the Wong flow, as explained in Section
5. The corresponding point in Γ = WF TrG f(Q) is (g1,Φ(x)). We will see that
inverse images under Φ of coadjoint orbits in g∗ lie over symplectic leaves of the
Wong bundle. Under the hypotheses of Proposition 5.7, it will follow that the conic
Lagrangian manifold Γ in T ∗G\0 contains, as an open subset, the conormal bundle
to a hypersurface Y in G, swept out by an (r − 1)-parameter family of conjugacy
classes, of maximal dimension.

There remains the question of what the entire connected component(s) of Γ
containing N∗Y look like. One possibility is that it continues to be the conormal
bundle of a smooth, Ad-invariant hypersurface in G, which happens if the closure
Y is smooth. That Y may or may not be smooth is illustrated by cases of products
P = G ×M , with G = SU(3), for example. See Section 6.3 for some examples
illustrating what TrG f(Q) and its restriction to T might look like, and how their
Fourier coefficients might behave.
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5. The G-trace of f(Q)

5.1. Clean intersection criteria

From now on we take X = P a principal fiber bundle, and look more carefully at
the sori of canonical relations Λ that arise when taking functions of operators of real
principal type. Let Q be a first-order, self-adjoint pseudodifferential operator on
X of real principal type commuting with G, and let q denote its principal symbol.

Thus q : X̃ → R is a smooth function which (i) is G-invariant, (ii) is positive-
homogeneous of degree 1, (iii) zero is a regular value of q, and (iv) the Hamilton
vector field of q, Hq, is not radial at any point of Σ = q−1(0). We will also find it
necessary to assume the following:

(H1) Nowhere on Σ is the Hamilton vector field Hq colinear with a vector of

the form A#
x , A ∈ g∗, and

(H2) The intersection Σ ∩ Φ−1(0) is empty.

We note that hypotheses (H1) and (H2) are satisfied when Q is of the form (18),
with L and A given by (5)–(6). The situation for (H2) is simple: Φ−1(0) is the
normal bundle H∗P to the fibers of P → M , and the requirement that this be
disjoint from Char Q clearly holds in the case (18).

To establish (H1), we can replace q by p(x, ξ), having properties (47)–(49) and

S, as set out in Section 2.3. Note that A#
x = HΨ, where, for (x = (x, ξ) ∈ T ∗P \ 0,

Ψ(x, ξ) = 〈Φ(x, ξ), A〉 = 〈A#
x , ξ〉, as in (72). We want to show that dp and dΨ are

not colinear at any (x, ξ) in Char p. Now, with respect to the splitting ξ = (ξ′, ξ′′)
arising from the connection on P , Ψ(x, ξ) is a linear form in ξ′′ alone. Thus, at a
point of colinearity, we must have ξ′ = 0, or equivalently (x, ξ) ∈ Char a. If also
(x, ξ) ∈ Char p, then b(x) = 0, so dξ(p) = 0 at such a point. But dξΨ is nowhere
zero, so colinearity is impossible, granted that p has simple characteristics.

For an open J ⊂ R, consider

(129) ΛJ = (x, y′) ∈ Σ× Σ : ∃t ∈ J such that y = φt(x)},

where {φt} is the Hamilton flow of q. Although in general this is only an immersed
Lagrangian, it is embedded if J is small enough, and the arguments of Section 2.2
shoe that it is enough to consider that case. Note that, by (H2), Corollary 3.6
applies to this canonical relation, and

(130) I ∩ ΛJ = {(x, y′) ∈ Σ× Σ : ∃t ∈ J, g ∈ G such that y = xbar · g = φ(x)}.

This shows that the right setting to understand this problem is in terms of the
Wong bundle

(131) W = T ∗P/G.



30

This is a smooth manifold, which serves as the phase space for the Wong equations
of motion for a particle in a background gauge field, [23, 29, 33, 34]. Since φt

commutes with the G-action, there is a smooth flow ψt on W such that the natural
projection π : T ∗P → W intertwines φt and ψt. Then

(132) (x, y′) ∈ I ∩ Λf ⇔ ∃ t ∈ J such that π(y) = ψt(π(x)).

In other words, it is the periodic trajectories of ψt with periods in J that produce the

singularities of the G-trace of f(Q), when f is a smooth function with supp f̂ ⊂ J .
Our goal in this section is to interpret the clean intersection condition and study
the singularities of TrG f(Q) purely in terms of the geometry of {ψt}.

