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Introduction

These are notes for a course in differential geometry, for students who had a
course on manifold theory the previous semester, which in turn followed a course
on the elementary differential geometry of curves and surfaces.

Section 1 recalls some basic concepts of elementary geometry, and extends them
from surfaces in R3 to hypersurfaces in Rn, and then to manifolds with Riemannian
metrics, defining arc length and deriving the ODE for a geodesic. The ODE in
general has a somewhat messy form; a more elegant form will be produced in §11,
following some material on vector fields and related topics in §§2–10. These sections
also contain a review of material from the previous course on manifold theory, such
as differential forms and deRham cohomology.

The material in §§11–16, on geodesics, covariant derivatives, and curvature, is
the heart of the course. We take the intrinsic definitions of these objects as fun-
damental, though the very important relations between curvature and the second
fundamental form are studied in §16, in the general context of one Riemannian
manifold imbedded in another (not necessarily Euclidean space).

In §§17–20 we cover the famous Gauss-Bonnet Theorem, and its higher dimen-
sional extension, which involves a study of characteristic classes, certain deRham
cohomology classes derived from curvature. An essential tool is the Chern-Weil
theory of characteristic classes, developed in §19. This in turn is treated most con-
veniently in terms of a “principal bundle,” a structure which is in a sense more
fundamental than that of a vector bundle. Section 18 develops the basic theory of
principal bundles.

Sections 21–24 study the Hodge theory, representing elements of deRham co-
homology by harmonic forms. This leads to simple proofs of some fundamental
results, such as Poincare duality and the Kunneth formula, for products of man-
ifolds. Parts of this study make use of the theory of elliptic partial differential
equations, not presented here, but contained in the author’s book [T1].

Sections 25–28 study spinors and some applications. This is a situation in which
it is particularly helpful to use concepts involving principal bundles, developed in
§18.

Sections 29–31 are devoted to minimal surfaces, which to some extent are higher
dimensional analogues of geodesics.

At the end are a number of appendices, on various background or auxiliary ma-
terial useful for understanding the main body of the text. This includes definitions
of metric and topological spaces, manifolds, vector bundles, and Lie groups, and
proofs of some basic results, such as the inverse function theorem and the local
existence of solutions to ODE. There are also sets of exercises, on determinants,
the cross product, and trigonometric functions, intended to give the reader a fresh
perspective of these elementary topics, which appear frequently in the study of
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differential geometry. In addition, the final handful of appendices deal with some
special topics in differential geometry, which complement material in the main text
but did not find space there.

We close this introduction with some comments on where this material comes
from and where it is going. Most of the main body of the text (§§2–31) was adapted
from material in differential geometry scattered through the three-volume text [T1].
This was augmented by the introductory material in §1, developed in an advanced
calculus course. The material in §§1–10 has since been rewritten and appears,
in more polished form, in [T4]. The text [T3] treats linear algebra, and contains
further material on exterior algebra and Clifford algebra, as well as more detailed
presentations of other linear algebra topics, such as given here in Appendices J and
M. The theory of Lie groups, sketched here in Appendix H and used in a number
of other sections, receives a fairly thorough treatment in [T2].
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1. Surfaces, Riemannian metrics, and geodesics

Suppose S is a smooth hypersurface in Rn. If γ(t) =
(
x1(t), . . . , xn(t)

)
, a ≤ t ≤ b,

is a smooth curve in S, its length is

(1.1) L =
∫ b

a

‖γ′(t)‖ dt.

where

(1.2) ‖γ′(t)‖2 =
n∑

j=1

x′j(t)
2.

A curve γ is said to be a geodesic if, for |t1 − t2| sufficiently small, tj ∈ [a, b], the
curve γ(t), t1 ≤ t ≤ t2 has the shortest length of all smooth curves in Ω from γ(t1)
to γ(t2).

Our first goal is to derive an equation for geodesics. So let γ0(t) be a smooth
curve in S (a ≤ t ≤ b), joining p and q. Suppose γs(t) is a smooth family of such
curves. We look for a condition guaranteeing that γ0(t) has minimum length. Since
the length of a curve is independent of its parametrization, we may as well suppose

(1.3) ‖γ′0(t)‖ = c0, constant, for a ≤ t ≤ b.

Let N denote a field of normal vectors to S. Note that, with ∂sγs(t) = (∂/∂s)γs(t),

(1.4) V = ∂sγs(t) ⊥ N.

Also, any vector field V ⊥ N over the image of γ0 can be obtained by some variation
γs of γ0, provided V = 0 at p and q. Recall we are assuming γs(a) = p, γs(b) = q.
If L(s) denotes the length of γs, we have

(1.5) L(s) =
∫ b

a

‖γ′s(t)‖ dt,

and hence

(1.6)
L′(s) =

1
2

∫ b

a

‖γ′s(t)‖−1∂s

(
γ′s(t), γ

′
s(t)

)
dt

=
1
c0

∫ b

a

(
∂sγ

′
s(t), γ

′
s(t)

)
dt, at s = 0.
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Using the identity

(1.7)
d

dt

(
∂sγs(t), γ′s(t)

)
=

(
∂sγ

′
s(t), γ

′
s(t)

)
+

(
∂sγs(t), γ′′s (t)

)
,

together with the fundamental theorem of calculus, in view of the fact that

(1.8) ∂sγs(t) = 0 at t = a and b,

we have

(1.9) L′(s) = − 1
c0

∫ b

a

(
V (t), γ′′s (t)

)
dt, at s = 0.

Now, if γ0 were a geodesic, we would have

(1.10) L′(0) = 0,

for all such variations. In other words, we must have γ′′0 (t) ⊥ V for all vector fields
V tangent to S (and vanishing at p and q), and hence

(1.11) γ′′0 (t)‖N.

This vanishing of the tangential curvature of γ0 is the geodesic equation for a
hypersurface in Rn.

We proceed to derive from (1.11) an ODE in standard form. Suppose S is defined
locally by u(x) = C, ∇u 6= 0. Then (1.11) is equivalent to

(1.12) γ′′0 (t) = K∇u(γ0(t))

for a scalar K which remains to be determined. But the condition that u(γ0(t)) = C
implies

γ′0(t) · ∇u(γ0(t)) = 0,

and differentiating this gives

(1.13) γ′′0 (t) · ∇u(γ0(t)) = −γ′0(t) ·D2u(γ0(t)) · γ′0(t)

where D2u is the matrix of second order partial derivatives of u. Comparing (1.12)
and (1.13) gives K, and we obtain the ODE

(1.14) γ′′0 (t) = −
∣∣∣∇u

(
γ0(t)

)∣∣∣
−2[

γ′0(t) ·D2u
(
γ0(t)

) · γ′0(t)
]
∇u

(
γ0(t)

)

for a geodesic γ0 lying in S.
A smooth m-dimensional surface M ⊂ Rn is characterized by the following

property. Given p ∈ M, there is a neighborhood U of p in M and a smooth map
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ϕ : O → U, from an open set O ⊂ Rm bijectively to U, with injective derivative
at each point. Such a map ϕ is called a coordinate chart on M. We call U ⊂ M a
coordinate patch. If all such maps ϕ are smooth of class Ck, we say M is a surface
of class Ck. In §7 we will define analogous notions of a Ck surface with boundary,
and of a Ck surface with corners.

There is associated an m×m matrix G(x) =
(
gjk(x)

)
of functions on O, defined

in terms of the inner product of vectors tangent to M :

(1.15) gjk(x) = Dϕ(x)ej ·Dϕ(x)ek = (∂jϕ) · (∂kϕ) =
n∑

`=1

∂ϕ`

∂xj

∂ϕ`

∂xk
,

where {ej : 1 ≤ j ≤ m} is the standard orthonormal basis of Rm. Equivalently,

(1.16) G(x) = Dϕ(x)t Dϕ(x).

We call (gjk) the metric tensor of M, on U. Note that this matrix is positive definite.
From a coordinate-independent point of view, the metric tensor on M specifies inner
products of vectors tangent to M , using the inner product of Rn.

Suppose there is another coordinate chart ψ : Ω → U, and we compare (gjk)
with H = (hjk), given by

(1.17) hjk(y) = Dψ(y)ej ·Dψ(y)ek, i.e., H(y) = Dψ(y)t Dψ(y).

Using the Implicit Function Theorem, we can write ϕ = ψ ◦F, where F : O → Ω is
a diffeomorphism. See Fig. 1.1. (See the exercises for more on this.) By the chain
rule, Dϕ(x) = Dψ(y)DF (x), where y = F (x). Consequently,

(1.18) G(x) = DF (x)tH(y)DF (x),

or equivalently,

(1.19) gjk(x) =
∑

i,`

∂Fi

∂xj

∂F`

∂xk
hi`(y).

There is a more general concept, of a Riemannian manifold. Here, to begin, one
has a smooth manifold M. A brief description of what a manifold is can be found
in §E. A manifold comes equipped with a set of coordinate charts {U`, ϕ`}, where
{U`} is an open cover of M and ϕ` : O` → U` is a homeomorphism from an open set
O` ⊂ Rn onto U`. Furthermore, if U`∩Um = U`m 6= ∅, then F`m = ϕ−1

` ◦ϕm is a C∞

diffeomorphism of O`m = ϕ−1
m (U`m) ⊂ Om onto ϕ−1

` (U`m) ⊂ O`. A Riemannian
metric on such a smooth manifold M is a smooth inner product on tangent vectors
to M. If U and V are vector fields on M, then, on U`, we can write

(1.20) U =
∑

uj(x)
∂

∂xj
, V =

∑
vj(x)

∂

∂xj
,
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and the inner product has the form

(1.21) 〈U, V 〉 =
∑

j,k

gjk(x)uj(x)vk(x),

where (gjk) is a smooth positive definite matrix. With respect to the (Um, ϕm)-
coordinates, we have

(1.22) U =
∑

aj(x)
∂

∂xj
, V =

∑
bj(x)

∂

∂xj
,

where, with F = ϕ−1
` ϕm,

(1.23) aj =
∑

k

∂Fj

∂xk
uk, bj =

∑

k

∂Fj

∂xk
vk.

Then

(1.24) 〈U, V 〉 =
∑

j,k

hjk(x) aj(x)bj(x),

where (hjk) is related to (gjk) exactly as in (1.18)–(1.19). This transformation law
makes the Riemannian metric a “tensor field” of type (2, 0). In §12 we will define
tensor fields of type (j, k); see also §F.

Now, if γ : [a, b] → M is a smooth curve on a Riemannian manifold, we define
the length to be

(1.25) L =
∫ b

a

‖γ′(t)‖ dt,

as in (1.1), where now γ′(t) = T (t) is a tangent vector to M at γ(t), and

(1.26) ‖γ′(t)‖2 = 〈T (t), T (t)〉.

In a local coordinate patch, if γ(t) = x(t) =
(
x1(t), . . . , xn(t)

)
, we have

(1.27) ‖γ′(t)‖2 =
∑

j,k

gjk

(
x(t)

)
ẋj(t)ẋk(t).

Now suppose γs, a ≤ t ≤ b, is a one-parameter family of curves on M, all with
the same end-points, represented in a coordinate system by xs(t). We produce a
calculation, similar to that in (1.6)-(1.9), of L′(0) when L(s) is given by

(1.28) L(s) =
∫ b

a

[
gjk

(
xs(t)

)
ẋj

s(t) ẋk
s(t)

] 1
2
dt.
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We use the notation T j = ẋj
0(t), V j = (∂/∂s)xj

s(t)|s=0. Calculating in a spirit
similar to that of (1.6), we have (with x = x0)

(1.29) L′(0) =
1
c0

∫ b

a

[
gjk

∂

∂s
ẋj

s(t)
∣∣
s=0

T k +
1
2
V j ∂gk`

∂xj
T kT `

]
dt.

Now, in analogy with (1.7), we can write

(1.30)
d

dt

(
gjk

(
x(t)

)
V jT k

)
= gjk

∂

∂s
ẋj

s(t)
∣∣
s=0

T k + gjkV j ẍk(t) + T ` ∂gjk

∂x`
V jT k.

Thus, by the fundamental theorem of calculus,

(1.31) L′(0) = − 1
c0

∫ b

a

[
gjkV j ẍk + T ` ∂gjk

∂x`
V jT k − 1

2
V j ∂gk`

∂xj
T kT `

]
dt

and the stationary condition L′(0) = 0 for all variations of the form described before
implies

(1.32) gjkẍk(t) = −
(∂gjk

∂x`
− 1

2
∂gk`

∂xj

)
ẋkẋ`.

This takes a more standard form if we symmetrize the quantity in parentheses with
respect to k and `. We get the system of ODE

(1.33) ẍ` + ẋj ẋk Γ`
jk = 0,

where

(1.34) gk`Γ`
ij =

1
2

[∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk

]
.

In §11 we will re-derive the geodesic equation on a Riemannian manifold, mak-
ing fundamental use of the notion of a covariant derivative, which we introduce
there, and relating it to the quantities Γ`

ij appearing above, called “Christoffel
symbols.” Before getting to that, we will devote §§2–10 to a study of vector fields
and differential forms, useful for further development of differential geometry.

Exercises

1. Let S ⊂ R3 be a surface of revolution about the z-axis, given by

x2 + y2 = f(z),
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where f(z) is a smooth positive function of z. Write out the geodesic equation, in
the form (1.14).

2. Parametrize the surface S of Exercise 1 by

(1.35) ϕ(u, v) =
(
g(u) cos v, g(u) sin v, u

)
,

where g(u) =
√

f(u). Work out the geodesic equation in these coordinates, in the
form (1.33). Note that the metric is given by

(1.36) G(u, v) =
(

1 + g′(u)2 0
0 g(u)2

)
.

In Exercises 3–4, let M ⊂ Rn be a smooth m-dimensional surface, such as discussed
in (1.15)–(1.19). In particular, the maps ϕ : O → U ⊂ M and ψ : Ω → U are as
described there. Suppose ϕ(x0) = p, ψ(y0) = p.

3. Set TpM = Range Dϕ(x0), and denote NpM its orthogonal complement. Pick a
linear isomorphism A : Rn−m → NpM , and define

Φ : O × Rn−m −→ Rn, Φ(x, z) = ϕ(x) + Az.

Show that Φ is a diffeomorphism from some neighborhood of (x0, 0) ∈ O × Rn−m

onto a neighborhood of p in Rn.
Hint. Show that DΦ(x0, 0) is surjective, hence bijective.

4. Make a similar construction for ψ, producing a map Ψ : Ω×Rn−m → Rn. Show
that, for x close to x0 and y close to y0,

Ψ−1 ◦ Φ(x, 0) = (F (x), 0), Φ−1 ◦Ψ(y, 0) = (F−1(y), 0).

Deduce that F , introduced after (1.17), is a diffeomorphism (in particular, is
smooth).
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2. Flows and vector fields

Let U ⊂ Rn be open. A vector field on U is a smooth map

(2.1) X : U −→ Rn.

Consider the corresponding ODE

(2.2)
dy

dt
= X(y), y(0) = x,

with x ∈ U. A curve y(t) solving (2.2) is called an integral curve of the vector field
X. It is also called an orbit. For fixed t, write

(2.3) y = y(t, x) = F t
X(x).

The locally defined F t
X , mapping (a subdomain of) U to U, is called the flow

generated by the vector field X.
The vector field X defines a differential operator on scalar functions, as follows:

(2.4) LXf(x) = lim
h→0

h−1
[
f(Fh

Xx)− f(x)
]

=
d

dt
f(F t

Xx)
∣∣
t=0

.

We also use the common notation

(2.5) LXf(x) = Xf,

that is, we apply X to f as a first order differential operator.
Note that, if we apply the chain rule to (2.4) and use (2.2), we have

(2.6) LXf(x) = X(x) · ∇f(x) =
∑

aj(x)
∂f

∂xj
,

if X =
∑

aj(x)ej , with {ej} the standard basis of Rn. In particular, using the
notation (2.5), we have

(2.7) aj(x) = Xxj .

In the notation (2.5),

(2.8) X =
∑

aj(x)
∂

∂xj
.

We note that X is a derivation, i.e., a map on C∞(U), linear over R, satisfying

(2.9) X(fg) = (Xf)g + f(Xg).

Conversely, any derivation on C∞(U) defines a vector field, i.e., has the form (2.8),
as we now show.
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Proposition 2.1. If X is a derivation on C∞(U), then X has the form (2.8).

Proof. Set aj(x) = Xxj , X# =
∑

aj(x)∂/∂xj , and Y = X − X#. Then Y is a
derivation satisfying Y xj = 0 for each j; we aim to show that Y f = 0 for all f.
Note that, whenever Y is a derivation

1 · 1 = 1 ⇒ Y · 1 = 2Y · 1 ⇒ Y · 1 = 0,

i.e., Y annihilates constants. Thus in this case Y annihilates all polynomials of
degree ≤ 1.

Now we show Y f(p) = 0 for all p ∈ U. Without loss of generality, we can suppose
p = 0, the origin. Then, by (C.8), we can take bj(x) =

∫ 1

0
(∂jf)(tx)dt, and write

f(x) = f(0) +
∑

bj(x)xj .

It immediately follows that Y f vanishes at 0, so the proposition is proved.

If U is a manifold, it is natural to regard a vector field X as a section of the
tangent bundle of U, as explained in Appendix F. Of course, the characterization
given in Proposition 2.1 makes good invariant sense on a manifold.

A fundamental fact about vector fields is that they can be “straightened out”
near points where they do not vanish. To see this, suppose a smooth vector field
X is given on U such that, for a certain p ∈ U, X(p) 6= 0. Then near p there is a
hypersurface M which is nowhere tangent to X. We can choose coordinates near p
so that p is the origin and M is given by {xn = 0}. Thus we can identify a point
x′ ∈ Rn−1 near the origin with x′ ∈ M. We can define a map

(2.10) F : M × (−t0, t0) −→ U

by

(2.11) F(x′, t) = F t
X(x′).

This is C∞ and has surjective derivative, so by the Inverse Function Theorem is
a local diffeomorphism. This defines a new coordinate system near p, in whch the
flow generated by X has the form

(2.12) Fs
X(x′, t) = (x′, t + s).

If we denote the new coordinates by (u1, . . . , un), we see that the following result
is established.

Theorem 2.2. If X is a smooth vector field on U with X(p) 6= 0, then there exists
a coordinate system (u1, . . . , un) centered at p (so uj(p) = 0) with respect to which

(2.13) X =
∂

∂un
.
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Exercises

1. Suppose h(x, y) is homogeneous of degree 0, i.e., h(rx, ry) = h(x, y), so h(x, y) =
k(x/y). Show that the ODE

dy

dx
= h(x, y)

is changed to a separable ODE for u = u(x), if u = y/x.

2. Using Exercise 1, discuss constructing the integral curves of a vector field

X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

when f(x, y) and g(x, y) are homogeneous of degree a, i.e.,

f(rx, ry) = ra f(x, y) for r > 0,

and similarly for g.

3. Describe the integral curves of

(x2 + y2)
∂

∂x
+ xy

∂

∂y
.

4. Describe the integral curves of

A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

when A(x, y) = a1x + a2y + a3, B(x, y) = b1x + b2y + b3.

5. Let X = f(x, y)(∂/∂x) + g(x, y)(∂/∂y) be a vector field on a disc Ω ⊂ R2.
Suppose
div X = 0, i.e., ∂f/∂x + ∂g/∂y = 0. Show that a function u(x, y) such that

∂u/∂x = g, ∂u/∂y = −f
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is given by a line integral. Show that Xu = 0 and hence integrate X.
Reconsider this exercise after reading §6.

6. Find the integral curves of the vector field

X = (2xy + y2 + 1)
∂

∂x
+ (x2 + 1− y2)

∂

∂y
.

7. Show that
div(evX) = ev(div X + Xv).

Hence, if X is a vector field on Ω ⊂ R2 as in Exercise 5, show that you can integrate
X if you can construct a function v(x, y) such that Xv = −div X. Construct such
v if either

(div X)/f(x, y) = ϕ(x) or (div X)/g(x, y) = ψ(y).

For now, we define div X = ∂X1/∂x1+· · ·+∂Xn/∂xn. See §8 for another definition.

8. Find the integral curves of the vector field

X = 2xy
∂

∂x
+ (x2 + y2 − 1)

∂

∂y
.

Let X be a vector field on Rn, with a critical point at 0, i.e., X(0) = 0. Suppose
that, for x ∈ Rn near 0,

(2.14) X(x) = Ax + R(x), ‖R(x)‖ = O(‖x‖2),
where A is an n× n matrix. We call Ax the linearization of X at 0.

9. Suppose all the eigenvalues of A have negative real part. Construct a qua-
dratic polynomial Q : Rn → [0,∞), such that Q(0) = 0,

(
∂2Q/∂xj∂xk

)
is positive

definite, and such that, for any integral curve x(t) of X as in (2.14),
d

dt
Q(x(t)) < 0 if t ≥ 0

provided x(0) = x0(6= 0) is close enough to 0. Deduce that, for small enough C, if
‖x0‖ ≤ C, then x(t) exists for all t ≥ 0 and x(y) → 0 as t →∞.
Hint. Take Q(x) = 〈x, x〉, using Exercise 10 below.

10. Let A be an n× n matrix, all of whose eigenvalues λj have negative real part.
Show there exists a Hermitian inner product 〈, 〉 on Cn such that Re 〈Au, u〉 < 0
for nonzero u ∈ Cn.

Hint. Put A in Jordan normal form, but with εs instead of 1s above the diagonal,
where ε is small compared with |Re λj |.
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3. Lie brackets

If F : V → W is a diffeomorphism between two open domains in Rn, or between
two smooth manifolds, and Y is a vector field on W, we define a vector field F#Y
on V so that

(3.1) F t
F#Y = F−1 ◦ F t

Y ◦ F,

or equivalently, by the chain rule,

(3.2) F#Y (x) =
(
DF−1

)(
F (x)

)
Y

(
F (x)

)
.

In particular, if U ⊂ Rn is open and X is a vector field on U, defining a flow F t,
then for a vector field Y, F t

#Y is defined on most of U, for |t| small, and we can
define the Lie derivative:

(3.3) LXY = lim
h→0

h−1
(Fh

#Y − Y
)

=
d

dt
F t

#Y
∣∣
t=0

,

as a vector field on U.
Another natural construction is the operator-theoretic bracket:

(3.4) [X, Y ] = XY − Y X,

where the vector fields X and Y are regarded as first order differential operators
on C∞(U). One verifies that (3.4) defines a derivation on C∞(U), hence a vector
field on U. The basic elementary fact about the Lie bracket is the following.

Theorem 3.1. If X and Y are smooth vector fields, then

(3.5) LXY = [X,Y ].

Proof. Let us first verify the identity in the special case

X =
∂

∂x1
, Y =

∑
bj(x)

∂

∂xj
.

Then F t
#Y =

∑
bj(x + te1)∂/∂xj . Hence, in this case LXY =

∑
(∂bj/∂x1)∂/∂xj ,

and a straightforward calculation shows this is also the formula for [X, Y ], in this
case.

Now we verify (3.5) in general, at any point x0 ∈ U. First, if X is nonvanishing at
x0, we can choose a local coordinate system so the example above gives the identity.
By continuity, we get the identity (3.5) on the closure of the set of points x0 where
X(x0) 6= 0. Finally, if x0 has a neighborhood where X = 0, clearly LXY = 0 and
[X, Y ] = 0 at x0. This completes the proof.



17

Corollary 3.2. If X and Y are smooth vector fields on U, then

(3.6)
d

dt
F t

X#Y = F t
X#[X,Y ]

for all t.

Proof. Since locally F t+s
X = Fs

XF t
X , we have the same identity for F t+s

X#, which
yields (3.6) upon taking the s-derivative.

We make some further comments about cases when one can explicitly integrate
a vector field X in the plane, exploiting “symmetries” that might be apparent. In
fact, suppose one has in hand a vector field Y such that

(3.7) [X,Y ] = 0.

By (3.6), this implies F t
Y #X = X for all t. Suppose one has an explicit hold on

the flow generated by Y, so one can produce explicit local coordinates (u, v) with
respect to which

(3.8) Y =
∂

∂u
.

In this coordinate system, write X = a(u, v)∂/∂u+b(u, v)∂/∂v. The condition (3.7)
implies ∂a/∂u = 0 = ∂b/∂u, so in fact we have

(3.9) X = a(v)
∂

∂u
+ b(v)

∂

∂v
.

Integral curves of (3.9) satisfy

(3.10) u′ = a(v), v′ = b(v)

and can be found explicitly in terms of integrals; one has

(3.11)
∫

b(v)−1 dv = t + C1,

and then

(3.12) u =
∫

a(v(t)) dt + C2.

More generally than (3.7), we can suppose that, for some constant c,

(3.13) [X, Y ] = cX,
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which by (3.6) is the same as

(3.14) F t
Y #X = e−ctX.

An example would be

(3.15) X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

where f and g satisfy “homogeneity” conditions of the form

(3.16) f(rax, rby) = ra−cf(x, y), g(rax, rby) = rb−cg(x, y),

for r > 0; in such a case one can take explicitly

(3.17) F t
Y (x, y) = (eatx, ebty).

Now, if one again has (3.8) in a local coordinate system (u, v), then X must have
the form

(3.18) X = ecu
[
a(v)

∂

∂u
+ b(v)

∂

∂v

]

which can be explicitly integrated, since

(3.19) u′ = ecua(v), v′ = ecub(v) =⇒ du

dv
=

a(v)
b(v)

.

The hypothesis (3.13) implies that the linear span (over R) of X and Y is a
two dimensional solvable Lie algebra. Sophus Lie devoted a good deal of effort to
examining when one could use constructions of solvable Lie algebras of vector fields
to explicitly integrate vector fields; his investigations led to his foundation of what
is now called the theory of Lie groups.

Exercises

1. Verify that the bracket (3.4) satisfies the “Jacobi identity”

[X, [Y, Z]]− [Y, [X,Z]] = [[X, Y ], Z],

i.e.,
[LX ,LY ]Z = L[X,Y ]Z.

2. Find the integral curves of

X = (x + y2)
∂

∂x
+ y

∂

∂y

using (3.16).

3. Find the integral curves of

X = (x2y + y5)
∂

∂x
+ (x2 + xy2 + y4)

∂

∂y
.
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4. Integration on Riemannian manifolds

As stated at the end of §1, a Riemannian metric on a smooth m-dimensional
manifold M is a smooth inner product on tangent vectors. To a local coordinate
chart ϕ : O → U ⊂ M, there is associated an m ×m matrix G(x) =

(
gjk(x)

)
of

functions on O, satisfying

(4.1) 〈U, V 〉 =
∑

gjk(x) uj(x)vk(x),

where, in this coordinate chart, U =
∑

uj(x)∂/∂xj and V =
∑

vj(x)∂/∂xj . In
particular, if M is a surface in Rn, the induced Riemannian metric is given by

(4.2) gjk(x) = Dϕ(x)ej ·Dϕ(x)ek =
n∑

`=1

∂ϕ`

∂xj

∂ϕ`

∂xk
,

where {ej : 1 ≤ j ≤ m} is the standard orthonormal basis of Rm. Equivalently,

(4.3) G(x) = Dϕ(x)t Dϕ(x).

Suppose there is another coordinate chart ψ : Ω → U, We can write ϕ = ψ ◦ F,
where F : O → Ω is a diffeomorphism. As noted in §1, if H = (hjk) expresses the
Riemannian metric in the second coordinate system, then

(4.4) G(x) = DF (x)tH(y)DF (x),

or equivalently,

(4.5) gjk(x) =
∑

i,`

∂Fi

∂xj

∂F`

∂xk
hi`(y).

If f : M → R is a continuous function supported on a coordinate chart U, we
will define the volume integral by

(4.6)
∫

M

f dV =
∫

O

f ◦ ϕ(x)
√

g(x) dx,

where

(4.7) g(x) = det G(x).

We need to know that this is independent of the choice of coordinate chart ϕ :
O → U. Thus, if we use ψ : Ω → U instead, we want to show that (4.6) is equal to
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∫
Ω

f ◦ψ(y)
√

h(y) dy, where h(y) = Det H(y). Indeed, since f ◦ψ ◦F = f ◦ϕ, we
can apply the change of variable formula of multi-variable calculus, to get

(4.8)
∫

Ω

f ◦ ψ(y)
√

h(y) dy =
∫

O

f ◦ ϕ(x)
√

h(F (x)) |Det DF (x)| dx.

Now, (4.4) implies that

(4.9)
√

g(x) = |det DF (x)|
√

h(y),

so the right side of (4.8) is seen to be equal to (4.6), and our surface integral is
well defined, at least for f supported in a coordinate patch. More generally, if
f : M → R has compact support, write it as a finite sum of terms, each supported
on a coordinate patch, and use (4.6) on each patch. If dim M = 2, we will tend to
use dS rather than dV.

Let us consider some special cases. First, consider a curve in Rn, say ϕ : [a, b] →
Rn. Then G(x) is a 1 × 1 matrix, namely G(x) = |ϕ′(x)|2. If we denote the curve
in Rn by γ, rather than M, the formula (4.6) becomes

(4.10)
∫

γ

f ds =
∫ b

a

f ◦ ϕ(x) |ϕ′(x)| dx.

Next, let us consider a surface M ⊂ R3, with a coordinate chart ϕ : O → U ⊂ M.
For f supported in U, an alternative way to write the surface integral is

(4.11)
∫

M

f dS =
∫

O

f ◦ ϕ(x) |∂1ϕ× ∂2ϕ| dx1dx2,

where u× v is the cross product of vectors u and v in R3. To see this, we compare
this integrand with the one in (4.6). In this case,

(4.12) g = det
(

∂1ϕ · ∂1ϕ ∂1ϕ · ∂2ϕ
∂2ϕ · ∂1ϕ ∂2ϕ · ∂2ϕ

)
= |∂1ϕ|2|∂2ϕ|2 − (∂1ϕ · ∂2ϕ)2.

Recall (see (J.16)) that |u× v| = |u| |v| | sin θ|, where θ is the angle between u and
v. Equivalently, since u · v = |u| |v| cos θ,

(4.13) |u× v|2 = |u|2|v|2(1− cos2 θ
)

= |u|2|v|2 − (u · v)2.

Thus we see that |∂1ϕ× ∂2ϕ| = √
g, in this case, and (4.11) is equivalent to (4.6).

An important class of surfaces is the class of graphs of smooth functions. Let
u ∈ C1(Ω), for an open Ω ⊂ Rn−1, and let M be the graph of z = u(x). The map
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ϕ(x) =
(
x, u(x)

)
provides a natural coordinate system, in which the metric tensor

is given by

(4.14) gjk(x) = δjk +
∂u

∂xj

∂u

∂xk
.

If u is C1, we see that gjk is continuous. To calculate g = Det(gjk), at a given
point p ∈ Ω, if ∇u(p) 6= 0, rotate coordinates so that ∇u(p) is parallel to the x1

axis. We see that

(4.15)
√

g =
(
1 + |∇u|2)1/2

.

In particular, the (n− 1)-dimensional volume of the surface M is given by

(4.16) Vn−1(M) =
∫

M

dV =
∫

Ω

(
1 + |∇u(x)|2)1/2

dx.

Particularly important examples of surfaces are the unit spheres Sn−1 in Rn,

Sn−1 = {x ∈ Rn : |x| = 1}.

Spherical polar coordinates on Rn are defined in terms of a smooth diffeomorphism

(4.17) R : (0,∞)× Sn−1 −→ Rn \ 0, R(r, ω) = rω.

If (h`m) denotes the metric tensor on Sn−1 induced from its inclusion in Rn, we see
that the Euclidean metric tensor can be written

(4.18)
(
ejk

)
=

(
1

r2h`m

)
.

Thus

(4.19)
√

e = rn−1
√

h.

We therefore have the following result for integrating a function in spherical polar
coordinates.

(4.20)
∫

Rn

f(x) dx =
∫

Sn−1

[∫ ∞

0

f(rω)rn−1 dr
]
dS(ω).

We next compute the (n− 1)-dimensional area An−1 of the unit sphere Sn−1 ⊂
Rn, using (12.20) together with the computation

(4.21)
∫

Rn

e−|x|
2
dx = πn/2,
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which will be established in Exercise 2 below. Note that, whenever f(x) = ϕ(|x|),
(4.20) yields

(4.22)
∫

Rn

ϕ(|x|) dx = An−1

∫ ∞

0

ϕ(r)rn−1 dr.

In particular, taking ϕ(r) = e−r2
and using (4.21), we have

(4.23) πn/2 = An−1

∫ ∞

0

e−r2
rn−1 dr =

1
2
An−1

∫ ∞

0

e−ssn/2−1 ds,

where we used the substitution s = r2 to get the last identity. We hence have

(4.24) An−1 =
2πn/2

Γ(n
2 )

,

where Γ(z) is Euler’s Gamma function, defined for z > 0 by

(4.25) Γ(z) =
∫ ∞

0

e−ssz−1 ds.

We need to complement (4.24) with some results on Γ(z) allowing a computation
of Γ(n/2) in terms of more familiar quantities. Of course, setting z = 1 in (4.25),
we immediately get

(4.26) Γ(1) = 1.

Also, setting n = 1 in (4.23), we have

π1/2 = 2
∫ ∞

0

e−r2
dr =

∫ ∞

0

e−ss−1/2 ds,

or

(4.27) Γ
(1

2

)
= π1/2.

We can proceed inductively from (4.26)–(4.27) to a formula for Γ(n/2) for any
n ∈ Z+, using the following.

Lemma 4.1. For all z > 0,

(4.28) Γ(z + 1) = zΓ(z).

Proof. We can write

Γ(z + 1) = −
∫ ∞

0

( d

ds
e−s

)
sz ds =

∫ ∞

0

e−s d

ds

(
sz

)
ds,
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the last identity by integration by parts. The last expression here is seen to equal
the right side of (4.28).

Consequently, for k ∈ Z+,

(4.29) Γ(k) = (k − 1)!, Γ
(
k +

1
2

)
=

(
k − 1

2

)
· · ·

(1
2

)
π1/2.

Thus (4.24) can be rewritten

(4.30) A2k−1 =
2πk

(k − 1)!
, A2k =

2πk

(
k − 1

2

) · · · ( 1
2

) .

We discuss another important example of a smooth surface, in the space M(n) ≈
Rn2

of real n×n matrices, namely SO(n), the set of matrices T ∈ M(n) satisfying
T tT = I and det T > 0 (hence det T = 1). The exponential map Exp: M(n) →
M(n) defined by Exp(A) = eA has the property

(4.31) Exp : Skew(n) −→ SO(n),

where Skew(n) is the set of skew-symmetric matrices in M(n). Also D Exp(0)A =
A; hence

(4.32) D Exp(0) = ι : Skew(n) ↪→ M(n).

It follows from the Inverse Function Theorem that there is a neighborhood O of
0 in Skew(n) which is mapped by Exp diffeomorphically onto a smooth surface
U ⊂ M(n), of dimension m = n(n − 1)/2. Furthermore, U is a neighborhood of I
in SO(n). For general T ∈ SO(n), we can define maps

(4.33) ϕT : O −→ SO(n), ϕT (A) = T Exp(A),

and obtain coordinate charts in SO(n), which is consequently a smooth manifold
of dimension 1

2n(n − 1) in M(n). Note that SO(n) is a closed bounded subset of
M(n); hence it is compact.

We use the inner product on M(n) computed componentwise; equivalently,

(4.34) 〈A,B〉 = Tr (BtA) = Tr (BAt).

This produces a metric tensor on SO(n). The surface integral over SO(n) has the
following important invariance property.

Proposition 4.2. Given f ∈ C
(
SO(n)

)
, if we set

(4.35) ρT f(X) = f(XT ), λT f(X) = f(TX),
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for T,X ∈ SO(n), we have

(4.36)
∫

SO(n)

ρT f dV =
∫

SO(n)

λT f dV =
∫

SO(n)

f dV.

Proof. Given T ∈ SO(n), the maps RT , LT : M(n) → M(n) defined by RT (X) =
XT, LT (X) = TX are easily seen from (4.34) to be isometries. Thus they yield
maps of SO(n) to itself which preserve the metric tensor, proving (4.36).

Since SO(n) is compact, its total volume V
(
SO(n)

)
=

∫
SO(n)

1 dV is finite. We
define the integral with respect to “Haar measure”

(4.37)
∫

SO(n)

f(g) dg =
1

V
(
SO(n)

)
∫

SO(n)

f dV.

This is used in many arguments involving “averaging over rotations.” One example
will arise in the proof of Proposition 9.5. Also compare the discussion of Haar
measure in §H.

Exercises

1. Define ϕ : [0, θ] → R2 to be ϕ(t) = (cos t, sin t). Show that, if 0 < θ ≤ 2π, the
image of [0, θ] under ϕ is an arc of the unit circle, of length θ. Deduce that the unit
circle in R2 has total length 2π.
Remark. Use the definition of π given in §L.
This length formula provided the original definition of π, in ancient Greek geometry.

2. Let In denote the left side of (4.21). Show that In = In
1 . Show that

I2 =
∫ 2π

0

∫ ∞

0

e−r2
r dr dθ = 2π

∫ ∞

0

e−r2
r dr.

Use the substitution s = r2 to show that I2 = π. Hence deduce (4.21).

3. Compute the volume of the unit ball Bn = {x ∈ Rn : |x| ≤ 1}.
Hint. Apply (4.22) with ϕ = χ[0,1].
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4. Suppose M is a surface in Rn of dimension 2, and ϕ : O → U ⊂ M is a coordinate
chart, with O ⊂ R2. Set ϕjk(x) =

(
ϕj(x), ϕk(x)

)
, so ϕjk : O → R2. Show that the

formula (4.6) for the surface integral is equivalent to

∫

M

f dS =
∫

O

f ◦ ϕ(x)
√∑

j<k

(
det Dϕjk(x)

)2

dx.

Hint. Show that the quantity under √ is equal to (4.12).

5. If M is an m-dimensional surface, ϕ : O → M ⊂ M a coordinate chart, for
J = (j1, . . . , jm) set

ϕJ(x) =
(
ϕj1(x), . . . , ϕjm(x)

)
, ϕJ : O → Rm.

Show that the formula (4.6) is equivalent to

∫

M

f dS =
∫

O

f ◦ ϕ(x)
√ ∑

j1<···<jm

(
det DϕJ(x)

)2

dx.

Hint. Reduce to the following. For fixed x0 ∈ O, the quantity under √ is equal
to g(x) at x = x0, in the case Dϕ(x0) =

(
Dϕ1(x0), . . . , Dϕm(x0), 0, . . . , 0

)
.

Reconsider this problem when working on the exercises for §5.

6. Let M be the graph in Rn+1 of xn+1 = u(x), x ∈ O ⊂ Rn. Let N be the unit
normal to M given by N =

(
1 + |∇u|2)−1/2(−∇u, 1). Show that, for a continuous

function f : M → Rn+1,

∫

M

f ·N dS =
∫

O

f
(
x, u(x)

) · (−∇u(x), 1
)
dx.

The left side is often denoted
∫

M
f · dS.

7. Writing the equation of the upper hemisphere in Rn+1 as xn+1 =
√

1− |x|2, x ∈
Bn = unit ball in Rn, show that the area of Sn satisfies

An = 2
∫

Bn

(
1− |x|2)−1/2

dx.
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Making use of (4.22), deduce that

An = ϑnAn−1, ϑn = 2
∫ 1

0

rn−1

√
1− r2

dr = 2
∫ π/2

0

sinn−1 θ dθ.

Use this to re-derive (4.30).
Hint. Write sinn−1 θ = sinn−3 θ(1− cos2 θ) and integrate by parts to show that

ϑn =
n− 2
n− 1

ϑn−2.

Show directly that ϑ1 = π and ϑ2 = 2, and deduce that

ϑn = π1/2Γ
(

n
2

)/
Γ
(

n+1
2

)
.

8. For G = SO(n), define κ : G → G by κ(g) = g−1. Show that κ is an isometry.
Deduce that ∫

G

f(g) dg =
∫

G

f(g−1) dg.

Hint. Use Rg0 and Lg−1
0

to reduce the problem to showing that Dκ(I) is an isometry
on TIG = Skew(n). What is Dκ(I)?
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5. Differential forms

It is very desirable to be able to make constructions which depend as little as
possible on a particular choice of coordinate system. The calculus of differential
forms, whose study we now take up, is one convenient set of tools for this purpose.

We start with the notion of a 1-form. It is an object that gets integrated over a
curve; formally, a 1-form on Ω ⊂ Rn is written

(5.1) α =
∑

j

aj(x) dxj .

If γ : [a, b] → Ω is a smooth curve, we set

(5.2)
∫

γ

α =
∫ b

a

∑
aj

(
γ(t)

)
γ′j(t) dt.

In other words,

(5.3)
∫

γ

α =
∫

I

γ∗α

where I = [a, b] and γ∗α =
∑

j aj(γ(t))γ′j(t) is the pull-back of α under the map γ.

More generally, if F : O → Ω is a smooth map (O ⊂ Rm open), the pull-back F ∗α
is a 1-form on O defined by

(5.4) F ∗α =
∑

j,k

aj(F (y))
∂Fj

∂yk
dyk.

The usual change of variable for integrals gives

(5.5)
∫

γ

α =
∫

σ

F ∗α

if γ is the curve F ◦ σ.
If F : O → Ω is a diffeomorphism, and

(5.6) X =
∑

bj(x)
∂

∂xj

is a vector field on Ω, recall that we have the vector field on O :

(5.7) F#X(y) =
(
DF−1(p)

)
X(p), p = F (y).
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If we define a pairing between 1-forms and vector fields on Ω by

(5.8) 〈X,α〉 =
∑

j

bj(x)aj(x) = b · a,

a simple calculation gives

(5.9) 〈F#X,F ∗α〉 = 〈X, α〉 ◦ F.

Thus, a 1-form on Ω is characterized at each point p ∈ Ω as a linear transformation
of vectors at p to R.

More generally, we can regard a k-form α on Ω as a k-multilinear map on vector
fields:

(5.10) α(X1, . . . , Xk) ∈ C∞(Ω);

we impose the further condition of anti-symmetry:

(5.11) α(X1, . . . , Xj , . . . , X`, . . . , Xk) = −α(X1, . . . , X`, . . . , Xj , . . . , Xk).

There is a special notation we use for k-forms. If 1 ≤ j1 < · · · < jk ≤ n, j =
(j1, . . . , jk), we set

(5.12) α =
∑

j

aj(x) dxj1 ∧ · · · ∧ dxjk

where

(5.13) aj(x) = α(∂j1 , . . . , ∂jk
), ∂j =

∂

∂xj
.

More generally, we assign meaning to (5.12) summed over all k-indices (j1, . . . , jk),
where we identify

(5.14) dxj1 ∧ · · · ∧ dxjk
= (sgn σ) dxjσ(1) ∧ · · · ∧ dxjσ(k) ,

σ being a permutation of {1, . . . , k}. If any jm = j` (m 6= `), then (5.14) vanishes.
A common notation for the statement that α is a k-form on Ω is

(5.15) α ∈ Λk(Ω).

In particular, we can write a 2-form β as

(5.16) β =
∑

bjk(x) dxj ∧ dxk
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and pick coefficients satisfying bjk(x) = −bkj(x). According to (5.12)–(5.13), if we
set U =

∑
uj(x)∂/∂xj and V =

∑
vj(x)∂/∂xj , then

(5.17) β(U, V ) = 2
∑

bjk(x)uj(x)vk(x).

If bjk is not required to be antisymmetric, one gets β(U, V ) =
∑

(bjk − bkj)ujvk.
If F : O → Ω is a smooth map as above, we define the pull-back F ∗α of a k-form

α, given by (5.12), to be

(5.18) F ∗α =
∑

j

aj

(
F (y)

)
(F ∗dxj1) ∧ · · · ∧ (F ∗dxjk

)

where

(5.19) F ∗dxj =
∑

`

∂Fj

∂y`
dy`,

the algebraic computation in (5.18) being performed using the rule (5.14). Extend-
ing (5.9), if F is a diffeomorphism, we have

(5.20) (F ∗α)(F#X1, . . . , F#Xk) = α(X1, . . . , Xk) ◦ F.

If B = (bjk) is an n× n matrix, then, by (5.14),

(5.21)

(∑

k

b1kdxk

)
∧

(∑

k

b2kdxk

)
∧ · · · ∧

(∑

k

bnkdxk

)

=
(∑

σ

(sgn σ)b1σ(1)b2σ(2) · · · bnσ(n)

)
dx1 ∧ · · · ∧ dxn

=
(
det B

)
dx1 ∧ · · · ∧ dxn,

Hence, if F : O → Ω is a C1 map between two domains of dimension n, and
α = A(x)dx1 ∧ · · · ∧ dxn is an n-form on Ω, then

(5.22) F ∗α = det DF (y) A(F (y)) dy1 ∧ · · · ∧ dyn.

Comparison with the change of variable formula for multiple integrals suggests
that one has an intrinsic definition of

∫
Ω

α when α is an n-form on Ω, n = dim
Ω. To implement this, we need to take into account that det DF (y) rather than
|det DF (y)| appears in (5.21). We say a smooth map F : O → Ω between two
open subsets of Rn preserves orientation if det DF (y) is everywhere positive. The
object called an “orientation” on Ω can be identified as an equivalence class of
nowhere vanishing n-forms on Ω, two such forms being equivalent if one is a multi-
ple of another by a positive function in C∞(Ω); the standard orientation on Rn is
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determined by dx1 ∧ · · · ∧ dxn. If S is an n-dimensional surface in Rn+k, an orien-
tation on S can also be specified by a nowhere vanishing form ω ∈ Λn(S). If such a
form exists, S is said to be orientable. The equivalence class of positive multiples
a(x)ω is said to consist of “positive” forms. A smooth map ψ : S → M between
oriented n-dimensional surfaces preserves orientation provided ψ∗σ is positive on S
whenever σ ∈ Λn(M) is positive. If S is oriented, one can choose coordinate charts
which are all orientation preserving. We mention that there exist surfaces which
cannot be oriented, such as two-dimensional real projective space.

If O, Ω are open in Rn and F : O → Ω is an orientation preserving diffeomor-
phism, we have

(5.23)
∫

O

F ∗α =
∫

Ω

α.

More generally, if S is an n-dimensional manifold with an orientation, say the image
of an open set O ⊂ Rn by ϕ : O → S, carrying the natural orientation of O, we can
set

(5.24)
∫

S

α =
∫

O

ϕ∗α

for an n-form α on S. If it takes several coordinate patches to cover S, define
∫

S
α

by writing α as a sum of forms, each supported on one patch.
We need to show that this definition of

∫
S

α is independent of the choice of
coordinate system on S (as long as the orientation of S is respected). Thus, suppose
ϕ : O → U ⊂ S and ψ : Ω → U ⊂ S are both coordinate patches, so that
F = ψ−1 ◦ ϕ : O → Ω is an orientation-preserving diffeomorphism, as in Fig. 1.1.
We need to check that, if α is an n-form on S, supported on U, then

(5.25)
∫

O

ϕ∗α =
∫

Ω

ψ∗α.

To see this, first note that, for any form α of any degree,

(5.26) ψ ◦ F = ϕ =⇒ ϕ∗α = F ∗ψ∗α.

It suffices to check this for α = dxj . Then (5.14) gives ψ∗ dxj =
∑

(∂ψj/∂x`)dx`,
so

(5.27) F ∗ψ∗ dxj =
∑

`,m

∂F`

∂xm

∂ψj

∂x`
dxm, ϕ∗ dxj =

∑
m

∂ϕj

∂xm
dxm;

but the identity of these forms follows from the chain rule:

(5.28) Dϕ = (Dψ)(DF ) =⇒ ∂ϕj

∂xm
=

∑

`

∂ψj

∂x`

∂F`

∂xm
.
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Now that we have (5.26), we see that the left side of (5.25) is equal to

(5.29)
∫

O

F ∗(ψ∗α),

which is equal to the right side of (5.25), by (5.23). Thus the integral of an n-form
over an oriented n-dimensional surface is well defined.

Exercises

1. If F : U0 → U1 and G : U1 → U2 are smooth maps and α ∈ Λk(U2), then (5.26)
implies

(G ◦ F )∗α = F ∗(G∗α) in Λk(U0).

In the special case that Uj = Rn and F and G are linear maps, and k = n, show
that this identity implies

det (GF ) = (det F )(det G).

Let ΛkRn denote the space of k-forms (5.12) with constant coefficients. One can
show that dimRΛkRn =

(
n
k

)
. If T : Rm → Rn is linear, then T ∗ preserves this class

of spaces; we denote the map by ΛkT ∗ : ΛkRn −→ ΛkRm. Similarly, replacing T
by T ∗ yields

ΛkT : ΛkRm −→ ΛkRn.

2. Show that ΛkT is uniquely characterized as a linear map from ΛkRm to ΛkRn

which satisfies

(ΛkT )(v1 ∧ · · · ∧ vk) = (Tv1) ∧ · · · ∧ (Tvk), vj ∈ Rm.

3. If {e1, . . . , en} is the standard orthonormal basis of Rn, define an inner product
on ΛkRn by declaring an orthonormal basis to be

{ej1 ∧ · · · ∧ ejk
: 1 ≤ j1 < · · · < jk ≤ n}.

Show that, if {u1, . . . , un} is any other orthonormal basis of Rn, then the set {uj1 ∧
· · · ∧ ujk

: 1 ≤ j1 < · · · < jk ≤ n} is an orthonormal basis of ΛkRn.

4. Let ϕ : O → Rn be smooth, with O ⊂ Rm open. Show that, for each x ∈ O,

‖ΛmDϕ(x)ω‖2 = det Dϕ(x)tDϕ(x),

where ω = e1 ∧ · · · ∧ em. Take another look at Exercise 5 of §4.

5. Verify the identity (5.20).



32

6. Products and exterior derivatives of forms

Having discussed the notion of a differential form as something to be integrated,
we now consider some operations on forms. There is a wedge product, or exterior
product, characterized as follows. If α ∈ Λk(Ω) has the form (5.12) and if

(6.1) β =
∑

i

bi(x) dxi1 ∧ · · · ∧ dxi`
∈ Λ`(Ω),

define

(6.2) α ∧ β =
∑

j,i

aj(x)bi(x) dxj1 ∧ · · · ∧ dxjk
∧ dxi1 ∧ · · · ∧ dxi`

in Λk+`(Ω). A special case of this arose in (5.18)–(5.21). We retain the equivalence
(5.14). It follows easily that

(6.3) α ∧ β = (−1)k`β ∧ α.

Also, one can show that

(α∧β)(X1, . . . , Xk+`) =
1

k!`!

∑

σ∈Sk+`

(sgnσ)α(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+`)).

In addition, there is an interior product if α ∈ Λk(Ω) with a vector field X on
Ω, producing ιXα = αcX ∈ Λk−1(Ω), defined by

(6.4) (αcX)(X1, . . . , Xk−1) = α(X, X1, . . . , Xk−1).

Consequently, if α = dxj1 ∧ · · · ∧ dxjk
, ∂i = ∂/∂xi, then

(6.5) αc∂j`
= (−1)`−1dxj1 ∧ · · · ∧ d̂xj`

∧ · · · ∧ dxjk

where d̂xj`
denotes removing the factor dxj`

. Furthermore,

i /∈ {j1, . . . , jk} =⇒ αc∂i = 0.

If F : O → Ω is a diffeomorphism and α, β are forms and X a vector field on Ω,
it is readily verified that

(6.6) F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β), F ∗(αcX) = (F ∗α)c(F#X).
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We make use of the operators ∧k and ιk on forms:

(6.7) ∧kα = dxk ∧ α, ιkα = αc∂k.

There is the following useful anticommutation relation:

(6.8) ∧kι` + ι`∧k = δk`,

where δk` is 1 if k = `, 0 otherwise. This is a fairly straightforward consequence of
(6.5). We also have

(6.9) ∧j ∧k + ∧k ∧j = 0, ιjιk + ιkιj = 0.

From (6.8)–(6.9) one says that the operators {ιj ,∧j : 1 ≤ j ≤ n} generate a
“Clifford algebra.” For more on this, see §26.

Another important operator on forms is the exterior derivative:

(6.10) d : Λk(Ω) −→ Λk+1(Ω),

defined as follows. If α ∈ Λk(Ω) is given by (5.12), then

(6.11) dα =
∑

j,`

∂aj

∂x`
dx` ∧ dxj1 ∧ · · · ∧ dxjk

.

Equivalently,

(6.12) dα =
n∑

`=1

∂` ∧` α

where ∂` = ∂/∂x` and ∧` is given by (6.7). The antisymmetry dxm ∧ dx` =
−dx` ∧ dxm, together with the identity ∂2aj/∂x`∂xm = ∂2aj/∂xm∂x`, implies

(6.13) d(dα) = 0,

for any differential form α. We also have a product rule:

(6.14) d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ), α ∈ Λk(Ω), β ∈ Λj(Ω).

The exterior derivative has the following important property under pull-backs:

(6.15) F ∗(dα) = dF ∗α,

if α ∈ Λk(Ω) and F : O → Ω is a smooth map. To see this, extending (6.14) to a
formula for d(α ∧ β1 ∧ · · · ∧ β`) and using this to apply d to F ∗α, we have

(6.16)

dF ∗α =
∑

j,`

∂

∂x`

(
aj ◦ F (x)

)
dx` ∧

(
F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)

+
∑

j,ν

(±)aj

(
F (x)

)(
F ∗dxj1

) ∧ · · · ∧ d
(
F ∗dxjν

) ∧ · · · ∧ (
F ∗dxjk

)
.
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Now

d
(
F ∗dxi

)
=

∑

j,`

∂2Fi

∂xj∂x`
dxj ∧ dx` = 0,

so only the first sum in (6.16) contributes to dF ∗α. Meanwhile,

(6.17) F ∗dα =
∑

j,m

∂aj

∂xm

(
F (x)

)
(F ∗dxm) ∧ (

F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)
,

so (6.15) follows from the identity

(6.18)
∑

`

∂

∂x`

(
aj ◦ F (x)

)
dx` =

∑
m

∂aj

∂xm

(
F (x)

)
F ∗dxm,

which in turn follows from the chain rule.
If dα = 0, we say α is closed; if α = dβ for some β ∈ Λk−1(Ω), we say α is exact.

Formula (6.13) implies that every exact form is closed. The converse is not always
true globally. Consider the multi-valued angular coordinate θ on R2 \ (0, 0); dθ is
a single valued closed form on R2 \ (0, 0) which is not globally exact. As we will
see below, every closed form is locally exact.

First we introduce another important construction. If α ∈ Λk(Ω) and X is a
vector field on Ω, generating a flow F t

X , the Lie derivative LXα is defined to be

(6.19) LXα =
d

dt

(F t
X

)∗
α|t=0.

Note the formal similarity to the definition (3.2) of LXY for a vector field Y. Recall
the formula (3.4) for LXY. The following is not only a computationally convenient
formula for LXα, but also an identity of fundamental importance.

Proosition 6.1. We have

(6.20) LXα = d(αcX) + (dα)cX.

Proof. First we compare both sides in the special case X = ∂/∂x` = ∂`. Note that

(F t
∂`

)∗
α =

∑

j

aj(x + te`) dxj1 ∧ · · · ∧ dxjk
,

so

(6.21) L∂`
α =

∑

j

∂aj

∂x`
dxj1 ∧ · · · ∧ dxjk

= ∂`α.
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To evaluate the right side of (6.20) with X = ∂`, use (6.12) to write this quantity
as

(6.22) d(ι`α) + ι`dα =
n∑

j=1

(
∂j ∧j ι` + ι`∂j∧j

)
α.

Using the commutativity of ∂j with ∧j and with ι`, and the anticommutation
relations (6.8), we see that the right side of (6.22) is ∂`α, which coincides with
(6.21). Thus the proposition holds for X = ∂/∂x`.

Now we can prove the proposition in general, for a smooth vector field X on Ω.
It is to be verified at each point x0 ∈ Ω. If X(x0) 6= 0, choose a coordinate system
about x0 so X = ∂/∂x1 and use the calculation above. This shows that the desired
identity holds on the set of points {x0 ∈ Ω : X(x0) 6= 0}, and by continuity it holds
on the closure of this set. However, if x0 ∈ Ω has a neighborhood on which X
vanishes, it is clear that LXα = 0 near x0 and also αcX and dαcX vanish near x0.
This completes the proof.

The identity (6.20) can furnish a formula for the exterior derivative in terms of
Lie brackets, as follows. By (3.4) and (6.20) we have, for a k-form ω,

(6.23)
(LXω

)
(X1, . . . , Xk) = X · ω(X1, . . . , Xk)−

∑

j

ω(X1, . . . , [X, Xj ], . . . , Xk).

Now (6.20) can be rewritten as

(6.24) ιXdω = LXω − dιXω.

This implies

(6.25) (dω)(X0, X1, . . . , Xk) =
(LX0ω

)
(X1, . . . , Xk)− (

dιX0ω
)
(X1, . . . , Xk).

We can substitute (6.23) into the first term on the right in (6.25). In case ω is a
1-form, the last term is easily evaluated; we get

(6.26) (dω)(X0, X1) = X0 · ω(X1)−X1 · ω(X0)− ω([X0, X1]).

More generally, we can tackle the last term on the right side of (6.25) by the same
method, using (6.24) with ω replaced by the (k − 1)-form ιX0ω. In this way we
inductively obtain the formula
(6.27)

(dω)(X0, . . . , Xk) =
k∑

`=0

(−1)`X` · ω(X0, . . . , X̂`, . . . , Xk)

+
∑

0≤`<j≤k

(−1)j+`ω([X`, Xj ], X0, . . . , X̂`, . . . , X̂j , . . . , Xk).
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Note that from (6.19) and the property Fs+t
X = Fs

XF t
X it easily follows that

(6.28)
d

dt

(F t
X

)∗
α = LX

(F t
X

)∗
α =

(F t
X

)∗LXα.

It is useful to generalize this. Let Ft be any smooth family of diffeomorphisms from
M into M. Define vector fields Xt on Ft(M) by

(6.29)
d

dt
Ft(x) = Xt(Ft(x)).

Then it easily follows that, for α ∈ ΛkM,

(6.30)
d

dt
F ∗t α = F ∗t LXtα = F ∗t

[
d(αcXt) + (dα)cXt

]
.

In particular, if α is closed, then, if Ft are diffeomorphisms for 0 ≤ t ≤ 1,

(6.31) F ∗1 α− F ∗0 α = dβ, β =
∫ 1

0

F ∗t (αcXt) dt.

Using this, we can prove the celebrated Poincaré Lemma.

Theorem 6.2. If B is the unit ball in Rn, centered at 0, α ∈ Λk(B), k > 0, and
dα = 0, then α = dβ for some β ∈ Λk−1(B).

Proof. Consider the family of maps Ft : B → B given by Ft(x) = tx. For 0 < t ≤ 1
these are diffeomorphisms, and the formula (6.30) applies. Note that

F ∗1 α = α, F ∗0 α = 0.

Now a simple limiting argument shows (6.31) remains valid, so α = dβ with

(6.32) β =
∫ 1

0

F ∗t (αcV )t−1 dt

where V = r∂/∂r =
∑

xj∂/∂xj . Since F ∗0 = 0, the apparent singularity in the
integrand is removable.

Since in the proof of the theorem we dealt with Ft such that F0 was not a
diffeomorphism, we are motivated to generalize (6.31) to the case where Ft : M →
N is a smooth family of maps, not necessarily diffeomorphisms. Then (6.29) does
not work to define Xt as a vector field, but we do have

(6.33)
d

dt
Ft(x) = Z(t, x); Z(t, x) ∈ TFt(x)N.
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Now in (6.31) we see that

F ∗(αcXt)(Y1, . . . , Yk−1) = α
(
Ft(x)

)(
Xt, DFt(x)Y1, . . . , DFt(x)Yk−1

)
,

and we can replace Xt by Z(t, x). Hence, in this more general case, if α is closed,
we can write

(6.34) F ∗1 α− F ∗0 α = dβ; β =
∫ 1

0

γt dt

where, at x ∈ M,

(6.35) γt(Y1, . . . , Yk−1) = α
(
Ft(x)

)(
Z(t, x), DFt(x)Y1, . . . , DFt(x)Yk−1

)
.

For an alternative approach to this homotopy invariance, see Exercise 6.

Exercises

1. If α is a k-form, verify the formula (6.14), i.e., d(α∧β) = (dα)∧β+(−1)kα∧dβ.
If α is closed and β is exact, show that α ∧ β is exact.

2. Let F be a vector field on U, open in R3, F =
∑3

1 fj(x)∂/∂xj . Consider the
1-form ϕ =

∑3
1 fj(x) dxj . Show that dϕ and curl F are related in the following

way:

curl F =
3∑
1

gj(x)
∂

∂xj
,

dϕ = g1(x) dx2 ∧ dx3 + g2(x) dx3 ∧ dx1 + g3(x) dx1 ∧ dx2.

3. If F and ϕ are related as in Exercise 3, show that curl F is uniquely specified
by the relation

dϕ ∧ α = 〈curl F, α〉ω
for all 1-forms α on U ⊂ R3, where ω = dx1 ∧ dx2 ∧ dx3 is the volume form. Show
that curl F is also uniquely specified by

dϕ = ωc(curl F ).

4. Let B be a ball in R3, F a smooth vector field on B. Show that

∃ u ∈ C∞(B) s.t. F = grad u ⇐⇒ curl F = 0.
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Hint. Compare F = grad u with ϕ = du.

5. Let B be a ball in R3 and G a smooth vector field on B. Show that

∃ vector field F s.t. G = curl F ⇐⇒ div G = 0.

Hint. If G =
∑3

1 gj(x) dxj , consider ψ = g1(x) dx2 ∧ dx3 + g2(x) dx3 ∧ dx1 +
g3(x) dx1 ∧ dx2. Compute dψ.

6. Suppose f0, f1 : X → Y are smoothly homotopic maps, via Φ : X × R →
Y, Φ(x, j) = fj(x). Let α ∈ Λk(Y ) be closed. Apply (6.31) to α̃ = Φ∗α ∈ Λk(X×R),
with Ft(x, s) = (x, s + t), to obtain β̃ ∈ Λk−1(X ×R) such that F ∗1 α̃− α̃ = dβ̃, and
from there produce β ∈ Λk−1(X) such that f∗1 α− f∗0 α = dβ.

Hint. Use β = ι∗β̃, where ι(x) = (x, 0).

7. Verify the anticommutation relation (6.8). Show that, if ξ is a 1-form and we
define ∧ξα = ξ ∧ α, and X is a vector field, then (6.8) implies

∧ξιXα + ιX ∧ξ α = 〈X, ξ〉α,

where 〈X, ξ〉 is the dual pairing, as in (5.8).

For the next set of exercises, let Ω be a planar domain, X = f(x, y)∂/∂x +
g(x, y)∂/∂y a nonvanishing vector field on Ω. Consider the 1-form α = g(x, y) dx−
f(x, y) dy.

8. Let γ : I → Ω be a smooth curve, I = (a, b). Show that the image C = γ(I)
is the image of an integral curve of X if and only if γ∗α = 0. Consequently, with
slight abuse of notation, one describes the integral curves by g dx− f dy = 0.
If α is exact, i.e., α = du, conclude the level curves of u are the integral curves of
X.

9. A function ϕ is called an integrating factor if α̃ = ϕα is exact, i.e., if d(ϕα) = 0,
provided Ω is simply connected. Show that an integrating factor always exists, at
least locally. Show that ϕ = ev is an integrating factor if and only if Xv = − div
X.
Reconsider Exercise 7 in §2.
Find an integrating factor for α = (x2 + y2 − 1) dx− 2xy dy.

10. Let Y be a vector field which you know how to linearize (i.e., conjugate to
∂/∂x) and suppose LY α = 0. Show how to construct an integrating factor for α.
Treat the more general case LXα = cα for some constant c. Compare the discussion
in §3 of the situation where [X, Y ] = cX.
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7. The general Stokes formula

A basic result in the theory of differential forms is the generalized Stokes formula:

Proposition 7.1. Given a compactly supported (k − 1)-form β of class C1 on
an oriented k-dimensional manifold M (of class C2) with boundary ∂M, with its
natural orientation,

(7.1)
∫

M

dβ =
∫

∂M

β

The orientation induced on ∂M is uniquely determined by the following require-
ment. If

(7.2) M = Rk
− = {x ∈ Rk : x1 ≤ 0}

then ∂M = {(x2, . . . , xk)} has the orientation determined by dx2 ∧ · · · ∧ dxk.

Proof. Using a partition of unity and invariance of the integral and the exterior
derivative under coordinate transformations, it suffices to prove this when M has
the form (7.2). In that case, we will be able to deduce (7.1) from the fundamental
theorem of calculus. Indeed, if

(7.3) β = bj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk,

with bj(x) of bounded support, we have

(7.4) dβ = (−1)j−1 ∂bj

∂xj
dx1 ∧ · · · ∧ dxk.

If j > 1, we have

(7.5)
∫

M

dβ =
∫ {∫ ∞

−∞

∂bj

∂xj
dxj

}
dx′ = 0,

and also κ∗β = 0, where κ : ∂M → M is the inclusion. On the other hand, for
j = 1, we have

(7.6)

∫

M

dβ =
∫ {∫ 0

−∞

∂b1

∂x1
dx1

}
dx2 · · · dxk

=
∫

b1(0, x′) dx′

=
∫

∂M

β.
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This proves Stokes’ formula (7.1).

It is useful to allow singularities in ∂M. We say a point p ∈ M is a corner of
dimension ν if there is a neighborhood U of p in M and a C2 diffeomorphism of U
onto a neighborhood of 0 in

(7.7) K = {x ∈ Rk : xj ≤ 0, for 1 ≤ j ≤ k − ν},

where k is the dimension of M. If M is a C2 manifold and every point p ∈ ∂M
is a corner (of some dimension), we say M is a C2 manifold wih corners. In such
a case, ∂M is a locally finite union of C2 manifolds with corners. The following
result extends Proposition 7.1.

Proposition 7.2. If M is a C2 manifold of dimension k, with corners, and β is a
compactly supported (k − 1)-form of class C1 on M, then (7.1) holds.

Proof. It suffices to establish this when β is supported on a small neighborhood of
a corner p ∈ ∂M, of the form U described above. Hence it suffices to show that
(7.1) holds whenever β is a (k − 1)-form of class C1, with compact support on K
in (7.7); and we can take β to have the form (7.3). Then, for j > k − ν, (7.5) still
holds, while, for j ≤ k − ν, we have, as in (7.6),

(7.8)

∫

K

dβ = (−1)j−1

∫ {∫ 0

−∞

∂bj

∂xj
dxj

}
dx1 · · · d̂xj · · · dxk

= (−1)j−1

∫
bj(x1, . . . , xj−1, 0, xj+1, . . . , xk) dx1 · · · d̂xj · · · dxk

=
∫

∂K

β.

The reason we required M to be a manifold of class C2 (with corners) in Proposi-
tions 7.1 and 7.2 is the following. Due to the formulas (5.18)–(5.19) for a pull-back,
if β is of class Cj and F is of class C`, then F ∗β is generally of class Cµ, with
µ = min(j, `−1). Thus, if j = ` = 1, F ∗β might be only of class C0, so there is not
a well-defined notion of a differential form of class C1 on a C1 manifold, though
such a notion is well defined on a C2 manifold. This problem can be overcome,
and one can extend Propositions 7.1–7.2 to the case where M is a C1 manifold
(with corners), and β is a (k − 1)-form with the property that both β and dβ
are continuous. We will not go into the details. Substantially more sophisticated
generalizations are given in [Fed].

Exercises
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1. Consider the region Ω ⊂ R2 defined by

Ω = {(x, y) : 0 ≤ y ≤ x2, 0 ≤ x ≤ 1}.

Show that the boundary points (1, 0) and (1, 1) are corners, but (0, 0, ) is not a
corner. The boundary of Ω is too sharp at (0, 0) to be a corner; it is called a
“cusp.” Extend Proposition 7.2. to treat this region.

2. Suppose U ⊂ Rn is an open set with smooth boundary M = ∂U, and U has
the standard orientation, determined by dx1 ∧ · · · ∧ dxn. (See the paragraph above
(5.23).) Let ϕ ∈ C1(Rn) satisfy ϕ(x) < 0 for x ∈ U, ϕ(x) > 0 for x ∈ Rn \ U,
and grad ϕ(x) 6= 0 for x ∈ ∂U, so grad ϕ points out of U. Show that the natural
oriemtation on ∂U, as defined after Proposition 7.1, is the same as the following.
The equivalence class of forms β ∈ Λn−1(∂U) defining the orientation on ∂U satisfies
the property that dϕ ∧ β is a positive multiple of dx1 ∧ · · · ∧ dxn, on ∂U.

3. Suppose U = {x ∈ Rn : xn < 0}. Show that the orientation on ∂U described
above is that of (−1)n−1 dx1 ∧ · · · ∧ dxn−1.

4. If ω ∈ Λk(M) determines the orientation of M and N is a vector field over ∂M,
nowhere tangent to ∂M, pointing out of M, show that

ι∗(ωcN) ∈ Λk−1(∂M)

determines the orientation of ∂M. Here, ι : ∂M → M is the inclusion.
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8. The classical Gauss, Green, and Stokes formulas

The case of (7.1) where S = Ω is a region in R2 with smooth boundary yields
the classical Green Theorem. In this case, we have

(8.1) β = f dx + g dy, dβ =
(∂g

∂x
− ∂f

∂y

)
dx ∧ dy,

and hence (7.1) becomes the following

Proposition 8.1. If Ω is a region in R2 with smooth boundary, and f and g are
smooth functions on Ω, which vanish outside some compact set in Ω, then

(8.2)
∫∫

Ω

(∂g

∂x
− ∂f

∂y

)
dx dy =

∫

∂Ω

(f dx + g dy).

Note that, if we have a vector field X = X1∂/∂x + X2∂/∂y on Ω, then the
integrand on the left side of (8.2) is

(8.3)
∂X1

∂x
+

∂X2

∂y
= div X,

provided g = X1, f = −X2. We obtain

(8.4)
∫∫

Ω

div X dx dy =
∫

∂Ω

(−X2 dx + X1 dy).

If ∂Ω is parametrized by arc-length, as γ(s) =
(
x(s), y(s)

)
, with orientation as

defined for Proposition 15.1, then the unit normal ν, to ∂Ω, pointing out of Ω, is
given by ν(s) =

(
ẏ(s),−ẋ(s)

)
, and (16.4) is equivalent to

(8.5)
∫∫

Ω

div X dx dy =
∫

∂Ω

〈X, ν〉 ds.

This is a special case of Gauss’ Divergence Theorem. We now derive a more gen-
eral form of the Divergence Theorem. We begin with a definition of the divergence
of a vector field on a surface M.

Let M be a region in Rn, or an n-dimensional manifold, provided with a volume
form ωM ∈ ΛnM. Let X be a vector field on M. Then the divergence of X, denoted
div X, is a function on M which measures the rate of change of the volume form
under the flow generated by X. Thus it is defined by

(8.6) LXωM = (div X)ωM .
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Here, LX denotes the Lie derivative. In view of the general formula LXα = dαcX+
d(αcX), derived in (6.20), since dω = 0 for any n-form ω on M, we have

(8.7) (div X)ωM = d(ωMcX).

If M = Rn, with the standard volume element

(8.8) ω = dx1 ∧ · · · ∧ dxn,

and if

(8.9) X =
∑

Xj(x)
∂

∂xj
,

then

(8.10) ωcX =
n∑

j=1

(−1)j−1Xj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Hence, in this case, (8.7) yields the familiar formula

(8.11) div X =
n∑

j=1

∂jX
j ,

where we use the notation

(8.12) ∂jf =
∂f

∂xj
.

Suppose now that M is endowed with a metric tensor gjk(x). Then M carries
a natural volume element ωM , determined by the condition that, if one has a
coordinate system in which gjk(p0) = δjk, then ωM (p0) = dx1 ∧ · · · ∧ dxn. This
condition produces the following formula, in any oriented coordinate system:

(8.13) ωM =
√

g dx1 ∧ · · · ∧ dxn, g = det(gjk);

compare (4.7).
We now compute div X when the volume element on M is given by (8.13). We

have

(8.14) ωMcX =
∑

j

(−1)j−1Xj√g dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

and hence

(8.15) d(ωMcX) = ∂j(
√

gXj) dx1 ∧ · · · ∧ dxn.
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Here, as below, we use the summation convention. Hence the formula (8.7) gives

(8.16) div X = g−1/2∂j(g1/2Xj).

We now derive the Divergence Theorem, as a consequence of Stokes’ formula,
which we recall is

(8.17)
∫

M

dα =
∫

∂M

α,

for an (n−1)-form on M, assumed to be a smooth compact oriented manifold with
boundary. If α = ωMcX, formula (8.7) gives

(8.18)
∫

M

(div X)ω =
∫

∂M

ωMcX.

This is one form of the Divergence Theorem. We will produce an alternative ex-
pression for the integrand on the right before stating the result formally.

Given that ωM is the volume form for M determined by a Riemannian metric, we
can write the interior product ωMcX in terms of the volume element ω∂M on ∂M,
with its induced Riemannian metric, as follows. Pick coordinates on M, centered
at p0 ∈ ∂M, such that ∂M is tangent to the hyperplane {xn = 0} at p0 = 0, and
such that gjk(p0) = δjk. Then it is clear that, at p0,

(8.19) j∗(ωMcX) = 〈X, ν〉ω∂M

where ν is the unit vector normal to ∂M, pointing out of M and j : ∂M ↪→ M the
natural inclusion. The two sides of (8.19), which are both defined in a coordinate
independent fashion, are hence equal on ∂M, and the identity (8.18) becomes

(8.20)
∫

M

(div X) ωM =
∫

∂M

〈X, ν〉ω∂M .

Finally, we adopt the following common notation: we denote the volume element
on M by dV and that on ∂M by dS, obtaining the Divergence Theorem:

Theorem 8.2. If M is a compact manifold with boundary, X a smooth vector field
on M, then

(8.21)
∫

M

(div X) dV =
∫

∂M

〈X, ν〉 dS,

where ν is the unit outward-pointing normal to ∂M.
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The only point left to mention here is that M need not be orientable. Indeed,
we can treat the integrals in (8.21) as surface integrals, as in §4, and note that all
objects in (8.21) are independent of a choice of orientation. To prove the general
case, just use a partition of unity supported on orientable pieces.

The definition of the divergence of a vector field given by (8.6), in terms of how
the flow generated by the vector field magnifies or diminishes volumes, is a good
geometrical characterization, explaining the use of the term “divergence.”

We obtain some further integral identities. First, we apply (8.21) with X replaced
by uX. We have the following “derivation” identity:

(8.22) div uX = u div X + 〈du,X〉 = u div X + Xu,

which follows easily from the formula (8.16). The Divergence Theorem immediately
gives

(8.23)
∫

M

(div X)u dV +
∫

M

Xu dV =
∫

∂M

〈X, ν〉u dS.

Replacing u by uv and using the derivation identity X(uv) = (Xu)v + u(Xv), we
have

(8.24)
∫

M

[
(Xu)v + u(Xv)

]
dV = −

∫

M

(div X)uv dV +
∫

∂M

〈X, ν〉uv dS.

It is very useful to apply (8.23) to a gradient vector field X. If v is a smooth
function on M, grad v is a vector field satisfying

(8.25) 〈grad v, Y 〉 = 〈Y, dv〉,

for any vector field Y, where the brackets on the left are given by the metric tensor
on M and those on the right by the natural pairing of vector fields and 1-forms.
Hence grad v = X has components Xj = gjk∂kv, where (gjk) is the matrix inverse
of (gjk).

Applying div to grad v, we have the Laplace operator:

(8.26) ∆v = div grad v = g−1/2∂j

(
gjkg1/2∂kv

)
.

When M is a region in Rn and we use the standard Euclidean metric, so div X is
given by (8.11), we have the Laplace operator on Euclidean space:

(8.27) ∆v =
∂2v

∂x2
1

+ · · ·+ ∂2v

∂x2
n

.
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Now, setting X = grad v in (8.23), we have Xu = 〈grad u, grad v〉, and 〈X, ν〉 =
〈ν, grad v〉, which we call the normal derivative of v, and denote ∂v/∂ν. Hence

(8.28)
∫

M

u(∆v) dV = −
∫

M

〈grad u, grad v〉 dV +
∫

∂M

u
∂v

∂ν
dS.

If we interchange the roles of u and v and subtract, we have

(8.29)
∫

M

u(∆v) dV =
∫

M

(∆u)v dV +
∫

M

[
u

∂v

∂ν
− ∂u

∂ν
v
]

dS.

Formulas (8.28)–(8.29) are also called Green formulas. We will make further use of
them in §9.

We return to the Green formula (8.2), and give it another formulation. Consider
a vector field Z = (f, g, h) on a region in R3 containing the planar surface U =
{(x, y, 0) : (x, y) ∈ Ω}. If we form

(8.30) curl Z = det




i j k
∂x ∂y ∂z

f g h




we see that the integrand on the left side of (8.2) is the k-component of curl Z, so
(8.2) can be written

(8.31)
∫∫

U

(curl Z) · k dA =
∫

∂U

(Z · T ) ds,

where T is the unit tangent vector to ∂U. To see how to extend this result, note
that k is a unit normal field to the planar surface U.

To formulate and prove the extension of (8.31) to any compact oriented surface
with boundary in R3, we use the relation between curl and exterior derivative
discussed in Exercises 2–3 of §6. In particular, if we set

(8.32) F =
3∑

j=1

fj(x)
∂

∂xj
, ϕ =

3∑

j=1

fj(x) dxj ,

then curl F =
∑3

1 gj(x) ∂/∂xj where

(8.33) dϕ = g1(x) dx2 ∧ dx3 + g2(x) dx3 ∧ dx1 + g3(x) dx1 ∧ dx2.

Now Suppose M is a smooth oriented (n−1)-dimensional surface with boundary
in Rn. Using the orientation of M, we pick a unit normal field N to M as follows.
Take a smooth function v which vanishes on M but such that ∇v(x) 6= 0 on M.
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Thus ∇v is normal to M. Let σ ∈ Λn−1(M) define the orientation of M. Then
dv ∧ σ = a(x) dx1 ∧ · · · ∧ dxn, where a(x) is nonvanishing on M. For x ∈ M, we
take N(x) = ∇v(x)/|∇v(x)| if a(x) > 0, and N(x) = −∇v(x)/|∇v(x)| if a(x) < 0.
We call N the “positive” unit normal field to the oriented surface M, in this case.
Part of the motivation for this characterization of N is that, if Ω ⊂ Rn is an open
set with smooth boundary M = ∂Ω, and we give M the induced orientation, as
described in §7, then the positive normal field N just defined coincides with the
unit normal field pointing out of Ω. Compare Exercises 2–3 of §7.

Now, if G = (g1, . . . , gn) is a vector field defined near M, then

(8.34)
∫

M

(N ·G) dS =
∫

M

( n∑

j=1

(−1)j−1gj(x) dx1 ∧ · · · d̂xj · · · ∧ dxn

)
.

This result follows from (8.19). When n = 3 and G = curl F, we deduce from
(8.32)–(8.33) that

(8.35)
∫∫

M

dϕ =
∫∫

M

(N · curl F ) dS.

Furthermore, in this case we have

(8.36)
∫

∂M

ϕ =
∫

∂M

(F · T ) ds,

where T is the unit tangent vector to ∂M, specied as follows by the orientation
of ∂M ; if τ ∈ Λ1(∂M) defines the orientation of ∂M, then 〈T, τ〉 > 0 on ∂M. We
call T the “forward” unit tangent vector field to the oriented curve ∂M. By the
calculations above, we have the classical Stokes formula:

Proposition 8.3. If M is a compact oriented surface with boundary in R3, and F
is a C1 vector field on a neighborhood of M, then

(8.37)
∫∫

M

(N · curl F ) dS =
∫

∂M

(F · T ) ds,

where N is the positive unit normal field on M and T the forward unit tangent field
to ∂M.

Exercises
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1. Given a Hamiltonian vector field

Hf =
n∑

j=1

[ ∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj

]
,

calculate div Hf directly from (8.11).

2. Show that the identity (8.21) for div (uX) follows from (8.7) and

du ∧ (ωcX) = (Xu)ω.

Prove this identity, for any n-form ω on Mn. What happens if ω is replaced by a
k-form, k < n?

3. Relate problem 2 to the calculations

(8.38) LuXα = uLXα + du ∧ (ιXα)

and

(8.39) du ∧ (ιXα) = −ιX(du ∧ α) + (Xu)α,

valid for any k-form α. The last identity follows from (6.8).

4. Show that
div [X,Y ] = X(div Y )− Y (div X).

5. Show that, if F : R3 → R3 is a linear rotation, then, for a C1 vector field Z on
R3,

(8.40) F#(curl Z) = curl (F#Z).

6. Let M be the graph in R3 of a smooth function, z = u(x, y), (x, y) ∈ O ⊂ R2, a
bounded region with smooth boundary (maybe with corners). Show that

(8.41)

∫

M

(curl F ·N) dS =
∫∫

O

[(∂F3

∂y
− ∂F2

∂z

)(
−∂u

∂x

)
+

(∂F1

∂z
− ∂F3

∂x

)(
−∂u

∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]
dx dy,
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where ∂Fj/∂x and ∂Fj/∂y are evaluated at
(
x, y, u(x, y)

)
. Show that

(8.42)
∫

∂M

(F · T ) ds =
∫

∂O

(
F̃1 + F̃3

∂u

∂x

)
dx +

(
F̃2 + F̃3

∂u

∂y

)
dy,

where F̃j(x, y) = Fj

(
x, y, u(x, y)

)
. Apply Green’s Theorem, with f = F̃1+F̃3(∂u/∂x),

g = F̃2 + F̃3(∂u/∂y), to show that the right sides of (8.41) and (8.42) are equal,
hence proving Stokes’ Theorem in this case.

7. Let M ⊂ Rn be the graph of a function xn = u(x′), x′ = (x1, . . . , xn−1). If

β =
n∑

j=1

(−1)j−1gj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,

as in (8.34), and ϕ(x′) =
(
x′, u(x′)

)
, show that

ϕ∗β = (−1)n




n−1∑

j=1

gj

(
x′, u(x′)

) ∂u

∂xj
− gn

(
x′, u(x′)

)

 dx1 ∧ · · · ∧ dxn−1

= (−1)n−1G · (−∇u, 1) dx1 ∧ · · · ∧ dxn−1,

where G = (g1, . . . , gn), and verify the identity (8.34) in this case.
Hint. For the last part, recall Exercises 2–3 of §7, regarding the orientation of M.

8. Let S be a smooth oriented 2-dimensional surface in R3, and M an open subset
of S, with smooth boundary; see Fig. 8.1. Let N be the upward unit normal field
to S, defined by its orientation. For x ∈ ∂M, let ν(x) be the unit vector, tangent
to M, normal to ∂M, and pointing out of M, and let T be the forward unit tangent
vector field to ∂M. Show that, on ∂M,

N × ν = T, ν × T = N.

9. If M is an oriented (n− 1)-dimensional surface in Rn, with positive unit normal
field N , show that the volume form ωM on M is given by ωM = ωcN , where
ω = dx1 ∧ · · · ∧ dxn is the standard volume form on Rn. Deduce that the volume
form on the unit sphere Sn−1 ⊂ Rn is given by

ωSn−1 =
n−1∑

j=1

(−1)jxj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,
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if Sn−1 inherits the standard orientation as the boundary of the unit ball.

8B. Symbols, and a more general Green-Stokes formula

Let P be a differential operator of order m on a manifold M ; P could operate
on sections of a vector bundle. In local coordinates, P has the form

(8B.1) Pu(x) =
∑

|α|≤m

pα(x)Dαu(x),

where Dα = Dα1
1 · · ·Dαn

n , Dj = (1/i)∂/∂xj . The coefficients pα(x) could be matrix
valued. The homogeneous polynomial in ξ ∈ Rn (n = dim M),

(8B.2) pm(x, ξ) =
∑

|α|=m

pα(x)ξα

is called the principal symbol (or just the symbol) of P. We want to give an intrinsic
characterization, which will show that pm(x, ξ) is well defined on the cotangent
bundle of M. For a smooth function ψ, a simple calculation, using the product rule
and chain rule of differentiation, gives

(8B.3) P
(
u(x)eiλψ

)
=

[
pm(x, dψ)u(x)λm + r(x, λ)

]
eiλψ,

where r(x, λ) is a polynomial of degree ≤ m − 1 in λ. In (8B.3), pm(x, dψ) is
evaluated by substituting ξ = (∂ψ/∂x1, . . . , ∂ψ/∂xn) into (9.2). Thus the formula

(8B.4) pm(x, dψ)u(x) = lim
λ→∞

λ−me−iλψP
(
u(x)eiλψ

)

provides an intrinsic characteristization of the symbol of P as a function on T ∗M.
We also use the notation

(8B.5) σP (x, ξ) = pm(x, ξ).

If

(8B.6) P : C∞(M, E0) −→ C∞(M, E1)

where E0 and E1 are smooth vector bundles over M, then, for each (x, ξ) ∈ T ∗M,

(8B.7) pm(x, ξ) : E0x −→ E1x

is a linear map between fibers. It is easy to verify that, if P2 is a second differential
operator, mapping C∞(M,E1) to C∞(M,E2), then

(8B.8) σP2P (x, ξ) = σP2(x, ξ)σP (x, ξ).
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If M has a Riemannian metric, and the vector bundles Ej have metrics, then the
formal adjoint P t of a differential operator of order m like (8B.6) is a differential
operator of order m :

P t : C∞(M, E1) −→ C∞(M, E0),

defined by the condition that

(8B.9) (Pu, v) = (u, P tv)

if u and v are smooth compactly supported sections of the bundles E0 and E1. If u
and v are supported on a coordinate patch O on M, over which Ej are trivialized,
so u and v have components uσ, vσ, and if the metrics on E0 and E1 are denoted
hσδ, h̃σδ, respectively, while the Riemannian metric is gjk, then we have

(8B.10) (Pu, v) =
∫

O

h̃σδ(x)
(
Pu

)σ
vδ

√
g(x) dx.

Substituting (8B.1) and integrating by parts produces an expression for P t, of the
form

(8B.11) P tv(x) =
∑

|α|≤m

pt
α(x)Dαv(x).

