Contents
1. Introduction
2. The Gelfand transform
3. Banach algebras of functions on S^1
4. C^* algebras
5. Commutative C^* algebras
6. Applications to the spectral theorem
7. Positive elements in a C^* algebra

A. Holomorphic functional calculus
B. The spectral radius

C. Rich Banach algebras of continuous functions
D. Variants of a theorem of Bochner and Phillips
E. The spaces $\mathcal{A}(G)$
F. Banachable algebras

G. Holomorphic functional calculus for commuting elements
H. Lifting theorem for $L^\infty(\mathbb{T})$
1. Introduction

A Banach algebra B is a Banach space (over \mathbb{C}), equipped with a product (making B an algebra over \mathbb{C}), satisfying

(1.1) \[\|xy\| \leq \|x\| \|y\|. \]

We say B has a unit I if $I \in B$ satisfies

(1.2) \[Ix = xI = x, \quad \forall x \in B, \quad \|I\| = 1. \]

Banach algebras arise in a variety of settings. Examples include $L(V)$, the space of bounded linear operators on a Banach space V (with the operator norm), $C(X)$, the space of continuous functions on a compact space X (with the sup norm), the space of functions on the circle S^1 with absolutely summable Fourier series,

(1.2A) \[\mathcal{A}(S^1) = \{ f \in C(S^1) : \sum |\hat{f}(k)| < \infty \}, \quad \|f\| = \sum |\hat{f}(k)|, \]

where $\hat{f}(k)$ are the Fourier coefficients of f, and many others, such as algebras of bounded holomorphic functions on a complex domain, or closed subalgebras of such algebras as mentioned above. It is useful and informative to have a general theory of Banach algebras that encompasses such examples.

The purpose of these notes is to discuss some basic aspects of such a theory. One major theme we take up centers on the question of when an element x of a Banach algebra B is invertible, i.e., when there exists $x^{-1} \in B$ such that $xx^{-1} = x^{-1}x = I$.

This study gets started with the following simple observation. Let $y \in B$; then

(1.3) \[\|y\| < 1 \implies I - y \text{ is invertible.} \]

In fact,

(1.4) \[(I - y)^{-1} = \sum_{k=0}^{\infty} y^k. \]

To proceed, it is useful to introduce the resolvent set $\rho(x)$ and spectrum $\sigma(x)$ of $x \in B$, defined as follows. For $\zeta \in \mathbb{C}$,

(1.5) \[\zeta \in \rho(x) \iff \zeta - x \text{ is invertible, } \sigma(x) = \mathbb{C} \setminus \rho(x). \]

If $\zeta \in \rho(x)$, let us set $R_\zeta = (\zeta - x)^{-1}$. Note that if $\zeta_0 \in \rho(x)$,

(1.6) \[\zeta - x = \zeta_0 - x + (\zeta - \zeta_0) = (\zeta_0 - x)(I + (\zeta - \zeta_0)R_{\zeta_0}), \]

and, by (1.3), this is invertible as long as $|\zeta - \zeta_0| \leq 1/\|R_{\zeta_0}\|$, and one has a convergent power series in $\zeta - \zeta_0$. Hence
Proposition 1.1. If \(\mathcal{B} \) is a Banach algebra with unit and \(x \in \mathcal{B} \), then \(\rho(x) \subset \mathbb{C} \) is open, and \((\zeta - x)^{-1} \) is holomorphic on \(\rho(x) \).

Note also that, for \(x \in \mathcal{B} \),

\[
\zeta - x = \zeta(I - \zeta^{-1}x),
\]
and, by (1.3), this is invertible as long as \(|\zeta| > \|x\| \). Hence

Proposition 1.2. In the setting of Proposition 1.1, \(\sigma(x) \) is a compact set, contained in \(\{\zeta \in \mathbb{C} : |\zeta| \leq \|x\|\} \).

It follows readily from (1.7) that

\[
\|(\zeta - x)^{-1}\| \leq \frac{C}{|\zeta|}, \quad \text{for } |\zeta| > 2\|x\|.
\]

If \(\sigma(x) = \emptyset \), \((\zeta - x)^{-1} \) would be an entire holomorphic function. Then (1.8) would contradict Liouville’s theorem. This yields

Proposition 1.3. In the setting of Proposition 1.1, \(\sigma(x) \neq \emptyset \).

It is useful to have a more precise knowledge of \(\sigma(x) \). One ingredient in the study of \(\sigma(x) \) is the spectral radius:

\[
r(x) = \sup \{ |\zeta| : \zeta \in \sigma(x) \}.
\]

From (1.7), we have

\[
(\zeta - x)^{-1} = \frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{1}{\zeta^k} x^k,
\]
for \(|\zeta| > \|x\| \). Hence (as already stated in Proposition 1.2)

\[
r(x) \leq \|x\|.
\]

Some sharper results will be mentioned below.

These notes are structured as follows. In §2 we discuss some results of I. Gelfand on commutative Banach algebras \(\mathcal{B} \) (satisfying \(xy = yx \) for all \(x, y \in \mathcal{B} \)), with unit. This theory centers in the study of characters on \(\mathcal{B} \), i.e., linear maps satisfying

\[
\varphi : \mathcal{B} \rightarrow \mathbb{C}, \quad \varphi(xy) = \varphi(x)\varphi(y), \quad \varphi(I) = 1.
\]

The set \(\mathcal{M}(\mathcal{B}) \) of such characters is shown to be a compact subset of the dual space \(\mathcal{B}' \) (with the weak* topology), and the central result is that, for all \(x \in \mathcal{B} \),

\[
\sigma(x) = \{ \varphi(x) : \varphi \in \mathcal{M}(\mathcal{B}) \}.
\]
These characters fit together to yield the Gelfand transform
\[
\gamma : \mathcal{B} \to C(\mathcal{M}(\mathcal{B})), \quad \gamma(x)(\varphi) = \varphi(x).
\]

This map need not be injective (though it often is), and it need not have dense range (though it often does). There is an important class of algebras, described below, for which (1.14) is an isomorphism.

Given the results of §2, one is motivated to classify the characters of a given commutative Banach algebra with unit. In §3 we discuss some classes of Banach algebras of continuous functions on the circle S^1 for which we can produce a natural one-to-one correspondence $\mathcal{M}(\mathcal{B}) \equiv S^1$. This class includes the algebra $\mathcal{A}(S^1)$, given by (1.2A). In such a case, the result (1.13) establishes a classical theorem of N. Wiener on $\mathcal{A}(S^1)$.

In §4 we discuss C^* algebras, which are Banach algebras C with a conjugate linear involution $x \mapsto x^*$, satisfying
\[
(xy)^* = y^*x^*, \quad \|x^*x\| = \|x\|^2, \quad \forall x, y \in C
\]
(and $I^* = I$ if C has the unit I). Examples include $C(X)$ ($f^* = \overline{f}$), $\mathcal{L}(H)$, the space of bounded linear operators on a Hilbert space H (with the operator adjoint), and closed subalgebras of such examples, provided such a subalgebra is invariant under $x \mapsto x^*$. In this setting, self-adjoint elements $a \in C$ (satisfying $a = a^*$) play a major role. Key results of §4 include
\[
a = a^* \implies \sigma(a) \subset \mathbb{R} \quad \text{and} \quad r(a) = \|a\|.
\]

In §5, we concentrate on commutative C^* algebras, and refine results of §2 in this setting. The central result is that if \mathcal{A} is a commutative C^* algebra with unit, then the Gelfand map
\[
\gamma : \mathcal{A} \to C(\mathcal{M}(\mathcal{A}))
\]
is an isometric \ast-isomorphism of algebras. The results in (1.16) play an important role in proving this.

In §6, we apply the results of §5 to prove the spectral theorem for a bounded self-adjoint operator on a Hilbert space H, or more generally for a family $\{A_j\}$ of mutually commuting self-adjoint operators in $\mathcal{L}(H)$. This family generates a commutative C^* algebra \mathcal{A}. The version of the spectral theorem we prove can be stated as follows. There exists a measure space (\mathfrak{X}, μ), a unitary map $\Phi : H \to L^2(\mathfrak{X}, \mu)$, and an isometric \ast-homomorphism $\Gamma : \mathcal{A} \to L^\infty(\mathfrak{X}, \mu)$, such that
\[
\Phi A \Phi^{-1} f = \Gamma(A)f, \quad \forall A \in \mathcal{A}, \quad f \in L^2(\mathfrak{X}, \mu).
\]
The \ast-isomorphism (1.17) plays a key role in the proof of this result; \mathfrak{X} arises as a disjoint union of copies of $\mathcal{M}(\mathcal{A})$, each carrying a certain positive Radon measure.
Section 7 studies the set C^+ of positive elements of a C^* algebra C, defined by

\begin{equation}
(1.19) \quad x = x^*, \quad \sigma(x) \subset [0, \infty).
\end{equation}

Major results are that C^+ is a closed convex cone in C and that

\begin{equation}
(1.20) \quad x \in C \implies x^*x \in C^+.
\end{equation}

These notes end with several appendices. Appendix A discusses the holomorphic functional calculus, which defines $f(x) \in \mathcal{B}$ whenever $x \in \mathcal{B}$ and f is holomorphic on a neighborhood of $\sigma(x)$, as follows:

\begin{equation}
(1.21) \quad f(x) = \frac{1}{2\pi i} \int_{\partial \Omega} f(\zeta)(\zeta - x)^{-1} d\zeta,
\end{equation}

where Ω is a smoothly bounded neighborhood of $\sigma(x)$ and f is holomorphic on a neighborhood of $\overline{\Omega}$. Results of this appendix are applied in remarks at the end of §2, and to properties of e^{tx} for $x \in \mathcal{B}$ in §4.

Appendix B establishes the identity

\begin{equation}
(1.22) \quad r(x) = \lim_{k \to \infty} \|x^k\|^{1/k},
\end{equation}

which is more precise than (1.11). This is useful in §4, perhaps ironically, to prove the latter result in (1.16).

Appendices A and B cover material basic to the development in §§2–4. The next appendices provide material supplementary to that of our main text. (One who needs only “bare bones” might skip this material.) Appendix C extends the conclusion of Proposition 3.2 to a class of Banach algebras we call “rich Banach algebras of continuous functions.” Appendices D and E derive some further extensions of Proposition 3.2.