We begin by recalling a few facts about the Wong bundle W. First of all, W
is a Poisson manifold, since it is the quotient of a symplectic manifold by a free
Hamiltonian action. The symplectic leaves of W are known to be submanifolds of
the form

(133) Φ−1(O)/G ⊂ W ,

where O ⊂ g∗ is a co-adjoint orbit of G. Moreover, if q̃ denotes the function on W
whose pull-back to X̃ is equal to q, then {ψt} is the Hamiltonian flow of q̃. We are
interested in the flow {ψt} restricted to the image of the characteristic set Σ in W,
that is, to

(134) Y = Σ/G = q̃−1(0).

Note that the multiplicative group R+ acts everywhere, and commutes with the
flows. It is convenient to break this homogeneity in the following way. Let a be
the function on T ∗P which is the square of the norm of the vertical component of
a covector. Thus a is the pull-back via Φ of the square of the Ad-invariant norm
on g∗. It follows that {q, a} = 0, by the G-invariance of q. Let ã be the function
on W defined by a, and let Y1 = Y ∩ ã−1(1). By (H1), this is a submanifold of W,
which is the union of symplectic leaves, and is invariant under the flow ψt.

Our immediate goal is to prove the following proposition.

Proposition 5.1. The clean intersection condition is satisfied by ΛJ iff the fol-
lowing is a clean-intersection diagram,

(135)

P1 −−−−→ Y1 × Jy y
Y1

∆−−−−→ W ×W ,

where the arrow on the right is (y, t) 7→ (y, ψt(y)
′), ∆ is the diagonal embedding,

and

(136) P1 = {(y, T ) ∈ Y1 × J : y = ψT (y)}.
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Proof. By Proposition 3.9, the condition on Λf is that the diagrm

(137)

F0 −−−−→ Σ× J

φ

y yf

I −−−−→ X̃ × X̃

be a clean-intersection diagram, where f(x, t) = (φt ∗ x), x) parametrizes Λf ,

(138) F0 = {(x, t) ∈ Σ× J : ∃ g ∈ G such that φt(x) = x · g},

and φ(x, t) = (x, φt(x)
′). First we indicate how the cleanness of this diagram is

equivalent to the cleanness of the homogeneous version of (135), that is, of

(139)

P −−−−→ Y × Jy y
Y −−−−→ W ×W ,

where P is defined by (136), with Y1 replaced by Y. Now diagram (137) fibers
over diagram (139). More precisely, this is a particular instance of the following
situation: one has a fibration Π : X → Y and two submanifolds A,B ⊂ Y . The
assertion is that A and B intersect cleanly iff Π−1(A) and Π−1(B) do. We leave the
reader to verify that this is so. Thus the clean intersection condition is equivalent
to the cleanness of (139). A similar argument shows that this is equivalent to the
cleanness of (135).

5.2. Some geometry of the Wong flow.

Now we look in more detail at the geometry of the closed trajectories of {ψt}.
We first look at the period T = 0.

Lemma 5.2. Zero is an isolated point in the period spectrum of the restriction of
{ψt} to Y, and ΛJ satisfies the clean intersection condition if J is a small enough
neighborhood of zero.

Proof. The condition of non-radiality of Ξq together with (H2), imply that the flow
on Y1 does not have any fixed points, and so by compactness its period spectrum
is bounded away from zero. Cleanness is left to the reader to check; it follows from
the assumption (H1).

We now turn to the geometry of the nontrivial periodic orbits of the Wong flow.
As we will see, the main difference with the generis Hamilton flow on a symplectic
manifold is that non-degenerate trajectories generically arise in families. We will
use the following notation: for every λ ∈ t∗ ⊂ g∗ (where the last inclusion is defined
by the bi-invariant metric on G), Wλ ⊂ W is the symplectic leaf

(140) Wλ = Φ−1(Oλ)/G,
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where Oλ is the co-adjoint orbit of G through λ. One can easily check that Wλ can
be naturally identified with

(141) Wλ ≈ Φ−1(λ)/Gλ,

where Gλ is the isotropy subgroup of λ.

To study the geometry of periodic trajectories of the Wong flow, we need to
study how the symplectic leaves (of maximal dimension) of W are sewn together.
Let U ⊂ t∗ ⊂ f∗ be the interor of the positive Weyl chamber, and let

(142) Y = Φ−1(U).

Note that the isotropy subgroup of every µ ∈ U is the maximal torus, T, and thus
Y is invariant under T.