In particular, one sees that the principal symbol of P t is given by

(8B.12) σP t(x, ξ) = σP (x, ξ)t.

Compare the specific formula (from (8.24))

Xt = −X − (div X),

for the formal adjoint of a real vector field, which has a purely imaginary symbol.
Now suppose M is a compact smooth manifold with smooth boundary. We want

to obtain a generalization of formula (8.24), i.e.,

(8B.13) (Xu, v)− (u,Xtv) =
∫

∂M

〈ν,X〉uv dS,

to the case where P is a general first order differential operator, acting on sections
of a vector bundle as in (8B.6). Using a partition of unity, we can suppose u and v
are supported in a coordinate patch O in M. If the patch is disjoint from ∂M, then
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of course (8B.9) holds. Otherwise, suppose O is a patch in Rn
+. If the first order

operator P has the form

(8B.14) Pu =
n∑

j=1

aj(x)
∂u

∂xj
+ b(x)u,

then

(8B.15)
∫

O

〈Pu, v〉 √g dx =
∫

O

[ n∑

j=1

〈aj(x)
∂u

∂xj
, v〉+ 〈b(x)u, v〉

]√
g dx.

If we apply the fundamental theorem of calculus, the only boundary integral comes
from the term involving ∂u/∂xn. Thus we have

(8B.16)
∫

O

〈Pu, v〉√g dx =
∫

O

〈u, P tv〉√g dx−
∫

Rn−1

〈an(x′, 0)u, v〉
√

g(x′, 0) dx′,

where dx′ = dx1 · · · dxn−1. If we pick the coordinate patch so that ∂/∂xn is the
unit inward normal at ∂M, then

√
g(x′, 0) dx′ is the volume element on ∂M, and

we are ready to establish:

Proposition 8B.1. If M is a smooth compact manifold with boundary and P is a
first order differential operator (acting on sections of a vector bundle), then

(8B.17) (Pu, v)− (u, P tv) =
1
i

∫

∂M

〈σP (x, ν)u, v〉 dS,

Proof. The formula (8B.17), which arose via a choice of local coordinate chart, is
invariant, and hence valid independently of choices.

As in (8B.13), ν denotes the outward pointing unit normal to ∂M ; we use the
Riemannian metric on M to identify tangent vectors and cotangent vectors.

We will see an important application of (8B.17) in §21, where we consider the
Laplace operator on k-forms.

Exercises

1. Consider the divergence operator acting on (complex valued) vector fields:

div : C∞(Ω,Cn) −→ C∞(Ω), Ω ⊂ Rn.
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Show that its symbol is
σdiv(x, ξ)v = i〈v, ξ〉.

2. Consider the gradient operator acting on (complex valued) functions:

grad : C∞(Ω) −→ C∞(Ω,Cn), Ω ⊂ Rn.

Show that its symbol is
σgrad(x, ξ) = iξ.

3. Consider the operator

L = grad div : C∞(Ω,Cn) −→ C∞(Ω,Cn).

Show that its symbol is
σL(x, ξ) = −|ξ|2Pξ,

where Pξ ∈ End(Cn) is the orthogonal projection onto the (complex) linear span
of ξ.

4. Generalize Exercises 1–3 to the case of a Riemannian manifold.



54

9. Topological applications of differential forms

Differential forms are a fundamental tool in calculus. In addition, they have
important applications to topology. We give a few here, starting with simple proofs
of some important topological results of Brouwer.

Proposition 9.1. There is no continuous retraction ϕ : B → Sn−1 of the closed
unit ball B in Rn onto its boundary Sn−1.

In fact, it is just as easy to prove the following more general result. The approach
we use is adapted from [Kan].

Proposition 9.2. If M is a compact oriented manifold with nonempty boundary
∂M, there is no continuous retraction ϕ : M → ∂M.

Proof. A retraction ϕ satisfies ϕ ◦ j(x) = x where j : ∂M ↪→ M is the natural
inclusion. By a simple approximation, if there were a continuous retraction there
would be a smooth one, so we can suppose ϕ is smooth.

Pick ω ∈ Λn−1(∂M) to be the volume form on ∂M, endowed with some Riemann-
ian metric (n = dim M), so

∫
∂M

ω > 0. Now apply Stokes’ theorem to α = ϕ∗ω. If
ϕ is a retraction, j∗ϕ∗ω = ω, so we have

(9.1)
∫

∂M

ω =
∫

M

dϕ∗ω.

But dϕ∗ω = ϕ∗dω = 0, so the integral (9.1) is zero. This is a contradiction, so
there can be no retraction.

A simple consequence of this is the famous Brouwer Fixed Point Theorem.

Theorem 9.3. If F : B → B is a continuous map on the closed unit ball in Rn,
then F has a fixed point.

Proof. We are claiming that F (x) = x for some x ∈ B. If not, define ϕ(x) to be the
endpoint of the ray from F (x) to x, continued until it hits ∂B = Sn−1. It is clear
that ϕ would be a retraction, contradicting Proposition 9.1.

We next show that an even dimensional sphere cannot have a smooth nonvan-
ishing vector field.

Proposition 9.4. There is no smooth nonvanishing vector field on Sn if n = 2k is
even.

Proof. If X were such a vector field, we could arrange it to have unit length, so
we would have X : Sn → Sn with X(v) ⊥ v for v ∈ Sn ⊂ Rn+1. Thus there is
a unique unit speed geodesic γv from v to X(v), of length π/2. Define a smooth
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family of maps Ft : Sn → Sn by Ft(v) = γv(t). Thus F0(v) = v, Fπ/2(v) = X(v),
and Fπ = A would be the antipodal map, A(v) = −v. By (6.34), we deduce that
A∗ω − ω = dβ is exact, where ω is the volume form on Sn. Hence, by Stokes’
theorem,

(9.2)
∫

Sn

A∗ω =
∫

Sn

ω.

On the other hand, it is straightforward that A∗ω = (−1)n+1ω, so (9.2) is possible
only when n is odd.

Note that an important ingredient in the proof of both Proposition 9.2 and
Proposition 9.4 is the existence of n-forms on a compact oriented n-dimensional
manifold M which are not exact (though of course they are closed). We next
establish the following important counterpoint to the Poincaré lemma.

Proposition 9.5. If M is a compact connected oriented manifold of dimension n
and α ∈ ΛnM, then α = dβ for some β ∈ Λn−1(M) if and only if

(9.3)
∫

M

α = 0.

We have already discussed the necessity of (9.3). To prove the sufficiency, we
first look at the case M = Sn.

In that case, any n-form α is of the form a(x)ω, a ∈ C∞(Sn), ω the volume form
on Sn, with its standard metric. The group G = SO(n + 1) of rotations of Rn+1

acts as a transitive group of isometries on Sn. In §4 we constructed the integral of
functions over SO(n + 1), with respect to Haar measure. (See also §H.)

As noted in §4, we have the map Exp : Skew(n + 1) → SO(n + 1), giving
a diffeomorphism from a ball O about 0 in Skew(n + 1) onto an open set U ⊂
SO(n + 1) = G, a neighborhood of the identity. Since G is compact, we can pick a
finite number of elements ξj ∈ G such that the open sets Uj = {ξjg : g ∈ U} cover
G. Pick ηj ∈ Skew(n + 1) such that Exp ηj = ξj . Define Φjt : Uj → G for 0 ≤ t ≤ 1
by

(9.4) Φjt

(
ξj Exp(A)

)
= (Exp tηj)(Exp tA), A ∈ O.

Now partition G into subsets Ωj , each of whose boundaries has content zero, such
that Ωj ⊂ Uj . If g ∈ Ωj , set g(t) = Φjt(g). This family of elements of SO(n + 1)
defines a family of maps Fgt : Sn → Sn. Now, as in (6.31) we have,

(9.5) α = g∗α− dκg(α), κg(α) =
∫ 1

0

F ∗gt(αcXgt) dt,
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for each g ∈ SO(n+1), where Xgt is the family of vector fields on Sn generated by
Fgt, as in (6.29). Therefore,

(9.6) α =
∫

G

g∗α dg − d

∫

G

κg(α) dg.

Now the first term on the right is equal to αω, where α =
∫

a(g ·x)dg is a constant;
in fact, the constant is

(9.7) α =
1

Vol Sn

∫

Sn

α.

Thus in this case (9.3) is precisely what serves to make (9.6) a representation of α
as an exact form. This finishes the case M = Sn.

For a general compact, oriented, connected M, proceed as follows. Cover M
with open sets O1, . . . ,OK such that each Oj is diffeomorphic to the closed unit
ball in Rn. Set U1 = O1, and inductively enlarge each Oj to Uj , so that U j is also
diffeomorphic to the closed ball, and such that Uj+1 ∩Uj 6= ∅, 1 ≤ j < K. You can
do this by drawing a simple curve from Oj+1 to a point in Uj and thickening it.
Pick a smooth partition of unity ϕj , subordinate to this cover.

Given α ∈ ΛnM, satisfying (9.3), take α̃j = ϕjα. Most likely
∫

α̃1 = c1 6= 0,
so take σ1 ∈ ΛnM, with compact support in U1 ∩ U2, such that

∫
σ1 = c1. Set

α1 = α̃1−σ1, and redefine α̃2 to be the old α̃2 plus σ1. Make a similar construction
using

∫
α̃2 = c2, and continue. When you are done, you have

(9.8) α = α1 + · · ·+ αK ,

with αj compactly supported in Uj . By construction,

(9.9)
∫

αj = 0

for 1 ≤ j < K. But then (9.3) implies
∫

αK = 0 too.
Now pick p ∈ Sn and define smooth maps

(9.10) ψj : M −→ Sn

which map Uj diffeomorphically onto Sn\p, and map M \Uj to p. There is a unique
vj ∈ ΛnSn, with compact support in Sn \ p, such that ψ∗vj = αj . Clearly

∫

Sn

vj = 0,
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so by the case M = Sn of Proposition 9.5 already established, we know that
vj = dwj for some wj ∈ Λn−1Sn, and then

(9.11) αj = dβj , βj = ψ∗j wj .

This concludes the proof.
We can sharpen and extend some of the topological results given above, using

the notion of the degree of a map between compact oriented manifolds. Let X and
Y be compact oriented n-dimensional manifolds. We want to define the degree of
a smooth map F : X → Y. To do this, assume Y is connected. We pick ω ∈ ΛnY
such that

(9.12)
∫

Y

ω = 1.

We want to define

(9.13) Deg (F ) =
∫

X

F ∗ω.

The following result shows that Deg (F ) is indeed well defined by this formula. The
key argument is an application of Proposition 9.5.

Lemma 9.6. The quantity (9.13) is independent of the choice of ω, as long as
(9.12) holds.

Proof. Pick ω1 ∈ ΛnY satisfying
∫

Y
ω1 = 1, so

∫
Y

(ω−ω1) = 0. By Proposition 9.5,
this implies

(9.14) ω − ω1 = dα, for some α ∈ Λn−1Y.

Thus

(9.15)
∫

X

F ∗ω −
∫

X

F ∗ω1 =
∫

X

dF ∗α = 0,

and the lemma is proved.

The following is a most basic property.

Proposition 9.7. If F0 and F1 are homotopic, then Deg (F0) = Deg (F1).

Proof. As noted in Exercise 6 of §6, if F0 and F1 are homotopic, then F ∗0 ω − F ∗1 ω
is exact, say dβ, and of course

∫
X

dβ = 0.

We next give an alternative formula for the degree of a map, which is very useful
in many applications. A point y0 ∈ Y is called a regular value of F, provided that,
for each x ∈ X satisfying F (x) = y0, DF (x) : TxX → Ty0Y is an isomorphism. The
easy case of Sard’s Theorem, discussed in Appendix O, implies that most points in
Y are regular. Endow X with a volume element ωX , and similarly endow Y with
ωY . If DF (x) is invertible, define JF (x) ∈ R \ 0 by F ∗(ωY ) = JF (x)ωX . Clearly
the sign of JF (x), i.e., sgn JF (x) = ±1, is independent of choices of ωX and ωY ,
as long as they determine the given orientations of X and Y.
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Proposition 9.8. If y0 is a regular value of F, then

(9.16) Deg (F ) =
∑

{sgn JF (xj) : F (xj) = y0}.

Proof. Pick ω ∈ ΛnY, satisfying (9.12), with support in a small neighborhood of
y0. Then F ∗ω will be a sum

∑
ωj , with ωj supported in a small neighborhood of

xj , and
∫

ωj = ±1 as sgn JF (xj) = ±1.

The following result, which extends Proposition 9.7, is a powerful tool in degree
theory.

Proposition 9.9. Let M be a compact oriented manifold with boundary, dim M =
n + 1. Given a smooth map F : M → Y, let f = F

∣∣
∂M

: ∂M → Y. Then

Deg (f) = 0.

Proof. Applying Stokes’ Theorem to α = F ∗ω, we have

∫

∂M

f∗ω =
∫

M

dF ∗ω.

But dF ∗ω = F ∗dω, and dω = 0 if dim Y = n, so we are done.

An easy corollary of this is Brouwer’s no-retraction theorem. Compare the proof
of Proposition 9.2. (In fact, note how similar are the proofs of Propositions 9.2 and
9.9.)

Corollary 9.10. If M is a compact oriented manifold with nonempty boundary
∂M, then there is no smooth retraction ϕ : M → ∂M.

Proof. Without loss of generality, we can assume M is connected. If there were a
retraction, then ∂M = ϕ(M) must also be connected, so Proposition 9.9 applies.
But then we would have, for the map id. = ϕ

∣∣
∂M

, the contradiction that its degree
is both zero and 1.

For another application of degree theory, let X be a compact smooth oriented
hypersurface in Rn+1, and set Ω = Rn+1 \X. (Assume n ≥ 1.) Given p ∈ Ω, define

(9.17) Fp : X −→ Sn, Fp(x) =
x− p

|x− p| .

It is clear that Deg (Fp) is constant on each connected component of Ω. It is also
easy to see that, when p crosses X, Deg (Fp) jumps by ±1. Thus Ω has at least two
connected components. This is most of the smooth case of the Jordan-Brouwer
separation theorem:
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Theorem 9.11. If X is a smooth compact oriented hypersurface of Rn+1, which is
connected, then Ω = Rn+1 \X has exactly 2 connected components.

Proof. X being oriented, it has a smooth global normal vector field. Use this to
separate a small collar neighborhood C of X into 2 pieces; C \ X = C′ ∪ C1. The
collar C is diffeomorphic to [−1, 1]×X, and each Cj is clearly connected. It suffices
to show that any connected component O of Ω intersects either C0 or C1. Take
p ∈ ∂O. If p /∈ X, then p ∈ Ω, which is open, so p cannot be a boundary point of
any component of Ω. Thus ∂O ⊂ X, so O must intersect a Cj . This completes the
proof.

Let us note that, of the two components of Ω, exactly one is unbounded, say
Ω0, and the other is bounded; call it Ω1. Then we claim that, if X is given the
orientation it gets as ∂Ω1,

(9.18) p ∈ Ωj =⇒ Deg (Fp) = j.

Indeed, for p very far from X, Fp : X → Sn is not onto, so its degree is 0. And
when p crosses X, from Ω0 to Ω1, the degree jumps by +1.

For a simple closed curve in R2, this result is the smooth case of the Jordan curve
theorem. That special case of the argument given above can be found in [Sto].

We remark that, with a bit more work, one can show that any compact smooth
hypersurface in Rn+1 is orientable. A proof will be sketched in §24.

The next application of degree theory is useful in the study of closed orbits of
planar vector fields. Let C be a simple smooth closed curve in R2, parametrized by
arc-length, of total length L. Say C is given by x = γ(t), γ(t + L) = γ(t). Then we
have a unit tangent field to C, T (γ(t)) = γ′(t), defining

(9.19) T : C −→ S1.

Proposition 9.12. For T given by (9.19), we have

(9.20) Deg (T ) = 1.

Proof. Pick a tangent line ` to C such that C lies on one side of `, as in Fig. 9.1.
Without changing Deg(T ), you can flatten out C a little, so it intersects ` along a
line segment, from γ(L0) to γ(L) = γ(0), where we take L0 = L− 2ε, L1 = L− ε.

Now T is close to the map Ts : C → S1, given by

(9.21) Ts

(
γ(t)

)
=

γ(t + s)− γ(t)
|γ(t + s)− γ(t)| ,

for any s > 0 small enough; hence T and such Ts are homotopic; hence T and
Ts are homotopic for all s ∈ (0, L). Furthermore, we can even let s = s(t) be any
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continuous function s : [0, L] → (0, L), such that s(0) = s(L). In particular, T is
homotopic to the map V : C → S1, obtained from (9.21) by taking

s(t) = L1 − t, for t ∈ [0, L0],

and s(t) going monotonically from L1 − L0 to L1 for t ∈ [L0, L]. Note that

V
(
γ(t)

)
=

γ(L1)− γ(t)
|γ(L1)− γ(t)| , 0 ≤ t ≤ L0.

The parts of V over the ranges 0 ≤ t ≤ L0 and L0 ≤ t ≤ L, respectively, are
illustrated in Figures 9.1 and 9.2. We see that V maps the segment of C from
γ(0) to γ(L0) into the lower half of the circle S1, and it maps the segment of C
from γ(L0) to γ(L) into the upper half of the circle S1. Therefore V (hence T ) is
homotopic to a one-to-one map of C onto S1, preserving orientation, and (9.20) is
proved.

The material of this section can be cast in the language of deRham cohomology,
which we now define. Let M be a smooth manifold. A smooth k-form u is said
to be exact if u = dv for some smooth (k − 1)-form v, and closed if du = 0. Since
d2 = 0, every exact form is closed:

(9.22) Ek(M) ⊂ Ck(M),

where Ek(M) and Ck(M) denote respectively the spaces of exact and closed k-forms.
The deRham cohomology groups are defined as quotient spaces:

(9.23) Hk(M) = Ck(M)/Ek(M).

There are no (−1)-forms, so E0(M) = 0. A 0-form is a real-valued function, and it
is closed if and only if it is constant on each connected component of M, so

(9.24) H0(M) ≈ Rν , ν = # connected components of M.

An immediate consequence of Proposition 9.5 is the following:

Proposition 9.13. If M is a compact connected oriented manifold of dimension
n, then

(9.25) Hn(M) ≈ R.

Via the pull-back of forms, a smooth map F : X → Y between two manifolds
induces maps on cohomology:

(9.26) F ∗ : Hj(Y ) −→ Hj(X).
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If X and Y are both compact, connected, and oriented, and of dimension n, then
F ∗ : Hn(Y ) → Hn(X), and, via the isomorphisms Hn(X) ≈ R ≈ Hn(Y ), this map
is simply multiplication by Deg F.

DeRham cohomology plays an important role in material we develop later, par-
ticularly in the theory of characteristic classes, in §§19–20. Also, the Hodge theory
of §§21–24 provides some useful tools in the study of deRham cohomology.

Exercises

1. Show that the identity map I : X → X has degree 1.

2. Show that, if F : X → Y is not onto, then Deg(F ) = 0.

3. If A : Sn → Sn is the antipodal map, show that Deg(A) = (−1)n−1.

4. Show that the homotopy invariance property given in Proposition 9.7 can be
deduced as a corollary of Proposition 9.9.
Hint. Take M = X × [0, 1].

5. Let p(z) = zn + an−1z
n−1 + · · · + a1z + a0 be a polynomial of degree n ≥ 1.

Show that, if we identify S2 ≈ C ∪ {∞}, then p : C → C has a unique continuous
extension p̃ : S2 → S2, with p̃(∞) = ∞. Show that

Deg p̃ = n.

Deduce that p̃ : S2 → S2 is onto, and hence that p : C→ C is onto. In particular,
each nonconstant polynomial in z has a complex root. This result is the Funda-
mental Theorem of Algebra.
Hint. For z large, set ζ = 1/z and consider

ϕ(ζ) =
1

p(1/ζ)
=

ζn

1 + an−1ζ + · · ·+ a0ζn
= g(ζ)n,

with
g(ζ) = ζ + bζ2 + · · · .

Show that, for w ∈ C, |w| small, ϕ−1(w) consists of n points.

6. Suppose X, Y , and Z are compact and oriented, with Y and Z connected. Let
f : X → Y and g : Y → Z be smooth. Show that

Deg (g ◦ f) = Deg (g)Deg (f).
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10. Critical points and index of a vector field

A critical point of a vector field V is a point where V vanishes. Let V be a
vector field defined on a neighborhood O of p ∈ Rn, with a single critical point, at
p. Then, for any small ball Br about p, Br ⊂ O, we have a map

(10.1) Vr : ∂Br → Sn−1, Vr(x) =
V (x)
|V (x)| .

The degree of this map is called the index of V at p, denoted indp(V ); it is clearly
independent of r. If V has a finite number of critical points, then the index of V is
defined to be

(10.2) Index (V ) =
∑

indpj (V ).

If ψ : O → O′ is an orientation preserving diffeomorphism, taking p to p and V
to W, then we claim

(10.3) indp(V ) = indp(W ).

In fact, Dψ(p) is an element of GL(n,R) with positive determinant, so it is homo-
topic to the identity, and from this it readily follows that Vr and Wr are homotopic
maps of ∂Br → Sn−1. Thus one has a well defined notion of the index of a vector
field with a finite number of critical points on any oriented manifold M.

A vector field V on O ⊂ Rn is said to have a non-degenerate critical point at p
provided DV (p) is a nonsingular n×n matrix. The following formula is convenient.

Proposition 10.1. If V has a nondegenerate critical point at p, then

(10.4) indp(V ) = sgn det DV (p).

Proof. If p is a nondegenerate critical point, and we set ψ(x) = DV (p)x, ψr(x) =
ψ(x)/|ψ(x)|, for x ∈ ∂Br, it is readily verified that ψr and Vr are homotopic, for
r small. The fact that Deg(ψr) is given by the right side of (10.4) is an easy
consequence of Proposition 9.8.

The following is an important global relation between index and degree.

Proposition 10.2. Let Ω be a smooth bounded region in Rn+1. Let V be a vector
field on Ω, with a finite number of critical points pj , all in the interior Ω. Define
F : ∂Ω → Sn by F (x) = V (x)/|V (x)|. Then

(10.5) Index (V ) = Deg (F ).

Proof. If we apply Proposition 9.9 to M = Ω \ ⋃
j Bε(pj), we see that Deg(F ) is

equal to the sum of degrees of the maps of ∂Bε(pj) to Sn, which gives (10.5).

Next we look at a process of producing vector fields in higher dimensional spaces
from vector fields in lower dimensional spaces.
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Proposition 10.3. Let W be a vector field on Rn, vanishing only at 0. Define a
vector field V on Rn+k by V (x, y) =

(
W (x), y

)
. Then V vanishes only at (0, 0).

Then we have

(10.6) ind0W = ind(0,0)V.

Proof. If we use Proposition 9.8 to compute degrees of maps, and choose y0 ∈
Sn−1 ⊂ Sn+k−1, a regular value of Wr, and hence also for Vr, this identity follows.

We turn to a more sophisticated variation. Let M be a compact oriented n
dimensional surface in Rn+k, W a (tangent) vector field on M with a finite number
of critical points pj . Let Ω be a small tubular neighborhood of X, π : Ω → X

mapping z ∈ Ω to the nearest point in M. Let ϕ(z) = dist(z, X)2. Now define a
vector field V on Ω by

(10.7) V (z) = W (π(z)) +∇ϕ(z).

Proposition 10.4. If F : ∂Ω → Sn+k−1 is given by F (z) = V (z)/|V (z)|, then

(10.8) Deg (F ) = Index (W ).

Proof. We see that all the critical points of V are points in M which are critical
for W, and, as in Proposition 10.3, Index (W ) = Index (V ). But Proposition 10.2
implies Index (V ) = Deg (F ).

Since ϕ(z) is increasing as one goes away from M , it is clear that, for z ∈
∂Ω, V (z) points out of Ω, provided it is a sufficiently small tubular neighborhood
of M. Thus F : ∂Ω → Sn+k−1 is homotopic to the Gauss map

(10.9) N : ∂Ω −→ Sn+k−1,

given by the outward pointing normal. This immediately gives:

Corollary 10.5. Let M be a compact oriented surface in Rn+k, Ω a small tubular
neighborhood of M, and N : ∂Ω → Sn+k−1 the Gauss map. If W is a vector field
on M with a finite number of critical points, then

(10.10) Index (W ) = Deg (N).

Clearly the right side of (10.10) is independent of the choice of W. Thus any two
vector fields on M with a finite number of critical points have the same index, i.e.,
Index (W ) is an invariant of M . This invariant is denoted

(10.11) Index (W ) = χ(M),
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and is called the Euler characteristic of M. See the exercises for more results on
χ(M).

Exercises

A nondegenerate critical point p of a vector field V is said to be a source if the real
parts of the eigenvalues of DV (p) are all positive, a sink if they are all negative,
and a saddle if they are all either positive or negative, and there exist some of each
sign. Such a critical point is called a center if all orbits of V close to p are closed
orbits, which stay near p; this requires all the eigenvalues of DV (p) to be purely
imaginary.

In Exerises 1–3, V is a vector field on a region Ω ⊂ R2.

1. Let V have a nondegenerate critical point at p. Show that

p saddle =⇒ indp(V ) = −1

p source =⇒ indp(V ) = 1

p sink =⇒ indp(V ) = 1

p center =⇒ indp(V ) = 1

2. If V has a closed orbit γ, show that the map T : γ → S1, T (x) = V (x)/|V (x)|,
has degree +1.
Hint. Use Proposition 9.12.

3. If V has a closed orbit γ whose inside O is contained in Ω, show that V must
have at least one critical point in O, and that the sum of the indices of such critical
points must be +1.
Hint. Use Proposition 10.2.
If V has exactly one critical point in O, show that it cannot be a saddle.

4. Let M be a compact oriented 2-dimensional manifold. Given a triangulation of
M, within each triangle construct a vector field, vanishing at 7 points as illustrated
in Fig. 10.1, with the vertices as attractors, the center as a repeller, and the mid-
points of each side as saddle points. Fit these together to produce a smooth vector
field X on M. Show directly that

(10.12) Index (X) = V − E + F,
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where
V = # vertices, E = # edges, F = # faces,

in the triangulation.

5. More generally, construct a vector field on an n-simplex so that, when a compact
oriented n-dimensional surface M is triangulated into simplices, one produces a
vector field X on M such that

(10.13) Index (X) =
n∑

j=0

(−1)jνj ,

where νj is the number of j-simplices in the triangulation, i.e., ν0 = # vertices,
ν1 = # edges, . . . , νn = # of n-simplices.
See Fig. 10.2 for a picture of a 3-simplex, with its faces (i.e., 2-simplices), edges,
and vertices labelled.

The right side of (10.13) is one definition of χ(M). As we have seen that the left
side of (10.13) is independent of the choice of X, it follows that the right side is
independent of the choice of triangulation.

6. Let M be the sphere Sn, which is homeomorphic to the boundary of an (n + 1)-
simplex. Computing the right side of (10.13), show that

(10.14) χ(Sn) = 2 if n even, 0 if n odd.

Conclude that, if n is even, there is no smooth nowhere vanishing vector field on
Sn. (This re-proves Proposition 9.4.)

7. Consider the vector field R on S2 generating rotation about an axis. Show
that R has two critical points, at the “poles.” Classify the critical points, compute
Index(R), and compare the n = 2 case of (10.14). Do the same for a vector field
with a source at the north pole and a sink at the south pole. Generalize from S2

to Sn.

8. Assume Mn ⊂ Rn+1; let M be oriented as the boundary of a bounded domain
Ω. If G : M → Sn denotes the Gauss map of M to its outward normal, show that

(10.15)
(
1 + (−1)n

)
Deg G = Deg N = χ(M).
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In particular,

(10.16) n even =⇒ DegG =
1
2
χ(M).

Hint. Note that the manifold ∂Ω in (10.9) consists essentially of 2 copies of M,
with opposite orientations.

9. Show that the computation of the index of a vector field X on a manifold M
is independent of orientation, and that Index (X) can be defined when M is not
orientable.

10. Comparing Index (X) and Index (−X), show that, for a compact smooth man-
ifold M ,

dim M odd =⇒ χ(M) = 0.

11. Let M, Ω, and G be as in Exercise 8. Show that there exists a smooth vector
field W on Ω, with only isolated critical points, such that W = G on ∂Ω. Hence
DegG = IndexW . Show that W gives rise to a vector field W̃ on the double Ω̃ of
Ω such that Index W̃ = (1 + (−1)n+1) Index W . Deduce that

(10.17) n odd =⇒ Deg G =
1
2
χ(Ω̃).

Remark. Material in §§23–24 will identify the right side of (10.17) with χ(Ω) (when
n is odd). Furthermore, it will be seen that χ(∂Ω) = 2χ(Ω) when n is even. Hence,
whether n is even or odd, one has

(10.18) Deg G = χ(Ω).

12. Let Ω ⊂ R4 ⊂ S4 be a tubular neighborhood of a diffeomorphic image of T2 in
R4, let M = ∂Ω, and define G : M → S3 as in Exercise 8. We have

χ(Ω) = 0, Deg G = 0.

Consider Ω2 = S4 \ Ω. It follows from material in §24 (cf. (24.8)) that

χ(Ω2) = 2.

Use this to produce a region Ω1 ⊂ R4 diffeomorphic to Ω2, with boundary ∂Ω1

diffeomorphic to M , and Gauss map

G1 : ∂Ω1 → S3, Deg G1 = 2.
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Note the contrast with (10.16), which shows that Deg G is a differential topological
invariant of M , when dim M is even.

13. Let M be a compact 2-dimensional surface. Let M̃ be obtained by attaching a
handle to M . Show that

χ(M̃) = χ(M)− 2.

Hint. Take a vector field X on M as in Exercise 4. Attach one end of the handle to
a circle about a source of X and the other to a circle about a sink of X. Produce
a vector field X̃ on M̃ with all the singularities of X, except that one source and
one sink are deleted. See Fig. 10.3.
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11. Geodesics on Riemannian manifolds

We want to re-do the derivation of §1 of the ODE for a geodesic on a Riemannian
manifold M. As before, let γs(t) be a one parameter family of curves satisfying
γs(a) = p, γs(b) = q, and (1.3). Then

(11.1) V = ∂sγs(t)|s=0

is a vector field defined on the curve γ0(t), vanishing at p and q, and a general
vector field of this sort could be obtained by a variation γs(t). Let

(11.2) T = γ′s(t).

With the notation of (1.1), we have, parallel to (1.6),

(11.3)
L′(s) =

∫ b

a

V 〈T, T 〉1/2 dt

=
1

2c0

∫ b

a

V 〈T, T 〉 dt, at s = 0,

assuming γ0 has constant speed c0, as in (1.3). Now we need a generalization of
(∂/∂s)γ′s(t), and of the formula (1.7). One natural approach involves the notion of
a covariant derivative.

If X and Y are vector fields on M, the covariant derivative ∇XY is a vector field
on M. The following properties are to hold: we assume ∇XY is additive in both X
and Y, that

(11.4) ∇fXY = f∇XY,

for f ∈ C∞(M), and

(11.5) ∇X(fY ) = f∇XY + (Xf)Y,

i.e., ∇X acts as a derivation. The operator ∇X is required to have the following
relation to the Riemannian metric:

(11.6) X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

One further property, called the “zero torsion condition,” will uniquely specify ∇ :

(11.7) ∇XY −∇Y X = [X, Y ].

If these properties hold, one says ∇ is a “Levi-Civita connection.” We have the
following existence result.
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Proposition 11.1. A Riemannian metric has associated a unique Levi-Civita con-
nection, given by

(11.8)
2〈∇XY, Z〉 =X〈Y,Z〉+ Y 〈X, Z〉 − Z〈X, Y 〉

+ 〈[X,Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉.

Proof. To obtain the formula (11.8), cyclically permute X, Y, Z in (11.6) and take
the appropriate alternating sum, using (11.7) to cancel out all terms involving ∇
but two copies of 〈∇XY, Z〉. This derives the formula and establishes uniqueness.
On the other hand, if (11.8) is taken as the definition of ∇XY, then verification of
the properties (11.4)–(11.7) is a routine exercise.

For example, if you interchange the roles of Y and Z in (11.8), and add to it the
resulting formula for 2〈Y,∇XZ〉, you get cancellation of all terms on the right side
except X〈Y, Z〉+ X〈Z, Y 〉; this gives (11.6).

We can resume our analysis of (11.3), which becomes

(11.9) L′(s) =
1
c0

∫ b

a

〈∇V T, T 〉 dt, at s = 0.

Since ∂/∂s and ∂/∂t commute, we have [V, T ] = 0 on γ0, and (11.7) implies

(11.10) L′(s) =
1
c0

∫ b

a

〈∇T V, T 〉 dt at s = 0.

The replacement for (1.7) is

(11.11) T 〈V, T 〉 = 〈∇T V, T 〉+ 〈V,∇T T 〉,

so, by the fundamental theorem of calculus,

(11.12) L′(0) = − 1
c0

∫ b

a

〈V,∇T T 〉 dt.

If this is to vanish for all smooth vector fields over γ0, vanishing at p and q, we
must have

(11.13) ∇T T = 0.

This is the geodesic equation for a general Riemannian metric.
If the Riemannian metric takes the form gjk(x), in a coordinate chart, and ∇ is

the corresponding Levi-Civita connection, the Christoffel symbols Γk
ij are defined

by

(11.14) ∇∂i∂j =
∑

k

Γk
ij∂k,
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where ∂k = ∂/∂xk. The formula (11.8) implies

(11.15) gk`Γ`
ij =

1
2

[∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk

]
.

Note the coincidence with (1.34). We can rewrite the geodesic equation (11.13) for
γ0(t) = x(t) as follows. With x = (x1, . . . , xn), T = (ẋ1, . . . , ẋn), we have

(11.16) 0 =
∑

`

∇T

(
ẋ`∂`

)
=

∑

`

[
ẍ`∂` + ẋ`∇T ∂`

]
.

In view of (11.14), this becomes

(11.17) ẍ` + ẋj ẋk Γ`
jk = 0

(with the summation convention), just as in (1.33). The standard existence and
uniqueness theory applies to this system of second order ODE. We will call any
smooth curve satisfying the equation (11.13), or equivalently (11.17), a geodesic.
Shortly we will verify that such a curve is indeed locally length minimizing. Note
that if T = γ′(t), then T 〈T, T 〉 = 2〈∇T T, T 〉, so if (11.13) holds γ(t) automatically
has constant speed.

For a given p ∈ M, the exponential map

(11.18) Expp : U −→ M,

is defined on a neighborhood U of 0 ∈ TpM by

(11.19) Expp(v) = γv(1)

where γv(t) is the unique constant speed geodesic satisfying

(11.20) γv(0) = p, γ′v(0) = v.

Note that Expp(tv) = γv(t). It is clear that Expp is well defined and C∞ on a
sufficiently small neighborhood U of 0 ∈ TpM, and its derivative at 0 is the identity.
Thus, perhaps shrinking U, we have that Expp is a diffeomorphism of U onto a
neighborhood O of p in M. This provides what is called an exponential coordinate
system, or a normal coordinate system. Clearly the geodesics through p are the
lines through the origin in this coordinate system. We claim that, in this coordinate
system,

(11.21) Γ`
jk(p) = 0.

Indeed, since the line through the origin in any direction a∂j + b∂k is a geodesic,
we have

(11.22) ∇(a∂j+b∂k)(a∂j + b∂k) = 0 at p,
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for all a, b ∈ R, and all j, k. This implies

(11.23) ∇∂j
∂k = 0 at p for all j, k,

which implies (11.21). We note that (11.21) implies ∂gjk/∂x` = 0 at p, in this
exponential coordinate system. In fact, a simple manipulation of (11.15) gives

(11.24)
∂gjk

∂x`
= gmkΓm

j` + gmjΓm
k`.

As a consequence, a number of calculations in differential geometry can be simplified
by working in exponential coordinate systems.

We now establish a result, known as the Gauss Lemma, which implies that a
geodesic is locally length minimizing. For a small, let Σa = {v ∈ Rn : ‖v‖ = a},
and let Sa = Expp(Σa).

Proposition 11.2. Any unit speed geodesic through p hitting Sa at t = a is orthog-
onal to Sa.

Proof. If γ0(t) is a unit speed geodesic, γ0(0) = p, γ0(a) = q ∈ Sa, and V ∈ TqM
is tangent to Sa, there is a smooth family of unit speed geodesics, γs(t), such that
γs(0) = p and (∂/∂s)γs(a)

∣∣
s=0

= V. Using (11.10)–(11.11) for this family, with
0 ≤ t ≤ a, since L(s) is constant, we have

(11.25) 0 =
∫ a

0

T 〈V, T 〉 dt = 〈V, γ′0(a)〉,

which proves the proposition.

Corollary 11.3. Suppose Expp : Ba → M is a diffeomorphism of Ba = {v ∈
TpM : |v| ≤ a} onto its image B. Then, for each q ∈ B, q = Expp(w), the curve
γ(t) = Expp(tw), 0 ≤ t ≤ 1, is the unique shortest path from p to q.

Proof. We can assume |w| = a. Let σ : [0, 1] → M be another constant speed path
from p to q, say |σ′(t)| = b. We can assume σ(t) ∈ B for all t ∈ [0, 1]; otherwise
restrict σ to [0, β] where β = inf{t : σ(t) ∈ ∂B} and the argument below will show
this segment has length ≥ a.

For all t such that σ(t) ∈ B \ p, we can write σ(t) = Expp(r(t)ω(t)), for uniquely
determined ω(t) in the unit sphere of TpM , and r(t) ∈ (0, a] If we pull the metric
tensor of M back to Ba, we have

|σ′(t)|2 = r′(t)2 + r(t)2|ω′(t)|2,
by the Gauss lemma. Hence

(11.26)

b = `(σ) =
∫ 1

0

|σ′(t)| dt

=
1
b

∫ 1

0

|σ′(t)|2 dt

≥ 1
b

∫ 1

0

r′(t)2 dt.
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Cauchy’s inequality yields

∫ 1

0

|r′(t)| dt ≤
(∫ 1

0

r′(t)2 dt
)1/2

,

so the last quantity in (11.26) is ≥ a2/b. This implies b ≥ a, with equality only if
|ω′(t)| = 0 for all t, so the corollary is proven.

The following is a useful converse.

Proposition 11.4. Let γ : [0, 1] → M be a constant speed Lipschitz curve from p
to q that is absolutely length minimizing. Then γ is a smooth curve satisfying the
geodesic equation.

Proof. We make use of the following fact, which will be established below. Namely,
there exists a > 0 such that, for each point x ∈ γ, Expx : Ba → M is a diffeomor-
phism of Ba onto its image (and a is independent of x ∈ γ).

So choose t0 ∈ [0, 1] and consider x0 = γ(t0). The hypothesis implies that γ
must be a length minimizing curve from x0 to γ(t), for all t ∈ [0, 1] By Corollary
11.3, γ(t) coincides with a geodesic for t ∈ [t0, t0 + α] and for t ∈ [t0 − β, t0], where
t0 + α = min(t0 + a, 1) and t0 − β = max(t0 − a, 0). We need only show that, if
t0 ∈ (0, 1), these two geodesic segments fit together smoothly, i.e., that γ is smooth
in a neighborhood of t0.

To see this, pick ε > 0 such that ε < min(t0, a), and consider t1 = t0 − ε. The
same argument as above applied to this case shows that γ coincides with a smooth
geodesic on a segment including t0 in its interior, so we are done.

The asserted lower bound on a follows from compactness plus the following
observation. Given p ∈ M , there is a neighborhood O of (p, 0) in TM on which

(11.27) E : O −→ M, E(x, v) = Expx(v), (v ∈ TxM)

is defined. Let us set

(11.28) F(x, v) =
(
x, Expx(v)

)
, F : O −→ M ×M.

We readily compute that

DF(p, 0) =
(

I 0
I I

)
,

as a map on TpM ⊕ TpM , where we use Expp to identify T(p,0)TpM ≈ TpM ⊕
TpM ≈ T(p,p)(M × M). Hence the inverse function theorem implies that F is a
diffeomorphism from a neighborhood of (p, 0) in TM onto a neighborhood of (p, p)
in M ×M .

Let us remark that, though a geodesic is locally length minimizing, it need not
be globally length minimizing. There are many simple examples of this, which we
leave to the reader to produce.
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In addition to length, another quantity associated with a smooth curve γ :
[a, b] → M is energy:

(11.29) E =
1
2

∫ b

a

〈T, T 〉 dt,

which differs from the arclength integral in that the integrand here is 〈T, T 〉, rather
than the square root of this quantity. If one has a family γs of curves, with variation
(11.1) and with fixed endpoints, then

(11.30) E′(0) =
1
2

∫ b

a

V 〈T, T 〉 dt.

This is just like the formula (11.3) for L′(0), except for the factor 1/2c0 in (11.3),
but to get (11.30) we do not need to assume that the curve γ0 has constant speed.
Now the computations (11.9)–(11.12) have a parallel here:

(11.31) E′(0) = −
∫ b

a

〈V,∇T T 〉 dt.

Hence the stationary condition for the energy functional (11.29) is ∇T T = 0, which
coincides with the geodesic equation (11.13).

Exercises

1. Verify that the definition of∇X given by (11.8) does indeed provide a Levi-Civita
connection, having properties (11.4)–(11.7).

2. Let G be a compact Lie group, with a bi-invariant Riemannian metric (such as
SO(n), discussed in §4). Show that any unit speed geodesic γ on G with γ(0) = e,
the identity element, is a subgroup of G, i.e., γ(s + t) = γ(s)γ(t). Hence the two
notions of the exponential map on TeG coincide.
Hint. Given p = γ(t0), define Rp : G → G by Rp(g) = pg−1p. Show that this is
an isometry of G that fixes p and leaves γ invariant, though reversing its direction.
Deduce from this that p2 = γ(2t0).

3. Let M be a connected Riemannian manifold. Define d(p, q) to be the infimum
of lengths of smooth curves from p to q. Show this makes M a metric space.
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4. Let M be a connected Riemannian manifold which, with the metric of Exercise
3, is compact. Show that any p, q ∈ M can be joined by a geodesic of length d(p, q).
Hint. Let γk : [0, 1] → M, γk(0) = p, γk(1) = q, be constant speed curves of
lengths `k → d(p, q). Use Ascoli’s theorem to produce a Lipschitz curve of length
d(p, q) as a uniform limit of a subsequence of these.

Exercises 5–7 deal with an extension of the result of Exercise 4, known as the Hopf-
Rinow theorem. We assume that M is a connected Riemannian manifold which is
“geodesically complete,” i.e., for each x ∈ M, v ∈ TxM, Expx(tv) is defined for all
t ∈ R. The theorem states that for such a manifold, any two points can be joined
by a geodesic.

Fix p, q ∈ M , and set r = d(p, q). Assume a > 0 and Expp : Ba → B is a
diffeomorphism.

5. Show that there exists p1 ∈ ∂B such that d(p1, q) = inf {d(y, q) : y ∈ ∂B}. Show
that

d(p1, q) = r − a.

Let γ : R→ M be the unit speed geodesic such that γ(0) = p, γ(a) = p1.

6. Assume Expp1 : Ba1 → B1 is a diffeomorphism. Pick p2 ∈ ∂B1 such that
d(p2, q) = inf {d(y, q) : y ∈ ∂B1}. Show that d(p2, q) = r − a − a1 and that
d(p, p2) = a + a1. Then show that

p2 = γ(a + a1).

Hint. Recall Proposition 11.4.

7. Show that, for all t ∈ [0, r],

d(γ(t), q) = r − t.

Hint. Look at the set of t ∈ [0, r] for which the conclusion is true.

8. Given a connected Riemannian manifold M , show that M is geodesically com-
plete if and only if it is complete as a metric space, with metric defined as in Exercise
3.
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12. The covariant derivative and divergence of tensor fields

The covariant derivative of a vector field on a Riemannian manifold was intro-
duced in §11, in connection with the study of geodesics. We will briefly recall this
concept here and relate the divergence of a vector field to the covariant derivative,
before generalizing these notions to apply to more general tensor fields. A still more
general setting for covariant derivatives is discussed in §13.

If X and Y are vector fields on a Riemannian manifold M, then ∇XY is a vector
field on M, the covariant derivative of Y with respect to X. We have the properties

(12.1) ∇(fX)Y = f∇XY

and

(12.2) ∇X(fY ) = f∇XY + (Xf)Y,

the latter being the derivation property. Also, ∇ is related to the metric on M by

(12.3) Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉,

where 〈X, Y 〉 = gjkXjY k is the inner product on tangent vectors. The Levi-Civita
connection on M is uniquely specified by (12.1)–(12.3) and the torsion-free property:

(12.4) ∇XY −∇Y X = [X, Y ].

There is the explicit defining formula (derived already in (11.8)):

(12.5)
2〈∇XY, Z〉 = X〈Y,Z〉+ Y 〈X, Z〉 − Z〈X, Y 〉

+ 〈[X,Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉,

which follows from cyclically permuting X,Y, and Z in (12.3) and combining the
results, exploiting (12.4) to cancel out all covariant derivatives but one. Another
way of writing this is the following. If

(12.6) X = Xk∂k, ∂k =
∂

∂xk
(summation convention),

then

(12.7) ∇∂j X = Xk
;j ∂k

with

(12.8) Xk
;j = ∂jX

k +
∑

`

Γk
`jX

`
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where the “connection coefficients” are given by the formula

(12.9) Γ`
jk =

1
2
g`µ

[∂gjµ

∂xk
+

∂gkµ

∂xj
− ∂gjk

∂xµ

]
,

equivalent to (12.5). We also recall that ∂gkµ/∂xj can be recovered from Γ`
jk :

(12.10)
∂gkµ

∂xj
= g`µΓ`

jk + g`kΓ`
jµ.

The divergence of a vector field has an important expression in terms of the
covariant derivative.

Proposition 12.1. Given a vector field X with components Xk as in (12.6),

(12.11) div X = Xj
;j .

Proof. This can be deduced from our previous formula for div X,

(12.12)
div X = g−1/2∂j(g1/2Xj)

= ∂jX
j + (∂j log g1/2)Xj .

One way to see this is the following. We can think of ∇X as defining a tensor field
of type (1, 1) :

(12.13) (∇X)(Y ) = ∇Y X.

Then the right side of (12.11) is the trace of such a tensor field:

(12.14) Xj
;j = Tr ∇X.

This is clearly defined independently of any choice of coordinate system. If we
choose an exponential coordinate system centered at a point p ∈ M, then gjk(p) =
δjk and ∂gjk/∂x` = 0 at p, so (12.12) gives div X = ∂jX

j at p, in this coordinate
system, while the right side of (12.11) is equal to ∂jX

j +Γj
`jX

` = ∂jX
j at p. This

proves the identity (12.11).

The covariant derivative can be applied to forms, and other tensors, by requiring
∇ to be a derivation. On scalar functions, set

(12.15) ∇Xu = Xu.

For a 1-form α, ∇Xα is characterized by the identity

(12.16) 〈Y,∇Xα〉 = X〈Y, α〉 − 〈∇XY, α〉.
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Denote by X(M) the space of smooth vector fields on M, and by Λ1(M) the space
of smooth 1-forms; each of these is a module over C∞(M). Generally, a tensor field
of type (k, j) defines a map (with j factors of X(M) and k of Λ1(M))

(12.17) F : X(M)× · · · × X(M)× Λ1(M)× · · · × Λ1(M) −→ C∞(M),

which is linear in each factor, over the ring C∞(M). A vector field is of type (1, 0)
and a 1-form is of type (0, 1). The covariant derivative ∇XF is a tensor of the same
type, defined by
(12.18)

(∇XF )(Y1, . . . , Yj , α1, . . . , αk) = X · (F (Y1, . . . , Yj , α1, . . . , αk)
)

−
j∑

`=1

F (Y1, . . . ,∇XY`, . . . , Yj , α1, . . . , αk)

−
k∑

`=1

F (Y1, . . . , Yj , α1, . . . ,∇Xα`, . . . , αk),

where ∇Xα` is uniquely defined by (12.16). We can naturally consider ∇F as a
tensor field of type (k, j + 1) :

(12.19) (∇F )(X, Y1, . . . , Yj , α1, . . . , αk) = (∇XF )(Y1, . . . , Yj , α1, . . . , αk).

For example, if Z is a vector field, ∇Z is a vector field of type (1, 1), as already
anticipated in (12.13). Hence it makes sense to consider the tensor field ∇(∇Z),
of type (1, 2). For vector fields X and Y, we define the Hessian ∇2

(X,Y )Z to be the
vector field characterized by

(12.20) 〈∇2
(X,Y )Z,α〉 = (∇∇Z)(X, Y, α).

Since, by (12.19), if F = ∇Z, we have

(12.21) F (Y, α) = 〈∇Y Z, α〉,

and, by (12.18),

(12.22) (∇XF )(Y, α) = X · (F (Y, α)
)− F (∇XY, α)− F (Y,∇Xα),

it follows by substituting (12.21) into (12.22) and using (12.16), that

(12.23) ∇2
(X,Y )Z = ∇X∇Y Z −∇(∇XY )Z;

this is a useful formula for the Hessian of a vector field.
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More generally, for any tensor field F, of type (j, k), the Hessian ∇2
(X,Y )F, also of

type (j, k), is defined in terms of the tensor field ∇2F = ∇(∇F ), of type (j, k + 2),
by the same type of formula as (12.20), and we have

(12.24) ∇2
(X,Y )F = ∇X(∇Y F )−∇(∇XY )F,

by an argument similar to that for (12.23).
The metric tensor g is of type (0, 2), and the identity (12.3) is equivalent to

(12.25) ∇Xg = 0

for all vector fields X, i.e., to ∇g = 0. In index notation, this means

(12.26) gjk;` = 0, or equivalently, gjk
;` = 0.

We also note that the zero torsion condition (12.4) implies

(12.27) u;j;k = u;k;j

when u is a smooth scalar function, with second covariant derivative ∇∇u, a tensor
field of type (0, 2). It turns out that analogous second order derivatives of a vector
field differ by a term arising from the curvature tensor; this point is discussed in
§§13–15.

We have seen an expression for the divergence of a vector field in terms of the
covariant derivative. We can use this latter characterization to provide a general
notion of divergence of a tensor field. If T is a tensor field of type (k, j), with
components

(12.28) Tα
β = Tα1···αj

β1···βk = T (∂α1 , . . . , ∂αj , dxβ1 , . . . , dxβk
)

in a given coordinate system, then div T is a tensor field of type (k − 1, j), with
components

(12.29) Tα1···αj

β1···βk−1`
;`.

In view of the special role played by the last index, the divergence of a tensor field
T is mainly interesting when T has some symmetry property.

In view of (12.11), we know that a vector field X generates a volume preserving
flow if and only if Xj

;j = 0. Complementing this, we investigate the condition that
the flow generated by X consists of isometries, i.e., the flow leaves the metric g
invariant, or equivalently

(12.30) LXg = 0.
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For vector fields U, V, we have

(12.31)

(LXg)(U, V ) = −〈LXU, V 〉 − 〈U,LXV 〉+ X〈U, V 〉
= 〈∇XU − LXU, V 〉+ 〈U,∇XV − LXV 〉
= 〈∇UX, V 〉+ 〈U,∇V X〉

where the first identity follows from the derivation property of LX , the second from
the metric property (12.3) expressing X〈U, V 〉 in terms of covariant derivatives,
and the third from the zero torsion condition (12.4). If U and V are coordinate
vector fields ∂j = ∂/∂xj , we can write this identity as

(12.32) (LXg)(∂j , ∂k) = gk`X
`
;j + gj`X

`
;k.

Thus X generates a group of isometries (one says X is a Killing field) if and only if

(12.33) gk`X
`
;j + gj`X

`
;k = 0.

This takes a slightly shorter form for the covariant field

(12.34) Xj = gjkXk.

We state formally the consequence, which follows immediately from (12.33) and the
vanishing of the covariant derivatives of the metric tensor.

Proposition 12.2. X is a Killing vector field if and only if

(12.35) Xk;j + Xj;k = 0.

Generally, half the quantity on the left side of (12.35) is called the deformation
tensor of X. If we denote by ξ the 1-form ξ =

∑
Xj dxj , the deformation tensor is

the symmetric part of ∇ξ, a tensor field of type (0, 2). It is also useful to identify
the antisymmetric part, which is naturally regarded as a 2-form.

Proposition 12.3. We have

(12.36) dξ =
1
2

∑

j,k

(Xj;k −Xk;j) dxk ∧ dxj .

Proof. By definition,

(12.37) dξ =
1
2

∑

j,k

(∂kXj − ∂jXk) dxk ∧ dxj ,

and the identity with the right side of (12.36) follows from the symmetry Γ`
jk =

Γ`
kj .
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There is a useful generalization of the concept of a Killing field, namely a con-
formal Killing field, which is a vector field X whose flow consists of conformal
diffeomorphisms of M, i.e., preserves the metric tensor up to a scalar factor:

(12.38) F t∗
X g = α(t, x)g ⇐⇒ LXg = λ(x)g.

Note that the trace of LXg is 2 div X, by (12.32), so the last identity in (12.38) is
equivalent to LXg = (2/n)(div X)g, or, with (1/2)LXg = Def X,

(12.39) Def X − 1
n

(div X)g = 0

is the equation of a conformal Killing field.
To end this section, we note that concepts developed so far for Riemannian

manifolds, i.e., manifolds with positive definite metric tensors, have extensions to
indefinite metric tensors, including Lorentz metrics.

A Riemannian metric tensor produces a symmetric isomorphism

(12.40) G : TxM −→ T ∗x M,

which is positive. More generally, a symmetric isomorphism (12.40) corrsponds to a
nondegenerate metric tensor. Such a tensor has a well defined signature (j, k), j +
k = n = dim M ; at each x ∈ M, TxM has a basis {e1, . . . , en} of mutualy orthogonal
vectors such that 〈e1, e1〉 = · · · = 〈ej , ej〉 = 1, while 〈ej+1, ej+1〉 = · · · = 〈en, en〉 =
−1. If j = 1 (or k = 1), we say M has a Lorentz metric.

Exercises

1. Let ϕ be a tensor field of type (0, k) on a Riemannian manifold, endowed with
its Levi-Civita connection. Show that

(LXϕ−∇Xϕ)(U1, . . . , Uk) =
∑

j

ϕ(U1, . . . ,∇Uj X, . . . , Uk).

How does this generalize (12.31)?

2. Recall the formula (6.27), when ω is a k-form:

(dω)(X0, . . . , Xk) =
k∑

j=0

(−1)jXj · ω(X0, . . . , X̂j , . . . , Xk)

+
∑

0≤`<j≤k

(−1)j+`ω([X`, Xj ], X0, . . . , X̂`, . . . , X̂j , . . . , Xk).
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Show that the last double sum can be replaced by

−
∑

`<j

(−1)jω(X0, . . . ,∇Xj
X`, . . . , X̂j , . . . , Xk)

−
∑

`>j

(−1)jω(X0, . . . , X̂j , . . . ,∇Xj X`, . . . , Xk).

3. Using Exercise 2 and the expansion of (∇Xj
ω)(X0, . . . , X̂j , . . . , Xk) via the

derivation property, show that

(12.41) (dω)(X0, . . . , Xk) =
k∑

j=0

(−1)j(∇Xj ω)(X0, . . . , X̂j , . . . , Xk).

Note that this generalizes Proposition 12.3.

4. Prove the identity
∂j log

√
g =

∑

`

Γ`
`j .

Use either the identity (12.11), involving the divergence, or the formula (12.9) for
Γ`

jk. Which is easier?

5. Show that the characterization (12.17) of a tensor field of type (k, j) is equivalent
to the condition that F be a section of the vector bundle

(⊗jT ∗
) ⊗ (⊗kT

)
, or

equivalently, of the bundle Hom (⊗jT,⊗kT ). Think of other variants.

6. The operation Xj = gjkXk is called lowering indices. It produces a 1-form (sec-
tion of T ∗M) from a vector field (section of TM), implementing the isomorphism
(12.38). Similarly one can raise indices, e.g.,

Y j = gjkYk,

producing a vector field from a 1-form, i.e., implementing the inverse isomorphism.
Define more general operations raising and lowering indices, passing from tensor
fields of type (j, k) to other tensor fields, of type (`,m), with ` + m = j + k. One
says these tensor fields are associated to each other via the metric tensor.
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7. Using (12.16) show that, if α = ak(x) dxk (summation convention) then ∇∂j
α =

ak;j dxk with
ak;j = ∂jak −

∑

`

Γ`
kja`.

Compare (12.8). Use this to verify that (12.36) and (12.37) are equal. Work out a
corresponding formula for ∇∂`

T when T is a tensor field of type (k, j), as in (12.28).
Show

Tα1···αj

β1···βk
;` = ∂`Tα1···αj

β1···βk +
∑

i,s

Tα1···αj

β1···i···βk Γβs
i`

−
∑

i,t

Tα1···i···αj

β1···βk Γi
αt`.

8. Using the formula (12.23) for the Hessian, show that, for vector fields X, Y, Z
on M, (∇2

(X,Y ) −∇2
(Y,X)

)
Z =

(
[∇X ,∇Y ]−∇[X,Y ]

)
Z.

Denoting this by R(X, Y, Z), show that it is linear in each of its three arguments
over the ring C∞(M), e.g., R(X, Y, fZ) = f R(X, Y, Z) for f ∈ C∞(M). Discussion
of R(X, Y, Z) as the curvature tensor is given in §15.

9. Verify (12.24). For a function u, to show that ∇2
(X,Y )u = ∇2

(Y,X)u, use the
special case

∇2
(X,Y )u = XY u− (∇XY ) · u

of (12.24). Note that this is an invariant formulation of (12.27). Show that

∇2
(X,Y )u =

1
2
(LV g)(X,Y ), V = grad u.

10. Let ω be the volume form of an oriented Riemannian manifold M. Show that
∇Xω = 0 for all vector fields X.
Hint. To obtain the identity at x0, use a normal coordinate system centered at x0.

11. Let X be a vector field on a Riemannian manifold M. Show that the formal
adjoint of ∇X , acting on vector fields, is

(12.42) ∇∗XY = −∇XY − (div X)Y.
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12. Show that the formal adjoint of LX , acting on vector fields, is

(12.43) L∗XY = −LXY − (div X)Y − 2 Def (X)Y,

where Def(X) is a tensor field of type (1, 1), given by

(12.44)
1
2
(LXg)(Z, Y ) = g(Z, Def (X)Y ),

g being the metric tensor.

13. With div defined by (12.29) for tensor fields, show that

(12.45) div (X ⊗ Y ) = (div Y )X +∇Y X.

14. If we define Def : C∞(M,T ) → C∞(M, S2T ∗) by Def (X) = (1/2)LXg, show
that

Def∗ u = − divu,

where (div u)j = ujk
;k, as in (12.29).

15. If γ(s) is a unit speed geodesic on a Riemannian manifold M, γ′(s) = T (s),
and X is a vector field on M, show that

(12.46)
d

ds
〈T (s), X(γ(s))〉 =

1
2
(LXg

)
(T, T ).

Deduce that, if X is a Killing field, then 〈T, X〉 is constant on γ.
Hint. Show that the left side of (12.46) is equal to 〈T,∇T X〉.

16. Let M be the surface of revolution x2 + y2 = g(z)2, discussed in Exercises 1–2
of §1, with ds2 =

(
1 + g′(u)2

)
du2 + g(u)2dv2. Show that ∂/∂v is a Killing field.

Deduce that a unit speed geodesic
(
x(t), y(t), z(t)

)
on M satisfies

(12.47) ż(t) = ± 1
g(z)

√
g(z)2 − c2

1 + g′(z)2
.

Hint. Representing the path as (u(t), v(t)), write out 〈T, ∂/∂v〉 and 〈T, T 〉, and
eliminate v̇(t).

17. In the setting of Exercise 16, suppose c > inf g(u). Show that a unit speed
geodesic on which 〈T, ∂/∂v〉 = c must be confined to the region {(x, y, z) : g(z) ≥ c}.
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13. Covariant derivatives and curvature on general vector bundles

Let E → M be a vector bundle, either real or complex. A covariant derivative,
or connection, on E is a map

(13.1) ∇X : C∞(M, E) −→ C∞(M,E)

assigned to each vector field X on M, satisfying the following four conditions:

(13.2) ∇X(u + v) = ∇Xu +∇Xv,

(13.3) ∇(fX+Y )u = f∇Xu +∇Y u,

(13.4) ∇X(fu) = f∇Xu + (Xf)u,

where u, v are sections of E, f is a smooth scalar function. The examples which
arose in §§11–12 are the Levi-Civita connection on a Riemannian manifold, in which
case E is the tangent bundle, and associated connections on tensor bundles.

One general construction of connections is the following. Let F be a vector space,
with an inner product; we have the trivial bundle M × F. Let E be a subbundle
of this trivial bundle; for each x ∈ M, let Px be the orthogonal projection of F on
Ex ⊂ F. Any u ∈ C∞(M, E) can be regarded as a function from M to F, and for a
vector field X, we can apply X componentwise to any function on M with values
in F ; call this action u 7→ DXu. Then a connection on M is given by

(13.5) ∇Xu(x) = PxDXu(x).

If M is imbedded in a Euclidean space RN , then TxM is naturally identified
with a linear subspace of RN for each x ∈ M. In this case one can verify that the
connection defined by (13.5) coincides with the Levi-Civita connection, where M is
given the metric induced from its imbedding in RN . See Corollary 16.2 for a proof.

Generally, a connection defines the notion of “parallel transport” along a curve
γ in M. A section u of E over γ is obtained from u(γ(t0)) by parallel transport if
it satisfies ∇T u = 0 on γ, where T = γ̇(t).

Formulas for covariant derivatives, involving indices, are produced in terms of a
choice of local frame for E, i.e., a set eα, 1 ≤ α ≤ K, of sections of E over an open
set U which forms a basis of Ex for each x ∈ U ; K = dim Ex. Given such a local
frame, a smooth section u of E over U is specified by

(13.6) u = uαeα (summation convention).
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If ∂j = ∂/∂xj in a coordinate system on U, we set

(13.7) ∇∂j
u = uα

;jeα = (∂ju
α + uβΓα

βj)eα,

the connection coefficients Γα
βj being defined by

(13.8) ∇∂j
eβ = Γα

βjeα.

A vector bundle E → M may have an inner product on its fibers. In that case,
a connection on E is called a metric connection provided that

(13.9) X〈u, v〉 = 〈∇Xu, v〉+ 〈u,∇Xv〉
for any vector field X and smooth sections u, v of E.

The curvature of a connection is defined by

(13.10) R(X, Y )u = [∇X ,∇Y ]u−∇[X,Y ]u

where X and Y are vector fields and u is a section of E. It is easy to verify that
(13.10) is linear in X, Y, and u, over C∞(M). With respect to local coordinates, giv-
ing ∂j = ∂/∂xj , and a local frame {eα} on E, as in (13.6), we define the components
Rα

βjk of the curvature by

(13.11) R(∂j , ∂k)eβ = Rα
βjkeα,

as usual, using the summation convention. Since ∂j and ∂k commute, R(∂j , ∂k)eβ =
[∇∂j ,∇∂k

]eβ . Applying the formulas (13.7)–(13.8), we can express the components
of R in terms of the connection coefficients. The formula is seen to be

(13.12) Rα
βjk = ∂jΓα

βk − ∂kΓα
βj + Γα

γjΓγ
βk − Γα

γkΓγ
βj .

The formulas (13.7) and (13.12) can be written in a shorter form, as follows.
Given a choice of local frame {eα : 1 ≤ α ≤ K}, we can define K × K matrices
Γj = (Γα

βj) and Rjk = (Rα
βjk). Then (13.7) can be written as

∇∂j u = ∂ju + Γju,

and (13.12) is equivalent to

(13.13) Rjk = ∂jΓk − ∂kΓj + [Γj ,Γk].

Note that Rjk is antisymmetric in j and k. Now we can define a “connection 1-form”
Γ and a “curvature 2-form” Ω by

(13.14) Γ =
∑

j

Γj dxj , Ω =
1
2

∑

j,k

Rjk dxj ∧ dxk.

Then we can write (13.7) as

∇Xu = Xu + Γ(X)u,

and the formula (13.12) is equivalent to

(13.15) Ω = dΓ + Γ ∧ Γ.

The curvature has symmetries, which we record here, for the case of general
vector bundles. The Riemann curvature tensor, associated with the Levi-Civita
connection, has additional symmetries, which will be described in §15.
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Proposition 13.1. For any connection ∇ on E → M, we have

(13.16) R(X, Y )u = −R(Y, X)u.

If ∇ is a metric connection, then

(13.17) 〈R(X, Y )u, v〉 = −〈u,R(X,Y )v〉.

Proof. (13.16) is obvious from the definition (13.10); this is equivalent to the an-
tisymmetry of Rα

βjk in j and k noted above. If ∇ is a metric connection, we can
use (13.9) to deduce

0 = (XY − Y X − [X,Y ])〈u, v〉
= 〈R(X, Y )u, v〉+ 〈u, R(X, Y )v〉,

which gives (13.17).

Next we record the following implication of a connection having zero curvature.
A section u of E is said to be parallel if ∇Xu = 0 for all vector fields X.

Proposition 13.2. If E → M has a connection ∇ whose curvature is zero, then
any p ∈ M has a neighborhood U on which there is a frame {eα} for E consisting
of parallel sections: ∇Xeα = 0 for all X.

Proof. If U is a coordinate neighborhood, eα is parallel provided ∇∂j eα = 0 for
j = 1, . . . , n = dim M. The condition that R = 0 is equivalent to the condition
that the operators ∇∂j all commute with each other, for 1 ≤ j ≤ n. Consequently,
Frobenius’ Theorem (see §I) allows us to solve the system of equations

(13.18) ∇∂j eα = 0, j = 1, . . . , n,

on a neighborhood of p, with eα prescribed at the point p. If we pick eα(p), 1 ≤
α ≤ K, to be a basis of Ep, then eα(x), 1 ≤ α ≤ K, will be linearly independent in
Ex for x close to p, so the local frame of parallel sections is constructed.

It is useful to record several formulas which result from choosing a local frame
{eα} by parallel translation along rays through a point p ∈ M, the origin in some
coordinate system (x1, . . . , xn), so

(13.19) ∇r∂/∂reα = 0, 1 ≤ α ≤ K.

It is important to know that each eα is smooth. To see this, let {fα} be an arbitrary
smooth local frame field such that fα(p) = eα(p); say ∇∂j fβ = Γ̃α

βjfα. If we write
eα(x) = aβ

α(x)fβ(x) and compute ∇T eα(tx) when T = γ′(t), γ(t) = tx, we obtain

∇T eα(tx) =
[ d

dt
aβ

α(tx) + aγ
α(tx) xj Γ̃β

γj(tx)
]
fβ(tx),
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and this vanishes for all x, i.e., (13.19) is satisfied, if and only if
d

dt
aβ

α(tx)− aγ
α(tx)xj Γ̃β

γj(tx) = 0,

for all β. The initial condition is aβ
α(0) = δβ

α. Now, let us replace aβ
α(tx) by

aβ
α(x, t), and consider the initial value problem

∂

∂t
aβ

α(x, t) + Γ̃β
γj(tx)xj aγ

α(x, t) = 0, aβ
α(x, 0) = δβ

α.

It is seen that, for any c > 0, aβ
α(cx, t/c) also satisfies this problem, so aβ

α(cx, t/c) =
aβ

α(x, t). This implies that aβ
α(x) = aβ

α(x, 1). Hence we have

eα(x) = aβ
α(x, 1)fβ(x).

This makes the smooth dependence of eα(x) on x manifest.
Now (13.19) means that

∑
xj∇∂j eα = 0. Consequently the connection coeffi-

cients (13.8) satisfy
(13.20) x1Γα

β1 + · · ·+ xnΓα
βn = 0.

Differentiation with respect to xj gives
(13.21) Γα

βj = −x1∂jΓα
β1 − · · · − xn∂jΓα

βn.

In particular,
(13.22) Γα

βj(p) = 0.

Comparison of (13.21) with

(13.23) Γα
βj = x1∂1Γα

βj(p) + · · ·+ xn∂nΓα
βj(p) + O(|x|2)

gives
(13.24) ∂kΓα

βj = −∂jΓα
βk at p.

Consequently the formula (13.12) for curvature becomes
(13.25) Rα

βjk = 2 ∂jΓα
βk at p,

with respect to such a local frame. Note that, near p, (13.12) gives

(13.26) Rα
βjk = ∂jΓα

βk − ∂kΓα
βj + O(|x|2).

Given vector bundles Ej → M with connections ∇j , there is a natural covariant
derivative on the tensor product bundle E1 ⊗ E2 → M, defined by the derivation
property
(13.27) ∇X(u⊗ v) = (∇1

Xu)⊗ v + u⊗ (∇2
Xv).

Also, if A is a section of Hom(E1, E2), the formula

(13.28) (∇#
XA)u = ∇2

X(Au)−A(∇1
Xv)

defines a connection on Hom(E1, E2).
Regarding the curvature tensor R as a section of (⊗2T ∗) ⊗ End(E) is natural

in view of the linearity properties of R given after (13.10). Thus if E → M has a
connection with curvature R, and if M also has a Riemannian metric, yielding a
connection on T ∗M, then we can consider ∇XR. The following, known as Bianchi’s
identity, is an important result involving the covariant derivative of R.
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Proposition 13.3. For any connection on E → M, the curvature satisfies

(13.29) (∇ZR)(X, Y ) + (∇XR)(Y,Z) + (∇Y R)(Z,X) = 0,

or equivalently

(13.30) Rα
βij;k + Rα

βjk;i + Rα
βki;j = 0.

Proof. Pick any p ∈ M. Choose normal coordinates centered at p and choose a
local frame field for E by radial parallel translation, as above. Then, by (13.22)
and (13.26),

(13.31) Rα
βij;k = ∂k∂iΓα

βj − ∂k∂jΓα
βi at p.

Cyclically permuting (i, j, k) here and summing clearly gives 0, proving the propo-
sition.

Note that we can regard a connection on E as defining an operator

(13.32) ∇ : C∞(M,E) −→ C∞(M, T ∗ ⊗ E),

in view of the linear dependence of ∇X on X. If M has a Riemannian metric and
E a Hermitian metric, it is natural to study the adjoint operator

(13.33) ∇∗ : C∞(M,T ∗ ⊗ E) −→ C∞(M,E)

If u and v are sections of E, ξ a section of T ∗, we have

(13.34)

(
v,∇∗(ξ ⊗ u)

)
= (∇v, ξ ⊗ u)

= (∇Xv, u)

= (v,∇∗Xu)

where X is the vector field corresponding to ξ via the Riemannian metric. Using
the divergence theorem we can establish:

Proposition 13.4. If E has a metric connection, then

(13.35)
∇∗(ξ ⊗ u) = ∇∗Xu

= −∇Xu− (div X)u,

Proof. The first identity follows from (13.34) and does not require E to have a
metric connection. If E does have a metric connection, integrating

〈∇Xv, u〉 = −〈v,∇Xu〉+ X〈v, u〉
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and using the identity

(13.36)
∫

M

Xf dV = −
∫

M

(div X)f dV, f ∈ C∞0 (M),

which is a special case of (8.23), we have the second identity in (13.35). This
completes the proof.

Exercises

1. If ∇ and ∇̃ are two connections on a vector bundle E → M, show that

(13.37) ∇Xu = ∇̃Xu + C(X, u)

where C is a smooth section of Hom(T ⊗ E,E) ≈ T ∗⊗ End(E). Show that con-
versely, if C is such a section and ∇ a connection, then (13.37) defines ∇̃ as a
connection.

2. If ∇ and ∇̃ are related as in Exercise 1, show that their curvatures R and R̃ are
related by

(13.38) (R− R̃)(X,Y )u = [CX , ∇̃Y ]u− [CY , ∇̃X ]u− C[X,Y ]u + [CX , CY ]u,

where CX is the section of End(E) defined by CXu = C(X, u).

In Exercises 3–5, let P (x), x ∈ M, be a smooth family of projections on a vec-
tor space F, with range Ex, forming a vector bundle E → M ; E gets a natural
connection via (13.5).

3. Let γ : I → M be a smooth curve through x0 ∈ M. Show that parallel transport
of u(x0) ∈ Ex0 along I is characterized by the following (with P ′(t) = dP (γ(t))/dt,
etc.):

(13.39)
du

dt
= P ′(t)u.

Hint. One needs to see that, if (13.39) holds, then u(t) = P (t)u(t) and P (t)u′(t) =
0, granted u(0) ∈ Ex0 . Show that (13.39) implies

d

dt

(
I − P (t)

)
u(t) = −P (t)u′(t) = −P ′(t)

(
I − P (t)

)
u(t),
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making use of PP ′ = P ′(I − P ). Given (I − P (0))u(0) = 0, deduce that (I −
P (t))u(t) = 0 for all t, and complete the argument.

4. If each P (x) is an orthogonal projection of the inner product space F onto Ex,
show that you get a metric connection.
Hint. Show that du/dt ⊥ u(γ(t)) via P ′P = (I − P )P ′.
Suppose Ex has codimension one in F ; pick unit Nx ⊥ Ex and write Pxu =
u− 〈u,Nx〉Nx. Show that (13.39) becomes (with T = γ′(t))

(13.40)
du

dt
= −〈u,DT N〉N.

5. In what sense can Γ = −dP P = −(I − P )dP be considered the connection
1-form, as in (13.13)? Show that the curvature form (13.15) is given by

(13.41) Ω = P dP ∧ dP P.

For more on this, see (16.50)–(16.53).

6. Show that the formula

(13.42) dΩ = Ω ∧ Γ− Γ ∧ Ω

follows from (13.15). Relate this to the Bianchi identity. Compare (14.13) in the
next section.

7. Let E → M be a vector bundle with connection ∇, with two local frame fields
{eα} and {fα}, defined over U ⊂ M. Suppose

fα(x) = gβ
α(x)eβ(x), eα(x) = hβ

α(x)fβ(x);

note that gβ
γ(x)hγ

α(x) = δβ
α. Let Γα

βj be the connection coefficients for the frame
field {eα}, as in (13.7)–(13.8), and let Γ̃α

βj be the connection coefficients for the
frame field {fα}. Show that

(13.43) Γ̃α
βj = hα

µΓµ
γjg

γ
β + hα

γ(∂jg
γ

β).

8. Let E → M be a complex vector bundle. Show that E has a Hermitian inner
product. Given such an inner product, show that there exists a metric connection
on E.
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9. Let γs(t) be a 1-parameter family of curves on M . Let E → M be a vactor
bundle with connection. Say T = γ′s(t), W = ∂sγs(t). Assume us is a section of E
over γs obtained by parallel translation, so ∇T u = 0. Show that w = ∇W u satisfies

(13.44) ∇T w + R(W,T )u = 0.

Hint. Start with ∇W∇T u = 0 and use [W,T ] = 0.
See Exercises 10–11 of §15 for further results, when E = TM .

10. In the setting of Exercise 9, suppose ∇ has curvature zero. Assume M is simply
connected. Take p, q ∈ M . Show that, if ξp ∈ Ep is given, γ is a path from p to q,
and ξ is defined along γ by parallel translation, then ξq ∈ Eq is independent of the
choice of γ. Use this to give another proof of Proposition 13.2.
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14. Second covariant derivatives and covariant-exterior derivatives

Let M be a Riemannian manifold, with Levi-Civita connection, and let E → M
be a vector bundle with connection. In §13 we saw that the covariant derivative
acting on sections of E yields an operator

(14.1) ∇ : C∞(M,E) −→ C∞(M, T ∗ ⊗ E).

Now on T ∗ ⊗ E we have the product connection, defined by (13.27), yielding

(14.2) ∇ : C∞(T ∗ ⊗ E) −→ C∞(M,T ∗ ⊗ T ∗ ⊗ E).

If we compose (14.1) and (14.2), we get a second order differential operator called
the Hessian:

(14.3) ∇2 : C∞(M, E) −→ C∞(T ∗ ⊗ T ∗ ⊗ E).

If u is a section of E, X and Y vector fields, (14.3) defines ∇2
X,Y as a section of E;

using the derivation properties we have the formula

(14.4) ∇2
X,Y u = ∇X∇Y u−∇(∇XY )u.

Note that the antisymmetric part is given by the curvature of the connection on
E :

(14.5) ∇2
X,Y u−∇2

Y,Xu = R(X, Y )u.

Now the metric tensor on M gives a linear map T ∗ ⊗ T ∗ → R, hence a linear
bundle map γ : T ∗ ⊗ T ∗ ⊗ E → E. We can consider the composition of this with
∇2 in (14.3):

(14.6) γ ◦ ∇2 : C∞(M,E) −→ C∞(M, E).

We want to compare γ ◦ ∇2 and ∇∗∇, in the case when E has a Hermitian metric
and a metric connection.

Proposition 14.1. If ∇ is a metric connection on E, then

(14.7) ∇∗∇ = −γ ◦ ∇2 on C∞(M, E).

Proof. Pick a local orthonormal frame of vector fields {ej}, with dual frame {vj}.
Then for u ∈ C∞(M,E), ∇u =

∑
vj ⊗∇ej u, so (13.35) implies

(14.8) ∇∗∇u =
∑[−∇ej∇ej u− (div ej)u

]
.
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Using (14.4), we have

(14.9) ∇∗∇u = −
∑

∇2
ej ,ej

u−
∑[∇∇ej

ej
u + (div ej)∇ej

u
]
.

The first term on the right is equal to −γ ◦ ∇2u. Now, given p ∈ M, if we choose
the local frame {ej} such that ∇ej

ek = 0 at p, the rest of the right side vanishes at
p. This establishes the identity (14.7).

We next define a “covariant exterior derivative” operator

(14.10) d∇ : C∞(M, ΛkT ∗ ⊗ E) −→ C∞(M, Λk+1T ∗ ⊗ E)

as follows. For k = 0, d∇ = ∇, given by (14.1), and we require

(14.11) d∇(β ∧ u) = (dβ) ∧ u− β ∧ d∇u

whenever β is a 1-form and u a section of ΛkT ∗⊗E. The operator d∇ is also called
the “gauge exterior derivative.” Unlike the case of the ordinary exterior derivative,

d∇ ◦ d∇ : C∞(M, ΛkT ∗ ⊗ E) −→ C∞(M, Λk+2T ∗ ⊗ E)

is not necessarily zero, but rather

(14.12) d∇d∇u = Ω ∧ u,

where Ω is the curvature, and we use the antisymmetry (13.16) to regard Ω as a
section of Λ2T ∗⊗ End (E), as in (13.15). Verification of (14.12) is a straightforward
calculation; (14.5) is in fact the special case of this, for k = 0.

The following is an alternative form of Bianchi’s identity (13.29):

(14.13) d∇Ω = 0,

where the left side is a priori a section of Λ3T ∗ ⊗ End(E). This can also be de-
duced from (14.12), the associative law d∇(d∇d∇) = (d∇d∇)d∇, and the natural
derivation property generalizing (14.11):

(14.14) d∇(A ∧ u) = (d∇A) ∧ u + (−1)jA ∧ d∇u,

where u is a section of ΛkT ∗ ⊗ E and A a section of ΛjT ∗ ⊗ End(E).

Exercises
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1. Let E → M be a vector bundle with connection ∇, u ∈ C∞(M, E). Fix p ∈ M.
Show that, if ∇u(p) = 0, then ∇2

X,Y u(p) is independent of the choice of connection
on M.

2. In particular, Exercise 1 applies to the trivial bundle R × M, with trivial flat
connection, for which ∇Xu = 〈X, du〉 = Xu. Thus, if u ∈ C∞(M) is real valued
and du(p) = 0, then D2u(p) is well defined as a symmetric bilinear form on TpM.
If, in a coordinate system, X =

∑
Xj∂/∂xj , Y =

∑
Yj∂/∂xj , show that

(14.15) D2
X,Y u(p) =

∑ ∂2u

∂xj∂xk
(p) XjYk.

Show that this invariance fails if du(p) 6= 0.

3. If u is a smooth section of ΛkT ∗ ⊗ E, show that
(14.16)

d∇u(X0, . . . , Xk) =
∑

j

(−1)j∇Xj u(X0, . . . , X̂j , . . . , Xk)

+
∑

j<`

(−1)j+`u([Xj , X`], X0, . . . , X̂j , . . . , X̂`, . . . , Xk).

Compare formula (6.27) and Exercises 2–3 in §12.

4. Use (14.16) to verify the identity (14.12), i.e., d∇d∇u = Ω ∧ u.

5. If ∇ and ∇̃ are connections on E → M, related by ∇Xu = ∇̃Xu+C(X, u), C ∈
C∞(M, T ∗ ⊗ End(E)), with curvatures R and R̃, and curvature forms Ω and Ω̃,
show that

(14.17) Ω− Ω̃ = d∇C + C ∧ C.

Here the wedge product of two sections of T ∗⊗End(E) is a section of Λ2T ∗⊗End(E),
produced in a natural fashion, as in (13.15). Show that (14.17) is equivalent to
(13.38).
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15. The curvature tensor of a Riemannian manifold

The Levi-Civita connection, which was introduced in §11, is a metric connection
on the tangent bundle TM of a manifold M with a Riemannian metric, uniquely
specified among all such by the zero-torsion condition

(15.1) ∇Y X −∇XY = [Y, X].

We recall the defining formula

(15.2)
2〈∇XY, Z〉 = X〈Y,Z〉+ Y 〈X, Z〉 − Z〈X, Y 〉

+ 〈[X,Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉,

derived in (11.8). Thus, in a local coordinate system with the naturally associated
frame field on the tangent bundle, the connection coefficients (13.8) are given by

(15.3) Γ`
jk =

1
2
g`µ

[∂gjµ

∂xk
+

∂gkµ

∂xj
− ∂gjk

∂xµ

]
,

The associated curvature tensor is the Riemann curvature tensor:

(15.4) R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In a local coordinate system such as discussed above, the expression for the Riemann
curvature is a special case of (13.12), i.e.,

(15.5) Rj
k`m = ∂`Γj

km − ∂mΓj
k` + Γj

ν`Γν
km − Γj

νmΓν
k`.

Consequently we have an expression of the form

(15.6) Rj
k`m = L

(
gαβ ,

∂2gγδ

∂xµ∂xν

)
+ Q

(
gαβ ,

∂gγδ

∂xµ

)
,

where L is linear in the second order derivatives of gαβ(x) and Q is quadratic in
the first derivatives of gαβ(x), each with coefficients depending on gαβ(x).

Building on Proposition 13.2, we have the following result on metrics whose
Riemannian curvature is zero.

Proposition 15.1. If (M, g) is a Riemannian manifold whose curvature tensor
vanishes, then the metric g is flat, i.e., there is a coordinate system about each
p ∈ M in which gjk(x) is constant.
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Proof. It follows from Proposition 13.2 that on a neighborhood U of p there are
parallel vector fields V(j), j = 1, . . . , n = dim M, i.e., in a given coordinate system

(15.7) ∇∂k
V(j) = 0, 1 ≤ j, k ≤ n,

such that V(j)(p) form a basis of TpM. Let v(j) be the 1-forms associated to V(j) by
the metric g, so

(15.8) v(j)(X) = g(X, V(j))

for all vector fields X. Hence

(15.9) ∇∂k
v(j) = 0, 1 ≤ j, k ≤ n.

We have v(j) =
∑

vk
(j)dxk with vk

(j) = v(j)(∂k) = 〈∂k, v(j)〉. The zero torsion condi-
tion (15.1), in concert with (15.8), gives

(15.10) ∂`〈v(j), ∂k〉 − ∂k〈v(j), ∂`〉 = 〈v(j),∇∂`
∂k〉 − 〈v(j),∇∂k

∂`〉 = 0,

which is equivalent to

(15.11) dv(j) = 0, j = 1, . . . , n.

(This also follows from (12.36).) Hence, locally, there exist functions xj , j =
1, . . . , n, such that

(15.12) v(j) = dxj .

The functions (x1, . . . , xn) give a coordinate system near p. In this coordinate sys-
tem the inverse of the matrix

(
gjk(x)

)
has entries gjk(x) = 〈dxj , dxk〉. Now, by

(13.9),

(15.13) ∂`g
jk(x) = 〈∇∂`

dxj , dxk〉+ 〈dxj ,∇∂`
dxk〉 = 0,

so the proof is complete.

We have seen in Proposition 13.1 that R has the following symmetries:

(15.14) R(X, Y ) = −R(Y, X),

(15.15) 〈R(X, Y )Z,W 〉 = −〈Z,R(X, Y )W 〉,
i.e., in terms of

(15.16) Rjk`m = 〈R(∂`, ∂m)∂k, ∂j〉
we have

(15.17) Rjk`m = −Rjkm`

and

(15.18) Rjk`m = −Rkj`m.

The Riemann tensor has additional symmetries:
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Proposition 15.2. The Riemann tensor satisfies

(15.19) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0,

and

(15.20) 〈R(X,Y )Z, W 〉 = 〈R(Z,W )X, Y 〉,

i.e.,

(15.21) Rijk` + Rik`j + Ri`jk = 0

and

(15.22) Rijk` = Rk`ij .

Proof. Plugging in the definition of each of the three terms of (15.19), one gets a
sum which is seen to cancel out by virtue of the zero torsion condition (15.1). This
gives (15.19) and hence (15.21). The identity (15.22) is an automatic consequence
of (15.17), (15.18), and (15.21), by elementary algebraic manipulations, which we
leave as an exercise, to complete the proof. Also, (15.22) follows from (15.50) below.
(In fact, so does (15.21).)

The identity (15.19) is sometimes called Bianchi’s first identity, (13.29) then
being called Bianchi’s second identity.

There are contractions of the Riemann tensor which are important. The Ricci
tensor is defined by

(15.23) Ricjk = Ri
jik = g`mR`jmk,

the summation convention being understood. By (15.22), this is symmetric in j, k.
We can also raise indices:

(15.24) Ricj
k = gj` Ric`k; Ricjk = gk` Ricj

`.

Contracting again defines the scalar curvature:

(15.25) S = Ricj
j .

As we will see below, the special nature of Rijk` for dim M = 2 implies

(15.26) Ricjk =
1
2
Sgjk, if dim M = 2.

The Bianchi identity (13.29) yields an important identity for the Ricci tensor.
Specializing (13.30) to α = i, β = j and raising the second index gives

(15.27) Rij
ij;k + Rij

jk;i + Rij
ki;j = 0,
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i.e., S;k − Rici
k;i − Ricj

k;j = 0, or

(15.28) S;k = 2 Ricj
k;j .