Appendix F considers “Banachable algebras,” for which (1.1) is replaced by $\|xy\| \leq C\|x\| \cdot \|y\|$, and we do not require $\|I\| = 1$. Several natural examples are mentioned, such as $C^2(M)$ when M is a compact smooth manifold. It is shown that there is an equivalent norm for which (1.1) holds, and for which I has norm 1.

Appendix G extends results of Appendix A to the study of holomorphic functions of several commuting elements of a Banach algebra. Material in the latter part of this appendix makes use of results treated in [Ho].

Appendix H applies the Gelfand theory to the Banach algebra $L^\infty(\mathbb{T})$ to prove a lifting theorem, involving an algebra homomorphism $\psi: L^\infty(\mathbb{T}) \to \mathcal{L}^\infty(\mathbb{T})$, where $\mathcal{L}^\infty(\mathbb{T})$ denotes the space of (everywhere defined) bounded measurable functions on \mathbb{T}.

The material described above touches on just a small subset of the lore on Banach algebras. For more on this topic, one can consult Chapters 7–9 of [C] and Chapter 9 of [Y], which are useful texts on functional analysis. In addition, one can consult [HR] and [L], which apply Banach algebra theory to the study of harmonic analysis on topological groups, and [M], which gives a general treatment of C^* algebra theory.
2. The Gelfand transform

Throughout this section, \mathcal{B} is a Banach algebra with unit I, satisfying $\|I\| = 1$, and we assume \mathcal{B} is commutative, i.e., $xy = yx$, for all $x, y \in \mathcal{B}$.

A character on \mathcal{B} is an algebraic homomorphism,

$$\varphi : \mathcal{B} \to \mathbb{C}, \quad \varphi(xy) = \varphi(x)\varphi(y), \quad \varphi(I) = 1.$$

Such a linear map is automatically bounded. This is seen as follows (using (1.3)):

$$\|y\| < 1 \Rightarrow (I - y)^{-1} \in \mathcal{B} \Rightarrow \varphi(I - y) \neq 0 \Rightarrow \varphi(y) \neq 1.$$

Applying this to $y = x/\alpha$,

$$\varphi(x) = \alpha \neq 0 \Rightarrow \varphi(\alpha^{-1}x) = 1 \Rightarrow \|\alpha^{-1}x\| \geq 1 \Rightarrow |\varphi(x)| \leq \|x\|,$$

so $\|\varphi\| = 1$. We denote the set of characters of \mathcal{B} by $\mathcal{M}(\mathcal{B})$. This is a subset of the unit ball in \mathcal{B}', closed with respect to the weak* topology, so it is a compact Hausdorff space.

Given such φ,

$$\mathcal{I} = \ker \varphi$$

is a closed linear subspace of \mathcal{B}, and it is an ideal:

$$x \in \mathcal{I}, \ y \in \mathcal{B} \Rightarrow xy \in \mathcal{I}.$$

Since (2.4) has codimension 1 in \mathcal{B} it must be a maximal ideal.

It is useful to linger on the concept of an ideal, so let $\mathcal{I} \subset \mathcal{B}$ be a proper ideal. Then $x \in \mathcal{I} \Rightarrow x$ is not invertible. On the other hand, $\|I - x\| < 1 \Rightarrow x$ is invertible, so

$$\text{dist}(\mathcal{I}, \mathcal{I}) = 1.$$

Hence the closure of such \mathcal{I} is also a proper ideal. When $\mathcal{I} \subset \mathcal{B}$ is a closed ideal, the quotient \mathcal{B}/\mathcal{I} is a Banach space, with norm $\|[x]\| = \inf \{\|x - z\| : z \in \mathcal{I}\}$. It has a product:

$$[x], [y] \in \mathcal{I} \Rightarrow [x][y] = (x + \mathcal{I})(y + \mathcal{I})$$

$$= xy + x\mathcal{I} + Iy + \mathcal{I}\mathcal{I}$$

$$= [xy].$$

Furthermore, one readily verifies

$$\|[x][y]\| \leq \|[x]\| \|[y]\|,$$

so \mathcal{B}/\mathcal{I} is a Banach algebra.

As we have noted, each element of a proper ideal $\mathcal{I} \subset \mathcal{B}$ is not invertible. Conversely, if $x \in \mathcal{B}$ is not invertible, $(x) = \{xy : y \in \mathcal{B}\}$ is a proper ideal in \mathcal{B}. Zorn’s lemma gives
Proposition 2.1. Each proper ideal B is contained in a maximal (proper) ideal in B.

Hence we have

Corollary 2.2. If $x \in B$ is not invertible, there exists a maximal ideal $I \subset B$ such that $x \in I$.

We now relate this to characters.

Proposition 2.3. If $I \subset B$ is a maximal ideal, there exists a character $\varphi : B \to \mathbb{C}$ such that $I = \ker \varphi$.

The proof makes use of the following result, called the Gelfand-Mazur theorem.

Proposition 2.4. If $I \subset B$ is a maximal ideal, then there is a canonical isomorphism

\begin{equation}
B/I \cong \mathbb{C}.
\end{equation}

Proof. B/I is a Banach algebra with unit. Given $[x] \in B/I$, we claim that

\begin{equation}
[x] \neq 0 \implies [x]^{-1} \in B/I.
\end{equation}

In fact, $x \notin I \Rightarrow (x) + I = \{xy + I : y \in B\}$ is a larger ideal, hence $= B$, so there exists $y \in B$ such that $xy = I \mod I$. This gives (2.10). In other words, B/I is a field. Now we know that the spectrum $\sigma([x]) \neq \emptyset$, and

\begin{equation}
\lambda \in \sigma([x]) \implies \lambda - [x] \text{ not invertible in } B/I,
\end{equation}

so (2.10) gives $[x] = \lambda$. This proves (2.9).

Proof of Proposition 2.3. The character φ is given by the composition

\begin{equation}
B \to B/I \xrightarrow{\cong} \mathbb{C}.
\end{equation}

Note. There is just one such character; if ψ is also a character, $\ker \varphi = \ker \psi \Rightarrow \varphi \equiv \psi$.

Having Proposition 2.3, we can restate Corollary 2.2:

Corollary 2.5. If $x \in B$ is not invertible, there exists a character $\varphi : B \to \mathbb{C}$ such that $\varphi(x) = 0$.

Note that the converse is clear; if x is invertible and φ is a character, then $1 = \varphi(xx^{-1}) = \varphi(x)\varphi(x^{-1})$, so $\varphi(x) \neq 0$. We hence have the following important result.
Proposition 2.6. Given \(x \in \mathcal{B} \),
\[
(2.13) \quad \sigma(x) = \{ \varphi(x) : \varphi \in \mathcal{M}(\mathcal{B}) \}.
\]

Proof. The identity (2.13) is equivalent to the assertion that, for \(\lambda \in \mathbb{C} \), \(\lambda - x \) is not invertible if and only if there exists \(\varphi \in \mathcal{M}(\mathcal{B}) \) such that \(\varphi(\lambda - x) = 0 \), an assertion which clearly follows from Corollary 2.5.

The Gelfand transform is the map
\[
(2.14) \quad \gamma : \mathcal{B} \rightarrow C(\mathcal{M}(\mathcal{B})),
\]
\[
\gamma(x)(\varphi) = \varphi(x).
\]

From (2.13) (plus (1.20)) we have
\[
(2.15) \quad \sup_{\varphi} |\gamma(x)(\varphi)| = r(x) = \lim_{k \to \infty} \|x^k\|^{1/k}.
\]

In particular,
\[
(2.16) \quad \text{Ker} \gamma = \{ x \in \mathcal{B} : r(x) = 0 \}.
\]

Frequently, this is 0, but not always. The range of \(\gamma \) is sometimes dense in \(C(\mathcal{M}(\mathcal{B})) \) and sometimes not.

Recall that if \(x \in \mathcal{B} \) and we have a smoothly bounded open \(\Omega \supset \sigma(x) \) and \(f \) is holomorphic on a neighborhood of \(\overline{\Omega} \), then \(f(x) \in \mathcal{B} \) is given by
\[
(2.17) \quad f(x) = \frac{1}{2\pi i} \int_{\partial \Omega} f(\zeta)(\zeta - x)^{-1} d\zeta.
\]

This is related to the action of characters as follows.

Proposition 2.7. Given \(\varphi \in \mathcal{M}(\mathcal{B}) \),
\[
(2.18) \quad \varphi(f(x)) = f(\varphi(x)).
\]

Proof. For \(\zeta \in \rho(x) \), \(1 = \varphi((\zeta - x)(\zeta - x)^{-1}) = (\zeta - \varphi(x))\varphi((\zeta - x)^{-1}) \), so
\[
(2.19) \quad \varphi((\zeta - x)^{-1}) = \frac{1}{\zeta - \varphi(x)}.
\]

Hence, applying \(\varphi \) to (2.17) gives
\[
(2.20) \quad \varphi(f(x)) = \frac{1}{2\pi i} \int_{\partial \Omega} f(\zeta) \frac{1}{\zeta - \varphi(x)} d\zeta = f(\varphi(x)),
\]

as asserted.

To restate Proposition 2.7 in the language of (2.14), we have
\[
(2.21) \quad \gamma(f(x)) = f(\gamma(x)),
\]

whenever \(x \in \mathcal{B} \) and \(f \) is holomorphic on a neighborhood of \(\sigma(x) \).