Lemma 5.3. Y is a symplectic submanifold of T ∗P . Moreover, the maximal torus
T acts on Y in a Hamiltonian fashion, with moment map ΦT making the following
diagram commutative:

(143)

Y
ΦT−−−−→ t∗y y

T ∗P
Φ−−−−→ g∗.

Proof. The first statement is an easy consequence of Theorem 26.7 of [10]; the
second follows trivially.

It follows from the previous considerations that the symplectic leaves Wµ with
µ ∈ U are (as symplectic manifolds!) the reduced manifolds of Y under the action
of T at points µ ∈ U :

(144) Wµ ≈ Φ−1
T (µ)/T.

(One readily checks that the symplectic forms agree.) This fact will help us get
a symplectic normal form for a neighborhood of Wλ. We learned the following
argument from Eugene Lerman [21], where he uses it to get a “one-line proof” of
the Duistermaat-Heckman formula. Pick λ ∈ V , and let A be any connection on
the principal T bundle

(145) Φ−1(λ) → Wλ.

For every µ ∈ U , let Xµ = Φ−1
T (µ).
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Proposition 5.4. There exists an open conic neighborhood of λ, V ⊂ U , and a
T-equivariant diffeomorphism φ, making the following diagram commutative:

(146)

Xλ × V
φ−−−−→ Φ−1

T (V )y yΦT

V −−−−→ t∗.

Moreover, the pull-back under φ of the symplectic form is equal to

(147) p∗1ωλ + d〈π2, A〉,

where p1 is the composition of the projections Xλ × V → Xλ → Wλ, ωλ is the
symplectic form on Wλ, A is the t-valued connection form, and π2 the projection
onto the second factor, Xλ × V → V ⊂ t∗.

Proof. One can show directly that (147) is a symplectic form on Xλ × V , and
that Xλ × {λ} is a coisotropic submanifold. In fact, the restriction of (147) to
Xλ × {λ} ≈ Xλ is the same as the restriction of the symplectic form on Y to Xλ.
Now invoke the equivariant version of the coisotropic embedding theorem [8] (the
uniqueness part) to conclude the existence of φ with the desired properties.

The following is an immediate consequence of this result. Let

(148) WV =
⋃
µ∈V

Wµ.

It is clear that WV is an open subset of W.

Corollary 5.5. The trivialization (146) induces a diffeomorphism

(149) WV ≈ Wλ × V,

mapping Wµ onto Wλ×{µ}. Moreover, this is an isomorphism of Poisson manifolds
is the Poisson structure on the right side is defined by the family of 2-forms {ωµ :
µ ∈ V } on Wλ given by

(150) ωµ = ωλ + 〈λ− µ, FA〉,

where FA is the curvature of the connection A.

Our main application of these results is the following. Let γ ⊂ Y1 be a periodic
trajectory of our flow. It is entirely contained in some symplectic leaf; thus there
is a unique λ ∈ t∗ such that |λ| = 1 and

(151) γ ⊂ Y1 ∩Wλ.
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Note that Y1 ∩ Wλ = Wλ ∩ q̃−1(0). We will assume that γ is non-degenerate, in
the following sense:

Definition 5.6. γ will be said to be non-degenerate iff the following two conditions
are satisfied:

(N.1) As a trajectory of q on the symplectic manifold Wλ, γ is non-degenerate,
and

(N.2) λ belongs to the interior of a Weyl chamber.

As we will now show, these assumptions imply that γ belongs to a family of
closed trajectories. We will use the model for the symplectic leaves provided by
Corollary 5.5.

Proposition 5.7. Let γ be a non-degenerate, periodic trajectory of q on the Pois-
son manifold W, lying in the symplectic leaf Wλ and with energy q = 0. Then there
exists a conic open neighborhood of λ in the interior of a Weyl chamber, V , and
smooth maps F : V → WV and T : V → R, such that ∀µ ∈ V ,

(152) ψT (µ)(F (µ)) = F (µ),

and F (µ) has the property

(153) F (µ) ∈ Wµ ∩ {q = 0}.

Proof. Choose a connection A on the principal T bundle Xλ → Wλ, and let V be
as in Corollary 5.5. We can identify the flow of q on Wµ, µ ∈ V with the flow of a
Hamiltonian qµ on Wλ with the symplectic structure (150). The Hamiltonian qµ is
q pulled back by the diffeomorphism identifying the symplectic leaves Wµ and Wλ,
and depends smoothly on µ. With this notation, qλ = q. Let Z = Wλ ∩ {q = 0}.
By the assumption (H2) and the compactness of P , Z itself is compact. Let U be
a tubular neighborhood of Z in Wλ, with projection π : U → Z. By shrinking V if
necessary, we may assume without loss of generality that ∀µ ∈ V ,

(154) Zµ := Wλ ∩ {qµ = 0} ⊂ U .

