Downloadable Lecture Notes and Assorted Papers, by Subject Area

  1. Pseudodifferential operators, Fourier integral operators, and microlocal analysis.
  2. Singular integral operators and PDE on rough domains.
  3. Wave propagation.
  4. Spectral theory and harmonic analysis of the Laplacian and other elliptic operators, including Fourier inversion.
  5. Elliptic equations, Dirichlet problems, Green functions, etc.
  6. Diffusion processes and other random processes.
  7. Quantum chaos and other connections with quantum theory.
  8. Seminar talks and various AMS talks.
  9. Math 233H, multivariable calculus.
  10. Linear algebra notes.
  11. Functional Analysis course.
  12. Classical Fourier Analysis, sometimes with a modern perspective.
  13. Complex Analysis course.
  14. Math 521-522, basic undergraduate analysis (advanced calculus).
  15. Math 524, second semester ODE.
  16. Math 653, beginning graduate analysis.
  17. Differential Geometry, Riemann surfaces, CR-manifolds, index theory.
  18. Elementary Geometry notes.
  19. Lie Groups and representation theory.
  20. Special Functions.
  21. Euler and Navier-Stokes equations.
  22. PDE course.
  23. Computer notes: numerics and graphics.
  24. Fractal analysis.