The following consequence of Propositions 2.6–2.7 is a special case of the spectral mapping theorem; see Appendix A for a more general version, in the setting of noncommutative Banach algebras.
Proposition 2.8. Given $x \in \mathcal{B}$ (a commutative Banach algebra with unit) and f holomorphic on a neighborhood of $\sigma(x)$,

\[\sigma(f(x)) = f(\sigma(x)). \]
3. Banach algebras of functions on S^1

Let \mathcal{B} be an algebra of continuous functions on the circle S^1, with pointwise sum and product. We assume \mathcal{B} is equipped with a norm making it a Banach algebra. We also assume $1 \in \mathcal{B}$ and $\|1\| = 1$. Note that for each $\zeta \in S^1$, $f \mapsto f(\zeta)$ is a character, so (2.3) implies

$$(3.1) \quad \sup_{\zeta \in S^1} |f(\zeta)| \leq \|f\|, \quad \forall f \in \mathcal{B}.$$

We place the following somewhat restrictive hypotheses on \mathcal{B}. Taking $e_k(\zeta) = \zeta^k$, $k \in \mathbb{Z}$, we assume

$$(3.2) \quad e_{\pm 1} \in \mathcal{B}, \quad \|e_{\pm 1}\| = 1.$$

We also assume

$$(3.3) \quad \mathcal{P} = \text{Span} \{e_k : k \in \mathbb{Z}\} \text{ is dense in } \mathcal{B}.$$

Examples of Banach algebras satisfying these hypotheses include $C(S^1)$, and also

$$(3.4) \quad \mathcal{A}(S^1) = \{f \in C(S^1) : \sum |\hat{f}(k)| < \infty\}, \quad \|f\| = \sum |\hat{f}(k)|.$$

We note parenthetically that $(3.2) \Rightarrow \|e_{\pm k}\| \leq 1$. Since also $1 = e_k e_{-k}$, this yields

$$(3.5) \quad \|e_{\pm k}\| = 1, \quad \forall k \in \mathbb{Z}.$$

We seek to classify all the characters $\varphi : \mathcal{B} \to \mathbb{C}$ for such a Banach algebra \mathcal{B}. This works as follows. Given such a character, set

$$(3.6) \quad \zeta = \varphi(e_1), \quad \zeta \in \mathbb{C}.$$

It follows that $\varphi(e_k) = \zeta^k$, $\forall k \in \mathbb{Z}$. By (3.6) plus (2.3),

$$(3.7) \quad |\zeta| = |\varphi(e_1)| \leq \|e_1\| = 1, \quad |\zeta^{-1}| = |\varphi(e_{-1})| \leq \|e_{-1}\| = 1,$$

so

$$(3.8) \quad \varphi(e_1) = \zeta \in S^1, \quad \forall \varphi \in \mathcal{M}(\mathcal{B}).$$

Hence $\varphi(e_1) = e_1(\zeta)$ and, more generally, $\varphi(e_k) = e_k(\zeta)$, $\forall k \in \mathbb{Z}$, so

$$(3.9) \quad \varphi(f) = f(\zeta),$$

for all $f \in \mathcal{P}$, given in (3.3), so (3.9) holds for all $f \in \mathcal{B}$. Together with Proposition 2.6, this gives the following.
Proposition 3.1. If \mathcal{B} satisfies (3.2)–(3.3), then
\begin{equation}
(3.10) \quad f \in \mathcal{B} \implies \sigma(f) = \{f(\zeta) : \zeta \in S^1\}.
\end{equation}

Such a result is obvious for $\mathcal{B} = C(S^1)$. For $\mathcal{B} = \mathcal{A}(S^1)$, given by (3.4), it is a classical result of N. Wiener, often stated in the following form.

Proposition 3.2. If $f \in \mathcal{A}(S^1)$ and $f(\zeta) \neq 0, \forall \zeta \in S^1$, then $1/f \in \mathcal{A}(S^1)$.

We want to extend the scope of Proposition 3.1 to a larger class of Banach algebras. We retain the hypothesis (3.3) but relax (3.2) to the following:
\begin{equation}
(3.11) \quad \|e^{\pm k}\| \leq C_\varepsilon e^{\varepsilon|k|}, \quad \forall \varepsilon > 0, \ k \in \mathbb{Z}.
\end{equation}

Now let $\varphi : \mathcal{B} \to \mathbb{C}$ be a character, and define $\zeta \in \mathbb{C}$ by (3.6). We still have $\varphi(e_k) = \zeta^k, \forall k \in \mathbb{Z}$, and this time, in place of (3.7),
\begin{equation}
(3.12) \quad |\zeta^k| = |\varphi(e_k)| \leq \|e_k\| \leq C_\varepsilon e^{\varepsilon|k|}, \forall k \in \mathbb{Z} \implies |\zeta| = 1.
\end{equation}

Thus the conclusions (3.8) and (3.9) continue to hold, and we have

Proposition 3.3. If \mathcal{B} satisfies (3.3) and (3.11), the conclusion (3.10) holds.

See Appendix C for a substantial generalization of Proposition 3.2.
4. C^* algebras

A C^* algebra \mathcal{C} is a Banach algebra, equipped with a conjugate linear involution $x \mapsto x^*$, satisfying

\[(4.1) \quad (xy)^* = y^*x^*, \quad \|x^*x\| = \|x\|^2, \quad \forall \ x, y \in \mathcal{C}.\]

The paradigm example of a C^* algebra is $\mathcal{L}(H)$, the space of bounded linear operators on a Hilbert space H. In such a case, $x : H \to H$ has an adjoint x^* defined by $(xv, w) = (v, x^*w)$, for $v, w \in H$. Note that $\|x^*x\| \leq \|x^*\| \|x\|$ plus (4.1) implies $\|x\| \leq \|x^*\|$, for all $x \in \mathcal{C}$, hence

\[(4.2) \quad \|x^*\| = \|x\|, \quad \forall \ x \in \mathcal{C}.\]

We typically consider C^* algebras with unit, so \mathcal{C} has a unit I, satisfying $\|I\| = 1$, and $I^* = I$. In such a case, recall the definitions of the resolvent set $\rho(x)$ and spectrum $\sigma(x)$ of $x \in \mathcal{C}$ from §1. As shown there, $\rho(x)$ is open and $\sigma(x)$ is compact and nonempty, for each $x \in \mathcal{C}$.

We say $a \in \mathcal{C}$ is self adjoint provided $a = a^*$. One of the first basic results we aim to establish is

\[(4.3) \quad a = a^* \implies \sigma(a) \subset \mathbb{R}.\]

This is more straightforward for $\mathcal{C} = \mathcal{L}(H)$ than for general C^* algebras. It turns out to be convenient first to address the analogous issue of $\sigma(u)$ when $u \in \mathcal{C}$ is unitary, i.e.,

\[(4.4) \quad u^*u = uu^* = I.\]

(We say $u \in \mathfrak{U}$.) Note that (4.4) and (4.2) imply

\[(4.5) \quad \|u\| = \|u^*\| = \|u^{-1}\| = 1,\]

so certainly $\sigma(u) \subset \{\zeta \in \mathbb{C} : |\zeta| \leq 1\}$, by Proposition 1.2. Also, writing

\[(4.6) \quad \zeta - u = -u(I - \zeta u^{-1}),\]

we see that

\[(4.6A) \quad |\zeta| < 1 \implies (\zeta - u)^{-1} = -(I - \zeta u^{-1})^{-1}u^{-1},\]

and $(I - \zeta u^{-1})^{-1}$ is given by a convergent power series, since $\|\zeta u^{-1}\| = |\zeta| < 1$. Hence

\[(4.7) \quad u \in \mathfrak{U} \implies \sigma(u) \subset S^1 = \{\zeta \in \mathbb{C} : |\zeta| = 1\}.\]

We now prove
Proposition 4.1. The implication (4.3) holds.

Proof. Using the power series

\[u(t) = e^{ita} = \sum_{k=0}^{\infty} \frac{(it)^k}{k!}a_k, \]

we readily verify that

\[a = a^* \implies u(t)^* = u(-t), \quad \forall t \in \mathbb{R}. \]

Also, basic results on the exponential (cf. (A.25) and (A.30)) give

\[u(s + t) = u(s)u(t), \quad \forall s, t \in \mathbb{R}, \]

and of course \(u(0) = I \), hence \(u(-t) = u(t)^{-1} \). Thus

\[a = a^* \implies u = e^{ia} \in \mathfrak{U}. \]

Now, for \(\lambda \in \mathbb{C} \),

\[e^{ia} - e^{i\lambda} = (e^{i(a-\lambda)} - I)e^{i\lambda} \]

with

\[b = \sum_{k=1}^{\infty} \frac{1}{k!}(i(a-\lambda))^{k-1} \in \mathcal{C}, \]

so

\[\lambda \in \sigma(a) \implies e^{i\lambda} \in \sigma(e^{ia}). \]

By (4.7) and (4.11), \(\sigma(e^{ia}) \subset S^1 \) if \(a = a^* \), so (4.14) implies (4.3).

Now that we have (4.3), we can associate to a self-adjoint \(a \in \mathcal{C} \) another unitary element, known as the Cauchy transform:

\[u = (a + i)(a - i)^{-1}, \quad a = a^*. \]

To see that this is unitary, note that \((a - i)(a - i)^{-1} = (a - i)^{-1}(a - i) \) implies \((a - i)^{-1} \) commutes with \(a \), hence with \(a + i \), so also

\[u = (a - i)^{-1}(a + i). \]

If \(x \in \mathcal{C} \) is invertible with inverse \(y \in \mathcal{C} \), then \((xy)^* = y^*x^* \) yields \((x^*)^{-1} = (x^{-1})^* \), so (4.15) yields

\[u^* = ((a - i)^{-1})^*(a + i)^* = (a + i)^{-1}(a - i), \]

and comparison with (4.16) gives

\[u^*u = uu^* = I, \]

proving unitarity.

In general, if \(\mathcal{B} \) is a Banach algebra with unit \(I \) and \(\mathcal{A} \subset \mathcal{B} \) a closed subalgebra, containing \(I \), then \(x \in \mathcal{A} \subset \mathcal{B} \) might be invertible in \(\mathcal{B} \) but not in \(\mathcal{A} \), so its spectrum might depend essentially on which Banach algebra one is concerned with. It is useful to know that this does not happen in the \(C^* \) algebra context. We have the following.
Proposition 4.2. Let \mathcal{C} be a C* algebra with unit I and $\mathcal{A} \subset \mathcal{C}$ a closed subalgebra, invariant under $x \mapsto x^*$ and containing I. Then $x \in \mathcal{A} \subset \mathcal{C}$ is invertible in \mathcal{C} if and only if it is invertible in \mathcal{A}.