Moreover, by the compactness of Z we may assume that the inclusion (154) is
a section of π : U → Z. By this we mean that the restriction of π to Zµ is a
diffeomorphism. For each µ ∈ V , let Ξµ be the vector field on Z obtained by
the following procedure: take the Hamilton vector field of qµ (with respect to the
symplectic form (150)) on the energy surface {qµ = 0}, and project it via π : U → Z
to a vector field Ξµ on Z. Obviously, the flow of Ξµ is smoothly conjugate to the
Hamilton flow of q on Wµ ∩ {q = 0}, and the vector fields Ξµ depend smoothly on
µ with Ξλ equal to the Hamilton vector field of q restricted to Z.

The remainder of the proof is standard. Pick a base point w ∈ γ, and a cross-
section C ⊂ Z of the flow of q on Z containing γ. Condition (N.1) on γ is precisely
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that w is a non-degenerate fixed point of the return map Rγ : C → C of the flow
of q. For µ sufficiently close to λ, C is still a cross-section for the flow of Ξµ,
and the associated return maps Rµ depend smoothly on µ. Thus by Lefschetz’
theorem there is a smooth map f : V → C such that f(λ) = w and ∀µ ∈ V ,
Rµ(f(µ)) = f(µ). But this means precisely that the trajectory of Ξµ through f(µ)
is periodic. Since the entire system is homogeneous with respect to the action of
R+, one can take V to be conic.

Remarks. We will make use later of the following remarks:
(R.1) By (153), under the isomorphism (149) the mapping F is of the form

(155) F (µ) = (F0(µ), µ),

for some smooth map F0 : V → Wλ.
(R.2) If we differentiate the relation (152), we obtain that for all tangent

vectors δu ∈ TµV ≈ t∗,

(156) (I − d(ψµ
T (µ)))d(F0)(δu) = dTµ(δu)Ξ

µ,

where ψµ is the flow of qµ on (Wλ, ωλ) and Ξµ is its infinitesimal generator.

5.3. The singularities of TrG f(Q).

The previous considerations on the geometry of the Wong flow have the following
implications on the singularities of TrG f(Q). We keep the notation of Section 5.1,
in particular the manifold ΛJ is defined by (129), and the Fourier transform of f
is assumed to be included in the interval J ⊂ R.

First we look at the singularity at the identity. The following is an easy conse-
quence of Lemma 5.2:

Theorem 5.8. If the only period in J is zero,

TrG f(Q) ∈ In−3d/4−1(G;T ∗
eG \ 0),

where n = dimX and d = dimG.

Proof. We just will indicate the calculation of the order. The excess of the original
diagram (86) is e = 2n−1−d, because the manifold F# is in this case diffeomorphic
to Σ. Since the order ofK is −d/4 and that of f(Q) is −1/2, the order of the G-trace
is −d/4− 1/2 + n− (d+ 1)/2.

Next we consider the singularity created by non-degenerate periodic trajectories.
Consider a non-degenerate periodic trajectory γ of the Wong flow, in the sense of
Definition 5.6. Let V, F, T be as in Proposition 5.7. We will now show that the clean
intersection condition is satisfied, assuming that all the periodic trajectories of the
Wong flow on Y with periods in J are among the onew produced by Proposition
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5.7. Since we are working with the non-homogeneous version of Y, etc., let V1 =
{µ ∈ V : |µ| = 1}. Denote by U the open subset of g∗ consisting of all the vectors
whose Ad∗G orbit intersects V . Define

(157) IU = {(x · g, x′) : x ∈ Φ−1(U), g ∈ G}

and

(158) ΛU
J = {(x, y′) ∈ ΛJ : y ∈ Φ−1(U)}.

Theorem 5.9. Let γ be a non-degenerate periodic trajectory of the Wong flow,
and let V, F, T be given by Proposition 5.7. Assume furthermore that

(159) P1 ∩ [WV × R] = {(ψt(F (µ)), T (µ)) : µ ∈ V1, t ∈ [0, T (µ)]}.