This is called the Ricci identity. An equivalent form is

(15.29) Ricjk
;j =

1
2
(S gjk);j .

The identity in this form leads us naturally to a tensor known as the Einstein
tensor:

(15.30) Gjk = Ricjk − 1
2
S gjk.

The Ricci identity is equivalent to

(15.31) Gjk
;j = 0.

As shown in §12, this means the Einstein tensor has zero divergence. This fact plays
an important role in Einstein’s equation for the gravitational field. Note that, by
(15.26), the Einstein tensor always vanishes when dim M = 2. On the other hand,
the identity (15.31) has the following implication when dim M > 2.

Proposition 15.3. If dim M = n > 2 and the Ricci tensor is a scalar multiple of
the metric tensor, the factor necessarily being 1/n times the scalar curvature:

(15.32) Ricjk =
1
n

Sgjk,

then S must be a constant.

Proof. (15.32) is equivalent to

Gjk =
( 1

n
− 1

2

)
Sgjk.

By (15.31) and the fact that the covariant derivative of the metric tensor is 0, we
have

0 =
( 1

n
− 1

2

)
S;kgjk,

or S;k = 0, which proves the proposition.

We now make some comments on curvature of Riemannian manifolds M of di-
mension 2. In general Rjk

`m are components of a section of End(Λ2T ∗). When
dim M = 2, such a section is naturally identified with a scalar. In this case, each
component Rjk

`m is either 0 or ±

(15.33) R12
12 = R21

21 = K,
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where K is a scalar function on M called the Gauss curvature of M , when dim
M = 2. We can write R1212 = g1jg2kRjk

12 = (g11g22 − g12g21)R12
12. Hence we

also have

(15.34) R1212 = R2121 = gK, g = det (gjk).

Suppose we pick normal coordinates centered at p ∈ M, so gjk(p) = δjk. We see
that, if dim M = 2,

Ricjk(p) = R1j1k + R2j2k.

Now, the first term on the right is zero unless j = k = 2, and the second term is
zero unless j = k = 1. Hence, Ricjk(p) = K(p)δjk, in normal coordinates, so in
arbitrary coordinates

(15.35) Ricjk = Kgjk; hence K =
1
2
S, if dim M = 2.

Explicit formulas for K when M is a surface in R3 are given by (16.22) and
(16.29), in the next section. (See also Exercises 2 and 5–7 below.) The following is
a fundamental calculation of the Gauss curvature of a 2-dimensional surface whose
metric tensor is expressed in orthogonal coordinates:

(15.36) ds2 = E(x) dx2
1 + G(x) dx2

2.

Proposition 15.4. Suppose dim M = 2 and the metric is given in coordinates by
(15.36). Then the Gauss curvature k(x) is given by

(15.37) k(x) = − 1
2
√

EG

[
∂1

( ∂1G√
EG

)
+ ∂2

( ∂2E√
EG

)]
.

To establish (15.37), one can first compute that

Γ1 =
(
Γj

k1

)
=

1
2

(
∂1E/E ∂2E/E
−∂2E/G ∂1G/G

)
, Γ2 =

(
Γj

k2

)
=

1
2

(
∂2E/E −∂1G/E
∂1G/G ∂2G/G

)
.

Then, computing R12 = (Rj
k12) = ∂1Γ2 − ∂2Γ1 + Γ1Γ2 − Γ2Γ1, we have

(15.38)
R1

212 = −1
2
∂1

(∂1G

E

)
− 1

2
∂2

(∂2E

E

)

+
1
4

(
−∂1E

E

∂1G

E
+

∂2E

E

∂2G

G

)
− 1

4

(∂2E

E

∂2E

E
− ∂1G

E

∂1G

G

)
.

Now R1212 = E R1
212 in this case, and (15.34) yields

(15.39) k(x) =
1

EG
R1212 =

1
G

R1
212.

If we divide (15.38) by G, then in the resulting formula for k(x) interchange E and
G, and ∂1 and ∂2, and sum the two formulas for k(x), we get

k(x) = −1
4

[
1
G

∂1

(∂1G

E

)
+

1
E

∂1

(∂1G

G

)]
− 1

4

[
1
E

∂2

(∂2E

G

)
+

1
G

∂2

(∂2E

E

)]
,

which is easily transformed into (15.37).
If E = G = e2v, we obtain a formula for the Gauss curvature of a surface whose

metric is a conformal multiple of the flat metric:
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Corollary 15.5. Suppose dim M = 2 and the metric is given in coordinates by

(15.40) gjk(x) = e2vδjk,

for a smooth v. Then the Gauss curvature k(x) is given by

(15.41) k(x) = −(∆0v)e−2v,

where ∆0 is the flat Laplacian in these coordinates:

(15.42) ∆0v =
∂2v

∂x2
1

+
∂2v

∂x2
2

.

For an alternative formulation of (15.41), note that the Laplace operator for the
metric gjk is given by

∆f = g−1/2∂j(gjkg1/2∂kf),

and in the case (15.40), gjk = e−2vδjk and g1/2 = e2v, so we have

(15.43) ∆f = e−2v∆0f,

and hence (15.41) is equivalent to

(15.44) k(x) = −∆v.

The comparison of the Gauss curvature of two surfaces which are conformally
equivalent is a source of a number of interesting results. The following generalization
of Corollary 15.5 is useful.

Proposition 15.6. Let M be a two dimensional manifold with metric g, whose
Gauss curvature is k(x). Suppose there is a conformally related metric

(15.45) g′ = e2ug.

Then the Gauss curvature K(x) of g′ is given by

(15.46) K(x) =
(−∆u + k(x)

)
e−2u,

where ∆ is the Laplace operator for the metric g.

Proof. We will use Corollary 15.5 as a tool in this proof. It is shown §N that (M, g)
is locally conformally flat, so we can assume without loss of generality that (15.40)
holds; hence k(x) is given by (15.41). Then

(15.47) (g′)jk = e2wδjk, w = u + v,
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and (15.41) gives

(15.48) K(x) = −(∆0w)e−2w =
[−(∆0u)e−2v − (∆0v)e−2v

]
e−2u.

By (15.43) we have (∆0u)e−2v = ∆u, and applying (15.41) for k(x) gives (15.46).

We end this section with a study of ∂j∂kg`m(p0) when one uses a geodesic normal
coordinate system centered at p0. We know from §11 that in such a coordinate
system Γ`

jk(p0) = 0 and hence ∂jgk`(p0) = 0. Thus, in such a coordinate system,
we have

(15.49) Rj
k`m(p0) = ∂`Γj

km(p0)− ∂mΓj
k`(p0),

and hence (15.3) yields

(15.50) Rjk`m(p0) =
1
2

(
∂j∂mgk` + ∂k∂`gjm − ∂j∂`gkm − ∂k∂mgj`

)
.

In light of the complexity of this formula, the following may be somewhat surprising.
Namely, as Riemann showed, one has

(15.51) ∂j∂kg`m(p0) = −1
3
R`jmk − 1

3
R`kmj .

This is related to the existence of non-obvious symmetries at the center of a geodesic
normal coordinate system, such as ∂j∂kg`m(p0) = ∂`∂mgjk(p0). To prove (15.51),
by polarization it suffices to establish

(15.52) ∂2
j g``(p0) = −2

3
R`j`j , ∀ j, `

Proving this is a 2-dimensional problem, since (by (15.50)) both sides of the asserted
identity in (15.52) are unchanged if M is replaced by the image under Expp of the
2-dimensional linear span of ∂j and ∂`. All one needs to show is that, if dim M = 2,

(15.53) ∂2
1g22(p0) = −2

3
K(p0) and ∂2

1g11(p0) = 0,

where K(p0) is the Gauss curvature of M at p0. Of these, the second part is trivial,
since g11(x) = 1 on the horizontal line through p0. To establish the first part of
(15.53), it is convenient to use geodesic polar coordinates, (r, θ), in which

(15.54) ds2 = dr2 + G(r, θ) dθ2.

By comparison, in normal coordinates (x1, x2), along the x1-axis, we have

(15.55) g22(s, 0) = s−2G(s, 0).
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Since ∂sg22(s, 0) = 0 at s = 0, we have G(s, 0)/s2 = 1+O(s2). This sort of behavior
holds along any ray through the origin, so we have

G(r, θ) = r2H(r, θ), H(r, θ) = 1 + O(r2).

Now, for the metric (15.54), the formula (15.37) implies that the Gauss curvature
is

(15.56) K = − 1
2G

∂2
rG +

1
4G2

(∂rG)2 = −Hr

rH
− Hrr

2H
+

H2
r

4H2
,

so at the center
K(p0) = −Hrr − 1

2
Hrr = −3

2
Hrr.

On the other hand, since we have seen that g22(s, 0) = G(s, 0)/s2 = H(s, 0), the
rest of the identity (15.53) is established.

Exercises

Exercises 1–3 below concern the problem of producing 2-dimensional surfaces with
constant Gauss curvature.

1. For a 2-dimensional Riemannian manifold M , take geodesic polar coordinates,
so the metric is

ds2 = dr2 + G(r, θ) dθ2.

Use formula (15.55) for the Gauss curvature, to deduce that

K = −∂2
r

√
G√

G
.

Hence, if K = −1, then
∂2

r

√
G =

√
G.

Show that √
G(0, θ) = 0, ∂r

√
G(0, θ) = 1,

and deduce that
√

G(r, θ) = ϕ(r) is the unique solution to

ϕ′′(r)− ϕ(r) = 0, ϕ(0) = 0, ϕ′(0) = 1.

Deduce that
G(r, θ) = sinh2 r.
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Use this computation to deduce that any two surfaces with Gauss curvature −1 are
locally isometric.

2. Suppose M is a surface of revolution in R3, of the form

x2 + y2 = g(z)2.

If it is parametrized by x = g(u) cos v, y = g(u) sin v, z = u, then

ds2 =
(
1 + g′(u)2) du2 + g(u)2 dv2.

Deduce from (15.37) that

K = − g′′(u)

g(u)
(
1 + g′(u)2

)2 .

Hence, if K = −1,

g′′(u) = g(u)
(
1 + g′(u)2

)2
.

Note that a sphere of radius R is given by such a formula with g(u) =
√

R2 − u2.
Compute K in this case.

2A. Suppose instead that M is a surface of revolution, described in the form

z = f
(√

x2 + y2
)
.

If it is parametrized by x = u cos v, y = u sin v, z = f(u), then

ds2 =
(
1 + f ′(u)2

)
du2 + u2 dv2.

Show that

K = − 1
u
√

1 + f ′(u)2
d

du

(
1√

1 + f ′(u)2

)
= −ϕ′(u)

2u
, ϕ(u) =

1
1 + f ′(u)2

.

Thus deduce that

K = −1 ⇒ ϕ(u) = u2 + c ⇒ f(u) =
∫ √

1
u2 + c

− 1 du.

We note that this is an elliptic integral, for most values of c. Show that, for c = 0,
you get

f(u) =
√

1− u2 − 1
2

log
(
1 +

√
1− u2

)
+

1
2

log
(
1−

√
1− u2

)
.
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3. Suppose M is a region in R2 whose metric tensor is a conformal multiple of the
standard flat metric

gjk = E(x)δjk = e2v δjk.

Suppose E = E(r), v = v(r). Deduce from (15.37) and (15.41) that

K = − 1
2E2

(
E′′(r) +

1
r
E′(r)

)
+

1
2E3

E′(r)2 = −
(
v′′(r) +

1
r
v′(r)

)
e−2v.

Hence, if K = −1,

v′′(r) +
1
r
v′(r) = e2v.

Compute K when

gjk =
4

(1− r2)2
δjk.

4. Show that, whenever gjk(x) satisfies, at some point p0, gjk(p0) = δjk, ∂`gjk(p0) =
0, then (15.50) holds at p0. If dim M = 2, deduce that

(15.57) K(p0) = −1
2
(
∂2
1g22 + ∂2

2g11 − 2∂1∂2g12

)
.

5. Suppose M ⊂ R3 is the graph of

x3 = f(x1, x2),

so, using the natural (x1, x2) coordinates on M,

ds2 = (1 + f2
1 ) dx2

1 + 2f1f2 dx1 dx2 + (1 + f2
2 ) dx2

2,

where fj = ∂jf. Show that, if ∇f(0) = 0, then Exercise 4 applies, so

(15.58) ∇f(0) = 0 =⇒ K(0) = f11f22 − f2
12.

Compare the derivation of (16.22) in the next section.

6. If M ⊂ R3 is the surface of Exercise 5, then the Gauss map N : M → S2 is
given by

N
(
x, f(x)

)
=

(−f1,−f2, 1)√
1 + f2

1 + f2
2

.
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Show that, if ∇f(0) = 0, then, at p0 =
(
0, f(0)

)
, DN(p0) : R2 → R2 is given by

(15.59) DN(p0) = −
(

∂2
1f(0) ∂1∂2f(0)

∂2∂1f(0) ∂2
2f(0)

)
.

Here, Tp0M and T(0,0,1)S
2 are both identified with the (x1, x2) plane. Deduce from

Exercise 5 that
K(p0) = det DN(p0).

7. Deduce from Exercise 6 that, whenever M is a smooth surface in R3, with Gauss
map N : M → S2, then, with DN(x) : TxM → TN(x)S

2,

(15.60) K(x) = det DN(x), ∀ x ∈ M.

Hint. Given x ∈ M, rotate coordinates so that TxM is parallel to the (x1, x2) plane.
This result is Gauss’ Theorema Egregium for surfaces in R3. See Theorem 16.4 for
a more general formulation; see also (16.35), and Exercises 5, 8, 9, and 14 of §16.

8. Recall from §11, that if γs(t) is a family of curves γs : [a, b] → M satisfying
γs(a) = p, γs(b) = q, and if E(s) = (1/2)

∫ b

a
〈T, T 〉dt, T = γ′s(t), then, with

V = (∂/∂s)γs(t)|s=0, E′(s) = − ∫ b

a
〈V,∇T T 〉dt, leading to the stationary condition

for E that ∇T T = 0, which is the geodesic equation. Now suppose γr,s(t) is a 2-
parameter family of curves, γr,s(a) = p, γr,s(b) = q. Let V = (∂/∂s)γr,s(t)|0,0, W =
(∂/∂r)γr,s(t)|0,0. Show that

(15.61)
∂2

∂s∂r
E(0, 0) =

∫ b

a

[
〈R(W,T )V, T 〉+ 〈∇T V,∇T W 〉 − 〈∇W V,∇T T 〉

]
dt.

Note that the last term in the integral vanishes if γ0,0 is a geodesic. Show that,
since V vanishes at the endpoints of γ0,0, the middle term in the integrand above
can be replaced by −〈V,∇T∇T W 〉.

9. If Z is a Killing field, generating an isometry on M (as in §12), show that

Zj;k;` = Rm
`kj Zm.

Hint. From Killing’s equation Zj;k + Zk;j = 0, derive Zj;k;` = −Zk;`;j −Rm
k`j Zm.

Iterate this process 2 more times, going through the cyclic permutation of (j, k, `).
Use Bianchi’s first identity. Note that the identity desired is equivalent to

∇2
(X,Y )Z = R(Y, Z)X, if Z is a Killing field.
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10. Derive the following equation of Jacobi for a variation of geodesics. If γs(t) is
a one-parameter family of geodesics (of speed σ(s), independent of t), T = γ′s(t),
and W = ∂sγs, then

∇T∇T W = R(T, W )T.

A vector field W satisfying this equation is called a Jacobi field.
Hint. Start with 0 = ∇W∇T T, and use [T,W ] = 0.
Compare the conclusion of Exercise 8.

11. Suppose v ∈ TpM, |v| = 1, and Expp is defined near tv, 0 ≤ t ≤ a. Show that

D Expp(tv)w =
1
t
Jw(t),

where Ja(t) is the Jacobi field along γ(t) = Expp(tv) such that

Jw(0) = 0, ∇T Jw(0) = w.

See Appendix X for more material on Jacobi fields.

12. Raising the second index of Rj
k`m, you obtain Rjk

`m, the coordinate expression
for R, which can be regarded as a section of End(Λ2T ).
Suppose M = X×Y with a product Riemannian metric, and associated curvatures
R,RX ,RY . Using the splitting

Λ2(V ⊕W ) = Λ2V ⊕ (
Λ1V ⊗ Λ1W

)⊕ Λ2W,

write R as a 3× 3 block matrix. Show that

R =



RX 0 0
0 0 0
0 0 RY




In Exercises 13–14, let X,Y, Z, etc., belong to the space g of left invariant vec-
tor fields on a Lie group G, assumed to have a bi-invariant Riemannian metric.
(Compact Lie groups have these.)

13. Show that any (constant speed) geodesic γ on G with γ(0) = e, the identity
element, is a subgroup of G, i.e., γ(s + t) = γ(s)γ(t). Deduce that ∇XX = 0 for



107

X ∈ g.
Hint. The first part reiterates Exercise 2 of §11.
Show that

∇XY =
1
2
[X,Y ], for X, Y ∈ g.

Hint. 0 = ∇XX = ∇Y Y = ∇(X+Y )(X + Y ).
This identity is called the Maurer-Cartan structure equation.

14. Show that

R(X, Y )Z = −1
4
[[X, Y ], Z], and 〈R(X, Y )Z,W 〉 = −1

4
〈[X, Y ], [Z, W ]〉.

15. If E → M is a vector bundle with connection ∇̃, and ∇ = ∇̃ + C, as in
Exercises 1–2 of §13, and M has Levi-Civita connection D, so that Hom(T ⊗E, E)
acquires a connection from D and ∇̃, which we’ll also denote ∇̃, show that (13.38)
is equivalent to

(15.62) (R− R̃)(X, Y )u = (∇̃XC)(Y, u)− (∇̃Y C)(X, u) + [CX , CY ]u.

This is a general form of the “Palatini identity.”

16. If g is a metric tensor and h a symmetric second order tensor field, consider the
family of metric tensors gτ = g + τh, for τ close to zero, yielding the Levi-Civita
connections

∇τ = ∇+ C(τ),

where ∇ = ∇0. If C ′ = C ′(0), show that

(15.63) 〈C ′(X,Y ), Z〉 =
1
2
(∇Xh)(Y, Z) +

1
2
(∇Y h)(X,Z)− 1

2
(∇Zh)(X, Y ).

Hint. Use (15.2).

17. Let R(τ) be the Riemann curvature tensor of gτ , and set R′ = R′(0). Show
that (15.62) yields

(15.64) R′(X,Y )Z = (∇XC ′)(Y, Z)− (∇Y C ′)(X,Z).
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Using (15.63), show that
(15.65)

2〈R′(X,Y )Z, W 〉 = (∇2
Y,W h)(X,Z) + (∇2

X,Zh)(Y, W )− (∇2
X,W h)(Y,Z)

− (∇2
Y,Zh)(X, W ) + h

(
R(X, Y )Z,W

)
+ h

(
R(X, Y )W,Z

)
.

Hint. Use the derivation property of the covariant derivative to obtain a formula
for ∇XC ′ from (15.63).

18. Show that
(15.66)

6〈R(X,Y )Z, W 〉 = K̃(X + W,Y + Z)− K̃(Y + W,X + Z)

− K̃(X, Y + Z)− K̃(Y, X + W )− K̃(Z,X + W )− K̃(W,Y + Z)

+ K̃(X, Y + W ) + K̃(Y, Z + W ) + K̃(Z, Y + W ) + K̃(W,X + Z)

+ K̃(X, Z) + K̃(Y, W )− K̃(X, Y )− K̃(Y, Z),

where

(15.67) K̃(X, Y ) = 〈R(X, Y )Y, X〉.

See (16.34) for an interpretation of the right side of (15.67).

19. Using (15.51), show that, in exponential coordinates centered at p, g = det (gjk)
satisfies, for |x| small,

(15.68) g(x) = 1− 1
3

∑

`,m

Ric`m(p)x`xm + O
(|x|3).

Deduce that, if An−1 = area of Sn−1 ⊂ Rn and Vn = volume of unit ball in Rn,
then, for r small,

(15.69) V
(
Br(p)

)
=

(
Vn − An−1

6n(n + 2)
S(p)r2 + O(r3)

)
rn.

20. Recall that it was stated that (15.17) + (15.18) + (15.21)⇒ (15.22). Relate this
to the following assertion about the symmetric group S4, acting on {1, 2, 3, 4}. Let
e denote the identity element of S4. Consider the cycles α = (1 2), β = (3 4), γ =
(2 3 4). Let I be the left ideal in the group algebra R(S4) generated by α+e, β+e,
and γ2 + γ + e.

Assertion. (1 3)(2 4)− e ∈ I.
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16. Geometry of submanifolds and subbundles

Let M be a Riemannian manifold, of dimension n, and let S be a submanifold,
of dimension k, with the induced metric tensor. M has a Levi-Civita connection ∇
and Riemann tensor R. Denote by ∇0 and RS the connection and curvature of S.
We aim to relate these objects. The second fundamental form is defined by

(16.1) II(X,Y ) = ∇XY −∇0
XY

for X and Y tangent to S. Note that II is linear in X and in Y over C∞(S). Also,
by the torsion free condition,

(16.2) II(X,Y ) = II(Y, X).

Proposition 16.1. II(X,Y ) is normal to S at each point.

Proof. If X, Y, Z are tangent to S, we have

〈∇XY, Z〉 − 〈∇0
XY, Z〉 = −〈Y,∇XZ〉+ X〈Y, Z〉+ 〈Y,∇0

XZ〉 −X〈Y, Z〉,
and making the obvious cancellation we obtain

(16.3) 〈II(X, Y ), Z〉 = −〈Y, II(X, Z)〉.
Using (16.2), we have

(16.4) 〈II(X, Y ), Z〉 = −〈Y, II(Z, X)〉,
i.e., the trilinear form given by the left side changes sign under a cyclic permutation
of its arguments. Since three such permutations produce the original form, the left
side of (16.4) must equal its own negative, hence be 0. This proves the proposition.

Denote by ν(S) the bundle of normal vectors to S, i.e., the normal bundle of S.
It follows that II is a section of Hom(TS ⊗ TS, ν(S)).

Corollary 16.2. For X and Y tangent to S, ∇0
XY is the tangential projection on

TS of ∇XY.

Let ξ be normal to S. We have a linear map, called the Weingarten map,

(16.5) Aξ : TpS −→ TpS

uniquely defined by

(16.6) 〈AξX, Y 〉 = 〈ξ, II(X,Y )〉.
We also define the section A of Hom(ν(S)⊗ TS, TS) by

(16.7) A(ξ, X) = AξX.

We define a connection on ν(S) as follows; if ξ is a section of ν(S), set

∇1
Xξ = P⊥∇Xξ,

where P⊥(x) is the orthogonal projection of TxM onto νx(S). The following identity
is called the Weingarten formula.
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Proposition 16.3. If ξ is a section of ν(S),

(16.8) ∇1
Xξ = ∇Xξ + AξX.

Proof. It suffices to show that ∇Xξ + AξX is normal to S. In fact, if Y is tangent
to S,

〈∇Xξ, Y 〉+ 〈AξX, Y 〉 = X〈ξ, Y 〉 − 〈ξ,∇XY 〉+ 〈ξ, II(X,Y )〉
= 0− 〈ξ,∇0

XY 〉
= 0,

which proves the proposition.

An equivalent statement is that, for X tangent to S, ξ normal to S,

(16.9) ∇Xξ = ∇1
Xξ −AξX

is an orthogonal decomposition, into components normal and tangent to S, respec-
tively. Sometimes this is taken as the definition of Aξ, or equivalently, by (16.6), of
the second fundamental form.

In the special case that S is a hypersurface of M, i.e., dim M = dim S + 1, if
ξ = N is a smooth unit normal field to S, we see that, for X tangent to S,

〈∇XN,N〉 =
1
2
X〈N, N〉 = 0,

so ∇1
XN = 0 in this case, and (16.9) takes the form

(16.10) ∇XN = −ANX,

the classical form of the Weingarten formula. In some texts, AN is called the shape
operator.

We now compare the tensors R and RS . Let X, Y, Z be tangent to S. Applications
of (16.1) and (16.8) yield

(16.11)
∇X∇Y Z = ∇X

(∇0
Y Z + II(Y,Z)

)

= ∇0
X∇0

Y Z + II(X,∇0
Y Z)−AII(Y,Z)X +∇1

XII(Y,Z).

Reversing X and Y, we have

∇Y∇XZ = ∇0
Y∇0

XZ + II(Y,∇0
XZ)−AII(X,Z)Y +∇1

Y II(X, Z).

Also,

(16.12) ∇[X,Y ]Z = ∇0
[X,Y ]Z + II([X, Y ], Z).

From (16.11)–(16.12) we obtain the important identity

(16.13)

(R−RS)(X, Y )Z =
{
II(X,∇0

Y Z)− II(Y,∇0
XZ)− II([X,Y ], Z)

+∇1
XII(Y, Z)−∇1

Y II(X,Z)
}

−{
AII(Y,Z)X −AII(X,Z)Y

}
.

Here, the quantity in the first set of braces { } is normal to S and the quantity in
the second pair of braces is tangent to S. The identity (16.13) is called the Gauss-
Codazzi equation. A restatement of the identity for the tangential components is
the following, known as Gauss’ Theorema Egregium.
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Theorem 16.4. For X,Y, Z,W tangent to S,

(16.14) 〈(R−RS)(X, Y )Z,W 〉 = 〈II(Y,W ), II(X, Z)〉 − 〈II(X,W ), II(Y, Z)〉.

The normal component of the identity (16.13) is specifically Codazzi’s equation.
It takes a shorter form in case S has codimension 1 in M. In that case, choose a
unit normal field N, and let

(16.15) II(X, Y ) = ĨI(X,Y )N ;

ĨI is a tensor field of type (0, 2) on S. Then Codazzi’s equation is equivalent to

(16.16) 〈R(X, Y )Z, N〉 = (∇0
X ĨI)(Y, Z)− (∇0

Y ĨI)(X, Z),

for X,Y, Z tangent to S, since of course RS(X,Y )Z is tangent to S.
In the classical case, where S is a hypersurface in flat Euclidean space, R = 0,

and Codazzi’s equation becomes

(16.17) (∇0
Y ĨI)(X,Z)− (∇0

X ĨI)(Y,Z) = 0,

i.e., ∇0ĨI is a symmetric tensor field of type (0, 3). In this case, from the iden-
tity ĨIjk;` = ĨI`k;j we deduce Aj

k
;k = Ak

k
;j = (Tr A);j where A = AN is the

Weingarten map. Equivalently,

(16.18) div A = d(Tr A).

An application of the Codazzi equation to minimal surfaces can be found in the
exercises after §29. See Exercise 10 below for an application to umbilic surfaces.

It is useful to note the following characterization of the second fundamental form
for a hypersurface M in Rn. Translating and rotating coordinates, we can move a
specific point p ∈ M to the origin in Rn and suppose M is given locally by

xn = f(x′), ∇f(0) = 0,

where x′ = (x1, . . . , xn−1). We can then identify the tangent space of M at p with
Rn−1. Take N = (0, . . . , 0, 1) in (16.15).

Proposition 16.5. The second fundamental form of M at p is given by the Hessian
of f :

(16.19) ĨI(X, Y ) =
n−1∑

j,k=1

∂2f

∂xj∂xk
(0) XjYk.
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Proof. From (16.9) we have, for any ξ normal to M,

(16.20) 〈II(X, Y ), ξ〉 = −〈∇Xξ, Y 〉
where ∇ is the flat connection on Rn. Taking

(16.21) ξ = (−∂1f, . . . ,−∂n−1f, 1)

gives the desired formula.

If S is a surface in R3, given locally by x3 = f(x1, x2) with ∇f(0) = 0, then the
Gauss curvature of S at the origin is seen by (16.14) and (16.19) to equal

(16.22) det
( ∂2f(0)

∂xj∂xk

)
.

Recall the different derivation of this identity in (15.58). Consider the example of
the unit sphere in R3, centered at (0, 0, 1). Then the “south pole” lies at the origin,
near which S2 is given by

(16.23) x3 = 1− (
1− x2

1 − x2
2

)1/2
.

In this case (16.22) implies that the Gauss curvature K is equal to 1 at the south
pole. Of course, by symmetry it follows that K = 1 everywhere on the unit sphere
S2.

Besides providing a good conception of the second fundamental form of a hy-
persurface in Rn, Proposition 16.5 leads to useful formulas for computation, one of
which we will give below, in (16.29). First, we give a more invariant reformulation
of Proposition 16.5. Suppose the hypersurface M in Rn is given by

(16.24) u(x) = c,

with ∇u 6= 0 on M. Then we can use the computation (16.20) with ξ = grad u to
obtain

(16.25) 〈II(X, Y ), grad u〉 = −(D2u)(X, Y )

where D2u is the Hessian of u; we can think of (D2u)(X, Y ) as Y · (D2u)X, where
D2u is the n× n matrix of second order partial derivatives of u. In other words,

(16.26) ĨI(X, Y ) = −|grad u|−1(D2u)(X,Y ),

for X,Y tangent to M , provided we take N to be a positive multiple of grad u.
In particular, if M is a two dimensional surface in R3 given by (16.24), then the

Gauss curvature at p ∈ M is given by

(16.27) K(p) = |grad u|−2 det (D2u)|TpM ,

where D2u|TpM denotes the restriction of the quadratic form D2u to the tangent
space TpM, producing a linear transformation on TpM via the metric on TpM.
With this calculation we can derive the following formula, extending (16.22).
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Proposition 16.6. If M ⊂ R3 is given by

(16.28) x3 = f(x1, x2),

then, at p = (x′, f(x′)) ∈ M, the Gauss curvature is given by

(16.29) K(p) =
(
1 + |∇f(x′)|2)−2 det

( ∂2f

∂xj∂xk

)
.

Proof. We can apply (16.27) with u(x) = f(x1, x2) − x3. Note that |∇u|2 = 1 +
|∇f(x′)|2 and

(16.30) D2u =
(

D2f 0
0 0

)
.

Noting that a basis of TpM is given by (1, 0, ∂1f) = v1, (0, 1, ∂2f) = v2, we readily
obtain

(16.31) det D2u|TpM =
det

(
vj · (D2u)vk

)

det(vj · vk)
=

(
1 + |∇f(x′)|2)−1 det D2f,

which yields (16.29).

If you apply Proposition 16.6 to the case (16.23) of a hemisphere of unit radius,
the calculation that K = 1 everywhere is easily verified. The formula (16.29) gives
rise to interesting problems in nonlinear PDE, some of which are studied in Chapter
14 of [T1].

We now define the sectional curvature of a Riemannian manifold M. Given p ∈
M, let Π be a 2-plane in TpM, Σ = Expp(Π). The sectonal curvature of M at p is

(16.32) Kp(Π) = Gauss curvature of Σ at p.

If U and V form an orthonormal basis of TpΣ = Π, then by definition of Gauss
curvature,

(16.33) Kp(Π) = 〈RΣ(U, V )V,U〉.

We have the following more direct formula for the sectional curvature.

Proposition 16.7. With U and V as above, R the Riemann tensor of M,

(16.34) Kp(Π) = 〈R(U, V )V, U〉.

Proof. It suffices to show that the second fundamental form of Σ vanishes at p. Since
II(X,Y ) is symmetric, it suffices to show that II(X, X) = 0 for each X ∈ TpM.
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So pick a geodesic γ in M such that γ(0) = p, γ′(0) = X. Then γ ⊂ Σ, and γ must
also be a geodesic in S, so

∇T T = ∇0
T T, T = γ′(t),

which implies II(X, X) = 0. This proves (16.34).

Note that, if S ⊂ M has codimension 1, p ∈ S, and Π ⊂ TpS, then, by (16.14),

(16.35) KS
p (Π)−KM

p (Π) = det
(

ĨI(U,U) ĨI(U, V )
ĨI(V,U) ĨI(V, V )

)
.

Note how this is a direct generalization of (15.60).
The results above comparing connections and curvatures of a Riemannian man-

ifold and a submanifold are special cases of more general results on subbundles,
which arise in a number of interesting situations. Let E be a vector bundle over a
manifold M, with an inner product, and a metric connection ∇. Let E0 → M be a
subbundle. For each x ∈ M, let Px be the orthogonal projection of Ex onto E0x.
Set

(16.36) ∇0
Xu(x) = Px∇Xu(x),

when u is a section of E0. Note that, for scalar f,

∇0
Xfu(x) = Px

(
f∇Xu(x) + (Xf)u

)

= fPx∇Xu(x) + (Xf)u(x),

provided u is a section of E0, so Pxu(x) = u(x). This shows that (16.36) defines
a connection on E0. Since 〈∇0

Xu, v〉 = 〈∇Xu, v〉 for sections u, v of E0, it is clear
that ∇0 is also a metric connection. Similarly, if E1 is the orthogonal bundle, a
subbundle of E, a metric connection on E1 is given by

(16.37) ∇1
Xv(x) = (I − Px)∇Xv(x),

for a section v of E1.
It is useful to treat ∇0 and ∇1 on an equal footing, so we define a new connection

∇̃ on E, also a metric connection, by

(16.38) ∇̃ = ∇0 ⊕∇1.

Then there is the relation

(16.39) ∇X = ∇̃X + CX



115

where

(16.40) CX =
(

0 II1
X

II0
X 0

)

Here, II0
X : E0 → E1 is the second fundamental form of E0 ⊂ E, and II1

X : E1 → E0

is the second fundamental form of E1 ⊂ E. We also set IIj(X, u) = IIj
Xu. In this

context, the Weingarten formula has the form

(16.41) Ct
X = −CX , i.e., II1

X = −(
II0

X

)t
.

Indeed, for any two connections related by (16.39), with C ∈ Hom(TM ⊗E, E), if
∇ and ∇̃ are both metric connections, the first part of (16.41) holds.

We remark that, when γ is a curve in a Riemannian manifold M, and for p ∈
γ, Ep = TpM, E0p = Tpγ, E1p = ν(γ), the normal space, and if ∇ is the Levi-
Civita connection on M, then ∇̃ is sometimes called the Fermi-Walker connection
on γ. One also (especially) considers a timelike curve in a Lorentz manifold.

Let us also remark that, if we start with metric connections ∇j on Ej , then form
∇̃ on E by (16.38), and then define ∇ on E by (16.39), provided that (16.40) holds,
it follows that ∇ is also a metric connection on E, and ∇j are recovered by (16.36)
and (16.37).

In general, for any two connections ∇ and ∇̃, related by (16.39) for some End(E)
valued 1-form C, we have the following relation between their curvature tensors R

and R̃, already anticipated in Exercise 2 of §13:

(16.42) (R− R̃)(X,Y )u =
{
[CX , ∇̃Y ]− [CY , ∇̃X ]− C[X,Y ]

}
u + [CX , CY ]u.

In case ∇̃ = ∇0 ⊕ ∇1 on E = E0 ⊕ E1, and ∇ has the form (16.39), where CX

exchanges E0 and E1, it follows that the operator in brackets { } on the right side
of (16.42) exchanges sections of E0 and E1, while the last operator [CX , CY ] leaves
invariant the sections of E0 and E1. In such a case these two components express
respectively the Codazzi identity and Gauss’ Theorema Egregium.

We will expand these formulas, writing R(X, Y ), R̃(X, Y ) ∈ End(E0⊕E1) in the
block matrix forms

(16.43) R =
(

R00 R01

R10 R11

)
, R̃ =

(
R0 0
0 R1

)
.

Then Gauss’ equations become

(16.44)
(R00 −R0)(X, Y )u = II1

XII0
Y u− II1

Y II0
Xu,

(R11 −R1)(X, Y )u = II0
XII1

Y u− II0
Y II1

Xu,
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for a section u of E0 or E1, respectively. Equivalently, if v is also a section of E0

or E1, respectively,

(16.45)
〈(R00 −R0)(X, Y )u, v〉 = 〈II0

Xu, II0
Y v〉 − 〈II0

Y u, II0
Xv〉

〈(R11 −R1)(X, Y )u, v〉 = 〈II1
Xu, II1

Y v〉 − 〈II1
Y u, II1

Xv〉.

The second part of (16.45) is also called the Ricci equation (not to be confused with
the Ricci identity (15.28)).

Codazzi’s equations become

(16.46)
R10(X,Y )u = II0

X∇0
Y u− II0

Y∇0
Xu− II0

[X,Y ]u +∇1
XII0

Y u−∇1
Y II0

Xu,

R01(X,Y )u = II1
X∇1

Y u− II1
Y∇1

Xu− II1
[X,Y ]u +∇0

XII1
Y u−∇0

Y II1
Xu,

for sections u of E0 and E1, respectively. If we take the inner product of the first
equation in (16.46) with a section v of E1, we get
(16.47)
〈R10(X, Y )u, v〉 = − 〈∇0

Y u, II1
Xv〉+ 〈∇0

Xu, II1
Y v〉 − 〈II0

[X,Y ]u, v〉
+ 〈II0

Xu,∇1
Y v〉 − 〈II0

Y u,∇1
Xv〉+ X〈II0

Y u, v〉 − Y 〈II0
Xu, v〉,

using the metric property of ∇0 and ∇1, and the antisymmetry (16.40). If we
perform a similar calculation for the second part of (16.46), in light of the fact that
R10(X,Y )t = −R01(X,Y ), we see that these two parts are equivalent, so we need
retain only one of them. Furthermore, we can rewrite the first equation in (16.46)
as follows. Form a connection on Hom(TM ⊕E0, E1) via the connections ∇j on Ej

and a Levi-Civita connection ∇M on TM, via the natural derivation property, i.e.,

(16.48) (∇̃XII0)(Y, u) = ∇1
XII0

Y u− II0
Y∇0

Xu− II0(∇M
X Y, u).

Then (16.46) is equivalent to

(16.49) R10(X, Y )u = (∇̃XII0)(Y, u)− (∇̃Y II0)(X, u).

One case of interest is when E1 is the trivial bundle E1 = M × R, with one-
dimensional fibre. For example, E1 could be the normal bundle of a codimension
one surface in Rn. In this case, it is clear that both sides of the last half of (16.45)
are tautologically zero, so Ricci’s equation has no content in this case.

As a parenthetical comment, suppose E is a trivial bundle E = M × Rn,
with complementary subbundles Ej , having metric connections constructed as in
(16.36)–(16.37), from the trivial connection D on E, defined by componentwise
differentiation, so

(16.50) ∇0
Xu = PDXu, ∇1

Xu = (I − P )DXu,
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for sections of E0 and E1, respectively. There is the following alternative approach
to curvature formulas. For ∇̃ = ∇0 ⊕∇1, we have

(16.51) ∇̃Xu = DXu + (DXP )(I − 2P )u.

Note that, with respect to a choice of basis of Rn as a global frame field on M×Rn,
we have the connection 1-form (13.14) given by

(16.52) Γ = dP (I − 2P ).

Since dP = dP P +P dP , we have dP P = (I−P )dP. Thus Γ = P dP (I−P )−(I−
P )dP P casts Γ = −C in the form (16.40). We obtain directly from the formula
Ω = dΓ + Γ ∧ Γ, derived in (16.15), that the curvature of ∇̃ is given by

(16.53) Ω = dP ∧ dP = P dP ∧ dP P + (I − P ) dP ∧ dP (I − P ),

the last identity showing the respective curvatures of E0 and E1. Compare Exercise
5 of §13.

Our next goal is to invert the process above. That is, rather than starting
with a flat bundle E = M × Rn and obtaining connections on subbundles and
second fundamental forms, we want to start with bundles Ej → M, j = 1, 2, with
metric connections ∇j , and proposed second fundamental forms IIj , sections of
Hom(TM ⊗Ej , Ej′), and then obtain a flat connection ∇ on E via (16.38)–(16.40).
Of course, we assume II0 and II1 are related by (16.41), so (16.39) makes∇ a metric
connection. Thus, according to equations (16.45) and (16.49), the connection ∇ is
flat if and only if, for all sections u, v of E0,

(16.54)
(∇̃XII0)(Y, u)− (∇̃Y II0)(X, u) = 0

〈II0
Y u, II0

Xv〉 − 〈II0
Xu, II0

Y v〉 = 〈R0(X, Y )u, v〉,
and, for all sections u, v of E1,

(16.55) 〈II1
Y u, II1

Xv〉 − 〈II1
Xu, II1

Y v〉 = 〈R1(X,Y )u, v〉.
If these conditions are satisfied, then E will have a global frame field of sections

e1, . . . , en, such that ∇ej = 0, at least provided M is simply connected. Then, for
each p ∈ M, we have an isometric isomorphism

(16.56) J(p) : Ep −→ Rn,

by expanding elements of Ep in terms of the basis {ej(p)}. Thus E0 ⊂ E is carried
by J(p) to a family of linear subspaces J(p)E0p = Vp ⊂ Rn, with orthogonal
complements J(p)E1p = Np ⊂ Rn.

We now specialize to the case E0 = TM, where M is an m-dimensional Riemann-
ian manifold, with its Levi-Civita connection; E1 is an auxiliary bundle over M,
with metric connection ∇1. We will assume M is simply connected. The following
result is sometimes called the Fundamental Theorem of Surface Theory.
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Theorem 16.8. Let II0 be a section of Hom(TM ⊗ TM, E1), and set II1
X =

−(II0
X)t. Make the symmetry hypothesis

(16.57) II0(X,Y ) = II0(Y, X).

Assume the equations (16.54)–(16.55) are satisfied, producing a trivialization of
E = E0 ⊕ E1, described by (16.56). Then there is an isometric immersion

(16.58) X : M −→ Rn,

and a natural identification of E1 with the normal bundle of S = X(M) ⊂ Rn, such
that the second fundamental form of S is given by II0.

To get this, we will construct the map (16.58) so that

(16.59) DX(p) = J(p)
∣∣
TM

,

for all p ∈ M. To see how to get this, consider one of the n components of J, Jν(p) :
Ep → R. In fact, Jνu = 〈eν , u〉. Let βν(p) = Jν(p)

∣∣
TpM

; thus βν is a 1-form on M.

Lemma 16.9. Each βν is closed, i.e., dβν = 0.

Proof. For vector fields X and Y on M, we have

(16.60)
dβν(X,Y ) = X · βν(Y )− Y · βν(X)− βν([X, Y ])

= X · βν(Y )− Y · βν(X)− βν(∇0
XY −∇0

Y X).

Using ∇X = ∇0
X + II0

X on sections of E0 = TM, we see that this is equal to

X · Jν(Y )− Y · Jν(X)− Jν(∇XY −∇Y X) + Jν(II0
XY − II0

Y X)

= (∇XJν)Y − (∇Y Jν)X + Jν(II0
XY − II0

Y X).

By construction, ∇XJν = 0, while (16.57) says II0
XY − II0

Y X = 0. Thus dβν = 0.

Consequently, as long as M is simply connected, we can write βν = dxν for
some functions xν ∈ C∞(M); define (16.58) by X(p) = (x1(p), . . . , xν(p)). Thus
(16.59) holds, so X is an isometric mapping. Furthermore it is clear that J(p)
maps E1p precisely isometrically onto the normal space Np ⊂ Rn to S = X(M) at
X(p), displaying II0 as the second fundamental form of S. Thus Theorem 16.8 is
established.

Let us specialize Theorem 16.8 to the case where dim M = n − 1, so the fibers
of E1 are one-dimensional. As mentioned above, the Ricci identity (16.55) has
no content in that case. We have the following special case of the Fundamental
Theorem of Surface Theory.



119

Proposition 16.10. Let M be an (n− 1)-dimensional Riemann manifold; assume
M is simply connected. Let there be given a symmetric tensor field ĨI, of type (0,2).
Assume the following Gauss-Codazzi equations hold:

(16.61)
ĨI(Y, Z)ĨI(X, W )− ĨI(X, Z)ĨI(Y, W ) = 〈RM (X,Y )Z, W 〉,

(∇M
X ĨI

)
(Y, Z)− (∇M

Y ĨI
)
(X,Z) = 0,

where ∇M is the Levi-Civita connection of M and RM its Riemann curvature ten-
sor. Then there is an isometric immersion X : M → Rn, such that the second
fundamental form of S = X(M) ⊂ Rn is given by ĨI.

Exercises

1. Let S ⊂ M, with respective Levi-Civita connections ∇0,∇, respective Riemann
tensors Rs, R, etc., as in the text. Let γs,t : [a, b] → S be a 2-parameter family
of curves. One can also regard γs,t : [a, b] → M. Apply the formula (15.61) for
the second variation of energy in these two contexts and compare the results, to
produce another proof of Gauss’ formula (16.14) for 〈(R − RS)(X, Y )Z,W 〉 when
X, Y, Z, W are all tangent to S.
Hint. Show that 〈∇XZ,∇XW 〉 − 〈∇0

XZ,∇0
XW 〉 = 〈II(X, Z), II(X, W )〉.

2. Let S be a surface in R3 given by (u, v) 7→ X(u, v) ∈ R3, for (u, v) ∈ O ⊂ R2.
Set ξ = Xu ×Xv, so a unit normal field to S is given by N = ξ/|ξ|. Let H = (hjk)
be the 2×2 matrix with entries hjk = ĨI(∂jX, ∂kX), where ∂1X = Xu, ∂2X = Xv.
Show that

H =
1
|ξ|

(
ξ ·Xuu ξ ·Xuv

ξ ·Xvu ξ ·Xvv

)
=

1
|ξ| Ãξ,

(the last identity defining Ãξ). Deduce that the Gauss curvature of S is given by

K =
det H

det G
=

1
|ξ|2

det Ãξ

det G
, G =

(
Xu ·Xu Xu ·Xv

Xv ·Xu Xv ·Xv

)
.

Hint. By the Weingarten formula (16.9), 〈AξU, V 〉 = −〈DUξ, V 〉, where D is the
standard flat connection on R3. Hence the upper left entry of H is 1/|ξ| times

−Xu · ∂u(Xu ×Xv) = −Xu · (Xuu ×Xv) = Xuu · (Xu ×Xv).
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3. Let γ be a curve in R3, parametrized by arc length. Recall the Frenet apparatus,
sketched in §K. At p = γ(t), T = γ′(t) spans Tpγ and, if the curvature κ of γ is
nonzero, unit vectors N and B span the normal bundle νp(γ), satisfying the system
of ODE

(16.62)

T ′ = κN

N ′ = −κT + τB

B′ = − τN

and furthermore, B = T ×N, T = N ×B, N = B×T. Let ∇ denote the standard
flat connection on R3, and ∇0, ∇1 the connections induced on T (γ) and ν(γ), as
in (16.1), (16.8). Show that

(16.63) II(T, T ) = κN,

and that

(16.64) ∇1
T N = τB, ∇1

T B = −τN.

Compute the right side of the Weingarten formula

(16.65) ∇T ξ = ∇1
T ξ + AξT, ξ = N, B,

and show that (16.63)–(16.65) is equivalent to (16.62).

4. Let S ⊂ R3 be a surface, with connection ∇S , second fundamental form IIS ,
unit normal ν. Let γ be the curve of Problem 3, and suppose γ is a curve in S.
Show that

IIS(T, T ) = κ〈N, ν〉ν
= κN −∇S

T T.

If Aν denotes the Weingarten map of S, as in (16.5), show that

γ geodesic on S =⇒ AνT = κT − τB and N = ν.

5. Use Theorem 16.4 to show that the Gauss curvature K of a surface S ⊂ R3 is
equal to det Aν . Use the symmetry of Aν to show that each TpS has an orthonormal
basis T1, T2 such that AνTj = κjTj , and K = κ1κ2. An eigenvector of Aν is called a
direction of principal curvature (and the eigenvalues are called principal curvatures).
Show that T ∈ TpS is a direction of principal curvature if and only if the geodesic
through p in direction T has vanishing torsion τ at p.
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6. Suppose M has the property that each sectional curvature Kp(Π) is equal to
Kp, independent of Π. Show that

R = KpI in End(Λ2Tp),

where R is as in Exercise 11 of §15. Show that Kp is constant, on each connected
component of M, if dim M ≥ 3.
Hint. To do the last part, use Proposition 15.3.

7. Show that the formula (16.42) for R − R̃ is equivalent to the formula (14.17).
(This reiterates Exercise 5 of §14.) Also, relate (16.44) and (16.49) to (15.54).

Let M be a compact oriented hypersurface in Rn. Let

N : M → Sn−1

be given by the outward pointing normal. This is called the Gauss map.

8. If n = 3, show that N∗ω0 = Kω, where ω0, ω are the area forms of S2 and M,
respectively, and K the Gauss curvature of M. Note that the degree of the Gauss
map is

Deg (N) =
1
4π

∫

M

N∗ω0.

See §9 for basic material on degrees of maps.

9. For general n, show that N∗ω0 = Jω with

J = (−1)n−1 det AN ,

where ω, ω0 are the volume forms and AN : TpM → TpM is the Weingarten map
(16.5). Consequently

(16.66) Deg (N) =
(−1)n−1

An−1

∫

M

(
det AN

)
dV,
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where An−1 is the area of Sn−1.
Hint. There is a natural identification of TpM and Tq(Sn−1), as linear subspaces
of Rn, if q = N(p). Show that the Weingarten formula gives

(16.67) DN(p) = −AN ∈ End (TpM) ≈ L(TpM, TqS
n−1).

10. Let S be a hypersurface in Rn, with second fundamental form ĨI, as in (16.15).
Suppose ĨI is proportional to the metric tensor, ĨI = λ(x)g. Show that λ is con-
stant, provided S is connected. (Assume n ≥ 3.)
Hint. Use the Codazzi equation (16.17), plus the fact that ∇0g = 0.
Alternative. Use (16.18) to get dλ = (n− 1)dλ.

11. When S is a hypersurface in Rn, a point p where ĨI = λg is called an umbilic
point. If every point on S is umbilic, show that S has constant sectional curvature
λ2.
Hint. Apply Gauss’ Theorema Egregium, in the form (16.14).

12. Let S ⊂ Rn be a k dimensional submanifold (k < n), with induced metric g
and second fundamental form II. Let ξ be a section of the normal bundle ν(S).
Consider the one parameter family of maps S → Rn,

(16.68) ϕτ (x) = x + τξ(x), x ∈ S, τ ∈ (−ε, ε).

Let gτ be the family of Riemannian metrics induced on S. Show that

(16.69)
d

dτ
gτ (X,Y )

∣∣
τ=0

= −2〈ξ, II(X,Y )〉.

More generally, if S ⊂ M is a submanifold, consider the one parameter family of
submanifolds given by

(16.70) ϕτ (x) = Expx

(
τξ(x)

)
, x ∈ S, τ ∈ (−ε, ε),

where Expx : TxM → M is the exponential map, determined by the Riemannian
metric on M. Show that (16.69) holds in this more general case.

13. Let M1 ⊂ M2 ⊂ M3 be Riemannian manifolds of dimension n1 < n2 < n3,
with induced metrics. For j < k, denote by IIjk the second fundamental form of
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Mj ⊂ Mk, and Ajk the associated Weingarten map. For x ∈ Mj , denote by N jk
x

the orthogonal complement of TxMj in TxMk, and jk∇1 the natural connection on
N jk(Mj). Let X and Y be tangent to M1 and ξ be a section of N12(M1). Show
that

A12
ξ X = A13

ξ X.

Show that

13∇1
Xξ = 12∇1

Xξ + II23(X, ξ), orthogonal decomposition,

and that

II13(X, Y ) = II12(X, Y ) + II23(X, Y ), orthogonal decomposition.

Relate this to Exercises 3–5 when nj = j.

14. If S ⊂ M has codimension 1, and Weingarten map A : TpS → TpS, show that
the Gauss equation (16.14) gives

(16.71)
〈
(R−RS)(X, Y )Z, W

〉
=

〈
(Λ2A)(X ∧ Y ), Z ∧W

〉
, X, Y, Z,W ∈ TpS.

Show that (with N a unit normal to S) the scalar curvatures of M and S are related
by

(16.72) SM − SS = −2 Tr Λ2A + 2 RicM (N, N).

15. With the Ricci tensor Ric given by (16.23) and the sectional curvature Kp(Π) by
(16.32), show that, for X ∈ TpM, of norm 1, if Ξ denotes the orthogonal complement
of X in TpM, then

Ric(X, X) =
n− 1

vol Sp(Ξ)

∫

Sp(Ξ)

Kp(U,X) dV (U),

where Sp(Ξ) is the unit sphere in Ξ, n = dim M, and Kp(U,X) = Kp(Π) where
Π is the linear span of U and X. Show that the scalar curvature at p is given by

S =
n(n− 1)
vol G2

∫

G2

Kp(Π) dV (Π),

where G2 is the space of 2-planes in TpM. (For more on this space and other
Grassmannians, see Appendix V.)
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Special exercises on surfaces in R3

In Exercises 16–19, let M be an oriented surface in R3. Let {E1, E2} be a (local)
oriented orthonormal frame field of tangent vectors to M , and let N = E3 =
E1 × E2. Define 1-forms ωjk on M by

(16.73) ωjk(X) = 〈DXEj , Ek〉,

where X is a tangent vector field to M and D is the standard flat connection on
R3. Let ∇0 denote the natural connection on M , R0 its curvature tensor, AN the
Weingarten map.

16. Show that ωjk = −ωkj and

(16.74) ANX = ω13(X)E1 + ω23(X)E2.

17. Differentiating ω12(X) = 〈DXE1, E2〉, etc., show that

(16.75) dω12(X, Y ) = ω13(X)ω32(Y )− ω13(Y )ω32(X).

Hint. Use (6.26) to evaluate dω12(X, Y ). Show that 〈DXE1, DY E2〉 = ω13(X)ω23(Y ).

Note in particular from (16.74) that we obtain

(16.76) dω12(E1, E2) = − detAN .

18. Note that ω12(X) = 〈∇0
XE1, E2〉. Show that

(16.77) dω12(X, Y ) = 〈R0(X, Y )E1, E2〉.

Deduce that

(16.78) dω12 = −K α,

where K is the Gauss curvature of M and α its area form. Comparing this with
Exercise 16, deduce another proof of Gauss’ Theorema Egregium, in this case.

19. Show that

(16.79)
dω13(X, Y ) = ω12(X)ω23(Y )− ω12(Y )ω23(X),

dω23(X, Y ) = ω21(X)ω13(Y )− ω21(Y )ω13(X),
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Hint. See Exercise 17. This time show that 〈DXE1, DY E2〉 = ω12(Y )ω23(X).
The equations (16.75) and (16.79) can be written as

(16.80) dω12 = ω13 ∧ ω32, dω13 = ω12 ∧ ω23, dω23 = ω21 ∧ ω13.

For the connection between (16.79) and Codazzi’s equation, see Exercise 24.

Back to higher dimensions

In Exercises 20–26, let M be an (n − 1)-dimensional oriented hypersurface in Rn

and let {E1, . . . , En} be an oriented orthonormal (local) frame field defined over M ,
such that {E1(x), . . . , En−1(x)} is an oriented orthonormal basis of TxM . Define
1-forms ωjk on M again by (16.73). Let P (x) : Rn → TxM denote the orthogo-
nal projection, as in (16.50)–(16.53), specialized to the case at hand. Denote the
curvature form of M by Ω.

20. Show that ωjk = −ωkj and that

(16.81) ANX =
n−1∑

j=1

ωjn(X)Ej .

21. Show that

(16.82)
(DXP )Ej = ωjn(X)En, 1 ≤ j < n,

(DXP )En = ANX.

22. For X and Y tangent to M , one can write (16.53) as

(16.83) Ω(X, Y ) = (DXP )(DY P )− (DY P )(DXP ) = [DXP, DY P ].

Deduce that, for 1 ≤ j < n,

Ω(X, Y )Ej = ωjn(Y )ANX − ωjn(X)ANY.

Using (16.81), deduce that, for 1 ≤ j, k < n,

(16.84) 〈Ω(X, Y )Ej , Ek〉 = 〈ANY, Ej〉〈ANX, Ek〉 − 〈ANX,Ej〉〈ANY, Ek〉,

yet again establishing Gauss’ Theorema Egregium in this case.
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23. Show that

(16.85) dωjk(X, Y ) =
∑

`

{
ωj`(X)ω`k(Y )− ωj`(Y )ω`k(X)

}
.

Hint. Follow those of Exercises 17 and 19. This time, show that

〈DXEj , DY Ek〉 =
∑

`

ωj`(X)ωk`(Y ).

Note that (16.85) is equivalent to

(16.86) dωjk =
∑

`

ωj` ∧ ω`k.

These equations are called Cartan’s structure equations.

24. Show that the Codazzi equation (16.17) is equivalent to

(16.87) ∇0
X(ANY )−∇0

Y (ANX)−AN ([X, Y ]) = 0.

25. Show that (16.87) also follows from the case k = n of (16.86), i.e., from

(16.88) dωjn =
∑

`

ωj` ∧ ω`n.

Hint. Start with

∇0
X(ANY )−∇0

Y (ANX) =
∑

j

{∇0
X(ωjn(Y )Ej)−∇0

Y (ωjn(X)Ej)
}
,

and use the derivation identity. As in Exercise 17, use (6.26) on dωjn(X, Y ). Deduce
that the left side of (16.87) is equal to

(16.89)
∑

j

{
ωjn(Y )∇0

XEj − ωjn(X)∇0
Y Ej

}
+

∑

j

dωjn(X, Y )Ej .

Show that ∇0
XEj =

∑
k<n ωjk(X)Ek. Then work on (16.89), using (16.88).

26. Let X(t) be a tangent vector field to M along a curve γ(t) given by parallel
translation, so X(t) ∈ Tγ(t)M ⊂ Rn. Show that

(16.90)
dX

dt
= II(X,T ),

where T = γ′(t).
Hint. Look at (13.40).
Generalize this result to higher codimension.
Hint. Look at (16.1). Note the difference in perspective, connected of course by
(16.10).
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17. The Gauss-Bonnet theorem for surfaces

If M is a compact oriented Riemannian manifold of dimension 2, the Gauss-
Bonnet theorem says that, if K is the Gauss curvature,

(17.1)
∫

M

K dV = 2π χ(M).

There is an associated formula if M has a boundary. There are a number of signif-
icant variants of this, involving for example the index of a vector field. We present
several proofs of the Gauss-Bonnet theorem and some of its variants here.

We begin with an estimate on the effect of parallel translation about a small
closed piecewise smooth curve. This first result holds for a general vector bundle
E → M with connection ∇ and curvature

Ω =
1
2

Rα
βjk dxj ∧ dxk,

with no restriction on dim M.

Proposition 17.1. If γ is a closed piecewise smooth loop on M, parametrized by
arc length for 0 ≤ t ≤ b, γ(b) = γ(0), and if u(t) is a section of E over γ defined
by parallel transport, i.e., ∇T u = 0, T = γ̇, then

(17.2) uα(b)− uα(0) = −1
2

∑

j,k,β

Rα
βjk

(∫

A

dxj ∧ dxk

)
uβ(0) + O(b3),

where A is an oriented 2-surface in M with ∂A = γ, and uα(t) are the components
of u with respect to a local frame.

Proof. If we put a coordinate system on a neighborhood of p = γ(0) ∈ M, and
choose a frame field for E, then parallel transport is defined by

(17.3)
duα

dt
= −Γα

βk uβ dxk

dt
.

As usual, we use the summation convention. Thus

(17.4) uα(t) = uα(0)−
∫ t

0

Γα
βk(γ(s))uβ(s)

dxk

ds
ds.

We hence have

(17.5) uα(t) = uα(0)− Γα
βk(p)uβ(0)(xk − pk) + O(t2).
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We can solve (17.3) up to O(t3) if we use

(17.6) Γα
βj(x) = Γα

βj(p) + (xk − pk)∂kΓα
βj + O

(|x− p|2).

Hence

(17.7)
uα(t) = uα(0)−

∫ t

0

[
Γα

βk(p) + (xj − pj)∂jΓα
βk(p)

]

· [uβ(0)− Γβ
γ`(p)uγ(0)(x` − p`)

]dxk

ds
ds + O(t3).

If γ(b) = γ(0), we get

(17.8)
uα(b) = uα(0)−

∫ b

0

xj dxk

(
∂jΓα

βk

)
uβ(0)

+
∫ b

0

xj dxk Γα
βkΓβ

γju
γ(0) + O(b3),

the components of Γ and their first derivatives being evaluated at p. Now Stokes’
theorem gives ∫

γ

xj dxk =
∫

A

dxj ∧ dxk,

so

(17.9) uα(b)− uα(0) =
[
−∂jΓα

βk + Γα
γkΓγ

βj

] ∫

A

dxj ∧ dxk uβ(0) + O(b3).

Recall that the curvature is given by

Ω = dΓ + Γ ∧ Γ,

i.e.,

(17.10) Rα
βjk = ∂jΓα

βk − ∂kΓα
βj + Γα

γjΓγ
βk − Γα

γkΓγ
βj .

Now the right side of (17.10) is the antisymmetrization, with respect to j and k, of
the quantity in brackets in (17.9). Since

∫
A

dxj ∧ dxk is antisymmetric in j and k,
we get the desired formula (17.2).

In particular, if dim M = 2, then we can write the End(E) valued 2-form Ω as

(17.11) Ω = Rµ

where µ is the volume form on M and R is a smooth section of End(E) over M. If
E has an inner product and ∇ is a metric connection, then R is skew adjoint. If
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γ is a geodesic triangle which is “fat” in the sense that none of its angles is small,
(17.2) implies

(17.12) u(b)− u(0) = −Ru(0)(Area A) + O
(
(Area A)3/2

)
.

If we specialize further, to oriented 2-dimensional M with E = TM, possessing
the Levi-Civita connection of a Riemannian metric, then we take J : TpM → TpM,
to be counterclockwise rotation by 90◦, which defines an almost complex structure
on M. Up to a scalar this is the unique skew-adjoint operator on TpM, and, by
(15.34),

(17.13) Ru = −K Ju, u ∈ TpM,

where K is the Gauss curvature of M at p. Thus, in this case, (17.12) becomes

(17.14) u(b)− u(0) = K Ju(0)(Area A) + O
(
(Area A)3/2

)
.

On the other hand, if a tangent vector X0 ∈ TpM undergoes parallel transport
around a geodesic triangle, the action produced on TpM is easily seen to be a
rotation in TpM through an angle that depends on the angle defect of the triangle.
The argument can be seen by looking at Fig. 17.1. We see that the angle from X0

to X3 is

(17.15) (π + α)− (2π − β − γ − ξ)− ξ = α + β + γ − π.

In this case, formula (17.14) implies

(17.16) α + β + γ − π =
∫

K dV + O
(
(Area A)3/2

)
.

We can now use a simple analytical argument to sharpen this up to the following
celebrated formula of Gauss.

Theorem 17.2. If A is a geodesic triangle in M2, with angles α, β, γ, then

(17.17) α + β + γ − π =
∫

A

K dV.

Proof. Break up the geodesic triangle A into N2 little geodesic triangles, each of
diameter O(N−1), area O(N−2). Since the angle defects are additive, the estimate
(17.17) implies

(17.18)

α + β + γ − π =
∫

A

K dV + N2O
(
(N−2)3/2

)

=
∫

A

K dV + O(N−1),
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and passing to the limit as N →∞ gives (17.17).

Note that any region which is a contractible geodesic polygon can be divided
into geodesic triangles. If a contractible region O ⊂ M with smooth boundary
is approximated by geodesic polygons, a straightforward limit process yields the
Gauss-Bonnet formula

(17.19)
∫

O

K dV +
∫

∂O

κ ds = 2π,

where κ is the geodesic curvature of ∂Ω. We leave the details to the reader. Another
proof will be given at the end of this section.

If M is a compact oriented 2-dimensional manifold without boundary, we can
partition M into geodesic triangles. Suppose the triangulation of M so produced
has

(17.20) F faces (triangles), E edges, V vertices.

If the angles of the jth triangle are αj , βj , γj , then clearly summing all the angles
produces 2πV. On the other hand, (17.17) applied to the jth triangle, and summed
over j, yields

(17.21)
∑

j

(αj + βj + γj) = πF +
∫

M

K dV.

Hence
∫

M
K dV = (2V −F )π. Since in this case all the faces are triangles, counting

each triangle three times will count each edge twice, so 3F = 2E. Thus we obtain

(17.22)
∫

M

K dV = 2π(V − E + F ).

This is equivalent to (17.1), in view of Euler’s formula (see (10.11)–(10.12)),

(17.23) χ(M) = V − E + F.

We now derive a variant of (17.1) when M is described in another fashion.
Namely, suppose M is diffeomorphic to a sphere with g handles attached. The
number g is called the genus of the surface. The case g = 2 is illustrated in
Fig. 17.2. We claim that

(17.24)
∫

M

K dV = 4π(1− g)

in this case. By virtue of (17.22), this is equivalent to the identity

(17.25) 2− 2g = V − E + F = χ(M).
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Direct proofs of this are possible; see Exercise 13 of §10. Here we will provide a
proof of (17.24), based on the fact that

(17.26)
∫

M

K dV = C(M)

depends only on M, not on the metric imposed. This follows from (17.22), by
forgetting the interpretation of the right side. Another argument yielding (17.26)
can be found in Appendix P. The point we want to make is, given (17.26), i.e., the
independence of choice of metric, we can work out what C(M) is, as follows.

First, choosing the standard metric on S2, for which K = 1 and Area S2 = 4π,
we have

(17.27)
∫

S2

K dV = 4π.

Now suppose M is obtained by adding g handles to S2. Since we can alter the
metric on M at will, make sure it coincides with the metric of a sphere near a great
circle, in a neighborhood of each circle where a handle is attached to the main body
A, as illustrated in Fig. 17.2. If we imagine adding two hemispherical caps to each
handle Hj , rather than attaching it to A, we turn each Hj into a new sphere, so by
(17.27) we have

(17.28) 4π =
∫

Hj∪ caps

K dV =
∫

Hj

K dV +
∫

caps

K dV.

Since the caps fit together to form a sphere, we have
∫
caps

K dV = 4π, so for each
j,

(17.29)
∫

Hj

K dV = 0,

provided that M has a metric such as described above. Similarly, if we add 2g caps
to the main body A, we get a new sphere, so

(17.30) 4π =
∫

A∪ caps

K dV =
∫

A

K dV + 2g(2π),

or

(17.31)
∫

A

K dV = 2π(2− 2g).

Together (17.29) and (17.31) yield (17.24), and we get the identity (17.25) for free.
We now give another perspective on Gauss’ formula, directly dealing with the

fact that TM can be treated as a complex line bundle, when M is an oriented
Riemannian manifold of dimension 2. We will produce a variant of Proposition 17.1
which has no remainder term, and which hence produces (17.16) with no remainder,
directly, so Theorem 17.2 follows without the additional argument given above. The
result is the following; again dim M is unrestricted.
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Proposition 17.3. Let E → M be a complex line bundle. Let γ be a piecewise
smooth closed loop in M, with γ(0) = γ(b) = p, bounding an oriented surface A. Let
∇ be a connection on E, with curvature Ω. If u(t) is a section of E over γ defined
by parallel translation, then

(17.32) u(b) =
[
exp

(
−

∫

A

Ω
)]

u(0).

Proof. Pick a nonvanishing section (hence a frame field) ξ of E over S, assuming
S is homeomorphic to a disc. Any section u of E over S is of the form u =
vξ for a complex valued function v on S. Then parallel transport along γ(t) =
(x1(t), . . . , xn(t)) is defined by

(17.33)
dv

dt
= −

(
Γk

dxk

dt

)
v.

The solution to this single first order ODE is

(17.34) v(t) =
[
exp

(
−

∫ t

0

Γk(γ(s))
dxk

ds
ds

)]
v(0).

Hence

(17.35) v(b) =
[
exp

(
−

∫

γ

Γ
)]

v(0),

where Γ =
∑

Γk dxk. The curvature 2-form Ω is given, as a special case of (17.10),
by

(17.36) Ω = dΓ,

and Stokes’ theorem gives (17.32), from (17.35), provided A is contractible, so
the section ξ can be constructed. The general case follows from cutting A into
contractible pieces.

Next, we relate
∫

M
Ω to the “index” of a section of a complex line bundle E → M,

when M is a compact oriented manifold of dimension 2. Suppose X is a section
of E over M \ S, where S consists of a finite number of points; suppose that X is
nowhere vanishing on M \S, and that, near each pj ∈ S, X has the following form.
There is a coordinate neighborhood Oj centered at pj , with pj the origin, and a
nonvanishing section ξj of E near pj , such that

(17.37) X = vjξj on Oj , vj : Oj \ p → C \ 0.

Taking a small counterclockwise circle γj about pj , vj/|vj | = ωj maps γj to S1;
consider the degree `j of this map, i.e., the winding number of γj about S1. This is
the index of X at pj , and the sum over pj is the total index of X :

(17.38) Index (X) =
∑

j

`j .

We will establish the following.
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Proposition 17.4. For any connection on a complex line bundle E → M, with
curvature form Ω, and X as above, we have

(17.39)
∫

M

Ω = −(2πi) · Index (X).

Proof. You can replace X by a section of E \ 0 over M \ {pj}, homotopic to the
original, having the form (17.37) with

(17.40) vj = ei`jθ + wj ,

in polar coordinates (r, θ) about pj , with wj ∈ C1(Oj), wj(0) = 0. Excise small
disks Dj containing pj ; let D = ∪Dj . Then, by Stokes’ theorem,

(17.41)
∫

M\D

Ω = −
∑

j

∫

γj

Γ

where γj = ∂Dj and Γ is the connection 1-form with respect to the section X, i.e.,
with ∇k = ∇∂k

, ∂k = ∂/∂xk in local coordinates,

(17.42) ∇kX = ΓkX, Γ =
∑

Γk dxk.

Now (17.37) gives (with no summation)

(17.43) Γkvjξj = (∂kvj + vjΓ̃jk)ξj

on Dj , where Γ̃jkdxk is the connection 1-form with respect to the section ξj . Hence

(17.44) Γk = v−1
j ∂kvj + Γ̃jk

with remainder term Γ̃jk ∈ C1(Oj). By (17.40), we have

(17.45)
∫

γj

Γ = 2πi`j + O(r)

if each Dj has radius ≤ Cr. Passing to the limit as the disks Dj shrink to pj gives
(17.39).

Since the left side of (17.39) is independent of the choice of X, it follows that
the index of X depends only on E, not on the choice of such X.
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In case M is a compact oriented Riemannian 2-manifold, whose tangent bundle
can be given the structure of a complex line bundle as noted above, (17.39) is
equivalent to

(17.46)
∫

M

K dV = 2π Index (X)

for any smooth vector field X, nonvanishing, on M minus a finite set of points.
This verifies the identity

(17.47) Index (X) = χ(M)

in this case.
As a further comment on the Gauss-Bonnet formula for compact surfaces, let us

recall from Exercise 8 of §16 that, if M is a compact oriented surface in R3, with
Gauss map N : M → S2, then

(17.48) Deg (N) =
1
4π

∫

M

N∗ω0 =
1
4π

∫

M

K dV.

(Indeed, we can appeal to (15.60) for the second identity here.) Furthermore,
Corollary 10.5 yields an independent proof that, in this case,

(17.49) Deg (N) =
1
2

Index (X),

for any vector field X on M with a finite number of critical points. Hence (17.48)–
(17.49) provide another proof of (17.1), at least for a surface in R3. This line of
reasoning will be extended to the higher dimensional case of hypersurfaces of Rn+1,
in the early part of §20, preparatory to establishing the general Chern-Gauss-Bonnet
Theorem.

To end this section, we provide a direct proof of the formula (17.19), using
an argument parallel to the proof of Proposition 17.3. Thus, assuming that M
is an oriented surface, we give TM the structure of a complex line bundle, and
pick a nonvanishing section ξ of TM over a neighborhood of O. Let γ = ∂O be
parametrized by arc length, T = γ′(s), 0 ≤ s ≤ b, with γ(b) = γ(0). The geodesic
curvature κ of γ, appearing in (17.19), is given by

(17.50) ∇T T = κN, N = JT.

If we set T = uξ, where u : O → C, then, parallel to (17.33), we have (17.50)
equivalent to

(17.51)
du

ds
= −

∑
Γk

dxk

ds
u + iκu.
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The solution to this single first order ODE is (parallel to (17.34))

(17.52) u(t) =
[
exp

(
i

∫ t

0

κ(s) ds−
∫ t

0

Γk

(
γ(s)

)dxk

ds
ds

)]
u(0).

Hence

(17.53) u(b) =
[
exp

(
i

∫

γ

κ(s) ds−
∫

O

Ω
)]

u(0).

By (17.13), we have

(17.54) Ω = −iK dV,

and since u(b) = u(0), we have

(17.55) exp
(
i

∫

γ

κ(s) ds + i

∫

O

K dV
)

= 1,

or

(17.56)
∫

O

K dV +
∫

γ

κ(s) ds = 2πν,

for some ν ∈ Z. Now if O were a tiny disc in M, it would be clear that ν = 1. Using
the contractibility of O and the fact that the left side of (17.56) cannot jump, we
have ν = 1, which proves (17.19).

Exercises

1. Given a triangulation of a compact surface M, within each triangle construct a
vector field, vanishing at 7 points as illustrated in Fig. 10.1, with the vertices as
attractors, the center as a repeller, and the midpoints of each side as saddle points.
Fit these together to produce a smooth vector field X on M. Show directly that

Index (X) = V − E + F.

2. Let L → M be a complex line bundle, u and v sections of L with a finite number
of zeros. Show directly that u and v have the same index.
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Hint. Start with u = fv on M \ Z, where Z is the union of the zero sets, and
f : M \ Z → C \ 0.

3. Let M1 and M2 be n-dimensional submanifolds of Rk. Suppose a curve γ is
contained in the intersection M1 ∩M2, and assume

p = γ(s) =⇒ TpM1 = TpM2.

Show that parallel translations along γ in M1 and in M2 coincide.
Hint. If T = γ′(s) and X is a vector field along γ, tangent to M1 (hence to M2),
show that ∇M1

T X = ∇M2
T X, using Corollary 16.2.

4. Let O be the region in S2 ⊂ R3 consisting of points in S2 of geodesic distance
< r from p = (0, 0, 1), where r ∈ (0, π) is given. Let γ = ∂O. Construct a cone,
with vertex at (0, 0, sec r), tangent to S2 along γ. Using this and Exercise 3, show
that parallel translation over one circuit of γ is given by

counterclockwise rotation by θ = 2π(1− cos r).

Hint. Flatten out the cone, as in Fig. 17.3. Notice that γ has length ` = 2π sin r.
Compare this calculation with the result of (17.32), which in this context implies

u(`) =
[
exp i

∫

O

K dV
]

u(0).

5. Let γ : [a, b] → R3 be a smooth closed curve, so γ(a) = γ(b) and γ′(a) = γ′(b).
Assume γ is parametrized by arclength, so γ′(t) = T (t) and T : [a, b] → S2; hence
T is a smooth closed curve in S2. Note that the normal space to γ at p = γ(t) is
naturally identified with the tangent space to S2 at T (t) = q :

νp(γ) = TqS
2.

(a) Show that parallel translation along γ of a section of the normal bundle ν(γ),
with respect to the connection described in Exercise 3 of §16, coincides with parallel
translation along the curve T of vectors tangent to S2.
Hint. Recall Exercise 3 of §13.

(b) Suppose the curvature κ of γ never vanishes, so the torsion τ is well defined, as
in (16.62). Show that parallel translation once around γ acts on νp(γ) by multipli-
cation by

exp
(
−i

∫

γ

τ(s) ds
)
.



137

Here we use the complex structure on νp(γ) given by JN = B, JB = −N.
Hint. Use (16.64).
Compare these two results.

6. Let M be a compact surface in R3, with principal curvatures κ1, κ2. Set

W(M) =
1
2π

∫

M

(κ1 + κ2

2

)2

dV,

C(M) =
1
2π

∫

M

(κ1 − κ2

2

)2

dV.

Show that
W(M) = C(M) + χ(M).

For further discussion of these functionals, see [Wil2], Chapter 7.

7. Let x(s) be a unit speed curve in R3, with Frenet apparatus T (s), N(s), B(s),
curvature κ(s) (which we will assume to be > 0), and torsion τ(s); cf. (16.62). Fix
a > 0 (small) and consider the surface S, the boundary of a tube about this curve,
given by

X(s, t) = x(s) + a(cos t)N(s) + a(sin t)B(s).

Show that the outward unit normal ν to S is given by

ν(s, t) = (cos t)N(s) + (sin t)B(s),

and that, in the (s, t)-coordinates,

K dV = −κ(s)(cos t) ds dt.

8. Let M be a compact surface imbedded in R3. Let K+ = max (K, 0). Show that

∫

M

K+ dV ≥ 4π.

Hint. Show that the image of {x ∈ M : K(x) ≥ 0} under the Gauss map is all of
S2.
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9. Let x : [0, L] → R3 be a smooth, closed, unit speed curve. Show that

∫ L

0

κ(s) ds ≥ 2π.

Show that one has equality if and only if it is a convex plane curve. This result is
known as Fenchel’s theorem. (Assume κ(s) > 0.)
Hint. Use the results of Exercises 7–8. Note that S has curvature K ≥ 0 on the set
π/2 ≤ t ≤ 3π/2.

10. Let γ : [0, b] → M be a smooth, closed, unit-speed curve on a two-dimensional,
oriented Riemannian manifold. (In particular, assume γ′(b) = γ′(0).) Let T =
γ′, N = JT along γ. Show the (17.50) extends to

∇T T = κN, ∇T N = −κT.

Deduce that, if U(t) is defined along γ(t) by parallel translation then

U(b) = e
−J

∫
γ

κ(s) ds
U(0).

Show that, if γ = ∂O, this result plus Proposition 17.3 again implies the identity
(17.55), i.e.,

exp
(
i

∫

γ

κ(s) ds + i

∫

O

K dV
)

= 1.
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18. The principal bundle picture

An important tool for understanding vector bundles is the notion of an under-
lying structure, namely that of a principal bundle. If M is a manifold and G a
Lie group, then a principal G-bundle P

p−→ M is a locally trivial fibration with a
G-action on P, such that G acts on each fiber Px = p−1(x) in a simply transi-
tive fashion. An example is the frame bundle of an oriented Riemannian manifold
M, F (M) → M, where Fx(M) consists of the set of ordered oriented orthonor-
mal bases of the tangent space Tx to M at x. If n = dim M, this is a principal
SO(n)-bundle.

If P → M is a principal G-bundle, then associated to each representation π of
G on a vector space V is a vector bundle E → M. The set E is a quotient space of
the Cartesian product P × V, under the equivalence relation

(18.1) (y, v) ∼ (y · g, π(g)−1v), g ∈ G.

We have written the G-action on P as a right action. One writes E = P ×π V. The
space of sections of E is naturally isomorphic to a certain subspace of the space of
V -valued functions on P :

(18.2) C∞(M,E) ≈ {u ∈ C∞(P, V ) : u(y · g) = π(g)−1u(y), g ∈ G}.

We describe how this construction works for the frame bundle F (M) of an
oriented Riemannian manifold, which, as mentioned above, is a principal SO(n)-
bundle. Thus, a point y ∈ Fx(M) consists of an n-tuple (e1, . . . , en), forming an
ordered oriented orthonormal basis of TxM. If g = (gjk) ∈ SO(n), the G-action is
given by

(18.3) (e1, . . . , en) · g = (f1, . . . , fn), fj =
∑

`

g`je`.

One can check that (f1, . . . , fn) is also an oriented orthonormal basis of TxM, and
that (y · g) · g′ = y · (gg′) for g, g′ ∈ SO(n). If π is the “standard” representation
of SO(n) on Rn, given by matrix multiplication, we claim that there is a natural
identification

(18.4) F (M)×π Rn ≈ TM.

In fact, if y = (e1, . . . , en) ∈ Fx(M) and v = (v1, . . . , vn) ∈ Rn, the map (18.4) is
defined by

(18.5) (y, v) 7→
∑

j

vjej ∈ TxM.
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We need to show that this is constant on equivalence classes, as defined by (18.1),
i.e., for any g ∈ SO(n),

(18.6) z = y · g = (f1, . . . , fn), w = π(g)−1v =⇒
∑

wkfk =
∑

vjej .

In fact, setting g−1 = h = (hjk), we see that

∑

k

wkfk =
∑

j,k,`

hkj vj g`k e` =
∑

j,`

δ`j vj e`,

since
∑

k g`khkj = δ`j , and this implies (18.6).
Connections are naturally described in terms of a geometrical structure on a

principal bundle. This should be expected, since as we saw in §13 a connection
on a vector bundle can be described in terms of a “connection 1-form” (13.14),
depending on a choice of local frame for the vector bundle.

The geometrical structure giving a connection on a principal bundle P → M is
the following. For each y ∈ P, the tangent space TyP contains the subspace VyP of
vectors tangent to the fibre p−1(x), x = p(y). The space VyP , called the “vertical
space,” is naturally isomorphic to the Lie algebra g of G, via the map

(18.7) ιy : g −→ VyP, ιy(X) =
d

dt
(y · Exp tX)

∣∣
t=0

.

A connection on P is determined by a choice of complementary subspace, called a
“horizontal space:”

(18.8) TyP = VyP ⊕HyP,

with the G-invariance

(18.9) g∗(HyP ) = Hy·gP

where g∗ : TyP → Ty·gP is the natural derivative map.
Given this structure, a vector field X on M has a uniquely defined “lift” X̃ to

a vector field on P, such that p∗X̃y = Xx (x = p(y)) and X̃y ∈ HyP for each
y ∈ P. Furthermore, if E is a vector bundle determined by a representation of G

and u ∈ C∞(M, V ) corresponds to a section v of E, the V -valued function X̃ · u
corresponds to a section of E which we denote ∇Xv; ∇ is the covariant derivative
on E defined by the connection on P just described. If V has an inner product and
π is unitary, E gets a natural metric, and ∇ is a metric connection on E.

If πj are representations of G on Vj , giving vector bundles Ej → M associated to
a principal bundle P → M with connection, then π1⊗π2 is a representation of G on
V1⊗V2 and we have a vector bundle E → M, E = E1⊗E2. The prescription above
associating a connection to E as well as to E1 and E2 agrees with the definition
of a connection on a tensor product of two vector bundles given by (13.29). This
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follows simply from the derivation property of the vector field X̃, acting as a first
order differential operator on functions on P.

The characterization (18.8)–(18.9) of a connection on a principal bundle P → M
is equivalent to the following, in view of the natural isomorphism VyP ≈ g. The
splitting (18.8) corresponds to a projection of TyP onto VyP, hence to a linear map
TyP → g which gives the identification VyP ≈ g on the linear subspace VyP of TyP.
This map can be regarded as a g-valued 1-form ξ on P, called the connection form.
Explicitly, for X ∈ TyP ,

ξ(X) = ι−1
y (Xv), X = Xv + Xh, Xv ∈ VyP, Xh ∈ HyP.

Note that the invariance property (18.9) implies ξ(g∗X) = ξ(g∗Xv), or equivalently

(g∗ξ)(X) = (g∗ξ)(Xv),

where g∗ denotes the pull-back of the form ξ induced from the G-action on P . A
calculation gives

(18.10) ι−1
y·g ◦ g∗ ◦ ιy = Adg−1

on g, and hence

(18.11) g∗ξ = Adg−1ξ, g ∈ G.

The way the Levi-Civita connection on an oriented Riemannian manifold gives
rise to a connection on the frame bundle F (M) → M is the following. Fix y ∈
F (M), x = p(y). Recall that the point y is an ordered (oriented) orthonormal basis
(e1, . . . , en) of the tangent space TxM. Parallel transport of each ej along a curve γ
through x thus gives a family of orthonormal bases for the tangent space to M at
γ(t), hence a curve γ# in F (M) lying over γ. The tangent to γ# at y belongs to the
horizontal space HyF (M), which in fact consists of all such tangent vectors as the
curve γ through x is varied. This construction generalizes to other vector bundles
E → M with connection ∇. One can use the bundle of orthonormal frames for E if
∇ is a metric connection, or the bundle of general frames for a general connection.

Let us re-state how a connection on a principal bundle gives rise to connections
on associated vector bundles. Given a principal G-bundle P → M, consider a local
section σ of P, over U ⊂ M. If we have a representation π of G on V, the associated
vector bundle E → M, and a section u of E, then we have u ◦ σ : U → V, using the
identification (18.2). Given a connection on P, with connection 1-form ξ, we can
characterize the covariant derivative induced on sections of E by

(18.12) (∇Xu) ◦ σ = LX(u ◦ σ) + Γ(X)u ◦ σ,

where LX acts componentwise on u ◦ σ, and

(18.13) Γ(X) = (dπ)
(
ξy(X̂)

)
, y = σ(x), X̂ = Dσ(x)X,
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dπ denoting the derived representation of g on V . To see this, note that the left
hand side of (18.2) is, by definition, equal to (L

X̃
u)◦σ. Meanwhile, apply the chain

rule to write
LX(u ◦ σ) = Du(σ) Dσ(X) = Du(σ)X̂

= Du(σ)X̃ + Du(σ)V

= (L
X̃

u) ◦ σ + (LV u) ◦ σ,

where V = X̂ − X̃ is vertical. It follows from (18.2) that, is u is a section of E and
V is vertical, then

LV u = −dπ
(
ξ(V )

)
u.

Since ξ(V ) = ξ(X̂), this establishes (18.12). Note the similarity of (18.12) to (13.7).
Note also that Γ depends on σ; cf. Exercise 4 below.

Recall the curvature R(X, Y ) of a connection ∇ on a vector bundle E → M,
defined by the formula (13.10). In case E = P ×π V, and ∇u is defined as above,
we have (using the identification (18.2))

(18.14) R(X, Y )u = L
[X̃,Ỹ ]

u− L
[̃X,Y ]

u.

Alternatively, using (18.12)–(18.13), we see that the curvature of ∇ is given by

(18.15) R(X, Y )u ◦ σ =
{
LXΓ(Y )− LY Γ(X) +

[
Γ(X),Γ(Y )

]− Γ
(
[X, Y ]

)}
u ◦ σ.

This is similar to (13.13). Next we want to obtain a formula similar to (but more
fundamental than) (13.15).