Proof. Clearly x is invertible in \mathcal{C} (resp., \mathcal{A}) if and only if x^*x and xx^* are, so it suffices to prove the result when $x = x^*$. Then (with obvious notation)

$$\sigma_{\mathcal{C}}(x) \subset \sigma_{\mathcal{A}}(x) \subset \mathbb{R},$$

and we desire to show that, in this setting,

$$(4.19) \quad \sigma_{\mathcal{C}}(x) = \sigma_{\mathcal{A}}(x).$$

The key observation is that

$$(4.20) \quad R_\zeta = (\zeta - x)^{-1} \text{ (inverse in } \mathcal{C}) \text{ is holomorphic on } \mathbb{C} \setminus \sigma_{\mathcal{C}}(x),$$

and it clearly agrees with

$$(4.21) \quad \tilde{R}_\zeta = (\zeta - x)^{-1} \text{ (inverse in } \mathcal{A}),$$

for $|\zeta| > \|x\|$, since in both cases

$$(4.22) \quad R_\zeta = \tilde{R}_\zeta = \frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{1}{\zeta^k} x^k.$$

We conclude that, if $\omega \in \mathcal{C}'$ and $\omega \perp \mathcal{A}$, then

$$(4.23) \quad \langle R_\zeta, \omega \rangle = 0,$$

whenever $|\zeta| > \|x\|$. By analytic continuation (since $\mathbb{C} \setminus \sigma_{\mathcal{C}}(x)$ is connected), (4.23) holds for all $\zeta \in \mathbb{C} \setminus \sigma_{\mathcal{C}}(x)$, and Proposition 4.2 is proven.

The following is a useful result on the spectral radius of a self-adjoint element $a \in \mathcal{C}$.

Proposition 4.3. If \mathcal{C} is a C* algebra with unit and $a \in \mathcal{C}$, then

$$(4.24) \quad a = a^* \implies r(a) = \|a\|.$$

Proof. As shown in Appendix B, Proposition B.1,

$$r(a) = \lim_{k \to \infty} \|a^k\|^{1/k}$$

$$(4.25) \quad = \lim_{n \to \infty} \|a^{2^n}\|^{1/2^n}.$$

Now (4.1) implies, for $a = a^*$,

$$\|a^{2^n}\| = \|a^{2^{n-1}}\|^2 = \cdots = \|a\|^{2^n},$$

so

$$\lim_{n \to \infty} \|a^{2^n}\|^{1/2^n} = \|a\|,$$

and we have (4.24).
5. Commutative C^* algebras

Throughout this section, A will be a commutative C^* algebra, with unit I. We derive further results on the Gelfand transform $\gamma : A \to C(\mathcal{M}(A))$ in this setting. Recall that, for $x \in A$,

$$\gamma(x)(\varphi) = \varphi(x),$$

where

$$\varphi : A \to \mathbb{C} \text{ is a character,}$$

so φ is linear, $\varphi(xy) = \varphi(x)\varphi(y)$, $\varphi(I) = 1$. $\mathcal{M}(A)$ denotes the set of characters, which is a compact subset of the dual space A', with the weak* topology. By Proposition 2.6,

$$x \in A \implies \sigma(x) = \{\varphi(x) : x \in \mathcal{M}(A)\}.$$

In particular, by Proposition 4.1,

$$a = a^* \in A, \varphi \in \mathcal{M}(A) \implies \varphi(a) \in \mathbb{R}.$$

This gives the following.

Proposition 5.1. If $x \in A$ and $\varphi \in \mathcal{M}(A)$, then

$$\varphi(x^*) = \overline{\varphi(x)}.$$

Proof. We can write

$$x = a + ib, \quad a = a^*, \quad b = b^*,$$

taking $a = (x + x^*)/2$, $b = (x - x^*)/2i$. Then $x^* = a - ib$, so

$$\varphi(x) = \varphi(a) + i\varphi(b), \quad \varphi(x^*) = \varphi(a) - i\varphi(b).$$

Since $\varphi(a), \varphi(b) \in \mathbb{R}$, (5.5) follows.

The following is a crucial estimate.
Proposition 5.2. If \(x \in \mathcal{A} \), then

\[
(5.7) \quad \|x\| = \sup_{\varphi \in \mathcal{M}(\mathcal{A})} |\varphi(x)|.
\]

Proof. Since \(\varphi(x^*x) = |\varphi(x)|^2 \) and \(\|x^*x\| = \|x\|^2 \), (5.7) is equivalent to

\[
(5.8) \quad \sup_{\varphi \in \mathcal{M}(\mathcal{A})} |\varphi(x^*x)| = \|x^*x\|, \quad \forall x \in \mathcal{A}.
\]

This in turn would follow from

\[
(5.9) \quad \sup_{\varphi \in \mathcal{M}(\mathcal{A})} |\varphi(a)| = \|a\|, \quad \text{when } a = a^* \in \mathcal{A}.
\]

Now (2.13) implies

\[
(5.10) \quad \sup_{\varphi \in \mathcal{M}(\mathcal{A})} |\varphi(x)| = r(x), \quad \forall x \in \mathcal{A}.
\]

and specializing to \(x = a = a^* \), this shows that (5.9) holds provided

\[
(5.11) \quad \|a\| = r(a), \quad \text{when } a = a^* \in \mathcal{A}.
\]

Now (4.24) gives the result (5.11), so Proposition 5.2 is proven.

Recall the Gelfand transform

\[
(5.12) \quad \gamma : \mathcal{A} \to C(\mathcal{M}(\mathcal{A})), \quad \gamma(x) = \varphi(x).
\]

From (5.5) we have

\[
(5.13) \quad \gamma(x^*) = \overline{\gamma(x)}, \quad \forall x \in \mathcal{A},
\]

and from (5.7) we have

\[
(5.14) \quad \|x\| = \sup_{\varphi \in \mathcal{M}(\mathcal{A})} |\gamma(x)(\varphi)|, \quad \forall x \in \mathcal{A}.
\]

This leads to the following.

Proposition 5.3. If \(\mathcal{A} \) is a commutative \(C^* \) algebra with unit,

\[
(5.15) \quad \gamma : \mathcal{A} \to C(\mathcal{M}(\mathcal{A}))
\]

is an isometric \(* \)-isomorphism of \(C^* \) algebras.

Proof. From (5.13)–(5.14), we see that \(\gamma \) is a \(* \)-homomorphism of \(C^* \) algebras, and it is an isometry. Hence it is an isomorphism of \(\mathcal{A} \) onto its image under \(\gamma \) in
$C(M(A))$. The image (call it \tilde{A}) is an algebra of functions on the compact space $M(A)$, containing 1 (since $\varphi(I) = 1$), invariant under conjugation (by (5.13)), and closed in $C(M(A))$. Furthermore, the image separates points in $M(A)$. That is,

$$\varphi \neq \psi \in M(A) \implies \varphi(x) \neq \psi(x), \text{ for some } x \in A. \quad (5.16)$$

(This is a tautology.) It follows by the Stone-Weierstrass theorem that $\tilde{A} = C(M(A))$, and this concludes the proof of Proposition 5.3.

Continuous functional calculus

When A is a commutative C^* algebra, we can use the Gelfand transform (5.15) to define a functional calculus that is much richer than the holomorphic functional calculus defined on a general Banach algebra. In detail, if

$$x \in A, \quad f : \sigma(x) \to \mathbb{C} \text{ is continuous,} \quad (5.17)$$

we define $f(x) \in A$ by

$$\gamma(f(x)) = f(\gamma(x)). \quad (5.18)$$

Note how this extends (2.21). Examples include

$$f(\zeta) = \overline{\zeta} \Rightarrow f(x) = x^*, \quad f(\zeta) = |\zeta|^2 \Rightarrow f(x) = x^*x. \quad (5.19)$$

More generally, if p is a polynomial, of the form

$$p(\zeta) = \sum_{j+k \leq n} a_{jk} \zeta^j \overline{\zeta}^k, \quad (5.20)$$

then

$$p(x) = \sum_{j+k \leq n} a_{jk} x^j (x^*)^k. \quad (5.21)$$

The Stone-Weierstrass theorem implies that for each continuous $f : \sigma(x) \to \mathbb{C}$, there is a sequence p_ν of polynomials such that $p_\nu \to f$ uniformly on $\sigma(x)$. We then have

$$p_\nu(x) \to f(x), \text{ in } A\text{-norm.} \quad (5.22)$$
6. Applications to the spectral theorem

Given a Hilbert space H, let $\{A_j : j \in J\} \subset \mathcal{L}(H)$ be a family of commuting self-adjoint operators:

\begin{equation}
A^*_j = A_j, \quad A_j A_k = A_k A_j, \quad \forall j, k \in J.
\end{equation}

Let $\mathcal{A} \subset \mathcal{L}(H)$ be the Banach algebra with unit generated by $\{A_j\}$; \mathcal{A} is the norm closure of the space of polynomials in the operators A_j (with complex coefficients). Clearly \mathcal{A} is commutative. The self-adjointness implies that if $T \in \mathcal{A}$, then $T^* \in \mathcal{A}$, so \mathcal{A} is a commutative C^* algebra. From §5 we have the isometric isomorphism of C^* algebras

\begin{equation}
\gamma : \mathcal{A} \longrightarrow C(X), \quad X = \mathcal{M}(\mathcal{A}).
\end{equation}

We will use this to establish a “spectral representation” of \mathcal{A}, by an algebra of multiplication operators on some L^2 space.

To proceed, we pick $v \in H$ and define

\begin{equation}
W : C(X) \longrightarrow H
\end{equation}

($W = W_{A,v}$) as follows:

\begin{equation}
W(f) = \tau(f)v, \quad \tau = \gamma^{-1} : C(X) \longrightarrow \mathcal{A}.
\end{equation}

We also define a linear functional

\begin{equation}
\mu : C(X) \rightarrow \mathbb{C}, \quad \mu(f) = (W(f), v) = (\tau(f)v, v).
\end{equation}

The following positivity result gets us on our way.

Proposition 6.1. If $f \in C(X)$ and $f \geq 0$, then $\mu(f) \geq 0$.

Proof. The claim is that if $f \geq 0$, then $\tau(f)$ is a positive semi-definite operator on H. To see this, take

\begin{equation}
g = f^{1/2} \in C(X), \quad g \geq 0.
\end{equation}

Since γ and τ are $*$-isomorphisms, $A = \tau(g)$ is self-adjoint on H, and $\tau(f) = \tau(g^2) = A^2$, so $(\tau(f)v, v) = (A^2v, v) = \|Av\|^2 \geq 0$. This completes the proof.