Pick V0 ⊂ g∗, open, conic, and invariant with closure contained in V . Then there
is a central Lagrangian distribution

ν ∈ I−1/4−d/4+r/2(G,ΓU ),

having the same Fourier coefficients as TrG f(Q) at every integral element µ ∈ V0.
Here

(160)
ΓU = {(g, µ) : ∃x ∈ Φ−1(U), t ∈ J such that x = φt(x) · g

and µ = Ad∗g Φ(x)}.

Proof. We first prove that the assumptions imply that IU and ΛU
J intersect cleanly.

The condition that (135) be a clean-intersection diagram means that (a) P1 should
be a submanifold of Y1 × J , and (b) at every (y, T ) ∈ P1, the tangent space at P
should equal the set of all (v, τ) ∈ TyY1 × R such that

(161) v = τΞy + f(ψT )y(v),

where Ξ is the infinitesimal generator of ψ. Regarding (a), note that F is an
embedding, by Remark (R.1). Thus (159) shows that P1 is diffeomorphic to the
graph of a map, and hence it is a manifold. Let us now consider its tangent space
at a point parametrized by µ and t. It consists of all vectors of the form

(162) (σΞ + f(ψt)dF (δu), dT (δµ))

with σ ∈ R and δµ ∈ t∗. What we must check is that every vector (v, τ) satisfying
(161) is of the form (162). First localize: let us work on Y ∩ WV ⊂ Wλ × V .
Decompose v = (v1, v2), where v1 is tangent to Wλ and v2 ∈ TµV = t∗. As we will
show, we can take δµ = v2. What we must show now is that

(163) v1 − d(ψµ
t )d(F0)µ(v2)
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is a multiple of Ξµ. There are two steps in the proof of this fact.

Claim 1. v1−d(F0)(v2) is tangent to q
−1
µ (0). To prove this just compute d(qµ)

applied to this vector, using the identity

(164) 0 = d(qµ(v2)) + dµ(q)(v2),

which follows by differentiating the identity qµ(F0(µ)) = 0.

Claim 2. The result ζ of applying [I−d(ψµ
T )] to (163) is a multiple of Ξµ. Indeed,

by (161),

(165) ζ = τΞµ − (I − d(ψµ
T ))dF0(v2),

which, by remark (R.2), is a multiple of Ξµ.

To finish the proof, note that Claim 2 and the non-degeneracy of the trajectory
corresponding to µ imply that (163) is a multiple of Ξµ.

The considerations made in the previous proof have the following consequence,
which is an answer to the question of how the period function T changes:

Corollary 5.10. In the setting of the previous propositions, assume that for given
µ ∈ V and δµ ∈ t∗, dµ(q)(δu) 6= 0. Then

(166) dTµ(δµ) =
ωµ(v, d(ψ

µ
T (µ))(v))

dµ(q)(δµ)
.
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6. Applications to particles in Gauge fields

6.1. Asymptotic expansions.

Here we will state the main results on spectral asymptotics which follow from
the machinery we have developed. As stated in the introduction, our goal is to
analyze the behavior of

(167)
τ(λ) = Tr f(ℏ−1H

−1/2
λ (Hλ − c))

= 〈TrG f(Q), χλ〉,

where

(168) Q = (−L)−1/2(−L− cA)

and f is a Schwartz function on the line such that f̂ ∈ C∞
0 (R). Note that, by the

results from Section 2.3, this is an operator of real principal type, as long as c is a
regular value of V ∈ C∞(M).

Theorem 6.1. Suppose f̂ is supported on an interval (−T, T ) which does not con-
tain any nontrivial periods of the Wong flow on Y. Then

(169) τ(λ) = dλa(λ), a(λ) ∈ Sn−d−1(t∗).

Here n (resp. d) is the dimension of P (resp. G). Furthermore, the leading term
in the classical expansion of a(λ) is

(170) a0(λ) = f̂(0)Vol[Wλ ∩ q̃−1(0)],

where Wλ is the symplectic leaf of the Wong bundle corresponding to λ, and Vol
stands for Liouville measure.