Fix y ∈ P, x = p(y). It is convenient to calculate (18.15) at x by picking the
local section σ to have the property that

(18.16) Dσ(x) : TxM −→ HyP,

which is easily arranged. Then X̂ = X̃ at y, so Γ(X) = 0 at y. Hence, at x,

(18.17)

R(X,Y )u ◦ σ =
{LXΓ(Y )− LY Γ(X)

}
u ◦ σ

= (dπ)
{
X̂ · ξ(Ŷ )− Ŷ · ξ(X̂)

}
u ◦ σ

= (dπ)
{
(dσ∗ξ)(X, Y ) + (σ∗ξ)([X, Y ])

}
u ◦ σ.

Of course, σ∗ξ = 0 at x. Thus we see that

(18.18) R(X, Y )u = (dπ)
{
(dξ)(X̃, Ỹ )

}
u,

at y, and hence everywhere on P. In other words,

(18.19) R(X, Y ) = (dπ)
(
Ω(X̃, Ỹ )

)
,
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where Ω is the g-valued 2-form on P defined by

(18.20) Ω(X#, Y #) = (dξ)(κX#,κY #),

for X#, Y # ∈ TyP. Here, κ is the projection of TyP onto HyP, with respect to the
splitting (18.9). One calls Ω the curvature 2-form of the connection ξ on P.

If V and W are smooth vector fields on P, then

(18.21) (dξ)(V,W ) = V · ξ(W )−W · ξ(V )− ξ
(
[V, W ]

)
.

In particular, if V = X̃, W = Ỹ are horizontal vector fields on P, then since
ξ(X̃) = ξ(Ỹ ) = 0, we have

(18.22) (dξ)(X̃, Ỹ ) = −ξ
(
[X̃, Ỹ ]

)
.

Hence, given X#, Y # ∈ TyP, we have

(18.23) Ω(X#, Y #) = −ξ
(
[X̃, Ỹ ]

)
,

where X̃ and Ỹ are any horizontal vector fields on P such that X̃ = κX# and
Ỹ = κY # at y ∈ P. Since ξ annihilates [X̃, Ỹ ] if and only if it is horizontal, we see
that Ω measures the failure of the bundle of horizontal spaces to be involutive.

It follows from Frobenius’ Theorem (see §I) that, if Ω = 0 on P, there is an
integral manifold S ⊂ P , such that, for each y ∈ S, TyS = HyP. Each translate
S · g is also an integral manifold. We can use this family of integral manifolds to
construct local sections v1, . . . vK of E (K = dim V ), linearly independent at each
point, such that ∇vj = 0 for all j, given that Ω = 0. Thus we recover Proposition
13.2, in this setting.

The following important result is known as Cartan’s formula for the curvature
2-form.

Theorem 18.1. We have

(18.24) Ω = dξ +
1
2
[ξ, ξ].

The bracket [ξ, η] of g-valued 1-forms is defined as follows. Suppose, in local
coordinates,

(18.25) ξ =
∑

ξj dxj , η =
∑

ηk dxk, ξj , ηk ∈ g.

Then we set

(18.26) [ξ, η] =
∑

j,k

[ξj , ηk] dxj ∧ dxk =
∑

j<k

(
[ξj , ηk] + [ηj , ξk]

)
dxj ∧ dxk,
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which is a g-valued 2-form. Equivalently, if U and V are vector fields on P,

(18.27) [ξ, η](U, V ) = [ξ(U), η(V )] + [η(U), ξ(V )].

In particular,

(18.28)
1
2
[ξ, ξ](U, V ) = [ξ(U), ξ(V )].

Note that, if π is a representation of G on a vector space V and dπ the derived
representation of g on V, if we set Aj = dπ(ξj), then, for

(18.29) dπ(ξ) = α =
∑

Aj dxj ,

we have

(18.30) α ∧ α =
∑

j,k

AjAk dxj ∧ dxk =
1
2

∑

j,k

(AjAk −AkAj) dxj ∧ dxk.

Hence

(18.31) α ∧ α =
1
2
(dπ)[ξ, ξ].

Thus we see the parallel between (18.24) and (13.15).
To prove (18.24), one evaluates each side on (X#, Y #), for X#, Y # ∈ TyP. We

write X# = X̃ + Xv with X̃ ∈ HyP, Xv ∈ VyP, and similarly write Y # = Ỹ + Yv.
It suffices to check the following four cases:

(18.32) Ω(X̃, Ỹ ), Ω(X̃, Yv), Ω(Xv, Ỹ ), Ω(Xv, Yv).

Without loss of generality, one can assume that X̃ and Ỹ are horizontal lifts of
vector fields on M, and that ξ(Xv) and ξ(Yv) are constant g-valued functions on P.
By (18.20) and (18.28), we have

(18.33) Ω(X̃, Ỹ ) = (dξ)(X̃, Ỹ ),
1
2
[ξ, ξ](X̃, Ỹ ) = [ξ(X̃), ξ(Ỹ )] = 0,

so (18.24) holds in this case. Next, clearly

(18.34) Ω(X̃, Yv) = 0, [ξ(X̃), ξ(Yv)] = 0,

while

(18.35) dξ(X̃, Yv) = X̃ · ξ(Yv)− Yv · ξ(X̃)− ξ
(
[X̃, Yv]

)
.
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Now, having arranged that ξ(Yv) be a constant g-valued function on P, we have
that X̃ · ξ(Yv) = 0. Of course, Yv · ξ(X̃) = 0. Also, [X̃, Yv] = −LYv

X̃ is horizontal,
by (18.10), so ξ

(
[X̃, Yv]

)
= 0. This verifies (18.24) when both sides act on (X̃, Yv),

and similarly we have (18.24) when both sides act on (Xv, Ỹ ). We consider the final
case. Clearly

(18.36) Ω(Xv, Yv) = 0,

while

(18.37) dξ(Xv, Yv) = Xv · ξ(Yv)− Yv · ξ(Xv)− ξ
(
[Xv, Yv]

)
= −ξ

(
[Xv, Yv]

)
,

and

(18.38)
1
2
[ξ, ξ](Xv, Yv) = [ξ(Xv), ξ(Yv)] = ξ

(
[Xv, Yv]

)
,

so (18.24) is verified in this last case, and Theorem 18.1 is proved.
We next obtain a form of the Bianchi identity which will play an important role

in the next section. Compare (13.42) and (14.13).

Proposition 18.2. We have

(18.39) dΩ = [Ω, ξ].

Here, if Ω =
∑

Ωjk dxj ∧ dxk in local coordinates, we set
(18.40)

[Ω, ξ] =
∑

j,k,`

[Ωjk, ξ`] dxj ∧ dxk ∧ dx` = −
∑

j,k,`

[ξ`,Ωjk] dx` ∧ dxj ∧ dxk = −[ξ, Ω].

To get (18.39), apply d to (18.24), obtaining (since ddξ = 0)

(18.41) dΩ =
1
2
[dξ, ξ]− 1

2
[ξ, dξ] = [dξ, ξ],

which differs from [Ω, ξ] by (1/2)[[ξ, ξ], ξ]. We have

(18.42) [[ξ, ξ], ξ] =
∑

j,k,`

[[ξj , ξk], ξ`] dxj ∧ dxk ∧ dx`.

Now cyclic permutations of (j, k, `) leave dxj∧dxk∧dx` invariant, so we can replace
[[ξj , ξk], ξ`] in (18.42) by the average over cyclic permutations of (j, k, `). However,
Jacobi’s identity for a Lie algebra is

[[ξj , ξk], ξ`] + [[ξk, ξ`], ξj ] + [[ξ`, ξj ], ξk] = 0,
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so [[ξ, ξ], ξ] = 0, and we have (18.39).
It is worth mentioning that, whenever ξ is a g-vauled 1-form and Ω is given by

(18.24), then (18.39) holds. This observation will be useful in the proof of Lemma
19.3 in the next section.

Exercises

1. Let P
p→ M be a principal G-bundle with connection, where M is a Riemannian

manifold. Pick an inner product on g. For y ∈ P, define an inner product on
TyP = VyP ⊕HyP so that, if Z ∈ TyP has decomposition Z = Zv + Zh, then

‖Z‖2 = ‖ξ(Zv)‖2 + ‖Dp(y)Zh‖2.

Show that this is a G-invariant Riemannian metric on P.

2. Conversely, if P
p→ M is a principal G-bundle, and if P has a G-invariant

Riemannian metric, show that this determines a connection on P, by declaring
that, for each y ∈ P, HyP is the orthogonal complement of VyP.

3. A choice of section σ of P over an open set U ⊂ M produces an isomorphism

(18.43) jσ : C∞(U,E) −→ C∞(U, V ).

If σ̃ is another section, there is a smooth function g : U → G such that

(18.44) σ̃(x) = σ(x) · g(x), ∀ x ∈ U.

Show that

(18.45) jσ̃ ◦ j−1
σ v(x) = π

(
g(x)

)−1
v(x).

4. According to (18.12), if u ∈ C∞(U,E) and v = jσu, ṽ = jσ̃u, we have

(18.46) (∇Xu) ◦ σ = X · v + Γ(X)v, (∇Xu) ◦ σ̃ = X · ṽ + Γ̃(X)ṽ.

Show that

(18.47) Γ̃(X) = π
(
g(x)

)−1Γ(X)π
(
g(x)

)
+ dπ

(
Dλg(x)(g(x)) ◦Dg(x)X

)
,
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where Dg(x)X ∈ Tg(x)G, λg(h) = g−1h, Dλg(g) : TgG → TeG ≈ g. Compare
(13.42).
Hint. Make use of (18.11), plus the identity (dπ)(Adg−1A) = π(g)−1dπ(A)π(g), A ∈
g.

5. Show that, for X, Y vector fields on M, Ω(X̃, Ỹ ) satisfies

(18.48) Ω(X̃, Ỹ )(y · g) = Ad(g)−1Ω(X̃, Ỹ ).

Deduce that setting

(18.49) Ωb(X, Y ) = Ω(X̃, Ỹ )

defines Ωb as a section of Λ2T ∗ ⊗ (Ad P ), where Ad P is the vector bundle

(18.50) Ad P = P ×Ad g.

Hint. Apply (18.10) and (18.23). Use also that g∗X̃ = X̃, with a similar result for
[X̃, Ỹ ], and for its vertical component.

6. If ξ0 and ξ1 are connection 1-forms on P → M, show that tξ1 + (1− t)ξ0 is also,
for any t ∈ R. Generalize to

∑
tiξi, with

∑
ti = 1; allow ti to depend on x ∈ M .

Using a partition of unity argument, prove that every principal G-bundle P → M
has a connection.
Hint. If P0 and P1 are projections, show that tP1 + (1− t)P0 is also, provided that
P0 and P1 have the same range.

7. Let ξ0 and ξ1 be two connection 1-forms for P → M, and let ∇ be an arbitrary
third connection on P. Consider

(18.51) α = ξ1 − ξ0.

If X is a vector field on M and X̃ the horizontal lift determined by ∇, show that

(18.52) αb(X) = α(X̃)

defines αb as an element of C∞(M, Λ1T ∗ ⊗Ad P ). Show that αb is independent of
the choice of ∇. Compare (13.37).



148

8. In the setting of Exercise 7, if Ωj are the curvatures of the connection 1-forms
ξj , show that

(18.53) Ω1 − Ω0 = dα + [α, ξ0] +
1
2
[α, α].

Compare (14.17) and (15.62). If d∇αb is the (Ad P )-valued 2-form defined as in
§14, via the connection ξ0, relate d∇αb to dα + [α, ξ0].

9. Let E → M be a Hermitian vector bundle, with fiber dimension k and with
metric connection ∇. Let F (E) → M be the bundle of ordered orthonormal frames
for E. Show that this is a principal U(k)-bundle, yielding a bundle isomorphic to
E under the “standard” representation of U(k) on Ck. Show that F (E) → M has
a connection, consistent with the connection ∇ on E mentioned above.
Hint. Extend the arguments bearing on the frame bundle F (M), around (18.3).
Extend this to other situations, e.g., considering general complex vector bundles
with connection and replacing U(k) by Gl(k,C).

10. Let P → M be a principal G-bundle, and let f : N → M be a smooth map.
Define a principal G-bundle f∗P → N , with fiber over x ∈ N equal to the fiber of
P over f(x) ∈ M :

f∗P = {(x, y) ∈ N × P : y ∈ Pf(x)}.
Show that a connection on P induces a natural connection on f∗P .
Hint. You get a map Φ : f∗P → P , taking (f∗P )x to Pf(x). Use Φ to pull back the
connection 1-form on P .

11. If X is a vector field on M and X̃ its horizontal lift to P (a principal G-bundle
with connection), show that the flow generated by X̃ commutes with the G-action
on P .
Hint. Use g∗X̃ = X̃.
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19. The Chern-Weil construction

Let P → M be a principal G-bundle, endowed with a connection, as in §18. Let
Ω be its curvature form, a g-valued 2-form on P ; equivalently there is the Ad P -
valued 2-form Ωb on M. The Chern-Weil construction gives closed differential forms
on M, whose cohomology classes are independent of the choice of connection on P.
These “characteristic classes” are described as follows.

A function f : g → C is called invariant if

(19.1) f(Ad(g)X) = f(X), X ∈ g, g ∈ G.

Denote by Ik the set of polynomials p : g → C which are invariant and homogeneous
of degree k. If p ∈ Ik, there is associated a symmetric Ad-invariant k-linear function
P on g, called the polarization of p, given by

(19.2) P (Y1, . . . , Yk) =
1
k!

∂k

∂t1 · · · ∂tk
p(t1Y1 + · · ·+ tkYk),

such that p(X) = P (X, . . . , X). Into the entries of P we can plug copies of Ω, or of
Ωb, to get 2k-forms

(19.3) p(Ω) = P (Ω, . . . , Ω) ∈ Λ2kP,

and, with Ωb given by (18.49),

(19.4) p(Ωb) = P (Ωb, . . . , Ωb) ∈ Λ2kM.

Note that, if π : P → M is the projection, then

(19.5) p(Ω) = π∗p(Ωb);

we say p(Ω), a form on P, is basic, i.e., the pull-back of a form on M. The following
two propositions summarize the major basic results about these forms.

Proposition 19.1. For any connection ∇ on P → M, p ∈ Ik, the forms p(Ω) and
p(Ωb) are closed. Hence p(Ωb) represents a deRham cohomology class

(19.6) [p(Ωb)] ∈ H2k(M,C).

If q ∈ Ij , then pq ∈ Ij+k, and (pq)(Ω) = p(Ω) ∧ q(Ω). Furthermore, if f : N → M
is smooth and ∇f the connection on f∗P pulled back from ∇ on P, which has
curvature Ωf = f∗Ω, then

(19.7) p(Ωb
f ) = f∗p(Ωb).
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Proposition 19.2. The cohomology class (19.6) is independent of the connection
on P, so it depends only on the bundle.

The map I∗ → H2∗(M,C) is called the Chern-Weil homomorphism. We first
prove that d p(Ω) = 0 on P, the rest of Proposition 19.1 being fairly straightforward.
If we differentiate with respect to t at t = 0 the identity

(19.8) P
(
Ad(Exp tY )X, . . . , Ad(Exp tY )X

)
= p(X),

we get

(19.9)
∑

P (X, . . . , [Y, X], . . . , X) = 0.

Into this we can substitute the curvature form Ω for X and the connection form ξ
for Y, to get

(19.10)
∑

P (Ω, . . . , [ξ, Ω], . . . , Ω) = 0.

Now the Bianchi identity dΩ = −[ξ, Ω] obtained in (18.39) shows that (19.10) is
equivalent to d p(Ω) = 0 on P. Since π∗ : ΛjM → ΛjP is injective and (19.5) holds,
we also have d p(Ωb) = 0 on M, and Proposition 19.1 is proved.

The proof of Proposition 19.2 is conveniently established via the following result,
which also has further uses.

Lemma 19.3. Let ξ0 and ξ1 be any g-valued 1-forms on P (or any manifold). Set
α = ξ1 − ξ0, ξt = ξ0 + tα, and Ωt = dξt + (1/2)[ξt, ξt]. Given p ∈ Ik, we have

(19.11) p(Ω1)− p(Ω0) = k d
[∫ 1

0

P (α, Ωt, . . . , Ωt) dt
]
.

Proof. Since (d/dt)Ωt = dα + [ξt, α], we have

(19.12)
d

dt
p(Ωt) = k P (dα + [ξt, α],Ωt, . . . , Ωt).

It suffices to prove that the right side of (19.12) is equal to k dP (α, Ωt, . . . , Ωt). This
follows by the “Bianchi” identity dΩt = −[ξt, Ωt] and the same sort of arguments
used in the proof of Proposition 19.1. Instead of (19.8), one starts with

P
(
Ad(Exp tY )Z,Ad(Exp tY )X, . . . , Ad(Exp tY )X

)
= P (Z, X, . . . ,X).

To apply Lemma 19.3 to Proposition 19.2, let ξ0 and ξ1 be the connection forms
associated to two connections on P → M, so Ω0 and Ω1 are their curvature forms.
Note that each ξt defines a connection form on P, with curvature form Ωt. Further-
more, α = ξ1 − ξ0, acting on X# ∈ TyP, depends only on π∗X# ∈ TxM and gives
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rise to an Ad P -valued 1-form αb on M (cf. Exercise 7 of §18). Thus the right side
of (19.11) is the pull back via π∗ of the (2k − 1)-form

(19.13) k d
[∫ 1

0

P (αb, Ωb
t , . . . , Ω

b
t) dt

]

on M, which yields Proposition 19.2.
We can also apply Lemma 19.3 to ξ1 = ξ, a connection 1-form, and ξ0 = 0. Then

ξt = tξ; denote dξt + (1/2)[ξt, ξt] by Φt. We have the (2k− 1)-form on P called the
transgressed form:

(19.14) Tp(Ω) = k

∫ 1

0

P (ξ, Φt, . . . , Φt) dt,

with

(19.15) Φt = t dξ +
1
2
t2[ξ, ξ].

Then Lemma 19.3 gives

(19.16) P (Ω) = d Tp(Ω),

i.e., p(Ω) is an exact form on P, not merely a closed form. On the other hand,
as opposed to p(Ω) itself, Tp(Ω) is not necessarily a basic form, i.e., the pull-back
of a form on M. In fact, p(Ωb) is not necessarily an exact form on M ; typically
it determines a nontrivial cohomology class on M. Transgressed forms play an
important role in Chern-Weil theory.

The Levi-Civita connection on an oriented Riemannian manifold of dimension
2 can be equated with a connection on the associated principal S1-bundle. If we
identify S1 with the unit circle in C, its Lie algebra is naturally identified with iR,
and this identification provides an element of I1, unique up to a constant multiple.
This is of course a constant times the product of the Gauss curvature and the
volume form, as shown in (17.13); see also (17.54). The invariance of Proposition
19.2 recovers the independence (17.26) of the integrated curvature from the metric
used on a Riemannian manifold of dimension 2. More generally, for any complex line
bundle L over M, a manifold of any dimension, L can be associated to a principal
S1-bundle, and the Chern-Weil construction produces the class [Ωb] ∈ H2(M,C).
The class c1(L) = −(1/2πi)[Ωb] ∈ H2(M,C) is called the first Chern class of the
line bundle L. In this case, the connection 1-form on P can be identified with an
ordinary (complex-valued) 1-form, and it is precisely the transgressed form (19.14).

Note that, if dim M = 2, then (17.39) says

c1(L)[M ] = Index X,

for any nonvanishing section X of L over M \ {p1, . . . , pK}.
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For general G, there may be no nontrivial elements of I1. In fact, if p : g → R is
a nonzero linear form, V = ker p is a linear subspace of g of codimension 1, which
is Ad G invariant if p ∈ I1. This means V is an ideal: [V, g] ⊂ V. Thus there are no
nontrivial elements of I1 unless g has an ideal of codimension 1. In particular, if g
is semisimple, I1 = 0.

When G is compact, there are always nontrivial elements of I2, i.e., Ad invariant
quadratic forms on g. In fact, any bi-invariant metric tensor on G gives a positive
definite element of I2. Applying the Chern-Weil construction in this case then gives
cohomology classes in H4(M,C).

One way of obtaining elements of Ik is the following. Let π be a representation
of G on a vector space Vπ, and set

(19.17) pπk(X) = Tr Λkdπ(X), X ∈ g,

where dπ(X) denotes the representation of g on Vπ. In connection with this, note
that

(19.18) det
(
λI + dπ(X)

)
=

M∑

j=0

λM−j Tr Λjdπ(X), M = dim Vπ.

If P → M is a principal U(n)-bundle, or a principal Gl(n,C)-bundle, π the
standard representation on Cn, then consider

(19.19) det
(
λ− Ω

2πi

)
=

n∑

k=0

ck(Ω)λn−k.

The classes [ck(Ωb)] ∈ H2k(M,C) are the Chern classes of P. If E → M is the
associated vector bundle, arising via the standard representation π, we also call
this the kth Chern class of E :

(19.20) ck(E) = [ck(Ωb)] ∈ H2k(M,C).

The object

(19.21) c(E) =
∑

ck(E) ∈
n⊕

k=0

H2k(M,C)

is called the total Chern class of such a vector bundle.
If P → M is a principal O(n)-bundle, π the standard representation on Rn, then

consider

(19.22) det
(
λ− Ω

2π

)
=

n∑

k=0

dk(Ω)λn−k.
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The polynomials dk(Ω) vanish for k odd, since Ωt = −Ω, and one obtains Pontrjagin
classes:

(19.23) pk(Ωb) = d2k(Ωb) ∈ H4k(M,R).

If F → M is the associated vector bundle, arising from the standard representation
π, then pk(F ) is defined to be (19.23).

Exercises

1. Show that P (Y1, . . . , Yk), defined by (19.2), is linear in each Yj . Verify the
identity p(X) = P (X, . . . , X).
Hint. Show that, for a ∈ R, P (Y1, . . . , aYj , . . . , Yk) = aP (Y1, . . . , Yj , . . . , Yk). As
for the last part, use p(t1X + · · ·+ tkX) = (t1 + · · ·+ tk)kp(X).

2. If X1, . . . , X2k are vector fields on P , show that, for p ∈ Ik with associated
k-linear form given by (19.2),

p(Ω)(X1, . . . , X2k) =
1
2k

∑

σ∈S2k

(sgn σ)P
(
Ω(Xσ(1), Xσ(2)), . . . , Ω(Xσ(2k−1), Xσ(2k))

)
.

Hint. If P (Y1, . . . , Yk) =
∑

ca1···ak
Y a1

1 · · ·Y ak

k , where superscripts represent com-
ponents with respect to some basis chosen for g, then substitution of Ω for each Yν

gives ∑
ca1···ak

Ωa1 ∧ · · · ∧ Ωak .

To apply this 2k-form to (X1, . . . , X2k), use a variant of the formula below (6.3).

3. If X1, . . . , X2k are vector fields on M , with horizontal lifts X̃1, . . . , X̃2k, and
p ∈ Ik, show that

p(Ωb)(X1, . . . , X2k) =
1
2k

∑

σ∈S2k

(sgnσ)P
(
Ω(X̃σ(1), X̃σ(2)), . . . Ω(X̃σ(2k−1), X̃σ(2k))

)
,

regarded as a function on P , is constant on fibers, and hence defines a function on
M , so that (19.4)–(19.5) holds.
Hint. Use (18.48).
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4. Show that, if X,Y , and Z are vector fields on P , then

[ξ,Ω](X, Y, Z) = [ξ(X), Ω(Y,Z)] + [ξ(Y ),Ω(Z, X)] + [ξ(Z), Ω(X,Y )].

Verify the identity (19.10).

5. Flesh out the proof of Lemma 19.3. Show that, for p ∈ Ik, P as in (19.2),

P ([Y, Z], X, . . . , X) + P (Z, [Y,X], . . . , X) + · · ·+ P (Z, X, . . . , [Y,X]) = 0,

for X,Y, Z ∈ g. Then show that

P ([ξt, α], Ωt, . . . , Ωt)− P (α, [ξt,Ωt], . . . , Ωt)− · · · − P (α, Ωt, . . . , [ξt, Ωt]) = 0.

Note the minus signs. Use this to show that

d P (α, Ωt, . . . , Ωt) = P (dα, Ωt, . . . , Ωt) + P ([ξt, α], Ωt, . . . , Ωt),

as needed to prove (19.11).
Hint. For example, write

P (α, [ξt,Ωt], . . . , Ωt)(X1, . . . , X2k)

=
1
3!

1
2k−2

∑

σ∈S2k

(sgnσ)P
(
α(Xσ(1)), [ξt, Ωt](Xσ(2), Xσ(3), Xσ(4)), . . . , Ωt(Xσ(2k−1), Xσ(2k))

)
.

Apply Exercise 4 and show that this equals

1
2k−1

∑

σ∈S2k

(sgn σ)P
(
α(Xσ(1)), [ξt(Xσ(2)), Ωt(Xσ(3), Xσ(4))], . . . , Ωt(Xσ(2k−1), Xσ(2k))

)
.

6. Let E → M be a complex vector bundle over a compact manifold M , with
fiber dimension k. It can always be endowed with a Hermitian inner product and a
metric connection. Consider the principal U(k)-bundle and the principal Gl(k,C)-
bundle associated with E, as in Exercise 9 of §18. Show that the construction
(19.19)–(19.21) applied to these two principal bundles yields the same Chern classes
cν(E) ∈ H2ν(M,C).

7. If E and F are complex vector bundles over M, we can form E ⊕F → M. Show
that

(19.24) c(E ⊕ F ) = c(E) ∧ c(F ),

where c(E) is the total Chern class given by (19.21), i.e.,

(19.25) c(E) = det
(
I − Ωb

2πi

)
∈ Heven(M,C),
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for a curvature 2-form arising from a connection on E.

8. Define the Chern character of a complex vector bundle E → M as the cohomol-
ogy class ch(E) ∈ Heven(M,C) of

(19.26) ch(Ωb) = Tr e−Ωb/2πi,

writing Tr e−Ωb/2πi ∈ ⊕
k≥0 Λ2kM via the power series expansion of the exponential

function. Show that

(19.27)
ch(E ⊕ F ) = ch(E) + ch(F ),

ch(E ⊗ F ) = ch(E) ∧ ch(F )

in Heven(M,C).

9. If F → M is a real vector bundle and E = F ⊗C its complexification, show that

(19.28) pj(F ) = (−1)jc2j(E).

10. Using so(4) ≈ so(3) ⊕ so(3), construct two different characteristic classes, in
H4(M,C), when M is a compact, oriented 4-dimensional manifold.

11. Let E → M be a complex vector bundle over a compact manifold M , of fiber
dimension k. Show that there exists a trivial bundle F ≈ CN ×M → M such that
E is isomorphic to a subbundle of F .
Hint. Cover M with open sets Oj , j = 1, . . . , M , over which there are local frame
fields for E, and use a partition of unity {ϕj} subordinate to {Oj} to define a
bundle map E → CN ×M , with N = kM .

12. Let Gk,N (C) be the Grassmannian of k-dimensional complex linear subspaces
of CN . Let τ → Gk,N (C) be the “tautological bundle,” i.e., if V ∈ Gk,N (C), the
fiber over V is τV = V . Show that τ has a natural metric connection.
Hint. Recall (13.5).
For more material on these Grassmannians, see Appendix V.

13. When E → M is a subbundle (of fiber dimension k) of the trivial bundle
CN ×M , you get a natural smooth map ψ : M → Gk,N (C), namely ψ(x) = Ex ⊂
CN . Show that, for ν ∈ Z+,

(19.29) cν(E) = ψ∗cν(τ).

Hint. Recall (19.7).
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20. The Chern-Gauss-Bonnet theorem

Our goal in this section is to generalize the Gauss-Bonnet formula (17.1), pro-
ducing a characteristic class derived from the curvature tensor Ω of a Riemannian
metric on a compact oriented manifold M, say e(Ω) ∈ Λn(M), such that

(20.1)
∫

M

e(Ω) = χ(M),

the right side being the Euler characteristic of M.
A clue to obtaining e(Ω) comes from the higher dimensional generalization of

the index formula (17.47), i.e.,

(20.2) Index (X) = χ(M),

valid for any vector field X on M with isolated critical points. The relation between
these two formulas when dim M = 2 was noted near the end of §17. It arises from
the relation between Index(X) and the degree of the Gauss map.

Indeed, let M be a compact n dimensional submanifold of Rn+k, X a (tangent)
vector field on M with a finite number of critical points, and T a small tubular
neighborhood of M. By Corollary 10.5, we know that, if N : ∂T → Sn+k−1 denotes
the Gauss map on ∂T , formed by the outward-pointing normals, then

(20.3) Index (X) = Deg (N).

As noted at the end of §17, if M is a surface in R3, with Gauss map NM ,
then Deg(NM ) = (1/4π)

∫
M

K dV, where K is the Gauss curvature of M, with its
induced metric. If T is a small tubular neighborhood of M in this case, then ∂T is
diffeomorphic to 2 oppositely oriented copies of M, with approximately the same
metric tensor. The outer component of ∂T has Gauss map approximately equal to
NM , and the inner component has Gauss map approximately equal to −NM . From
this we see that (20.2)–(20.3) imply (20.1) with e(Ω) = (1/2π)K dV, in this case.

We make a further comment on the relation between (20.2) and (20.3). Note that
the right side of (20.3) is independent of the choice of X. Thus (as noted already in
§10) any two vector fields on M, with only isolated critical points, have the same
index. Suppose M has a triangulation τ into n-simplices. There is a construction
of a vector field Xτ , illustrated in Fig. 10.1 for n = 2, with the property that Xτ

has a critical point at each vertex, of index +1, and a critical point in the middle
of each j-simplex in τ, of index (−1)j , so that

(20.4) Index (Xτ ) =
n∑

j=0

(−1)jνj(M),
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where νj(M) is the number of j-simplices in the triangulation τ of M. We leave the
construction of Xτ in higher dimensions as an exercise.

Now, in view of the invariance of Index(X), it follows that the right side of
(20.4) is independent of the triangulation of X. Also, if X has a more general cell
decomposition, we can form the sum on the right side of (20.4), where νj stands for
the number of j-dimensional cells in X. Each cell can be divided into simplices in
such a way that a triangulation is obtained, and the sum on the right side of (20.4)
is unchanged under such a refinement. This alternating sum is one definition of the
Euler characteristic, but there is another definition, namely

(20.5) χ(M) =
n∑

j=0

(−1)j dim Hj(M).

We will temporarily denote the right side of (20.4) by χc(M).
Now we tackle the question of representing (20.3) as an integrated curvature,

to produce (20.1). We begin with the case when M is a compact hypersurface in
Rn+1. In that case we have, by (16.66),

(20.6) Deg (N) =
2

An

∫

M

(
det AN

)
dV, for n even,

where An is the area of Sn and AN : TpM → TpM is the Weingarten map. The
factor 2 arises because ∂T consists of two copies of M. We can express det AN

directly in terms of the Riemann curvature tensor Rjk`m of M, using Gauss’ The-
orema Egregium.

In fact, with respect to an oriented orthonormal basis {ej} of TpM, the matrix
of AN has entries Ajk = ĨI(ej , ek), and, by (16.14),

(20.7) Rjk`m = 〈R(e`, em)ek, ej〉 = det
(

Amk Amj

A`k A`j

)

In other words, the curvature tensor captures the action of Λ2AN on Λ2TpM. If
n = 2k is even, we can then express det AN as a polynomial in the components
Rjk`m, using

(20.8)
(det AN ) e1 ∧ · · · ∧ en =

(
ΛnAN

)
(e1 ∧ · · · ∧ en)

= (Ae1 ∧Ae2) ∧ · · · ∧ (Aen−1 ∧Aen).

Now, by (20.7),

(20.9) Aej ∧Aek =
1
2

∑
R`mjk e` ∧ em.
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Replacing (1, . . . , n) in (20.8) with all its permutations and summing, we obtain

(20.10) det AN =
1

2n/2n!

∑

j,k

(sgn j)(sgn k)Rj1j2k1k2 · · ·Rjn−1jnkn−1kn
,

where j = (j1, . . . , jn) stands for a permutation of (1, . . . , n). The fact that the
quantity (20.10), integrated over M, is equal to (An/2)χ(M), when M is a hyper-
surface in Rn+1, was first established by H. Hopf, as a consequence of his result
(20.2). The content of the generalized Gauss-Bonnet formula is that for any com-
pact Riemannian manifold M, of dimension n = 2k, integrating the right side of
(20.10) over M gives (An/2)χ(M).

One key point in establishing the general case is to perceive the right side of
(20.10) as arising via the Chern-Weil construction from an invariant polynomial on
the Lie algebra g = so(n), to produce a characteristic class. Now the curvature 2-
form can in this case be considered a section of Λ2T ∗⊗Λ2T ∗, reflecting the natural
linear isomorphism g ≈ Λ2T ∗. Furthermore, Λ∗T ∗⊗Λ∗T ∗ has a product, satisfying

(20.11) (α1 ⊗ β1) ∧ (α2 ⊗ β2) = (α1 ∧ α2)⊗ (β1 ∧ β2).

If we set

(20.12) Ω =
1
4

∑
Rjk`m(ej ∧ ek)⊗ (e` ∧ em),

then we form the k-fold product, k = n/2, obtaining

(20.13) Ω ∧ · · · ∧ Ω = 2−n
∑

j,k

(sgn j)(sgn k)Rj1j2k1k2 · · ·Rjn−1jnkn−1kn(ω ⊗ ω),

with ω = e1 ∧ · · · ∧ en. Thus, the right side of (20.10), multiplied by ω⊗ω, is equal
to 2n/2/n! times the right side of (20.13). (Observe the distinction between the
product (20.11) and the product on End(E) ⊗ Λ∗T, used in (19.19) and (19.22),
which assigns a different meaning to Ω ∧ · · · ∧ Ω.)

Now the Chern-Weil construction produces (20.13), with ω⊗ω replaced by ω, if
we use the Pfaffian

(20.14) Pf : so(n) −→ R, n = 2k,

defined as follows. Let ξ : so(n) → Λ2Rn be the isomorphism

(20.15) ξ(X) =
1
2

∑
Xjk ej ∧ ek, X = (Xjk) ∈ so(n).

Then, if n = 2k, take a product of k factors of ξ(X), to obtain a multiple of
ω = e1 ∧ · · · ∧ en. Then Pf (X) is uniquely defined by

(20.16) ξ(X) ∧ · · · ∧ ξ(X) = k! Pf (X)ω.
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Note that, if T : Rn → Rn is linear, then T ∗ξ(X) = ξ(T tXT ), so

(20.17) Pf (T tXT ) = (det T )Pf (X).

Now any X ∈ so(n) can be written as X = T tY T, where T ∈ SO(n), i.e., T is
an orthogonal matrix of determinant 1, and Y is a sum of 2 × 2 skew-symmetric
blocks, of the form

(20.18) Yν =
(

0 λν

−λν 0

)
, λν ∈ R.

Thus ξ(Y ) = λ1e1 ∧ e2 + · · ·+ λken−1 ∧ en, so

(20.19) Pf (Y ) = λ1 · · ·λk.

Note that det Y = (λ1 · · ·λk)2. Hence, by (20.17), we have

(20.20) Pf (X)2 = det X,

when X is a real skew-symmetric n×n matrix, n = 2k. When (20.17) is specialized
to T ∈ SO(n), it implies that Pf is an invariant polynomial, homogeneous of degree
k, i.e., Pf ∈ Ik, k = n/2.

Now, with Ω in (20.12) regarded as a g-valued 2-form, we have the left side
of (20.13) equal to (1/k!)Pf(Ω). Thus we are on the way toward establishing the
generalized Gauss-Bonnet theorem, in the following formulation.

Theorem 20.1. If M is a compact oriented Riemannian manifold of dimension
n = 2k, then

(20.21) χ(M) = (2π)−k

∫

M

Pf (Ω).

The factor (2π)−k arises as follows. From (20.10) and (20.13), it follows that,
when M is a compact hypersurface in Rn+1, the right side of (20.6) is equal to
Ck

∫
M

Pf (Ω), with

(20.22) Ck =
2k+1

An

k!
n!

.

Now the area of the unit sphere is given by

A2k =
2πk+ 1

2

Γ(k + 1
2 )

=
2πk

(
k − 1

2

) · · · ( 1
2

) ,

as is shown in (4.30), and substituting this into (20.22) gives Ck = (2π)−k.
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We give a proof of Theorem 20.1 which extends the proof of (17.24), in which
handles are added to a surface. To effect this parallel, we consider how the two
sides of (20.21) change when M is altered by a certain type of surgery, which we
will define in the next paragraph. First, we mention another ingredient in the proof
of Theorem 20.1. Namely, the right side of (20.21) is independent of the choice of
metric on M . Since different metrics produce different SO(2k) frame bundles, this
assertion requires a further argument. We will postpone the proof of this invariance
until near the end of this section.

We now describe the “surgeries” alluded to above. To perform surgery on M0,
of dimension n, excise a set H0 diffeomorphic to S`−1 × Bm, with m + ` − 1 = n,
where Bm = {x ∈ Rm : |x| < 1}, obtaining a manifold with boundary X, ∂X being
diffeomorphic to S`−1×Sm−1. Then attach to X a copy of B`×Sm−1, sewing them
together along their boundaries, both diffeomorphic to S`−1×Sm−1, to obtain M1.
Symbolically, we write

(20.23) M0 = X#H0, M1 = X#H1.

We say M1 is obtained from M0 by a surgery of type (`, m).
We compare the way each side of (20.21) changes when M changes from M0 to

M1. We also look at how χc(M), defined to be the right side of (20.4), changes. In
fact, this definition easily yields

(20.24) χ(X#H1) = χ(X#H0)− χ(H0) + χ(H1).

For notational simplicity, we have dropped the “c” subscript. It is more convenient
to produce an identity involving only manifolds without boundary, so note that

(20.25)
χ(H0#H0) = 2χ(H0)− χ(∂H0)

χ(H1#H1) = 2χ(H1)− χ(∂H1)

and, since ∂H0 = ∂H1, we have

(20.26) χ(H1)− χ(H0) =
1
2
χ(H1#H1)− 1

2
χ(H0#H0),

hence

(20.27) χ(M1) = χ(M0) +
1
2
χ(H1#H1)− 1

2
χ(H0#H0).

Note that H0#H0 = S`−1 × Sm, H1#H1 = S` × Sm−1. To compute the Eu-
ler characteristic of these two spaces, we can use multiplicativity of χ. Note that
products of cells in Y1 and Y2 give cells in Y1 × Y2, and

(20.28) νj(Y1 × Y2) =
∑

i+k=j

νi(Y1)νk(Y2);
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then from (20.4) it follows that

(20.29) χ(Y1 × Y2) =
∑

j≥0

(−1)j
∑

i+k=j

νi(Y1)νk(Y2) = χ(Y1)χ(Y2).

We use the easily established result that χc satisfies

(20.30) χ(Sj) = 2 if j is even, 0 if j is odd.

See (10.13). We have χ(H0#H0) − χ(H1#H1) equal to 4 if ` is odd and m even,
−4 if ` is even and m odd, and 0 if ` and m have the same parity (which does not
arise if dim M is even).

The change in χc(M) just derived in fact coincides with the change in χ(M),
defined by (20.5). This follows from results on deRham cohomology which will
be obtained in §§21–24. In fact (24.8) implies (20.24), from which (20.25)–(20.27)
follow, (22.45) implies (20.29), when Yj are smooth compact manifolds, and (22.49)–
(22.50) implies (20.30), when χ is defined by (20.5).

Thus, for e(M) =
∫

M
e(Ω), to change the same way as χ(M) under a surgery,

we need the following properties, in addition to “functoriality.” We need

(20.31)
e(Sj × Sk) = 0 if j or k is odd,

4 if j and k are even.

If e(Ω) is locally defined we have, upon giving X, H0, and H1 coherent orientations,

(20.32)
∫

M1

e(Ω) =
∫

M0

e(Ω)−
∫

H0

e(Ω) +
∫

H1

e(Ω),

parallel to (20.24). Place metrics on Mj which are product metrics on (−ε, ε) ×
S`−1×Sm−1 on a small neighborhood of ∂X. If we place a metric on Hj#Hj which
is symmetric with respect to the natural involution, we will have

(20.33)
∫

Hj

e(Ω) =
1
2

∫

Hj#Hj

e(Ω)

provided e(Ω) has the following property. Given an oriented Riemannian manifold
Y, let Y # be the same manifold with orientation reversed, and let the associated
curvature forms be denoted ΩY and ΩY # . We require

(20.34) e(ΩY ) = −e(ΩY #).

Now e(Ω) = Pf (Ω/2π) certainly satisfies (20.34), in view of the dependence on
orientation built into (20.16). To see that (20.31) holds in this case, we need only
note that S` × Sk can be smoothly imbedded as a hypersurface in R`+k+1. This
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can be done via imbedding S`× I ×Bk into R`+k+1, and taking its boundary (and
smoothing it out). In that case, since Pf (Ω/2π) is a characteristic class whose
integral is independent of the choice of metric, we can use the metric induced from
the imbedding. We now have (20.31)–(20.33). Furthermore, for such a hypersurface
M = Hj#Hj , we know that the right side of (20.21) is equal to χc(Hj#Hj), by the
argument preceding the statement of Theorem 20.1, and since (20.29) and (20.30)
are both valid for both χ and χc, we also have this quantity equal to χ(Hj#Hj).

It follows that (20.21) holds for any M obtainable from Sn by a finite number of
surgeries. With one extra wrinkle we can establish (20.21) for all compact oriented
M. The idea for using this technique is one the author learned from J. Cheeger,
who used a somewhat more sophisticated variant in work on analytic torsion [Ch].

Assume M is connected. Imbed M in RK (for some K), fix p ∈ M , and define
f0 : M × R → R by f0(x, t) = |x − p|2 + t2, where |x − p|2 is the square-norm of
x− p ∈ RK . For R sufficiently large, f−1

0 (R) is diffeomorphic to two copies of M ,
under (x, t) 7→ x. For r > 0 sufficiently small, f−1

0 (r) is diffeomorphic to the sphere
Sn.

Our argument will use basic results of Morse Theory. A Morse function f :
Z → R is a smooth function on a manifold Z all of whose critical points are non-
degenerate, i.e., if ∇f(z) = 0 then D2f(z) is an invertible ν × ν matrix, ν = dim
Z. One also assumes f takes different values at distinct critical points, and that
f−1(K) is compact for every compact K ⊂ R. Now the function f0 above may not
be a Morse function on Z = M × R, but there will exist a smooth perturbation
f of f0 which is a Morse function. This can be proven using Sard’s theorem; see
Appendix O. The new f will share with f0 the property that f−1(r) is diffeomorphic
to Sn and f−1(R) is diffeomorphic to two copies of M. Note that an orientation
on M induces an orientation on M × R, and hence an orientation on any level set
f−1(c) which is regular, i.e., which contains no critical points. In particular, f−1(R)
is a union of two copies of M with opposite orientations. One of the fundamental
results of Morse Theory is the following.

Theorem 20.2. If c1 < c2 are regular values of a Morse function f : Z → R, and
there is exactly one critical point z0, with c1 < f(z0) < c2, then M2 = f−1(c2)
is obtained from M1 = f−1(c1) by a surgery. In fact, if D2f(z0) has signature
(`,m), M2 is obtained from M1 by a surgery of type (m, `).

This is a consequence of the following result, known as the Morse Lemma.

Proposition 20.3. Let f have a nondegenerate critical point at p ∈ Z. Then there
is a coordinate system (x1, . . . , xn) centered at p in which

(20.35) f(x) = f(p) + x2
1 + · · ·+ x2

` − x2
`+1 − · · · − x2

`+m,

near the origin, where ` + m = ν = dim Z.

Proof. Suppose that in some coordinate system D2f(p) is given by a nondegenerate
symmetric ν × ν matrix A. It will suffice to produce a coordinate system in which

(20.36) f(x) = f(p) +
1
2
Ax · x,
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near the origin, since going from here to (20.35) is a simple exercise in linear algebra.
We will arrange (20.36) by an argument due to R. Palais.

Begin with any coordinate system centered at p. Let

(20.37) ω1 = df, ω0 = dg, where g(x) =
1
2
Ax · x,

with A = D2f(0) in this coordinate system. Set ωt = tω1 + (1 − t)ω0, which
vanishes at p for each t ∈ [0, 1]. The nondegeneracy hypothesis on A implies that
the components of each ωt have linearly independent gradients at p; hence there
exists a smooth time-dependent vector field Xt (not unique), such that

(20.38) ωtcXt = g − f, Xt(p) = 0.

Let Ft be the flow generated by Xt, with F0 = Id. Note that Ft fixes p. It is then
an easy computation using (8.38), plus the identity LXω = d(ωcX)+ (dω)cX, that

(20.39)
d

dt

(F∗t ωt

)
= 0.

Hence F∗1 ω1 = ω0, so f ◦ F1 = g and the proof of Proposition 20.3 is complete.

From Theorem 20.2, it follows that, given any compact oriented connected M,
of dimension n, a finite number of surgeries on Sn yields two copies of M, with
opposite orientations, say M and M#. Hence (20.21) holds with M replaced by
the disjoint union M ∪ M#. But, in view of (20.34), both sides of the resulting
identity are equal to twice the corresponding sides of (20.21); for χc this follows
easily from (20.4), and for χ it follows immediately from (20.5). We hence have the
Chern-Gauss-Bonnet formula, and also the identity χ(M) = χc(M), modulo the
task of showing the invariance of the right side of (20.21) under changes of metric
on M .

We turn to the task of demonstrating such invariance. Say g0 and g1 are two
Riemannian metric tensors on M , with associated SO(n)-bundles P0 → M, P1 →
M , having curvature forms Ω0 and Ω1. We want to show that Pf (Ωb

1)− Pf (Ωb
0) is

exact on M . To do this, consider the family of metric tensors gt = tg1 + (1− t)g0

on M , with associated SO(n)-bundles Pt → M , for t ∈ [0, 1]. These bundles fit
together to produce a principal SO(n)-bundle P̃ → M × [0, 1]. We know there
exists a connection on this principal bundle. Let T = ∂/∂t on M × [0, 1], and let
T̃ denote its horizontal lift (with respect to a connection chosen on P̃ ). The flow
generated by T̃ commutes with the SO(n)-action on P̃ . Flowing along one unit of
time then yields a diffeomorphism Φ : P0 → P1, commuting with the SO(n)-action,
hence giving an isomorphism of SO(n)-bundles. Now applying Proposition 19.2 to
the original connection on P0 and to that pulled back from P1 gives the desired
invariance.

Before S. S. Chern’s work, H. Hopf had established Theorem 20.1 when M is
a compact hypersurface in R2k+1. Then C. Allendoerfer [Al] and W. Fenchel [Fen]
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proved it for the case when M is isometrically imbedded in R2k+n, by relating the
integral on the right side of (20.21) to the integral over ∂T of the Gauss curvature
of the boundary of a small tubular neighborhood T of M, and using the known
result that χ(∂T ) = 2χ(M). At that time, it was not known that any compact
Riemannian manifold could be isometrically imbedded in Euclidean space. By
other means, Allendoerfer and A. Weil [AW] proved Theorem 20.1, at least for real
analytic metrics, via a triangulation and local isometric imbedding. Chern then
produced an intrinsic proof of Theorem 20.1 and initiated a new understanding of
characteristic classes.

In Chern’s original paper [Cher], it was established that
∫

M
Pf(Ω/2π) is equal

to the index of a vector field X on M, by a sophisticated variant of the argument
establishing Proposition 17.4, involving a differential form on the unit sphere bundle
of M, related to, but more complicated than, the transgressed form (19.14). An
exposition of this argument can also be found in [Poo], and in [Wil]. When dim
M = 2, one can identify the unit sphere bundle and the frame bundle, and in that
case the form coincides with the transgressed form, and the argument becomes
equivalent to that used to prove Proposition 17.4. An exposition of the proof of
Theorem 20.1 using tubes can be found in [Gr].

We mention a further generalization of the Gauss-Bonnet formula. If E → X is
an SO(2k)-bundle over a compact manifold X (say of dimension n), with metric
connection ∇ and associated curvature Ω, then Pf (Ω/2π) is defined as a 2k-form
on X. This gives a class Pf (E) ∈ H2k(X), independent of the choice of connection
on E, as long as it is a metric connection. There is an extension of Theorem 20.1,
describing the cohomology class of Pf (Ω/2π) in H2k(X). Treatments of this can
be found in [KN] and in [Spi].

Exercises

1. Verify directly that, when Ω is the curvature 2-form arising from the standard
metric on S2k, then ∫

S2k

Pf (Ω/2π) = 2.

2. Generalize Theorem 20.1 to the nonorientable case.
Hint. If M is not orientable, look at its orientable double cover M̃. Use (20.4) to
show that χ(M̃) = 2χ(M).

Using (20.16) as a local identity, define a measure P̃f (Ω) in the nonorientable case.
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3. If Mj are compact Riemannian manifolds with curvature forms Ωj and M1×M2

has the product metric, with curvature form Ω, show directly that

π∗1Pf (Ω1) ∧ π∗2Pf (Ω2) = Pf (Ω),

where πj projects M1×M2 onto Mj . If dim Mj is odd, set Pf (Ωj) = 0. Use this to
reprove (20.31), when e(Ω) = Pf (Ω).

4. Show directly that the right sides of (20.2) and (20.3) both vanish when M is a
hypersurface of odd dimension in Rn+1.

5. Work out “more explicitly” the formula (20.21) when dim M = 4. Show that
(cf. [Av])

χ(M) =
1

32π2

∫

M

(
|R|2 − |Ric− 1

4
Sg|2

)
dV,

where R is the Riemann curvature tensor, Ric the Ricci tensor, and S the scalar
curvature.

6. We say a Riemannian manifold is Einstein if its Ricci tensor is a scalar multiple
of its metric tensor. Show that, if M is a compact 4-dimensional Einstein manifold,
then

χ(M) =
1

32π2

∫

M

|R|2 dV.

Draw conclusions. See [Bes] for further material on Einstein manifolds.

7. Let E → M be a complex vector bundle, with a Hermitian inner product, and let
Ẽ → M denote the real vector bundle obtained by ignoring the complex structure
on E (so dimCEx = k and dimRẼx = 2k). Show that Ẽ has a natural structure as
an SO(2k)-bundle, and that

Pf (Ẽ) = ck(E),

where the right side is the kth Chern class of E.
Hint. If κ : u(k) → so(2k) is the natural inclusion, show that

Pf
(κ(X)

2π

)
= det

(
− X

2πi

)
, X ∈ u(k).
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8. Let M be a compact complex Hermitian manifold, of complex dimension n (i.e.,
real dimension 2n). Denote by T its tangent bundle, regarded as a complex vector
bundle, with fibers Tp of complex dimension n. Deduce that

∫

M

cn(T ) = χ(M),

where cn(T ) is the top Chern class, defined by (19.19)–(19.20).

9. If E → M is an SO(2k)-bundle, show that

Pf (E) ∧ Pf (E) = pk(E),

where the right side is the kth Pontrjagin class of E.
Note. This has no content when E = TM .
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21. The Hodge Laplacian on k-forms

If M is an n-dimensional Riemannian manifold, recall there is the exterior de-
rivative

(21.1) d : Λk(M) −→ Λk+1(M),

satisfying

(21.2) d2 = 0.

The Riemannian metric on M gives rise to an inner product on T ∗x for each x ∈ M,
and then to an inner product on ΛkT ∗x , via

(21.3) 〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 =
∑

π

(sgn π)〈v1, wπ(1)〉 · · · 〈vk, wπ(k)〉,

where π ranges over the set of permutations of {1, . . . , k}. Equivalently, if {e1, . . . , en}
is an orthonormal basis of T ∗x M, then {ej1 ∧ · · · ∧ ejk

: j1 < j2 < · · · < jk} is an
orthonormal basis of ΛkT ∗x M. Consequently, there is an inner product on k-forms,
i.e., sections of Λk, given by

(21.4) (u, v) =
∫

M

〈u, v〉 dV (x).

Thus there is a first order differential operator

(21.5) δ : Λk+1(M) −→ Λk(M)

which is the formal adjoint of d, i.e., δ is characterized by

(21.6) (du, v) = (u, δv), u ∈ Λk(M), v ∈ Λk+1(M), compactly supported.

We set δ = 0 on 0-forms. Of course, (21.2) implies

(21.7) δ2 = 0.

There is a useful formula for δ, involving d and the “Hodge star operator,” which
will be derived in §22.

The Hodge Laplacian on k-forms

(21.8) ∆ : Λk(M) −→ Λk(M)
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is defined by

(21.9) −∆ = (d + δ)2 = dδ + δd.

Consequently,

(21.10) (−∆u, v) = (du, dv) + (δu, δv) for u, v ∈ C∞0 (M, Λk).

Since δ = 0 on Λ0(M), we have −∆ = δd on Λ0(M).
We will obtain an analogue of (21.10) for the case where M is a compact manifold

with boundary, so a boundary integral appears. To obtain such a formula, we
specialize the general Green-Stokes formula (8B.17) to the cases P = d and P = δ.
First, we compute the symbols of d and δ. Since, for a k-form u,

(21.11) d(u eiλψ) = iλeiλψ(dψ) ∧ u + eiλψ du,

we see that

(21.12)
1
i
σd(x, ξ)u = ξ ∧ u.

As a special case of (8B.12), we have

(21.13) σδ(x, ξ) = σd(x, ξ)t.

The adjoint of the map (21.12) from ΛkT ∗x to Λk+1T ∗x is given by the interior
product

(21.14) ιξu = ucX,

where X ∈ Tx is the vector corresponding to ξ ∈ T ∗x under the isomorphism Tx ≈ T ∗x
given by the Riemannian metric. Consequently,

(21.15)
1
i
σδ(x, ξ)u = −ιξu.

Now, the Green-Stokes formula (8B.17) implies, for M a compact Riemannian
manifold with boundary,

(21.16)

(du, v) = (u, δv) +
1
i

∫

∂M

〈σd(x, ν)u, v〉 dS

= (u, δv) +
∫

∂M

〈ν ∧ u, v〉 dS,
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and

(21.17)

(δu, v) = (u, dv) +
1
i

∫

∂M

〈σδ(x, ν)u, v〉 dS

= (u, dv)−
∫

∂M

〈ινu, v〉 dS.

Recall that ν is the outward pointing unit normal to ∂M.
Consequently, our generalization of (21.10) is

(21.18)

−(∆u, v) = (du, dv) + (δu, δv)

+
1
i

∫

∂M

[〈σd(x, ν)δu, v〉+ σδ(x, ν)du, v〉]dS,

or, equivalently,

(21.19)

−(∆u, v) = (du, dv) + (δu, δv)

+
∫

∂M

[〈ν ∧ (δu), v〉 − 〈ιν(du), v〉]dS.

Taking adjoints of the symbol maps, we can also write

(21.20)

−(∆u, v) = (du, dv) + (δu, δv)

+
∫

∂M

[〈δu, ινv〉 − 〈du, ν ∧ v〉]dS.

Let us note what the symbol of ∆ is. By (21.12) and (21.15),

(21.21) −σ∆(x, ξ)u = ιξξ ∧ u + ξ ∧ ιξu.

If we perform the calculation by picking an orthonormal basis for T ∗x of the for
{e1, . . . , en} with ξ = |ξ|e1, we see that

(21.22) σ∆(x, ξ)u = −|ξ|2u.

In other words, in a local coordinate system, we have, for a k-form u,

(21.23) ∆u = gj`(x) ∂j∂`u + Yyu,

where Yk is a first order differential operator.
Generally speaking, a differential operator P : C∞(M, E0) → C∞(M, E1) is said

to be elliptic provided σP (x, ξ) : E0x → E1x is invertible for each x ∈ M, and each
ξ 6= 0. By (21.22), the Laplace operator on k-forms is elliptic.
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Of course, the definition −∆ = δd for the Laplace operator on 0-forms coincides
with the definition given in (8.26). In this regard, it is useful to note explicitly
the following result about δ on 1-forms. Let X be a vector field and ξ the 1-form
corresponding to X under a given metric:

(21.24) g(Y, X) = 〈Y, ξ〉.

Then

(21.25) δξ = − div X.

This identity follows from (8.23), which can be rewritten

(ξ, du) = (X, grad u) = −(div X,u) +
∫

∂M

〈X, ν〉u dS,

and the definition of δ as the formal adjoint of d.
We end this section with some algebraic implications of the symbol formula

(21.21)–(21.22) for the Laplace operator. If we define ∧ξ : Λ∗T ∗x → Λ∗T ∗x by
∧ξ(ω) = ξ∧ω and define ιξ as above, by (10.14), then the content of this calculation
is

(21.26) ∧ξιξ + ιξ∧ξ = |ξ|2.

As we have mentioned, this can be established by picking ξ/|ξ| to be the first
member of an orthonormal basis of T ∗x . This identity has the following extension:

(21.27) ∧ξιη + ιη∧ξ = 〈ξ, η〉,

which follows from formula (6.8). Note the connection with (8.39).

Exercises

1. Show that the adjoint of the exterior product operator ξ∧ is ιξ, as asserted in
(21.14).

2. If α =
∑
k

ajk(x) dxj ∧ dxk and aj
k = gk`aj`, relate δα to the divergence aj

k
;k,

as defined in (12.29).

3. Using (21.20), write down an expression for

(∆u, v)− (u, ∆v)
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as a boundary integral, when u and v are k-forms.

4. Let ω ∈ Λn(M), n = dim M, be the volume form of an oriented Riemannian
manifold M. Show that δω = 0.
Hint. Compare (21.6) with the special case of Stokes’ formula

∫
M

du = 0 for
u ∈ Λn−1(M), compactly supported.

5. Granted the result of Exercise 4, show that Stokes’ formula
∫

M
du =

∫
∂M

u, for
u ∈ Λn−1(M), follows from (21.16).

6. If f ∈ C∞(M) and u ∈ Λk(M), show that

δ(fu) = fδu− ι(df)u.

7. For a vector field u on the Riemannian manifold M, let ũ denote the associated
1-form. Show that

δ(ũ ∧ ṽ) = (div v)ũ− (div u)ṽ − [̃u, v],

for ũ, ṽ ∈ Λ1(M).
Reconsider this problem after reading §22.
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22. The Hodge decomposition and harmonic forms

Let M be a compact Riemannian manifold, without boundary. Recall from §21
the Hodge Laplacian on k-forms,

(22.1) ∆ : C∞(M, Λk) −→ C∞(M, Λk),

defined by

(22.2) −∆ = (d + δ)2 = dδ + δd,

where d is the exterior derivative operator and δ its formal adjoint, satisfying

(22.3) (du, v) = (u, δv)

for a smooth k-form u and (k +1)-form v; δ = 0 on 0-forms. Note that, for smooth
k-forms,

(22.4) −(∆u, v) = (du, dv) + (δu, δv).

The local coordinate expression

(22.5) ∆u = gj`(x)∂j∂`u + Yju,

where Yk are first order differential operators, derived in (21.23), implies that the
Hodge Laplacian on k-forms is an elliptic differential operator, i.e., its symbol (de-
fined in §8B) σ∆(x, ξ) = −|ξ|2 is invertible for all ξ 6= 0. We will not present details
on the analysis of elliptic operators here, but we will state some of the implications
for the Hodge Laplacian, which will be important in the development of the Hodge
decomposition. A detailed presentation can be found in Chapter 5 of [T1].

First, for any fixed C1 > 0, T = (−∆ + C1)−1 is a compact self adjoint operator
on L2(M, Λk). The identity (22.4) implies

(22.6) 0 < (Tu, u) ≤ C−1
1 ‖u‖2L2 ,

for nonzero u. The space L2(M, Λk) has an orthonormal basis u
(k)
j consisting of

eigenfunctions of T :

(22.7) Tu
(k)
j = µ

(k)
j u

(k)
j ; u

(k)
j ∈ H1(M, Λk).

By (22.6), we have

(22.8) 0 < µ
(k)
j ≤ C−1

1 .
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For each k, we can order the u
(k)
j so that µ

(k)
j ↘ 0, as j ↗∞. It follows that

(22.9) −∆u
(k)
j = λ

(k)
j u

(k)
j

with

(22.10) λ
(k)
j =

1

µ
(k)
j

− C1,

so

(22.11) λ
(k)
j ≥ 0, λ

(k)
j ↗∞ as j →∞.

The standard elliptic regularity results imply that

(22.12) u
(k)
j ∈ C∞(M, Λk).

In particular, the 0-eigenspace of ∆ on k-forms is finite dimensional, and consists
of smooth k-forms. These are called harmonic forms. We denote this 0-eigenspace
by Hk. By (22.4), we see that

(22.13) u ∈ Hk ⇐⇒ u ∈ C∞(M, Λk), du = 0, and δu = 0 on M.

Denote by Pk the orthogonal projection of L2(M, Λk) onto Hk. We also define a
continuous linear map

(22.14) G : L2(M, Λk) −→ L2(M, Λk)

by

(22.15)
Gu

(k)
j = 0 if λ

(k)
j = 0,

(
1/λ

(k)
j

)
u

(k)
j if λ

(k)
j > 0.

Hence −∆Gu
(k)
j = (I − Pk)u(k)

j . It follows that

(22.16) −∆Gu = (I − Pk)u for u ∈ C∞(M, Λk).

Now the elliptic regularity implies

(22.17) G : C∞(M, Λk) −→ C∞(M, Λk),

and, if Cr(M) denotes a Hölder space, then, for j = 0, 1, 2, . . . , r ∈ (0, 1),

(22.18) G : Cj+r(M, Λk) −→ Cj+2+r(M, Λk).

Using (22.2), we write (22.16) in the following form, known as the Hodge decompo-
sition.
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Proposition 22.1. Given u ∈ C∞(M, Λk), we have

(22.19) u = dδGu + δdGu + Pku.

The three terms on the right are mutually orthogonal in L2(M, Λk).

Proof. Only the orthogonality remains to be establishd. But if u ∈ C∞(M, Λk−1)
and v ∈ C∞(M, Λk+1), then

(22.20) (du, δv) = (d2u, v) = 0,

and if w ∈ Hk, so dw = δw = 0, we have

(22.21) (du, w) = (u, δw) = 0, and (δv, w) = (v, dw) = 0,

so the orthogonality is established.

A smooth k-form u is said to be exact if u = dv for some smooth (k− 1)-form v,
and closed if du = 0. Since d2 = 0, every exact form is closed:

(22.22) Ek(M) ⊂ Ck(M),

where Ek(M) and Ck(M) denote respectively the spaces of exact and closed k-forms.
Similarly, a k-form u is said to be co-exact if u = δv for some smooth (k + 1)-form
v, and co-closed if δu = 0, and since δ2 = 0 we have

(22.23) CEk(M) ⊂ CCk(M),

with obvious notation. The deRham cohomology groups are defined, as in §9, as
quotient spaces:

(22.24) Hk(M) = Ck(M)/Ek(M).

The following is one of the most important consequences of the Hodge decomposi-
tion (22.19).

Proposition 22.2. If M is a compact Riemannian manifold, there is a natural
isomorphism

(22.25) Hk(M) ≈ Hk.

Proof. Since every harmonic form is closed, there is an injection

(22.26) j : Hk ↪→ Ck(M),

which hence gives rise to a natural map

(22.27) J : Hk −→ Hk(M),
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by passing to the quotient (22.24). It remains to show that J is bijective. The
orthogonality (22.21) shows that

(Image j) ∩ Ek(M) = 0,

so J is injective. Also (22.21) shows that, if u ∈ Ck(M), then δdGu = 0 in (22.19),
so u = dδGu + Pku, or u = Pku mod Ek(M). Hence J is surjective, and the proof
is complete.

Clearly the space Hk(M) is independent of the Riemannian metric chosen for
M. Thus the dimension of the space Hk of harmonic k-forms is independent of the
metric. Indeed, since the isomorphism (22.25) is natural, we can say the following.
Given two Riemannian metrics g and g′ for M, with associated spaces Hk and H′k
of harmonic k-forms, there is a natural isomorphism Hk ≈ H′k. Otherwise said,
each u ∈ Hk is cohomologous to a unique u′ ∈ H′k.

An important theorem of deRham states that Hk(M), defined by (22.24), is
isomorphic to a certain singular cohomology group. A variant is an isomorphism
of Hk(M,R) with a certain Cech cohomology group. We refer to [SiT], [BoT] for
material on this.

We now introduce the Hodge star operator

(22.28) ∗ : C∞(M, Λk) −→ C∞(M, Λm−k) (m = dim M)

in fact, a bundle map
∗ : ΛkT ∗x −→ Λm−kT ∗x ,

which will be seen to relate δ to d. For (22.28) to be defined, we need to assume M
is an oriented Riemannian manifold, so there is a distinguished volume form

(22.29) ω ∈ C∞(M, Λm).

Then the star operator (22.28) is uniquely specified by the relation

(22.30) u ∧ ∗v = 〈u, v〉ω,

where 〈u, v〉 is the inner product on ΛkT ∗x , which was defined by (21.3). In particu-
lar, it follows that ∗1 = ω. Furthermore, if {e1, . . . , em} is an oriented orthonormal
basis of T ∗x M, we have

(22.31) ∗(ej1 ∧ · · · ∧ ejk
) = (sgn π) e`1 ∧ · · · ∧ e`m−k

where {j1, . . . , jk, `1, . . . , `m−k} = {1, . . . , m}, and π is the permutation mapping
the one ordered set to the other. It follows that

(22.32) ∗∗ = (−1)k(m−k) on Λk(M),
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where, for short, we are denoting C∞(M, Λk) by Λk(M). We denote (22.32) by w,
and also set

(22.33) w = (−1)k on Λk(M),

so

(22.34) d(u ∧ v) = du ∧ v + w(u) ∧ dv.

It follows that, if u ∈ Λk−1(M), v ∈ Λk(M), then w(u) ∧ d ∗ v = −u ∧ d ∗ w(v), so

(22.35)
d(u ∧ ∗v) = du ∧ ∗v − u ∧ d ∗ w(v)

= du ∧ ∗v − u ∧ ∗w ∗ d ∗ w(v),

since ∗w∗ = id., by (22.32). Integrating over M, since ∂M = ∅, we have, by Stokes’
formula,

∫
M

d(u ∧ ∗v) = 0, and hence

(22.36)
(du, v) =

∫

M

du ∧ ∗v =
∫

M

u ∧ ∗w ∗ d ∗ w(v)

= (u, w ∗ d ∗ w(v)).

In other words,

(22.37)
δ = w ∗ d ∗ w

= (−1)k(m−k)−m+k−1 ∗ d ∗ on Λk(M).

Thus, by the characterization (22.13) of harmonic k-forms, we have

(22.38) ∗ : Hk −→ Hm−k,

and, by (22.32), this map is an isomorphism. In view of Proposition 22.2, we have
the following special case of Poincaré duality.

Corollary 22.3. If M is a compact oriented Riemannian manifold, there is an
isomorphism of deRham cohomology groups

(22.39) Hk(M) ≈ Hm−k(M).

As a further application of the Hodge decomposition, we prove the following
result on the deRham cohomology groups of a Cartesian product M × N of two
compact manifolds, a special case of the Kunneth formula.
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Proposition 22.4. If M and N are compact manifolds, of dimension m and n
respectively, then, for 0 ≤ k ≤ m + n,

(22.40) Hk(M ×N) ≈
⊕

i+j=k

[
Hi(M)⊗Hj(N)

]
.

Proof. Endow M and N with Riemannian metrics, and give M × N the product
metric. If {u(i)

µ } is an orthonormal basis of L2(M, Λi) and {v(j)
ν } is an orthonormal

basis of L2(N, Λj), each consisting of eigenfunctions of the Hodge Laplace operator,
then {u(i)

µ ∧ v
(j)
ν : i + j = k} is an orthonormal basis of L2(M ×N, Λk), consisting

of eigenfunctions of the Hodge Laplacian, and since all these Laplace operators are
negative semi-definite, we have the isomorphism

(22.41) Hk(M ×N) ≈
⊕

i+j=k

[
Hi(M)⊗Hj(N)

]
,

where Hi(M) denotes the space of harmonic i-forms on M, etc., and by (22.25) this
proves the proposition.

We define the ith Betti number of M to be

(22.42) bi(M) = dim Hi(M).

Thus, (22.40) implies the identity

(22.43) bk(M ×N) =
∑

i+j=k

bi(M)bj(N).

This identity has an application to the Euler characteristic of a product. The Euler
characteristic of M is defined by

(22.44) χ(M) =
m∑

i=0

(−1)i bi(M),

where m = dim M. From (22.43) follows directly the product formula

(22.45) χ(M ×N) = χ(M)χ(N).

Exercises
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1. Let α ∈ Λ1(Mn), β ∈ Λk(Mn). Show that

(22.46) ∗(ιαβ) = ±α ∧ ∗β.

Find the sign.
Hint. Start with the identity σ ∧ α ∧ ∗β = 〈σ ∧ α, β〉, given σ ∈ Λk−1(M).
Alternative. Show ∗δ = ±d∗, which implies (22.46) by passing to symbols.

2. Show that, if X is a smooth vector field on M, and β ∈ Λk(Mn), then

∇X(∗β) = ∗(∇Xβ).

3. Show that, if F : M → M is an isometry which preserves orientation, then
F ∗(∗β) = ∗(F ∗β).

4. If f : M → N is a smooth map between compact manifolds, show that the
pull-back f∗ : Λk(N) → Λk(M) induces a homomorphism f∗ : Hk(N) → Hk(M).
If ft, 0 ≤ t ≤ 1 is a smooth family of such maps, show that f∗0 = f∗1 on Hk(N).
Hint. For the latter, recall formulas (6.31)–(6.35), or Exercise 6 of §6.

5. If M is compact, connected, and oriented, and dim M = n, show that

H0(M) ≈ Hn(M) ≈ R.

Relate this to Proposition 9.5.

In Exercises 6–8, let G be a compact connected Lie group, endowed with a bi-
invariant Riemannian metric. For each g ∈ G, there are left and right translations
Lg(h) = gh, Rg(h) = hg. Let Bk denote the space of bi-invariant k-forms on G,

(22.47) Bk = {β ∈ Λk(G) : R∗gβ = β = L∗gβ for all g ∈ G}.

6. Show that every harmonic k-form on G belongs to Bk.
Hint. If β ∈ Bk, show R∗gβ and L∗gβ are both harmonic and cohomologous to β.
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7. Show that every β ∈ Bk is closed, i.e., dβ = 0. Also, show that ∗ : Bk → Bn−k

(n = dim G). Hence conclude
Bk = Hk.

Hint. To show that dβ = 0, note that, if ι : G → G is ι(g) = g−1, then ι∗β ∈ Bk and
ι∗β(e) = (−1)kβ(e). Since also dβ ∈ Bk+1 deduce that ι∗dβ equals both (−1)kdβ
and (−1)k+1dβ.

8. With G as above, show that B1 is linearly isomorphic to the center Z of the Lie
algebra g of G. Conclude that, if g has trivial center, then H1(G) = 0.

Exercises 9–10 look at Hk(Sn).

9. Let β be any harmonic k-form on Sn. Show that g∗β = β, where g is any element
of SO(n+1), the group of rotations on Rn+1, acting as a group of isometries of Sn.
Hint. Compare the argument used in Exercise 6.

10. Consider the point p = (0, . . . , 0, 1) ∈ Sn. The group SO(n), acting on Rn ⊂
Rn+1, fixes p. Show that Hk(Sn) is isomorphic to (a linear subspace of)

(22.48) Vk = {β ∈ ΛkRn : g∗β = β for all g ∈ SO(n)}.

Show that Vk = 0 if 0 < k < n. Deduce that

(22.49) Hk(Sn) = 0 if 0 < k < n.

Hint. Given β ∈ ΛkRn, 1 ≤ j, ` ≤ n, average g∗β over g in the group of rotations
in the xj − x` plane.
Note. By Exercise 5, if n ≥ 1,

(22.50) Hk(Sn) = R if k = 0 or n.

Recall the elementary proof of this, for k = n, in Proposition 9.5.

11. Suppose M is compact, connected, but not orientable, dim M = n. Show that
Hn(M) = 0.

Hint. Let M̃ be an orientable double cover, with natural involution ι. A harmonic
n-form on M would lift to a harmonic form on M̃, invariant under ι∗; but ι reverses
orientation.
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Auxiliary exercises on the Hodge star operator

In most of the exercises to follow, adopt the following notational convention. For
a vector field u on an oriented Riemannian manifold, let ũ denote the associated
1-form.

1. Show that
f = div u ⇐⇒ f = ∗d ∗ ũ.

If M = R3, show that
v = curl u ⇐⇒ ṽ = ∗dũ.

2. If u and v are vector fields on R3, show that

w = u× v ⇐⇒ w̃ = ∗(ũ ∧ ṽ).

Show that, for ũ, ṽ ∈ Λ1(Mn), ∗(ũ ∧ ṽ) = (∗ũ)cv.
If u×v is defined by this formula for vector fields on an oriented Riemannian 3-fold,
show that u× v is orthogonal to u and v.

3. Show that the identity

(22.51) div (u× v) = v · curl u− u · curl v,

for u and v vector fields on R3, is a special case of

∗d(ũ ∧ ṽ) = 〈∗dũ, ṽ〉 − 〈ũ, ∗dṽ〉, ũ, ṽ ∈ Λ1(M3).

Deduce this from d(ũ ∧ ṽ) = (dũ) ∧ ṽ − ũ ∧ dṽ.

In Exercises 4–6, we produce a generalization of the identity

(22.52)
curl (u× v) = v · ∇u− u · ∇v + (div v)u− (div u)v

= [v, u] + (div v)u− (div u)v,

valid for u and v vector fields on R3.
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4. For ũ, ṽ ∈ Λ1(Mn), use Exercise 2 to show that

d ∗ (ũ ∧ ṽ) = −(d ∗ ũ)cv + Lv(∗ũ).

5. If ω ∈ Λn(Mn) is the volume form, show that ∗(ωcv) = ṽ. Deduce that

∗[d(∗ũ)cv]
= (div u)ṽ.

6. Applying Lv to (∗ũ) ∧ w̃ = 〈u, w̃〉ω, show that

∗Lv(∗ũ) = [̃v, u] + (div v)ũ,

and hence
∗d ∗ (ũ ∧ ṽ) = [̃v, u] + (div v)ũ− (div u)ṽ,

generalizing (22.52).

In Exercises 7–10, we produce a generalization of the identity

(22.53) grad (u · v) = u · ∇v + v · ∇u + u× curl v + v × curl u,

valid for u and v vector fields on R3. Only Exercise 10 makes contact with the
Hodge star operator.

7. Noting that, for ũ, ṽ ∈ Λ1(Mn), d(ũcv) = Lvũ− (dũ)cv, show that

2d(ũcv) = Lvũ + Luṽ − (dũ)cv − (dṽ)cu.

8. Show that
Lvũ = [̃v, u] + (Lvg)(·, u),

where g is the metric tensor, and where h(·, u) = w means h(X,u) = g(X, w) =
〈X,w〉. Hence

Lvũ + Luṽ = (Lvg)(·, u) + (Lug)(·, v).

9. Show that

(Lvg)(·, u) + (Lug)(·, v) = d(ũcv) +∇uṽ +∇vũ.
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10. Deduce that
d〈u, v〉 = ∇uṽ +∇vũ− (dũ)cv − (dṽ)cu.

To relate this to (22.53), show using Exercises 1–2 that, for vector fields on R3,

w = v × curl u ⇐⇒ w̃ = −(dũ)cv.

11. If u, v ∈ Λk(Mn) and w ∈ Λn−k(Mn), show that

(w, ∗v) = (−1)k(n−k)(∗w, v),

and
(∗u, ∗v) = (u, v).

12. Show that ∗d = (−1)k+1δ∗ on Λk(M).

13. Verify carefully that ∆∗ = ∗∆. In particular, on Λk(Mn),

∗∆ = ∆∗ = (±1)
[
(±1)d ∗ d + (±1) ∗ d ∗ d∗].

Find the signs.
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23. The Hodge decomposition on manifolds with boundary

Let M be a compact Riemannian manifold with boundary, dim M = m. We
have the Hodge Laplace operator

∆ : C∞(M, Λk) −→ C∞(M, Λk).

As shown in §21, we have a generalization of Green’s formula, expressing −(∆u, v)
as (du, dv) + (δu, δv) plus a boundary integral. Two forms of this, equivalent to
formula (21.18), are

(23.1) −(∆u, v) = (du, dv) + (δu, δv) +
1
i

∫

∂M

[〈σd(x, ν)δu, v〉+ 〈du, σd(x, ν)v〉]dS

and

(23.2) −(∆u, v) = (du, dv) + (δu, δv) +
1
i

∫

∂M

[〈δu, σδ(x, ν)v〉+ 〈σδ(x, ν)du, v〉]dS.

Recall from (21.12)–(21.14) that

(23.3)
1
i
σd(x, ν)u = ν ∧ u,

1
i
σδ(x, ν)u = −ινu.

We have studied the Dirichlet and Neumann boundary problems for ∆ on 0-
forms in previous sections. Here we will see that for each k ∈ {0, . . . , m} there is a
pair of boundary conditions generalizing these. For starters, suppose M is half of a
compact Riemannian manifold without boundary N, having an isometric involution
τ : N → N, fixing ∂M and switching M and N \M. For short, will say N is the
isometric double of M. Note that elements of C∞(N) which are odd with respect
to τ vanish on ∂M, i.e., satisfy the Dirichlet boundary condition, while elements
even with respect to τ have vanishing normal derivatives on ∂M, i.e., satisfy the
Neumann boundary condition. Now, if u ∈ Λk(N), then the hypothesis τ∗u = −u
(which implies τ∗du = −du and τ∗δu = −δu) implies

(23.4) σd(x, ν)u = 0 and σd(x, ν)δu = 0 on ∂M,

while the hypothesis τ∗u = u (hence τ∗du = du and τ∗δu = δu) implies

(23.5) σδ(x, ν)u = 0 and σδ(x, ν)du = 0 on ∂M.

We call the boundary conditions (23.4) and (23.5) relative boundary conditions and
absolute boundary conditions, respectively. Thus, specialized to 0-forms, relative
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boundary condiitons are Dirichlet boundary conditions, and absolute boundary
conditions are Neumann boundary conditions.

It is easy to see that

(23.6) ν ∧ u
∣∣
∂M

= 0 ⇐⇒ j∗u = 0, where j : ∂M ↪→ M.

Thus the relative boundary conditions (23.4) can be rewritten

(23.7) j∗u = 0, j∗(δu) = 0.

Using (23.3), we can rewrite the absolute boundary conditions (23.5) as

(23.8) ucν = 0 and (du)cν = 0 on ∂M.

Also, from Exercise 1 of §22, it follows that

(23.9)
σd(x, ν)(∗u) = ± ∗ σδ(x, ν)u

σd(x, ν)δ ∗ u = ± ∗ σδ(x, ν)du.

Thus the Hodge star operator interchanges absolute and relative boundary condi-
tions. In particular, the absolute boundary conditions are also equivalent to

(23.10) j∗(∗u) = 0, j∗(δ ∗ u) = 0.

Note that, if u and v satisfy relative boundary conditions, then the boundary inte-
gral in (23.1) vanishes. Similarly, if u and v satisfy absolute boundary conditions,
then the boundary integral in (23.2) vanishes.

There are elliptic regularity results for both the boundary conditions (23.4) and
(23.5). A detailed analysis is given in Chapter 5 of [T1], but we will just summarize
some relevant results here. The boundary conditions define self adjoint extensions
of −∆, which we will denote LR and LA, respectively. We also use the notation
Lb, where b stands for R or A.

The maps

(23.11) Tb = (Lb + 1)−1

are compact self adjoint operators on L2(M, Λk), so we have orthonormal bases
{u(k)

j } and {v(k)
j } of L2(M, Λk) satisfying

(23.12) TRu
(k)
j = µ

(k)
j u

(k)
j , u

(k)
j ∈ C∞R (M, Λk),

and

(23.13) TAv
(k)
j = ν

(k)
j v

(k)
j , v

(k)
j ∈ C∞A (M, Λk),
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where C∞b (M, Λk) is the space of smooth k-forms on M satisfying the boundary
condition (23.4) if b = R, (23.5) if b = A. The eigenvalues of TR and TA all have
magnitude ≤ 1, and we can order them so that, for each k, µ

(k)
j and ν

(k)
j ↘ 0 as

j →∞. It follows that, for each k,

(23.14) LRu
(k)
j = ρ

(k)
j u

(k)
j , ρ

(k)
j =

1

µ
(k)
j

− 1 ↗∞,

and

(23.15) LAv
(k)
j = α

(k)
j v

(k)
j , α

(k)
j =

1

ν
(k)
j

− 1 ↗∞.

Here, ρ
(k)
j ≥ 0 and α

(k)
j ≥ 0, and only finitely many of these quantities are equal to

zero.
The 0-eigenspaces of LR and LA are finite dimensional spaces in C∞(M, Λk);

denote them by HR
k and HA

k , respectively. We see that, for b = R or A,

(23.16) u ∈ Hb
k ⇐⇒ u ∈ C∞(M, Λk), B

(0)
b u = 0 on ∂M, and du = δu = 0 on M,

where

(23.17) B
(0)
R u = ν ∧ u, B

(0)
A u = ucν.

Also recall that we can replace ν ∧u by j∗u. We call HR
k and HA

k the spaces of har-
monic k-forms, satisfying relative and absolute boundary conditions, respectively.

Denote by PR
h and PA

h the orthogonal projections of L2(M, Λk) onto HR
k and

HA
k . Parallel to (22.15)–(22.16), we have continuous linear maps

(23.18) Gb : C∞(M, Λk) −→ C∞b (M, Λk), b = R or A,

such that Gb annihlates Hb
k and inverts −∆ on the orthogonal complement of Hb

k :

(23.19) −∆Gbu = (I − P b
h)u for u ∈ C∞(M, Λk).

Furthermore, for j ≥ 0, r ∈ (0, 1),

(23.20) Gb : Cj+r(M, Λk) −→ Cj+2+r(M,Λk).

The identity (23.19) then produces the following two Hodge decompositions for a
compact Riemannian manifold with boundary.
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Proposition 23.1. Given u ∈ C∞(M, Λk), j ≥ 0, we have

(23.21) u = dδGRu + δdGRu + PR
h u = PR

d u + PR
δ u + PR

h u,

and

(23.22) u = dδGAu + δdGAu + PA
h u = PA

d u + PA
δ u + PA

h u.

In both cases, the three terms on the right side are mutually orthogonal in L2(M, Λk).

Proof. It remains only to check orthogonality, which requires a slightly longer ar-
gument than used in Proposition 22.1. We will use the identity

(23.23) (du, v) = (u, δv) + γ(u, v),

for u ∈ Λj−1(M) and v ∈ Λj(M), with

(23.24) γ(u, v) =
1
i

∫

∂M

〈σd(x, ν)u, v〉 dS =
1
i

∫

∂M

〈u, σδ(x, ν)v〉 dS.

Note that γ(u, v) = 0 if either

(23.25)

u ∈ C1
R(M, Λj−1) =

{
u ∈ C1(M, Λj−1) : j∗u

∣∣
∂M

= 0
}

or

v ∈ C1
A(M, Λj) =

{
u ∈ C1(M, Λj) : ucν = 0 on ∂M

}
.

In particular, we see that

(23.26)
u ∈ C1

R(M, Λk−1) =⇒ du ⊥ ker δ ∩ C1(M, Λk),

v ∈ C1
A(M, Λk) =⇒ δv ⊥ ker d ∩ C1(M, Λk−1).

From the definitions, we have

(23.27) δ : C2
R(M, Λj) −→ C1

R(M, Λj−1), d : C2
A(M, Λj) −→ C1

A(M, Λj+1),

where C2
b (M, Λj) consists of u ∈ C2(M, Λj) satisfying the boundary condition b.

Thus

(23.28)
dδC2

R(M, Λk) ⊥ ker δ ∩ C1(M, Λk),

δdC2
A(M, Λk) ⊥ ker d ∩ C1(M, Λk).

Now (23.28) implies for the ranges:

(23.29) R(PR
d ) ⊥ R(PR

δ ) +R(PR
h ) and R(PA

δ ) ⊥ R(PA
d ) +R(PA

h ).
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Furthermore, if u ∈ HR
k and v = dGRw, then γ(u, v) = 0, so (u, δv) = (du, v) = 0.

Similarly, if v ∈ HA
k and u = δGAw, then γ(u, v) = 0, so (du, v) = (u, δv) = 0.

Thus

(23.30) R(PR
δ ) ⊥ R(PR

h ) and R(PA
d ) ⊥ R(PA

h ).

The proposition is proved.

We can produce an analogue of Proposition 22.2, relating the spaces Hb
k to

cohomology groups. We first look at the case b = R. Set

(23.31) C∞r (M, Λk) = {u ∈ C∞(M, Λk) : j∗u = 0}.
Since d ◦ j∗ = j∗ ◦ d, it is clear that

(23.32) d : C∞r (M, Λk) −→ C∞r (M, Λk+1).

Our spaces of “closed” and “exact” forms are

(23.33) Ck
R(M) = {u ∈ C∞r (M, Λk) : du = 0}, Ek

R(M) = d C∞r (M,Λk−1).

We set

(23.34) Hk(M, ∂M) = Ck
R(M)/Ek

R(M).

Proposition 23.2. If M is a compact Riemannian manifold with boundary, there
is a natural isomorphism

(23.35) Hk(M, ∂M) ≈ HR
k .

Proof. By (23.16) we have an injection

j : HR
k −→ Ck

R(M),

which yields a map
J : HR

k −→ Hk(M, ∂M),

by composing with (23.34). The orthogonality of the terms in (23.21) implies (Image
j)∩Ek

R(M) = 0, so J is injective. Furthermore, if u ∈ Ck
R(M), then u is orthogonal

to δv for any v ∈ C∞(M, Λk+1), so the term δ(dGRu) in (23.21) vanishes, and
hence J is surjective. This proves the proposition.

As in §22, it is clear that Hk(M, ∂M) is independent of a metric on M. Thus
the dimension of HR

k is independent of such a metric.
Associated to absolute boundary conditions is the family of spaces

(23.36) C∞a (M, Λk) = {u ∈ C∞(M, Λk) : ινu = ιν(du) = 0},
replacing (23.31). Note that C∞a (M, Λk) = C∞A (M, Λk), while C∞r (M, Λk) 6=
C∞R (M, Λk). We have

(23.37) d : C∞a (M, Λk) −→ C∞a (M, Λk+1),

and, with Ck
A(M) the kernel of d in (23.37) and Ek+1

A (M) its image, we can form
quotients. The following result is parallel to Proposition 23.2.
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Proposition 23.3. There is a natural isomorphism

(23.38) HA
k ≈ Ck

A(M)/Ek
A(M).