Hence $\mu = \mu_v$ defines a positive Radon measure on X:

\begin{equation}
(W(f), v) = (\tau(f)v, v) = \int_X f \, d\mu.
\end{equation}
We are now set up to perform an inner product computation. Take \(f, g \in C(X) \). Then

\[
(W(f), W(g))_H = (\tau(f)v, \tau(g)v) = (\tau(fg)v, v) = \int_X fg \, d\mu = (f, g)_{L^2(X, \mu)}.
\]

(6.8)

It follows that \(W \) in (6.3)–(6.4) has a unique extension to a linear isometry

\[
W : L^2(X, \mu) \rightarrow H.
\]

(6.9)

The range of \(W \) is

\[
H_v = \text{closure in } H \text{ of } \{ Av : A \in \mathcal{A} \}.
\]

(6.10)

What is interesting about \(W \) is that it intertwines the action of an operator \(A \in \mathcal{A} \) on \(H \) with the action of multiplication by \(\gamma(A) \) on \(L^2(X, \mu) \). In fact, given \(A \in \mathcal{A} \) and \(f \in C(X) \),

\[
W(\gamma(A)f) = \tau(\gamma(A)f)v = A\tau(f)v = AW(f).
\]

(6.11)

This extends by continuity from \(f \in C(X) \) to all \(f \in L^2(X, \mu) \).

We call \(H_v \) the cyclic subspace of \(H \) generated by \(A \) and \(v \). If \(H_v = H \), we say \(v \) is a cyclic vector for \(\mathcal{A} \). The following is a variant of the spectral theorem for the case where there is a cyclic vector.

Proposition 6.2. If \(\mathcal{A} \subset L(H) \) is a commutative \(C^* \) algebra with unit and \(v \in H \) is a cyclic vector for \(\mathcal{A} \), then

\[
W : L^2(X, \mu) \rightarrow H
\]

(6.12)

is unitary, and

\[
W^{-1}AWf = \gamma(A)f, \quad \forall A \in \mathcal{A}, \ f \in L^2(X, \mu).
\]

(6.13)

In general, we cannot say that \(\mathcal{A} \) has a cyclic vector, but we have the following. For simplicity, we assume \(H \) is separable.
Proposition 6.3. If H is separable and $A \subseteq \mathcal{L}(H)$ is a commutative C^* algebra with unit, then there exist $v_j \in H$ such that H_{v_j} are mutually orthogonal subspaces of H, with span dense in H.

Proof. Let $\{w_j : j \in \mathbb{N}\}$ be a dense subset of H, all $w_j \neq 0$. Take $v_1 = w_1$, and construct $H_1 = H_{v_1}$ as above. Note that

\[(6.14) \quad A : H_1 \to H_1, \quad \forall A \in \mathcal{A}.
\]

If $H_1 = H$, we are done. If not, we proceed as follows. We claim that, when $H_1 \subset H$ is a linear subspace,

\[(6.15) \quad A \in \mathcal{A}, \quad A : H_1 \to H_1 \implies A^* : H_1^\perp \to H_1^\perp.
\]

In fact, if $v \in H_1$, $w \in H_1^\perp$, then

\[(6.16) \quad (v, A^* w) = (Av, w) = 0, \quad \text{given } Av \in H_1,
\]

so (6.15) follows.

To continue, consider the first $j \geq 2$ such that $w_j \notin H_1$, and let v_2 denote the orthogonal projection of w_j onto H_1^\perp. Then set

\[(6.17) \quad H_2 = \text{closure in } H \text{ of } \{Av_2 : A \in \mathcal{A}\},
\]

which is a linear subspace of H_1^\perp, by (6.15). Clearly $H_1 \oplus H_2$ contains Span $\{w_k : 1 \leq k \leq j\}$. If $H_1 \oplus H_2 = H$, we are done. If not,

\[(6.18) \quad A : (H_1 \oplus H_2)^\perp \to (H_1 \oplus H_2)^\perp, \quad \forall A \in \mathcal{A}.
\]

Take the first $j_3 > j$ such that $w_{j_3} \notin H_1 \oplus H_2$, and let v_3 denote the orthogonal projection of w_{j_3} onto $(H_1 \oplus H_2)^\perp$. Then set

\[(6.19) \quad H_3 = \text{closure in } H \text{ of } \{Av_3 : A \in \mathcal{A}\}.
\]

Continue. If for some K, $H_1 \oplus \cdots \oplus H_K = H$, we are done. If not, we get a countable sequence of mutually orthogonal spaces

\[(6.20) \quad H_k = \text{closure in } H \text{ of } \{Av_k : A \in \mathcal{A}\},
\]

whose span contains w_j for all $j \in \mathbb{N}$, so is dense in H. This proves Proposition 6.3.

We now extend Proposition 6.2 to the following version of the spectral theorem. The reader can compare this with Theorems 1.1–1.2 of [T2].
Proposition 6.4. Let H be a separable Hilbert space. If $\mathcal{A} \subset \mathcal{L}(H)$ is a commutative C^* algebra with unit, there exists a sigma-compact space \mathcal{X}, equipped with a locally finite measure μ, a unitary map $\Phi : H \to L^2(\mathcal{X}, \mu)$, and an isometric $*$-homomorphism of algebras

\begin{equation}
\Gamma : \mathcal{A} \to L^\infty(\mathcal{X}, \mu),
\end{equation}

such that

\begin{equation}
\Phi A \Phi^{-1} f = \Gamma(A)f, \quad \forall A \in \mathcal{A}, \ f \in L^2(\mathcal{X}, \mu).
\end{equation}

Proof. With v_j as in Proposition 6.3, write

\begin{equation}
H = \bigoplus_{j \geq 1} H_j, \quad H_j = H_{v_j},
\end{equation}

and

\begin{equation}
W_j = W_{\mathcal{A}, v_j} : C(\mathcal{X}) \to H_j, \quad W_j(f) = \tau(f)v_j,
\end{equation}

extending to unitary maps

\begin{equation}
W_j : L^2(\mathcal{X}, \mu_j) \to H_j, \quad \mu_j(f) = (\tau(f)v_j, v_j),
\end{equation}

satisfying

\begin{equation}
W_j^{-1}AW_jf = \gamma(A)f, \quad \forall A \in \mathcal{A}, \ f \in L^2(\mathcal{X}, \mu_j).
\end{equation}

Thus we can define the measure space (\mathcal{X}, μ) as the disjoint union

\begin{equation}
(\mathcal{X}, \mu) = \bigcup_{j \geq 1} (X_j, \mu_j), \quad X_j = X,
\end{equation}

so

\begin{equation}
L^2(\mathcal{X}, \mu) = \bigoplus_{j \geq 1} L^2(X_j, \mu_j),
\end{equation}

and the W_j in (3.15) fit together to give a unitary map

\begin{equation}
W : L^2(\mathcal{X}, \mu) \to H,
\end{equation}

satisfying

\begin{equation}
W^{-1}AWf = \Gamma(A)f, \quad \forall A \in \mathcal{A}, \ f \in L^2(\mathcal{X}, \mu),
\end{equation}

where $\Gamma : \mathcal{A} \to L^\infty(\mathcal{X}, \mu)$ is given by

\begin{equation}
\Gamma(A)(x) = \gamma(A)(x), \quad x \in X_j.
\end{equation}

Then $\Phi : H \to L^2(\mathcal{X}, \mu)$ is $\Phi = W^{-1}$.

If H is not separable, one can produce a suitable replacement for Proposition 6.3 using Zorn’s lemma. An uncountable number of copies of X might be involved. We omit details.
7. Positive elements in a C^* algebra

Let C be a C^* algebra with unit, $x \in C$. We say

\[(7.1) \quad x \in C^+ \iff x = x^* \text{ and } \sigma(x) \subset [0, \infty).\]

Given $x \in C^+$, we also say x is positive, and write $x \geq 0$. Here are some simple properties of C^+.

Proposition 7.1. In the setting described above,

(a) $x = x^* \Rightarrow x^2 \in C^+$,

(b) If $x = x^*$ and $\|x\| \leq 1$, then
\[x \in C^+ \iff \|1 - x\| \leq 1.\]

(c) If $x, y \in C^+$, then $x + y \in C^+$.

Proof. For (a), apply the spectral mapping theorem.

For (b), apply the Gelfand transform to x, as an element of the commutative C^* algebra generated by 1 and x, and keep Proposition 4.2 in mind.

For (c), it suffices to get this when $\|x\| \leq 1$ and $\|y\| \leq 1$, in which case (b) gives
\[\|1 - x\| \leq 1, \text{ and } \|1 - y\| \leq 1.\]

hence
\[\|1 - \frac{1}{2}(x + y)\| \leq 1.\]

Also, $\|(x + y)/2\| \leq 1$, and then (b) yields $(x + y)/2 \in C^+$, which gives (c), in light of the fact that
\[x \in C^+, \ r \in \mathbb{R}^+ \Rightarrow rx \in C^+.\]

Remark. We see furthermore that

\[(7.2) \quad C^+ \subset C \text{ is a closed, convex cone.}\]

The following result complements part (a) of Proposition 7.1.

Proposition 7.2. If $x \in C^+$, then there is a unique $x^{1/2} \in C^+$ such that $(x^{1/2})^2 = x$.

Proof. For existence, let A be the commutative C^* algebra generated by 1 and x, and apply the Gelfand transform. Note that if $I = [0, \|x\|]$ and p_k are polynomials such that
\[(7.3) \quad p_k(\lambda) \to \lambda^{1/2}, \text{ uniformly for } \lambda \in I,\]
then

\[(7.4) \quad p_k(x) \to x^{1/2}.\]

For uniqueness, suppose \(y \in \mathcal{C}^+\) and \(y^2 = x\). Then applying the Gelfand transform to the commutative \(C^*\) algebra generated by 1 and \(y\) gives

\[(7.5) \quad p_k(y^2) \to y,\]

since \(p_k(\lambda^2) \to \lambda\) uniformly on the interval \(I\). Comparison with (7.4) gives \(y = x^{1/2}\).

We next aim to establish the following.

Proposition 7.3. If \(\mathcal{C}\) is a \(C^*\) algebra with unit,

\[(7.6) \quad x \in \mathcal{C} \implies x^*x \in \mathcal{C}^+.\]

To start the proof, note that \(w = x^*x \Rightarrow w = w^*\). Define \(\psi_\pm : \mathbb{R} \to \mathbb{R}^+\) by

\[(7.7) \quad \psi_+(\lambda) = \lambda \quad \text{for } \lambda \geq 0, \quad 0 \quad \text{for } \lambda < 0,\]

\[\psi_-(\lambda) = |\lambda| \quad \text{for } \lambda \leq 0, \quad 0 \quad \text{for } \lambda > 0,\]

and set

\[(7.8) \quad u = \psi_+(x^*x), \quad v = \psi_-(x^*x),\]

so

\[(7.9) \quad x^*x = u - v, \quad u, v \in \mathcal{C}^+, \quad uv = 0.\]

We want to show that \(v = 0\). To this end, set

\[(7.10) \quad y = xv^{1/2}, \quad \text{so } y^*y = -v^2.\]

Clearly \(\sigma(-v^2) \subset (-\infty, 0]\), by part (a) of Proposition 7.1. We will prove the following.