Next we analyze the contribution to the asymptotic expansion of τ(λ) arising
from preiodic trajectories. Let γ be a non-degenerate periodic trajectory of the

Wong flow lying in the symplectic leaf Wλ0
, and assume that the support of f̂ is

such that the singularities of TrG f(Q) in an invariant open cone containing λ0 are
those arising from the periodic trajectories branching off γ. Precisely, assume that
condition (159) holds. Then Theorem 5.9 ensures that TrG f(Q) is a Lagrangian
distribution on G microlocally in a smaller cone. To obtain from this asymptotic
information on τ(λ), we will make a generic assumption ensuring that we can restrict
the distribution of Theorem 5.9 to T:

Definition 6.2. Let T be the period of γ. We will say that γ has regular holonomy
iff given x ∈ T ∗P above γ, every g ∈ G such that φT (x) ·x = x is a regular element,
meaning that g is not in more than one maximal torus.
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Theorem 6.3. Assume the condition (159) of Theorem 5.9, and assume further-
more that γ has regular holonomy. Then, after perhaps shrinking V to a smaller
open cone containing λ0, for every V0 ⊂ t∗ an open cone with closure contained in
V there exists a Lagrangian distribution ν on T having the same Fourier coefficients
on V0 as TrG f(Q). Indeed,

(171) ν ∈ I(r−1)/4(T; Θ),

where r = dimT and

(172)
Θ = {(g, µ) ∈ T× t∗ : ∃x ∈ Ψ−1(V ) and t ∈ J

such that x = φt(x) and µ = Φ(x)|t∗}.

Proof. We will first check that

(173) ΓU ∩N∗T = ∅.

Here ΓU is as in (160). Assume (g, µ) ∈ ΓU , where g ∈ T. Thus there is a t ∈ J
and an x ∈ Φ−1(U) such that x = φt(x · g). If we recall that U is the saturation of
V by Ad∗ orbits, we see that there exists h ∈ G such that

(174) α := Ad∗h Φ(x) = Φ(x · h)

is in V . Thus x · h ∈ Y , where Y is the symplectic section of (142). Now x · h =
φt(x · gh), and, since Y is invariant under ϕ, it follows that x · gh ∈ Y . Hence

(175) β := Φ(x · gh) = Ad∗h ◦Ad∗g Φ(x)

is in the interior of the positive Weyl chamber. By (174), we have

(176)
β = Ad∗h Ad∗g Ad

∗
h−1(α)

= Ad∗h−1gh(α).

By Lemma IV.2.5 of [3], this implies that α and β are in the same orbit of the
Weyl group, but, sice they both lie in the interior of the positive Weyl chamber,
necessarily α = β. By (176), h−1gh ∈ T. Now since the set of regular points is
open, by shrinking V if necessary we can assume that g is a regular element. Hence
h must be in the normalizer of T (for otherwise g would lie in the two distinct
maximal tori T and hTh−1). Hence Ad∗g Φ(x) = Ad∗h−1(β) is in t∗, and is nonzero.
This proves (173).

We would have to prove next that the intersection of ΓU with the canonical
relation underlying the restriction operator from G to Y is clean. This would finish
the proof of the theorem, thanks to Theorem 5.9. However, we can simply note
that what we have proved is that we can replace G by T in Theorem 5.9.
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The leading order term in the asymptotic behavior of the Fourier coefficients of
ν along rays has been determined in [16]; it is the usual term in the trace formula
associated to a periodic trajectory, in this case a trajectory of the Wong flow.
Theorem 6.2 shows that in non-degenerate cases this estimate is uniform in cones.

6.2. Higgs fields.

As a generalization of the family of operators given by (2), we also analyze
contributions to a gauge field Hamiltonian due to a “Higgs field.” Thus we consider

(177) Hλ = ℏ2H0
λ + iℏπλ(X) + V,

where X is a section of gAd = P ×Ad g. In this case X gives rise to a vector field
Y on P , tangent to the fibers of P →M , such that

(178) Y
∣∣
Dλ

≈ dλ copies of πλ(X).

Thus, in analogy with (8), we can say that

(179) −L+ iA1/2Y
∣∣
Dλ

≈ dλ copies of ℏ−2Hλ.

We could therefore produce an analogue of (168) with −L replaced by −L+iA1/2Y ,
but a technical problem arises in the analysis of this operator, because A1/2 is not a
pseudodifferential operator on P ; its “symbol” is singular on the subset of T ∗P \ 0
conormal to the fibers of P →M . This technical problem can be overcome by the
device of adding one more variable.

Thus we work on P × S1, and we let ∂θ = ∂/∂θ on C∞(S1). We will make a
partial replacement of A1/2 by Dθ = (1/i)∂θ. With α denoting a small parameter
and K a positive constant, set

(180) L = ∆+ (Ṽ − 1)∆P
G − |δ|2∂θY +Kα2∂2θ ,

where

(181) Ṽ = V − 1,

and, similarly as before, we assume without loss of generality that V > K + 1, so

Ṽ > 1. Now we set

(182) Dλ,k = {u ∈ C∞(P × S1) : G acts like πλ and Dθ = k}.