Proof. Exactly parallel to the last proof.

We have refrained from denoting the right side of (23.38) by Hk(M), since the
deRham cohomology of M has the standard definition

(23.39) Hk(M) = Ck(M)/Ek(M),

where Ck(M) is the kernel and Ek+1(M) the image of d in

(23.40) d : C∞(M, Λk) −→ C∞(M, Λk+1).

Note that no boundary conditions are imposed here. We now establish that (23.38)
is isomorphic to Hk(M).

Proposition 23.4. The quotient spaces Ck
A(M)/Ek

A(M) and Hk(M) are naturally
isomorphic. Hence

(23.41) HA
k ≈ Hk(M).

Proof. It is clear that there is a natural map

κ : Ck
A(M)/Ek

A(M) −→ Hk(M),

since Ck
A(M) ⊂ Ck(M) and Ek

A(E) ⊂ Ek(M). To show that κ is surjective, let
α ∈ C∞(M, Λk) be closed; we want α̃ ∈ Ck

a(M) such that α − α̃ = dβ for some
β ∈ C∞(M, Λk−1).

To arrange this, we use a 1-parameter family of maps

(23.42) ϕt : M −→ M, 0 ≤ t ≤ 1,

such that ϕ0 is the identity map, and as t → 1, ϕt retracts a collar neighborhood
O of ∂M onto ∂M, along geodesics normal to ∂M. Set α̃ = ϕ∗1α. It is easy to see
that α̃ ∈ Ck

a(M). Furthermore, α− α̃ = dβ with

(23.43) β = −
∫ 1

0

ϕ∗t
(
αcX(t)

)
dt ∈ C∞(M, Λk−1),

where X(t) = (d/dt)ϕt. Compare the proof of the Poincaré Lemma, Theorem 6.2.
It follows that κ is surjective.
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Consequently we have a natural surjective homomorphism

(23.44) κ̃ : HA
k −→ Hk(M).

It remains to prove that κ̃ is injective. But if α ∈ HA
k and α = dβ, β ∈

C∞(M, Λk−1), then the identity (23.23) with du = dβ, v = α implies (α, α) = 0,
hence α = 0. This completes the proof.

One can give a proof of (23.41) without using such a homotopy argument, in fact
without using Ck

A(M)/Ek
A(M) at all. See Exercise 5 in the exercises on cohomology

after this section. On the other hand, homotopy arguments similar to that used
above are also useful, and will arise in a number of problems in this set of exercises.

We can now establish the following Poincaré duality theorem, whose proof is im-
mediate, since by (23.9) the Hodge star operator interchanges absolute and relative
boundary conditions.

Proposition 23.5. If M is an oriented compact Riemannian manifold with bound-
ary, then

(23.45) ∗ : HR
k −→ HA

m−k

is an isomorphism, where m = dim M. Consequently,

(23.46) Hk(M, ∂M) ≈ Hm−k(M).

We end this section with a brief description of a sequence of maps on cohomology,
associated to a compact manifold M with boundary. The sequence takes the form
(23.47)
· · · → Hk−1(∂M) δ−→ Hk(M, ∂M) π−→ Hk(M) ι−→ Hk(∂M) δ−→ Hk+1(M, ∂M) → · · ·

These maps are defined as follows. The inclusion

C∞r (M, Λk) ↪→ C∞(M, Λk),

yielding Ck
R(M) ⊂ Ck(M) and Ek

R(M) ⊂ Ek(M), gives rise to π in a natural fashion.
The map ι comes from the pull-back

j∗ : C∞(M, Λk) −→ C∞(∂M, Λk),

which induces a map on cohomology since j∗d = dj∗. Note that j∗ annihilates
C∞r (M, Λk), so ι ◦ π = 0.

The “coboundary map” δ is defined on the class [α] ∈ Hk−1(∂M,R) of a closed
form α ∈ Λk−1(∂M) by choosing a form β ∈ C∞(M, Λk−1) such that j∗β = α and
taking the class [dβ] of dβ ∈ Ck

R(M). Note that dβ might not belong to Ek
R(M) if
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j∗β is not exact. If another β̃ is picked such that j∗β̃ = α + dγ, then d(β− β̃) does
belong to Ek

R(M), so δ is well defined:

δ[α] = [dβ] with j∗β = α.

Note that, if [α] = ι[β̃], via α = j∗β̃ with β̃ ∈ Ck(M), then dβ̃ = 0, so δ ◦ ι = 0.
Also, since dβ ∈ Ek(M), π ◦ δ = 0.

In fact, the sequence (23.47) is exact, i.e., the image of each map is equal to
the kernel of the map which follows. This “long exact sequence” in cohomology is
a useful computational tool. Exactness will be sketched in some of the following
exercises on cohomology.

Another important exact sequence, the Mayer-Vietoris sequence, is discussed in
§24.

Exercises

1. Let u be a 1-form on M with associated vector field U. Show that the relative
boundary conditions (23.4) are equivalent to

U ⊥ ∂M and div U = 0 on ∂M.

If dim M = 3, show that the absolute boundary conditions (23.5) are equivalent to

U ‖ ∂M and curl U ⊥ ∂M.

Treat the case dim M = 2.

2. Form the orthogonal projections P b
d = dδGb, P b

δ = δdGb. With b = R or A,
show that the four operators

Gb, P b
h, P b

d , and P b
δ

all commute. Deduce that one can arrange the eigenfunctions u
(k)
j , forming an

orthonormal basis of L2(M, Λk), such that each one appears in exactly one term
in the Hodge decomposition (23.21), and that the same can be done with the
eigenfunctions v

(k)
j , relative to the decomposition (23.22).

3. If M is oriented, and ∗ the Hodge star operator, show that

TA ∗ = ∗ TR,
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where TA and TR are as in (23.26). Show that

PA
h ∗ = ∗ PR

h and GA ∗ = ∗ GR.

Also, with P b
d and P b

δ the projections defined above, show that

PA
d ∗ = ∗ PR

δ and PA
δ ∗ = ∗ PR

d .

Exercises on cohomology

1. Let M be a compact, connected manifold with nonempty boundary, and double
N. Endow N with a Riemannian metric invariant under the involution τ. Show that

(23.48) Hk(M,∂M) ≈ {u ∈ Hk(N) : τ∗u = −u}.

Deduce that, if M is also orientable,

(23.49) Hn(M,∂M) = R, n = dim M.

2. If M is connected, show directly that

H0(M) = R.

By Poincaré duality, this again implies (23.49), when M is orientable.

3. Show that, if M is connected and ∂M 6= ∅,

H0(M,∂M) = 0.

Deduce that, if M is also orientable, n = dim M, then

Hn(M) = 0.

Give a proof of this that also works in the non-orientable case.
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4. Show directly, using the proof of the Poincaré Lemma, Theorem 6.2 that

(23.50) Hk(Bn) = 0, 1 ≤ k ≤ n,

where Bn is the closed unit ball in Rn, with boundary Sn−1. Deduce that

(23.51)
Hk(Bn, Sn−1) = 0, 0 ≤ k < n,

R, k = n.

5. Use (23.28) to show directly from Proposition 23.1 (not using Proposition 23.4)
that, if α ∈ C∞(M, Λk) is closed, then α = dβ + PA

h α for some β ∈ C∞(M, Λk−1),
in fact, for β = δGAα. Hence conclude that

HA
k ≈ Hk(M)

without using the homotopy argument of Proposition 23.4.

Let M be a smooth manifold without boundary. The cohomology with compact
supports Hk

c (M) is defined via

(23.52) d : C∞0 (M, Λk) −→ C∞0 (M, Λk+1),

as
Hk

c (M) = Ck
c (M)/Ek

c (M),

where the kernel of d in (23.52) is Ck
c (M) and its image is Ek+1

c (M).

In Exercises 6–7, we assume M is the interior of a compact manifold with boundary
M.

6. Via C∞0 (M, Λk) ↪→ C∞r (M, Λk), we have a well defined homomorphism

ρ : Hk
c (M) −→ Hk(M,∂M).

Show that ρ is injective.
Hint. Let ϕt : M → M be as in (23.42); also, given K ⊂⊂ M, arrange that
each ϕt is the identity on K. If α ∈ Ck

c (M) has support in K and α = dβ, with
β ∈ C∞r (M, Λk−1), show that β̃ = ϕ∗1β has compact support and dβ̃ = α.
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7. Show that ρ is surjective, and hence

(23.53) Hk
c (M) ≈ Hk(M, ∂M).

Hint. If α ∈ Ck
R(M), set α̃ = ϕ∗1α and parallel the argument using (23.43), in the

proof of Proposition 23.4.

8. If M is connected and oriented, and dim M = n, show that

Hn
c (M) = R,

even if M cannot be compactified to a manifold with smooth boundary.
Hint. If α ∈ C∞0 (M, Λn) and

∫
M

α = 0, fit the support of α in the interior Y of a
compact smooth manifold with boundary Y ⊂ M. Then apply arguments outlined
above.

9. Let X be a compact connected manifold; given p ∈ X, let M = X \ {p}. Then
C∞0 (M, Λk) ↪→ C∞(X, Λk) induces a homomorphism

γ : Hk
c (M) −→ Hk(X).

Show that γ is an isomorphism, for 0 < k ≤ dim X.
Hint. Construct a family of maps ψt : X → X, with properties like ϕt used in
Exercises 6–7, this time collapsing a neighborhood O of p onto p as t → 1. Establish
the injectivity and surjectivity of γ by arguments similar to those used in Exercises
6 and 7, noting that the analogue of the argument in Exercise 7 fails in this case
when k = 0.

10. Using Exercise 9, deduce that

(23.54) Hk(Sn) ≈ Hk
c (Rn), 0 < k ≤ n.

In light of Exercises 4 and 7, show that this leads to

(23.55)
Hk(Sn) = 0 if 0 < k < n,

R if k = 0 or n,

provided n ≥ 1, giving therefore a demonstration of (22.49)–(22.50) different from
that suggested in Exercise 9 of §22.

Exercises 11–13 establish the exactness of the sequence (23.47).
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11. Show that ker ι ⊂ im π.
Hint. Given u ∈ Ck(M), j∗u = dv, pick w ∈ Λk−1(M) such that j∗w = v, to get
u− dw ∈ C∞r (M, Λk), closed.

12. Show that ker δ ⊂ im ι.
Hint. Given α ∈ Ck(∂M), if α = j∗β with [dβ] = 0 in Hk+1(M,∂M), i.e., dβ =
dβ̃, β̃ ∈ C∞r (M, Λk), show that [α] = ι[β − β̃].

13. Show that ker π ⊂ im δ.
Hint. Given u ∈ Ck

R(M), if u = dv, v ∈ Λk−1(M), show that [u] = δ[v].

14. Applying (23.47) to M = Bn+1, the closed unit ball in Rn+1, yields

(23.56) Hk(Bn+1) ι−→ Hk(Sn) δ−→ Hk+1(Bn+1, Sn) π−→ Hk+1(Bn+1).

Deduce that
Hk(Sn) ≈ Hk+1(Bn+1, Sn), for k ≥ 1,

since by (23.50) the endpoints of (23.56) vanish for k ≥ 1. Then, by (23.51), there
follows a third demonstration of the computation (23.55) of Hk(Sn).

15. Using Exercise 3, show that, if M is connected and ∂M 6= ∅, the long exact
sequence (23.47) begins with

0 → H0(M) ι−→ H0(∂M) δ−→ H1(M,∂M) → · · ·

and ends with

· · · → Hn−1(M) ι−→ Hn−1(∂M) δ−→ Hn(M,∂M) → 0.

16. Define the relative Euler characteristic

(23.57) χ(M, ∂M) =
∑

k≥0

(−1)k dim Hk(M,∂M).

Define χ(M) and χ(∂M) as in (22.44). Show that

(23.58) χ(M) = χ(M,∂M) + χ(∂M).
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Hint. For any exact sequence of the form

0 → V1 → · · · → VN → 0,

with Vk finite dimensional vector spaces over R, show that
∑
k≥0

(−1)k dim Vk = 0.

17. Using Poincaré duality show that, if M is orientable, n = dim M,

(23.59) χ(M) = (−1)nχ(M, ∂M).

Deduce that, if n is odd, and M orientable,

(23.60) χ(∂M) = 2χ(M).

18. If N is the double of M, show that

(23.61) dimHk(N) = dimHk(M) + dimHk(M, ∂M).

Deduce that, if M is orientable and dim M is even, then

(23.62) χ(N) = 2χ(M).

In Exercises 19–20, let M be a compact, oriented, n-dimensional manifold with
boundary ∂M , and with double N . Let X be a vector field, all of whose critical
points are isolated and in the interior M , and assume that, on ∂M , X points out
of M . Our goal is to demonstrate that

(23.63) Index X = χ(M).

Recall that, in case M = M has no boundary, this arose in (10.11), as a definition
of χ(M). Its identity with χ(M) as defined by (22.44) was established in §20. We
also mention that (23.63) extends the identity (10.18).

19. Show that X and −X can be fitted together on N to produce a vector field X̃
on N such that

Index X̃ =
(
1 + (−1)n

)
Index X.

Use this result and (23.62) to prove (23.63) when n is even.
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20. Let Y be a (tangent) vector field on ∂M with isolated critical points (so we know
Index Y = χ(∂M)). Use a construction like that in the proof of Proposition 10.4 to
construct a vector field Z on a collar neighborhood C of ∂M in N such that Z points
away from C on ∂C (diffeomorphic to two copies of ∂M) and Index Z = Index Y .
Fit together X, −Z and X to produce a vector field on N , and deduce that

(23.64) 2 Index X + (−1)nχ(∂M) = χ(N).

Deduce (23.63) from this, using (23.62) if n is even and using (23.60) if n is odd.

In Exercises 21–23, let Ωj be compact oriented manifolds of dimension n, with
boundary. Assume that ∂Ωj 6= ∅ and that Ω2 is connected. Let F : Ω1 → Ω2 be a
smooth map with the property that f = F

∣∣
∂Ω1

: ∂Ω1 → ∂Ω2. Recall that we have
defined Deg f in §9, when ∂Ω2 is connected.

21. Let σ ∈ Λn(Ω2) satisfy
∫
Ω2

σ = 1. Show that
∫
Ω1

F ∗σ is independent of the
choice of such σ, using Hn(Ωj , ∂Ωj) = R. Compare Lemma 9.6. Define

Deg F =
∫

Ω1

F ∗σ.

22. Produce a formula for Deg F, similar to (9.16), using F−1(y0), y0 ∈ Ω2.

23. Prove that Deg F = Deg f, assuming ∂Ω2 is connected.
Hint. Pick ω ∈ Λn−1(∂Ω2) such that

∫
∂Ω2

ω = 1, pick ω̃ ∈ Λn−1(Ω2) such that
j∗ω̃ = ω, and let σ = dω̃. Formulate an extension of this result to cases where ∂Ω2

has several connected components.

24. Using the results of Exercises 21–23, establish the “argument principle,” in
complex analysis.
Hint. A holomorphic map is always orientation preserving.

In Exercise 25, we assume that M is a compact manifold with boundary, with
interior M. Define Hk(M) via the deRham complex, d : Λk(M) → Λk+1(M). It is
desired to establish the isomorphism of this with Hk(M).
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25. Let C be a small collar neighborhood of ∂M, so M1 = M \ C is diffeomorphic
to M. With j : M1 ↪→ M, show that the pull-back j∗ : Λk(M) → Λk(M1) induces
an isomorphism of cohomology:

Hk(M) ≈ Hk(M1).

Hint. For part of the argument, it is useful to consider a smooth family

ϕt : M −→ M t, 0 ≤ t ≤ 1

of diffeomorphisms of M onto manifolds M t, with M0 = M and ϕ0 = id. If β ∈
Λk(M) and dβ = 0, and if β1 = ϕ∗1j

∗β, then

β = β1 − d
(∫ 1

0

ϕ∗t βcX(t) dt
)
,

where X(t)(x) = (d/dt)ϕt(x). Contrast this with the proof of Proposition 23.4.
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24. The Mayer-Vietoris sequence in DeRham cohomology

Here we establish a useful complement to the long exact sequence (23.47), and
illustrate some of its implications. Let X be a smooth manifold, and suppose X
is the union of two open sets, M1 and M2. Let U = M1 ∩M2. The Mayer-Vietoris
sequence has the form
(24.1)
· · · → Hk−1(U) δ−→ Hk(X)

ρ−→ Hk(M1)⊕Hk(M2)
γ−→ Hk(U) δ−→ Hk+1(X) → · · ·

These maps are defined as follows. A closed form α ∈ Λk(X) restricts to a pair
of closed forms on M1 and M2, yielding ρ in a natural fashion. The map γ also
comes from restriction; if ιν : U ↪→ Mν , a pair of closed forms αν ∈ Λk(Mν) goes
to ι∗1α1 − ι∗2α2, defining γ. Clearly ι∗1(α|M1) = ι∗2(α|M2) if α ∈ Λk(X), so γ ◦ ρ = 0.

To define the “coboundary map” δ on a class [α], with α ∈ Λk(U) closed, pick
βν ∈ Λk(Mν) such that α = β1 − β2. Thus dβ1 = dβ2 on U. Set

(24.2) δ[α] = [σ] with σ = dβν on Mν .

To show that (24.2) is well defined, suppose βν ∈ Λk(Mν) and β1 − β2 = dω
on U. Let {ϕν} be a smooth partition of unity supported on {Mν}, and consider
ψ = ϕ1β1 + ϕ2β2, where ϕνβν is extended by 0 off Mν . We have dψ = ϕ1 dβ1 +
ϕ2 dβ2 + dϕ1 ∧ (β1 − β2) = σ + dϕ1 ∧ (β1 − β2). Since dϕ1 is supported on U, we
can write

σ = dψ − d(dϕ1 ∧ ω),

an exact form on X, so (24.2) makes δ well defined. Obviously the restriction of σ
to each Mν is always exact, so ρ ◦ δ = 0. Also, if α = ι∗1α1− ι∗2α2 on U, we can pick
βν = αν to define δ[α]. Then dβν = dαν = 0, so δ ◦ γ = 0.

In fact, the sequence (24.1) is exact, i.e.,

(24.3) im δ = ker ρ, im ρ = ker γ, im γ = ker δ.

We leave the verification of this as an exercise, which can be done with arguments
similar to those sketched in Exercises 11–13 in the set of exercises on cohomology
after §23.

If Mν are the interiors of compact manifolds with smooth boundary, and U =
M1 ∩ M2 has smooth boundary, the argument above extends directly to produce
an exact sequence
(24.4)
· · · → Hk−1(U) δ−→ Hk(X)

ρ−→ Hk(M1)⊕Hk(M2)
γ−→ Hk(U) δ−→ Hk+1(X) → · · ·
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Furthermore, suppose that instead X = M1 ∪M2 and M1 ∩M2 = Y is a smooth
hypersurface in X. One also has an exact sequence
(24.5)
· · · → Hk−1(Y ) δ−→ Hk(X)

ρ−→ Hk(M1)⊕Hk(M2)
γ−→ Hk(Y ) δ−→ Hk+1(X) → · · ·

To relate (24.4) and (24.5), let U be a collar neighborhood of Y, and form (24.4)
with Mν replaced by Mν ∪ U. There is a map π : U → Y, collapsing orbits of a
vector field transversal to Y, and π∗ induces an isomorphism of cohomology groups,
π∗ : Hk(U) ≈ Hk(Y ).

To illustrate the use of (24.5), suppose X = Sn, Y = Sn−1 is the equator, and
Mν are the upper and lower hemispheres, each diffeomorphic to the ball Bn. Then
we have an exact sequence
(24.6)
· · · → Hk−1(Bn)⊕Hk−1(Bn)

γ−→ Hk−1(Sn−1) δ−→ Hk(Sn)
ρ−→ Hk(Bn)⊕Hk(Bn) → · · ·

As in (23.50), Hk(Bn) = 0 except for k = 0, when you get R. Thus

(24.7) δ : Hk−1(Sn−1) ≈−→ Hk(Sn) for k > 1.

Granted that the computation H1(S1) ≈ R is elementary, (or see Exercise 1 below)
this implies Hn(Sn) ≈ R, for n ≥ 1. Looking at the segment

0 → H0(Sn)
ρ−→ H0(Bn)⊕H0(Bn)

γ−→ H0(Sn−1) δ−→ H1(Sn) → 0,

we see that, if n ≥ 2, then ker γ ≈ R, so γ is surjective, hence δ = 0, so H1(Sn) = 0
for n ≥ 2. Also, if 0 < k < n, we see by iterating (24.7) thatHk(Sn) ≈ H1(Sn−k+1),
so Hk(Sn) = 0 for 0 < k < n. Since obviously H0(Sn) = R for n ≥ 1, we have a
fourth computation of Hk(Sn), distinct from those sketched in Exercise 10 of §22
and in Exercises 10 and 14 of the set of exercises on cohomology after §23.

We note an application of (24.5) to the computation of Euler characteristics,
namely

(24.8) χ(M1) + χ(M2) = χ(X) + χ(Y ).

Note that this result contains some of the implications of Exercises 17 and 18 in
the set of exercises on cohomology, in §23.

Using this, it is an exercise to show that if one two dimensional surface X1 is
obtained from another X0 by adding a handle, then χ(X1) = χ(X0)−2. (Compare
Exercise 13 of §10.) In particular, if Mg is obtained from S2 by adding g handles,
then χ(Mg) = 2− 2g. Thus, if Mg is orientable, since H0(Mg) ≈ H2(Mg) ≈ R, we
have

(24.9) H1(Mg) ≈ R2g.
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It is useful to examine the beginning of the sequence (24.5):

(24.10) 0 → H0(X)
ρ−→ H0(M1)⊕H0(M2)

γ−→ H0(Y ) δ−→ H1(X) → · · ·

Suppose C is a smooth closed curve in S2. Apply (24.10) with M1 = C, a collar
neighborhood of C, and M2 = Ω, the complement of C. Since ∂C is diffeomorphic
to two copies of C, and since H1(S2) = 0, (24.10) becomes

(24.11) 0 → R ρ−→ R⊕H0(Ω)
γ−→ R⊕ R δ−→ 0

Thus γ is surjective while ker γ = im ρ ≈ R. This forces

(24.12) H0(Ω) ≈ R⊕ R.

In other words, Ω has exactly two connected components. This is the smooth case
of the Jordan curve theorem. Jordan’s theorem holds when C is a homeomorphic
image of S1, but the trick of putting a collar about C does not extend to this case.

More generally, if X is a compact connected smooth oriented manifold such
that H1(X) = 0, and if Y is a smooth compact connected oriented hypersurface,
then letting C be a collar neighborhood of Y and Ω = X \ C, we again obtain
the sequence (24.11) and hence the conclusion (24.12). The orientability insures
that ∂C is diffeomorphic to two copies of Y. This result is (the smooth case of) the
following generalized Jordan-Brouwer separation theorem, which we state formally.

Theorem 24.1. If X is a smooth manifold, Y a smooth submanifold of codimension
1, and both are

compact, connected, and oriented,

and if
H1(X) = 0,

then X \ Y has precisely two connected components.

If all these conditions hold, except that Y is not orientable, then we replace R⊕R
by R in (24.11), and conclude that X \Y is connected, in that case. As an example,
real projective space RP2 sits in RP3 in such a fashion.

Recall from §9 the elementary proof of Theorem 24.1 when X = Rn+1, in par-
ticular the argument using degree theory that, if Y is a compact oriented surface in
Rn+1 (hence, in Sn+1), then its complement has at least 2 connected components.
One can extend the degree theory argument to the nonorientable case, as follows.

There is a notion of degree mod 2 of a map F : Y → Sn, which is well defined
whether or not Y is orientable. For one approach, see [Mil2]. This is also invariant
under homotopy. Now, if in the proof of Theorem 9.11, one drops the hypothesis
that the hypersurface Y (denoted X there) is orientable, it still follows that the
mod 2 degree of Fp must jump by ±1 when p crosses Y, so Rn+1 \Y still must have
at least two connected components. In view of the result noted after Theorem 24.1,
this situation cannot arise. This establishes the following.
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Proposition 24.2. If Y is a compact hypersurface of Rn+1 (or Sn+1), then Y is
orientable.

Exercises

1. Show that the case n = 1 of (24.6) yields

H0(S1)
ρ−→ H0(I)⊕H0(I)

γ−→ H0(S0) δ−→ H1(S1)
ρ−→ H1(I)⊕H1(I)

where I is a closed interval, so H1(I) = 0.
(a) Note that, since S0 consists of two points, H0(S0) ≈ R2, so γ above has the
form γ : R2 → R2.
(b) Show that the image ρ

(H0(S1)
)

in H0(I) ⊕ H0(I) has dimension 1, so ker γ
has dimension 1.
(c) Deduce that ker δ has dimension 1, and hence that

(24.13) H1(S1) ≈ R,

thus showing that this fact follows from the Mayer-Vietoris sequence.
(d) On the other hand, show that the specialization of the proof of Proposition 9.5
to the case M = S1, implying (24.13), is trivial.
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25. Operators of Dirac type

Let M be a Riemannian manifold, Ej → M vector bundles with Hermitian
metrics. A first order elliptic differential operator

(25.1) D : C∞(M, E0) −→ C∞(M, E1)

is said to be of Dirac type provided D∗D has scalar principal symbol. This implies

(25.2) σD∗D(x, ξ) = g(x, ξ)I : E0x −→ E0x,

where g(x, ξ) is a positive quadratic form on T ∗x M. Thus g itself arises from a
Riemannian metric on M. Now the calculation of (25.2) is independent of the choice
of Riemannian metric on M. We will suppose M is endowed with the Riemannian
metric inducing the form g(x, ξ) on T ∗M.

If E0 = E1 and D = D∗, we say D is a symmetric Dirac-type operator. Given a
general operator D of Dirac type, if we set E = E0⊕E1 and define D̃ on C∞(M, E)
as

(25.3) D̃ =
(

0 D∗

D 0

)

then D is a symmetric Dirac-type operator.
Let ϑ(x, ξ) denote the principal symbol of a symmetric Dirac-type operator.

With x ∈ M fixed, set ϑ(ξ) = ϑ(x, ξ). Thus ϑ is a linear map from T ∗x M = {ξ} into
End(Ex), satisfying

(25.4) ϑ(ξ) = ϑ(ξ)∗

and

(25.5) ϑ(ξ)2 = 〈ξ, ξ〉I.

Here, 〈 , 〉 is the inner product on T ∗x M ; let us denote this vector space by V. We
will show how ϑ extends from V to an algebra homomorphism, defined on a Clifford
algebra Cl(V, g), which we now proceed to define.

Let V be a finite dimensional real vector space, g a quadratic form on V. We allow
g to be definite or indefinite if nondegenerate; we even allow g to be degenerate.
The Clifford algebra Cl(V, g) is the quotient algebra of the tensor algebra

(25.6)
⊗

V = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·
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by the ideal I ⊂ ⊗
V generated by

(25.7) {v ⊗ w + w ⊗ v − 2〈v, w〉 · 1 : v, w ∈ V },

where 〈 , 〉 is the symmetric bilinear form on V arising from g. Thus, in Cl(V, g), V
occurs naturally as a linear subspace, and there is the anticommutation relation

(25.8) vw + wv = 2〈v, w〉 · 1 in Cl(V, g), v, w ∈ V.

We will look more closely at the structure of Clifford algebras in the next section.
Now if ϑ : V → End(E) is a linear map of the V into the space of endomorphisms

of a vector space E, satisfying (25.5), i.e.,

(25.9) ϑ(v)2 = 〈v, v〉I, v ∈ V,

it follows from expanding ϑ(v + w)2 = [ϑ(v) + ϑ(w)]2 that

(25.10) ϑ(v)ϑ(w) + ϑ(w)ϑ(v) = 2〈v, w〉I, v, w ∈ V.

Then, from the construction of Cl(V, g), it follows that ϑ extends uniquely to an
algebra homomorphism

(25.11) ϑ : Cl(V, g) −→ End(E), ϑ(1) = I.

This gives E the structure of a module over Cl(V, g), i.e., of a Clifford module. If
E has a Hermitian metric and (25.4) also holds, i.e.,

(25.12) ϑ(v) = ϑ(v)∗, v ∈ V,

we call E a Hermitian Clifford module. For this notion to be useful, we need g to
be positive definite.

In the case where E = E0 ⊕ E1 is a direct sum of Hermitian vector spaces, we
say a homomorphism ϑ : Cl(V, g) → End(E) gives E the structure of a graded
Clifford module provided ϑ(v) interchanges E0 and E1, for v ∈ V, in addition to
the hypotheses above. The principal symbol of (25.3) has this property, if D is of
Dirac type.

Let us give some examples of operators of Dirac type. If M is a Riemannian
manifold, the exterior derivative operator

(25.13) d : ΛjM −→ Λj+1M

has a formal adjoint

(25.14) δ = d∗ : Λj+1M −→ ΛjM,
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discussed in §§21–23. Thus we have

(25.15) d + δ : Λ∗M −→ Λ∗M,

where, with n = dim M,

Λ∗M =
n⊕

j=0

ΛjM.

As was shown in §21, (d + δ)∗(d + δ) = d∗d + dd∗ is the negative of the Hodge
Laplacian on each ΛjM, so (25.15) is a symmetric Dirac-type operator. There is
more structure. Indeed, we have

(25.16) d + δ : ΛevenM −→ ΛoddM.

If D is this operator, then D∗ = d+ δ : ΛoddM → ΛevenM, and an operator of type
(25.3) arises.

Computations implying that (25.15) is of Dirac type were done in §21, leading
to (21.22) there. If we define

(25.17) ∧v : ΛjV −→ Λj+1V, ∧v(v1 ∧ · · · ∧ vj) = v ∧ v1 ∧ · · · ∧ vj ,

on a vector space V with a positive definite inner product, and then define

(25.18) ιv : Λj+1V −→ ΛjV

to be its adjoint, then the principal symbol of d + δ on V = T ∗x M is 1/i times
∧ξ − ιξ. That is to say,

(25.19) iM(v) = ∧v − ιv

defines a linear map from V into End(Λ∗V ) which extends to an algebra homomor-
phism

M : Cl(V, g) −→ End(Λ∗V ).

Granted ∧v∧w = − ∧w ∧v and its analogue for ι, the anticommutation relation

(25.20) M(v)M(w) + M(w)M(v) = 2〈v, w〉I

also follows from the identity

(25.21) ∧vιw + ιw∧v = 〈v, w〉I.

In this context we note the role that (25.21) played as the algebraic identity behind
Cartan’s formula for the Lie derivative of a differential form:

(25.22) LXα = d(αcX) + (dα)cX;
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cf. (6.20).
Another Dirac-type operator arises from (25.15) as follows. Suppose dim M =

n = 2k is even. Recall from §22 that d∗ = δ is given in terms of the Hodge star
operator on ΛjM by

(25.23)
d∗ = (−1)j(n−j)+j ∗ d∗

= ∗d ∗ if n = 2k.

Also recall that, on ΛjM,

(25.24) ∗2 = (−1)j(n−j) = (−1)j if n = 2k.

Now define on the complexification Λ∗CM of the real vector bundle Λ∗M

(25.25) α : Λj
CM −→ Λn−j

C M

by

(25.26) α = ij(j−1)+k ∗ on Λj
CM.

It follows that

(25.27) α2 = 1

and

(25.28) α(d + δ) = −(d + δ)α.

Thus we can write

(25.29) Λ∗CM = Λ+M ⊕ Λ−M with α = ±I on Λ±M,

and we have

(25.30) D±
H = d + δ : C∞(M, Λ±) −→ C∞(M, Λ∓).

Thus D+
H is an operator of Dirac type, with adjoint D−

H . This operator is called the
Hirzebruch signature operator.

Both of the examples discussed above give rise to Hermitian Clifford modules.
We now show conversely that generally such modules produce operators of Dirac
type. More precisely, if M is a Riemannian manifold, T ∗x M has an induced inner
product, giving rise to a bundle Cl(M) → M of Clifford algebras. We suppose
E → M is a Hermitian vector bundle such that each fiber is a Hermitian Clx(M)-
module (in a smooth fashion). Let E → M have a connection ∇, so

(25.31) ∇ : C∞(M,E) −→ C∞(M, T ∗ ⊗ E).
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Now if Ex is a Clx(M)-module, the inclusion T ∗x ↪→ Clx gives rise to a linear map

(25.32) m : C∞(M,T ∗ ⊗ E) −→ C∞(M,E),

called “Clifford multiplication.” We compose these two operators; set

(25.33) D = i m ◦ ∇ : C∞(M,E) −→ C∞(M, E).

We see that, for v ∈ Ex,

(25.34) σD(x, ξ)v = m(ξ ⊗ v) = ξ · v,

so σD(x, ξ) is |ξ|x times an isometry on Ex. Hence D is of Dirac type.
If U is an open subset of M, on which we have an orthonormal frame {ej} of

smooth vector fields, with dual orthonormal frame {vj} of 1-forms, then, for a
section ϕ of E,

(25.35) Dϕ = i
∑

vj · ∇ej ϕ on U.

Note that σD(x, ξ)∗ = σD(x, ξ), so D can be made symmetric, by at most altering
it by a zero order term. Given a little more structure, we have more. We say ∇
is a Clifford connection on E if ∇ is a metric connection which is also compatible
with Clifford multiplication, in that

(25.36) ∇X(v · ϕ) = (∇Xv) · ϕ + v · ∇Xϕ,

for a vector field X, a 1-form v, and a section ϕ of E. Here, of course, ∇Xv arises
from the Levi-Civita connection on M.

Proposition 25.1. If ∇ is a Clifford connection on E, then D is symmetric.

Proof. Let ϕ,ψ ∈ C∞0 (M,E). We want to show that

(25.37)
∫

M

[
〈Dϕ, ψ〉 − 〈ϕ,Dψ〉

]
dV = 0.

We can suppose ϕ,ψ have compact support in a set U on which local orthonormal
frames ej , vj as above are given. Define a vector field X on U by

〈X, v〉 = 〈ϕ, v · ψ〉, v ∈ Λ1U.

If we show that, pointwise in U,

(25.38) i div X = 〈Dϕ,ψ〉 − 〈ϕ, Dψ〉,
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then (25.37) will follow from the Divergence Theorem. Indeed, starting with

(25.39) div X =
∑

〈∇ej
X, vj〉,

and using the metric and derivation properties of ∇, we have

div X =
∑[

ej · 〈X, vj〉 − 〈X,∇ej
vj〉

]

=
∑[

ej〈ϕ, vj · ψ〉 − 〈ϕ, (∇ej
vj) · ψ〉

]
.

Looking at the last quantity, we expand the first part into a sum of three terms,
one of which cancels the last part, and obtain

(25.40) div X =
∑[

〈∇ej ϕ, vj · ψ〉+ 〈ϕ, vj · ∇ej ψ〉
]
,

which gives (25.38) and completes the proof.

If E = E0⊕E1 is a graded Hermitian Cl(M)-module, and if E0 and E1 are each
provided with metric connections, and (25.36) holds, then the construction above
gives an operator of Dirac type, of the form (25.3).

The examples (25.15) and (25.30) described above can be obtained from Hermit-
ian Clifford modules via Clifford connections. The Clifford module is Λ∗M → M,
with natural inner product on each factor ΛkM and Cl(M)-module structure given
by (25.19). The connection is the natural connection on Λ∗M, extending that on
T ∗M, so that the derivation identity

(25.41) ∇X(ϕ ∧ ψ) = (∇Xϕ) ∧ ψ + ϕ ∧ (∇Xψ)

holds for a j-form ϕ and a k-form ψ. In this case it is routine to verify the compat-
ibility condition (25.36) and to see that the construction (25.33) gives rise to the
operator d + d∗ on differential forms.

We remark that it is common to use Clifford algebras associated to negative def-
inite forms rather than positive definite ones. The two types of algebras are simply
related. If a linear map ϑ : V → End(E) extends to an algebra homomorphism
Cl(V, g) → End(E), then iϑ extends to an algebra homomorphism Cl(V,−g) →
End(E). If one uses a negative form, the condition (25.12) that E be a Hermitian
Clifford module should be changed to ϑ(v) = −ϑ(v)∗, v ∈ V. In such a case, we
should drop the factor of i in (25.33) to associate the Dirac-type operator D to
a Cl(M)-module E. In fact, getting rid of this factor of i in (25.33) and (25.35)
is perhaps the principal reason some people use the negative quadratic form to
construct Clifford algebras.
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Exercises

1. Let E be a Cl(M)-module with connection ∇. If ϕ is a section of E and f a
scalar function, show that

D(fϕ) = f Dϕ + i(df) · ϕ,

where the last term involves a Clifford multiplication.

2. If ∇ is a Clifford connection on E, and u is a 1-form, show that

D(u · ϕ) = −u ·Dϕ + 2i∇Uϕ + i(Du) · ϕ

where U is the vector field corresponding to u via the metric tensor on M and

D : C∞(M, Λ1) −→ C∞(M, Cl)

is given by
Du = i

∑
vj · ∇ej u,

with respect to local dual orthonormal frames ej , vj , and ∇ arising from the Levi-
Civita connection.

3. Show that D(df) = i∆f.
Note. Compare Exercise 6 of §26.

4. If D arises from a Clifford connection on E, show that

D2(fϕ) = f D2ϕ− 2∇grad fϕ− (∆f)ϕ.
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26. Clifford algebras

In this section we discuss some further results about the structure of Clifford
algebras, which were defined in §25.

First we note that by construction Cl(V, g) has the following universal property.
Let A0 be any associative algebra over R, with unit, containing V as a linear subset,
generated by V, such that the anticommutation relation (25.8) holds in A0, for all
v, w ∈ V, i.e., vw + wv = 2〈v, w〉 · 1 in A0. Then there is a natural surjective
homomorphism

(26.1) α : Cl(V, g) −→ A0.

If {e1, . . . , en} is a basis of V, any element of Cl(V, g) can be written as a poly-
nomial in the ej . Since ejek = −ekej +2〈ej , ek〉 ·1 and in particular e2

j = 〈ej , ej〉 ·1,
we can, starting with terms of highest order, rearrange each monomial in such a
polynomial so the ej appear with j in ascending order, and no exponent greater
than one occurs on any ej . In other words, each element w ∈ Cl(V, g) can be written
in the form

(26.2) w =
∑

iν=0 or 1

ai1···in ei1
1 · · · ein

n ,

with real coefficients ai1···in .
Denote by A the set of formal expressions of the form (26.2), a real vector space

of dimension 2n; we have a natural inclusion V ⊂ A. We can define a “product”
A⊗A → A in which a product of monomials (ei1

1 · · · ein
n ) · (ej1

1 · · · ejn
n ) with each iν

and each jµ equal to either 0 or 1, is a linear combination of monomials of such a
form, by pushing each e

jµ
µ past the eiν

ν for ν > µ, invoking the anticommutation
relations. It is routine to verify that this gives A the structure of an associative
algebra, generated by V. The universal property mentioned above implies that A is
isomorphic to Cl(V, g). Thus each w ∈ Cl(V, g) has a unique representation in the
form (26.2), and dim Cl(V, g) = 2n if dim V = n.

Recall from §25 the algebra homomorphism M : Cl(V, g) → End(Λ∗V ), defined
there provided g is positive definite (which can be extended to include general g).
Then, we can define a linear map

(26.3) M̃ : Cl(V, g) −→ Λ∗V ; M̃(w) = M(w)(1),

for w ∈ Cl(V, g). Note that, if v ∈ V ⊂ Cl(V, g), then M̃(v) = v. Comparing
the anticommutation relations of Cl(V, g) with those of Λ∗V, we see that, if w ∈
Cl(V, g) is one of the monomials in (26.2), say w = ej1

1 · · · ejn
n , all jν either 0 or

1, k = j1 + · · ·+ jn, then

(26.4) M̃(ej1
1 · · · ejn

n )− ej1
1 ∧ · · · ∧ ejn

n ∈ Λk−1V.



210

It follows easily that (26.3) is an isomorphism of vector spaces. This observation
also shows that the representation of an element of Cl(V, g) in the form (26.2) is
unique. If g is positive definite and ej is an orthonormal basis of V, the difference
in (26.4) vanishes.

In the case g = 0, the anticommutation relation (25.8) becomes vw = −wv, for
v, w ∈ V, and we have the exterior algebra:

Cl(V, 0) = Λ∗V.

Through the remainder of this section we will restrict attention to the case where
g is positive definite. We denote 〈v, v〉 by |v|2. For V = Rn with g its standard
Euclidean inner product, we denote Cl(V, g) by Cl(n).

It is useful to consider the complexified Clifford algebra

Cl(n) = C⊗ Cl(n),

as it has a relatively simple structure, specified as follows.

Proposition 26.1. There are isomorphisms of complex algebras

(26.5) Cl(1) ≈ C⊕ C, Cl(2) ≈ End(C2),

and

(26.6) Cl(n + 2) ≈ Cl(n)⊗ Cl(2);

hence, with κ = 2k,

(26.7) Cl(2k) ≈ End(Cκ), Cl(2k + 1) ≈ End(Cκ)⊕ End(Cκ).

Proof. The isomorphisms (26.5) are simple exercises. To prove (26.6), embed Rn+2

into Cl(n)⊗ Cl(2) by picking an orthonormal basis {e1, . . . , en+2} and taking

(26.8)
ej 7→ i ej ⊗ en+1en+2 for 1 ≤ j ≤ n,

ej 7→ 1⊗ ej for j = n + 1 or n + 2.

Then the universal property of Cl(n + 2) leads to the isomorphism (26.6). Given
(26.5)–(26.6), then (26.7) follows by induction.

While, parallel to (26.5), one has Cl(1) = R ⊕ R and Cl(2) = End(R2), other
algebras Cl(n) are more complicated than their complex analogues; in place of
(26.6) one has a form of periodicity with period 8. We refer to [LM] for more on
this.

It follows from Proposition 26.1 that C2k

has the structure of an irreducible
Cl(2k) module, though making the identification (26.7) explicit involves some un-
tangling, in a way that depends strongly on a choice of basis. It is worthwhile
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to note the following explicit, invariant construction, for V, a vector space of real
dimension 2k, with a positive inner product 〈 , 〉, endowed with one other piece of
structure, namely a complex structure J. Assume J is an isometry for 〈 , 〉. Denote
the complex vector space (V, J) by V, which has complex dimension k. On V we
have a positive Hermitian form

(26.9) (u, v) = 〈u, v〉+ i〈u, Jv〉.

Form the complex exterior algebra

(26.10) Λ∗CV =
k⊕

j=0

Λj
CV,

with its natural Hermitian form. For v ∈ V, one has the exterior product v∧ :
Λj
CV → Λj+1

C V; denote its adjoint, the interior product, by jv : Λj+1
C V → Λj

CV. Set

(26.11) i µ(v)ϕ = v ∧ ϕ− jvϕ, v ∈ V, ϕ ∈ Λ∗CV.

Note that v ∧ ϕ is C-linear in v and jvϕ is conjugate linear in v, so µ(v) is only
R-linear in v. As in (25.20), we obtain

(26.12) µ(u)µ(v) + µ(v)µ(u) = 2〈u, v〉 · I,

so µ : V → End(Λ∗CV) extends to a homomorphism of algebras

(26.13) µ : Cl(V, g) −→ End(Λ∗CV),

hence to a homomorphism of C-algebras

(26.14) µ : Cl(V, g) −→ End(Λ∗CV),

where Cl(V, g) denotes C⊗ Cl(V, g).

Proposition 26.2. The homomorphism (26.14) is an isomorphism, when V is
a real vector space of dimension 2k, with complex structure J, V the associated
complex vector space.

Proof. We already know that both Cl(V, g) and End(Λ∗CV) are isomorphic to End(Cκ),

κ = 2k. We will make use of the algebraic fact that this is a complex algebra
which has no proper 2-sided ideals. Now the kernel of µ in (26.14) would have to be
a 2-sided ideal, so either µ = 0 or µ is an isomorphism. But for v ∈ V, µ(v) · 1 = v,
so µ 6= 0; thus µ is an isomorphism.

We next mention that a grading can be put on Cl(V, g). Namely, let Cl0(V, g)
denote the set of sums of the form (26.2) with i1 + · · ·+ in even, and let Cl1(V, g)
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denote the set of sums of that form with i1 + · · · + in odd. It is easy to see that
this specification is independent of the choice of basis {ej}. Also we clearly have

(26.15) u ∈ Clj(V, g), w ∈ Clk(V, g) =⇒ uw ∈ Clj+k(V, g),

where j and k are each 0 or 1, and we compute j + k mod 2. If (V, g) is Rn with
its standard Euclidean metric, we denote Clj(V, g) by Clj(n), j = 0 or 1.

We note that there is an isomorphism

(26.16) j : Cl(2k − 1) −→ Cl0(2k)

uniquely specified by the property that, for v ∈ R2k−1, j(v) = ve2k, where {e1, . . . , e2k−1}
denotes the standard basis of R2k−1, with e2k added to form a basis of R2k. This will
be useful in the next section for constructing spinors on odd dimensional spaces.

We can construct a finer grading on Cl(V, g). Namely set

(26.17) Cl[k](V, g) = set of sums of the form (26.2) with i1 + · · ·+ in = k.

Thus Cl[0](V, g) is the set of scalars and Cl[1](V, g) is V. If we insist that {ej} be
an orthonormal basis of V, then Cl[k](V, g) is invariantly defined, for all k. In fact,
using the isomorphism (26.3), we have

(26.18) Cl[k](V, g) = M̃−1
(
ΛkV

)
.

Note that

Cl0(V, g) =
⊕

k even

Cl[k](V, g), Cl1(V, g) =
⊕

k odd

Cl[k](V, g).

Let us also note that Cl[2](V, g) has a natural Lie algebra structure. In fact, if
{ej} is orthonormal,

(26.19)
[eiej , eke`] = eiejeke` − eke`eiej

= 2(δjkeie` − δ`jeiek + δike`ej − δ`iekej).

The construction (26.17) makes Cl(V, g) a graded vector space, but not a graded
algebra, since typically Cl[j](V, g) · Cl[k](V, g) is not contained in Cl[j+k](V, g), as
(26.19) illustrates. We can set

(26.20) Cl(k)(V, g) =
⊕{

Cl[j](V, g) : j ≤ k, j = k mod 2
}
,

and then Cl(j)(V, g) · Cl(k)(V, g) ⊂ Cl(j+k)(V, g). As k ranges over the even or the
odd integers, the spaces (26.20) provide filtrations of Cl0(V, g) and Cl1(V, g).
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Exercises

1. Let V have an oriented orthonormal basis {e1, · · · , en}. Set

ν = e1 · · · en ∈ Cl(V, g).

Show that ν is independent of the choice of such a basis.
Note. M̃(ν) = e1 ∧ · · · ∧ en ∈ ΛnV, with M̃ as in (26.3).

2. Show that ν2 = (−1)n(n−1)/2.

3. Show that, for all u ∈ V, νu = (−1)n−1uν.

4. With µ as in (26.11)–(26.14), show that

µ(ν)∗ = (−1)n(n−1)/2µ(ν), and µ(ν)∗µ(ν) = I.

5. Show that
M̃(νw) = cnk ∗ M̃(w),

for w ∈ Cl[k](V, g), where ∗ : ΛkV → Λn−kV is the Hodge star operator. Find the
constants cnk.

6. Let D : C∞(M, T ∗) → C∞(M, Cl) be as in Exercise 2 of §25, i.e.,

Du = i
∑

vj · ∇ej u,

where {ej} is a local orthonormal frame of vector fields, {vj} the dual frame. Show
that

M̃(Dv) = −i(d + d∗)v.

7. Show that End(Cm) has no proper 2-sided ideals.
Hint. Suppose M0 6= 0 belongs to such an ideal I, and v0 6= 0 belongs to the range
of M0. Show that every v ∈ Cm belongs to the range of some M ∈ I, and hence
that every one-dimensional projection belongs to I.



214

27. Spinors

We define the spinor groups Pin(V, g) and Spin(V, g), for a vector space V with
a positive quadratic form g; set |v|2 = g(v, v) = 〈v, v〉. We set

(27.1) Pin(V, g) = {v1 · · · vk ∈ Cl(V, g) : vj ∈ V, |vj | = 1},
with the induced multiplication. Since (v1 · · · vk)(vk · · · v1) = 1, it follows that
Pin(V, g) is a group. We can define an action of Pin(V, g) on V as follows. If u ∈ V
and x ∈ V, then ux + xu = 2〈x, u〉 · 1 implies

(27.2) uxu = −xuu + 2〈x, u〉u = −|u|2x + 2〈x, u〉u.

If also y ∈ V,

(27.3) 〈uxu, uyu〉 = |u|2〈x, y〉 = 〈x, y〉 if |u| = 1.

Thus if u = v1 · · · vk ∈ Pin(V, g) and if we define a conjugation on Cl(V, g) by

(27.4) u∗ = vk · · · v1, vj ∈ V,

it follows that

(27.5) x 7→ uxu∗, x ∈ V

is an isometry on V for each u ∈ Pin(V, g). It will be more convenient to use

(27.6) u# = (−1)ku∗, u = v1 · · · vk.

Then we have a group homomorphism

(27.7) τ : Pin(V, g) −→ O(V, g),

defined by

(27.8) τ(u)x = uxu#, x ∈ V, u ∈ Pin(V, g).

Note that, if v ∈ V, |v| = 1, then, by (27.2),

(27.9) τ(v)x = x− 2〈x, v〉v
is reflection across the hyperplane in V orthogonal to v. It is easy to show that
any orthogonal transformation T ∈ O(V, g) is a product of a finite number of such
reflections, so the group homomorphism (27.7) is surjective.

Note that each isometry (27.9) is orientation reversing. Thus, if we define

(27.10)
Spin(V, g) = {v1 · · · vk ∈ Cl(V, g) : vj ∈ V, |vj | = 1, k even}

= Pin(V, g) ∩ Cl0(V, g),

then

(27.11) τ : Spin(V, g) −→ SO(V, g)

and in fact Spin(V, g) is the inverse image of SO(V, g) under τ in (27.7). We now
show that τ is a 2-fold covering map.
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Proposition 27.1. τ is a 2-fold covering map. In fact, ker τ = {±1}.
Proof. Note that ±1 ∈ Spin(V, g) ⊂ Cl(V, g) and ±1 acts trivially on V, via (27.8).
Now, if u = v1 · · · vk ∈ ker τ, k must be even, since τ(u) must preserve orientation,
so u# = u∗. Since uxu∗ = x for all x ∈ V, we have ux = xu, so uxu = |x|2u, x ∈ V.
If we pick an orthonormal basis {e1, . . . , en} of V and write u ∈ ker τ in the form
(26.2), each i1 + · · ·+ in even, since ejuej = u for each j, we deduce that, for each
j,

u =
∑

(−1)ij ai1···in
ei1···in if u ∈ ker τ.

Hence ij = 0 for all j, so u is a scalar; hence u = ±1.

We next consider the connectivity properties of Spin(V, g).

Proposition 27.2. Spin(V, g) is the connected 2-fold cover of SO(V, g), provided g
is positive definite and dim V ≥ 2.

Proof. It suffices to connect −1 ∈ Spin(V, g) to the identity element 1 ∈ Spin(V, g)
via a continuous curve in Spin(V, g). In fact, pick orthogonal e1, e2, and set

γ(t) = e1 ·
[−(cos t)e1 + (sin t)e2

]
, 0 ≤ t ≤ π.

If V = Rn with its standard Euclidean inner product g, denote Spin(V, g) by
Spin(n). It is a known topological fact that SO(n) has fundamental group Z2, and
Spin(n) is simply connected, for n ≥ 3. Though we make no use of this result, we
mention that one route to it is via the “homotopy exact sequence” (see [BTu]) for
Sn = SO(n + 1)/SO(n). This leads to π1

(
SO(n + 1)

) ≈ π1

(
SO(n)

)
for n ≥ 3.

Meanwhile, one sees directly that SU(2) is a double cover of SO(3), and it is
homeomorphic to S3.

We next produce representations of Pin(V, g) and Spin(V, g), arising from the ho-
momorphism (26.13). First assume V has real dimension 2k, with complex structure
J ; let V = (V, J) be the associated complex vector space, of complex dimension k,
and set

(27.12) S(V, g, J) = Λ∗CV,

with its induced Hermitian metric, arising from the metric (26.9) on V. The inclu-
sion Pin(V, g) ⊂ Cl(V, g) ⊂ Cl(V, g) followed by (26.14) gives the representation

(27.13) ρ : Pin(V, g) −→ Aut
(
S(V, g, J)

)
.

Proposition 27.3. The representation ρ of Pin(V, g) is irreducible and unitary.

Proof. Since the C-subalgebra of Cl(V, g) generated by Pin(V, g) is all of Cl(V, g),
the irreducibility follows from the fact that µ in (26.14) is an isomorphism. For
unitarity, it follows from (26.11) that µ(v) is self adjoint for v ∈ V ; by (26.12),
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µ(v)2 = |v|2I, so v ∈ V, |v| = 1 implies that ρ(v) is unitary, and unitarity of ρ on
Pin(V, g) follows.

The restriction of ρ to Spin(V, g) is not irreducible. In fact, set

(27.14) S+(V, g, J) = Λeven
C V, S−(V, g, J) = Λodd

C V.

Under ρ, the action of Spin(V, g) preserves both S+ and S−. In fact, we have (26.14)
restricting to

(27.15) µ : Cl0(V, g) −→ EndC
(
S+(V, g, J)

)⊕ EndC
(
S−(V, g, J)

)
,

this map being an isomorphism. On the other hand,

(27.16) z ∈ Cl1(V, g) =⇒ µ(z) : S± −→ S∓.

From (27.15) we get representations

(27.17) D±
1/2 : Spin(V, g) −→ Aut

(
S±(V, g, J)

)

which are irreducible and unitary.
If V = R2k with its standard Euclidean metric, standard orthonormal basis

e1, . . . , e2k, we impose the complex structure Jei = ei+k, Jei+k = −ei, 1 ≤ i ≤ k,
and set

(27.18) S(2k) = S(R2k, | |2, J), S±(2k) = S±(R2k, | |2, J).

Then (27.17) defines representations

(27.19) D±
1/2 : Spin(2k) −→ Aut

(
S±(2k)

)
.

We now consider the odd dimensional case. If V = R2k−1, we use the isomor-
phism

(27.20) Cl(2k − 1) −→ Cl0(2k)

produced by the map

(27.21) v 7→ ve2k, v ∈ R2k−1.

Then the inclusion Spin(2k − 1) ⊂ Cl(2k − 1) composed with (27.20) gives an
inclusion

(27.22) Spin(2k) ↪→ Spin(2k).
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Composing with D+
1/2 from (27.19) gives a representation

(27.23) D+
1/2 : Spin(2k − 1) −→ Aut S+(2k).

We also have a representation D−
1/2 of Spin(2k − 1) on S−(2k), but these two

representations are equivalent. They are intertwined by the map

(27.24) µ(e2k) : S+(2k) → S−(2k).

We now study spinor bundles on an oriented Riemannian manifold M, with
metric tensor g. Over M lies the bundle of oriented orthonormal frames,

(27.25) P −→ M,

a principal SO(n)-bundle, n = dim M. A spin structure on M is a “lift,”

(27.26) P̃ −→ M,

a principal Spin(n)-bundle, such that P̃ is a double covering of P in such a way
that the action of Spin(n) on the fibers of P̃ is compatible with the action of SO(n)
on the fibers of P, via the covering homomorphism τ : Spin(n) → SO(n). There
are topological obstructions to the existence of a spin structure, which we will not
discuss here. See [LM]. It turns out that there is a naturally defined element of
H2(M,Z2) whose vanishing guarantees the existence of a lift, and when such lifts
exist, equivalence classes of such lifts are parametrized by elements of H1(M,Z2).

Given a spin structure (27.26), spinor bundles are constructed via the represen-
tations of Spin(n) described above. Two cases arise, depending on whether n =
dim M is even or odd. If n = 2k, we form the bundle of spinors

(27.27) S(P̃ ) = P̃ ×ρ S(2k),

where ρ = D+
1/2 ⊕D−

1/2 is the sum of the representations (27.19); this is a sum of
the two vector bundles

(27.28) S±(P̃ ) = P̃ ×D±
1/2

S±(2k).

Recall that, as in §18, the sections of S(P̃ ) are in natural correspondence with
the functions f on P̃ , taking values in the vector space S(2k), which satisfy the
compatibility conditions

(27.29) f(p · g) = ρ(g)−1f(p), p ∈ P̃ , g ∈ Spin(2k),

where we write the Spin(n)-action on P̃ as a right action.
Recall that S(2k) is a Cl(2k)-module, via (26.13). This result extends to the

bundle level.
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Proposition 27.4. The spinor bundle S(P̃ ) is a natural Cl(M)-module.

Proof. Given a section u of Cl(M) and a section ϕ of S(P̃ ), we need to define
u · ϕ as a section of S(P̃ ). We regard u as a function on P̃ with values in Cl(n)
and ϕ as a function on P̃ with values in S(n). Then u is a function on P̃ with
values in S(n); we need to verify the compatibility condition (27.29). Indeed, for
p ∈ P̃ , g ∈ Spin(2k),

(27.30)

u · ϕ(p · g−1) = τ(g)u(p) · ρ(g)ϕ(p)

= gu(p)g#gϕ(p)

= gu(p) · ϕ(p),

since gg# = 1 for g ∈ Spin(n). This completes the proof.

Whenever (M, g) is an oriented Riemannian manifold, the Levi-Civita connection
provides a connection on the principal SO(n)-bundle of frames P. If M has a spin
structure, this choice of horizontal space for P lifts in a unique natural fashion to
provide a connection on P̃ . Thus the spinor bundle constructed above has a natural
connection, which we might call the Dirac-Levi-Civita connection.

Proposition 27.5. The Dirac-Levi-Civita connection ∇ on S(P̃ ) is a Clifford con-
nection.

Proof. Clearly ∇ is a metric connection, since the representation ρ of Spin(2k) on
S(2k) is unitary. It remains to verify the compatibility condition (25.36), i.e.,

(27.31) ∇X(v · ϕ) = (∇Xv) · ϕ + v · ∇Xϕ,

for a vector field X, a 1-form v, and a section ϕ of S(P̃ ). To see this, we first
note that, as stated in (27.30), the bundle Cl(M) can be obtained from P̃ → M

as P̃ ×κ Cl(2k), where κ is the representation of Spin(2k) on Cl(2k) given by
κ(g)w = gwg#. Furthermore, T ∗M can be regarded as a subbundle of Cl(M),
obtained from P̃ ×κ R2k with the same formula for κ. The connection on T ∗M
obtained from that on P̃ is identical to the usual connection on T ∗M defined via
the Levi-Civita formula. Given this, (27.31) is a straightforward derivation identity.

Using the prescription (25.31)–(25.33) we can define the Dirac operator on a
Riemannian manifold of dimension 2k, with a spin structure:

(27.32) D : C∞(M, S(P̃ )) −→ C∞(M,S(P̃ )).

We see that Proposition 25.1 applies; D is symmetric. Note also the grading:

(27.33) D : C∞(M,S±(P̃ )) −→ C∞(M,S∓(P̃ )).

In other words, this Dirac operator is of the form (25.3).
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On a Riemannian manifold of dimension 2k with a spin structure P̃ → M, let
F → M be another vector bundle. Then the tensor product E = S(P̃ ) ⊗ F is a
Cl(M)-module in a natural fashion. If F has a connection, then E gets a natural
product connection. Then the construction (25.31)–(25.33) yields an operator DF

of Dirac type on sections of E; in fact

(27.34) DF : C∞(M, E±) −→ C∞(M, E∓), E± = S±(P̃ )⊗ F.

If F has a metric connection, then E gets a Clifford connection. The operator DF

is called a twisted Dirac operator. Sometimes it will be convenient to distinguish
notationally the two pieces of DF ; we write

(27.35) D+
F : C∞(M, E+) −→ C∞(M, E−), D−

F : C∞(M,E−) −→ C∞(M, E+).

When dim M = 2k − 1 is odd, we use the representation (27.24) to form the
bundle of spinors S+(P̃ ) = P̃ ×D+

1/2
S+(2k). The inclusion Cl(2k − 1) ↪→ Cl0(2k)

defined by (27.20)–(27.21) makes S+(2k) a Cl(2k − 1)-module, and analogues of
Propositions 27.4 and 27.5 hold. Consequently there arises a Dirac operator, D :
C∞(M, S+(P̃ )) → C∞(M,S+(P̃ )), and twisted Dirac operators also arise; in place
of (27.34) we have DF : C∞(M, E+) → C∞(M,E+), with E+ = S+(P̃ )⊗ F.

Exercises

1. Verify that the map (27.15) is an isomorphism, and that the representations
(27.17) of Spin(V, g) are irreducible, when dim V = 2k.

2. Let ν be as in Exercises 1–4 of §26, with n = 2k. Show that:
a) The center of Spin(V, g) consists of {1,−1, ν,−ν}.
b) µ(ν) leaves S+ and S− invariant.
c) µ(ν) commutes with the action of Cl0(V, g) under µ, hence with the repre-

sentations D±
1/2 of Spin(V, g).

d) µ(ν) acts as a pair of scalars on S+ and S− respectively. These scalars are
the two square roots of (−1)k.

3. Calculate µ(ν) · 1 directly, making use of the definition (26.11). Hence match
the scalars in exercise 2d) to S+ and S−.
Hint. µ(ek+1 · · · e2k) · 1 = (−i)kek+1 ∧ · · · ∧ e2k in Λk

CV.
Using ej+k = i ej in V, for 1 ≤ j ≤ k, we have
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µ(ν) · 1 = µ(e1 · · · ek)(e1 ∧ · · · ∧ ek),
and there are k interior products to compute.

4. Show that Cl[2](V, g), with the Lie algebra structure (26.19), is naturally iso-
morphic to the Lie algebra of Spin(V, g). In fact, if (ajk) is a real antisymmetric
matrix, in the Lie algebra of SO(n), which is the same as that of Spin(n), show
that there is the correspondence

A = (ajk) 7→ 1
4

∑
ajk ej ek = κ(A).

In particular, show that κ(A1A2 −A2A1) = κ(A1)κ(A2)− κ(A2)κ(A1).

5. If X is a spin manifold and M ⊂ X is an oriented submanifold of codimension
1, show that M has a spin structure. Deduce that an oriented hypersurface in Rn

has a spin structure.

6. As noted in §18, a section σ of P → M (over an open set U ⊂ M) defines an
isomorphism

C∞(U,E) ≈ C∞(U, V ),

for a vector bundle E = P ×π V, where π is a representation of G = SO(n) on V.

Given such σ, there are two possible lifts to sections σ̃j of P̃ → M (over U, which
we assume is diffeomorphic to a ball), defining two isomorphisms

τj : C∞(U,F ) −→ C∞(U,W ),

for a vector bundle F = P ×λ W, where λ is a representation of G̃ = Spin(n) on
W. Show that τ1 = −τ2.

7. Recall the formula (18.12) for the covariant derivative of a section of E. Suppose
E = TM. Then, with respect to σ, we get connection coefficients Γα

βj , defined over
U. Show that, for each j,

Γj = (Γα
βj) ∈ Skew(n) = so(n).

Let F± = S±(P̃ ). Then, with respect to σ̃j , we have connection coefficients Γ̃A
Bj ,

and, for each j,

Γ̃j ∈ End
(
S±(2k)

)
, 2k = n or n + 1.

Show that
Γ̃j = (dD±

1/2)(Γj),

where dD±
1/2 is the derived representation of so(n) on S±(2k), associated to the

representation D±
1/2 of Spin(n) on S±(2k).
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28. Weitzenbock formulas

Let E → M be a Hermitian vector bundle with a metric connection ∇. Suppose
E is also a Cl(M)-module, and that ∇ is a Clifford connection. If we consider
the Dirac operator D : C∞(M, E) → C∞(M, E) and the covariant derivative ∇ :
C∞(M, E) → C∞(M, T ∗⊗E), then D2 and ∇∗∇ are operators on C∞(M, E) with
the same principal symbol. It is of interest to examine their difference, clearly a
differential operator of order ≤ 1. In fact, the difference has order 0. This can be
seen in principle from the following considerations. From Exercise 4 of §25, we have

(28.1) D2(fϕ) = f D2ϕ− 2∇grad fϕ− (∆f)ϕ

when ϕ ∈ C∞(M, E), f a scalar function. Similarly we compute ∇∗∇(fϕ). The
derivation property of ∇ implies

(28.2) ∇(fϕ) = f∇ϕ + df ⊗ ϕ.

To apply ∇∗ to this, first a short calculation gives

(28.3) ∇∗f(u⊗ ϕ) = f∇∗(u⊗ ϕ)− 〈df, u〉ϕ

for u ∈ C∞(M, T ∗), ϕ ∈ C∞(M,E), and hence

(28.4) ∇∗(f∇ϕ) = f∇∗∇ϕ−∇grad fϕ.

This gives ∇∗ applied to the first term on the right side of (28.2). To apply ∇∗ to
the other term, we can use the identity

(28.5) ∇∗(u⊗ ϕ) = −∇Uϕ− (div U)ϕ,

where U is the vector field corresponding to u via the metric on M. Compare
(13.35). Hence

(28.6) ∇∗(df ⊗ ϕ) = −∇grad fϕ− (∆f)ϕ.

Then (28.6) and (28.4) applied to (28.2) give

(28.7) ∇∗∇(fϕ) = f∇∗∇ϕ− 2∇grad fϕ− (∆f)ϕ.

Comparing (28.1) and (28.7), we have

(28.8) (D2 −∇∗∇)(fϕ) = f(D2 −∇∗∇)ϕ,

which implies D2 − ∇∗∇ has order zero, i.e., is given by a bundle map on E. We
now derive the Weitzenbock formula for what this difference is.
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Proposition 28.1. If E → M is a Cl(M)-module with Clifford connection, and
associated Dirac-type operator D, then, for ϕ ∈ C∞(M,E),

(28.9) D2ϕ = ∇∗∇ϕ−
∑

j>k

vkvjK(ek, ej)ϕ,

where {ej} is a local orthonormal frame of vector fields, with dual frame field {vj},
and K is the curvature tensor of (E,∇).

Proof. Starting with Dϕ = i
∑

vj∇ej
ϕ, we obtain

(28.10)

D2ϕ = −
∑

j,k

vk∇ek

(
vj∇ej

ϕ
)

= −
∑

j,k

vk

[
vj∇ek

∇ej ϕ +
(∇ek

vj

)∇ej ϕ
]
,

using the compatibility condition (25.36). We replace ∇ek
∇ej by the Hessian, using

the identity

(28.11) ∇2
ek,ej

ϕ = ∇ek
∇ej ϕ−∇∇ek

ej ϕ;

cf. (14.4). We obtain

(28.12)

D2ϕ = −
∑

j,k

vkvj∇2
ek,ej

ϕ

−
∑

j,k

vk

[
vj∇∇ek

ej ϕ +
(∇ek

vj

)∇ej ϕ
]
.

Let us look at each of the two double sums on the right. Using v2
j = 1 and the

anticommutator property vkvj = −vjvk for k 6= j, we see that the first double sum
becomes

(28.13) −
∑

j

∇2
ej ,ej

ϕ−
∑

j>k

vkvjK(ek, ej)ϕ,

since the antisymmetric part of the Hessian is the curvature. This is equal to the
right side of (28.9), in light of the formula for ∇∗∇ established in Proposition 14.1.
As for the remaining double sum in (28.12), for any p ∈ M, we can choose a local
orthonormal frame field {ej} such that ∇ej ek = 0 at p, and then this term vanishes
at p. This proves (28.9).

We denote the difference D2 −∇∗∇ by K, so

(28.14) (D2 −∇∗∇)ϕ = Kϕ, K ∈ C∞(M, End E).

The formula for K in (28.9) can also be written

(28.15) Kϕ = −
∑

j,k

vkvjK(ek, ej)ϕ.

Since a number of formulas that follow will involve multiple summation, we will
use the summation convention.

This general formula for K simplifies further in some important special cases.
The first simple example of this will be useful for further calculations.
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Proposition 28.2. Let E = Λ∗M, with Cl(M)-module structure and connection
described in §1, so K ∈ C∞(M,End Λ∗). In this case,

(28.16) u ∈ Λ1M =⇒ Ku = Ric (u).

Proof. The curvature of Λ∗M is a sum of curvatures of each factor ΛkM. In par-
ticular, if {ej , vj} is a local dual pair of frame fields,

(28.17) K(ei, ej)vk = −Rk
`ijv`,

where Rk
`ij are the components of the Riemann tensor, with respect to these frame

fields, and we use the summation convention. In light of (28.15), the desired identity
(28.16) will hold provided

(28.18)
1
2
vivjv`R

k
`ij = Ric (vk),

so it remains to establish this identity. Since, if (i, j, `) are distinct, vivjv` =
v`vivj = vjv`vi and since by Bianchi’s first identity

Rk
`ij + Rk

j`i + Rk
ij` = 0,

it follows that in summing the left side of (4.18), the sum over (i, j, `) distinct
vanishes. By antisymmetry of Rk

`ij , the terms with i = j vanish. Thus the only
contributions arise from i = ` 6= j and i 6= ` = j. Therefore the left side of (28.18)
is equal to

(28.19)
1
2
(−vjR

k
iij + viR

k
jij

)
= viR

k
jij = Ric (vk),

which completes the proof.

We next derive Lichnerowicz’s calculation of K when E = S(P̃ ), the spinor
bundle of a manifold M with spin structure. First we need an expression for the
curvature of S(P̃ ).

Lemma 28.3. The curvature tensor of the spinor bundle S(P̃ ) is given by

(28.20) K(ei, ej)ϕ =
1
4
Rk

`ijvkv`ϕ.

Proof. This follows from the relation between curvatures on vector bundles and
on principal bundles established in §18, together with the identification of the Lie
algebra of Spin(n) with Cl[2](n) given in Exercise 4 of §27.
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Proposition 28.4. For the spin bundle S(P̃ ), K ∈ C∞(M,End S(P̃ )) is given by

(28.21) Kϕ =
1
4
Sϕ,

where S is the scalar curvature of M.

Proof. Using (28.20), the general formula (28.15) yields

(28.22) Kϕ = −1
8
Rk

`ij vivjvkv`ϕ =
1
8
vivjv`R

k
`ij vkϕ,

the last identity holding by the anticommutation relations; note that only the sum
over k 6= ` counts. Now, by (28.18), this becomes

(28.23)

Kϕ =
1
4
vivkRk

jijϕ

=
1
4

Ricii (by symmetry)

=
1
4
Sϕ,

completing the proof.

We record the generalization of Proposition 28.4 to the case of twisted Dirac
operators.

Proposition 28.5. Let E → M have a metric connection ∇, with curvature RE .
For the twisted Dirac operator on sections of F = S(P̃ )⊗E, the section K of End F
has the form

(28.24) Kϕ =
1
4
Sϕ +

1
2

∑

i,j

vivjR
E(ei, ej)ϕ.

Proof. Here RE(ei, ej) is shorthand for I ⊗ RE(ei, ej) acting on S(P̃ ) ⊗ E. This
formula is a consequence of the general formula (28.15) and the argument proving
Proposition 4.4, since the curvature of S(P̃ )⊗ E is K ⊗ I + I ⊗ RE , K being the
curvature of S(P̃ ), given by (28.20).

We draw some interesting conclusions from some of these Weitzenbock formulas,
due to S.Bochner and A.Lichnerowitz.

Proposition 28.6. If M is compact and connected, and the section K in (28.14)–
(28.15) has the property that K ≥ 0 on M and K > 0 at some point, then ker
D = 0.

Proof. This is immediate from

(D2ϕ, ϕ) = (Kϕ,ϕ) + ‖∇ϕ‖2L2 .
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Proposition 28.7. If M is a compact Riemannian manifold with positive Ricci
tensor, then b1(M) = 0, i.e., the deRham cohomology group H1(M,R) = 0.

Proof. Via Hodge theory, we want to show that if u ∈ Λ1(M) and du = d∗u = 0,
then u = 0. This hypothesis implies Du = 0, where D is the Dirac-type operator
dealt with in Proposition 28.2. Consequently we have, for a 1-form u on M,

(28.25) ‖Du‖2L2 =
(
Ric (u), u

)
+ ‖∇u‖2L2 ,

so the result follows.

Proposition 28.8. If M is a compact connected Riemannian manifold with a spin
structure whose scalar curvature is ≥ 0 on M and > 0 at some point, then M has
no nonzero harmonic spinors, i.e., kerD = 0 in C∞(M, S(P̃ )).

Proof. In light of (28.21), this is a special case of Proposition 28.6.

Exercises

1. Let ∆ be the Laplace operator on functions (0-forms) on a compact Riemannian
manifold M, ∆k the Hodge Laplacian on k-forms. If Spec (−∆) consists of 0 =
λ0 < λ1 ≤ λ2 ≤ · · · , show that λ1 ∈ Spec (−∆1).

2. If Ric ≥ c0I on M, show that λ1 ≥ c0.

3. Recall the deformation tensor of a vector field u :

Def u =
1
2
Lug =

1
2
(∇u +∇ut), Def : C∞(M, T ) → C∞(M,S2).

Show that
Def∗ v = −div v,

where (div v)j = vjk
;k. Establish the Weitzenbock formula

(28.26) 2 div Def u = −∇∗∇u + grad div u + Ric(u).

The operator div on the right is the usual divergence operator on vector fields.
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4. Suppose M is a compact connected Riemannian manifold, whose Ricci tensor
satisfies

(28.27) Ric (x) ≤ 0 on M, Ric (x0) < 0 for some x0 ∈ M.

Show that the operator Def is injective, i.e., there are no nontrivial Killing fields
on M, hence no nontrivial one-parameter groups of isometries.
Hint. From (28.26), we have

(28.28) 2‖Def u‖2L2 = ‖∇u‖2L2 + ‖div u‖2 − (
Ric (u), u

)
L2 .

5. As shown in (12.39), the equation of a conformal Killing field on an n-dimensional
Riemannian manifold M is

(28.29) Def X − 1
n

(
div X

)
g = 0.

Note that the left side is the trace free part of Def X ∈ C∞(M, S2T ∗). Denote it
by DTF X. Show that

(28.30) D∗TF = −div
∣∣
S2

0T∗ , D∗TFDTF X = −div Def X +
1
n

(
grad div X

)
,

where S2
0T ∗ is the trace free part of S2T ∗. Show that

(28.31) ‖DTF X‖2L2 =
1
2
‖∇X‖2L2 +

(1
2
− 1

n

)‖div X‖2L2 − 1
2
(
Ric(X), X

)
L2 .

Deduce that, if M is compact and satisfies (28.27), then M has no nontrivial one-
parameter group of conformal diffeomorphisms.

6. Show that, if M is a compact Riemannian manifold which is Ricci flat, i.e., Ric
= 0, then every conformal Killing field is a Killing field, and the dimension of the
space of Killing fields is given by

(28.32) dimR ker Def = dim H1(M,R).

Hint. Combine (28.25) and (28.28).

7. Suppose dim M = 2 and M is compact and connected. Show that, for u ∈
C∞(M, S2

0T ∗),

‖D∗TF u‖2L2 =
1
2
‖∇u‖2L2 +

∫

M

K|u|2 dV,

where K is the Gauss curvature. Deduce that, if K ≥ 0 on M, and K(x0) > 0 for
some x0 ∈ M, then Ker D∗TF = 0.

8. If u and v are vector fields on a Riemannian manifold M, show that

(28.33) div ∇uv = ∇u(div v) + Tr
(
(∇u)(∇v)

)− Ric (u, v).

Relate this identity to the Weitzenbock formula for ∆ on one-forms (a special case
of Proposition 28.2).
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29. Minimal surfaces

A minimal surface is one which is critical for the area functional. To begin, we
consider a k-dimensional manifold M (generally with boundary), in Rn. Let ξ be
a compactly supported normal field to M, and consider the 1-parameter family of
manifolds Ms ⊂ Rn, images of M under the maps

(29.1) ϕs(x) = x + sξ(x), x ∈ M.

We want a formula for the derivative of the k-dimensional area of Ms, at s = 0. Let
us suppose ξ is supported on a single coordinate chart, and write

(29.2) A(s) =
∫

Ω

∥∥∂1X ∧ · · · ∧ ∂kX
∥∥ du1 · · · duk,

where Ω ⊂ Rk parametrizes Ms by X(s, u) = X0(u) + sξ(u). We can also suppose
this chart is chosen so that ‖∂1X0 ∧ · · · ∧ ∂kX0‖ = 1. Then we have

(29.3) A′(0) =
k∑

j=1

∫ 〈
∂1X0∧· · ·∧∂jξ∧· · ·∧∂kX0, ∂1X0∧· · ·∧∂kX0

〉
du1 · · · duk.

By the Weingarten formula (16.9) we can replace ∂jξ by −AξEj , where Ej = ∂jX0.
Without loss of generality, for any fixed x ∈ M, we can assume that E1, . . . , Ek is
an orthonormal basis of TxM. Then

(29.4)
〈
E1 ∧ · · · ∧AξEj ∧ · · · ∧ Ek, E1 ∧ · · · ∧ Ek

〉
=

〈
AξEj , Ej

〉
,

at x. Summing over j yields Tr Aξ(x), which is invariantly defined, so we have

(29.5) A′(0) = −
∫

M

Tr Aξ(x) dA(x),

where Aξ(x) ∈ End(TxM) is the Weingarten map of M and dA(x) the Riemannian
k-dimensional area element. We say M is a minimal submanifold of Rn provided
A′(0) = 0 for all variations of the form (29.1), for which the normal field ξ vanishes
on ∂M.

If we specialize to the case where k = n−1 and M is an oriented hypersurface of
Rn, letting N be the “outward” unit normal to M, for a variation Ms of M given
by

(29.6) ϕs(x) = x + sf(x)N(x), x ∈ M,
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we hence have

(29.7) A′(0) = −
∫

M

Tr AN (x) f(x) dA(x).

The criterion for a hypersurface M of Rn to be minimal is hence that Tr AN = 0
on M.

Recall from §16 that AN (x) is a symmetric operator on TxM. Its eigenvalues,
which are all real, are called the principal curvatures of M at x. Various symmet-
ric polynomials in these principal curvatures furnish quantities of interest. The
mean curvature H(x) of M at x is defined to be the mean value of these principal
curvatures, i.e.,

(29.8) H(x) =
1
k

Tr AN (x).

Thus a hypersurface M ⊂ Rn is a minimal submanifold of Rn precisely when H = 0
on M.

Note that changing the sign of N changes the sign of AN , hence of H. Under
such a sign change, the mean curvature vector

(29.9) H(x) = H(x)N(x)

is invariant. In particular, this is well defined whether or not M is orientable, and
its vanishing is the condition for M to be a minimal submanifold. There is the
following useful formula for the mean curvature of a hypersurface M ⊂ Rn. Let
X : M ↪→ Rn be the isometric imbedding. We claim that

(29.10) H(x) =
1
k

∆X,

with k = n− 1, where ∆ is the Laplace operator on the Riemannian manifold M,
acting componentwise on X. This is easy to see at a point p ∈ M if we translate
and rotate Rn to make p = 0 and represent M as the image of Rk = Rn−1 under

(29.11) Y (x′) =
(
x′, f(x′)

)
, x′ = (x1, . . . , xk), ∇f(0) = 0.

Then one verifies that ∆X(p) = ∂2
1Y (0) + · · ·+ ∂2

kY (0) =
(
0, . . . , 0, ∂2

1f(0) + · · ·+
∂2

kf(0)
)
, and (29.10) follows from the formula

(29.12) 〈AN (0)X, Y 〉 =
k∑

i,j=1

∂i∂jf(0) XiYj

for the second fundamental form of M at p, derived in (16.19).
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More generally, if M ⊂ Rn has dimension k ≤ n − 1, we can define the mean
curvature vector H(x) by

(29.13) 〈H(x), ξ〉 =
1
k

Tr Aξ(x), H(x) ⊥ TxM,

so the criterion for M to be a minimal submanifold is that H = 0. Further-
more, (29.10) continues to hold. This can be seen by the same type of argument
used above; represent M as the image of Rk under (6.11), where now f(x′) =
(xk+1, . . . , xn). Then (29.12) generalizes to

(29.14) 〈Aξ(0)X, Y 〉 =
k∑

i,j=1

〈ξ, ∂i∂jf(0)〉 XiYj ,

which yields (29.10). We record this observation.

Proposition 29.1. Let X : M → Rn be an isometric immersion of a Riemannian
manifold into Rn. Then M is a minimal submanifold of Rn if and only if the
coordinate functions x1, . . . , xn are harmonic functions on M.

A two-dimensional minimal submanifold of Rn is called a minimal surface. The
theory is most developed in this case, and we will concentrate on the two-dimensional
case in the material below.

When dim M = 2, we can extend Proposition 29.1 to cases where X : M → Rn

is not an isometric map. This occurs because, in such a case, the class of harmonic
functions on M is invariant under conformal changes of metric. In fact, if ∆ is the
Laplace operator for a Riemannian metric gij on M and ∆1 that for g1ij = e2ugij ,

then, since ∆f = g−1/2∂i(gijg1/2∂jf), and gij
1 = e−2ugij , while g

1/2
1 = ekug1/2 (if

dim M = k), we have

(29.15) ∆1f = e−2u ∆f + e−ku〈df, de(k−2)u〉 = e−2u∆f, if k = 2.

Hence ker ∆ = ker ∆1, if k = 2. We hence have the following.

Proposition 29.2. If Ω is a Riemannian manifold of dimension 2 and X : Ω → Rn

a smooth immersion, with image M, then M is a minimal surface provided X is
harmonic and X : Ω → M is conformal.

In fact, granted that X : Ω → M is conformal, M is minimal if and only if X is
harmonic on Ω.

We can use this result to produce lots of examples of minimal surfaces, by the
following classical device. Take Ω to be an open set in R2 = C, with coordinates
(u1, u2). Given a map X : Ω → Rn, with components xj : Ω → R, form the complex
valued functions

(29.16) ψj(ζ) =
∂xj

∂u1
− i

∂xj

∂u2
= 2

∂

∂ζ
xj , ζ = u1 + iu2.
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Clearly ψj is holomorphic if and only if xj is harmonic (for the standard flat metric
on Ω), since ∆ = 4(∂/∂ζ)(∂/∂ζ). Furthermore, a short calculation gives

(29.17)
n∑

j=1

ψj(ζ)2 =
∣∣∂1X

∣∣2 − ∣∣∂2X
∣∣2 − 2i ∂1X · ∂2X.

Granted that X : Ω → Rn is an immersion, the criterion that it be conformal is
precisely that this quantity vanish. We have the following result.

Proposition 29.3. If ψ1, . . . , ψn are holomorphic functions on Ω ⊂ C such that

(29.18)
n∑

j=1

ψj(ζ)2 = 0 on Ω,

while
∑ |ψj(ζ)|2 6= 0 on Ω, then setting

(29.19) xj(u) = Re
∫

ψj(ζ) dζ

defines an immersion X : Ω → Rn whose image is a minimal surface.

If Ω is not simply connected, the domain of X is actually the universal covering
surface of Ω.

We mention some particularly famous minimal surfaces in R3 that arise in such
a fashion. Surely the premier candidate for (29.18) is

(29.20) sin2 ζ + cos2 ζ − 1 = 0.

Here, take ψ1(ζ) = sin ζ, ψ2(ζ) = − cos ζ, ψ3(ζ) = −i. Then (29.19) yields

(29.21) x1 = (cos u1)(cosh u2), x2 = (sin u1)(cosh u2), x3 = u2.

The surface obtained in R3 is called the catenoid. It is the surface of revolution
about the x3-axis of the curve x1 = cosh x3 in the x1-x3 plane. Whenever ψj(ζ)
are holomorphic functions satisfying (29.18), so are eiθψj(ζ), for any θ ∈ R. The
resulting immersions Xθ : Ω → Rn give rise to a family of minimal surfaces Mθ ⊂ Rn

which are said to be associated. In particular, Mπ/2 is said to be conjugate to
M = M0. When M0 is the catenoid, defined by (29.21), the conjugate minimal
surface arises from ψ1(ζ) = i sin ζ, ψ2(ζ) = −i cos ζ, ψ3(ζ) = 1, and is given by

(29.22) x1 = (sin u1)(sinh u2), x2 = (cos u1)(sinh u2), x3 = u1.

This surface is called the helicoid. We mention that associated minimal surfaces
are locally isometric, but generally not congruent, i.e., the isometry between the
surfaces does not extend to a rigid motion of the ambient Euclidean space.
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The catenoid and helicoid were given as examples of minimal surfaces by Meusnier,
in 1776.

One systematic way to produce triples of holomorphic functions ψj(ζ) satisfying
(29.18) is to take

(29.23) ψ1 =
1
2
f(1− g2), ψ2 =

i

2
f(1 + g2), ψ3 = fg,

for arbitrary holomorphic functions f and g on Ω. More generally, g can be mero-
morphic on Ω, as long as f has a zero of order 2m at each point where g has a pole
of order m. The resulting map X : Ω → M ⊂ R3 is called the Weierstrass-Enneper
representation of the minimal surface M. It has an interesting connection with the
Gauss map of M, which will be sketched in the exercises. The example arising from
f = 1, g = ζ produces “Enneper’s surface.” This surface is immersed in R3 but
not imbedded.

For a long time the only known examples of complete imbedded minimal surfaces
in R3 of finite topological type were the plane, catenoid, and helicoid, but in the
1980s it was proved by [HM1] that the surface obtained by taking g = ζ and
f(ζ) = ℘(ζ) (the Weierstrass ℘-function), is another example. Further examples
have been found; computer graphics have been a valuable aid in this search; see
[HM2].

A natural question is how general is the class of minimal surfaces arising from
the construction in Proposition 29.3. In fact, it is easy to see that every minimal
M ⊂ Rn is at least locally representable in such a fashion, using the existence of
local isothermal coordinates, established in §N. Thus any p ∈ M has a neighborhood
O such that there is a conformal diffeomorphism X : Ω → O, for some open set
Ω ⊂ R2. By Proposition 29.2 and the remark following it, if M is minimal, then
X must be harmonic, so (29.16) furnishes the functions ψj(ζ) used in Proposition
29.3. Incidentally, this shows that any minimal surface in Rn is real analytic.