Lemma 7.4. If \(y \in \mathcal{C}\) and \(\sigma(y^*y) \subset (-\infty, 0]\), then \(y = 0\).

This lemma plus (7.10) yields \(v = 0\), and proves Proposition 7.3.

In order to prove Lemma 7.4, it is useful to bring in the following.
Lemma 7.5. If $x, y \in \mathcal{C}$, then $\sigma(xy) \setminus \{0\} = \sigma(yx) \setminus \{0\}$.

Proof. Applying dilations to x and y, it suffices to show that

$$1 - xy \text{ invertible } \implies 1 - yx \text{ invertible.}$$

Indeed, if $w = (1 - xy)^{-1}$, then

$$
(1 + ywx)(1 - yx) = 1 - yx + ywx - ywxyx \\
= 1 - y(1 - w(1 - xy))x \\
= 1,
$$

and similarly $(1 - yx)(1 + ywx) = 1$, so we have (7.11).

Proof of Lemma 7.4. Lemma 7.5 implies $\sigma(yy^*) \subset (-\infty, 0]$, and then part (c) of Proposition 7.1 gives $-(y^*y + yy^*) \in \mathcal{C}^+$, i.e.,

$$
\sigma(y^*y + yy^*) \subset (-\infty, 0].
$$

Now set

$$
y = b + ic, \quad b = b^*, \quad c = c^*.
$$

We have

$$
y^*y = b^2 + c^2 + i(bc - cb), \\
= b^2 + c^2 - i(bc - cb),
$$

hence

$$
y^*y + yy^* = 2b^2 + 2c^2,
$$

and parts (a) and (c) of Proposition 7.1 gives $b^2 + c^2 \in \mathcal{C}^+$, so

$$
\sigma(y^*y + yy^*) = \{0\}.
$$

Since $y^*y + yy^*$ is self adjoint, this implies $y^*y + yy^* = 0$, hence $b^2 + c^2 = 0$, hence $b^2 = -c^2$. Hence

$$
\sigma(b^2) = \sigma(c^2) = \{0\},
$$

so $b = c = 0$, hence $y = 0$, as asserted.
A. Holomorphic functional calculus

Let \mathcal{B} be a Banach algebra, with unit I. Given $x \in \mathcal{B}$, we have defined the resolvent set $\rho(x)$ and spectrum $\sigma(x)$ in §1. We have seen that $\sigma(x) \subset \mathbb{C}$ is compact and that $R_\zeta = (\zeta - x)^{-1}$ is holomorphic in $\zeta \in \rho(x)$.

Let f be holomorphic on a neighborhood of $\sigma(x)$. In fact, let Ω be a smoothly bounded neighborhood of $\sigma(x)$ and assume f is holomorphic on a neighborhood of $\bar{\Omega}$. We set

$$f(x) = \frac{1}{2\pi i} \int_{\partial\Omega} f(\zeta)(\zeta - x)^{-1} d\zeta.$$

(A.1)

If $\mathcal{B} = \mathbb{C}$, this is just Cauchy’s formula. Note that the element of \mathcal{B} defined by (A.1) is independent of the choice of Ω satisfying the conditions stated above, by Cauchy’s theorem, which is valid in the setting of Banach space valued holomorphic functions.

In case f is holomorphic on a neighborhood of $\{\zeta : |\zeta| \leq \|x\|\}$, or even $\{\zeta : |\zeta| \leq r(x)\}$, we can let Ω be a disk centered at the origin and replace R_ζ by its power series expansion:

$$R_\zeta = (\zeta - x)^{-1} = \frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{1}{\zeta^k} x^k.$$

(A.2)

For example,

$$p_n(\zeta) = \zeta^n \quad (n \in \mathbb{Z}^+)$$

$$\Rightarrow p_n(x) = \frac{1}{2\pi i} \int_{|\zeta|=R} \zeta^n \zeta^{-1} \sum_{k=0}^{\infty} \zeta^{-k} x^k \, d\zeta \quad (\text{take } R > \|x\|)$$

(A.3)

$$= \frac{1}{2\pi i} \sum_{k=0}^{\infty} \int_{|\zeta|=R} \zeta^{n-1-k} \, d\zeta \, x^k$$

$$= x^n.$$

To establish further properties of this functional calculus, it will be useful to have the following result, known as the resolvent identity:

Proposition A.1. If $x \in \mathcal{B}$ and $z, \zeta \in \rho(x)$, then

$$R_z - R_\zeta = (\zeta - z)R_z R_\zeta.$$

(A.4)
Proof. Note that R_ζ commutes with $\zeta - x$, hence with x, hence with $z - x$. Hence $R_z R_\zeta (z - x) = R_z(z - x) R_\zeta = R_\zeta$, and multiplying on the right by R_z gives

\begin{equation}
R_z R_\zeta = R_\zeta R_z.
\end{equation}

Thus

\begin{equation}
R_z - R_\zeta = (\zeta - x) R_\zeta R_z - (z - x) R_z R_\zeta
= (\zeta - z) R_\zeta R_z,
\end{equation}

proving (A.4).

Now for our multiplicative property.

Proposition A.2. If $x \in \mathcal{B}$ and f and g are holomorphic on a neighborhood of $\sigma(x)$, then

\begin{equation}
f(x)g(x) = (fg)(x).
\end{equation}

Proof. Suppose $\sigma(x) \subset \Omega \subset \overline{\Omega} \subset \Omega_1$ and f and g are holomorphic on a neighborhood of $\overline{\Omega}_1$. Write

\begin{equation}
g(x) = \frac{1}{2\pi i} \int_{\partial \Omega_1} g(z)(z - x)^{-1} dz,
\end{equation}

and, using (A.1), write $f(x)g(x)$ as a double integral. The product $R_\zeta R_z$ of resolvents appears in the integral. Using the resolvent identity (A.4), we obtain

\begin{equation}
f(x)g(x) = \frac{1}{(2\pi i)^2} \int_{\partial \Omega_1} \int_{\partial \Omega} (\zeta - z)^{-1} f(\zeta)g(z)(R_z - R_\zeta) d\zeta dz.
\end{equation}

The term involving R_z as a factor has $d\zeta$-integral equal to zero, by Cauchy’s theorem. Doing the dz-integral for the other term, using Cauchy’s identity

\begin{equation}
g(\zeta) = \frac{1}{2\pi i} \int_{\partial \Omega_1} (z - \zeta)^{-1} g(z) dz,
\end{equation}

we obtain from (A.9)

\begin{equation}
f(x)g(x) = \frac{1}{2\pi i} \int_{\partial \Omega} f(\zeta)g(\zeta)R_\zeta d\zeta,
\end{equation}

which gives (A.7).
Corollary A.3. If \(x \in B \), \(f \) is holomorphic in a neighborhood of \(\sigma(x) \), and \(z \notin f(\sigma(x)) \), then \(z - f(x) \) is invertible.

Proof. Set

\[
(A.12) \quad g_z(\zeta) = \frac{1}{z - f(\zeta)}, \quad \text{holomorphic in } \zeta \text{ on a neighborhood of } \sigma(x).
\]

Then (A.7) gives

\[
(A.13) \quad g_z(x)(z - f(x)) = (z - f(x))g_z(x) = I.
\]

Another way to phrase Corollary A.3 is that

\[
(A.14) \quad \sigma(f(x)) \subset f(\sigma(x)).
\]

This is completed by the following result, known as the spectral mapping theorem. (Compare Proposition 2.8, valid when \(B \) is commutative.)

Proposition A.4. In the setting of Corollary A.3,

\[
(A.15) \quad \sigma(f(x)) = f(\sigma(x)).
\]

Proof. Say \(f \) is holomorphic on a neighborhood \(\Omega \) of \(\sigma(x) \). Taking \(\lambda \in \sigma(x) \), we have

\[
(A.16) \quad f(x) - f(\lambda) = (x - \lambda)G_\lambda(x),
\]

where

\[
(A.17) \quad G_\lambda(\zeta) = \frac{f(\zeta) - f(\lambda)}{\zeta - \lambda},
\]

which is holomorphic in \(\zeta \in \Omega \) (with a removable singularity at \(\zeta = \lambda \)). Clearly, if \(\lambda \in \sigma(x) \), the right side of (A.16) is not invertible, so the left side is not invertible. This yields

\[
(A.18) \quad \lambda \in \sigma(x) \implies f(\lambda) \in \sigma(f(x)),
\]

which together with (A.14) gives (A.15).

Remark. A special case of the argument (A.16)–(A.18) appears in (4.12)–(4.14); see also (B.11)–(B.12).

We next have a composition identity.
Proposition A.5. Given \(x \in \mathcal{B} \), \(f \) holomorphic on a neighborhood of \(\sigma(x) \), and \(h \) holomorphic on a neighborhood of \(f(\sigma(x)) \) (so \(h \circ f \) is holomorphic on a neighborhood of \(\sigma(x) \)), we have

\[
(h \circ f)(x) = h(f(x)).
\]

Proof. There is no loss in assuming \(\sigma(x) \subset \Omega \), \(f \) holomorphic on a neighborhood of \(\overline{\Omega} \), and \(h \) holomorphic on a neighborhood of \(f(\overline{\Omega}) \).

First, for \(\zeta \in \overline{\Omega} \), \(\gamma \) the boundary of some neighborhood of \(f(\overline{\Omega}) \), we have

\[
(h \circ f)(\zeta) = h(f(\zeta)) = \frac{1}{2\pi i} \int_{\gamma} h(z)(z - f(\zeta))^{-1} \, dz
\]

(A.20)

\[
= \frac{1}{2\pi i} \int_{\gamma} h(z)g_z(\zeta) \, dz,
\]

where, as in (A.12),

\[
g_z(\zeta) = \frac{1}{z - f(\zeta)}.
\]

Hence

\[
(h \circ f)(x) = \frac{1}{2\pi i} \int_{\partial \Omega} (h \circ f)(\zeta)(\zeta - x)^{-1} \, d\zeta
\]

(A.22)

\[
= \frac{1}{(2\pi i)^2} \int_{\partial \Omega} \int_{\gamma} h(z)g_z(\zeta)(\zeta - x)^{-1} \, dz \, d\zeta.
\]

Reversing the order of integration (doing the \(d\zeta \)-integral first) gives

\[
(h \circ f)(x) = \frac{1}{2\pi i} \int_{\gamma} h(z)g_z(x) \, dz
\]

(A.23)

\[
= \frac{1}{2\pi i} \int_{\gamma} h(z)(z - f(x))^{-1} \, dz \quad \text{(by (A.13))}
\]

\[
= h(f(x)),
\]

as desired.