Then

(183) −L
∣∣
Dλ,k

≈ dλ copies of ℏ−2Hλ,
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provided

(184) ℏ = |λ+ δ|−1 = (αk)−1.

The differential operator L is strongly elliptic on P×S1, and −L is positive definite,
provided K is taken to be sufficiently large. The operators L, A, and Dθ all
commute. Now, in place of (179), we can use the fact that

(185) (−L)−1/2(−L− cA)
∣∣
Dλ,k

≈ dλ copies of ℏ−1H
−1/2
λ (Hλ − c),

granted (184). Thus we are led to analyze

(186) TrG×S1 f(Q),

where

(187) Q = (−L)−1/2(−L− cA)

is a first-order, self-adjoint pseudodifferential operator on P × S1 of real principal
type. The analysis of this is done in the same spirit as in the case when there is
not a Higgs field.

6.3. Examples.

We illustrate some of the phenomena dealt with in the analysis of this paper with
a simple family of examples. This family contains cases when the clean-intersection
condition for restriction of TrG f(Q) to T is violated, and suggests further sorts of
analytical problems to tackle in future work.

Consider product bundles

(188) P =M ×G,

with the trivial connection. The corresponding metric on P is a product metric, so

(189) ∆P = ∆M +∆P
G.

We will take V = 1, so that we are in the set-up of the introduction with

(190) L = ∆P , A = −∆P
G + |δ|2.

Hence

(191)
L+ cA = −∆M − (c− 1)∆P

G + c|δ|2

= ∆M − a∆P
G + c|δ|2,
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where we have set a = c− 1. This operator is elliptic if a < 0, degenerate if a = 0,
and of principal type for a > 0. Our object of study is the G-trace of f(Q), where

(192) Q = (−L)−1/2(−L− cA).

As before, this will shed some light on the asymptotic behavior of

(193) Tr f(ℏ−1H
−1/2
λ (Hλ − c)) = d−1

λ Tr f(Q)
∣∣
Dλ

for large |λ|. The left-hand side of (193), a measure of the number of eigenvalues
of Hλ near c, is expressed in terms of a measure of the number of eigenvalues of

−L close to those of cA. Recall that we take f̂ ∈ C∞
0 (R). For c < 1, a < 0 and

Q is elliptic; then f(Q) is a smoothing operator and (193) is rapidly decreasing as
|λ| → ∞. The interesting case is c > 1, so a > 0, and we concentrate on this. By
scaling the metric on G, we may as well suppose that a = 1.

Thus the geometry here is controlled by the null bicharacteristic flow associated
to ∆M −∆P

G. Write (x, ξ) ∈ T ∗M, (g, γ) ∈ T ∗G ≈ G× g∗. Then

(194) Σ = CharQ = {(x, ξ; g, γ) : |ξ|x = |γ|}.

Note that for the WGS-bundle we have the identification T ∗P/G ≈ T ∗M ×g∗, and

(195) Y = Σ/G = {(x, ξ, γ) ∈ T ∗M × g∗ : |ξ|x = |γ|}.

The Hamiltonian flow on T ∗G is of the form

(196) GeoGt (g, γ) = (σγ(t)g, γ)

where σγ(t) is the one parameter group σγ(t) = exp tX, X ∈ g corresponding to
γ ∈ g∗ under the isomorphism provided by the bi-invariant metric on G. Then the
criterion that the Wong flow has a periodic orbit, of period T , is that there exist
(x, ξ; g, γ) ∈ Σ and g1 ∈ G such that

(197) GeoMT (x, ξ) = (x, ξ), GeoG−T (g, γ) · g1 = (g, γ).

The first condition is that M has a periodic geodesic of length T ; the last condition
here is equivalent to

(198) g1 = σγ(−T )−1.

The set of such g1 makes up the singular support of κ = TrG f(Q), provided

T ∈ supp f̂ .
Thus the singular support of κ consists of a union of images Σ(Tj) under exp :

g → G of spheres S(Tj) of radius Tj (centered at 0) in g, where {Tj} is the set of
periods of geodesics on M (assuming this set is discrete). The wave front set of
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the singularity of κ lying over Σ(Tj) is the flow-out of T ∗
eG \ 0 under the time −Tj

geodesic flow. In case exp has nonsingular derivative on S(Tj), this is the conormal
bundle of the smooth manifold Σ(Tj). The set where exp is singular is described
as follows. Identifying TG with G× g by left translations, we have

(199) d exp(X)Y = Ξ(adX)Y, Ξ(a) = (ea − 1)/a.