As for the question of whether the construction of Proposition 29.3 globally
represents every minimal surface, the answer here is also “yes.” A proof uses
the fact that every noncompact Riemann surface (without boundary) is covered
by either C or the unit disc in C. A proof of this “uniformization theorem” can be
found in [FaKr]. A positive answer, for simply connected compact minimal surfaces,
with smooth boundary, is implied by the following result, which will also be useful
for an attack on the Plateau problem.

Proposition 29.4. If M is a compact simply connected Riemannian manifold of
dimension 2, with smooth boundary, then there exists a conformal diffeomorphism

(29.24) Φ : M −→ D,

where D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
This is a slight generalization of the Riemann Mapping Theorem. The following

is a sketch of the proof.
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Fix p ∈ M, and let G ∈ D′(M) ∩ C∞(M \ p) be the unique solution to

(29.25) ∆G = 2πδ, G = 0 on ∂M.

Since M is simply connected, it is orientable, so we can pick a Hodge star operator,
and ∗dG = β is a smooth closed 1-form on M \ p. If γ is a curve in M of degree 1
about p, then

∫
γ

β can be calculated by deforming γ to be a small curve about p.

Basic theory of elliptic PDE gives G(x) ∼ log dist(x, p), and one establishes that∫
γ

β = 2π. Thus we can write β = dH, where H is a smooth function on M \ p,

well defined mod 2πZ. Hence Φ(x) = eG+iH is a single valued function, tending to
0 as x → p, which one verifies to be the desired conformal diffeomorphism (29.24).
More details can be found in Chapter 14 of [T1].

An immediate corollary is that the argument given above for local representation
of a minimal surface in the form (29.19) extends to a global representation of a
compact simply connected minimal surface, with smooth boundary

So far we have dealt with smooth surfaces, at least immersed in Rn. The theorem
of Douglas and Rado which we now tackle deals with “generalized” surfaces, which
we will simply define to be the images of 2-dimensional manifolds under smooth
maps into Rn (or some other manifold). The theorem, a partial answer to the
“Plateau problem,” asserts the existence of an area minimizing generalized surface
whose boundary is a given simple closed curve in Rn.

To be precise, let γ be a smooth simple closed curve in Rn, i.e., a diffeomorphic
image of S1. Let
(29.26)

Xγ = {ϕ ∈ C(D,Rn) ∩ C∞(D,Rn) : ϕ : S1 → γ monotone, and α(ϕ) < ∞},

where α is the area functional:

(29.27) α(ϕ) =
∫

D

|∂1ϕ ∧ ∂2ϕ| dx1dx2.

Then let

(29.28) Aγ = inf {α(ϕ) : ϕ ∈ Xγ}.

The existence theorem of Douglas and Rado is:

Theorem 29.5. There is a map ϕ ∈ Xγ such that α(ϕ) = Aγ .

We can choose ϕν ∈ Xγ such that α(ϕν) ↘ Aγ , but {ϕν} could hardly be
expected to have a convergent subsequence unless some structure is imposed on
the maps ϕν . The reason is that α(ϕ) = α(ϕ ◦ ψ) for any C∞ diffeomorphism
ψ : D → D. We say ϕ ◦ ψ is a reparametrization of ϕ. The key to success is to take
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ϕν which approximately minimize not only the area functional α(ϕ) but also the
energy functional

(29.29) ϑ(ϕ) =
∫

D

|∇ϕ(x)|2 dx1dx2,

so that we will also have ϑ(ϕν) ↘ dγ , where

(29.30) dγ = inf {ϑ(ϕ) : ϕ ∈ Xγ}.

To relate these, we compare (29.29) and the area functional (29.27).
To compare integrands, we have

(29.31) |∇ϕ|2 = |∂1ϕ|2 + |∂2ϕ|2,

while the square of the integrand in (29.27) is equal to
(29.32)

|∂1ϕ ∧ ∂2ϕ|2 = |∂1ϕ|2|∂2ϕ|2 − 〈∂1ϕ, ∂2ϕ〉 ≤ |∂1ϕ|2|∂2ϕ|2 ≤ 1
4
(|∂1ϕ|2 + |∂2ϕ|2

)2
,

where equality holds if and only if

(29.33) |∂1ϕ| = |∂2ϕ|, and 〈∂1ϕ, ∂2ϕ〉 = 0.

Whenever ∇ϕ 6= 0, this is the condition that ϕ be conformal. More generally, if
(29.33) holds, but we allow ∇ϕ(x) = 0, we say that ϕ is essentially conformal.
Thus, we have seen that, for each ϕ ∈ Xγ ,

(29.34) α(ϕ) ≤ 1
2
ϑ(ϕ),

with equality if and only if ϕ is essentially conformal. The following result allows
us to transform the problem of minimizing α(ϕ) over Xγ into that of minimizing
ϑ(ϕ) over Xγ , which will be an important tool in the proof of Theorem 29.5. Set

(29.35) X∞γ = {ϕ ∈ C∞(D,Rn) : ϕ : S1 → γ diffeo}.

Proposition 29.6. Given ε > 0, any ϕ ∈ X∞γ has a reparametrization ϕ ◦ ψ such
that

(29.36)
1
2
ϑ(ϕ ◦ ψ) ≤ α(ϕ) + ε.

Proof. We will obtain this from Proposition 29.4, but that result may not apply
to ϕ(D), so we do the following. Take δ > 0 and define Φδ : D → Rn+2 by
Φδ(x) =

(
ϕ(x), δx

)
. For any δ > 0, Φδ is a diffeomorphism of D onto its image,
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and if δ is very small, area Φδ(D) is only a little larger than area ϕ(D). Now,
by Proposition 29.4, there is a conformal diffeomorphism Ψ : Φδ(D) → D. Set
ψ = ψδ =

(
Ψ ◦ Φδ

)−1 : D → D. Then Φδ ◦ ψ = Ψ−1 and, as established above,
(1/2)ϑ(Ψ−1) = area(Ψ−1(D)), i.e.,

(29.37)
1
2
ϑ(Φδ ◦ ψ) = area

(
Φδ(D)

)
.

Since ϑ(ϕ ◦ ψ) ≤ ϑ(Φδ ◦ ψ), the result (29.34) follows, if δ is taken small enough.

One can show that

(29.38) Aγ = inf {α(ϕ) : ϕ ∈ X∞γ }, dγ = inf {ϑ(ϕ) : ϕ ∈ X∞γ }.

It then follows from Proposition 29.6 that Aγ = (1/2)dγ and, if ϕν ∈ X∞γ is chosen
so that ϑ(ϕν) → dγ , then a fortiori α(ϕν) → Aγ .

There is still an obstacle to obtaining a convergent subsequence of such {ϕν}.
Namely, the energy integral (29.29) is invariant under reparametrizations ϕ 7→ ϕ◦ψ
for which ψ : D → D is a conformal diffeomorphism. We can put a clamp on this
by noting that, given any two triples of (distinct) points {p1, p2, p2} and {q1, q2, q3}
in S1 = ∂D, there is a unique conformal diffeomorphism ψ : D → D such that
ψ(pj) = qj , 1 ≤ j ≤ 3. Let us now make one choice of {pj} on S1, e.g., the 3 cube
roots of 1, and make one choice of a triple {qj} of distinct points in γ. The following
key compactness result will enable us to prove Theorem 29.5.

Proposition 29.7. For any d ∈ (dγ ,∞), the set

(29.39) Σd =
{
ϕ ∈ X∞γ : ϕ harmonic, ϕ(pj) = qj , and ϑ(ϕ) ≤ d

}

is relatively compact in C(D,Rn).

In view of known estimates for harmonic functions, including mapping properties
of the Poisson integral, which can be found in Chapter 5 of [T1], this result is
equivalent to the relative compactness in C(∂D, S1) of

(29.40) SK = {u ∈ C∞(S1, S1) diffeo : u(pj) = qj , and ‖∇PI u‖L2(D) ≤ K},

for any given K < ∞. Here PI u denotes the harmonic Rn-valued function on D,
equal to u on ∂D = S1.

We will show that the oscillation of u over any arc I ⊂ S1 of length 2δ is

≤ CK
/√

log 1
δ . This modulus of continuity will imply the compactness, by Ascoli’s

theorem.
Pick a point z ∈ S1. Let Cr denote the portion of the circle of radius r and

center z which lies in D. Thus Cr is an arc, of length ≤ πr. Let δ ∈ (0, 1). As r
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varies from δ to
√

δ, Cr sweeps out part of an annulus, as illustrated in Fig. 29.1.
We claim there exists ρ ∈ [δ,

√
δ] such that

(29.41)
∫

Cρ

|∇ϕ| ds ≤ K

√
2π

log 1
δ

,

if K = ‖∇ϕ‖L2(D), ϕ = PI u. To establish this, let

ω(r) = r

∫

Cr

|∇ϕ|2 ds.

Then ∫ √
δ

δ

ω(r)
dr

r
=

∫ √
δ

δ

∫

Cr

|∇ϕ|2 ds dr = I ≤ K2.

By the mean value theorem, there exists ρ ∈ [δ,
√

δ] such that

I = ω(ρ)
∫ √

δ

δ

dr

r
=

ω(ρ)
2

log
1
δ
.

For this value of ρ, we have

(29.42) ρ

∫

Cρ

|∇ϕ|2 ds =
2I

log 1
δ

≤ 2K2

log 1
δ

.

Then Cauchy’s inequality yields (29.41), since length(Cρ) ≤ πρ.
This almost gives the desired modulus of continuity. The arc Cρ is mapped by

ϕ into a curve of length ≤ K
√

2π
/
log 1

δ , whose endpoints divide γ into 2 segments,
one rather short (if δ is small), one not so short. There are two possibilities; ϕ(z)
is contained in either the short segment (as in Fig. 29.2) or the long segment (as in
Fig. 29.3). However, as long as ϕ(pj) = pj for three points pj , this latter possibility

cannot occur. We see that |u(a) − u(b)| ≤ K
√

2π
/
log 1

δ , if a and b are the points
where Cρ intersects S1. Now the monotonicity of u along S1 guarantees that the

total variation of u on the (small) arc from a to b in S1 is ≤ K
√

2π
/

log 1
δ . This

establishes the modulus of continuity and concludes the proof.
Now that we have Proposition 29.7, we proceed as follows. Pick a sequence ϕν

in X∞γ such that ϑ(ϕν) → dγ , so also α(ϕν) → Aγ . Now we do not increase ϑ(ϕν)
if we replace ϕν by the Poisson integral of ϕν

∣∣
∂D

, and we no not alter this energy
integral if we reparametrize via a conformal diffeomorphism to take {pj} to {qj}.
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Thus we may as well suppose that ϕν ∈ Σd. Using Proposition 29.7 and passing to
a subsequence, we can assume

(29.43) ϕν −→ ϕ in C(D,Rn),

and we can furthermore arrange

(29.44) ϕν −→ ϕ weakly in H1(D,Rn).

By interior estimates for harmonic functions, we have

(29.45) ϕν −→ ϕ in C∞(D,Rn).

The limit function ϕ is certainly harmonic on D. By (29.44), we have

(29.46) ϑ(ϕ) ≤ lim
ν→∞

ϑ(ϕν) = dγ .

Now (29.34) applies to ϕ, so we have

(29.47) α(ϕ) ≤ 1
2
ϑ(ϕ) ≤ 1

2
dγ = Aγ .

On the other hand, (29.43) implies that ϕ : ∂D → γ is monotone. Thus ϕ belongs
to Xγ . Hence we have

(29.48) α(ϕ) = Aγ .

This proves Theorem 29.5, and most of the following more precise result.

Theorem 29.8. If γ is a smooth simple closed curve in Rn, there exists a contin-
uous map ϕ : D → Rn such that

(29.49) ϑ(ϕ) = dγ , α(ϕ) = Aγ ,

(29.50) ϕ : D −→ Rn is harmonic and essentially conformal,

(29.51) ϕ : S1 −→ γ, homeomorphically.

Proof. We have (29.49) from (29.46)–(29.48). By the argument involving (29.31)–
(29.32), this forces ϕ to be essentially conformal. It remains to demonstrate (29.51).

We know that ϕ : S1 → γ, monotonically. If it fails to be a homeomorphism,
there must be an interval I ⊂ S1 on which ϕ is constant. Using a linear fractional
transformation to map D conformally onto the upper half plane Ω+ ⊂ C, we can
regard ϕ as a harmonic and essentially conformal map of Ω+ → Rn, constant on an
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interval I on the real axis R. Via the Schwartz reflection principle, we can extend
ϕ to a harmonic function

ϕ : C \ (R \ I) −→ Rn.

Now consider the holomorphic function ψ : C\(R\I) → Cn, given by ψ(ζ) = ∂ϕ/∂ζ.
As in the calculations leading to Proposition 29.3, the identities

(29.52) |∂1ϕ|2 − |∂2ϕ|2 = 0, ∂1ϕ · ∂2ϕ = 0,

which hold on Ω+, imply
∑n

j=1 ψj(ζ)2 = 0 on Ω+; hence this holds on C \ (R \ I),
and so does (29.52). But since ∂1ϕ = 0 on I, we deduce that ∂2ϕ = 0 on I, hence
ψ = 0 on I, hence ψ ≡ 0. This implies that ϕ, being both Rn-valued and anti-
holomorphic, must be constant, which is impossible. This contradiction establishes
(29.51).

Theorem 29.8 furnishes a generalized minimal surface whose boundary is a given
smooth closed curve in Rn. We know that ϕ is smooth on D. It has been shown
by S.Hildebrandt that ϕ is C∞ on D when the curve γ is C∞, as we have assumed
here. It should be mentioned that Douglas and others treated the Plateau problem
for simple closed curves γ which were not smooth. We have restricted attention to
smooth γ for simplicity. A treatment of the general case can be found in [Nit].

There remains the question of the smoothness of the image surface M = ϕ(D).
The map ϕ : D → Rn would fail to be an immersion at a point z ∈ D where
∇ϕ(z) = 0. At such a point, the Cn-valued holomorphic function ψ = ∂ϕ/∂ζ must
vanish, i.e., each of its components must vanish. Since a holomorphic function on
D ⊂ C which is not identically zero can only vanish on a discrete set, we have:

Proposition 29.9. The map ϕ : D → Rn parametrizing the generalized minimal
surface in Theorem 29.8 has injective derivative except at a discrete set of points
in D.

If ∇ϕ(z) = 0, then ϕ(z) ∈ M = ϕ(D) is said to be a branch point of the
generalized minimal surface M ; we say M is a branched surface. If n ≥ 4, there are
indeed generalized minimal surfaces with branch points which arise via Theorem
29.8. Results of R. Osserman, complemented by work of R. Gulliver, show that, if
n = 3, the construction of Theorem 29.8 yields a smooth minimal surface, immersed
in R3. Such a minimal surface need not be imbedded; for example, if γ is a knot
in R3, such a surface with boundary equal to γ is certainly not imbedded. If γ is
analytic, it is known that there cannot be branch points on the boundary, though
this is open for merely smooth γ. An extensive discussion of boundary regularity is
given in Vol. 2 of [DHKW].

The following result of Rado yields one simple criterion for a generalized minimal
surface to have no branch points.

Proposition 29.10. Let γ be a smooth closed curve in Rn. If a minimal surface
with boundary γ produced by Theorem 29.8 has any branch points, then γ has the
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property that
(29.53)

for some p ∈ Rn, every hyperplane through p intersects γ in at least 4 points.

Proof. Suppose z0 ∈ D and ∇ϕ(z0) = 0, so ψ = ∂ϕ/∂ζ vanishes at z0. Let L(x) =
α · x + c = 0 be the equation of an arbitrary hyperplane through p = ϕ(z0). Then
h(x) = L

(
ϕ(x)

)
is a (real valued) harmonic function on D, satisfying

(29.54) ∆h = 0 on D, ∇h(z0) = 0.

The proposition is then proved, by the following:

Lemma 29.11. Any real valued h ∈ C∞(D) ∩ C(D) having the property (29.54)
must assume the value h(z0) on at least 4 points on ∂D.

Proof. First, composing h with a linear fractional transformation preserving D and
taking 0 to z0, we reduce the problem to proving the lemma when z0 = 0. Also,
without loss of generality we can assume that h(0) = 0. In such a case, one can
deduce from the Poisson integral formula that the hypotheses in (29.54) imply

∫

∂D

f ds =
∫

∂D

xf ds =
∫

∂D

yf ds = 0,

where f = h|∂D ∈ C(∂D). Our task is to deduce from this that f vanishes at four
points on ∂D.

Assume that f is not identically zero. Then
∫

∂D
f ds = 0 implies f > 0 on

some arc I0 in ∂D = S1, and vanishes at the endpoints. Let I be the largest arc
containing I0 on which f ≥ 0. Rotating S1, we can assume I = {θ : −α ≤ θ ≤ α}
for some α ∈ (0, π). We also have

∫

S1

(x− a)f ds = 0, a = cos α.

Note that
∫

I
(x − a)f ds > 0, while x − a < 0 on J = {θ : α < θ < 2π − α}, the

arc in S1 complementary to I. Now
∫

J
(x− a)f ds < 0, so we deduce that f > 0 on

some arc J1 inside J , so f must vanish at 4 points, as asserted.

The following result gives a condition under which a minimal surface constructed
by Theorem 29.8 is the graph of a function.

Proposition 29.12. Let O be a bounded convex domain in R2 with smooth bound-
ary. Let g : ∂O → Rn−2 be smooth. Then there exists a function

(29.55) f ∈ C∞(O,Rn−2) ∩ C(O,Rn−2),
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whose graph is a minimal surface, whose boundary is the curve γ ⊂ Rn which is
the graph of g, so

(29.56) f = g on ∂O.

Proof. Let ϕ : D → Rn be the function constructed in Theorem 29.8. Set F (x) =(
ϕ1(x), ϕ2(x)

)
. Then F : D → R2 is harmonic on D and F maps S1 = ∂D home-

omorphically onto ∂O. It follows from convexity of O and the maximum principle
for harmonic functions that F : D → O.

We claim that DF (x) is invertible for each x ∈ D. Indeed, if x0 ∈ D and DF (x0)
is singular, we can choose nonzero α = (α1, α2) ∈ R2 such that, at x = x0,

α1
∂ϕ1

∂xj
+ α2

∂ϕ2

∂xj
= 0, j = 1, 2.

Then the function h(x) = α1ϕ1(x) + α2ϕ2(x) has the property (29.54), so h(x)
must take the value h(x0) at 4 distinct points of ∂D. Since F : ∂D → ∂O is a
homeomorphism, this forces the linear function α1x1 +α2x2 to take the same value
at 4 distinct points of ∂O, which contradicts convexity of O.

Thus F : D → O is a local diffeomorphism. Since F gives a homeomorphism of
the boundaries of these regions, degree theory implies that F is a diffeomorphism of
D onto O and a homeomorphism of D onto O. Consequently, the desired function
in (29.55) is f = ϕ̃ ◦ F−1, where ϕ̃(x) =

(
ϕ2(x), . . . , ϕn(x)

)
.

Functions whose graphs are minimal surfaces satisfy a certain nonlinear PDE,
called the minimal surface equation, which we will derive and study in §31.

Let us mention that, while one ingredient in the solution to the Plateau problem
presented above was a version of the Riemann mapping theorem, Proposition 29.4,
there are presentations for which the Riemann mapping theorem is a consequence
of the argument, rather than an ingredient; see e.g., [Nit].

It is also of interest to consider the analogue of the Plateau problem when,
instead of immersing the disc in Rn as a minimal surface with given boundary, one
takes a surface of higher genus, and perhaps several boundary components. An
extra complication is that Proposition 6.4 must be replaced by something more
elaborate, since two compact surfaces with boundary which are diffeomorphic to
each other but not to the disc may not be conformally equivalent. One needs to
consider spaces of “moduli” of such surfaces. This problem was tackled by Douglas
[Dou2] and by Courant [Cou], but their work has been criticised by [ToT] and [Jos],
who present alternative solutions. The paper [Jos] also treats the Plateau problem
for surfaces in Riemannian manifolds, extending results of [Mor1].

There have been successful attacks on problems in the theory of minimal subman-
ifolds, particularly in higher dimension, using very different techniques, involving
geometric measure theory, currents, and varifolds. Material on these important
developments can be found in [Alm], [Fed], and [Morg].
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So far in this section, we have devoted all our attention to minimal submanifolds
of Euclidean space. It is also interesting to consider minimal submanifolds of other
Riemannian manifolds. We make a few brief comments on this topic. A great deal
more can be found in [Law], [Law2], and [Mor1], and in survey articles in [Bom].

Let Y be a smooth compact Riemannian manifold. Assume Y is isometrically
imbedded in Rn, which can always be arranged, by Nash’s theorem (cf. Appendix
Y). Let M be a compact k-dimensional submanifold of Y. We say M is a minimal
submanifold of Y if its k-dimensional volume is a critical point with respect to
small variations of M, within Y. The computations (29.1)–(29.13) extend to this
case. We need to take X = X(s, u) with ∂sX(s, u) = ξ(s, u), tangent to Y, rather
than X(s, u) = X0(u)+ sξ(u). Then these computations show that M is a minimal
submanifold of Y if and only if, for each x ∈ M,

(29.57) H(x) ⊥ TxY,

where H(x) is the mean curvature vector of M (as a submanifold of Rn), defined
by (29.13).

There is also a well defined mean curvature vector HY (x) ∈ TxY, orthogonal to
TxM, obtained from the second fundamental form of M as a submanifold of Y. One
sees that HY (x) is the orthogonal projection of H(x) onto TxY, so the condition
that M be a minimal submanifold of Y is that HY = 0 on M.

The formula (29.10) continues to hold, for the isometric imbedding X : M → Rn.
Thus M is a minimal submanifold of Y if and only if, for each x ∈ M,

(29.58) ∆X(x) ⊥ TxY.

If dim M = 2, the formula (29.15) holds, so if M is given a new metric, conformally
scaled by a factor e2u, the new Laplace operator ∆1 has the property that ∆1X =
e−2u∆X, hence is parallel to ∆X. Thus the property (29.58) is unaffected by such
a conformal change of metric; we have the following extension of Proposition 29.2.

Proposition 29.13. If M is a Riemannian manifold of dimension 2 and X : M →
Rn is a smooth imbedding, with image M1 ⊂ Y, then M1 is a minimal submanifold
of Y provided X : M → M1 is conformal and, for each x ∈ M,

(29.59) ∆X(x) ⊥ TX(x)Y.

We note that (29.59) alone specifies that X is a harmonic map from M into Y.

Exercises

1. Consider the Gauss map N : M → S2, for a smooth oriented surface M ⊂ R3.
Show that N is antiholomorphic if and only if M is a minimal surface.
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Hint. If N(p) = q, DN(p) : TpM → TqS
2 ≈ TpM is identified with −AN . (Com-

pare (16.67).) Check when ANJ = −JAN , where J is counterclockwise rotation
by 90◦, on TpM.

Thus, if we define the antipodal Gauss map Ñ : M → S2 by Ñ(p) = −N(p), this
map is holomorphic precisely when M is a minimal surface.

2. If x ∈ S2 ⊂ R3, pick v ∈ TxS2 ⊂ R3, set w = Jv ∈ TxS2 ⊂ R3, and take
ξ = v + iw ∈ C3. Show that the 1-dimensional complex span of ξ is independent of
the choice of v, and that we hence have a holomorphic map

Ξ : S2 −→ CP3.

Show that the image Ξ(S2) ⊂ CP3 is contained in the image of {ζ ∈ C3 \ 0 :
ζ2
1 + ζ2

2 + ζ3
3 = 0} under the natural map C3 \ 0 → CP3.

3. Suppose that M ⊂ R3 is a minimal surface constructed by the method of
Proposition 29.3, via X : Ω → M ⊂ R3. Define Ψ : Ω → C3 \ 0 by Ψ = (ψ1, ψ2, ψ3),
and define X : Ω → CP3 by composing Ψ with the natural map C3 \0 → CP3. Show
that, for u ∈ Ω,

X(u) = Ξ ◦ Ñ
(
X(u)

)
.

For the relation between ψj and the Gauss map for minimal surfaces in Rn, n > 3,
see [Law].

4. Give a detailed demonstration of (29.38).

5. If ĨI is the second fundamental form of a minimal hypersurface M ⊂ Rn, show
that ĨI has divergence zero. As in §12, we define the divergence of a second order
tensor field T by T jk

;k.
Hint. Use the Codazzi equation (cf. (16.18)) plus the zero trace condition.

6. Similarly, if ĨI is the second fundamental form of a minimal submanifold M of
codimension 1 in Sn (with its standard metric), show that ĨI has divergence zero.
Hint. The Codazzi equation (16.16) is

(∇Y ĨI)(X, Z)− (∇Y ĨI)(Y, Z) = 〈R(X, Y )Z,N〉,
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where ∇ is the Levi-Civita connection on M, X, Y, Z are tangent to M, Z is normal
to M (but tangent to Sn), and R is the curvature tensor of Sn. In such a case, the
right side vanishes. (See Exercise 6 in §16.) Thus the argument needed for Exercise
5 above extends.

7. Extend the result of Exercises 5–6 to the case where M is a codimension 1 mini-
mal submanifold in any Riemannian manifold Ω with constant sectional curvature.

8. Let M be a two-dimensional minimal submanifold of S3, with its standard
metric. Assume M is diffeomorphic to S2. Show that M must be a “great sphere”
in S3.
Hint. By Exercise 6, ĨI is a symmetric trace-free tensor of divergence zero, i.e. ĨI
belongs to

V = {u ∈ C∞(M,S2
0T ∗) : div u = 0} = ker D∗TF ,

where D∗TF is defined by (28.30). See Exercise 7 of §28 for a proof that V = 0 if M
has positive curvature everywhere. Next, guided by Exercises 5–7 of §28, show that
V = 0 provided the analogous space vanishes when M is given some conformally
equivalent metric.

Now it is known that, if M is any Riemannian manifold diffeomorphic to S2, then
it has a conformally equivalent metric isometric to S2, with its standard metric.
A proof of this (using the Riemann-Roch theorem) can be found in Chapter 10 of
[T1].
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30. Second variation of area

We take up a computation of the second variation of the area integral, and some
implications, for a family of manifolds of dimension k, immersed in a Riemannian
manifold Y. First, we take Y = Rn and suppose the family is given by X(s, u) =
X0(u) + sξ(u), as in (29.1)–(29.5).

Suppose as in the computation (29.2)–(29.5) that ‖∂1X0 ∧ · · · ∧ ∂kX0‖ = 1 on
M, while Ej = ∂jX0 form an orthonormal basis of TxM, for a given point x ∈ M.
Then, extending (29.3), we have

(30.1) A′(s) =
k∑

j=1

∫ 〈
∂1X ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX, ∂1X ∧ · · · ∧ ∂kX

〉

‖∂1X ∧ · · · ∧ ∂kX‖ du1 · · · duk.

Consequently, A′′(0) will be the integral with respect to du1 · · · duk of a sum of
three terms:

(30.2)

−
∑

i,j

〈
∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

〉

× 〈
∂1X0 ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

〉

+ 2
∑

i<j

〈
∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂kX0

〉

+
∑

i,j

〈
∂1X0 ∧ · · · ∧ ∂jξ ∧ · · · ∧ ∂kX0, ∂1X0 ∧ · · · ∧ ∂iξ ∧ · · · ∧ ∂kX0

〉
.

Let us write

(30.3) AξEi =
∑

`

ai`
ξ E`,

with Ej = ∂jX0 as before. Then, as in (29.4), the first sum in (30.2) is equal to

(30.4) −
∑

i,j

aii
ξ ajj

ξ .

Let us move to the last sum in (30.2). We use the Weingarten formula ∂jξ =
∇1

jξ −AξEj , to write this sum as

(30.5)
∑

i,j

ajj
ξ aii

ξ +
∑

i,j

〈∇1
jξ,∇1

i ξ
〉
,
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at x. Note that the first sum in (30.5) cancels (30.4), while the last sum in (30.5)
can be written ‖∇1ξ‖2. Here, ∇1 is the connection induced on the normal bundle
of M.

Now we look at the middle term in (30.2), i.e.,

(30.6) 2
∑

i<j

∑

`,m

ai`
ξ ajm

ξ

〈
E1 ∧ · · · ∧ E` ∧ · · · ∧ Em ∧ · · · ∧ Ek, E1 ∧ · · · ∧ Ek

〉
,

at x, where E` appears in the ith slot and Em appears in the jth slot, in the k-fold
wedge product. This is equal to

(30.7) 2
∑

i<j

(
aii

ξ ajj
ξ − aij

ξ aji
ξ

)
= 2 Tr Λ2Aξ,

at x. Thus we have

(30.8) A′′(0) =
∫

M

[
‖∇1ξ‖2 + 2 Tr Λ2Aξ

]
dA(x).

If M is a hypersurface of Rn, and we take ξ = fN, where N is a unit normal
field, then ‖∇1ξ‖2 = ‖∇f‖2 and (30.7) is equal to

(30.9) 2
∑

i<j

〈
R(Ej , Ei)Ei, Ej

〉
f2 = Sf2,

by the Theorema Egregium, where S is the scalar curvature of M. Consequently, if
M ⊂ Rn is a hypersurface (with boundary), and Ms are given by (29.6), with area
integral (29.2), then

(30.10) A′′(0) =
∫

M

[
‖∇f‖2 + S(x)f2

]
dA(x).

Recall that, when dim M = 2, so M ⊂ R3,

(30.11) S = 2K,

where K is the Gauss curvature, which is ≤ 0 whenever M is a minimal surface in
R3.

If M has general codimension in Rn, we can rewrite (30.8) using the identity

(30.12) 2 Tr Λ2Aξ = (Tr Aξ)2 − ‖Aξ‖2,
where ‖Aξ‖ denotes the Hilbert-Schmidt norm of Aξ, i.e., ‖Aξ‖2 = Tr (A∗ξAξ).
Recalling (29.13), if k = dim M, we get

(30.13) A′′(0) =
∫

M

[
‖∇1ξ‖2 − ‖Aξ‖2 + k2〈H(x), ξ〉2

]
dA(x).



245

Of course, the last term in the integrand vanishes for all compactly supported fields
ξ normal to M, when M is a minimal submanifold of Rn.

We next suppose the family of manifolds Ms is contained in a manifold Y ⊂ Rn.
Hence, as before, instead of X(s, u) = X0(u)+sξ(u), we require ∂sX(s, u) = ξ(s, u)
to be tangent to Y. We take X(0, u) = X0(u). Then (30.1) holds, and we need to
add to (30.2) the following term, in order to compute A′′(0) :

(30.14) Φ =
k∑

j=1

〈∂1X0∧· · ·∧∂jκ∧· · ·∧∂kX0, ∂1X0∧· · ·∧∂kX0〉, κ = ∂sξ = ∂2
sX.

If, as before, ∂jX0 = Ej form an orthonormal basis of TxM, for a given x ∈ M,
then

(30.15) Φ =
k∑

j=1

〈∂jκ, Ej〉, at x.

Now, given the compactly supported field ξ(0, u), tangent to Y and normal to M,
let us suppose that, for each u, γu(s) = X(s, u) is a constant speed geodesic in Y,
such that γ′u(0) = ξ(0, u). Thus κ = γ′′u(0) is normal to Y, and, by the Weingarten
formula for M ⊂ Rn,

(30.16) ∂jκ = ∇1
Ej

κ−AκEj

at x, where ∇1 is the connection on the normal bundle to M ⊂ Rn and A is as
before the Weingarten map for M ⊂ Rn. Thus

(30.17) Φ = −
∑

j

〈AκEj , Ej〉 = − Tr Aκ = −k〈H(x), κ〉,

where k = dim M.
If we suppose M is a minimal submanifold of Y, then H(x) is normal to Y, so, for

any compactly supported field ξ, normal to M and tangent to Y, the computation
(30.13) supplemented by (30.14)–(30.17) gives

(30.18) A′′(0) =
∫

M

[
‖∇1ξ‖2 − ‖Aξ‖2 − k〈H(x), κ〉

]
dA(x).

Recall that Aξ is the Weingarten map of M ⊂ Rn.
We prefer to use Bξ, the Weingarten map of M ⊂ Y. It is readily verified that

(30.19) Aξ = Bξ ∈ End TxM,

if ξ ∈ TxY and ξ ⊥ TxM ; see problem 13 in §16. Thus in (30.18) we can simply
replace ‖Aξ‖2 by ‖Bξ‖2. Also recall that ∇1 in (30.18) is the connection on the
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normal bundle to M ⊂ Rn. We prefer to use the connection on the normal bundle
to M ⊂ Y, which we denote ∇#. To relate these two objects, we use the identities

(30.20) ∂jξ = ∇1
jξ −AξEj , ∂jξ = ∇̃jξ + IIY (Ej , ξ), ∇̃jξ = ∇#

j ξ −BξEj ,

where ∇̃ denotes the covariant derivative on Y and IIY the fundamental form of
Y ⊂ Rn. In view of (30.19), we obtain

(30.21) ∇1
jξ = ∇#

j ξ + IIY (Ej , ξ),

a sum of terms tangent to Y and normal to Y, respectively. Hence

(30.22) ‖∇1ξ‖2 = ‖∇#ξ‖2 +
∑

j

‖IIY (Ej , ξ)‖2.

Thus we can rewrite (30.18) as

(30.23) A′′(0) =
∫

M

[
‖∇#ξ‖2 − ‖Bξ‖2 +

∑

j

‖IIY (Ej , ξ)‖2 − Tr Aκ

]
dA(x).

We want to replace the last two terms in this integrand by a quantity defined
intrinsically by Ms ⊂ Y, not by the way Y is imbedded in Rn. Now Tr Aκ =∑〈IIM (Ej , Ej), κ〉, where IIM is the second fundamental form of M ⊂ Rn. On
the other hand, it is easily verified that

(30.24) κ = γ′′u(0) = IIY (ξ, ξ).

Thus the last two terms in the integrand sum to

(30.25) Ψ =
∑

j

[
‖IIY (Ej , ξ)‖2 − 〈IIY (ξ, ξ), IIM (Ej , Ej)〉

]
.

We can replace IIM (Ej , Ej) by IIY (Ej , Ej) here, since these two objects have the
same component normal to Y. Then Gauss’ formula implies

(30.26) Ψ =
∑

j

〈RY (ξ, Ej)ξ, Ej〉,

where RY is the Riemann curvature tensor of Y. We define R ∈ End NxM, where
N(M) is the normal bundle of N ⊂ Y, by

(30.27) 〈R(ξ), η〉 =
∑

j

〈RY (ξ, Ej)η, Ej〉,
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at x, where {Ej} is an orthonormal basis of TxM. It follows easily that this is
independent of the choice of such an orthonormal basis.

Our calculation of A′′(0) becomes

(30.28) A′′(0) =
∫

M

[
‖∇#ξ‖2 − ‖Bξ‖2 + 〈R(ξ), ξ〉

]
dA(x),

when M is a minimal submanifold of Y, where ∇# is the connection on the normal
bundle to M ⊂ Y, B is the Weingarten map for M ⊂ Y, and R is defined by (30.27).
If we define a second order differential operator L0 and a zero order operator B on
C∞0

(
M, N(M)

)
by

(30.29) L0ξ = (∇#)∗∇#ξ, 〈B(ξ), η〉 = Tr (B∗
ηBξ),

we can write this as

(30.30) A′′(0) = (Lξ, ξ)L2(M), Lξ = L0ξ −B(ξ) + R(ξ).

We emphasize that these formulas, and the ones below, for A′′(0) are valid for
immersed minimal submanifolds of Y as well as for imbedded submanifolds.

Suppose M has codimension 1 in Y, and that Y and M are orientable. Complete
the basis {Ej} of TxM to an orthonormal basis {Ej : 1 ≤ j ≤ k + 1} of TxY. In
this case, Ek+1(x) and ξ(x) are parallel, so 〈RY (ξ, Ek+1)η, Ek+1〉 = 0. Thus (30.27)
becomes

(30.31) R(ξ) = − RicY ξ, if dim Y = dim M + 1,

where RicY denotes the Ricci tensor of Y. In such a case, taking ξ = fEk+1 = fν,
where ν is a unit normal field to M, tangent to Y, we obtain

(30.32) A′′(0) =
∫

M

[
‖∇f‖2 − (‖Bν‖2 + 〈RicY ν, ν〉)|f |2

]
dA(x) = (Lf, f)L2(M),

where

(30.33) Lf = −∆f + ϕf, ϕ = −‖Bν‖2 − 〈RicY ν, ν〉.

We can express ϕ in a different form, noting that

(30.34) 〈RicY ν, ν〉 = SY −
k∑

j=1

〈RicY Ej , Ej〉,
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where SY is the scalar curvature of Y. From Gauss’ formula we readily obtain, for
general M ⊂ Y, of any codimension,

(30.35)
〈RicY Ej , Ej〉 = 〈RY (Ej , ν)ν, Ej〉+ 〈RicMEj , Ej〉

+
∑

`

‖II(Ej , E`)‖2 − k
〈
HY , II(Ej , Ej)

〉
,

where II denotes the second fundamental form of M ⊂ Y. Summing over 1 ≤ j ≤ k,
when M has codimension 1 in Y, and ν is a unit normal to M, we get

(30.36) 2〈RicY ν, ν〉 = SY − SM − ‖Bν‖2 + ‖HY ‖2.

If M is a minimal submanifold of Y, of codimension 1, this implies that

(30.37)
ϕ =

1
2
(SM − SY )− 1

2
‖Bν‖2

=
1
2
(SM − SY ) + Tr Λ2Bν .

We also note that, when dim M = 2 and dim Y = 3, then, for x ∈ M,

(30.38) Tr Λ2Bν(x) = KM (x)−KY (TxM),

where KM = (1/2)SM is the Gauss curvature of M and KY (TxM) is the sectional
curvature of Y, along the plane TxM.

We consider another special case, where dim M = 1. We have

〈R(ξ), ξ〉 = −|ξ|2KY (ΠMξ),

where KY (ΠMξ) is the sectional curvature of Y along the plane in TxY spanned by
TxM and ξ. In this case, to say M is minimal is to say it is a geodesic; hence Bξ = 0
and ∇#ξ = ∇̃T ξ, where ∇̃ is the covariant derivative on Y, and T is a unit tangent
vector to M. Thus (30.28) becomes the familiar formula for the second variation of
arc-length for a geodesic:

(30.39) `′′(0) =
∫

γ

[
‖∇̃T ξ‖2 − |ξ|2KY (Πγξ)

]
ds,

where we have used γ instead of M to denote the curve, and also ` instead of A
and ds instead of dA, to denote arc-length. Compare (15.61).

The operators L and L are second order elliptic operators, which are self-
adjoint, with domain H2(M), if M is compact, without boundary, and domain
H2(M) ∩ H1

0 (M), if M is compact with boundary. In such cases, the spectra of
these operators consist of eigenvalues λj ↗ +∞. If M is not compact, but B and
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R are bounded, we can use the Friedrichs method to define self adjoint extensions
L and L, which might have continuous spectrum.

We say a minimal submanifold M ⊂ Y is stable if A′′(0) ≥ 0 for all smooth
compactly supported variations ξ, normal to M (and vanishing on ∂M). Thus the
condition that M be stable is that the spectrum of L (equivalently, of L, if codim
M = 1) be contained in [0,∞). In particular, if M is actually area minimizing
with respect to small perturbations, leaving ∂M fixed (which we will just call “area
minimizing”), then it must be stable, so

(30.40) M area minimizing =⇒ spec L ⊂ [0,∞).

The second variational formulas above provide necessary conditions for a minimal
immersed submanifold to be stable. For example, suppose M is a boundaryless,
codimension 1 minimal submanifold of Y, and both are orientable. Then we can
take f = 1 in (30.32), to get

(30.41) M stable =⇒
∫

M

(
‖Bν‖2 + 〈RicY ν, ν〉

)
dA ≤ 0.

If dim M = 2 and dim Y = 3, then, by (30.37), we have

(30.42) M stable =⇒
∫

M

(
‖Bν‖2 + SY − 2KM

)
dA ≤ 0.

In this case, if M has genus g, the Gauss-Bonnet theorem implies that
∫

KM dA =
4π(1− g), so

(30.43) M stable =⇒
∫

M

(
‖Bν‖2 + SY

)
dA ≤ 8π(1− g).

This implies some nonexistence results.

Proposition 30.1. Assume Y is a compact, oriented Riemannian manifold, and
that Y and M have no boundary.

If the Ricci tensor RicY is positive definite, then Y cannot contain any compact,
oriented area-minimizing immersed hypersurface M . If RicY is positive semidefi-
nite, then any such M would have to be totally geodesic in Y.

Now assume dim Y = 3. If Y has scalar curvature SY > 0 everywhere, then
Y cannot contain any compact, oriented area-minimizing immersed surface M of
genus g ≥ 1.

More generally, if SY ≥ 0 everywhere, and if M is a compact, oriented immersed
hypersurface of genus g ≥ 1, then for M to be area-minimizing it is necessary that
g = 1 and that M be totally geodesic in Y.
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Schoen and Yau [SY] obtained topological consequences, for a compact, oriented
3-manifold Y, from this together with the following existence theorem. Suppose M
is a compact, oriented surface of genus g ≥ 1, and suppose the fundamental group
π1(Y ) contains a subgroup isomorphic to π1(M). Then, given any Riemannian
metric on Y, there is a smooth immersion of M into Y which is area-minimizing with
respect to small perturbations, as shown in [SY]. It follows that if Y is a compact,
oriented Riemannian 3-manifold, whose scalar curvature SY is everywhere positive,
then π1(Y ) cannot have a subgroup isomorphic to π1(M), for any compact Riemann
surface M of genus g ≥ 1.

We will not prove the result of [SY] on the existence of such minimal immersions.
Instead, we demonstrate a topological result, due to Synge, of a similar flavor but
simpler to prove. It makes use of the second variational formula (30.39) for arc-
length.

Proposition 30.2. If Y is a compact, oriented Riemannian manifold of even di-
mension, with positive sectional curvature everywhere, then Y is simply connected.

Proof. It is a simple consequence of Ascoli’s theorem that there is a length-minimizing
closed geodesic in each homotopy class of maps from S1 to Y. Thus, if π1(Y ) 6= 0,
there is a nontrivial stable geodesic, γ. Pick p ∈ γ, ξp normal to γ at p, (i.e.,
ξp ∈ Np(γ)), and parallel translate ξ about γ, obtaining ξp ∈ Np(γ) after one
circuit. This defines an orientation-preserving, orthogonal linear transformation
τ : Npγ → Npγ. If Y has dimension 2k, then Npγ has dimension 2k − 1, so
τ ∈ SO(2k− 1). It follows that τ must have an eigenvector in Npγ, with eigenvalue
one. Thus we get a nontrivial smooth section ξ of N(γ) which is parallel over γ, so
(30.39) implies

(30.44)
∫

γ

KY (Πγξ) ds ≤ 0.

If KY (Π) > 0 everywhere, this is impossible.

One might compare these results with Proposition 28.7, which states that, if Y
is a compact Riemannian manifold and RicY > 0, then the first cohomology group
H1(Y ) = 0.

Regarding the hypotheses of Proposition 30.2, note that Y = P (Rn), the real pro-
jective space, with double cover Sn, provides examples where the conclusion fails,
for non-orientable even-dimensional manifolds and for orientable odd-dimensional
manifolds.

Exercises

1. If M ⊂ Y is a minimal submanifold, and p ∈ M, show that there is a neighbor-
hood U of p in Y such that M̃ = M ∩ U is stable.
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31. The minimal surface equation

We now study a nonlinear PDE for functions whose graphs are minimal surfaces.
We begin with a formula for the mean curvature of a hypersurface M ⊂ Rn+1

defined by u(x) = c, where ∇u 6= 0 on M. If N = ∇u/|∇u|, we have the formula

(31.1) 〈ANX, Y 〉 = −|∇u|−1(D2u)(X, Y ),

for X, Y ∈ TxM, as shown in (16.26). To take the trace of the restriction of D2u
to TxM, we merely take Tr (D2u)−D2u(N, N). Of course, Tr (D2u) = ∆u. Thus,
for x ∈ M,

(31.2) TrAN (x) = −|∇u(x)|−1
[
∆u− |∇u|−2D2u(∇u,∇u)

]
.

Suppose now that M is given by the equation xn+1 = f(x′), x′ = (x1, . . . , xn).
Thus we take u(x) = xn+1 − f(x′), with ∇u = (−∇f, 1). We obtain for the mean
curvature the formula

(31.3) nH(x) = − 1
〈∇f〉3

[
〈∇f〉2∆f −D2f(∇f,∇f)

]
= M(f),

where 〈∇f〉2 = 1+|∇f(x′)|2. Written out more fully, the quantity in brackets above
is

(31.4)
(
1 + |∇f |2)∆f −

∑

i,j

∂2f

∂xi∂xj

∂f

∂xi

∂f

∂xj
= M̃(f).

Thus the equation stating that a hypersurface xn+1 = f(x′) be a minimal subman-
ifold of Rn+1 is

(31.5) M̃(f) = 0.

In case n = 2, we have the minimal surface equation, which can also be written as

(31.6)
(
1 + |∂2f |2

)
∂2
1f − 2

(
∂1f · ∂2f

)
∂1∂2f +

(
1 + |∂1f |2

)
∂2
2f = 0.

It can be verified that this PDE also holds for a minimal surface in Rn described
by x′′ = f(x′), where x′′ = (x3, . . . , xn), if (31.6) is regarded as a system of k
equations in k unknowns, k = n−2, and (∂1f ·∂2f) is the dot product of Rk-valued
functions. We continue to denote the left side of (31.6) by M̃(f).

Proposition 29.12 can be translated immediately into the following existence
theorem for the minimal surface equation.
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Proposition 31.1. Let O be a bounded convex domain in R2 with smooth boundary.
Let g ∈ C∞(∂O,Rk) be given. Then there is a solution

(31.7) u ∈ C∞(O,Rk) ∩ C(O,Rk)

to the boundary problem

(31.8) M̃(u) = 0, u
∣∣
∂O = g.

When k = 1, we also have uniqueness, as a consequence of the following.

Proposition 31.2. Let O be any bounded domain in Rn. Let uj ∈ C∞(O) ∩C(O)
be real-valued solutions to

(31.9) M̃(uj) = 0, uj = gj on ∂O,

for j = 1, 2. Then

(31.10) g1 ≤ g2 on ∂O =⇒ u1 ≤ u2 on O.

Proof. We prove this by deriving a linear PDE for the difference v = u2 − u1 and
applying the maximum principle. In general,

(31.11) Φ(u2)− Φ(u1) = Lv, L =
∫ 1

0

DΦ
(
τu2 + (1− τ)u1

)
dτ.

Suppose Φ is a second order differential operator:

(31.12) Φ(u) = F (u, ∂u, ∂2u), F = F (u, p, ζ).

Then

(31.13) DΦ(u) = Fζ(u, ∂u, ∂2u)∂2v + Fp(u, ∂u, ∂2u)∂v + Fu(u, ∂u, ∂2u)v.

When Φ(u) = M̃(u) is given by (31.4), Fu(u, ξ, ζ) = 0, and we have

(31.14) DM̃(u)v = A(u)v + B(u)v,

where

(31.15) A(u)v =
(
1 + |∇u|2)∆v −

∑

i,j

∂u

∂xi

∂u

∂xj

∂2v

∂xi∂xj

is strongly elliptic, and B(u) is a first order differential operator. Consequently, we
have

(31.16) M̃(u2)− M̃(u1) = Av + Bv,

where A =
∫ 1

0
A

(
τu2 + (1 − τ)u2

)
dτ is strongly elliptic of order 2 at each point

of O, and B is a first order differential operator, which annihilates constants. If
(31.9) holds, then Av + Bv = 0. Now (31.10) follows from the maximum principle
for elliptic differential equations (see Chapter 5 of [T1]).

While Proposition 31.2 is a sort of result that holds for a large class of second
order scalar elliptic PDE, the next result is much more special, and has interesting
consequences. It implies that the size of a solution to the minimal surface equation
(31.8) can sometimes be controlled by the behavior of g on part of the boundary.
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Proposition 31.3. Let O ⊂ R2 be a domain contained in the annulus r1 < |x| < r2,

and let u ∈ C2(O) ∩ C(O) solve M̃(u) = 0. Set

(31.17) G(x; r) = r cosh−1

( |x|
r

)
, for |x| > r, G(x; r) ≤ 0.

If

(31.18) u(x) ≤ G(x; r1) + M on {x ∈ ∂O : |x| > r1},
for some M ∈ R, then

(31.19) u(x) ≤ G(x; r1) + M on O.

Here, z = G(x; r1) defines the lower half of a catenoid, over {x ∈ R2 : |x| ≥ r1}.
This function solves the minimal surface equation on |x| > r1, and vanishes on
|x| = r1.

Proof. Given s ∈ (r1, r2), let

(31.20) ε(s) = max
s≤|x|≤r2

∣∣G(x; r1)−G(x; s)
∣∣.

The hypothesis (31.18) implies that

(31.21) u(x) ≤ G(x; s) + M + ε(s)

on {x ∈ ∂O : |x| ≥ s}. We claim that (31.21) holds for x in

(31.22) O(s) = O ∩ {x : s < |x| < r2}.
Once this is established, (31.19) follows by taking s ↘ r1. To prove this, it suffices
by Proposition 31.2 to show that (31.21) holds on ∂O(s). Since it holds on ∂O, it
remains to show that (31.21) holds for x in

(31.23) C(s) = O ∩ {x : |x| = s},
illustrated by a broken arc in Fig. 31.1. If not, then u(x) − G(x; s) would have a
maximum M1 > M + ε(s) at some point p ∈ C(s). By Proposition 31.1, we have
u(x)−G(x; s) ≤ M1 on O(s). However, ∇u(x) is bounded on a neighborhood of p,
while

(31.24)
∂

∂r
G(x; s) = −∞ on |x| = s.

This implies that u(x)−G(x; s) > M1 for all points in O(s) sufficiently near p. This
contradiction shows that (31.21) must hold on C(s), and the proposition is proved.

One implication is that, if O ⊂ R2 is as illustrated in Fig. 31.1, it is not possible
to solve the boundary problem (31.8) with g prescribed arbitrarily on all of ∂O. A
more precise statement about domains O ⊂ R2 for which (31.8) is always solvable
is the following.
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Proposition 31.4. Let O ⊂ R2 be a bounded connected domain with smooth bound-
ary. Then (31.8) has a solution for all g ∈ C∞(∂O) if and only if O is convex.

Proof. The positive result is given in Proposition 31.1. Now, if O is not convex, let
p ∈ ∂O be a point where O is concave, as illustrated in Fig. 31.2. Pick a disc D
whose boundary C is tangent to ∂O at p and such that, near p, C intersects the
complement Oc only at p. Then apply Proposition 31.3 to the domain Õ = O \ D,
taking the origin to be the center of D and r1 to be the radius of D. We deduce
that, if u solves M̃(u) = 0 on O, then

(31.25) u(x) ≤ M + G(x; r1) on ∂O \ D =⇒ u(p) ≤ M,

which certainly restricts the class of functions g for which (31.8) can be solved.

Note that the function v(x) = G(x; r) defined by (31.17) also provides an example
of a solution to the minimal surface equation (31.8) on an annular region

O = {x ∈ R2 : r < |x| < s},
with smooth (in fact, locally constant) boundary values

v = 0 on |x| = r, v = −r cosh−1
(s

r

)
on |x| = s,

which is not a smooth function, or even a Lipschitz function, on O. This is another
phenomenon that is different when O is convex. We will establish the following.

Proposition 31.5. If O ⊂ R2 is a bounded region with smooth boundary which is
strictly convex (i.e., ∂O has positive curvature), and g ∈ C∞(∂O) is real valued,
then the solution to (31.8) is Lipschitz at each point x0 ∈ ∂O.

Proof. Given x0 ∈ ∂O, we have z0 =
(
x0, g(x0)

) ∈ γ ⊂ R3, where γ is the boundary
of the minimal surface M which is the graph of z = u(x). The strict convexity
hypothesis on O implies that there are two planes Πj in R3 through z0, such that
Π1 lies below γ and Π2 above γ, and Πj are given by z = αj · (x − x0) + g(x0) =
wjx0(x), αj = αj(x0) ∈ R3. There is an estimate of the form

(31.26) |αj(x0)| ≤ K(x0)‖g ◦ ρx0‖C2 ,

where ρx0 is radial projection (from the center of O) of ∂O onto a circle C(x0)
containing O and tangent to ∂O at x0, and K(x0) depends on the curvature of
C(x0). Now Proposition 31.2 applies to give

(31.27) w1x0(x) ≤ u(x) ≤ w2x0(x), x ∈ O,

since linear functions solve the minimal surface equation. This establishes the
Lipschitz continuity, with the quantitative estimate

(31.28) |u(x0)− u(x)| ≤ A|x− x0|, x0 ∈ ∂O, x ∈ O,
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where

(31.29) A = sup
x0∈∂O

|α1(x0)|+ |α2(x0)|.

This result points toward an estimate on |∇u(x)|, x ∈ O, for a solution to
(31.8). We begin the line of reasoning which leads to such an estimate, a line which
applies to other situations. First, let’s re-derive the minimal surface equation, as
the stationary condition for

(31.30) I(u) =
∫

O

F
(∇u(x)

)
dx,

where

(31.31) F (p) =
(
1 + |p|2

)1/2

,

so (31.30) gives the area of the graph of z = u(x). The method of the calculus of
variations yields the PDE

(31.32)
∑

Aij(∇u)∂i∂ju = 0,

where

(31.33) Aij(p) =
∂2F

∂pi∂pj
.

When F (p) is given by (31.31), we have

(31.34) Aij(p) = 〈p〉−3/2
(
δij〈p〉2 − pipj

)
,

so in this case (31.32) is equal to −M(u), defined by (31.3). Now, when u is a
sufficiently smooth solution to (31.32), we can apply ∂` = ∂/∂x` to this equation,
and obtain the PDE

(31.35)
∑

∂iA
ij(∇u)∂jw` = 0,

for w` = ∂`u, not for all PDE of the form (31.32), but whenever Aij(p) is symmetric
in (i, j) and satisfies

(31.36)
∂Aij

∂pm
=

∂Aim

∂pj
,

which happens when Aij(p) has the form (31.33). If (31.35) satisfies the ellipticity
condition

(31.37)
∑

Aij
(∇u(x)

)
ξiξj ≥ C(x)|ξ|2, C(x) > 0,

for x ∈ O, then we can apply the maximum principle, to obtain the following.
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Proposition 31.6. Assume u ∈ C1(O) is real valued and satisfies the PDE (31.32),
with coefficients given by (31.33). If the ellipticity condition (31.37) holds, then
∂`u(x) assumes its maximum and minimum values on ∂O; hence

(31.38) sup
x∈O

|∇u(x)| = sup
x∈∂O

|∇u(x)|.

Combining this result with Proposition 31.5, we have the following.

Proposition 31.7. Let O ⊂ R2 be a bounded region with smooth boundary which
is strictly convex, g ∈ C∞(∂Ω) real valued. If u ∈ C2(O) ∩ C1(O) is a solution to
(31.8), then there is an estimate

(31.39) ‖u‖C1(O) ≤ C(O) ‖g‖C2(∂O).

Note that the existence result of Proposition 31.1 does not provide us with the
knowledge that u belongs to C1(O), and thus it takes further work to demonstrate
that the estimate (31.39) actually holds for an arbitrary real valued solution to
(31.8), when O ⊂ R2 is strictly convex and g is smooth. This analysis can be found
in Chapter 14 of [T1].

We next look at the Gauss curvature of a minimal surface M, given by z =
u(x), x ∈ O ⊂ R2. For a general u, the curvature is given by

(31.40) K =
(
1 + |∇u|2)−2 det

( ∂2u

∂xj∂xk

)
.

See (16.29). When u satisfies the minimal surface equation, there are some other
formulas for K, in terms of operations on

(31.41) Φ(x) = F (∇u)−1 =
(
1 + |∇u|2)−1/2

,

which we will list, leaving their verification as an exercise:

(31.42) K = − |∇Φ|2
1− Φ2

,

(31.43) K =
1

2Φ
∆Φ,

(31.44) K = ∆ log(1 + Φ).

Now if we alter the metric g induced on M via its imbedding in R3, by a conformal
factor:

(31.45) g′ = (1 + Φ)2g = e2vg, v = log(1 + Φ),

then we see that the Gauss curvature k of M in the new metric is

(31.46) k = (−∆v + K)e−2v = 0,

i.e., the metric g′ = (1 + Φ)2g is flat! Using this observation, we can establish the
following remarkable theorem of S. Bernstein:



257

Theorem 31.8. If u : R2 → R is an everywhere defined C2 solution to the minimal
surface equation, then u is a linear function.

Proof. Consider the minimal surface M given by z = u(x), x ∈ R2, in the metric
g′ = (1 + Φ)2g, which, as we have seen, is flat. Now g′ ≥ g, so this is a com-
plete metric on M. Thus (M, g′) is isometrically equivalent to R2. Hence (M, g) is
conformally equivalent to C.

On the other hand, the antipodal Gauss map

(31.47) Ñ : M −→ S2, Ñ = (∇u,−1)/〈∇u〉

is holomorphic; see Exercise 1 of §29. But the range of Ñ is contained in the lower
hemisphere of S2, so if we take S2 = C ∪ {∞} with the point at infinity identified
with the “north pole” (0, 0, 1), we see that Ñ yields a bounded holomorphic function
on M ≈ C. By Liouville’s theorem, Ñ must be constant. Thus M is a flat plane in
R3.

It turns out that Bernstein’s Theorem extends to u : Rn → R, for n ≤ 7, by
work of E. deGiorgi, F. Almgren, and J. Simons, but not to n ≥ 8.

Exercises

1. If DM̃(u) is the differential operator given by (31.14)–(31.15), show that its
principal symbol satisfies

(31.48) −σ
DM̃(u)

(x, ξ) =
(
1 + |p|2)|ξ|2 − (p · ξ)2 ≥ |ξ|2,

where p = ∇u(x).

2. Show that the formula (31.3) for M(f) is equivalent to

(31.49) M(f) =
∑

j

∂j

(
〈∇f〉−1 ∂jf

)
.

3. Give a detailed demonstration of the estimate (31.26) on the slope of planes
which can lie above and below the graph of g over ∂O (assumed to have positive
curvature), needed for the proof of Proposition 31.5.
Hint. In case ∂O is the unit circle S1, consider the cases g(θ) = cosk θ.

4. Establish the formulas (31.42)–(31.44), for the Gauss curvature of a minimal
surface.
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A. Metric spaces, compactness, and all that

A metric space is a set X, together with a distance function d : X×X → [0,∞),
having the properties that

(A.1)

d(x, y) = 0 ⇐⇒ x = y,

d(x, y) = d(y, x),

d(x, y) ≤ d(x, z) + d(y, z).

The third of these properties is called the triangle inequality. An example of a
metric space is the set of rational numbers Q, with d(x, y) = |x − y|. Another
example is X = Rn, with d(x, y) =

√
(x1 − y1)2 + · · ·+ (xn − yn)2.

If (xν) is a sequence in X, indexed by ν = 1, 2, 3, . . . , i.e., by ν ∈ Z+, one
says xν → y if d(xν , y) → 0, as ν → ∞. One says (xν) is a Cauchy sequence
if d(xν , xµ) → 0 as µ, ν → ∞. One says X is a complete metric space if every
Cauchy sequence converges to a limit in X. Some metric spaces are not complete;
for example,Q is not complete. You can take a sequence (xν) of rational numbers
such that xν →

√
2, which is not rational. Then (xν) is Cauchy in Q, but it has no

limit in Q.

If a metric space X is not complete, one can construct its completion X̂ as
follows. Let an element ξ of X̂ consist of an equivalence class of Cauchy se-
quences in X, where we say (xν) ∼ (yν) provided d(xν , yν) → 0. We write the
equivalence class containing (xν) as [xν ]. If ξ = [xν ] and η = [yν ], we can set
d(ξ, η) = limν→∞ d(xν , yν), and verify that this is well defined, and makes X̂ a
complete metric space.

If the completion of Q is constructed by this process, you get R, the set of real
numbers.

A metric space X is said to be compact provided any sequence (xν) in X has a
convergent subsequence. Clearly every compact metric space is complete. There
are two useful conditions, each equivalent to the characterization of compactness
just stated, on a metric space. The reader can establish the equivalence, as an
exercise.

(i) If S ⊂ X is a set with infinitely many elements, then there is an accumulation
point, i.e., a point p ∈ X such that every neighborhood U of p contains infinitely
many points in S.

Here, a neighborhood of p ∈ X is a set containing the ball

(A.2) Bε(p) = {x ∈ X : d(x, p) < ε},
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for some ε > 0.

(ii) Every open cover {Uα} of X has a finite subcover.

Here, a set U ⊂ X is called open if it contains a neighborhood of each of its points.
The complement of an open set is said to be closed. Equivalently, K ⊂ X is closed
provided that

(A.3) xν ∈ K, xν → p ∈ X =⇒ p ∈ K.

It is clear that any closed subset of a compact metric space is also compact.
If Xj , 1 ≤ j ≤ m, is a finite collection of metric spaces, with metrics dj , we can

define a product metric space

(A.4) X =
m∏

j=1

Xj , d(x, y) = d1(x1, y1) + · · ·+ dm(xm, ym).

Another choice of metric is δ(x, y) =
√

d1(x1, y1)2 + · · ·+ dm(xm, ym)2. The met-
rics d and δ are equivalent, i.e., there exist constants C0, C1 ∈ (0,∞) such that

(A.5) C0δ(x, y) ≤ d(x, y) ≤ C1δ(x, y), ∀ x, y ∈ X.

We describe some useful classes of compact spaces.

Proposition A.1. If Xj are compact metric spaces, 1 ≤ j ≤ m, so is X =∏m
j=1 Xj .

Proof. If (xν) is an infinite sequence of points in X, say xν = (x1ν , . . . , xmν), pick a
convergent subsequence (x1ν) in X1, and consider the corresponding subsequence of
(xν), which we relabel (xν). Using this, pick a convergent subsequence (x2ν) in X2.
Continue. Having a subsequence such that xjν → yj in Xj for each j = 1, . . . , m,
we then have a convergent subsequence in X.

The following result is useful for calculus on Rn.

Proposition A.2. If K is a closed bounded subset of Rn, then K is compact.

Proof. The discussion above reduces the problem to showing that any closed interval
I = [a, b] in R is compact. Suppose S is a subset of I with infinitely many elements.
Divide I into 2 equal subintervals, I1 = [a, b1], I2 = [b1, b], b1 = (a + b)/2. Then
either I1 or I2 must contain infinitely many elements of S. Say Ij does. Let x1

be any element of S lying in Ij . Now divide Ij in two equal pieces, Ij = Ij1 ∪ Ij2.
One of these intervals (say Ijk) contains infinitely many points of S. Pick x2 ∈
Ijk to be one such point (different from x1). Then subdivide Ijk into two equal
subintervals, and continue. We get an infinite sequence of distinct points xν ∈ S,
and |xν −xν+k| ≤ 2−ν(b−a), for k ≥ 1. Since R is complete, (xν) converges, say to
y ∈ I. Any neighborhood of y contains infinitely many points in S, so we are done.

If X and Y are metric spaces, a function f : X → Y is said to be continuous
provided xν → x in X implies f(xν) → f(x) in Y.
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Proposition A.3. If X and Y are metric spaces, f : X → Y continuous, and
K ⊂ X compact, then f(K) is a compact subset of Y.

Proof. If (yν) is an infinite sequence of points in f(K), pick xν ∈ K such that
f(xν) = yν . If K is compact, we have a subsequence xνj → p in X, and then
yνj

→ f(p) in Y.

If F : X → R is continuous, we say f ∈ C(X). A useful corollary of Proposition
A.3 is:

Proposition A.4. If X is a compact metric space and f ∈ C(X), then f assumes
a maximum and a minimum value on X.

Proof. We know from Proposition A.3 that f(X) is a compact subset of R. Hence
f(X) is bounded, say f(X) ⊂ I = [a, b]. Repeatedly subdividing I into equal halves,
as in the proof of Proposition A.2, at each stage throwing out intervals that do not
intersect f(X), and keeping only the leftmost and rightmost interval amongst those
remaining, we obtain points α ∈ f(X) and β ∈ f(X) such that f(X) ⊂ [α, β]. Then
α = f(x0) for some x0 ∈ X is the minimum and β = f(x1) for some x1 ∈ X is the
maximum.

A function f ∈ C(X) is said to be uniformly continuous provided that, for any
ε > 0, there exists δ > 0 such that

(A.6) x, y ∈ X, d(x, y) ≤ δ =⇒ |f(x)− f(y)| ≤ ε.

An equivalent condition is that f have a modulus of continuity, i.e., a monotonic
function ω : [0, 1) → [0,∞) such that δ ↘ 0 ⇒ ω(δ) ↘ 0, and such that

(A.7) x, y ∈ X, d(x, y) ≤ δ ≤ 1 =⇒ |f(x)− f(y)| ≤ ω(δ).

Not all continuous functions are uniformly continuous. For example, if X = (0, 1) ⊂
R, then f(x) = sin 1/x is continuous, but not uniformly continuous, on X. The
following result is useful, for example, in the development of the Riemann integral
in §11.

Proposition A.5. If X is a compact space and f ∈ C(X), then f is uniformly
continuous.

Proof. If not, there exist xν , yν ∈ X and ε > 0 such that d(xν , yν) ≤ 2−ν but

(A.8) |f(xν)− f(yν)| ≥ ε.

Taking a convergent subsequence xνj → p, we also have yνj → p. Now continuity
of f at p implies f(xνj ) → f(p) and f(yνj ) → f(p), contradicting (A.8).

If X and Y are metric spaces, the space C(X, Y ) of continuous maps f : X → Y
has a natural metric structure, under some additional hypotheses. We use

(A.9) D(f, g) = sup
x∈X

d
(
f(x), g(x)

)
.



261

This sup exists provided f(X) and g(X) are bounded subsets of Y, where to say
B ⊂ Y is bounded is to say d : B ×B → [0,∞) has bounded image. In particular,
this supremum exists if X is compact. The following result is useful in the proof of
the fundamental local existence theorem for ODE, in §G.

Proposition A.6. If X is a compact metric space and Y is a complete metric
space, then C(X, Y ), with the metric (A.9), is complete.

We leave the proof as an exercise.
We end this appendix with a couple of slightly more sophisticated results on com-

pactness. The following extension of Proposition A.1 is a special case of Tychonov’s
Theorem.

Proposition A.7. If {Xj : j ∈ Z+} are compact metric spaces, so is X =
∏∞

j=1 Xj .

Here, we can make X a metric space by setting

(A.10) d(x, y) =
∞∑

j=1

2−j dj(x, y)
1 + dj(x, y)

.

It is easy to verify that, if xν ∈ X, then xν → y in X, as ν →∞, if and only if, for
each j, pj(xν) → pj(y) in Xj , where pj : X → Xj is the projection onto the jth
factor.

Proof. Following the argument in Proposition A.1, if (xν) is an infinite sequence of
points in X, we obtain a nested family of subsequences

(A.11) (xν) ⊃ (x1
ν) ⊃ (x2

ν) ⊃ · · · ⊃ (xj
ν) ⊃ · · ·

such that p`(xj
ν) converges in X`, for 1 ≤ ` ≤ j. The next step is a diagonal

construction. We set

(A.12) ξν = xν
ν ∈ X.

Then, for each j, after throwing away a finite number N(j) of elements, one obtains
from (ξν) a subsequence of the sequence (xj

ν) in (A.11), so p`(ξν) converges in X`

for all `. Hence (ξν) is a convergent subsequence of (xν).

Before stating the next result, we establish a simple lemma.

Lemma A.8. If X is a compact metric space, then there is a countable dense subset
Σ of X. (One says X is separable.)

Proof. For each ν ∈ Z+, the collection of balls B1/ν(x) covers X, so there is a finite
subcover, {B1/ν(xνj) : 1 ≤ j ≤ N(ν)}. It follows that Σ = {xνj : j ≤ N(ν), ν ∈ Z+}
is a countable dense subset of X.

The next result is a special case of Ascoli’s Theorem.
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Proposition A.9. Let X and Y be compact metric spaces, and fix a modulus of
continuity ω(δ). Then

(A.13) Cω =
{
f ∈ C(X, Y ) : d

(
f(x), f(y)

) ≤ ω
(
d(x, y)

)}

is a compact subset of C(X, Y ).

Proof. Let (fν) be a sequence in Cω. Let Σ be a countable dense subset of X. For
each x ∈ Σ, (fν(x)) is a sequence in Y, which hence has a convergent subsequence.
Using a diagonal construction similar to that in the proof of Proposition A.7, we
obtain a subsequence (ϕν) of (fν) with the property that ϕν(x) converges in Y, for
each x ∈ Σ, say

(A.14) x ∈ Σ =⇒ ϕν(x) → ψ(x),

where ψ : Σ → Y.
So far, we have not used (A.13), but this hypothesis readily yields

(A.15) d
(
ψ(x), ψ(y)

) ≤ ω
(
d(x, y)

)
,

for all x, y ∈ Σ. Using the denseness of Σ ⊂ X, we can extend ψ uniquely to a
continuous map of X → Y, which we continue to denote ψ. Also, (A.15) holds for
all x, y ∈ X, i.e., ψ ∈ Cω.

It remains to show that ϕν → ψ uniformly on X. Pick ε > 0. Then pick δ > 0
such that ω(δ) < ε/3. Since X is compact, we can cover X by finitely many balls
Bδ(xj), 1 ≤ j ≤ N, xj ∈ Σ. Pick M so large that ϕν(xj) is within ε/3 of its limit
for all ν ≥ M (when 1 ≤ j ≤ N). Now, for any x ∈ X, picking ` ∈ {1, . . . , N} such
that d(x, x`) ≤ δ, we have, for k ≥ 0, ν ≥ M,

(A.16)

d
(
ϕν+k(x), ϕν(x)

) ≤ d
(
ϕν+k(x), ϕν+k(x`)

)
+ d

(
ϕν+k(x`), ϕν(x`)

)

+ d
(
ϕν(x`), ϕν(x)

)

≤ ε/3 + ε/3 + ε/3,

proving the proposition.
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B. Topological spaces

As stated in §A, a metric space is a set X together with a “distance function”
d : X ×X → [0,∞), satisfying

(B.1)

d(x, y) = d(y, x),

d(x, y) = 0 if and only if x = y,

d(x, y) ≤ d(x, z) + d(y, z),

the last condition known as the “triangle inequality.” For a metric space, there
is the following notion of convergence of a sequence (xn); xn → y if and only if
d(xn, y) → 0 as n →∞.

A ball Bδ(p) of radius δ centered at a point p in a metric space X is {x ∈ X :
d(x, p) < δ}. A set U ⊂ X is said to be open provided that for each p ∈ X, there
is a ball Bδ(p) ⊂ U, δ > 0. A set S ⊂ X is closed provided X \ S is open. An
equivalent statement is that S is closed provided xn ∈ S, xn → y in X imply y ∈ S.

A more general notion is that of a topological space. This is a set X, together
with a family O of subsets, called open, satisfying the following conditions:

(B.2)

X, ∅ open,

Uj open, 1 ≤ j ≤ N ⇒
N⋂

j=1

Uj open,

Uα open, α ∈ A ⇒
⋃

α∈A

Uα open,

where A is any index set. It is obvious that the collection of open subsets of a
metric space, defined above, satisfies these conditions. As before, a set S ⊂ X is
closed provided X \ S is open. Also, we say a subset N ⊂ X containing p is a
neighborhood of p provided N contains an open set U which in turn contains p.

If X is a topological space and S is a subset, S gets a topology as follows. For
each U open in X, U ∩ S is declared to be open in S. This is called the induced
topology.

A topological space X is said to be Hausdorff provided that any distinct p, q ∈ X
have disjoint neighborhoods. Clearly any metric space is Hausdorff. Most impor-
tant topological spaces are Hausdorff.

A Hausdorff topological space is said to be compact provided the following
condition holds. If {Uα : α ∈ A} is any family of open subsets of X, cover-
ing X, i.e., X =

⋃
α∈A Uα, then there is a finite subcover, i.e., a finite subset

{Uα1 , . . . , UαN : αj ∈ A} such that X = Uα1 ∪· · ·∪UαN . An equivalent formulation
is the following, known as the finite intersection property. Let {Sα : α ∈ A} be
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any collection of closed subsets of X. If each finite collection of these closed sets
has nonempty intersection, then the complete intersection

⋂
α∈A Sα is nonempty.

It is not hard to show that any compact metric space, defined in §A, satisfies this
condition.

Any closed subset of a compact space is compact. Furthermore, any compact
subset of a Hausdorff space is necessarily closed.

A Hausdorff space X is said to be locally compact provided every p ∈ X has a
neighborhood N which is compact (with the induced topology).

A Hausdorff space is said to be paracompact provided every open cover {Uα :
α ∈ A} has a locally finite refinement, i.e., an open cover {Vβ : β ∈ B} such that
each Vβ is contained in some Uα and each p ∈ X has a neighborhood Np such
that Np ∩ Vβ is nonempty for only finitely many β ∈ B. A typical example of a
paracompact space is a locally compact Hausdorff space X which is also σ-compact,
i.e., X =

⋃∞
n=1 Xn with Xn compact. Paracompactness is a natural condition under

which to construct partitions of unity, as will be illustrated in §§E–F.
A map F : X → Y between two topological spaces is said to be continuous

provided F−1(U) is open in X whenever U is open in Y. If F : X → Y is one to one
and onto, and both F and F−1 are continuous, F is said to be a homeomorphism.
For a bijective map F : X → Y, the continuity of F−1 is equivalent to the statement
that F (V ) is open in Y whenever V is open in X; another equivalent statement is
that F (S) is closed in Y whenever S is closed in X.

If X and Y are Hausdorff, F : X → Y continuous, then F (K) is compact in
Y whenever K is compact in X. In view of the discussion above, there arises the
following useful sufficient condition for a continuous map F : X → Y to be a
homeomorphism. Namely, if X is compact, Y Hausdorff, and F one to one and
onto, then F is a homeomorphism.
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C. The derivative

Let O be an open subset of Rn, and F : O → Rm a continuous function. We say
F is differentiable at a point x ∈ O, with derivative L, if L : Rn → Rm is a linear
transformation such that, for y ∈ Rn, small,

(C.1) F (x + y) = F (x) + Ly + R(x, y)

with

(C.2)
‖R(x, y)‖
‖y‖ → 0 as y → 0.

We denote the derivative at x by DF (x) = L. With respect to the standard bases
of Rn and Rm, DF (x) is simply the matrix of partial derivatives,

(C.3) DF (x) =
∂Fj

∂xk
,

so that, if v = (v1, . . . , vn), (regarded as a column vector) then

(C.4) DF (x)v =
(∑

k

∂F1

∂xk
vk, . . . ,

∑

k

∂Fm

∂xk
vk

)
.

It will be shown below that F is differentiable whenever all the partial derivatives
exist and are continuous on O. In such a case we say F is a C1 function on O. More
generally, F is said to be Ck if all its partial derivatives of order ≤ k exist and are
continuous.

In (C.2), we can use the Euclidean norm on Rn and Rm. This norm is defined
by

(C.5) ‖x‖ =
(
x2

1 + · · ·+ x2
n

)1/2

for x = (x1, . . . , xn) ∈ Rn. Any other norm would do equally well.
We now derive the chain rule for the derivative. Let F : O → Rm be differen-

tiable at x ∈ O, as above, let U be a neighborhood of z = F (x) in Rm, and let
G : U → Rk be differentiable at z. Consider H = G ◦ F. We have

(C.6)

H(x + y) = G(F (x + y))

= G
(
F (x) + DF (x)y + R(x, y)

)

= G(z) + DG(z)
(
DF (x)y + R(x, y)

)
+ R1(x, y)

= G(z) + DG(z)DF (x)y + R2(x, y)
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with
‖R2(x, y)‖

‖y‖ → 0 as y → 0.

Thus G ◦ F is differentiable at x, and

(C.7) D(G ◦ F )(x) = DG(F (x)) ·DF (x).

Another useful remark is that, by the fundamental theorem of calculus, applied
to ϕ(t) = F (x + ty),

(C.8) F (x + y) = F (x) +
∫ 1

0

DF (x + ty)y dt,

provided F is C1.
A closely related application of the fundamental theorem of calculus is that, if

we assume F : O → Rm is differentiable in each variable separately, and that each
∂F/∂xj is continuous on O, then

(C.9)

F (x + y) = F (x) +
n∑

j=1

[
F (x + zj)− F (x + zj−1)

]
= F (x) +

n∑

j=1

Aj(x, y)yj ,

Aj(x, y) =
∫ 1

0

∂F

∂xj

(
x + zj−1 + tyjej

)
dt,

where z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0), and {ej} is the standard basis of Rn.
Now (C.9) implies F is differentiable on O, as we stated below (C.4). As is shown
in many calculus texts, one can use the mean value theorem instead of the fun-
damental theorem of calculus, and obtain a slightly sharper result. We leave the
reconstruction of this argument to the reader.

We now describe two convenient notations to express higher order derivatives of
a Ck function f : Ω → R, where Ω ⊂ Rn is open. In one, let J be a k-tuple of
integers between 1 and n; J = (j1, . . . , jk). We set

(C.10) f (J)(x) = ∂jk
· · · ∂j1f(x), ∂j = ∂/∂xj .

We set |J | = k, the total order of differentiation. A basic result of calculus is
that ∂i∂jf = ∂j∂if provided f ∈ C2(Ω). It follows that, if f ∈ Ck(Ω), then
∂jk

· · · ∂j1f = ∂`k
· · · ∂`1f whenever {`1, . . . , `k} is a permutation of {j1, . . . , jk}.

Thus, another convenient notation to use is the following. Let α be an n-tuple of
non-negative integers, α = (α1, . . . , αn). Then we set

(C.11) f (α)(x) = ∂α1
1 · · · ∂αn

n f(x), |α| = α1 + · · ·+ αn.

Note that, if |J | = |α| = k and f ∈ Ck(Ω),

(C.12) f (J)(x) = f (α)(x), with αi = #{` : j` = i}.
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Correspondingly, there are two expressions for monomials in x = (x1, . . . , xn) :

(C.13) xJ = xj1 · · ·xjk
, xα = xα1

1 · · ·xαn
n ,

and xJ = xα provided J and α are related as in (C.12). Both these notations are
called “multi-index” notations.

We now derive Taylor’s formula with remainder for a smooth function F : Ω → R,
making use of these multi-index notations. We will apply the one variable formula,
i.e.,

(C.14) ϕ(t) = ϕ(0) + ϕ′(0)t +
1
2
ϕ′′(0)t2 + · · ·+ 1

k!
ϕ(k)(0)tk + rk(t),

with

(C.15) rk(t) =
1
k!

∫ t

0

(t− s)kϕ(k+1)(s) ds,

given ϕ ∈ Ck+1(I), I = (−a, a). Let us assume 0 ∈ Ω, and that the line segment
from 0 to x is contianed in Ω. We set ϕ(t) = F (tx), and apply (C.14)–(C.15) with
t = 1. Applying the chain rule, we have

(C.16) ϕ′(t) =
n∑

j=1

∂jF (tx)xj =
∑

|J|=1

F (J)(tx)xJ .

Differentiating again, we have

(C.17) ϕ′′(t) =
∑

|J|=1,|K|=1

F (J+K)(tx)xJ+K =
∑

|J|=2

F (J)(tx)xJ ,

where, if |J | = k, |K| = `, we take J + K = (j1, . . . , jk, k1, . . . , k`). Inductively, we
have

(C.18) ϕ(k)(t) =
∑

|J|=k

F (J)(tx)xJ .

Hence, from (C.14) with t = 1,

F (x) = F (0) +
∑

|J|=1

F (J)(0)xJ + · · ·+ 1
k!

∑

|J|=k

F (J)(0)xJ + Rk(x),

or, more briefly,

(C.19) F (x) =
∑

|J|≤k

1
|J |!F

(J)(0)xJ + Rk(x),
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where

(C.20) Rk(x) =
1
k!

∑

|J|=k+1

(∫ 1

0

(1− s)kF (J)(sx) ds
)
xJ .

This gives Taylor’s formula with remainder for F ∈ Ck+1(Ω), in the J-multi-index
notation.

As we stated above, for any j, k ∈ {1, . . . , n},
(C.21) ∂j∂kf = ∂k∂jf

on Ω ⊂ Rn, if f ∈ C2(Ω). We will sketch a short proof of this, under the stronger
hypothesis that f ∈ C5(Ω). It suffices to prove (C.21) at 0, assumed to belong to
Ω. Now (C.19) gives

f(x) =
∑

|J|≤2

cJxJ + R2(x),

where cJ are constants and

R2(x) =
1
2

∑

|J|=3

(∫ 1

0

(1− s)2f (J)(sx) ds
)
xJ .

Now one can easily verify that ∂j∂kR2(0) = 0, provided f ∈ C5(Ω), so ∂j∂kf(0) =
∂j∂kP2(0), where P2(x) is the polynomial

∑
|J|≤2 cJxJ . It is also straightforward

to check that ∂j∂kP2 = ∂k∂jP2, so we have (C.21).
We also want to write the Taylor formula in the α-multi-index notation. We

have

(C.22)
∑

|J|=k

F (J)(tx)xJ =
∑

|α|=k

ν(α)F (α)(tx)xα,

where
ν(α) = #{J : α = α(J)},

and we define the relation α = α(J) to hold provided the condition (C.12) holds,
or equivalently provided xJ = xα. Thus ν(α) is uniquely defined by

(C.23)
∑

|α|=k

ν(α)xα =
∑

|J|=k

xJ = (x1 + · · ·+ xn)k.

One sees that, if |α| = k, then ν(α) is equal to the product of the number of
combinations of k objects, taken α1 at a time, times the number of combinations
of k − α1 objects, taken α2 at a time, · · · times the number of combinations of
k − (α1 + · · ·+ αn−1) objects, taken αn at a time. Thus

(C.24) ν(α) =
(

k

α1

)(
k − α1

α2

)
· · ·

(
k − α1 − · · · − αn−1

αn

)
=

k!
α1!α2! · · ·αn!
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In other words, for |α| = k,

(C.25) ν(α) =
k!
α!

, where α! = α1! · · ·αn!

Thus the Taylor formula (C.19) can be rewritten

(C.26) F (x) =
∑

|α|≤k

1
α!

F (α)(0)xα + Rk(x),

where

(C.27) Rk(x) =
∑

|α|=k+1

k + 1
α!

(∫ 1

0

(1− s)kF (α)(sx) ds
)
xα.
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D. Inverse function and implicit function theorem

The Inverse Function Theorem, together with its corollary the Implicit Function
Theorem is a fundamental result in several variable calculus. First we state the
Inverse Function Theorem.

Theorem D.1. Let F be a Ck map from an open neighborhood Ω of p0 ∈ Rn to
Rn, with q0 = F (p0). Suppose the derivative DF (p0) is invertible. Then there is
a neighborhood U of p0 and a neighborhood V of q0 such that F : U → V is one
to one and onto, and F−1 : V → U is a Ck map. (One says F : U → V is a
diffeomorphism.)

Using the chain rule, it is easy to reduce to the case p0 = q0 = 0 and DF (p0) = I,
the identity matrix, so we suppose this has been done. Thus

(D.1) F (u) = u + R(u), R(0) = 0, DR(0) = 0.

For v small, we want to solve

(D.2) F (u) = v.

This is equivalent to u + R(u) = v, so let

(D.3) Tv(u) = v −R(u).

Thus solving (D.2) is equivalent to solving

(D.4) Tv(u) = u.

We look for a fixed point u = K(v) = F−1(v). Also, we want to prove that DK(0) =
I, i.e., that K(v) = v+r(v) with r(v) = o(‖v‖). If we succeed in doing this, it follows
easily that, for general x close to 0,

DK(x) =
(
DF

(
K(x)

))−1

,

and a simple inductive argument shows that K is Ck if F is Ck.
A tool we will use to solve (D.4) is the following general result, known as the

Contraction Mapping Principle.

Theorem D.2. Let X be a complete metric space, and let T : X → X satisfy

(D.5) dist (Tx, Ty) ≤ r dist (x, y),
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for some r < 1. (We say T is a contraction.) Then T has a unique fixed point x.
For any y0 ∈ X, T ky0 → x as k →∞.

Proof. Pick y0 ∈ X and let yk = T ky0. Then dist(yk+1, yk) ≤ rk dist(y1, y0), so

(D.6)

dist (yk+m, yk) ≤ dist (yk+m, yk+m−1) + · · ·+ dist (yk+1, yk)

≤ (
rk + · · ·+ rk+m−1

)
dist (y1, y0)

≤ rk
(
1− r

)−1 dist (y1, y0).

It follows that (yk) is a Cauchy sequence, so it converges; yk → x. Since Tyk = yk+1

and T is continuous, it follows that Tx = x, i.e., x is a fixed point. Uniqueness
of the fixed point is clear from the estimate dist (Tx, Tx′) ≤ r dist (x, x′), which
implies dist (x, x′) = 0 if x and x′ are fixed points. This proves Theorem D.2.

Returning to the problem of solving (D.4), we consider

(D.7) Tv : Xv −→ Xv

with

(D.8) Xv = {u ∈ Ω : ‖u− v‖ ≤ Av}

where we set

(D.9) Av = sup
‖w‖≤2‖v‖

‖R(w)‖.

We claim that (D.7) holds if ‖v‖ is sufficiently small. To prove this, note that
Tv(u)− v = −R(u), so we need to show that, provided ‖v‖ is small, u ∈ Xv implies
‖R(u)‖ ≤ Av. But indeed, if u ∈ Xv, then ‖u‖ ≤ ‖v‖+ Av, which is ≤ 2‖v‖ if ‖v‖
is small, so then

‖R(u)‖ ≤ sup
‖w‖≤2‖v‖

‖R(w)‖ = Av;

this establishes (D.7).
Note that if ‖v‖ is small enough, the map (D.7) is a contraction map, so there

exists a unique fixed point u = K(v) ∈ Xv. Note that, since u ∈ Xv,

(D.10) ‖K(v)− v‖ ≤ Av = o(‖v‖),

so the inverse function theorem is proved.
Thus if DF is invertible on the domain of F, F is a local diffeomorphism, though

stronger hypotheses are needed to guarantee that F is a global diffeomorphism onto
its range. Here is one result along these lines.
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Proposition D.3. If Ω ⊂ Rn is open and convex, F : Ω → Rn is C1, and the
symmetric part of DF (u) is positive definite for each u ∈ Ω, then F is one to one
on Ω.