The following is an important family of holomorphic functions to apply to elements \(x \in \mathcal{B} \), namely \(e_t(\zeta) = e^{t\zeta} \). We have the power series

\[
e^{tx} = \sum_{k=0}^{\infty} \frac{t^k}{k!} x^k, \quad t \in \mathbb{R}, \quad x \in \mathcal{B}.
\]

(A.24)
Applying (A.7) to \(f(\zeta) = e^{s\zeta} \), \(g(\zeta) = e^{t\zeta} \) gives
\[
ed(s+t)x = e^{sx}e^{tx}, \quad \forall s, t \in \mathbb{R}, \quad x \in B,
\]
from the standard identity \(e^{(s+t)\zeta} = e^{s\zeta}e^{t\zeta} \), valid for \(s, t \in \mathbb{R}, \, \zeta \in \mathbb{C} \). This is used in (4.10). A direct proof of (A.25) can be given as follows. Applying \(\frac{d}{dt} \) to (A.24) gives
\[
\frac{d}{dt} e^{tx} = xe^{tx}, \quad \forall t \in \mathbb{R}, \quad x \in B.
\]
Hence, via the product rule,
\[
\frac{d}{dt} e^{(s+t)x}e^{-tx} = e^{(s+t)x}xe^{-tx} - e^{(s+t)x}xe^{-tx} = 0,
\]
so \(e^{(s+t)x}e^{-tx} \) is independent of \(t \in \mathbb{R} \). Taking \(t = 0 \) gives
\[
e^{(s+t)x}e^{-tx} = e^{sx}, \quad \forall s, t \in \mathbb{R}, \quad x \in B.
\]
Taking \(s = 0 \) in (A.28) gives
\[
e^{tx}e^{-tx} = I, \quad \forall t \in \mathbb{R}, \quad x \in B,
\]
so we can multiply each side of (A.28) on the right by \(e^{tx} \) and get (A.25).

A variant of this last argument yields the following useful result (justifying the first identity in (4.12)).

Proposition A.6. If \(x \) and \(y \in B \) commute (i.e., \(xy = yx \)), then
\[
e^{t(x+y)} = e^{tx}e^{ty}, \quad \forall t \in \mathbb{R}.
\]

Proof. Using (A.28) and the product rule, we compute
\[
\frac{d}{dt} \left(e^{t(x+y)}e^{-ty}e^{-tx}\right)
= e^{t(x+y)}(x + y)e^{-ty}e^{-tx} - e^{t(x+y)}ye^{-ty}e^{-tx} - e^{-t(x+y)}e^{-ty}xe^{-tx}
= e^{t(x+y)}xe^{-ty}e^{-tx} - e^{t(x+y)}e^{-ty}xe^{-tx}.
\]
If we show that
\[
x e^{-ty} = e^{-ty}x, \quad \forall t \in \mathbb{R}, \quad \text{provided } xy = yx,
\]
it will follow that (A.31) is zero, so \(e^{t(x+y)}e^{-ty}e^{-tx} \) is independent of \(t \), hence
\[
e^{t(x+y)}e^{-ty}e^{-tx} = I, \quad \forall t \in \mathbb{R},
\]
from which (A.30) follows upon right multiplication, first by \(e^{tx} \) (using (A.29)), then by \(e^{ty} \). As for (A.32), we have
\[
e^{-ty}x = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} y^k x.
\]
Provided \(xy = yx \), we also have \(y^k x = xy^k \), and (A.32) readily follows. Proposition A.6 is proven.

It is desirable to demonstrate that the formula (A.24) for \(e^{tx} \) is equivalent to (A.1) with \(f(\zeta) = e^{t\zeta} \). This follows from (A.3) and a limiting argument, a neat general version of which is the following.
Proposition A.7. Take \(x \in \mathcal{B} \). Assume \(g_k \) and \(g \) are holomorphic on a neighborhood \(\mathcal{O} \) of \(\sigma(x) \) and \(g_k \to g \) uniformly on \(\mathcal{O} \). Then \(g_k(x) \to g(x) \) in \(\mathcal{B} \)-norm.

Proof. Take a smoothly bounded open set \(\Omega \) such that \(\sigma(x) \subset \Omega \subset \overline{\Omega} \subset \mathcal{O} \). For \(f \) holomorphic on \(\mathcal{O} \), (A.1) implies

\[
\|f(x)\| \leq C \sup_{\zeta \in \partial \Omega} |f(\zeta)|,
\]

with

\[
C = \frac{\ell(\partial \Omega)}{2\pi} \sup_{\zeta \in \partial \Omega} \|R_\zeta\|.
\]

Applying this estimate to \(f = g - g_k \) gives \(\|g(x) - g_k(x)\| \to 0 \).

Corollary A.8. Take \(x \in \mathcal{B} \). Assume \(f : D_R(0) \to \mathbb{C} \) is holomorphic, where \(D_R(0) = \{ \zeta \in \mathbb{C} : |\zeta| < R \} \). Assume \(\sigma(x) \subset D_R(0) \). Then \(f(x) \in \mathcal{B} \) is given by the norm-convergent series

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]

We also record a variant of this, involving Laurent series. Given \(a, b \in \mathbb{R} \) such that \(0 \leq a < 1 < b \), consider the annulus

\[
\mathcal{A}_{a,b} = \{ \zeta \in \mathbb{C} : a < |\zeta| < b \}.
\]

If \(f : \mathcal{A}_{a,b} \to \mathbb{C} \) is holomorphic, it has a Laurent series expansion of the form

\[
f(\zeta) = \sum_{k=-\infty}^{\infty} \hat{f}(k) \zeta^k,
\]

converging uniformly on compact subsets of \(\mathcal{A}_{a,b} \), with coefficients \(\hat{f}(k) \) given by

\[
\hat{f}(k) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta^{k+1}} d\zeta,
\]

where \(\gamma_1 \) is the unit circle, \(\{ e^{i\theta} : 0 \leq \theta \leq 2\pi \} \). Equivalently,

\[
\hat{f}(k) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) e^{-ik\theta} d\theta.
\]

If \(0 \notin \sigma(x) \), then, arguing as in Corollary A.3, we can complement (A.3) by

\[
p_{-1}(\zeta) = \zeta^{-1} \implies p_{-1}(x) = x^{-1},
\]

and then

\[
p_{-n}(\zeta) = \zeta^{-n} \implies p_{-n}(x) = x^{-n}.
\]

Proposition A.7 then gives the following.
Corollary A.9. Take \(x \in \mathcal{B} \). Assume \(f \) is holomorphic on the annulus \(\mathcal{A}_{a,b} \), satisfying (A.39)–(A.40). Assume \(\sigma(x) \subset \mathcal{A}_{a,b} \). Then \(f(x) \) is given by the norm-convergent series

\[
(A.42) \quad f(x) = \sum_{k=-\infty}^{\infty} \hat{f}(k)x^k.
\]

We next take a look at cases where \(\sigma(x) \) is not connected. Assume there exist smoothly bounded open sets \(\Omega_j \) such that

\[
(A.43) \quad \sigma(x) \subset \bigcup_{j=1}^{M} \Omega_j, \quad \overline{\Omega}_j \text{ mutually disjoint.}
\]

Assume each set \(\sigma_j(x) = \sigma(x) \cap \Omega_j \) is nonempty. For \(j \in \{1, \ldots, M\} \), set

\[
(A.44) \quad P_j = \frac{1}{2\pi i} \int_{\partial\Omega_j} (\zeta - x)^{-1} d\zeta = \chi_{\overline{\Omega}_j}(x).
\]

We see that

\[
(A.45) \quad P_j^2 = P_j, \quad P_j P_k = 0 \text{ if } j \neq k,
\]

and

\[
(A.46) \quad P_1 + \cdots + P_M = I.
\]

the elements \(P_j \) of \(\mathcal{B} \) are called projections.

Now, for each \(j \in \{1, \ldots, M\} \), let us set

\[
(A.47) \quad \mathcal{B}_j = \{P_j y P_j : y \in \mathcal{B}\} = \{y \in \mathcal{B} : P_j^\perp y = y P_j^\perp = 0\},
\]

where \(P_j^\perp = I - P_j \). Clearly \(\mathcal{B}_j \) is a closed linear subspace of \(\mathcal{B} \), also closed under products. Furthermore \(P_j \in \mathcal{B}_j \) is a multiplicative unit, so \(\mathcal{B}_j \) has the structure of a Banach algebra with unit (more precisely, a “Banachable algebra” with unit, since possibly \(\|P_j\| > 1 \); see §F). We have the following.

Proposition A.10. In the setting described above, for each \(j \in \{1, \ldots, M\} \), the element \(x_j = P_j x P_j \in \mathcal{B}_j \) has spectrum

\[
(A.48) \quad \sigma_{\mathcal{B}_j}(x_j) = \sigma_j(x).
\]
Proof. Assume $\lambda \notin \sigma_j(x)$. Shrinking Ω, we can assume $\lambda \notin \overline{\Omega}_j$. Then, taking
\begin{equation}
E_{j,\lambda}(\zeta) = (\lambda - \zeta)^{-1}\chi_{\overline{\Omega}_j}(\zeta)
\end{equation}
yields
\begin{align}
E_{j,\lambda}(x) &= P_j E_{j,\lambda}(x) P_j \in \mathcal{B}_j, \\
E_{j,\lambda}(x)(\lambda - x_j) &= E_{j,\lambda}(x)(\lambda - x) = P_j, \\
(\lambda - x_j)E_{j,\lambda}(x) &= (\lambda - x)E_{j,\lambda}(x) = P_j,
\end{align}
so $\sigma_{\mathcal{B}_j}(x_j) \subset \overline{\Omega}_j$, and shrinking Ω_j leads to
\begin{equation}
\sigma_{\mathcal{B}_j}(x_j) \subset \sigma_j(x).
\end{equation}
We leave the reverse inclusion as an exercise.