Thus exp is singular at X ∈ g provided ad X has eigenvalues of the form λ = 2πim,
m a non-zero integer.

We consider some specific groups. First, if G = SU(2), then with an appropriate
normalization of the metric on g, exp : g → G is singular on spheres of radii
Rj = πj, j a positive integer, with image ±I. Thus if one of these numbers Rj is a
period T for the geodesic flow on M , one gets a contribution to TrG f(Q) belonging
to I∗(G,T ∗

gG\0), with g = I or −I. Proposition 4.5 applies if g = I and an obvious
variant applies if g = −I.

Further phenomena arise if we consider U(2), or its double cover G = U(1) ×
SU(2), with Lie algebra g = R ⊕ su(2); take Y = (y,X) ∈ g. We are looking at
expY for Y = (y,X) ∈ S(T ) ⊂ g ≈ R ⊕ su(2). Clearly for |T | < π, expS(T ) is a
smoothly embedded 3-manifold in G. For T = π, a cusp forms in the image, as

X ∈ su(2), |X| = π =⇒ exp(0, X) = (1,−I).

For T slightly larger than π, the image Σ(T ) = expS(T ) has two conic singularities.
Thus, if the geodesic flow on M has a period T > π, one gets a contribution µ to
TrG f(Q) consisting of a Lagrangian distribution associated to N∗Σ(T ) \ 0, defined
in the obvious way over the conic points, so that the fiber over a regular point
consists of two rays, while the fiber over a conic point is a union of two cones.

In such a case, the way the maximal torus T2 sits in U(1)×SU(2), its conormal
bundle does not intersect N∗Σ(T ) \ 0, so the contribution µ has a well defined
restriction µ# ∈ D′(T2). We need not use the construction (102)–(103). The
singular support of µ#, Σ(T )∩T2, is a union γ of two arcs surrounding (−1, 1) ∈ T2.
However, the wave-front set of µ# is generally not just N∗γ \ 0, the union of the
conormal bundles of the two smooth arcs. Rather, the union of two quadrants in
T ∗
pj
T2 lying over the intersection points p1, p2 is also typically contained inWF (µ#).

Thus locally near each pj , µ
# is a distribution associated to two transversally

intersecting Lagrangians, of the sort studied in [22, 11].
These last statements can be verified by considering the following model situa-

tion. For z = (y, x) = (y, x1, x2, x3) ∈ R4, consider

ν = δ(|x| − |y|)/y.

Let ν# be the restriction of ν to the (y, x1)-plane, so

(200) ν# = δ(|x1| − |y|)/y = δ(x1 − y)/y + δ(x1 + y)/y,
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interpreted in the principal value sense. Note that the Fourier transform ν̂#(η, ξ1)
is piecewise constant on R2, constant on each of the 4 quadrants in R2 separated
by η = ±ξ1, and vanishing on two of these quadrants due to cancellation. The
distribution µ# on T2 is a curvy version of this, up to a pseudodifferential operator
factor. Note that in the Weyl integral formula (101) is a factor D(g) which vanishes
at pj . Multiplying the model ν# by a linear factor annihilates the extra wave front
set over y = x1 = 0. In the Fourier transform representation this amounts to
applying a derivative to the piecewise constant ν̂#. If a pseudodifferential operator
is applied to ν#, this “accidental” annihilation effect does not occur in general,
though the order of the “extra” singularity is lowered.

In the curvy situation on T2 ⊂ U(1) × SU(2), the Fourier transform µ̂# may
have a more complicated behavior than that of the model ν̂#. We have no complete
analysis of it to describe here, though effecting such an analysis is an example of an
interesting class of problems arising in the study of Fourier integral distributions
associated to transversally intersecting Lagrangians, on which one can hope to
obtain progress. We merely note here that µ̂# has a classical asymptotic behavior
in all directions in R2 except four, corresponding to the locus of intersection of these
Lagrangians, where the behavior of the Fourier transform will be more subtle.
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A. Notation index

Here we list various special symbols and specify the formulas where they are
defined.

H0
λ (1)

Hλ (2), (23)

TrG (10), (54)

f(Q) (17)

τ(λ) (19), (167)

W (22), (131)

Λf (27)

Φ (72)

Γ (81)

F (84)

I (88)

ΓU (95), (160)

e (107)

Λj (129)

q̃ (134)

Y (134)

Wλ (140)

WV (148)

IU (157)

ΛU
J (158)
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