Proof. Suppose F (u1) = F (u2), u2 = u1 + w. Consider ϕ : [0, 1] → R given by

ϕ(t) = w · F (u1 + tw).

Thus ϕ(0) = ϕ(1), so ϕ′(t0) must vanish for some t0 ∈ (0, 1), by the mean value
theorem. But ϕ′(t) = w ·DF (u1 + tw)w > 0, if w 6= 0, by the hypothesis on DF.
This shows F is one to one.

We can obtain the following Implicit Function Theorem as a consequence of the
Inverse Function Theorem.

Theorem D.4. Suppose U is a neighborhood of x0 ∈ Rk, V a neighborhood of
z0 ∈ R`, and

(D.11) F : U × V −→ R`

is a Ck map. Assume DzF (x0, z0) is invertible; say F (x0, z0) = u0. Then the
equation F (x, z) = u0 defines z = f(x, u0) for x near x0, with f a Ck map.

To prove this, consider H : U × V → Rk × R` defined by

(D.12) H(x, z) =
(
x, F (x, z)

)
.

We have

(D.13) DH =
(

I DxF
0 DzF

)

Thus DH(x0, z0) is invertible, so J = H−1 exists and is Ck, by the Inverse Function
Theorem. It is clear that J(x, u0) has the form

(D.14) J(x, u0) =
(
x, f(x, u0)

)
,

and f is the desired map.
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E. Manifolds

A manifold is a Hausdorff topological space with an atlas, i.e., a covering by open
sets Uj together with homeomorphisms ϕj : Uj → Vj , Vj open in Rn. The number
n is called the dimension of M. We say that M is a smooth manifold provided the
atlas has the following property. If Ujk = Uj ∩ Uk 6= ∅, then the map

ψjk : ϕj(Ujk) → ϕk(Ujk)

given by ϕk ◦ ϕ−1
j , is a smooth diffeomorphism from the open set ϕj(Ujk) to the

open set ϕk(Ujk) in Rn. By this, we mean that ψjk is C∞, with a C∞ inverse. If
the ψjk are all C` smooth, M is said to be C` smooth. The pairs (Uj , ϕj) are called
local coordinate charts.

A continuous map from M to another smooth manifold N is said to be smooth
if it is smooth in local coordinates. Two different atlasses on M, giving a priori
two structures of M as a smooth manifold, are said to be equivalent if the identity
map on M is smooth from each one of these two manifolds to the other. Really a
smooth manifold is considered to be defined by equivalence classes of such atlasses,
under this equivalence relation.

One way manifolds arise is the following. Let f1, . . . , fk be smooth functions on
an open set U ⊂ Rn. Let M = {x ∈ U : fj(x) = cj} for a given (c1, . . . , ck) ∈
Rk. Suppose that M 6= ∅ and, for each x ∈ M, the gradients ∇fj are linearly
independent at x. It follows easily from the implicit function theorem that M
has a natural structure of a smooth manifold of dimension n − k. We say M is
a submanifold of U. More generally, let F : X → Y be a smooth map between
smooth manifolds, c ∈ Y, M = F−1(c), and assume that M 6= ∅ and that, at each
point x ∈ M, there is a coordinate neighborhood U of x and V of c such that
the derivative DF at x has rank k. More pedantically, (U,ϕ) and (V, ψ) are the
coordinate charts, and we assume the derivative of ψ ◦F ◦ϕ−1 has rank k at ϕ(x);
there is a natural notion of DF (x) : TxX → TcY, which will be defined in the next
section. In such a case, again the implicit function theorem gives M the structure
of a smooth manifold.

We mention a couple of other methods for producing manifolds. For one, given
any connected smooth manifold M, its universal covering space M̃ has the natural
structure of a smooth manifold. M̃ can be described as follows. Pick a base point
p ∈ M. For x ∈ M, consider smooth paths from p to x, γ : [0, 1] → M. We say
two such paths γ0 and γ1 are equivalent if they are homotopic, i.e., if there is a
smooth map σ : I × I → M(I = [0, 1]), such that σ(0, t) = γ0(t), σ(1, t) = γ1(t),
and σ(s, 0) = p, σ(s, 1) = x. Points in M̃ lying over any given x ∈ M consist of
such equivalence classes.

Another construction produces quotient manifolds. In this situation, we have a
smooth manifold M, and a discrete group Γ of diffeomorphisms on M. The quotient



274

space Γ \M consists of equivalence classes of points of M, where we set x ∼ γ(x)
for for each x ∈ M, γ ∈ Γ. If we assume that each x ∈ M has a neighborhood U
containing no γ(x), for γ 6= e, the identity element of Γ, then Γ \M has a natural
smooth manifold structure.

We next discuss partitions of unity. Supose M is paracompact. In this case,
using a locally finite covering of M by coordinate neighborhoods, we can construct
ψj ∈ C∞0 (M) such that for any compact K ⊂ M, only finitely many ψj are nonzero
on K, (we say the sequence ψj is locally finite), and such that for any p ∈ M, some
ψj(p) 6= 0. Then

ϕj(x) =
ψj(x)2∑

k

ψk(x)2

is a locally finite sequence of functions in C∞0 (M), satisfying
∑

j ϕj(x) = 1. Such a
sequence is called a partition of unity. It has many uses.

A more general notion than manifold is that of a smooth manifold with boundary.
In this case, M is again a Hausdorff topological space, and there are two types of
coordinate charts (Uj , ϕj). Either ϕj takes Uj to an open subset Vj of Rn as before,
or ϕj maps Uj homeomorphically onto an open subset of Rn

+ = {(x1, . . . , xn) ∈
Rn : xn ≥ 0}. Again appropriate transition maps are required to be smooth. In
case M is paracompact, there is again the construction of partitions of unity. For
one simple but effective application of this construction, see the proof of the Stokes
formula in §7.
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F. Vector bundles

We begin with an intrinsic definition of a tangent vector to a smooth manifold
M, at a point p ∈ M. It is an equivalence class of smooth curves through p, i.e.,
of smooth maps γ : I → M, I an interval containing 0, such that γ(0) = p. The
equivalence relation is γ ∼ γ1 provided that, for some coordinate chart (U,ϕ) about
p, ϕ : U → V ⊂ Rn, we have

(F.1)
d

dt
(ϕ ◦ γ)(0) =

d

dt
(ϕ ◦ γ1)(0).

This equivalence is independent of choice of coordinate chart about p.
If V ⊂ Rn is open, we have a natural identification of the set of tangent vectors

to V at p ∈ V with Rn. In general, the set of tangent vectors to M at p is denoted
TpM. A coordinate cover of M induces a coordinate cover of TM, the disjoint union
of TpM as p runs over M, making TM a smooth manifold. TM is called the tangent
bundle of M. Note that each TpM has the natural structure of a vector space of
dimension n, if n is the dimension of M. If F : X → M is a smooth map between
manifolds, x ∈ X, there is a natural linear map DF (x) : TxX → TpM, p = F (x),
which agrees with the derivative as defined in §C, in local coordinates. DF (x)
takes the equivalence class of a smooth curve γ through x to that of the curve F ◦γ
through p.

The tangent bundle TM of a smooth manifold M is a special case of a vector
bundle. Generally, a smooth vector bundle E → M is a smooth manifold E,
together with a smooth map π : E → M with the following properties. For each
p ∈ M, the “fibre” Ep = π−1(p) has the structure of a vector space, of dimension
k, independent of p. Furthermore, there exists a cover of M by open sets Uj , and
diffeomorphisms Φj : π−1(Uj) → Uj × Rk with the property that, for each p ∈
Uj , Φj : Ep → {p} × Rk → Rk is a linear isomorphism, and if Uj` = Uj ∩ U` 6= ∅,
we have smooth “transition functions”

(F.2) Φ` ◦ Φ−1
j = Ψj` : Uj` × Rk → Uj` × Rk

which are the identity on the first factor and such that for each p ∈ Uj`, Ψj`(p) is a
linear isomorphism on Rk. In the case of complex vector bundles, we systematically
replace Rk by Ck in the discussion above.

The structure above arises for the tangent bundle as follows. Let (Uj , ϕj) be a
coordinate cover of M, ϕj : Uj → Vj ⊂ Rn. Then Φj : TUj → Uj × Rn takes the
equivalence class of smooth curves through p ∈ Uj containing an element γ to the
pair

(
p, (ϕj ◦ γ)′(0)

) ∈ Uj × Rn.
A section of a vector bundle E → M is a smooth map β : M → E such that

π(β(p)) = p for all p ∈ M. For example, a section of the tangent bundle TM → M
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is a vector field on M. If X is a vector field on M, generating a flow F t, then
X(p) ∈ TpM coincides with the equivalence class of γ(t) = F tp.

Any smooth vector bundle E → M has associated a vector bundle E∗ → M, the
“dual bundle” with the property that there is a natural duality of Ep and E∗

p for
each p ∈ M. In case E is the tangent bundle TM, this dual bundle is called the
cotangent bundle, and denoted T ∗M.

More generally, given a vector bundle E → M, other natural constructions in-
volving vector spaces yield other vector bundles over M, such as tensor bundles
⊗jE → M with fibre ⊗jEp, mixed tensor bundles with fibre

(⊗jEp

) ⊗ (⊗kE∗
p

)
,

exterior algebra bundles with fibre ΛEp, etc. Note that a k-form, as defined in §5,
is a section of ΛkT ∗M. A section of

(⊗jT
) ⊗ (⊗kT ∗

)
M is called a tensor field of

type (j, k).
A Riemannian metric tensor on a smooth manifold M is a smooth symmetric

section g of⊗2T ∗M which is positive definite at each point p ∈ M, i.e., gp(X,X) > 0
for each nonzero X ∈ TpM. For any fixed p ∈ M, using a local coordinate patch
(U,ϕ) containing p one can construct a positive symmetric section of ⊗2T ∗U. Using
a partition of unity, we can hence construct a Riemannian metric tensor on any
smooth paracompact manifold M. If we define the length of a path γ : [0, 1] → M

to be L(γ) =
∫ 1

0
g
(
γ′(t), γ′(0)

)1/2
dt, then

(F.3) d(p, q) = inf{L(γ) : γ(0) = p, γ(1) = q}

is a distance function making M a metric space, provided M is connected.
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G. Fundamental local existence theorem for ODE

The goal of this section is to establish existence of solutions to an ODE

(G.1)
dy

dt
= F (t, y), y(t0) = y0.

We will prove the following fundamental result.

Theorem G.1. Let y0 ∈ O, an open subset of Rn, I ⊂ R an interval containing
t0. Suppose F is continuous on I ×O and satisfies the following Lipschitz estimate
in y :

(G.2) ‖F (t, y1)− F (t, y2)‖ ≤ L‖y1 − y2‖

for t ∈ I, yj ∈ O. Then the equation (G.1) has a unique solution on some t-interval
containing t0.

To begin the proof, we note that the equation (G.1) is equivalent to the integral
equation

(G.3) y(t) = y0 +
∫ t

t0

F (s, y(s)) ds.

Existence will be established via the Picard iteration method, which is the following.
Guess y0(t), e.g., y0(t) = y0. Then set

(G.4) yk(t) = y0 +
∫ t

t0

F
(
s, yk−1(s)

)
ds.

We aim to show that, as k → ∞, yk(t) converges to a (unique) solution of (G.3),
at least for t close enough to t0.

To do this, we use the Contraction Mapping Principle, established in §D. We
look for a fixed point of T, defined by

(G.5) (Ty)(t) = y0 +
∫ t

t0

F (s, y(s)) ds.

Let

(G.6) X =
{
u ∈ C(J,Rn) : u(t0) = y0, sup

t∈J
‖u(t)− y0‖ ≤ K

}
.
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Here J = [t0 − ε, t0 + ε], where ε will be chosen, sufficiently small, below. K is
picked so {y : ‖y − y0‖ ≤ K} is contained in O, and we also suppose J ⊂ I. Then
there exists M such that

(G.7) sup
s∈J,‖y−y0‖≤K

‖F (s, y)‖ ≤ M.

Then, provided

(G.8) ε ≤ K

M
,

we have

(G.9) T : X → X.

Now, using the Lipschitz hypothesis (3.2), we have, for t ∈ J,

(G.10)
‖(Ty)(t)− (Tz)(t)‖ ≤

∫ t

t0

L‖y(s)− z(s)‖ ds

≤ ε L sup
s∈J

‖y(s)− z(s)‖

assuming y and z belong to X. It follows that T is a contraction on X provided
one has

(G.11) ε <
1
L

,

in addition to the hypotheses above. This proves Theorem G.1.
In view of the lower bound on the length of the interval J on which the existence

theorem works, it is easy to show that the only way a solution can fail to be globally
defined, i.e., to exist for all t ∈ I, is for y(t) to “explode to infinity” by leaving every
compact set K ⊂ O, as t → t1, for some t1 ∈ I.

Often one wants to deal with a higher order ODE. There is a standard method
of reducing an nth order ODE

(G.12) y(n)(t) = f(t, y, y′, . . . , y(n−1))

to a first order system. One sets u = (u0, . . . , un−1) with

(G.13) u0 = y, uj = y(j),

and then

(G.14)
du

dt
=

(
u1, . . . , un−1, f(t, u0, . . . , un−1)

)
= g(t, u).
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If y takes values in Rk, then u takes values in Rkn.
If the system (G.1) is non-autonomous, i.e., if F explicitly depends on t, it can be

converted to an autonomous system (one with no explicit t-dependence) as follows.
Set z = (t, y). We then have

(G.15)
dz

dt
=

(
1,

dy

dt

)
=

(
1, F (z)

)
= G(z).

Sometimes this process destroys important features of the original system (G.1).
For example, if (G.1) is linear, (G.15) might be nonlinear. Nevertheless, the trick
of converting (G.1) to (G.15) has some uses.

Many systems of ODE are difficult to solve explicitly. There is one very basic
class of ODE which can be solved explicitly, in terms of integrals, namely the single
first order linear ODE:

(G.16)
dy

dt
= a(t)y + b(t), y(0) = y0,

where a(t) and b(t) are continuous real or complex valued functions. Set

(G.17) A(t) =
∫ t

0

a(s) ds.

Then (G.16) can be written as

(G.18) eA(t) d

dt

(
e−A(t)y

)
= b(t).

From (G.18) we get

(G.19) y(t) = eA(t)y0 + eA(t)

∫ t

0

e−A(s)b(s) ds.

The solution to (G.1) is a function of t and also of the initial data:

(G.20) y = y(t, y0).

If F is a C∞ function of its arguments, then y is also a C∞ function of its arguments.
This result is important; it implies that a smooth vector field generates a smooth
flow. A proof can be found in Chapter 1 of [T1].
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H. Lie groups

A Lie group G is a group which is also a smooth manifold, such that the group
operations G×G → G and G → G given by (g, h) 7→ gh and g 7→ g−1 are smooth
maps. Let e denote the identity element of G. For each g ∈ G, we have left and
right translations, Lg and Rg, diffeomorphisms on G, defined by

(H.1) Lg(h) = gh, Rg(h) = hg.

The set of left invariant vector fields X on G, i.e., vector fields satisfying

(H.2) (DLg)X(h) = X(gh),

is called the Lie algebra of G, and denoted g. If X, Y ∈ G, then the Lie bracket
[X, Y ] belongs to g. Evaluation of X ∈ g at e provides a linear isomorphism of g
with TeG.

A vector field X on G belongs to g if and only if the flow F t
X it generates

commutes with Lg for all g ∈ G, i.e., g(F t
Xh) = F t

X(gh) for all g, h ∈ G. If we set

(H.3) γX(t) = F t
Xe,

we obtain γX(t + s) = Fs
X(F t

Xe) · e = (F t
Xe)(Fs

Xe), and hence

(H.4) γX(s + t) = γX(s)γX(t)

for s, t ∈ R; we say γX is a smooth one parameter subgroup of G. Clearly

(H.5) γ′X(0) = X(e).

Conversely, if γ is any smooth one parameter group satisfying γ′(0) = X(e), then
F tg = g · γ(t) defines a flow generated by the vector field X ∈ g coinciding with
X(e) at e.

The exponential map

(H.6) Exp : g −→ G

is defined by

(H.7) Exp(X) = γX(1).

Note that γsX(t) = γX(st), so Exp(tX) = γX(t). In particular, under the identifi-
cation g ≈ TeG,

(H.8) D Exp(0) : TeG −→ TeG is the identity map.

The fact that each element X ∈ g generates a one parameter group has the
following generalization, to a fundamental result of S. Lie. Let h ⊂ g be a Lie
subalgebra, i.e., h is a linear subspace and Xj ∈ h ⇒ [X1, X2] ∈ h. By Frobenius’
Theorem (which we will establish in §I), through each point p of G there is a smooth
manifold Mp of dimension k = dim h, which is an integral manifold for h, i.e., h
spans the tangent space of Mp at each q ∈ Mp. We can take Mp to be the maximal
such (connected) manifold, and then it is unique. Let H be the maximal integral
manifold of h containing the identity element e.
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Proposition H.1. H is a subgroup of G.

Proof. Take h0 ∈ H and consider H0 = h−1
0 H; clearly e ∈ H0. By left invariance,

H0 is also an integral manifold of H, so H0 = H. This shows that h0, h1 ∈ H ⇒
h−1

0 h1 ∈ H, so H is a group.

Given any α0 ∈ ΛkT ∗e G, there is a unique k-form α on G, invariant under Lg,
i.e., satisfying L∗gα = α for all g ∈ G, equal to α0 at e. In case k = n = dim G,
if ω0 is a nonzero element of ΛnT ∗e G, the corresponding left invariant n-form ω
on G defines also an orientation on G, and hence a left invariant volume form on
G, called (left) Haar measure. It is uniquely defined up to a constant multiple.
Similarly one has right Haar measure. In many but not all cases left Haar measure
is also right invariant; the G is said to be unimodular. It is very important to be
able to integrate over a Lie group using Haar measure.

We next define a representation of a Lie group G on a finite dimensional vector
space V. This is a smooth map

(H.9) π : G −→ End(V )

such that

(H.10) π(e) = I, π(gg′) = π(g)π(g′), g, g′ ∈ G.

If F ∈ C0(G), i.e., F is continuous with compact support, we can define π(F ) ∈
End(V ) by

(H.11) π(F )v =
∫

G

F (g)π(g)v dg.

We get different results depending on whether left or right Haar measure is used.
Right now, let us use right Haar measure. Then, for g ∈ G, we have

(H.12) π(F )π(g)v =
∫

G

F (x)π(xg)v dx =
∫

G

F (xg−1)π(x)v dx.

We also define the derived representation

(H.13) dπ : g −→ End(V )

by

(H.14) dπ = Dπ(e) : TeG −→ End(V ),

using the identification g ≈ TeG. Thus, for X ∈ g,

(H.15) dπ(X)v = lim
t→0

1
t

[
π(Exp tX)v − v

]
.

The following result states that dπ is a Lie algebra homomorphism.
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Proposition H.2. For X,Y ∈ g, we have

(H.16)
[
dπ(X), dπ(Y )

]
= dπ

(
[X, Y ]

)
.

Proof. We will first produce a formula for π(F )dπ(X), given F ∈ C∞0 (G). In fact,
making use of (H.12), we have

(H.17)

π(F )dπ(X)v = lim
t→0

1
t

∫

G

[
F (g)π(g)π(Exp tX)− F (g)π(g)

]
v dg

= lim
t→0

1
t

∫

G

[
F

(
g · Exp(−tX)

)− F (g)
]
π(g)v dg

= −π(XF )v,

where XF denotes the left invariant vector field X applied to F. It follows that
(H.18)

π(F )
[
dπ(X)dπ(Y )− dπ(Y )dπ(X)

]
v = π(Y XF −XY F )v = −π

(
[X, Y ]F

)
v,

which by (H.17) is equal to π(F ) dπ
(
[X,Y ]

)
v. Now, if F is supported near e ∈ G

and integrates to 1, is is easily seen that π(F ) is close to the identity I, so this
implies (H.16).

There is a representation of G on g, called the adjoint representation, defined as
follows. Consider

(H.19) Kg : G −→ G, Kg(h) = ghg−1.

Then Kg(e) = e, and we set

(H.20) Ad(g) = DKg(e) : TeG −→ TeG,

identifying TeG ≈ g. Note that Kg◦Kg′ = Kgg′ , so the chain rule implies Ad(g)Ad(g′) =
Ad(gg′).

Note that γ(t) = g Exp(tX)g−1 is a one-parameter subgroup of G satisfying
γ′(0) = Ad(g)X. Hence

(H.21) Exp(t Ad(g)X) = g Exp(tX) g−1.

In particular,

(H.22) Exp
(
(Ad Exp sY )tX

)
= Exp(sY ) Exp(tX) Exp(−sY ).

Now, the right side of (H.22) is equal to F−s
Y ◦ F t

X ◦ Fs
Y (e), so by (3.1)-(3.3) we

have

(H.23) Ad(Exp sY )X = Fs
Y #X.

If we take the s-derivative at s = 0, we get a formula for the derived representation
of Ad, which is denoted ad, rather than d Ad. Using (3.3)–(3.5), we have

(H.24) ad(Y )X = [Y, X].

In other words, the adjoint representation of g on g is given by the Lie bracket. We
mention that Jacobi’s identity for Lie algebras is equivalent to the statement that

(H.25) ad
(
[X, Y ]

)
=

[
ad(X), ad(Y )

]
, ∀ X, Y ∈ g.
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I. Frobenius’ theorem

Let G : U → V be a diffeomorphism. Recall from §3 the action on vector fields:

(I.1) G#Y (x) = DG(y)−1Y (y), y = G(x).

As noted there, an alternative characterization of G#Y is given in terms of the flow
it generates. One has

(I.2) F t
Y ◦G = G ◦ F t

G#Y .

The proof of this is a direct consequence of the chain rule. As a special case, we
have the following

Proposition I.1. If G#Y = Y, then F t
Y ◦G = G ◦ F t

Y .

From this, we derive the following condition for a pair of flows to commute. Let
X and Y be vector fields on U.

Proposition I.2. If X and Y commute as differential operators, i.e.,

(I.3) [X,Y ] = 0,

then locally Fs
X and F t

Y commute, i.e., for any p0 ∈ U, there exists δ > 0 such that,
for |s|, |t| < δ,

(I.4) Fs
XF t

Y p0 = F t
Y Fs

Xp0.

Proof. By Proposition I.1, it suffices to show that Fs
X#Y = Y. Clearly this holds

at s = 0. But by (3.6), we have

d

ds
Fs

X#Y = Fs
X#[X, Y ],

which vanishes if (I.3) holds. This finishes the proof.

We have stated that, given (I.3), then (I.4) holds locally. If the flows generated by
X and Y are not complete, this can break down globally. For example, consider X =
∂/∂x1, Y = ∂/∂x2 on R2, which satisfy (I.3) and generate commuting flows. These
vector fields lift to vector fields on the universal covering surface M̃ of R2 \ (0, 0),
which continue to satisfy (I.3). The flows on M̃ do not commute globally. This
phenomenon does not arise, for example, for vector fields on a compact manifold.

We now consider when a family of vector fields has a multidimensional integral
manifold. Suppose X1, . . . , Xk are smooth vector fields on U which are linearly
independent at each point of a k−dimensional surface Σ ⊂ U. If each Xj is tangent
to Σ at each point, Σ is said to be an integral manifold of (X1, . . . , Xk).
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Proposition I.3. Suppose X1, . . . , Xk are linearly independent at each point of U
and [Xj , X`] = 0 for all j, `. Then, for each x0 ∈ U, there is a k-dimensional integral
manifold of (X1, . . . , Xk) containing x0.

Proof. We define a map F : V → U, V a neighborhood of 0 in Rk, by

(I.5) F (t1, . . . , tk) = F t1
X1
· · · F tk

Xk
x0.

Clearly (∂/∂t1)F = X1(F ). Similarly, since F tj

Xj
all commute, we can put any F tj

Xj

first and get (∂/∂tj)F = Xj(F ). This shows that the image of V under F is an
integral manifold containing x0.

We now derive a more general condition guaranteeing the existence of integral
submanifolds. This important result is due to Frobenius. We say (X1, . . . , Xk) is
involutive provided that, for each j, `, there are smooth bj`

m(x) such that

(I.6) [Xj , X`] =
k∑

m=1

bj`
m(x)Xm.

The following is Frobenius’ Theorem.

Theorem I.4. If (X1, . . . , Xk) are C∞ vector fields on U, linearly independent at
each point, and the involutivity condition (I.6) holds, then through each x0 there is,
locally, a unique integral manifold Σ, of dimension k.

We will give two proofs of this result. First, let us restate the conclusion as
follows. There exist local coordinates (y1, . . . , yn) centered at x0 such that

(I.7) span (X1, . . . , Xk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.

First proof. The result is clear for k = 1. We will use induction on k. So let the set
of vector fields X1, . . . , Xk+1 be linearly independent at each point and involutive.
Choose a local coordinate system so that Xk+1 = ∂/∂u1. Now let

(I.8) Yj = Xj − (Xju1)
∂

∂u1
for 1 ≤ j ≤ k, Yk+1 =

∂

∂u1
.

Since, in (u1, . . . , un) coordinates, no Y1, . . . , Yk involves ∂/∂u1, neither does any
Lie bracket, so

[Yj , Y`] ∈ span (Y1, . . . , Yk), j, ` ≤ k.

Thus (Y1, . . . , Yk) is involutive. The induction hypothesis implies there exist local
coordinates (y1, . . . , yn) such that

span (Y1, . . . , Yk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.
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Now let

(I.9) Z = Yk+1 −
k∑

`=1

(
Yk+1y`

) ∂

∂y`
=

∑

`>k

(Yk+1y`)
∂

∂y`
.

Since, in the (u1, . . . , un) coordinates, Y1, . . . , Yk do not involve ∂/∂u1, we have

[Yk+1, Yj ] ∈ span (Y1, . . . , Yk).

Thus [Z, Yj ] ∈ span (Y1, . . . , Yk) for j ≤ k, while (I.9) implies that [Z, ∂/∂yj ] belongs
to the span of (∂/∂yk+1, . . . , ∂/∂yn), for j ≤ k. Thus we have

[
Z,

∂

∂yj

]
= 0, j ≤ k.

Proposition I.3 implies span (∂/∂y1, . . . , ∂/∂yk, Z) has an integral manifold through
each point, and since this span is equal to the span of X1, . . . , Xk+1, the first proof
is complete.

Second proof. Let X1, . . . , Xk be C∞ vector fields, linearly independent at each
point, and satisfying the condition (I.6). Choose an n − k dimensional surface
O ⊂ U, transverse to X1, . . . , Xk. For V a neighborhood of the origin in Rk, define
Φ : V ×O → U by

(I.10) Φ(t1, . . . , tk, x) = F t1
X1
· · · F tk

Xk
x.

We claim that, for x fixed, the image of V in U is a k dimensional surface Σ tangent
to each Xj , at each point of Σ. Note that, since Φ(0, . . . , tj , . . . , 0, x) = F tj

Xj
x, we

have

(I.11)
∂

∂tj
Φ(0, . . . , 0, x) = Xj(x), x ∈ O.

To establish the claim, it suffices to show that F t
Xj#

X` is a linear combination
with coefficients in C∞(U) of X1, . . . , Xk. This is accomplished by the following:

Lemma I.5. Suppose [Y, Xj ] =
∑
`

λj`(x)X`, with smooth coefficients λj`(x). Then

F t
Y #Xj is a linear combination of X1, . . . , Xk, with coefficients in C∞(U).

Proof. Denote by Λ the matrix (λj`) and let Λ(t) = Λ(t, x) = (λj`(F t
Y x)). Now let

A(t) = A(t, x) be the unique solution to the ODE

(I.12)
d

dt
A(t) = Λ(t)A(t), A(0) = I.
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Write A = (αj`). We claim that

(I.13) F t
Y #Xj =

∑

`

αj`(t, x)X`.

This formula will prove the lemma. Indeed, we have

d

dt
(F t

Y )#Xj = (F t
Y )#[Y, Xj ]

= (F t
Y )#

∑

`

λj`X`

=
∑

`

(λj` ◦ F t
Y )(F t

Y #X`).

Uniqueness of the solution to (I.12) gives (I.13), and we are done.

This completes the second proof of Frobenius’ Theorem.
There are a number of related results which go under the rubric of “Frobenius’

Theorem.” Here we mention one, needed for the proof of Proposition 13.2.

Proposition I.6. Let Aj be smooth m×m matrix functions on O ⊂ Rn. Suppose
the operators Lj = ∂/∂xj + Aj(x), acting on functions with values in Rm, all
commute, 1 ≤ j ≤ n. If p ∈ O, there is a solution in a neighborhood of p to

(I.14) Lju = 0, 1 ≤ j ≤ n,

with u(p) ∈ Rm prescribed.

Proof. Assume p = 0, and O is a ball centered at 0. Let u0 ∈ Rm be given. First
solve

(I.15) L1u = 0 on R1 ∩ O, u(0) = u0,

which is just an ODE. Then solve

(I.16) L2u = 0 on R2 ∩ O, u
∣∣
R1∩O given by (I.15).

Inductively, having u on Rj ∩ O, solve

(I.17) Lj+1u = 0 on Rj+1 ∩ O, u
∣∣
Rj∩O obtained in previous step.

At j + 1 = n, you have u on O. Clearly u(0) = u0 and Lnu = 0 on O. To see that
vn−1 = Ln−1u = 0 on O, note that

Lnvn−1 = LnLn−1u = Ln−1Lnu = 0,

by commutativity, and
vn−1

∣∣
Rn−1∩O = 0.

This implies vn−1 = 0 on O, i.e., Ln−1u = 0 on O. Similarly one establishes Lju = 0
on O for all j < n.
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J. Exercises on determinants and cross products

If Mn×n denotes the space of n × n complex matrices, we want to show that
there is a map

(J.1) det : Mn×n → C

which is uniquely specified as a function ϑ : Mn×n → C satisfying:
(a) ϑ is linear in each column aj of A,

(b) ϑ(Ã) = −ϑ(A) if Ã is obtained from A by interchanging two columns.
(c) ϑ(I) = 1.

1. Let A = (a1, . . . , an), where aj are column vectors; aj = (a1j , . . . , anj)t. Show
that, if (a) holds, we have the expansion

(J.2)

detA =
∑

j

aj1 det (ej , a2, . . . , an) = · · ·

=
∑

j1,··· ,jn

aj11 · · · ajnn det (ej1 , ej2 , . . . , ejn),

where {e1, . . . , en} is the standard basis of Cn.

2. Show that, if (b) and (c) also hold, then

(J.3) det A =
∑

σ∈Sn

(sgn σ) aσ(1)1aσ(2)2 · · · aσ(n)n,

where Sn is the set of permutations of {1, . . . , n}, and

(J.4) sgn σ = det (eσ(1), . . . , eσ(n)) = ±1.

To define sgn σ, the “sign” of a permutation σ, we note that every permutation σ
can be written as a product of transpositions: σ = τ1 · · · τν , where a transposition
of {1, . . . , n} interchanges two elements and leaves the rest fixed. We say sgn σ = 1
if ν is even and sgn σ = −1 if ν is odd. It is necessary to show that sgn σ is
independent of the choice of such a product representation. (Referring to (J.4)
begs the question until we know that det is well defined.)
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3. Let σ ∈ Sn act on a function of n variables by

(J.5) (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Let P be the polynomial

(J.6) P (x1, . . . , xn) =
∏

1≤j<k≤n

(xj − xk).

Show that

(J.7) (σP )(x) = (sgn σ) P (x),

and that this implies that sgn σ is well defined. (This argument is due to Cauchy.)

4. Deduce that there is a unique determinant satisfying (a)–(c), and that it is given
by (J.3).

5. Show that (J.3) implies

(J.8) det A = det At.

Conclude that one can replace columns by rows in the characterization (a)–(c) of
determinants.
Hint. aσ(j)j = a`τ(`) with ` = σ(j), τ = σ−1. Also, sgn σ = sgn τ.

6. Show that, if (a)–(c) hold (for rows), it follows that
(d) ϑ(Ã) = ϑ(A) if Ã is obtained from A by adding cρ` to ρk, for some c ∈ C,

where ρ1, . . . , ρn are the rows of A.
Re-prove the uniqueness of ϑ satisfying (a)–(d) (for rows) by applying row opera-
tions to A until either some row vanishes or A is converted to I.

7. Show that

(J.9) det (AB) = (det A)(det B).

Hint. For fixed B ∈ Mn×n, compare ϑ1(A) = det (AB) and ϑ2(A) = (det A)(det B).
For uniqueness, use an argument from Exercise 6.
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8. Show that

(J.10) det




1 a12 · · · a1n

0 a22 · · · a2n
...

...
...

0 an2 · · · ann


 = det




1 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann


 = det A11

where A11 = (ajk)2≤j,k≤n.
Hint. Do the first identity by the analogue of (d), for columns. Then exploit
uniqueness for det on M(n−1)×(n−1).

9. Deduce that det(ej , a2, . . . , an) = (−1)j−1 det A1j where Akj is formed by delet-
ing the kth column and the jth row from A.

10. Deduce from the first sum in (J.2) that

(J.11) detA =
n∑

j=1

(−1)j−1aj1 det A1j .

More generally, for any k ∈ {1, . . . , n},

(J.12) det A =
n∑

j=1

(−1)j−kajk detAkj .

This is called an expansion of det A by minors, down the kth column.

11. Show that

(J.13) det




a11 a12 · · · a1n

a22 · · · a2n

. . .
...

ann


 = a11a22 · · · ann.

Hint. Use (J.10) and induction.

The following exercises deal with cross products of vectors in R3.
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12. If u, v ∈ R3, show that the formula

(J.14) w · (u× v) = det




w1 u1 v1

w2 u2 v2

w3 u3 v3




for u× v = κ(u, v) defines uniquely a bilinear map κ : R3 ×R3 → R3. Show that it
satisfies

i× j = k, j × k = i, k × i = j,

where {i, j, k} is the standard basis of R3.

13. We say T ∈ SO(3) provided that T is a real 3 × 3 matrix satisfying T tT = I
and det T > 0, (hence det T = 1). Show that

(J.15) T ∈ SO(3) =⇒ Tu× Tv = T (u× v).

Hint. Multiply the 3× 3 matrix in Exercise 12 on the left by T.

14. Show that, if θ is the angle between u and v in R3, then

(J.16) |u× v| = |u| |v| | sin θ|.

Hint. Check this for u = i, v = ai + bj, and use Exercise 13 to show this suffices.

15. Show that κ : R3 → Skew(3), the set of antisymmetric real 3 × 3 matrices,
given by

(J.17) κ(y1, y2, y3) =




0 −y3 y2

y3 0 −y1

−y2 y1 0




satisfies

(J.18) Kx = y × x, K = κ(y).

Show that, with [A,B] = AB −BA,

(J.19) κ(x× y) =
[
κ(x), κ(y)

]
, Tr

(
κ(x)κ(y)t

)
= 2x · y.
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K. Exercises on the Frenet-Serret formulas

1. Let x(t) be a smooth curve in R3; assume it is parametrized by arclength, so
T (t) = x′(t) has unit length; T (t) · T (t) = 1. Differentiating, we have T ′(t)⊥T (t).
The curvature is defined to be κ(t) = ‖T ′(t)‖. If κ(t) 6= 0, we set N(t) = T ′/‖T ′‖,
so

T ′ = κN,

and N is a unit vector orthogonal to T. We define B(t) by

(K.1) B = T ×N.

Note that (T, N, B) form an orthonormal basis of R3 for each t, and

(K.2) T = N ×B, N = B × T.

By (K.1) we have B′ = T × N ′. Deduce that B′ is orthogonal to both T and B,
hence parallel to N. We set

B′ = −τN,

for smooth τ(t), called the torsion.

2. From N ′ = B′ × T + B × T ′ and the formulas for T ′ and B′ above, deduce the
following system, called the Frenet-Serret formula:

(K.3)

T ′ = κN

N ′ = −κT + τB

B′ = − τN

Form the 3× 3 matrix

(K.4) A(t) =




0 −κ 0
κ 0 −τ
0 τ 0




and deduce that the 3× 3 matrix F (t) whose columns are T,N,B :

F = (T, N, B)

satisfies the ODE
dF

dt
= F A(t).
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3. Derive the following converse to the Frenet-Serret formula. Let T (0), N(0), B(0)
be an orthonormal set in R3, such that B(0) = T (0) × N(0), let κ(t) and τ(t) be
given smooth functions, and solve the system (K.3). Show that there is a unique
curve x(t) such that x(0) = 0 and T (t), N(t), B(t) are associated to x(t) by the
construction in Exercise 1, so in particular the curve has curvature κ(t) and torsion
τ(t).
Hint. To prove that (K.1)–(K.2) hold for all t, consider the next exercise.

4. Let A(t) be a smooth n×n real matrix function which is skew adjoint for all t (of
which (K.4) is an example). Suppose F (t) is a real n×n matrix function satisfying

dF

dt
= F A(t).

If F (0) is an orthogonal matrix, show that F (t) is orthogonal for all t.
Hint. Set J(t) = F (t)∗F (t). Show that J(t) and J0(t) = I both solve the initial
value problem

dJ

dt
= [J,A(t)], J(0) = I.

5. Let U1 = T, U2 = N, U3 = B, and set

ω(t) = τT + κB.

Show that (K.3) is equivalent to

U ′
j = ω × Uj , 1 ≤ j ≤ 3.

6. Suppose τ and κ are constant. Show that ω is constant, so T (t) satisfies the
constant coefficient ODE

T ′(t) = ω × T (t).

Note that ω · T (0) = τ. Show that, after a translation and rotation, x(t) takes the
form

γ(t) =
( κ

λ2
cos λt,

κ

λ2
sin λt,

τ

λ
t
)
, λ2 = κ2 + τ2.

7. Suppose x(t), parametrized by arclength, lies in the sphere SR = {x ∈ R3 : |x| =
R}, for all t. If ρ(t) = κ(t)−1 denotes the radius of curvature of this curve, show
that

ρ(t)2 +
(ρ′(t)

τ(t)

)2

= R2.
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Hint. Differentiate the identity x(t) ·x(t) = R2 repeatedly, and substitute in various
parts of (K.3) for derivatives of T , etc.

8. In this problem, do not assume that x(t) is parametrized by arclength. Define the
arclength parameter s by ds/dt = |x′(t)|, and set T (t) = x′(t)/|x′(t)|, so dT/ds =
κN . Show that

(K.5) x′′(t) =
d2s

dt2
T (t) +

(ds

dt

)2

κ(t)N(t).

Taking the cross product of both sides with T (t), deduce that

(K.6) κ(t) B(t) =
x′(t)× x′′(t)
|x′(t)|3 .

Hence

(K.7) κ(t) =
|x′(t)× x′′(t)|

|x′(t)|3 .

Hint. Differentiate the identity x′(t) = (ds/dt)T (t) to get (K.5).

9. In the setting of Exercise 8, show that

(K.8) x′′′(t) =
{
s′′′ − (s′)3κ2

}
T +

{
3s′s′′κ + (s′)2κ′

}
N + (s′)3κτB.

Deduce that

(K.9) x′(t)× x′′(t) · x′′′(t) = (s′)6κ2τ,

and hence that the torsion is given by

(K.10) τ(t) =
x′(t)× x′′(t) · x′′′(t)
|x′(t)× x′′(t)|2 .

10. Let x(t) be a unit speed curve, with T, κ, τ , etc. as in Exercise 1. Consider
the curve y(t) = T (t), a curve which is perhaps not of unit speed. Show that its
curvature and torsion are given by

(K.11) κ̃ =

√
1 +

( τ

κ

)2

, τ̃ =
d
ds

(
τ
κ

)

κ
[
1 +

(
τ
κ

)2] .

Hint. Apply the results of Exercises 8–9 to y(t) = T (t). Use (K.3) to derive

T ′′ = −κ2T + κ′N + κτB, T ′ × T ′′ = κ2τT + κ3B.

Then produce a formula for T ′′′.
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L. Exercises on exponential and trigonometric functions

1. Let a ∈ R. Show that the unique solution to u′(t) = au(t), u(0) = 1 is given by

(L.1) u(t) =
∞∑

j=0

aj

j!
tj .

We denote this function by u(t) = eat, the exponential function. We also write
exp(t) = et.
Hint. Integrate the series term by term and use the fundamental theorem of
calculus.
Alternative. Setting u0(t) = 1, and using the Picard iteration method (G.4) to
define the sequence uk(t), show that uk(t) =

∑k
j=0 ajtj/j!

2. Show that, for all s, t ∈ R,

(L.2) ea(s+t) = easeat.

Hint. Show that u1(t) = ea(s+t) and u2(t) = easeat solve the same initial value
problem.
Alternative. Differentiate ea(s+t)e−at.

3. Show that exp : R→ (0,∞) is a diffeomorphism. We denote the inverse by

log : (0,∞) −→ R.

Show that v(x) = log x solves the ODE dv/dx = 1/x, v(1) = 0, and deduce that

(L.3)
∫ x

1

1
y

dy = log x.

4. Let a ∈ R, i =
√−1. Show that the unique solution to f ′(t) = iaf, f(0) = 1 is

given by

(L.4) f(t) =
∞∑

j=0

(ia)j

j!
tj .
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We denote this function by f(t) = eiat. Show that, for all t ∈ R,

(L.5) eia(s+t) = eiaseiat.

5. Write

(L.6) eit =
∞∑

j=0

(−1)j

(2j)!
t2j + i

∞∑

j=0

(−1)j

(2j + 1)!
t2j+1 = u(t) + iv(t).

Show that
u′(t) = −v(t), v′(t) = u(t).

We denote these functions by u(t) = cos t, v(t) = sin t. The identity

(L.7) eit = cos t + i sin t

is called Euler’s formula.

6. Use (L.5) to derive the identities

(L.8)
sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y.

7. Use (L.7)–(L.8) to show that

(L.9) sin2 t + cos2 t = 1, cos2 t =
1
2
(
1 + cos 2t

)
.

8. Show that
γ(t) = (cos t, sin t)

is a map of R onto the unit circle S1 ⊂ R2 with non-vanishing derivative, and, as t
increases, γ(t) moves monotonically, counterclockwise.
We define π to be the smallest number t1 ∈ (0,∞) such that γ(t1) = (−1, 0), so

cos π = −1, sin π = 0.

Show that 2π is the smallest number t2 ∈ (0,∞) such that γ(t2) = (1, 0), so

cos 2π = 1, sin 2π = 0.
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Show that
cos(t + 2π) = cos t, sin(t + 2π) = sin t

cos(t + π) = − cos t, sin(t + π) = − sin t.

Show that γ(π/2) = (0, 1), and that

cos
(
t +

π

2

)
= − sin t, sin

(
t +

π

2

)
= cos t.

9. Show that sin : (−π/2, π/2) → (−1, 1) is a diffeomorphism. We denote its
inverse by

arcsin : (−1, 1) −→
(
−π

2
,
π

2

)
.

Show that u(t) = arcsin t solves the ODE

du

dt
=

1√
1− t2

, u(0) = 0.

Hint. Apply the chain rule to sin
(
u(t)

)
= t.

Deduce that, for t ∈ (−1, 1),

(L.10) arcsin t =
∫ t

0

dx√
1− x2

.

10. Show that

eπi/3 =
1
2

+
√

3
2

i, eπi/6 =
√

3
2

+
1
2
i.

Hint. First compute
(
1/2+

√
3i/2

)3 and use Exercise 8. Then compute eπi/2e−πi/3.
For intuition behind these formulas, look at Fig. L.1.

11. Show that sinπ/6 = 1/2, and hence that

π

6
=

∫ 1/2

0

dx√
1− x2

=
∞∑

n=0

an

2n + 1

(1
2

)2n+1

,

where
a0 = 1, an+1 =

2n + 1
2n + 2

an.

Show that
π

6
−

k∑
n=0

an

2n + 1

(1
2

)2n+1

<
4−k

3(2k + 3)
.
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Using a calculator, sum the series over 0 ≤ n ≤ 20, and verify that

π ≈ 3.141592653589 · · ·

12. For x 6= (k + 1/2)π, k ∈ Z, set

tanx =
sin x

cos x
.

Show that 1 + tan2 x = 1/ cos2 x. Show that w(x) = tan x satisfies the ODE

dw

dx
= 1 + w2, w(0) = 0.

13. Show that tan : (−π/2, π/2) → R is a diffeomorphism. Denote the inverse by

arctan : R −→
(
−π

2
,
π

2

)
.

Show that

(L.11) arctan y =
∫ y

0

dx

1 + x2
.
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M. Exponentiation of matrices

Let A be an n× n matrix, real or complex. We consider the linear ODE

(M.1)
dy

dt
= Ay; y(0) = y0.

In analogy to the scalar case, as treated in §L, we can produce the solution in the
form

(M.2) y(t) = etAy0,

where we define

(M.3) etA =
∞∑

k=0

tk

k!
Ak.

We will establish estimates implying the convergence of this infinite series for
all real t, indeed for all complex t. Then term by term differentiation is valid, and
gives (M.1). To discuss convergence of (M.3), we need the notion of the norm of a
matrix.

If u = (u1, . . . , un) belongs to Rn or to Cn, set

(M.4) ‖u‖ =
(|u1|2 + · · ·+ |un|2

)1/2
.

Then, if A is an n× n matrix, set

(M.5) ‖A‖ = sup{‖Au‖ : ‖u‖ ≤ 1}.

The norm (M.4) possesses the following properties:

(M.6) ‖u‖ ≥ 0, ‖u‖ = 0 ⇐⇒ u = 0,

(M.7) ‖cu‖ = |c| ‖u‖, for real or complex c,

(M.8) ‖u + v‖ ≤ ‖u‖+ ‖v‖.

The last, known as the triangle inequality, follows from Cauchy’s inequality:

(M.9) |(u, v)| ≤ ‖u‖ · ‖v‖,
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where the inner product is (u, v) = u1v1 + · · ·+unvn. To deduce (M.8) from (M.9),
just square both sides of (M.8). To prove (M.9), use (u− v, u− v) ≥ 0 to get

2 Re (u, v) ≤ ‖u‖2 + ‖v‖2.

Then replace u by eiθu to deduce

2|(u, v)| ≤ ‖u‖2 + ‖v‖2.

Next, replace u by tu and v by t−1v, to get

2|(u, v)| ≤ t2‖u‖2 + t−2‖v‖2,

for any t > 0. Picking t so that t2 = ‖v‖/‖u‖, we have Cauchy’s inequality (M.9).
Granted (M.6)–(M.8), we easily get

(M.10)

‖A‖ ≥ 0,

‖cA‖ = |c| ‖A‖,
‖A + B‖ ≤ ‖A‖+ ‖B‖.

Also, ‖A‖ = 0 if and only if A = 0. The fact that ‖A‖ is the smallest constant K
such that ‖Au‖ ≤ K‖u‖ gives

(M.11) ‖AB‖ ≤ ‖A‖ · ‖B‖.

In particular,

(M.12) ‖Ak‖ ≤ ‖A‖k.

This makes it easy to check convergence of the power series (M.3).
Power series manipulations can be used to establish the identity

(M.13) esAetA = e(s+t)A.

Another way to prove this is the following. Regard t as fixed; denote the left side
of (M.13) as X(s) and the right side as Y (s). Then differentiation with respect to
s gives, respectively

(M.14)
X ′(s) = AX(s), X(0) = etA,

Y ′(s) = AY (s), Y (0) = etA,

so uniqueness of solutions to the ODE implies X(s) = Y (s) for all s. We note that
(M.13) is a special case of the following.



300

Proposition M.1. et(A+B) = etAetB for all t, if and only if A and B commute.

Proof. Let

(M.15) Y (t) = et(A+B), Z(t) = etAetB .

Note that Y (0) = Z(0) = I, so it suffices to show that Y (t) and Z(t) satisfy the
same ODE, to deduce that they coincide. Clearly

(M.16) Y ′(t) = (A + B)Y (t).

Meanwhile

(M.17) Z ′(t) = AetAetB + etABetB .

Thus we get the equation (4.16) for Z(t) provided we know that

(M.18) etAB = BetA if AB = BA.

This follows from the power series expansion for etA, together with the fact that

(M.19) AkB = BAk for all k ≥ 0, if AB = BA.

For the converse, if Y (t) = Z(t) for all t, then etAB = BetA, by (M.17), and hence,
taking the t-derivative, etAAB = BAetA; setting t = 0 gives AB = BA.

If A is in diagonal form

(M.20) A =




a1

. . .
an




then clearly

(M.21) etA =




eta1

. . .
etan




The following result makes it useful to diagonalize A in order to compute etA.

Proposition M.2. If K is an invertible matrix and B = KAK−1, then

(M.22) etB = K etA K−1.

Proof. This follows from the power series expansion (4.3), given the observation
that

(M.23) Bk = K Ak K−1.
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In view of (M.20)–(M.22), it is convenient to record a few standard results about
eigenvalues and eigenvectors here. Let A be an n× n matrix over F, F = R or C.
An eigenvector of A is a nonzero u ∈ Fn such that

(M.24) Au = λu

for some λ ∈ F. Such an eigenvector exists if and only if A− λI : Fn → Fn is not
invertible, i.e., if and only if

(M.25) det(A− λI) = 0.

Now (M.25) is a polynomial equation, so it always has a complex root. This proves
the following.

Proposition M.3. Given an n × n matrix A, there exists at least one (complex)
eigenvector u.

Of course, if A is real and we know there is a real root of (M.25) (e.g., if n is
odd) then a real eigenvector exists. One important class of matrices guaranteed to
have real eigenvalues is the class of self adjoint matrices. The adjoint of an n × n
complex matrix is specified by the identity (Au, v) = (u,A∗v).

Proposition M.4. If A = A∗, then all eigenvalues of A are real.

Proof. Au = λu implies

(M.26) λ‖u‖2 = (λu, u) = (Au, u) = (u,Au) = (u, λu) = λ‖u‖2.

Hence λ = λ, if u 6= 0.

We now establish the following important result.

Theorem M.5. If A = A∗, then there is an orthonormal basis of Cn consisting of
eigenvectors of A.

Proof. Let u1 be one unit eigenvector; Au1 = λu1. Existence is guaranteed by
Proposition 4.3. Let V = (u1)⊥ be the orthogonal complement of the linear span
of u1. Then dim V is n− 1 and

(M.27) A : V → V, if A = A∗.

The result follows by induction on n.

Corollary M.6. If A = At is a real symmetric matrix, then there is an orthonormal
basis of Rn consisting of eigenvectors of A.

Proof. By Proposition M.4 and the remarks following Proposition M.3, there is one
unit eigenvector u1 ∈ Rn. The rest of the proof is as above.
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The proof of the last four results rests on the fact that every nonconstant poly-
nomial has a complex root. This is the Fundamental Theorem of Algebra. A proof
is given in §9 (Exercise 5).

Given an ODE in upper triangular form,

(M.28)
dy

dt
=




a11 ∗ ∗
. . . ∗

ann


 y

you can solve the last ODE for yn, as it is just dyn/dt = annyn. Then you get
a single inhomogeneous ODE for yn−1, which can be solved as demonstrated in
(G.16)-(G.19), and you can continue inductively to solve. Thus it is often useful
to be able to put an n × n matrix A in upper triangular form, with respect to a
convenient choice of basis. We will establish two results along these lines. The first
is due to Schur.

Theorem M.7. For any n× n matrix A, there is an orthonormal basis u1, . . . , un

of Cn with respect to which A is in upper triangular form.

This result is equivalent to:

Proposition M.8. For any A, there is a sequence of vector spaces Vj of dimension
j, contained in Cn, with

(M.29) Vn ⊃ Vn−1 ⊃ · · · ⊃ V1

and

(M.30) A : Vj −→ Vj .

To see the equivalence, if we are granted (M.29)–(M.30), pick un⊥Vn−1, a unit
vector, then pick un−1 ∈ Vn−1 such that un−1⊥Vn−2, and so forth. Meanwhile,
Proposition M.8 is a simple inductive consequence of the following result.

Lemma M.9. For any matrix A acting on Vn, there is a linear subspace Vn−1, of
codimension 1, such that A : Vn−1 → Vn−1.

Proof. Use Proposition M.3, applied to A∗. There is a vector v1 such that A∗v1 =
λv1. Let Vn−1 = (v1)⊥. This completes the proof of the Lemma, hence of Theorem
M.7.

Let’s look more closely at what you can say about solutions to an ODE which
has been put in the form (M.28). As mentioned, we can obtain yj inductively by
solving nonhomogeneous scalar ODEs

(M.31)
dyj

dt
= ajjyj + bj(t)
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where bj(t) is a linear combination of yj+1(t), . . . , yn(t), and the formula (G.19)
applies, with A(t) = ajjt. We have yn(t) = Ceannt, so bn−1(t) is a multiple of eannt.
If an−1,n−1 6= ann, yn−1(t) will be a linear combination of eannt and ean−1,n−1t,
but if an−n,n−1 = ann, yn−1(t) may be a linear combination of eannt and teannt.
Further integration will involve

∫
p(t)eαt dt where p(t) is a polynomial. That no

other sort of function will arise is guaranteed by the following result.

Lemma M.10. If p(t) ∈ Pn, the space of polynomials of degree ≤ n, and α 6= 0,
then

(M.32)
∫

p(t)eαt dt = q(t)eαt + C

for some q(t) ∈ Pn.

Proof. The map p = Tq defined by (d/dt)(q(t)eαt) = p(t)eαt is a map on Pn; in
fact we have

(M.33) Tq(t) = αq(t) + q′(t).

It suffices to show T : Pn → Pn is invertible. But D = d/dt is nilpotent on
Pn; Dn+1 = 0. Hence

T−1 = α−1(I + α−1D)−1 = α−1
(
I − α−1D + · · ·+ α−n(−D)n

)
.

Note that this gives a neat formula for the integral (M.32). For example,

(M.34)

∫
tne−t dt = −(tn + ntn−1 + · · ·+ n!)e−t + C

= −n!
(
1 + t +

1
2
t2 + · · ·+ 1

n!
tn

)
e−t + C.

This could also be established by integration by parts and induction. Of course,
when α = 0 in (M.32) the result is different; q(t) is a polynomial of degree n + 1.

Now the implication for the solution to (M.28) is that all the components of y(t)
are products of polynomials and exponentials. By Theorem M.7, we can draw the
same conclusion about the solution to dy/dt = Ay for any n× n matrix A. We can
formally state the result as follows.

Proposition M.11. For any n× n matrix A,

(M.35) etAv =
∑

eλjtvj(t),

where {λj} is the set of eigenvalues of A and vj(t) are Cn-valued polynomials. All
the vj(t) are constant when A is diagonalizable.
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To see that the λj are the eigenvalues of A, note that, in the upper triangular
case, only the exponentials eajjt arise, and in that case the eigenvalues are precisely
the diagonal elements.

If we let Eλ denote the space of Cn-valued functions of the form V (t) = eλtv(t),
where v(t) is a Cn-valued polynomial, then Eλ is invariant under the action of both
d/dt and A, hence of d/dt − A. Hence, if a sum V1(t) + · · · + Vk(t), Vj(t) ∈ Eλj

(with λjs distinct) is annihilated by d/dt−A, so is each term in this sum.
Therefore, if (M.35) is a sum over the distinct eigenvalues λj of A, it follows that

each term eλjtvj(t) is annihilated by d/dt−A, or equivalently is of the form etAwj

where wj = vj(0). This leads to the following conclusion. Set

(M.36) Gλ = {v ∈ Cn : etAv = etλv(t), v(t) polynomial}.

Then Cn has a direct sum decomposition

(M.37) Cn = Gλ1 + · · ·+ Gλk

where λ1, . . . , λk are the distinct eigenvalues of A. Furthermore, each Gλj is invari-
ant under A, and

(M.38) Aj = A|Gλj
has exactly one eigenvalue, λj .

This last statement holds because, when v ∈ Gλj , etAv involves only the expo-
nential eλjt. We say Gλj is the generalized eigenspace of A, with eigenvalue λj . Of
course, Gλj contains ker (A−λjI). Now Bj = Aj−λjI has only 0 as an eigenvalue.
It is subject to the following result.

Lemma M.12. If B : Ck → Ck has only 0 as an eigenvalue, then B is nilpotent,
i.e.,

(M.39) Bm = 0 for some m.

Proof. Let Wj = Bj(Ck); then Ck ⊃ W1 ⊃ W2 ⊃ · · · is a sequence of finite
dimensional vector spaces, each invariant under B. This sequence must stabilize, so
for some m, B : Wm → Wm bijectively. If Wm 6= 0, B has a nonzero eigenvalue.

We next discuss the famous Jordan normal form of a complex n×n matrix. The
result is the following.

Theorem M.13. If A is an n× n matrix, then there is a basis of Cn with respect
to which A becomes a direct sum of blocks of the form

(M.40)




λj 1

λj
. . .
. . . 1

λj
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In light of the decomposition (M.37) and Lemma M.12, it suffices to establish the
Jordan normal form for a nilpotent matrix B. Given v0 ∈ Ck, let m be the smallest
integer such that Bmv0 = 0; m ≤ k. If m = k, then {v0, Bv0, . . . , B

m−1v0} gives a
basis of Ck putting B in Jordan normal form. We then say v0 is a cyclic vector for
B, and Ck is generated by v0. We call {v0, . . . , B

m−1v0} a string.
We will have a Jordan normal form precisely if we can write Ck as a direct sum of

cyclic subspaces. We establish that this can be done by induction on the dimension.
Thus, inductively, we can suppose W1 = B(Ck) is a direct sum of cyclic sub-

spaces, so W1 has a basis that is a union of strings, let’s say a union of d strings
{vj , Bvj , . . . , B

`j vj}, 1 ≤ j ≤ d. In this case, ker B ∩W1 = N1 has dimension d,
and the vectors B`j vj , 1 ≤ j ≤ d, span N1. Furthermore, each vj has the form
vj = Bwj for some wj ∈ Ck.

Now dim ker B = k−r ≥ d, where r = dim W1. Let {z1, . . . , zk−r−d} span a sub-
space of ker B complementary to N1. Then the strings {wj , vj = Bwj , . . . , B

`j vj}, 1 ≤
j ≤ d, and {z1}, . . . , {zk−r−d} generate cyclic subspaces whose direct sum is Ck,
giving the Jordan normal form.

The argument above is part of an argument of Filippov. In fact, Filippov’s proof
contains a further clever twist, enabling one to prove Theorem M.13 without using
the decomposition (M.37). See Strang [Stra] for Filippov’s proof.

We have seen how constructing etA solves the equation (M.1). We can also use
it to solve an inhomogeneous equation, of the form

(M.41)
dy

dt
= Ay + b(t); y(0) = y0.

Direct calculation shows that the solution is given by

(M.42) y(t) = etAy0 +
∫ t

0

e(t−s)A b(s) ds.

Note how this partially generalizes the formula (G.19).
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N. Isothermal coordinates

Let M be an oriented manifold of dimension 2, endowed with a Riemannian
metric g. We aim to sketch a proof of the following result.

Proposition N.1. There exists a covering Uj of M and coordinate maps

(N.1) ϕj : Uj −→ Oj ⊂ R2

which are conformal (and orientation preserving).

By definition, a map ϕ : U → O between two manifolds, with Riemannian
metrics g and g0 is conformal provided

(N.2) ϕ∗g0 = λg

for some positive λ ∈ C∞(U). In (N.1), Oj is of course given the flat metric
dx2 + dy2. Coordinates (N.1) which are conformal are also called “isothermal co-
ordinates.” It is clear that the composition of conformal maps is conformal, so if
Proposition N.1 holds then the transition maps

(N.3) ψjk = ϕj ◦ ϕ−1
k : Ojk −→ Okj

are conformal, where Ojk = ϕk(Uj ∩Uk). This is particularly significant, in view of
the following fact:

Proposition N.2. An orientation preserving conformal map

(N.4) ψ : O −→ O′
between two open domains in R2 = C is a holomorphic map.

One way to see this is with the aid of the Hodge star operator ∗, introduced in
§22, which maps Λ1(M) to Λ1(M) if dim M = 2. Note that, for M = R2, with its
standard orientation and flat metric,

(N.5) ∗dx = dy, ∗dy = −dx.

Since the action of a map (N.4) on 1-forms is given by

(N.6)
ψ∗dx =

∂f

∂x
dx +

∂f

∂y
dy = df,

ψ∗dy =
∂g

∂x
dx +

∂g

∂y
dy = dg,

if ψ(x, y) = (f, g), then the Cauchy-Riemann equations

(N.7)
∂f

∂x
=

∂g

∂y
,

∂g

∂x
= −∂f

∂y
(i.e., ∗ df = dg)

are readily seen to be equivalent to the commutativity relation

(N.8) ∗ ◦ (
ψ∗

)
=

(
ψ∗

) ◦ ∗ on 1-forms.

Thus Proposition N.2 is a consequence of the following:



307

Proposition N.3. If M is oriented and of dimension 2, then the Hodge star oper-
ator ∗ : T ∗p M → T ∗p M is conformally invariant.

In fact, in this case, ∗ can be simply characterized as counterclockwise rotation
by 90◦, as can be seen by picking a coordinate system centered at p ∈ M such that
gjk = δjk at p and using (10.5). This characterization of ∗ is clearly conformally
invariant.

Thus Proposition N.1 implies that an oriented two-dimensional Riemannian man-
ifold has an associated complex structure. A manifold of (real) dimension two with
a complex structure is called a Riemann surface.

To begin the proof of Proposition N.1, we note that it suffices to show that, for
any p ∈ M, there exists a neighborhood U of p and a coordinate map

(N.9) ψ = (f, g) : U → O ⊂ R2

which is conformal. If df(p) and dg(p) are linearly independent, the map (f, g)
will be a coordinate map on some neighborhood of p, and (f, g) will be conformal
provided

(N.10) ∗df = dg.

Note that, if df(p) 6= 0, then df(p) and dg(p) are linearly independent. Suppose
f ∈ C∞(U) is given. Then, by the Poincaré lemma, if U is diffeomorphic to a disk,
there will exist a g ∈ C∞(U) satisfying (N.10) precisely when

(N.11) d ∗ df = 0.

Now, as we saw in §22, the Laplace operator on C∞(M) is given by

(N.12) ∆f = −δdf = − ∗ d ∗ df,

when dim M = 2, so (N.11) is simply the statement that f is a harmonic function
on U. Thus Proposition N.1 is a consequence of the following.

Proposition N.4. There is a neighborhood U of p and a function f ∈ C∞(U) such
that ∆f = 0 on U and df(p) 6= 0.

Sketch of Proof. In a coordinate system x = (x1, x2), we have

∆f(x) = g(x)−1/2∂j

(
gjk(x)g(x)1/2∂kf

)

= gjk(x)∂j∂kf + bk(x)∂kf.

Pick some coordinate system centered at p, identifying the unit disk D ⊂ R2 with
some neighborhood U1 of p. Now dilate the variables by a factor ε, to map the
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small neighborhood Uε of p (the image of the disk Dε of radius ε in the original
coordinate system) onto the unit disk D. In this dilated coordinate system, we have

(N.13) ∆f(x) = gjk(εx)∂j∂kf + εbk(εx)∂kf.

Now we define f = fε to be the harmonic function on Uε equal to x1/ε on ∂Uε

(in the original coordinate system), i.e., to x1 on ∂D in the dilated coordinate
system. We need only show that, for ε > 0 sufficiently small, we can guarantee
that dfε(p) 6= 0.

To see this note that, in the dilated coordinate system, we can write

(N.14) fε = x1 − εvε on D,

where vε is defined by

(N.15) ∆εvε = b1(εx) on D, vε

∣∣
∂D = 0,

∆ε being given by (N.13). Now the regularity estimates for elliptic PDE hold
uniformly in ε ∈ (0, 1] in this case; see Chapter 5 of [T1] for details. Thus we have
uniform estimates on vε in C1(D) as ε → 0. This shows dfε(p) 6= 0 for ε small, and
completes the proof.



309

O. Sard’s theorem

Let F : Ω → Rn be a C1 map, with Ω open in Rn. If p ∈ Ω and DF (p) : Rn → Rn

is not surjective, then p is said to be a critical point, and F (p) a critical value. The
set C of critical points can be a large subset of Ω, even all of it, but the set of
critical values F (C) must be small in Rn. This is part of Sard’s Theorem.

Theorem O.1. If F : Ω → Rn is a C1 map, then the set of critical values of F
has measure 0 in Rn.

Proof. If K ⊂ Ω is compact, cover K ∩ C with m-dimensional cubes Qj , with
disjoint interiors, of side δj . Pick pj ∈ C ∩Qj , so Lj = DF (pj) has rank ≤ n − 1.
Then, for x ∈ Qj ,

F (pj + x) = F (pj) + Ljx + Rj(x), ‖Rj(x)‖ ≤ ρj = ηjδj ,

where ηj → 0 as δj → 0. Now Lj(Qj) is certainly contained in an (n−1)-dimensional
cube of side C0δj , where C0 is an upper bound for

√
m‖DF‖ on K. Since all points

of F (Qj) are a distance ≤ ρj from (a translate of) Lj(Qj), this implies

meas F (Qj) ≤ 2ρj(C0δj + 2ρj)n−1 ≤ C1ηjδ
n
j ,

provided δj is sufficiently small that ρj ≤ δj . Now
∑

j δn
j is the volume of the cover

of K ∩ C. For fixed K this can be assumed to be bounded. Hence

meas F (C ∩K) ≤ CK η,

where η = max {ηj}. Picking a cover by small cubes, we make η arbitrarily small,
so meas F (C ∩K) = 0. Letting Kj ↗ Ω, we complete the proof.

Sard’s theorem also treats the more difficult case when Ω is open in Rm,m > n.
Then a more elaborate argument is needed, and one requires more differentiability,
namely that F is class Ck, with k = m− n + 1. A proof can be found in Sternberg
[Stb]. The theorem also clearly extends to smooth mappings between separable
manifolds.

Theorem O.1 is applied in §9, in the study of degree theory. We give another
application of Theorem O.1, to the existence of lots of Morse functions. This
application gives the typical flavor of how one uses Sard’s theorem, and it is used
in a Morse theory argument in §20. We begin with a special case:

Proposition O.2. Let Ω ⊂ Rn be open, f ∈ C∞(Ω). For a ∈ Rn, set fa(x) =
f(x) − a · x. Then, for almost every a ∈ Rn, fa is a Morse function, i.e., it has
only nondegenerate critical points.

Proof. Consider F (x) = ∇f(x); F : Ω → Rn. A point x ∈ Ω is a critical point of fa

if and only if F (x) = a, and this critical point is degenerate only if, in addition, a
is a critical value of F . Hence the desired conclusion holds for all a ∈ Rn that are
not critical values of F .

Now for the result on manifolds:
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Proposition O.3. Let M be an n-dimensional manifold, imbedded in RK . Let
f ∈ C∞(M), and, for a ∈ RK , let fa(x) = f(x) − a · x, for x ∈ M ⊂ RK . Then,
for almost all a ∈ RK , fa is a Morse function.

Proof. Each p ∈ M has a neighborhood Ωp such that some n of the coordinates xν

on RK produce coordinates on Ωp. Let’s say x1, . . . , xn do it. Let (an+1, . . . , aK)
be fixed, but arbitrary. Then, by Proposition O.2, for almost every (a1, . . . , an) ∈
Rn, fa has only nondegenerate critical points on Ωp. By Fubini’s theorem, we
deduce that, for almost every a ∈ RK , fa has only nondegenerate critical points on
Ωp. (The set of bad a ∈ RK is readily seen to be a countable union of closed sets,
hence measurable.) Covering M by a countable family of such sets Ωp, we finish
the proof.
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P. Variational property of the Einstein tensor

In this appendix, we calculate the variation of the integral of scalar curvature,
with respect to the metric.

Theorem P.1. If M is a manifold with nondegenerate metric tensor (gjk), asso-
ciated Einstein tensor Gjk = Ricjk − (1/2)Sgjk, scalar curvature S, and volume
element dV, then, with respect to a compactly supported variation of the metric we
have

(P.1) δ

∫
S dV =

∫
Gjk δgjk dV = −

∫
Gjk δgjk dV.

To establish this, we first obtain formulas for the variation of the Riemann cur-
vature tensor, then of the Ricci tensor and the scalar curvature. Let Γi

jk be the
connection coefficients. Then δΓi

jk is a tensor field. The formula (15.62) states
that, if R̃ and R are the curvatures of the connections ∇̃ and ∇ = ∇̃+ εC, then

(P.2) (R− R̃)(X,Y )u = ε(∇̃XC)(Y, u)− ε(∇̃Y C)(X, u) + ε2[CX , CY ]u.

It follows that

(P.3) δRi
jk` = δΓi

j`;k − δΓi
jk;`.

Contracting, we obtain

(P.4) δ Ricjk = δΓi
ji;k − δΓi

jk;i.

Another contraction yields

(P.5) gjk δ Ricjk =
(
gjk δΓ`

j`

)
;k
− (

gjk δΓ`
jk

)
;`

since the metric tensor has vanishing covariant derivative. The identities (P.3)–(P.5)
are called “Palatini identities.”

Note that the right side of (P.5) is the divergence of a vector field. This will be
significant for our calculation of (P.1). By the Divergence Theorem, it implies that

(P.6)
∫

gjk
(
δ Ricjk

)
dV = 0,

as long as δgjk (hence δ Ricjk) is compactly supported.
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We now compute the left side of (P.1). Since S = gjk Ricjk, we have

(P.7) δS = Ricjk δgjk + gjk δ Ricjk.

Now we have

(P.8) dV =
√
|g| dx =⇒ δ(dV ) = − 1

2gjk δgjk dV,

since det(A + εB) = det(A) det(I + εA−1B) = det(A)
(
1 + ε Tr(A−1B) + O(ε2)

)
.

Hence

(P.9)
δ(S dV ) = Ricjk δgjk dV + gjk(δ Ricjk) dV + S δ(dV )

=
(
Ricjk − 1

2Sgjk

)
δgjk dV + gjk(δ Ricjk) dV.

The last term integrates to zero, by (P.6), so we have (P.1).
Note that verifying (P.1) did not require computation of δΓi

jk in terms of δgjk,
though this can be done explicitly. Indeed, formula (15.63) implies

(P.10) δΓ`jk = 1
2

[
δg`j;k − δg`k;j + δgjk;`

]
.

If dim M = 2, then, as shown by (15.26), Gjk is identically zero. Thus (P.1) has
the following implication (since S = 2K in this case).

Corollary P.2. If M is a compact Riemannian manifold of dimension 2, then the
integrated Gauss curvature

(P.11)
∫

M

K dV = C(M)

is independent of the choice of Riemannian metric tensor on M.

This is a proof of (17.26), different from the other proofs given in §17. It thus
leads to another proof of the Gauss-Bonnet theorem for compact, orientable 2-
dimensional Riemannian manifolds, for example by following (P.11) with reasoning
used in (17.27)–(17.31), or alternatively, giving M a metric arising from an embed-
ding in R3, and using (17.48)–(17.49).
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Q. A generalized Gauss map

Let j : M ↪→ Rn+1 be a compact, connected hypersurface, with outward pointing
normal N. Let k : M ↪→ Rn+1 be given by k(x) = j(x) + sN(x), for fixed small s.
Define τ : M ×M → Sn by

(Q.1) τ(x, y) =
k(x)− j(y)
|k(x)− j(y)| .

Thus τ(x, x) = N(x). Let ω ∈ ΛnSn be a normalized volume element, so
∫

Sn ω = 1.
Then we have

(Q.2) [τ∗ω] ∈ Hn(M ×M) ≈
n⊕

j=0

Hj(M)⊗Hn−j(M),

via the Kunneth formula. We want to tackle the following:

Problem. Identify the components

(Q.3) (τ∗ω)j,n−j ∈ Hj(M)⊗Hn−j(M).

To begin the analysis, and also to highlight the significance of making such an
explicit identification, we note that, if p ∈ M is fixed and

(Q.4) iν : M → M ×M, i1(x) = (x, p), i2(x) = (p, x),

then, by degree theory (compare (9.18)), we have:

(Q.5) i∗1(τ
∗ω)[M ] = 1, i∗2(τ

∗ω) = 0.

Here and below, β[M ] denotes
∫

M
β. To restate (Q.5), we have

(Q.6) (τ∗ω)n,0 = µ⊗ 1 ∈ Hn(M)⊗H0(M), with µ[M ] = 1,

and

(Q.7) (τ∗ω)0,n = 0 ∈ H0(M)⊗Hn(M).

Next, note that, if δ : M → M × M is the diagonal map, δ(x) = (x, x), then
τ ◦ δ : M → Sn is the Gauss map. Thus, by Hopf’s special case of the generalized
Gauss-Bonnet theorem, discussed in the early part of §20,

(Q.8) n even =⇒ δ∗(τ∗ω)[M ] =
1
2
χ(M).
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Now δ∗ : Hn(M ×M) → Hn(M) is given by the cup product on each part of the
Kunneth decomposition:

(Q.9) ∪ : Hj(M)⊗Hn−j(M) −→ Hn(M).

Thus, when n is even, we have

(Q.10)
n∑

j=0

∪(τ∗ω)j,n−j [M ] =
1
2
χ(M).

Another consequence of (Q.6)–(Q.7) is that

(Q.11) n = 1 =⇒ δ∗(τ∗ω)[M ] = 1.

This is equivalent to a result of Hopf regarding the index of a vector field with a
closed orbit. We can prove it by noting that, when n = 1, then

(Q.12) δ∗(τ∗ω)[M ] = (τ∗ω)1,0[M ] + (τ∗ω)0,1[M ] = 1 + 0 = 1.

This result was established in §9 by a different argument; see Proposition 9.12.
Let’s look a little closer at the case dim M = 2. Then (Q.10) is a sum of three

terms, two of which are specified by (Q.6)–(Q.7). Hence

(Q.13) ∪(τ∗ω)1,1[M ] =
1
2
χ(M)− 1 = −1

2
dim H1(M).

This gives partial information on (τ∗ω)1,1 ∈ H1(M) ⊗H1(M), in this case. Note
that, if c1 and c2 are closed curves in M, defining cycles for H1(M), then

(Q.14) (τ∗ω)1,1(c1 ⊗ c2) =
∫

c1×c2

τ∗ω = linking #
(
k(c1), j(c2)

)
,

where the last identity defines the linking number of the curves in k(c1) and j(c2)
in R3. For short, let us denote this quantity by λ(c1 ⊗ c2).

While the quantity (Q.13) is independent of the imbedding of M, (τ∗ω)1,1 itself
can depend on the imbedding, as illustrated by two surfaces of genus 2 in R3, in
Figures Q.1 and Q.2. The quantities λ(b1 ⊗ b2) and λ(b2 ⊗ b1) are different in the
two cases.

One might consider further generalizations, such as

τ : M1 ×M2 −→ Sn

given by (Q.1), for general Mj ⊂ Rn+1 such that M1 ∩M2 = ∅.
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R. Moser’s area preservation result

Given two Riemannian manifolds which are diffeomorphic, typically there is no
isometry taking one to another. On the other hand, as long as the two volumes are
the same (and the manifolds are compact, connected, and orientable) the following
result of J.Moser shows that there is a volume preserving diffeomorphism from one
to another.

We define a “volume form” on an oriented smooth manifold M of dimension n
to be a nowhere vanishing n-form on M, determining its orientation.

Proposition R.1. Let ω0 and ω1 be two volume forms on a compact, connected,
oriented manifold M. If

(R.1)
∫

M

ω0 =
∫

M

ω1

then there is a diffeomorphism F : M → M such that

(R.2) F ∗ω1 = ω0.

Proof. Taking convex linear combinations, we have a smooth family ωt of nowhere
vanishing n-forms ωt, 0 ≤ t ≤ 1, all with the same integral. We will construct a
1-parameter family Ft of diffeomorphisms on M, such that F ∗t ωt = ω0 for each t;
then taking F = F1 gives the desired result.

We will obtain Ft as the flow of a t-dependent family of vector fields Xt on M,
i.e.,

(R.3)
d

dt
Ft(x) = Xt

(
Ft(x)

)
, F0(x) = x.

It remains to construct the family Xt in such a fashion that F ∗t ωt is independent
of t. Now,

(R.4)
d

dt

(
F ∗t ωt

)
= F ∗t

(
LXtωt +

d

dt
ωt

)
,

so we want to find Xt with the property that

(R.5) LXtωt = −ω′t,

where ω′t = dωt/dt. Note that

(R.6)
∫

M

ω′t = 0, ∀ t.
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Thus we can set

(R.7) ω′t = dαt, αt = δGω′t,

using the Hodge decomposition (22.19) (for any metric on M , not necessarily related
to ωt). Meanwhile, the left side of (R.5) is given by

(R.8) LXt
ωt = (dωt)cXt + d

(
ωtcXt

)
= d

(
ωtcXt

)
.

Thus (R.5) holds if Xt has the property

(R.9) ωtcXt = −αt.

In (R.9), we are given the nowhere vanishing n-form ωt and the (n − 1)-form αt.
Thus Xt is uniquely specified by (R.9), and this makes (R.4) vanish. This proves
the proposition.

We remark that Hodge theory can be avoided here. A careful examination of
the proof of Proposition 9.5 enables one to construct an operator T : Λn(M) →
Λn−1(M) such that

∫
β = 0 implies β = d(Tβ), and one can use this T instead of

δG in (R.7).
There is an analogous result for compact manifolds with boundary.

Proposition R.2. Let ω0 and ω1 be two volume forms on a compact, connected,
oriented manifold with boundary M. If (R.1) holds, then there is a diffeomorphism
F : M → M satisfying (R.2).

Proof. Of course, if ∂M 6= ∅, we want F : ∂M → ∂M. We produce Ft as before, by
specifying a smooth family of vector fields Xt on M such that (R.4) vanishes. The
only extra condition we have to impose is that each Xt be tangent to ∂M.

We get this using the Hodge decomposition (23.21) for relative cohomology. As
noted in (23.49), under our hypotheses on M,

(R.10) Hn(M,∂M) ≈ R,

if n = dim M . We fix a Riemannian metric on M and then set

(R.11) αt = δGRω′t,

which implies dαt = ω′t since
∫

M
ω′t = 0. Once we have αt, then as above Xt is

uniquely specified by the identity (R.9). By the characterization (23.7) of relative
boundary conditions, we see that

(R.12) j∗αt = 0, j : ∂M ↪→ M.

It follows that the vector field Xt defined by (R.12) is tangent to ∂M, so the proof
is done.
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S. The Poincaré disc and Ahlfors’ inequality

The Poincaré disc is the disc D = {(x, y) ∈ R2 : x2 + y2 < 1}, with metric

(S.1) gij =
4

(1− r2)2
δij .

This has Gauss curvature −1, as a consequence of the formula (15.41), which says

(S.2) gij = e2vδij =⇒ K(x) = −(∆v)e−2v,

for any 2-dimensional surface, where

(S.3) ∆v =
∂2v

∂x2
+

∂2v

∂y2
.

One reason this metric is important is that it is invariant under all “Möbius trans-
formations,” i.e., maps F : D → D of the form

(S.4) F (z) =
az + b

bz + a
, |a|2 − |b|2 = 1,

where we identify (x, y) with z = x + iy.

Proposition S.1. When the metric tensor g is given by (S.1),

(S.5) F ∗g = g

for all maps F : D → D of the form (S.4).

We leave as an exercise the proof of this result, and also of the next result, to
the effect that the set M of Möbius transformations acts transitively on D.

Proposition S.2. For each pair p, q ∈ D, there exists F ∈M such that F (p) = q.

Note that, together, Propositions S.1 and S.2 imply that the Gauss curvature of
the Poincaré disc must be constant.

The following result, discovered by L. Ahlfors, is of great utility in complex
function theory. Let Ω be a planar region with a metric tensor (hij) which is also
a conformal multiple of the Euclidean metric:

(S.6) hij = e2wδij .
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Theorem S.3. Assume that (Ω, h) has Gauss curvature K(x) ≤ −1 everywhere.
If F : D → Ω is a conformal map (in particular, if F is holomorphic) then it is
distance decreasing, i.e.,

(S.7) (F ∗h)ij = e2uδij =⇒ e2u ≤ e2v =
4

(1− r2)2
.

Proof. Replacing F by Fρ(z) = F (ρz), ρ ↗ 1, we see that it suffices to show that
F ∗ρ h is dominated by the Poincaré metric for all such ρ. Thus, it suffices to show
that (S.7) holds when u is bounded on D. Since e2v →∞ on ∂D, it follows that, in
such a case, we have e2u/e2v → 0 on ∂D, so this quotient has a maximum inside
D, say at a point z0.

Thus, we will have (S.7) if we show that e2u(z0) ≤ e2v(z0). To establish this, note
that

(S.8) 0 ≥ ∆log
(e2u

e2v

)
(z0) = 2∆u(z0)− 2∆v(z0).

Now, our curvature hypothesis is equivalent to −(∆u)e−2u ≤ −1, while the compu-
tation that the Poincaré metric has curvature −1 is equivalent to (−∆v)e−2v = −1,
so

(S.9) ∆v = e2v, ∆u ≥ e2u.

Combining (S.8) and (S.9), we have e2u(z0) ≤ ∆u(z0) ≤ ∆v(z0) = e2v(z0), so
Theorem S.3 is proved.

One of the most important examples of such (Ω, h) as in Theorem S.3 is

(S.10) Ω = C \ {0, 1} = R2 \ {(0, 0), (1, 0)}.
given a metric of the form (S.6), with

(S.11) e2w(z) = A
1 + |z|1/3

|z|5/3
· 1 + |z − 1|1/3

|z − 1|5/3
.

A calculation using (S.2) shows that, for any A > 0, the Gauss curvature of Ω
satisfies KA(x) ≤ −α < 0, and if A is small enough then KA(x) ≤ −1. Using this,
we can establish the following result, known as Picard’s Little Theorem:

Theorem S.4. If F : C→ C \ {0, 1} is an entire holomorphic function, then F is
constant.

Proof. Consider the functions fr : D → C \ {0, 1} given by fr(z) = F (rz)
∣∣
D

. Each
fr is distance decreasing, so |f ′r(0)| must be uniformly bounded as r → ∞. Since
f ′r(0) = rF ′(0), this implies F ′(0) = 0. Similarly considering F (rz + ζ), we get
F ′(ζ) = 0 for all ζ ∈ C, and the proof is complete.

Further discussion of Ahlfors’ inequality, including a proof of Picard’s Big The-
orem, can be found in [Kran].

We remark that, using the results of §N, we can extend Theorem S.3 to the case
where Ω is any 2-dimensional surface with Gauss curvature ≤ −1, and hence to the
case where Ω is any Riemannian manifold with sectional curvature ≤ −1.
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T. Rigid body motion in Rn and geodesics on SO(n)

Suppose there is a rigid body in Rn, with a mass distribution at t = 0 given
by a function ρ(x), which we will assume is piecewise continuous and has compact
support. Suppose the body moves, subject to no external forces, only the constraint
of being rigid; we want to describe the motion of the body. According to the
Lagrangian approach to mechanics, we seek an extremum of the integrated kinetic
energy, subject to this constraint. For more on this approach to the equations of
classical mechanics, see [AbM] and [Ar].

If ξ(t, x) is the position in Rn at time t of the point on the body whose position
at time 0 is x, then we can write the “Lagrangian” as

(T.1) I(ξ) =
1
2

∫ t1

t0

∫

Rn

ρ
(
ξ(t, x)

)|ξ̇(t, x)|2 dx dt.

Here, ξ̇(t, x) = ∂ξ/∂t.
Using center of mass coordinates, we will assume that the center of mass of the

body is at the origin, and its total linear momentum is zero, so

(T.2) ξ(t, x) = W (t)x, W (t) ∈ SO(n),

where SO(n) is the group of rotations of Rn. Thus, describing the motion of the
body becomes the problem of specifying the curve W (t) in SO(n). We can write
(T.1) as

(T.3)

I(ξ) =
1
2

∫ t1

t0

∫

Rn

ρ
(
W (t)x

)|W ′(t)x|2 dx dt

=
1
2

∫ t1

t0

∫

Rn

ρ(y)|W ′(t)W (t)−1y|2 dy dt

= J(W ).

We look for an extremum, or other critical point, where we vary the family of paths
W : [t0, t1] → SO(n) (keeping the endpoints fixed).

Let us reduce the formula (T.3) for J(W ) to a single integral, over t. In fact, we
have the following.

Lemma T.1. If A and B are real n× n matrices, i.e., belong to M(n,R), then

(T.4)
∫

ρ(y) (Ay, By) dy = Tr (BtAIρ) = Tr (AIρB
t),
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where

(T.5) Iρ =
∫

ρ(y) y ⊗ y dy ∈
⊗

2 Rn ≈ M(n,R).

Proof. Both sides of (T.4) are linear in A and in B, and the formula is easily verified
for A = Eij , B = Ek`, where Eij has a 1 in the ith column and jth row, and zeros
elsewhere.

Recall that we are assuming that the body’s center of mass is at 0 and its total
linear momentum vanishes (at t = 0), i.e.,

(T.6)
∫

ρ(y)y dy = 0.

By (T.4), we can write the Lagrangian (T.3) as

(T.7)
J(W ) =

1
2

∫ t1

t0

Tr
(
W ′(t)W (t)−1Iρ(W ′(t)W (t)−1)t

)
dt

=
1
2

∫ t1

t0

Tr
(
Z(t)IρZ(t)t

)
dt,

where

(T.8) Z(t) = W ′(t)W (t)−1.

Note that, if W : (t0, t1) → SO(n) is smooth, then

(T.9) Z(t) ∈ so(n), ∀ t ∈ (t0, t1).

where so(n) is the set of real antisymmetric n × n matrices, the Lie algebra of
SO(n); in particular so(n) is the tangent space to SO(n) ⊂ M(n,R) at the identity
element.

Now we can define an inner product on TgSO(n) for general g ∈ SO(n) = G by

(T.10)

〈U, V 〉g = 〈Ug−1, V g−1〉I
= Tr

(
Ug−1Iρ(V g−1)t

)

= Tr
(
Ug−1IρgV t

)
,

where, as in (T.9), V ∈ TgSO(n) ⇒ V g−1 ∈ so(n). Note that

(T.11) λgV = gV, ρgV = V g−1, g ∈ SO(n)

define actions of G = SO(n) :

(T.12) λg : Tg̃G → Tgg̃G, ρg : Tg̃ → Tg̃g−1G,
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satisfying λg1g2 = λg1λg1 and ρg1g2 = ρg1ρg2 . The inner product (T.10) satisfies

(T.13) 〈U, V 〉g = 〈ρ(h)U, ρ(h)V 〉gh−1 , ∀ g, h ∈ G, U, V ∈ TgG.

Thus we have a right invariant Riemannian metric on SO(n), defined by (T.10).
If Iρ is a scalar multiple of the identity, it will also be left invariant, since, for
U, V ∈ TgG,

(T.14) 〈λ(g−1)U, λ(g−1)V 〉I = Tr
(
g−1UIρV

tg
)

= Tr
(
UIρV

t
)
,

which is equal to (T.10) provided g−1Iρg = Iρ.
Returning to (T.7), we see that

(T.15) J(W ) =
1
2

∫ t1

t0

〈
W ′(t), W ′(t)

〉
W (t)

dt.

The discussion in (11.25)–(11.27) shows that the stationary condition for (T.15),
for a family of curves in SO(n), is precisely the condition that W (t) be a geodesic
in SO(n), endowed with the right invariant Riemannian matric defined in (T.10),
via the tensor Iρ.

We now pursue the stationary condition for (T.7) directly, independently of its
connection with geodesic motion. Let Ws be a one parameter family of curves in
SO(n), with endpoints (at t1 and t2) fixed, such that W0 = W. The variation

(T.16) ∂sWs(t)
∣∣
s=0

= X(t)

is a curve in M(n,R), belonging to TW (t)G for each t, so

(T.17) X(t)W (t)−1 = Y (t) ∈ so(n).

We have

(T.18)

d

ds
J(Ws)

∣∣
s=0

=
1
2

∫ t1

t0

Tr
(
X ′W−1Iρ(W ′W−1)t

−W ′W−1XW−1Iρ(W ′W−1)t

+ W ′W−1IρXW ′t + W ′W−1IρWX ′t
)

dt.

Recalling that W ′W−1 = Z, we note that X ′W−1 = Y ′ + Y Z; hence

(T.19)
d

ds
J(Ws)

∣∣
s=0

=
1
2

∫ t1

t0

Tr
(
−2(Y ′ + Y Z)IρZ + Y IρZ

2 − Y Z2Iρ

)
dt.

If we integrate by parts, we see that the stationary condition is

(T.20) Tr
(
Y (2IρZ

′ − 2ZIρZ + IρZ
2 − Z2Iρ)

)
= 0
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for all t ∈ (t0, t1), Y ∈ so(n). Now, given A ∈ M(n,R), Tr (Y A) = 0 for all
Y ∈ so(n) if and only if A = At. Thus the stationary condition is

(T.21) A−At = 0,

where

(T.22) A = 2IρZ
′ − 2ZIρZ + IρZ

2 − Z2Iρ,

so

(T.23) 1
2 (A−At) = IρZ

′ + Z ′Iρ + [Iρ, Z
2],

i.e., the stationary condition is that Z satisfy the evolution equation

(T.24) IρZ
′ + Z ′Iρ = −[Iρ, Z

2].

Note that, if we solve the first order nonlinear system (T.24), with initial condition
Z(0) = W ′(0), then we can solve for W (t) the linear system W ′(t) = Z(t)W (t),
arising from (T.8), with initial condition W (0) = I.

The equation (T.24) makes it natural to bring in the quantity

(T.25) M(t) = IρZ(t) + Z(t)Iρ.

We have M ′ = IρZ
′ + Z ′Iρ, and

(T.26) [M, Z] = [Iρ, Z
2].

Hence the stationary condition is equivalent to

(T.27)
dM

dt
= −[M, Z].

Note that the inner product 〈U, V 〉I = Tr (UIρV
t) in (T.10) defines a linear trans-

formation

(T.28) Lρ : so(n) −→ so(n)

by

(T.29) Tr
(Lρ(U)V t

)
= Tr

(
UIρV

t
)
, U, V ∈ so(n),

i.e., Lρ(U) is the skew-adjoint part of UIρ :

(T.30) Lρ(U) =
1
2
(
UIρ + IρU

)
.
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Hence, in (T.25), M(t) = 2Lρ

(
Z(t)

)
.

In case n = 3, we have an isomorphism κ : R3 → so(3) given by

(T.31) κ(ω1, ω2, ω3) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

as in (J.17), so that the cross product on R3 satisfies ω× x = Ax, A = κ(ω). Then
the vector-valued function

(T.32) ω(t) = −κ−1Z(t)

is called the angular velocity of the body. Note that

(T.33) (ω × y, ω × y) = (At
yAyω, ω),

where Ay = κ(y), and a calculation gives

(T.34) At
yAy = |y|2I − y ⊗ y.

Consequently, the Lagrangian integral (T.7) is equal to

(T.35) J(W ) =
1
2

∫ t1

t0

(Jρω(t), ω(t)
)
dt,

where

(T.36) Jρ =
∫

ρ(y)
[|y|2I − y ⊗ y

]
dy = (Tr Iρ)I − Iρ.

As noted in (J.18)–(J.19), the isomorphism κ has the properties

(T.37) κ(x× y) = [κ(x), κ(y)], Tr
(
κ(x)κ(y)t

)
= 2x · y.

Furthermore, a calculation shows that, if Lρ is given by (T.29)–(T.30), then

(T.38) κ−1Lρκ(ω) =
1
2
Jρω,

so, with M(t) ∈ so(3) defined by (T.25), we have

(T.39) µ(t) = −κ−1M(t) = Jρω(t),

the first identity defining µ(t) ∈ R3. The equation (T.27) is then equivalent to

(T.40)
dµ

dt
= −ω × µ.



324

The vector µ(t) is called the angular momentum of the body, and Jρ is called the
inertia tensor. The equation (T.40) is the standard form of Euler’s equation for the
free motion of a rigid body in R3.

Note that Jρ is a positive definite 3 × 3 matrix. Let us choose a positively
oriented orthonormal basis of R3 consisting of eigenvectors of Jρ, say Jρej = Jjej .
Then, if ω = (ω1, ω2, ω3), we have µ = (J1ω1, J2ω2, J3ω3), and

ω × µ =
(
(J3 − J2)ω2ω3, (J1 − J3)ω1ω3, (J2 − J1)ω1ω2

)
.

Hence, (T.40) takes the form

(T.41)

J1ω̇1 + (J3 − J2)ω2ω3 = 0

J2ω̇2 + (J1 − J3)ω1ω3 = 0

J3ω̇3 + (J2 − J1)ω1ω2 = 0.

If we multiply the `th line in (T.41) by ω̇` and sum over `, we get (d/dt)(J1ω
2
1 +

J2ω
2
2+J3ω

2
3) = 0, while if instead we multiply by J`ω̇` and sum, we get (d/dt)(J2

1ω2
1+

J2
2ω2

2 + J2
3ω2

3) = 0. Thus we have the conserved quantities

(T.42)
J1ω

2
1 + J2ω

2
2 + J3ω

2
3 = C1,

J2
1ω2

1 + J2
2ω2

2 + J2
3ω2

3 = C2.

If any of the quantities J` coincide, the system (T.41) simplifies. If, on the other
hand, we assume that J1 < J2 < J3, then we can write the system (T.41) as

(T.43) ω̇2 = β2ω1ω3, ω̇1 = −α2ω2ω3, ω̇3 = −γ2ω1ω2,

where

(T.44) α2 =
J3 − J2

J1
, β2 =

J3 − J1

J2
, γ2 =

J2 − J1

J3
.

If we then set

(T.45) ζ1 = αω2, ζ2 = βω1, ζ3 = αβω3,

this system becomes

(T.46)

ζ̇1 = ζ2ζ3

ζ̇2 = −ζ1ζ3

ζ̇3 = −γ2ζ1ζ2.

For this system we have conserved quantities

(T.47) ζ2
1 + ζ2

2 = c1, γ2ζ2
1 + ζ2

3 = c2,
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a fact which is equivalent to (T.42). (We mention that arranging that J1 < J2 < J3

might change the orientation, hence the sign in (T.40).)
Note that we can use (T.47) to decouple the system (T.46), obtaining

(T.48)

ζ̇1 =
[
(c1 − ζ2

1 )(c2 − γ2ζ2
1 )

]1/2

ζ̇2 = −[
(c1 − ζ2

2 )(c2 − γ2c1 + ζ2
2 )

]1/2

ζ̇3 = −[
(c2 − ζ2

3 )(c1 − γ−2c2 + γ−2ζ2
3 )

]1/2

Thus ζj are given by elliptic integrals; cf. [Lawd].
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U. Adiabatic limit and parallel transport.

Let H(t), t ∈ I, be a smooth family of self adjoint operators on a Hilbert space
H, with a smoothly varying family of eigenspaces E(t), of constant dimension k,
with eigenvalues λ(t). Assume the spectrum of H(t) on E(t)⊥ is bounded away
from λ(t). Making a trivial adjustment, we will assume λ(t) = 0. For simplicity,
assume all the operators H(t) have the same domain.

Consider the solution operator S(t, s) to the “Schrödinger equation”

(U.1)
∂u

∂t
= iH(t)u,

taking u(s) to u(t). Now slow down the rate of change of H, and consider the
solution operators Sn(t, s) to

(U.2)
∂u

∂t
= iH

( t

n

)
u.

The claim is that, if u(0) = u0 ∈ E(0), then Sn(nt, 0)u0 → w(t) ∈ E(t) as n →∞,
and there is a simple geometrical description of w(t).

This was established by T. Kato [Kat], and rediscovered by M. Berry [Ber1], the
geometrical content brought out by B. Simon [Si]. Berry worked with the case dim
E(t) = 1, but that restriction is not necessary. The more general case was already
dealt with by Kato; that the argument can be so extended was rediscovered by
F. Wilczek and A. Zee [WZ]. A collection of subsequent literature can be found in
[SW]. Curiously, Kato’s work has been ignored, despite the fact that it was cited
by [Si].

The geometrical structure is the following. The family E(t) gives a vector bundle
E → I, a subbundle of the product bundle I ×H. If P (t) denotes the orthogonal
projection of H on E(t), we have a covariant derivative on sections of E defined by

(U.3) ∇T u(t) = P (t)DT u(t),

where DT is the standard componentwise derivative of H-valued functions. Parallel
transport is defined by ∇T u = 0. It is easily seen, using

(U.4) P ′P = (I − P )P ′,

that parallel transport is also characterized by

(U.5)
dw

dt
= P ′(t)w, if w(0) ∈ E(0).
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See Exercise 3 of §13. The claim is that the adiabatic limit w(t) mentioned above
exists and is equal to the solution to (U.5), with w(0) = u0 ∈ E(0).

To prove this, we will rescale the t-variable in the equation (U.2). Thus we
compare the solutions u and w to

(U.6)

∂u

∂t
= inH(t)u

∂w

∂t
= P ′(t)w,

given u(0) = w(0) = u0 ∈ E(0). Then we know w(t) ∈ E(t) for each t, so
H(t)w(t) = 0. Also, by (U.4), P ′(t)w = (I − P )P ′w = (I − P )w′.

Let v(t) = u(t)− w(t). Then v(0) = 0 and

(U.7)
∂v

∂t
− inH(t)v = −P⊥(t)w′ = f(t).

Here we have used (U.4) and set P⊥ = I −P. Thus f(t) ⊥ E(t) for each t. Now let
Sn(t, s) denote the solution operator to ∂u/∂t = inH(t)u. Then the solution v(t)
to (U.7) is given by

(U.8) v(t) =
∫ t

0

Sn(t, s)f(s) ds.

We know that

(U.9)
∂

∂s
Sn(t, s) = −inSn(t, s)H(s).

Now the spectral hypothesis on H(t) implies we can set

(U.10) f(t) = H(t)g(t),

with g(t) a smooth family of elements of H. Hence

(U.11)

v(t) =
∫ t

0

Sn(t, s)H(s)g(s) ds

= − 1
in

∫ t

0

∂

∂s
Sn(t, s) g(s) ds

= − 1
in

[
g(t)− Sn(t, 0)g(0)

]
+

1
in

∫ t

0

Sn(t, s)g′(s) ds.

Hence

(U.12) ‖v(t)‖H ≤ K

n
.
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This proves our assertion:

(U.13) Sn(t, 0)u0 −→ w(t) as n →∞ if u0 ∈ E(0),

where w(t) is obtained from u0 by parallel translation.
Note that if H(1) = H(0), so E(1) = E(0), then w(1) will typically differ from

u0 by the application of a unitary operator on E0, since the connection (U.3) on E
is typically not flat. In the case Berry considered, where dimCE(0) = 1, this could
only be multiplication by eiθ, θ being called Berry’s phase.

If we assume that H(t) has purely distinct spectrum λ1(t) < λ2(t) < · · · , of
constant multiplicity, and no crossings, then we can analyze the behavior of so-
lutions to ∂u/∂t = inH(t)u via superpositions. Let Pj(t) denote the orthogonal
projection of H onto the λj(t)-eigenspace of H(t). Write u(0) =

∑
uj(0), with

uj(0) ∈ R(Pj(0)) = Ej(0). Let Tj(t) denote parallel translation in the vector bun-
dle R(Pj(t)) = Ej(t), i.e., the solution operator to

(U.14)
dwj

dt
= P ′j(t)wj , wj(0) ∈ Ej(0).

Then we can compare wj(t) = Tj(t)uj(0) to the solution uj(t) to

(U.15)
∂uj

∂t
= inH(t)uj , uj(0) = Pj(0)u(0),

i.e., to Sn(t, 0)Pj(0)u(0). By (U.11), we have
(U.16)

uj(t) = einΛj(t)
{

wj(t)− 1
in

[
gj(t)− Sjn(t, 0)gj(0)

]− 1
in

∫ t

0

Sjn(t, s)g′j(s) ds
}

,

where Sjn(t, s) denotes the solution operator for ∂/∂t−in
(
H(t)−λj(t)

)
, and gj(t) is

obtained in a fashion similar to g(t) in (U.11). Also, we have set Λj(t) =
∫ t

0
λj(s) ds.

If all the spectral gaps are bounded below:

(U.17) λj+1(t)− λj(t) ≥ C > 0,

then we can decompose any u(0) ∈ H and sum over j, obtaining
(U.18)
Sn(t, 0)u(0) =

∑

j

einΛj(t)Tj(t)u(0)

+
1
in

∑

j

einΛj(t)
[
gj(t)− Sjn(t, 0)gj(0) +

∫ t

0

Sjn(t, s)g′j(s) ds
]
.

Similar approximations, for Sjn(t, 0) and Sjn(t, s), can be made on the right, and
this process iterated, to obtain higher order asymptotic expansions.

Of course, the hypothesis (U.17) is rather restrictive. If one weakens it to

(U.19) |λj+1(t)− λj(t)| ≥ C〈λj(t)〉−K > 0,

then one can iterate (U.18), at least a finite number of times, provided u(0) belongs
to the domain of some power of H(0).
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V. Grassmannians (symmetric spaces, and Kähler manifolds)

Given k ≤ n, we let Gk,n denote the space of k-dimensional linear subspaces
of Rn. This space has a natural structure of a smooth manifold and a natural
Riemannian metric, which we proceed to construct. It will be helpful to consider
also an associated set of projections. Given a k-dimensional linear space V ⊂ Rn,
let PV be the orthogonal projection of Rn onto V. The correspondence V 7→ PV

sets up a bijection

(V.1) Gk,n ≈ Πk,n = {P ∈ End (Rn) : P = P t = P 2, Rank P = k}.

Let V0 ∈ Gk,n denote the space V0 = {(x1, . . . , xk, 0, . . . , 0) : xν ∈ R}. We have
a natural identification V0 = Rk and V ⊥

0 = Rn−k. An element V ∈ Gk,n close to V0

can be described uniquely as the graph of a map A ∈ L(Rk,Rn−k) :

(V.2) V = {(x,Ax) : x ∈ Rk},

where we take Rn = Rk ⊕Rn−k. This provides a coordinate system for a neighbor-
hood of V0 in Gk,n :

(V.3) ϕ : L(Rk,Rn−k) −→ Gk,n.

Alternatively,

(V.4) ϕ(A) = R(B), B = I ⊕A : Rk → Rn.

Note that Gk,n \ image(ϕ) consists of the collection of k-dimensional subspaces V
of Rn such that V ∩ (V0)⊥ 6= ∅.

The associated map

(V.5) ψ : L(Rk,Rn−k) −→ Πk,n

can be described as follows; ψ(A) is the orthogonal projection of Rn onto the space
(V.2), i.e., onto R(B) = R(BBt). Hence

(V.6) ψ(A) = B(BtB)−1Bt.

Recalling that B = (I, A)t, we have

(V.7) ψ(A) =
(

(I + AtA)−1 (I + AtA)−1At

A(I + AtA)−1 A(I + AtA)−1At

)
.
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Note that

(V.8) Dψ(0)X =
(

0 Xt

X 0

)
.

Thus, ψ is a diffeomorphism of a neighborhood of 0 in L(Rk,Rn−k) onto a k(n−k)-
dimensional manifold in End(Rn), more precisely onto a neighborhood in Πk,n of
P0, the orthogonal projection of Rn on V0. We have

(V.9) TP0Πk,n =
{(

0 Xt

X 0

)
: X ∈ L(Rk,Rn−k)

}
.

The space Πk,n gets a natural Riemannian metric as a submanifold of End(Rn),
endowed with the inner product

(V.10) 〈S, T 〉 = Tr (StT ).

Note that the inner product induced on TP0Πk,n is

(V.11) 〈X, Y 〉 = 2 Tr (XtY ).

since

(
Dψ(0)X

)t(
Dψ(0)Y

)
=

(
0 Xt

X 0

)(
0 Y t

Y 0

)
=

(
XtY 0

0 XY t

)
.

The group O(n) acts transitively on Gk,n. The subgroup fixing V0 is O(k) ×
O(n− k), so

(V.12) Gk,n ≈ O(n)/
(
O(k)×O(n− k)

)
.

The way O(n) acts on Πk,n is by restriction to Πk,n of the action by conjugation
on End(Rn) :

(V.13) g · P = gPg−1.

Clearly this action preserves the inner product (V.10) on End(Rn), so O(n) acts as
a group of isometries on Πk,n. Note that the derived action of O(k)×O(n− k) on
TP0Πk,n is given by

(V.14)
(

h 0
0 g

)(
0 Xt

X 0

)(
h−1 0
0 g−1

)
=

(
0 hXtg−1

gXh−1 0

)
.

Now, one can show that the action (h, g) · X = gXh−1 of O(k) × O(n − k) on
L(Rk,Rn−k) is irreducible, i.e., there are no proper invariant linear subspaces. It
follows that, up to a constant multiple, the inner product (V.11) on TP0Πk,n is the
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unique inner product which is invariant under the action of O(k)×O(n− k). Thus
the Riemannian metric on Πk,n constructed above is, up to a constant factor, the
unique metric invariant under the action of O(n).

We next consider the space Gk,n(C) of k-dimensional complex linear subspaces of
Cn. This has a description similar to Gk,n. Here and below, “linear” means C-linear,
unless otherwise stated. We have

(V.15) Gk,n(C) ≈ Πk,n(C) = {P ∈ End (Cn) : P = P ∗ = P 2, Rank P = k}.

Let V0 = Ck = {(z1, . . . , zk, 0, . . . , 0) : zν ∈ C}, P0 the orthogonal projection of Cn

on V0. We have a map

(V.16) ψ : L(Ck,Cn−k) −→ Πk,n(C)

given by (V.7), with At replaced by A∗. The natural (real) inner product on
End(Cn) is

(V.17) 〈S, T 〉 = Re Tr (S∗T ).

We have

(V.18) TP0Πk,n(C) =
{(

0 X∗

X 0

)
: X ∈ L(Ck,Cn−k)

}
,

and the inner product induced on L(Ck,Cn−k) from that on TP0Πk,n(C) satisfies

(V.19) 〈X, Y 〉 = 2 Re Tr (X∗Y ).

The group U(n) acts transitively on Gk,n(C). The subgroup fixing V0 is U(k)×
U(n− k), so

(V.20) Gk,n(C) ≈ U(n)/
(
U(k)× U(n− k)

)
.

The action of U(n) on Πk,n(C) is given by (V.13), so this is an action by isometries.
The action of U(k)×U(n−k) on TP0Πk,n(C) is given by (V.14), with Xt replaced

by X∗. Note that TP0Πk,n(C), given by (V.18), has a natural complex structure,
via X 7→ iX ∈ L(Ck,Cn−k). Denote this by

(V.21) J : TP Πk,n(C) −→ TP Πk,n(C),

where for now P = P0. In such a case, U(k)×U(n− k) acts as a group of complex
linear transformations on TP0Πk,n(C). Also, J is an isometry for the inner product
(V.19). Thus

(V.22) J = −J t = −J−1
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on TP0Πk,n(C). It follows that there is a unique complex structure (V.21) on
TP Πk,n(C) for each P, coinciding with that described above if P = P0, and also
having the property that, if g ∈ U(n) and g · P = P ′, then

(V.23) g∗ : TP Πk,n(C) −→ TP ′Πk,n(C)

is complex linear. Also, J satisfies (V.22) at each P ∈ Πk,n(C). One says Πk,n(C)
has an almost complex structure. Note that, if R(P ) = V,

(V.24) TP Πk,n(C) = {X + X∗ : X ∈ L(V, V ⊥)},

where X + X∗ is shorthand for XP + X∗(I −P ) = PXP + (I −P )X∗(I −P ). We
have

(V.25) J(X + X∗) = iX − iX∗.

There are some other algebraic structures that arise naturally. First, we can
define an R-bilinear form

(V.26) (X,Y ) = 〈X, Y 〉+ i〈X,JY 〉, X, Y ∈ TP Πk,n(C),

where 〈X,Y 〉 is the real inner product given by the Riemannian metric discussed
above. Note that

(V.27) (X, X) = 〈X,X〉, (JX, Y ) = i(X, Y ), (X,Y ) = (Y, X).

Thus, ( , ) is a Hermitian inner product on the complex vector space (TP , J), and

(V.28) 〈X, Y 〉 = Re (X, Y ).

Note that, in parallel with (V.19), we have

(V.29) (X, Y ) = 2 Tr (X∗Y )

as the Hermitian inner product induced on L(Ck,Cn−k) from that on TP0Πk,n(C).
Also, the current analogue of (V.14) implies that U(k)× U(n− k) acts as a group
of unitary operators on TP0Πk,n(C), with this Hermitian inner product. Now, this
action of U(k)× U(n− k) is irreducible, so it follows that this is (up to a positive
scalar) the only Hermitian inner product on TP0Πk,n(C) invariant under this group
action. Consequently, (V.26) gives TΠk,n(C) the structure of a Hermitian complex
vector bundle, and this is the unique Hermitian structure (up to a positive constant
factor) which is invariant under the action of U(n). Generally, a Riemannian man-
ifold M with an almost complex structure satisfying (V.22) is called a Hermitian
(almost complex) manifold.
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We now look at the action on Πk,n(C) of a special element of U(n), namely

(V.30) g0 =
(−I

I

)
,

which acts as −I on V0 and as I on V ⊥
0 . Denote P 7→ g0 · P = g0Pg−1

0 by

(V.31) ι : Πk,n(C) −→ Πk,n(C).

Clearly ι fixes P0. As for its action on TP0Πk,n(C), this is given by
(V.32)

Dι(P0)
(

0 X∗

X 0

)
=

(−I 0
0 I

)(
0 X∗

X 0

)(−I 0
0 I

)
=

(
0 −X∗

−X 0

)
,

i.e.,

(V.33) Dι(P0) = −I.

When a Riemannian manifold M has a transitive group G of isometries, it is
called a homogeneous space. If furthermore, there is a point p0 ∈ M and an
isometry ι ∈ G such that ι(p0) = p0 and Dι(p0) = −I on Tp0M, one calls M a
symmetric space. We have just seen that Gk,n(C) ≈ Πk,n(C) is a symmetric space.
A similar argument shows that the real Grassmannian Gk,n is also a symmetric
space.

If a symmetric space M has an almost complex structure J, satisfying (V.22),
which is invariant under the action of G, we say M is a Hermitian symmetric space.
The following result is useful.

Proposition V.1. If M is a Hermitian symmetric space with almost complex struc-
ture J (a tensor field of type (1,1)), then, for all vector fields X on M,

(V.34) ∇XJ = 0.

Proof. Consider F = ∇J, a tensor field of type (1,2). It is invariant under the
action of G. However, since Dι(p0) = −I, we must have ι∗F = −F at p0; hence
F = −F = 0 at p0. Hence F = 0 everywhere on M.

A Hermitian manifold whose almost complex structure J satisfies (V.34) is called
a Kähler manifold. We have just seen that Gk,n(C) ≈ Πk,n(C) is a Kähler manifold.
Note that (V.34) is equivalent to

(V.35) ∇X(JY ) = J(∇XY )

for all vector fields Y on M. Equivalently, on a Kähler manifold, parallel transport
along any smooth curve (say with endpoints at p, q ∈ M) gives a C-linear map from
TpM to TqM.
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The almost complex structure of a Kähler manifold M is always integrable, i.e.,
there is a holomorphic coordinate system on M, so M is actually a complex manifold.
We will not prove this here though below we will say more about the integrability
condition. However, we note that the map ψ : L(Ck,Cn−k) → Πk,n(C) given by
(V.7), with At replaced by A∗, is actually holomorphic, i.e., given X ∈ L(Ck,Cn−k),

(V.36) Dψ(A)(iX) = J Dψ(A)(X),

where J acts on TP Πk,n(C), P = ψ(A), in the manner specified in (V.24)-(V.25).
We leave this calculation to the reader. It follows that Gk,n(C) ≈ Πk,n(C) is a
complex manifold.

A Kähler manifold M has another structure, a 2-form ω, called the Kähler form,
defined by

(V.37) ω(X, Y ) = 〈X, JY 〉.

That ω(X, Y ) = −ω(Y, X) follows from (V.22). Since ∇J = 0, it follows that

(V.38) ∇ω = 0.

The formula (12.41) for dω then gives

(V.39) dω = 0,

i.e., ω is a closed 2-form on M. Since J is invertible, ω is nondegenerate, i.e., if
ω(X, Y ) = 0 for all Y ∈ TpM, then X = 0 at p. (A nondegenerate closed 2-form is
called a symplectic form). It follows that, if M has complex dimension m (hence
real dimension 2m), then, for 1 ≤ j ≤ m,

(V.40) ωj ∈ Λj(M), ωj 6= 0, dωj = 0.

We claim that, for 1 ≤ j ≤ m, ωj is not cohomologous to zero if M is compact.
Clearly ωm is not; it is nowhere vanishing and so

∫
M

ωm 6= 0. On the other hand,
if j < m,

(V.41) ωj = dβ =⇒ ωm = ωm−j ∧ dβ = ±d(ωm−j ∧ β),

giving a contradiction. Thus

(V.42) M compact Kähler =⇒ H2j(M) 6= 0, 1 ≤ j ≤ m.

Note that (V.37) defines a nondegenerate 2-form whenever M is a Hermitian
almost complex manifold, whether or not M is Kähler. The following is a useful
characterization of Kähler manifolds.
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Proposition V.2. If M is a Hermitian complex manifold (i.e., the almost complex
structure is integrable) and ω is defined by (V.37), then

(V.43) dω = 0 =⇒ M is Kähler.

The formula (12.41) shows that dω = 0 is equivalent to

(V.44) (∇Xω)(Y, Z) + (∇Y ω)(Z,X) + (∇Zω)(X, Y ) = 0

for all vector fields X, Y, Z on M. We want to show that this implies ∇Xω = 0,
which is equivalent to ∇XJ = 0, since

(V.45) 〈Y, (∇XJ)Z〉 = (∇Xω)(Y,Z).

Before proving this, we need to investigate further the integrability condition
on J that holds if M has a holomorphic coordinate system. The condition that a
function u : O → C be holomorphic, given O ⊂ M open, is that

(V.46) (X + iJX)u = 0

for every (real) vector field X on M. If M has a holomorphic coordinate system, it
is readily verified that, for any X and Y,

(V.47) [X + iJX, Y + iJY ] = [X, Y ] + i[JX, Y ] + i[X, JY ]− [JX, JY ]

must also have the same form, i.e., that

(V.48) N (X, Y ) = J
(
[X,Y ]− [JX, JY ]

)− (
[JX, Y ] + [X, JY ]

)

must vanish. It is easily verified that N (fX, gY ) = fgN (X, Y ) for any smooth
(real valued) f and g, so N defines a tensor field of type (1,2), on any almost
complex manifold M. In the literature one frequently sees N(X, Y ) = 2JN (X,Y ),
called the Nijenhuis tensor.

The result that an almost complex manifold for which N = 0 has a holomorphic
coordinate system is the Newlander-Nirenberg theorem. A proof can be found in
[FoKo], or in [T1].

On a general Hermitian almost complex manifold, one has the identity

(V.49) 2〈(∇XJ)Y, Z〉 = (dω)(X, JY, JZ)− (dω)(X,Y, Z) + 〈N (Y,Z), X〉.
The reader can verify this from the definitions. Thus, if M is a Hermitian almost
complex manifold, we have

(V.50) dω = 0 =⇒ 2〈(∇XJ)Y,Z〉 = 〈N (Y,Z), X〉.
Since the integrability condition is N = 0, we have Proposition V.2.

There is the following important consequence.

Corollary V.3. If M is a Kähler manifold and X ⊂ M is a complex submanifold,
then X is also Kähler.

Proof. If j : X ↪→ M denotes the inclusion, then ωX = j∗ωM , so dωX = j∗dωM .

The study of Kähler manifolds is an important area, involving both differential
geometry and algebraic geometry. For more on this topic, see [Weil] and [Wel]. The
study of symmetric spaces is closely tied to the study of Lie groups; [Hel] has a
great deal of information on this.
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W. The Hopf invariant

Assume M and N are compact oriented manifolds, such that

(W.1) dim N = n, dim M = 2n− 1.

Also assume that

(W.2) N connected, Hn(M) = 0.

For example, one could take M = S2n−1, provided n ≥ 2. Let f : M → N be a
smooth map. We define the Hopf invariant of f as follows.

Pick ω ∈ Λn(N) such that
∫

N
ω = 1. Let B = f∗ω. Pick A ∈ Λn−1(M) such

that dA = B. The hypothesis (W.2) implies this can be done. Set

(W.3) H(f) =
∫

M

A ∧ dA.

Note that, if n is odd, then d(A ∧ A) = 2A ∧ dA, so (W.3) vanishes. Thus n must
be even for the Hopf invariant to be nontrivial.

We establish independence of choices. Suppose we pick another ω′ ∈ Λn(N) such
that

∫
N

ω′ = 1, so

(W.4) ω′ = ω + dβ on N.

Then f∗ω′ = d(A + f∗β), and

(W.5)

∫

M

(A + f∗β) ∧ (dA + df∗β) =
∫

M

A ∧ dA +
∫

M

(f∗β) ∧ dA +
∫

M

A ∧ df∗β

+
∫

M

f∗β ∧ df∗β.

Consider the four integrals on the right side of (W.5). The second integrand is equal
to f∗(β∧ω) = 0. The third integrand is equal to (−1)n−1d(A∧f∗β)+(−1)ndA∧f∗β,
and as just seen the last term here is zero, so the second integral on the right
side of (W.5) vanishes. The last integrand on the right side of (W.5) is equal
to f∗(β ∧ dβ) = 0. Hence the left side of (W.5) is equal to (W.3), so (W.3) is
independent of the choice of ω on N .

Next suppose dA = dA′, so A′ − A = α ∈ Λn−1(M) is closed. Then A′ ∧ dA′ =
A∧dA+α∧dA = A∧dA+(−1)n−1d(α∧A), so (W.3) is unchanged upon replacing
A by A′.

The following result asserts the homotopy invariance of the Hopf invariant.
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Proposition W.1. If f0 : M → N and f1 : M → N are smoothly homotopic, then

(W.6) H(f0) = H(f1).

This result is a special case of the following restricted cobordism invariance,
when Ω = M × [0, 1].

Proposition W.2. Let M and N be as above, and suppose M = ∂Ω, where Ω is
a compact, oriented, 2n-dimensional manifold. Also assume that

(W.7) Hn(Ω) = 0.

Then

(W.8) F : Ω −→ N, f = F
∣∣
∂Ω

=⇒ H(f) = 0.

Proof. This time, let B = F ∗ω ∈ Λn(Ω), and take A ∈ Λn−1(Ω) such that dA = B.
Apply Stokes’ formula to A ∧ dA ∈ Λ2n−1(Ω), to get

(W.9)
∫

Ω

dA ∧ dA =
∫

∂Ω

A ∧ dA.

The right side of (W.9) is equal to H(f). On the other hand, the integrand on the
left side is equal to F ∗(ω ∧ ω) = 0.

We mention the following additional flexibility in the formula for the Hopf in-
variant.

Proposition W.3. Let ω and A be as in the definition (W.3). Let also
∫

N
ω′ = 1

and f∗ω′ = dA′. Then

(W.10) H(f) =
∫

M

A′ ∧ dA.

Proof. Write ω − ω′ = dα. Then dA− dA′ = df∗α, so A−A′ − f∗α = β is closed.
We have

(W.11)
∫

M

(A−A′) ∧ dA =
∫

(f∗α + β) ∧ f∗ω.

Now f∗(α∧ω) = 0 and β ∧ f∗ω = β ∧ dA = ±d(β ∧A), so the right side of (W.11)
vanishes.

There is the following relationship between the Hopf invariant and degree.
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Proposition W.4. Let M and N be as above. Suppose also M ′ is a compact
oriented manifold of dimension 2n− 1, with Hn(M ′) = 0, and ϕ : M ′ → M . Then

(W.12) H(f ◦ ϕ) = (Degϕ)H(f).

Proof. If A′ = ϕ∗A, we have dA′ = ϕ∗dA = (f ◦ϕ)∗ω, and A′ ∧ dA′ = ϕ∗(A∧ dA),
so

(W.13)

H(f ◦ ϕ) =
∫

M ′

A′ ∧ dA′ =
∫

M ′

ϕ∗(A ∧ dA)

= (Deg ϕ)
∫

M

A ∧ dA.

We now compute an important example of the Hopf invariant. Let N = S2 and
M = SO(3). The group SO(3) has Lie algebra so(3), spanned by

(W.14) J1 =




0
0 1
−1 0


 , J2 =




0 −1
0

1 0


 , J3 =




0 1
−1 0

0


 ,

satisfying commutation relations

(W.15) [J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2.

The group SO(3) acts transitively in S2 ⊂ R3, and the subgroup fixing the “north
pole” p = (0, 0, 1) is the group generated by J3. This defines a map

(W.16) ϕ : SO(3) −→ S2.

Let us define a 1-form α on SO(3) as follows. If Jν are extended as left-invariant
vector fields on SO(3), set

(W.17) α(J1) = α(J2) = 0, α(J3) = 1.

Then the formula dα(X, Y ) = Xα(Y ) − Y α(X) − α([X,Y ]), together with the
commutation relations (W.15) yields

(W.18) dα(J1, J2) = −1, dα(J2, J3) = 0, dα(J3, J1) = 0,

and hence

(W.19) α ∧ dα(J1, J2, J3) = −1.
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It follows from (W.18) that, up to sign, dα is the pull-back via ϕ of the volume
form ωS2 on S2 given by its standard metric, so

∫
S2 ωS2 = 4π.

Before completing the computation of H(ϕ), let us bring in M ′ = SU(2). We
have a two-fold covering homomorphism

(W.20) τ : SU(2) −→ SO(3),

obtained by mapping Xν to Jν , where Xν are the following basis of su(2),

(W.21) X1 =
1
2

(
i 0
0 −i

)
, X2 =

1
2

(
0 1
−1 0

)
, X3 =

1
2

(
0 i
i 0

)
,

with the same commutation relations as in (W.15), i.e.,

(W.22) [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Thus α′ = τ∗α satisfies analogues of (W.17)–(W.19), with Jν replaced by Xν ,
extended to be left-invariant vector fields on SU(2). Now SU(2) acts simply tran-
sitively on S3 ⊂ C2. Note that

(W.23) e4πXν = I,

and 4π is the smallest positive real number for which this holds. Hence, if SU(2)
is given the Riemannian metric induced from S3, we see that ‖Xν‖ = 1/2. Also,
the Xν are mutually orthogonal at each point of SU(2). Thus α′ ∧ dα′ is eight
times the volume element on SU(2) induced by this metric. By (4.30) we know
that Vol(S3) = 2π2, so

(W.24)
∫

SU(2)

α′ ∧ dα′ = 16π2,

provided we give SU(2) the orientation so that (−X1,−X2,−X3) is an oriented
basis of the tangent space. Now, let us set

(W.25) ω =
1
4π

ωS2 , A =
1
4π

α, A′ =
1
4π

α′.

Then

(W.26) dA = ϕ∗ω, dA′ = ψ∗ω,

where

(W.27) ψ = ϕ ◦ τ : SU(2) −→ S2,

and we have

(W.28) A′ ∧ dA′ =
1

16π2
α′ ∧ dα′.

By (W.24), we obtain the following:
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Conclusion. For the maps ϕ and ψ given by (W.16) and (W.27), we have

(W.29) H(ϕ) =
1
2
, H(ψ) = 1.

The map (W.27) is essentially equivalent to the classical Hopf map

(W.30) f : S3 −→ S2, H(f) = 1.

Note that, upon composing f with a map gν : S3 → S3 of degree ν and using
Proposition W.4, we obtain, for each ν ∈ Z, a map fν : S3 → S2 with H(fν) = ν.

It is known that, whenever M = S2n−1 and f : S2n−1 → N , then H(f) is an
integer. See [BTu] for a detailed discussion of the case n = 2. In fact, the Hopf
invariant of f : M → N is usually studied only for M = S2n−1. We claim that
generally, if M and N satisfy our standing hypotheses and f : M → N , then
H(f) is a rational number. In fact, this is a consequence of formula (W.35) below,
established by C. Lebrun.

Let p ∈ N be a regular value of f ; almost all points in N are regular, by Sard’s
theorem. Let ω be a (delta-function type distributional) n-form supported at p,
such that

∫
N

ω = 1, and let B = f∗ω. This is a distributional n-form on M ,
supported on Γ = f−1(p), a smooth (n− 1)-dimensional submanifold of M . A key
fact is that Γ inherits a natural orientation such that

(W.31)
∫

M

ψ ∧B =
∫

Γ

ψ

for any smooth (n− 1)-form ψ on M . This is readily established if ψ has support
on a small neighborhood of a point q ∈ Γ on which f can be put in the normal
form (x1, . . . , x2n−1) 7→ (x1, . . . , xn). Then a partition of unity argument treats the
general case.

In particular, if ω′ is an n-form on N integrating to 1 and f∗ω′ = B′ = dA′,
then

(W.32) H(f) =
∫

Γ

A′.

To proceed further, we bring in some consequences of the fact that the compact,
oriented manifold M is assumed to have Hn(M) = 0. By Poincaré duality we have
for the real homology group Hn−1(M) = 0. Hence the integral homology group
Hn−1(M,Z) is a finite abelian group. This implies that there is a nonzero m ∈ Z
and an integral chain X such that

(W.33) mΓ = ∂X.
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Using this and applying Stokes’ theorem to (W.32), we have

(W.34) H(f) =
1
m

∫

X

dA′ =
1
m

∫

X

f∗ω′.

Consequently, as is easily seen by picking ω′ with support disjoint from {p},

(W.35) H(f) =
1
m

deg
[
f : (X, Γ) → (N, p)

]
.

Of course, if Hn(M,Z) = 0, then we can take m = 1 in (W.33), and hence
in (W.35), and see that H(f) is an integer. This occurs in the classical case of
f : S2n−1 → N .
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X. Jacobi fields and conjugate points

Jacobi’s equation and the concept of a Jacobi field arose in Exercises 8–11 of
§15. We recall that a Jacobi field is a vector field J along a unit speed geodesic γ
that is a solution to Jacobi’s equation

(X.1) ∇T∇T J −R(T, J)T = 0,

where T (t) = γ′(t). We have

(X.2) D Expp(tv)w =
1
t
Jw(t),

where Jw(t) is the Jacobi field along γ(t) = Expp(tv) such that

(X.3) Jw(0) = 0, ∇T Jw(0) = w.

Also if γs is a 1-parameter family of curves such that γs(a) = p, γs(b) = q, and if
γ0 is a geodesic, then the second derivative at s = 0 of the energy integral

(X.4) E(s) =
1
2

∫ b

a

〈γ′s(t), γ′s(t)〉 dt

is given by

(X.5)
E′′(0) =

∫ b

a

[〈R(V, T )V, T 〉+ 〈∇T V,∇T V 〉] dt

=
∫ b

a

[〈R(V, T )V, T 〉 − 〈V,∇T∇T V 〉] dt,

where V = ∂sγs(t)|s=0. Note that the right side of (X.5) vanishes if V is a Jacobi
field along γ that vanishes at the endpoints.

We say two points p and q on a geodesic γ are conjugate if there exists a nontrivial
Jacobi field J along γ that vanishes at p and q. An equivalent condition is that
D Expp is singular at v ∈ TpM , if γ(t) = Expp(tv), p = γ(0), and q = γ(1).

The theory of Jacobi fields and conjugate points contains many important results,
and we touch on only a few here. For more material, one can consult [CE], [Mil].
We begin with a result of Jacobi.

Proposition X.1. If there is no t ∈ (a, b] such that γ(t) is conjugate to p = γ(a),
then E′′(0) > 0 for all nontrivial V along γ that vanish at γ(a) and γ(b).

Proof. We assume γ(t) is a unit speed geodesic. By (X.2) we see that we can write
γ(a+ t) = Expp(tv) for some unit v ∈ TpM , and Expp gives a local diffeomorphism
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from a neighborhood Ω of {tv : 0 ≤ t ≤ b− a} into M . We now make an argument
similar to that in the proof of Corollary 11.3.

Given a smooth 1-parameter family γs(t) with γ0(t) = γ(t), γs(a) = p, γs(b) = q,
we can write, for γs(t) 6= p,

(X.6) γs(t) = Expp

(
rs(t)ωs(t)

)
,

at least for s close to 0, with ωs(t) in the unit sphere in TpM and rs(t) > 0. We
have

(X.7) |γ′s(t)|2 = r′s(t)
2 + |rs(t)ω′s(t)|2,

using the metric tensor on Ω induced from M via Expp, and applying the Gauss
lemma. Hence

(X.8) E(s) =
1
2

∫ b

a

r′s(t)
2 dt +

1
2

∫ b

a

|rs(t)ω′s(t)|2 dt.

Comparing the first term on the right to
∫ b

a
|r′s(t)| dt, as in the proof of Corollary

11.3, we see that

(X.9)
1
2

∫ b

a

r′s(t)
2 dt ≥ E(0),

so under our hypotheses we have

(X.10) E(s) ≥ E(0) +
1
2

∫ b

a

|rs(t)ω′s(t)|2 dt,

so

(X.11) E′′(0) ≥
∫ b

a

(t− a)2
∣∣∂t∂sωs(t)|s=0

∣∣2 dt.

Note that ∂sωs(b) = 0. Thus this last inequality implies that E′′(0) > 0 if V (t)
is transverse to γ(t) anywhere. On the other hand, if V (t) is parallel to T (t)
everywhere, the first identity in (X.5) gives this result.

Sometimes one can guarantee that there are no conjugate points:

Proposition X.2. Suppose the sectional curvature of M is ≤ 0 everywhere. Then
no two points of M are conjugate along any geodesic.

Proof. Let γ be a unit speed geodesic, T = γ′(t). Suppose J is a Jacobi field along
γ, so (X.1) holds. A computation gives

(X.12)
d

dt
〈∇T J, J〉 = |∇T J |2 + 〈∇T∇T J, J〉

= |∇T J |2 − 〈R(J, T )T, J〉.
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If the sectional curvature is ≤ 0, then this is ≥ |∇T J |2. Thus if J(a) = 0 and
J(b) = 0 for some b > a, we deduce that

∫ b

a
|∇T J(t)|2 dt = 0, so J(t) vanishes along

γ.
An alternative proof follows from examining (X.5). If V = J is a Jacobi field

that vanishes at the endpoints t = a and t = b, the second integral on the right side
of (X.5) must vanish, but under the curvature hypotheses the first integral there is
≥ ∫ b

a
|∇T J |2 dt, yielding the result.

Curvature conditions of the opposite flavor can guarantee the existence of con-
jugate points. The following is a result of Bonnet and Myers.

Proposition X.3. Let γ : [a, b] → M be a unit speed geodesic, and suppose that

(X.13) Ric (T, T ) ≥ (n− 1)κ > 0,

where T = γ′ and n = dimM . If b − a ≥ π/
√

κ, then there is a point q = γ(t)
conjugate to p = γ(a), for some t ∈ (a, b].

Proof. Let {T, e1, . . . , en−1} be an orthonormal basis of TpM . Extend ej along γ
by parallel translation, and set Vj(t) = sin(π(t − a)/`) ej(t), with ` = b − a. If we
compute the second variation of energy (X.5) using V = Vj , and denote the result
by E′′

j (0), we obtain

(X.14)

∑

j

E′′
j (0) =

∫ `

0

{
(n− 1)

π2

`2
cos2

πt

`
− Ric (T, T ) sin2 πt

`

}
dt

≤ (n− 1)
∫ `

0

{π2

`2
cos2

πt

`
− κ sin2 πt

`

}
dt

= (n− 1)
`

2

(π2

`2
− κ

)
,

which is ≤ 0 if ` ≥ π/
√

κ. The conclusion then follows from Proposition X.1.

When conjugate points exist, there can be important geometric consequences.

Proposition X.4. If γ is a unit speed geodesic and p = γ(a) and q = γ(b) are
conjugate along γ, then d(p, γ(t)) < t− a for t > b > a.

Proof. It suffices to show that there is a variation for which ∂2
sE(0) < 0, when E(s)

is given by (X.4), with b replaced by t1 > b. To establish this, let J be a nontrivial
Jacobi field vanishing at t = a and t = b, so ∇T J(b) 6= 0. Let J̃(t) = J(t) on
[a, b], 0 on [b, t1]. Let Z be a smooth vector field along γ, vanishing at t = a and
t = t1, such that Z(b) = −∇T J(b). Then set

(X.15) V = J̃ + εZ.
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Using the first identity in (X.5) (valid for V Lipschitz), we obtain

(X.16)

E′′(0) = 2ε

∫ b

a

{〈∇T J,∇T Z〉+ 〈R(Z, T )Z, T 〉} dt + O(ε2)

= 2ε

∫ b

a

T 〈∇T J, Z〉 dt + O(ε2)

= −2ε|∇T J(b)|2 + O(ε2).

Thus, for sufficiently small ε > 0, use of (X.15) yields E′′(0) < 0, and we are done.

Proposition X.4 is due to Jacobi. M. Morse established a much more precise
result, which has had a great impact on modern geometry and topology. See [Mil]
for a treatment.

Together, Propositions X.3 and X.4 imply the following:

Corollary X.5. If M is a complete Riemannian manifold of dimension n and
Ric (X, X) ≥ (n − 1)κ|X|2 for some κ > 0, then M is compact, with diameter
≤ π/

√
κ.

Alternatively, one can deduce this directly from the calculation (X.14), without
bringing in the notion of Jacobi fields.
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Y. Isometric imbedding of Riemannian manifolds

In this appendix we will establish the following result.

Theorem Y.1. If M is a compact Riemannian manifold, there exists a C∞ map

(Y.1) Φ : M −→ RN

which is an isometric imbedding.

This was first proved by J. Nash [Na], but the proof was vastly simplified by
M. Günther [Gu1]–[Gu3]. These works also dealt with noncompact Riemannian
manifolds, and derived good bounds for N, but to keep the exposition simple we
will not cover these results. The proof will make use of some results on elliptic
PDE, which can be found in Chapters 13–14 of [T1].

To prove Theorem Y.1, we can suppose without loss of generality that M is
a torus Tk. In fact, imbed M smoothly in some Euclidean space Rk; M will sit
inside some box; identify opposite faces to have M ⊂ Tk. Then smoothly extend
the Riemannian metric on M to one on Tk.

If R denotes the set of smooth Riemannian metrics on Tk and E is the set of
such metrics arising from smooth imbeddings of Tk into some Euclidean space, our
goal is to prove

(Y.2) E = R.

Now R is clearly an open convex cone in the Frechet space V = C∞(Tk, S2T ∗)
of smooth second order symmetric covariant tensor fields. As a preliminary to
demonstrating (Y.2), we show that the subset E shares some of these properties.

Lemma Y.2. E is a convex cone in V.

Proof. If g0 ∈ E , it is obvious from scaling the imbedding producing g0 that αg0 ∈ E ,
for any α ∈ (0,∞). Suppose also g1 ∈ E . If these metrics gj arise from imbeddings
ϕj : Tk → Rνj , then g0 + g1 is a metric arising from the imbedding ϕ0 ⊕ϕ1 : Tk →
Rν0+ν1 . This proves the lemma.

Using Lemma Y.2 plus some functional analysis, we will proceed to establish
that any Riemannian metric on Tk can be approximated by one in E . First, we
define some more useful objects. If u : Tk → Rm is any smooth map, let γu denote
the symmetric tensor field on Tk obtained by pulling back the Euclidean metric on
Rm. In a natural local coordinate system on Tk = Rk/Zk, arising from standard
coordinates (x1, . . . , xk) on Rk,

(Y.3) γu =
∑

i,j,`

∂u`

∂xi

∂u`

∂xj
dxi ⊗ dxj .

Whenever u is an immersion, γu is a Riemannian metric, and if u is an imbedding,
then γu is of course an element of E . Denote by C the set of tensor fields on Tk of
the form γu. By the same reasoning as in Lemma Y.2, C is a convex cone in V.
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Lemma Y.3. E is a dense subset of R.

Proof. If not, take g ∈ R such that g /∈ E , the closure of E in V. Now E is a closed
convex subset of V, so the Hahn-Banach theorem implies there is a continuous linear
functional ` : V → R such that `(E) ≤ 0 while `(g) = a > 0.

Let us note that C ⊂ E (and hence C = E). In fact, if u : Tk → Rm is any smooth
map and ϕ : Tk → Rn is an imbedding, then, for any ε > 0, εϕ⊕ u : Tk → Rn+m

is an imbedding, and γεϕ⊕u = ε2γϕ + γu ∈ E . Taking ε ↘ 0, we have γu ∈ E .

Consequently, the linear functional ` produced above has the property `(C) ≤ 0.
Now we can represent ` as a k×k symmetric matrix of distributions `ij on Tk, and
we deduce that

(Y.4)
∑

i,j

〈
∂if∂jf, `ij

〉 ≤ 0, ∀f ∈ C∞(Tk).

If we apply a Friedrichs mollifier Jε, in the form of a convolution operator on Tk, it
follows easily that (Y.4) holds with `ij ∈ D′(Tk) replaced by λij = Jε`ij ∈ C∞(Tk).
Now it is an exercise to show that, if λij ∈ C∞(Tk) satisfies λij = λji and the
analogue of (5.4), then Λ = (λij) is a negative semidefinite matrix valued function
on Tk, and hence, for any positive definite G = (gij) ∈ C∞(Tk, S2T ∗),

(Y.5)
∑

i,j

〈
gij , λij

〉 ≤ 0.

Taking λij = Jε`ij and passing to the limit ε → 0, we have

(Y.6)
∑

i,j

〈
gij , `ij

〉 ≤ 0,

for any Riemannian metric tensor (gij) on Tk. This contradicts the hypothesis that
we can take g /∈ E , so Lemma Y.3 is proved.

The following result, to the effect that E has nonempty interior, is the analytical
heart of the proof of Theorem Y.1.

Lemma Y.4. There exists a Riemannian metric g0 ∈ E and a neighborhood U of
0 in V, such that g0 + h ∈ E whenever h ∈ U.

We now prove (Y.2), hence Theorem Y.1, granted this result. Let g ∈ R, and
take g0 ∈ E , given by Lemma Y.4. Then set g1 = g + α(g − g0), where α > 0 is
picked sufficiently small that g1 ∈ R. It follows that g is a convex combination of g0

and g1, i.e., g = ag0+(1−a)g1 for some a ∈ (0, 1). By Lemma Y.4, we have an open
set U ⊂ V such that g0 + h ∈ E whenever h ∈ U. But by Lemma Y.3, there exists
h ∈ U such that g1 − bh ∈ E , b = a/(1− a). Thus g = a(g0 + h) + (1− a)(g1 − bh)
is a convex combination of elements of E , so by Lemma Y.1, g ∈ E , as desired.

We turn now to a proof of Lemma Y.4. The metric g0 will be one arising from
a free imbedding

(Y.7) u : Tk −→ Rµ,

defined as follows.
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Definition. An imbedding (Y.7) is free provided that the k + k(k + 1)/2 vectors

(Y.8) ∂ju(x), ∂j∂ku(x)

are linearly independent in Rµ, for each x ∈ Tk.

Here, we regard Tk = Rk/Zk, so u : Rk → Rµ, invariant under the translation
action of Zk on Rk, and (x1, . . . xk) are the standard coordinates on Rk. It is not
hard to establish the existence of free imbeddings; see the exercises at the end of
this appendix.

Now, given that u is a free imbedding, and that (hij) is a smooth symmetric
tensor field which is small in some norm (stronger than the C2-norm), we want to
find v ∈ C∞(Tk,Rµ), small in a norm at least as strong as the C1-norm, such that,
with g0 = γu,

(Y.9)
∑

`

∂i(u` + v`)∂j(u` + v`) = g0ij + hij ,

or equivalently, using the dot product on Rµ,

(Y.10) ∂iu · ∂jv + ∂ju · ∂iv + ∂iv · ∂jv = hij .

We want to solve for v. Now, such a system turns out to be highly underdetermined,
and the key to success is to append convenient side conditions. Following [Gu3],
we apply ∆− 1 to (Y.10), where ∆ =

∑
∂2

j , obtaining

(Y.11)

∂i

{
(∆− 1)(∂ju · v) + ∆v · ∂jv

}
+ ∂j

{
(∆− 1)(∂iu · v) + ∆v · ∂iv

}

−2
{

(∆− 1)(∂i∂ju · v) + 1
2∂iv · ∂jv − ∂i∂`v · ∂j∂`v

+∆v · ∂i∂jv + 1
2 (∆− 1)hij

}
= 0,

where we sum over `. Thus (Y.10) will hold whenever v satisfies the new system
(Y.12)

(∆− 1)
(
ζi(x) · v)

= −∆v · ∂iv

(∆− 1)
(
ζij(x) · v)

= − 1
2 (∆− 1)hij +

(
∂i∂`v · ∂j∂`v −∆v · ∂i∂jv − 1

2∂iv · ∂jv
)
.

Here we have set ζi(x) = ∂iu(x), ζij(x) = ∂i∂ju(x), smooth Rµ-valued functions
on Tk.

Now (Y.12) is a system of k(k + 3)/2 = κ equations in µ unknowns, and it has
the form

(Y.13) (∆− 1)
(
ξ(x)v

)
+ Q(D2v,D2v) = H =

(
0,− 1

2 (∆− 1)hij

)
,
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where ξ(x) : Rµ → Rκ is surjective for each x, by the linear independence hypothesis
on (Y.8), and Q is a bilinear function of its arguments D2v = {Dαv : |α| ≤ 2}. This
is hence an underdetermined system for v. We can obtain a determined system for
a function w on Tk with values in Rκ, by setting

(Y.14) v = ξ(x)tw,

namely

(Y.15) (∆− 1)
(
A(x)w) + Q̃(D2w,D2w) = H,

where, for each x ∈ Tk,

(Y.16) A(x) = ξ(x)ξ(x)t ∈ End(Rκ) is invertible.

If we denote the left side of (Y.15) by F (w), the operator F is a nonlinear differential
operator of order 2, and we have

(Y.17) DF (w)f = (∆− 1)
(
A(x)f

)
+ B(D2w, D2f),

where B is a bilinear function of its arguments. In particular,

(Y.18) DF (0)f = (∆− 1)
(
A(x)f

)
.

Elliptic estimates, which can be found in Chapter 13, §8 of [T1], imply that, for
any r ∈ R+ \ Z+,

(Y.19) DF (0) : Cr+2(Tk,Rκ) −→ Cr(Tk,Rκ) is invertible.

Consequently, if we fix r ∈ R+ \ Z+, and if H ∈ Cr(Tk,Rκ) has sufficiently small
norm, i.e., if (hij) ∈ Cr+2(Tk, S2T ∗) has sufficiently small norm, then (Y.15) has
a unique solution w ∈ Cr+2(Tk,Rκ), with small norm, and via (Y.14) we get a
solution v ∈ Cr+2(Tk,Rµ), with small norm, to (Y.13). If the norm of v is small
enough, then of course u + v is also an imbedding.

Furthermore, if the Cr+2-norm of w is small enough, then (Y.15) is an elliptic
system for w. By regularity results established, e.g., in Chapter 14, §4 of [T1], we
can deduce that w is C∞ (hence v is C∞), if h is C∞. This concludes the proof of
Lemma Y.4, hence of Nash’s imbedding theorem.

Exercises
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In Exercises 1–3, let B be the unit ball in Rk, centered at 0. Let (λij) be a smooth
symmetric matrix-valued function on B such that

(Y.20)
∑

i,j

∫
(∂if)(x) (∂jf)(x) λij(x) dx ≤ 0, ∀f ∈ C∞0 (B).

1. Taking fε ∈ C∞0 (B) of the form

fε(x) = f(ε−2x1, ε
−1x′), 0 < ε < 1,

examine the behavior as ε ↘ 0 of (Y.20), with f replaced by fε. Establish that
λ11(0) ≤ 0.

2. Show that the condition (Y.20) is invariant under rotations of Rk, and deduce
that

(
λij(0)

)
is a negative semidefinite matrix.

3. Deduce that
(
λij(x)

)
is negative semidefinite for all x ∈ B.

4. Using the results above, demonstrate the implication (Y.4) ⇒ (Y.5), used in the
proof of Lemma Y.3.

5. Suppose we have a C∞ imbedding ϕ : Tk → Rn. Take ε > 0. Define a map

ψ : Tk −→ Rn ⊕ S2Rn ≈ Rµ, µ = n + 1
2n(n + 1),

to have components

ϕj(x), 1 ≤ j ≤ n, εϕi(x)ϕj(x), 1 ≤ i ≤ j ≤ n.

Show that ψ is a free imbedding.

6. Using Leibniz’ rule to expand derivatives of products, verify that (Y.10) and
(Y.11) are equivalent, for v ∈ C∞(Tk,Rµ).

7. In [Na], the system (Y.10) was augmented with ∂iu · v = 0, yielding, instead of
(Y.12), the system

(Y.21)
ζi(x) · v = 0,

ζij(x) · v = 1
2

(
∂iv · ∂jv − hij

)
.

What makes this system more difficult to solve than (Y.12)?
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Z. DeRham Cohomology of Compact Symmetric Spaces

A Riemannian manifold M is a homogeneous space provided its isometry group
acts transitively on M . A connected homogeneous Riemannian manifold is a sym-
metric space if, in addition, given p ∈ M , there exists an isometry ιp : M → M
such that

(Z.1) ιp(p) = p, and dιp(p) = −I on TpM.

Let M be a compact symmetric space, and let G be the connected component
of the identity in its isometry group. (Sometimes ιp ∈ G and sometimes ιp /∈ G.)
For 0 ≤ k ≤ n = dim M , let

(Z.2) Bk = {β ∈ Λk(M) : g∗β = β, ∀ g ∈ G}.

Let Hk denote the space of harmonic k-forms on M . Basic Hodge theory gives a
natural isomorphism

(Z.3) Hk ≈ Hk(M),

where the right side of (Z.3) is the kth deRham cohomology group of M . We aim
to prove the following.

Theorem Z.1. If M is a compact, connected symmetric space,

(Z.4) Bk = Hk.

To begin, we note that, since G is connected, β ∈ Hk ⇒ g∗β is both harmonic
and cohomologous to β, hence equal to β, so clearly

(Z.5) Hk ⊂ Bk.

It remains to prove that Bk ⊂ Hk. We bring in some lemmas.

Lemma Z.2. Given the isometry ιp as in (Z.1),

(Z.6) g ∈ G =⇒ ιpgι−1
p ∈ G.

Proof. Take a continuous γ : [0, 1] → G, γ(0) = e (the identity element), γ(1) = g.
Then ιpγ(t)ι−1

p ∈ G for all t ∈ [0, 1].
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Lemma Z.3. We have

(Z.7) β ∈ Bk =⇒ ι∗pβ ∈ Bk.

Proof. Given g ∈ G, Lemma Z.2 implies ιpgι−1
p = g̃ ∈ G. Now, for β ∈ Bk,

(Z.8) g∗ι∗pβ = (ιpg)∗β = (g̃ιp)∗β = ι∗pg̃
∗β = ι∗pβ,

so (Z.7) holds.

Lemma Z.4. We have

(Z.9) β ∈ Bk =⇒ dβ = 0.

Proof. If β ∈ Bk, we have that ι∗pβ ∈ Bk, and, for each p ∈ M ,,

(Z.10) ι∗pβ(p) = (−1)kβ(p).

Since β and ι∗pβ belong to Bk, (Z.10) plus the transitivity of G on M imply

(Z.11) ι∗pβ = (−1)kβ on M.

Also dβ ∈ Bk+1, so

(Z.12) ι∗pdβ = (−1)k+1dβ on M.

But ι∗pdβ = dι∗pβ = (−1)kdβ on M , by (Z.11), so (−1)k+1dβ = (−1)kdβ on M ,
which forces dβ = 0.

The following complement to Lemma Z.4 establishes the reverse inclusion Bk ⊂
Hk, and completes the proof of Theorem Z.1.

Lemma Z.5. For δ = d∗, we have

(Z.13) β ∈ Bk =⇒ δβ = 0.

Proof. If M is oriented, it has a Hodge ∗-operator ∗ : Λk(M) → Λn−k(M). Since
each g ∈ G is an orientation-preserving isometry, ∗ commutes with the action of
such g on forms, so

(Z.14) ∗ : Bk −→ Bn−k,

and, since δ = ± ∗ d∗, (Z.13) follows from (Z.9).
If M is not orientable, we use the following argument (thanks to S. Kumar).

While d commutes with all pull-backs ϕ∗ for smooth ϕ : M → M , δ = d∗ commutes
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with ϕ∗ as long as ϕ is an isometry. In such a case, the action of ϕ∗ on forms is
unitary (say U), and we have

(Z.15) dU = Ud ⇒ U−1d∗ = d∗U−1 ⇒ d∗U = Ud∗.

Thus the proof of Lemma Z.4 extends as follows. If β ∈ Bk, then for each p ∈ M ,
ι∗pβ ∈ Bk, and (11) holds. Also, since g∗δ = δg∗ for g ∈ G, δβ ∈ Bk−1. Hence
ι∗pδβ = δι∗pβ equals both (−1)kδβ and (−1)k−1δβ, forcing δβ = 0.

An alternative endgame for the proof of Theorem Z.1 (noted by S. Kumar) is
to use β ∈ Bk ⇒ δβ ∈ Bk and apply Lemma Z.4 to deduce that dδβ = 0, hence
∆β = −(dδβ + δdβ) = 0.

It is desirable to say some more about Bk. So take p ∈ M , and let

(Z.16) K = {g ∈ G : gp = p},

so K is a closed subgroup of G and

(Z.17) M = G/K.

Given g ∈ K, we have the representation

(Z.18) π(g) = Dg(p) : TpM −→ TpM,

of K on TpM , yielding representations Λkπ of K on ΛkTpM .

Proposition Z.6. Let M be a compact symmetric space, G the connected compo-
nent of the identity in its isometry group, p ∈ M , and K as in (Z.16). Take Bk as
in (Z.2). Then, for 0 ≤ k ≤ n, Bk is isomorphic to

(Z.19) {v ∈ ΛkTpM : Λkπ(g)v = v, ∀ g ∈ K}.

Hence such a linear space is isomorphic to Hk(M).

We can denote the space (Z.19) as Ik(TpM, K), where, generally, if V is a finite-
dimensional real inner-product space and K a closed subgroup of O(V ),

(Z.20) Ik(V, K) = {v ∈ ΛkV : Λkg v = v, ∀ g ∈ K}.

Note that

(Z.21) I∗(V,K) =
⊕

k

Ik(V, K)

has a natural ring structure, and, in the setting of Proposition Z.6, I∗(TpM, K) is
isomorphic to the cohomology ring H∗(M).
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Z2. Spheres, and real and complex projective spaces

For a straightforward application of Proposition Z.6, we consider the n-dimensional
sphere,

(Z2.1) Sn = SO(n + 1)/SO(n), n ≥ 2.

Here Bk is isomorphic to (Z.19) with K = SO(n), acting in the canonical fashion on
Rn ≈ TpS

n. Clearly Λ0Rn and ΛnRn are one-dimensional spaces on which SO(n)
acts trivially. We claim that

(Z2.2) Λ`Rn has no nonzero SO(n) invariant elements, for 1 ≤ ` ≤ n− 1.

To see this, take α ∈ Λ`Rn and write it as a linear combination of monomomials

(Z2.3) ej1 ∧ · · · ∧ ej`
, 1 ≤ j1 < · · · < j` ≤ n,

where {e1, . . . , en} is an orthonormal basis of Rn. If i, j ∈ {1, . . . , n}, i 6= j, then
let Kij denote the group of rotations in the (ei, ej)-plane. Given a monomial (Z2.3)
that contains one of the factors {ei, ej} but not the other, the average of the action
of Kij applied to such a monomial is 0. All other monomials, i.e., those containing
either both ei and ej or neither of these factors, are unaffected by such an averaging
process, but each such monomial will be annihilated by averaging the action of some
such subgroup Kab. It follows that successively averaging any α ∈ Λ`Rn over all
these various group actions yields 0. Hence, if α is SO(n)-invariant, it must be 0.
Applying Proposition Z.6 and (Z2.2), we have

(Z2.4)
H`(Sn) ≈ R, for ` = 0, n,

0, for 1 ≤ ` ≤ n− 1.

As a variant, consider real projective space,

(Z2.5) RPn = SO(n + 1)/(S(O(1)×O(n)), n ≥ 2.

The group K = S(O(1)×O(n)) sits in SO(n + 1) as

(Z2.6)
{(

T
a

)
: a ∈ {±1}, T ∈ O(n), a detT = 1

}
.

The action of K on TpRPn = Rn is given by

(Z2.7) π

((
T

a

))
v = aTv.
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We have

(Z2.8)
π(K) = SO(n), if n is odd,

O(n), if n is even.

We deduce from (Z2.2) that

(Z2.9) H`(RPn) = 0 for 1 ≤ ` ≤ n− 1.

Clearly Λ0Rn is a one-dimensional space on which O(n) acts trivially, so we have
H0(RPn) ≈ R, as we know, since RPn is connected. Now ΛnRn is one dimensional,
and as noted above, SO(n) acts trivially on this space. However, O(n) does not, so

(Z2.10) ΛnRn has no nonzero elements invariant under O(n).

It follows from (Z2.8) that

(Z2.11)
Hn(RPn) ≈ R, if n is odd,

0, if n is even.

This reflects the fact that RPn is orientable if n is odd, but not orientable if n is
even.

Before taking up further specific cases, we record a general result that can be
deduced from Proposition Z.6.

Proposition Z2.1. In the setting of Proposition Z.6,

(Z2.12) −I ∈ π(K) =⇒ H`(M) = 0, for all odd ` ∈ N.

Proof. The transformation −I ∈ L(TpM) acts as (−1)` on Λ`TpM .

Note. In light of (Z.1), the hypothesis −I ∈ π(K) is equivalent to the hypothesis
that ιp belongs to the conected component of the identity in the isometry group of
M . As a check, note that the conclusion in (Z2.12) holds for the sphere Sn when
n is even, but fails (at ` = n) when n is odd.

Let us see how Proposition Z2.1 applies to Grassmannians. Recall from Appendix
V that the Grassmannian manifolds Gk,n(F) of k-planes through the origin in Fn

(F = R or C) are given by

(Z2.13) Gk,n(R) = SO(n)/S(O(k)×O(n− k)),

and

(Z2.14) Gk,n(C) = U(n)/(U(k)× U(n− k)).
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With base point given by p = V0 = {(x1, . . . , xk, 0, . . . , 0) : xj ∈ F}, we have

(Z2.15)
TpGk,n(R) ≈ L(Rk,Rn−k),

TpGk,n(C) ≈ L(Ck,Cn−k).

Regarding the latter identification, which is a vector space with a natural complex
structure, keep in mind that the exterior products in (Z.19) are taken with TpM
regarded as a real vector space. Now, given (A,B) ∈ K, where, respectively, A ∈
O(k), B ∈ O(n− k) and (det A)(detB) = 1, or A ∈ U(k), B ∈ U(n− k), and given
T ∈ L(Fk,Fn−k), the action of π(A,B) on T takes the form

(Z2.16) π(A,B)T = BTAt.

We see that π(Ik,−In−k) = π(−Ik, In−k) = −I on TpGk,n(F) provided F = C. For
F = R, (Ik,−In−k) ∈ K if n − k is even, and (−Ik, In−k) ∈ K if k is even. As a
result, (Z2.12) applies to M = Gk,n(C) for all n ∈ N, 1 ≤ k ≤ n− 1, and it applies
to Gk,n(R) provided either k or n− k is even.

Note that

(Z2.17) RPn = G1,n+1(R), CPn = G1,n+1(C),

so (Z2.12) applies to CPn for all n ∈ N, and it applies to RPn if k is even (since
k = 1 ⇒ (n + 1)− k = n). Of course, this last observation merely recovers part of
(Z2.9) and (Z2.11).

Results on H`(CPn) are somewhat different from those on H`(RPn). For one
thing, as seen in Appendix V, the complex projective spaces CPn, and indeed all
the complex Grassmannians Gk,n(C), are Hermitian symmetric spaces, and hence,
by Proposition V.1, Kähler manifolds. Thus, by (V.42),

(Z2.18) H2j(CPn) 6= 0, for 1 ≤ j ≤ n.

Before identifying these spaces more precisely, we will bring in another general
result, Proposition Z2.2, whose proof will use some basic representation theory. To
wit, if K is a compact Lie group and π a unitary representation of K on an inner
product space (real or complex), then

(Z2.19) P =
∫

K

π(g) dg

is the orthogonal projection of V onto the linear space V0 on which π acts trivially.
Hence

(Z2.20) dim V0 = Tr P =
∫

K

Tr π(g) dg.

Here and below, dg denotes Haar measure on K. For a proof of (Z2.20), see §5 of
[T2].
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Proposition Z2.2. In the setting of Proposition Z.6, if n = dim M , then, for
λ ∈ R,

(Z2.21)
n∑

j=0

λn−j dimHj(M) =
∫

K

detR(λI + π(g)) dg.

Proof. We have

(Z2.22)

dimHj(M) = dimBj

=
∫

K

TrR Λjπ(g) dg,

by (Z2.20), so the left side of (Z2.21) is equal to

(Z2.23)
∫

K

n∑

j=0

λn−j TrR Λjπ(g) dg.

But

(Z2.24) detR(λI + π(g)) =
n∑

j=0

λn−j TrR Λjπ(g),

so we have (Z2.21).

Using Proposition Z2.2, together with some more representation theory, we will
establish the following.

Proposition Z2.3. The deRham cohomology of complex projective space satisfies

(Z2.25) H2j(CPn) ≈ R, for 1 ≤ j ≤ n.

Consequently, by (V.37)–(V.42), for each j ∈ {1, . . . , n}, H2j(CPn) is spanned by
ωj, where ω is the Kähler form, given by (V.37).

Proof. By Proposition Z2.2, for λ ∈ R,

(Z2.26)

2n∑

j=0

λ2n−j dimHj(CPn) =
∫

U(1)

∫

U(n)

detR(λI + ag) dg da

=
∫

U(n)

detR(λI + g) dg.
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Here, the representation π of U(1) × U(n) on TpCPn gives the standard action of
ag on Cn. The second identity in (Z2.26) uses left invariance of Haar measure on
U(n). Now we use the identity

(Z2.27) A ∈ L(Cn) =⇒ detRA = | detCA|2

to write the right side of (Z2.26) as

(Z2.28)
∫

U(n)

|detC(λI + g)|2 dg.

Now, parallel to (Z2.24), we have

(Z2.29) detC(λI + g) =
n∑

j=0

λn−j TrC Λj
Cg,

so (Z2.28) is equal to

(Z2.30)
n∑

i,j=0

λ2n−i−j

∫

U(n)

(
TrΛj

Cg
)(

TrΛi
Cg

)
dg.

Now we bring in the fact that

(Z2.31)
Λj
Cg, 0 ≤ j ≤ n, are mutually inequivalent irreducible

unitary representations of U(n) on Λj
CC

n.

See [T2], §20. This together with the Weyl orthogonality relations (cf. [T2], §6)
gives

(Z2.32)
∫

U(n)

(
TrΛj

Cg
)(

TrΛi
Cg

)
dg = δij ,

and plugging this into (Z2.30), which is equal to (Z2.26), yields

(Z2.33)
2n∑

j=0

λ2n−j dimHj(CPn) =
n∑

`=0

λ2n−2`,

proving (Z2.25).

Z3. Real Grassmannians

We now take a closer look at the real Grassmannians Gk,n(R), starting with the
issue of orientability.
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Proposition Z3.1. Given n ≥ 2, 1 ≤ k ≤ n−1, Gk,n(R) is orientable if and only
if n is even.

Proof. The manifold Gk,n(R) has dimension d = k(n−k), by (Z2.15). This manifold
is orientable if and only if Hd 6= 0, hence, by (Z.4), if and only if Bd 6= 0. In this
case, by (Z2.13),

(Z3.1) K = S(O(k)×O(n− k))

acts on Λ`L(Rk,Rn−k), and the invariant elements of this space span B`. If (A,B) ∈
S(O(k) × O(n − k)), with A ∈ O(k), B ∈ O(n − k), and T ∈ L(Rk,Rn−k), then
π(A,B)T is given by (Z2.16). It follows that the action of Λdπ(A,B) on the one-
dimensional space ΛdL(Rk,Rn−k) is given by multiplication by

(Z3.2) det π(A,B) = (det A)n−k(det B)k.

On the other hand, given A ∈ O(k), B ∈ O(n− k),

(Z3.3) (A,B) ∈ S(O(k)×O(n− k)) =⇒ (det A)(det B) = 1.

Hence (Z3.2) is equal to (det A)n−2k, so Bd 6= 0 if and only if n is even.

It is natural to look at the space G̃k,n(R) of oriented k-planes through the origin
in Rn. This is a 2-fold cover of Gk,n(R), given by

(Z3.4) G̃k,n(R) = SO(n)/SO(k)× SO(n− k).

This time we have

(Z3.5) H`(G̃k,n(R)) ≈ B`,

with

(Z3.6)
B` = {v ∈ Λ`L(Rk,Rn−k) : Λ`π(A,B)v = v,

∀A ∈ SO(k), B ∈ SO(n− k)},

where again the action π(A,B) on T ∈ L(Rk,Rn−k) is given by (Z2.16). An
argument parallel to the proof of Proposition Z3.1 shows that G̃k,n(R) is always
orientable. A variant of the analysis below (Z2.15) shows that (Z2.12) applies to
G̃k,n(R) provided either k or n− k is even, so

(Z3.7) k(n− k) even =⇒ H`(G̃k,n(R)) = 0, for all odd `.

The algebraic problem of specifying the spaces (Z3.6) has some intricacy. Let us
specialize to the case k = 2, and use

(Z3.8) L(R2,Rn−2) ≈ R2 ⊗ V ≈ V ⊕ V, V = Rn−2,
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together with

(Z3.9) Λ`(V ⊕ V ) ≈
⊕

j1+j2=`,jν≥0

Λj1V ⊗ Λj2V.

To start, let us specialize to the case ` = 2, so we are looking at

(Z3.10) Λ2(V ⊕ V ) ≈ (Λ0V ⊗ Λ2V )⊕ (V ⊗ V )⊕ (Λ2V ⊗ Λ0V ),

carrying a natural SO(2)×SO(V ) action. Each of the three summands on the right
side of (Z3.10) is invariant under the SO(V ) action. The SO(2) action on V ⊕ V
is given by

(Z3.11) etJ , J ∈ L(V ⊕ V ), J =
(

0 −I
I 0

)
.

An element β ∈ Λ2(V ⊕ V ) is fixed by the SO(2) action if and only if

(Z3.11A) dΛ2J β =
d

dt
Λ2etJβ

∣∣
t=0

= 0.

To see the action of dΛ2J , take an orthonormal basis of V ⊕ V of the form
{ej , fj : 1 ≤ j ≤ n − 2}, where {ej} is an orthonormal basis of the first summand
V , and {fj} an orthonormal basis of the second. Then orthonormal bases of the
three spaces on the right side of (Z3.10) are, respectively,

(Z3.12)
{fj ∧ fk : 1 ≤ j < k ≤ m}, {ej ∧ fk : 1 ≤ j, k ≤ m},

{ej ∧ ek : 1 ≤ j < k ≤ m},

where m = n− 2. Since Jej = fj and Jfj = −ej , the action of dΛ2J is

(Z3.13)

dΛ2J(fj ∧ fk) = −ej ∧ fk − fj ∧ ek,

dΛ2J(ej ∧ fk) = fj ∧ fk − ej ∧ ek,

dΛ2J(ej ∧ ek) = fj ∧ ek + ej ∧ fk.

Note in particular that

(Z3.13A) dΛ2J(ej ∧ fj) = 0, dΛ2J(ej ∧ ek + fj ∧ fk) = 0.

We are now ready to specify the SO(2)×SO(V )-fixed subspaces of Λ2(V⊕V ). We
start with the SO(V )-fixed subspaces. As mentioned, SO(V ) leaves each summand
on the right side of (Z3.10) invariant. If dimV = 2, then SO(V ) acts trivially on
the one-dimensional space Λ2V . If dim V > 2, then, by (Z2.2), SO(V ) acts on Λ2V ,
with no nonzero invariant elements. As for the action on V ⊗ V , the isomorphism
V ⊗ V ≈ L(V ), via the inner product on V , shows that there is a one-dimensional
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SO(V )-fixed subspace, spanned by the identity I ∈ L(V ), hence, in terms of the
second basis in (Z3.12), by

(Z3.14) σ = e1 ∧ f1 + · · ·+ em ∧ fm.

This element is also invariant under the action of Λ2SO(2), as (Z3.13A) shows. In
fact, σ is the symplectic form on V ⊕ V , and all its exterior powers are invariant
under the SO(2)× SO(V ) action.

When dim V > 2, SO(V ) acts irreducibly on C⊗V , and the subspace of V ⊗V of
elements on which SO(V ) acts trivially is one-dimensional, so the only contributions
to SO(V )-fixed elements in Λ2(V ⊕ V ) from V ⊗ V are scalar multiples of (Z3.14).
When dim V = 2, there is a two-dimensional subspace of V ⊗ V ≈ L(V ) on which
SO(V ) acts trivially, spanned by

I =
(

1 0
0 1

)
, and J0 =

(
0 −1
1 0

)
.

The image of the latter element in Λ2(V ⊕ V ) is given by

(Z.3.14A) e1 ∧ f2 − e2 ∧ f1.

This element is not annihilated by the action of dΛ2J , as one sees from (Z.3.13).
Hence this does not yield an additional SO(2)×SO(V )-fixed element of Λ2(V ⊕V ).

In case dim V = 2, we also have the SO(2)×SO(V )-invariant element of (Λ0V ⊗
Λ2V )⊕ (Λ2V ⊗ Λ0V ), given by

(Z3.15) e1 ∧ e2 + f1 ∧ f2,

the SO(2) invariance following from (Z3.13A).
These arguments establish the following.

Proposition Z3.2. For n ≥ 4, we have

(Z3.16)
H2(G̃2,n(R)) ≈ R2, if n = 4,

R, if n > 4.

From here, we can identify all the deRham cohomology groups H`(G̃2,n(R)) for
n = 4 and 5. Note that dim G̃k,n(R) = 2(n − 2), which is 4 for n = 4 and 6 for
n = 5. We see that

(Z3.17)

H`(G̃2,4(R)) ≈ R, if ` = 0 or 4,

R2, if ` = 2,

0, otherwise,



362

and

(Z3.18)
H`(G̃2,5(R)) ≈ R, if ` = 0, 2, 4, 6,

0, otherwise,

this by (Z3.16) for ` = 2, and by Poincaré duality for ` = 4.
We move on to an examination of H`(G̃2,n(R)) for general `. By (Z3.7), we can

restrict attention to even `, i.e., ` = 2ν, so we specialize (Z3.9) to

(Z3.19)

Λ2ν(V ⊕ V )

≈
⊕

j1+j2=2ν,jµ≥0

Λj1V ⊗ Λj2V

= (Λ0V ⊗ Λ2νV )⊕ (V ⊗ Λ2ν−1V )⊕ · · · ⊕ (ΛνV ⊗ ΛνV )⊕ · · ·
· · · ⊕ (Λ2ν−1V ⊗ V )⊕ (Λ2νV ⊗ Λ0V ).

Again each summand is invariant under the SO(V ) action. We divide the study
into two cases.

Case A. dim V 6= 2ν.
Then none of the summands on the right side of (Z3.19) can have SO(V )-fixed

elements except perhaps
ΛνV ⊗ ΛνV.

If ν > dim V , this space is 0. If ν ≤ dim V (but 2ν 6= dim V ), then SO(V ) acts
irreducibly on the complexification of ΛνV , so there is a one-dimensional subspace
of ΛνV ⊗ ΛνV ≈ L(ΛνV ) consisting of SO(V )-fixed elements, namely the span of
I ∈ L(ΛνV ). The image of this in Λ2ν(V ⊕ V ) is

(Z3.20)
∑

1≤i1<···<iν≤m

ei1 ∧ · · · ∧ eiν ∧ fi1 ∧ · · · ∧ fiν ,

where m = dim V = n − 2. This is a constant times σν , with σ as in (23.14).
One sees that this is annihilated by dΛ2νJ , and is fixed by the SO(2)-action. Thus
Λ2ν(V ⊕ V ) has a one-dimensional space of elements fixed by the SO(2)× SO(V )
action, provided dim V 6= 2ν and ν ≤ dim V . This establishes the following.

Proposition Z3.3. Assume ν ≤ n− 2, i.e., 2ν ≤ dim G̃2,n(R). Then

(Z3.21) H2ν(G̃2,n(R)) ≈ R,

provided

(Z3.22) 2ν 6= n− 2, i.e., provided 2ν 6= 1
2

dim G̃2,n(R).

Case B. dim V = 2ν.
The following result completes the description of the deRham cohomology of

G̃2,n(R). Here we also make use of basic results on representation theory for SO(V ),
which can be found in [T2].
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Proposition Z3.4. Assume 2ν = n− 2, i.e.,

(Z3.23) 2ν =
1
2

dim G̃2,n(R).

Then

(Z3.24) H2ν(G̃2,n(R)) ≈ R2.

Proof. In (Z3.19), we decompose Λ2ν(V ⊕ V ) into 2ν + 1 pieces ΛµV ⊗ Λ2ν−µV ,
µ ∈ {0, . . . , 2ν}. For each such µ, this is a tensor product of two equivalent repre-
sentations of SO(V ), intertwined by the Hodge star operator. If µ 6= ν, the repre-
sentation of SO(V ) on the complexification of ΛµV is irreducible, so ΛµV ⊗Λ2ν−µV
has a one dimensional subspace on which SO(V ) acts trivially, and it is spanned
by

(Z3.25) αµ =
∑

1≤i1<···<iµ≤2ν

ei1 ∧ · · · ∧ eiµ ∧ ∗(fi1 ∧ · · · ∧ fiµ).

If µ = ν, we have the following modification. The action of SO(V ) on the complex-
ification of ΛνV has two irreducible components, and we have a two-dimensional
space of elements of ΛνV ⊗ ΛνV on which SO(V ) acts trivially, namely the span
of αµ in (Z3.25), with µ = ν, together with the element (Z3.20), which, recall, is
a nonzero multiple of σν . Our remaining task is to take the space Eν of SO(V )-
invariant elements of Λ2ν(V ⊕ V ), just described, and examine the behavior of
dΛ2νJ on this space (which is mapped to itself since dΛ2νJ commutes with the
SO(V ) action).

Note that since Λ2νetJ is a group of isometries on Λ2ν(V ⊕ V ), dΛ2νJ is skew
adjoint on this space, hence on the subspace Eν . As we have seen, dΛ2νJ annihilates
σν . Hence is acts as a skew-adjoint transformation on

(Z3.26) Fν = Span{αµ : 0 ≤ µ ≤ 2ν},
a real vector space of dimension 2ν + 1. since

(Z3.27) dΛ2νJ : Fν −→ Fν

is skew adjoint, its range must have even dimension, hence its null space must have
odd dimension. The content of (Z3.24) is that this null space has dimension 1. To
see this, we make the following observations. First,

(Z3.28) dΛ2νJ : Span(αµ) −→ Span(αµ−1, αµ+1), 0 ≤ µ ≤ 2ν,

where, by convention, we set α−1 = α2ν+1 = 0. Next

(Z3.29) dΛ2νJ(αµ) has a nonzero component in Span(αµ+1), for 0 ≤ µ ≤ 2ν−1.

It follows that the range of dΛ2νJ in (Z3.27) has dimension 2ν. Thus the null space
of dΛ2νJ on Fν is one dimensional, and we have the proof of Proposition Z3.4.
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Nash’s theorem 346
Neumann boundary condition 183
Nijenhuis tensor 335
normal bundle 109, 120, 122
normal coordinates 70, 99
normal vector 6, 25, 42

O
ODE 7, 10, 12, 70, 277
orbit 12, 59, 64
orientation 29, 39, 45, 65
oriented manifold 30, 54, 138, 175
orthogonal coordinates 99

P
Palatini identity 107, 311
parallel transport 86, 89, 127, 132
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