It is of interest to recast Proposition A.10 in the important case $\mathcal{B} = \mathcal{L}(V)$, the space of bounded linear operators on a Banach space V. We change notation, replacing $x \in \mathcal{B}$ by $A \in \mathcal{L}(V)$. We place the hypothesis (A.43) on $\sigma(A)$. As in (A.44), we have
\begin{equation}
P_j = \frac{1}{2\pi i} \int_{\partial \Omega_j} (\zeta - A)^{-1} d\zeta = \chi_{\overline{\Omega}_j}(A),
\end{equation}
satisfying (A.45)–(A.46). We can now recognize P_j as a projection of V onto the closed linear subspace
\begin{equation}
V_j = P_j(V) = \text{Ker}(I - P_j).
\end{equation}
We have the direct sum decomposition
\begin{equation}
V = V_1 \oplus \cdots \oplus V_M,
\end{equation}
and $A : V_j \to V_j$. We set
\begin{equation}
A_j = A|_{V_j} = P_j A|_{V_j},
\end{equation}
so
\begin{equation}
A = A_1 \oplus \cdots \oplus A_M.
\end{equation}
With $E_{j,\lambda}$ as in (A.49), we see that
\begin{equation}
\lambda \notin \overline{\Omega}_j \implies E_{j,\lambda}(A) : V_j \to V_j,
\end{equation}
and provides a two-sided inverse to $\lambda - A_j$ on V_j. Hence
\begin{equation}
\sigma(A_j) \subset \sigma_j(A) = \sigma(A) \cap \Omega_j,
\end{equation}
and the reverse inclusion is readily established. Thus Proposition A.10 has the following variant.

Proposition A.11. In the setting described above, for each $j \in \{1, \ldots, M\}$,
\begin{equation}
\sigma(A_j) = \sigma_j(A).
\end{equation}
B. The spectral radius

Let \mathcal{B} be a Banach algebra with unit I. Recall from §1 that if $x \in \mathcal{B}$ we define its spectral radius as

\begin{equation}
(B.1) \quad r(x) = \sup \{|\zeta| : \zeta \in \sigma(x)\}.
\end{equation}

From (1.7), we have

\begin{equation}
(B.2) \quad (\zeta - x)^{-1} = \frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{1}{\zeta^k} x^k,
\end{equation}

for $|\zeta| > \|x\|$. Hence, as noted in §1

\begin{equation}
(B.3) \quad r(x) \leq \|x\|.
\end{equation}

Here we establish the following more precise result, an identity for $r(x)$ that is of use in §§4–5.

Proposition B.1. If \mathcal{B} is a Banach algebra with unit and $x \in \mathcal{B}$,

\begin{equation}
(B.4) \quad r(x) = \lim_{k \to \infty} \|x^k\|^{1/k}.
\end{equation}

We will establish the following two inequalities, which together imply (B.4). The first is

\begin{equation}
(B.5) \quad \limsup_{k \to \infty} \|x^k\|^{1/k} \leq r(x),
\end{equation}

and the second is

\begin{equation}
(B.6) \quad r(x) \leq \inf_{k \geq 1} \|x^k\|^{1/k}.
\end{equation}

To prove (B.5), we note that, since $R_\zeta = (\zeta - x)^{-1}$ is holomorphic in ζ for $\zeta \in \rho(x)$,

\begin{equation}
(B.7) \quad F(\zeta) = (I - \zeta x)^{-1}
\end{equation}

is holomorphic for $|\zeta| < 1/r(x)$. By (1.3)–(1.4), $F(\zeta)$ is given by the power series

\begin{equation}
(B.8) \quad F(\zeta) = \sum_{k=0}^{\infty} x^k \zeta^k,
\end{equation}

for $|\zeta| < 1/r(x)$.
convergent for $|\zeta| < 1/\|x\|$.

In fact, whenever a function

\begin{equation}
F : D_R(0) \rightarrow B \text{ is holomorphic,}
\end{equation}

where $D_R(0) = \{ \zeta \in \mathbb{C} : |\zeta| < R \}$, its power series

\begin{equation}
F(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k, \quad a_k \in B,
\end{equation}

converges absolutely for $|\zeta| < R$, i.e.,

\begin{equation}
\sum_{k=0}^{\infty} \|a_k\| \cdot |\zeta|^k < \infty, \quad \text{for } |\zeta| < R.
\end{equation}

The proof works like the case $F : D_R(0) \rightarrow \mathbb{C}$. One has the Cauchy integral formula:

\begin{equation}
F'(\zeta) = \frac{1}{2\pi i} \int_{\gamma_S} F(z)(z - \zeta)^{-1} \, dz, \quad \text{for } |\zeta| < S < R,
\end{equation}

where $\gamma_S = \partial D_S(0)$. Hence, using

\begin{equation}
\frac{1}{z - \zeta} = \frac{1}{z} \frac{1}{1 - \zeta/z} = \sum_{k=0}^{\infty} \zeta^k z^{-k-1},
\end{equation}

valid for $|z| < |\zeta|$, one gets the absolutely convergent series

\begin{equation}
F(\zeta) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma_S} F(z) z^{-k-1} \, dz \right) \zeta^k, \quad \text{for } |\zeta| < S < R,
\end{equation}

yielding (B.10)–(B.11).

Applying this observation to $F(\zeta)$ in (B.7) yields

\begin{equation}
(I - \zeta x)^{-1} = \sum_{k=0}^{\infty} x^k \zeta^k, \quad \text{absolutely convergent for } |\zeta| < \frac{1}{r(x)},
\end{equation}

hence

\begin{equation}
\sum_{k=0}^{\infty} \|x^k\| \cdot |\zeta|^k < \infty, \quad \text{for } |\zeta| < \frac{1}{r(x)}.
\end{equation}
Such convergence requires the terms in the series (B.16) to tend to 0 as \(k \to \infty \), hence

\[
\sup_{k \geq 1} |\zeta|^k \|x^k\| < \infty, \quad \forall |\zeta| < \frac{1}{r(x)}.
\]

and this yields (B.5).

To get (B.6), we note the following. From

\[
\zeta^k - x^k = (\zeta - x)(\zeta^{k-1} + \zeta^{k-2}x + \cdots + x^{k-1}),
\]

we have the first implication in

\[
\zeta \in \sigma(x) \implies \zeta^k \in \sigma(x^k)
\]

\[
\implies |\zeta|^k \leq \|x^k\|
\]

\[
\implies |\zeta| \leq \|x^k\|^{1/k},
\]

the second implication by (B.3) applied to \(x^k \). This yields (B.6) and finishes the proof of Proposition B.1.

If \(r(x) = 0 \), we say \(x \) is quasi-nilpotent. By (B.4), this holds if and only if \(\|x^k\|^{1/k} \to 0 \) as \(k \to \infty \). If \(\mathcal{B} \) is a commutative Banach algebra with unit, it follows from (2.13)–(2.16) that the set \(\mathcal{N} \) of quasi-nilpotent elements is given by

\[
\mathcal{N} = \text{Ker} \, \gamma,
\]

where \(\gamma : \mathcal{B} \to C(\mathcal{M}(\mathcal{B})) \) is the Gelfand transform. Hence \(\mathcal{N} \) is a closed ideal in \(\mathcal{B} \). The quotient \(\mathcal{B}/\mathcal{N} \) is also a commutative Banach algebra with unit, and \(\gamma \) factors through \(\mathcal{B} \to \mathcal{B}/\mathcal{N} \) to yield an injective homomorphism

\[
\gamma^b : \mathcal{B}/\mathcal{N} \to C(\mathcal{M}(\mathcal{B})).
\]

We next describe a family of quasi-nilpotent elements of \(\mathcal{B} = L(V) \), where

\[
V = L^p(I), \quad 1 \leq p \leq \infty,
\]

with \(I = [0, 1] \), carrying Lebesgue measure. We define \(A \in L(L^p(I)) \) by

\[
Af(x) = \int_0^x f(y) \, dy.
\]

A calculation gives

\[
A^2 f(x) = \int_0^x (x - y) f(y) \, dy,
\]
and, inductively,

\[A^n f(x) = \frac{1}{(n-1)!} \int_0^x (x - y)^{n-1} f(y) \, dy \]

(B.25)

\[= \int_0^1 k_n(x, y) f(y) \, dy, \]

where

\[k_n(x, y) = \frac{(x - y)^{n-1}}{(n-1)!}, \quad \text{for } y \in [0, x], \]

(B.26)

\[0 \quad \text{otherwise}. \]

We can estimate the operator norm of \(A^n \) on \(L^p(I) \) as follows. With

\[C_{1,n} = \sup_y \int_0^1 |k_n(x, y)| \, dx, \]

(B.27)

\[C_{2,n} = \sup_x \int_0^1 |k_n(x, y)| \, dy, \]

one has

\[\|A^n\|_{L(L^p)} \leq C_{1,n}^{1/p} C_{2,n}^{1/q}, \]

(B.28)

where \(q \) is the dual exponent to \(p \), satisfying \(p^{-1} + q^{-1} = 1 \). See Proposition 5.1 of [T1]. In the present case, we have from (B.26) that

\[C_{1,n} = C_{2,n} = \frac{1}{n!}, \]

(B.29)

so

\[\|A^n\|_{L(L^p)} \leq \frac{1}{n!}. \]

(B.30)

To estimate \(\|A^n\|^{1/n} \), we bring in Stirling’s formula,

\[n! \sim \left(\frac{n}{e} \right)^n \sqrt{2\pi n}, \quad \text{as } n \to \infty, \]

(B.31)

which gives

\[\|A^n\|^{1/n} \leq \frac{C}{n}. \]

(B.32)
Thus the operator A defined by (B.23) has spectral radius 0 on $L^p(I)$, for each $p \in [1, \infty]$. Consequently

\[(B.33) \quad \sigma(A) = \{0\}.\]

In light of (B.33), it is interesting that, for A given by (B.23),

\[(B.34) \quad \text{Ker } A = 0\]

on $L^p(I)$, for each $p \in [1, \infty]$. Indeed, for $f \in L^p(I)$,

\[(B.35) \quad Af = 0 \iff \int_a^b f(x) \, dx = 0 \quad \text{whenever } 0 \leq a < b \leq 1,\]

and basic results on the Lebesgue integral yield $f = 0$ when this holds.

We describe an alternative method of proving (B.33), using the observation that A in (B.23) is compact, i.e., it maps the unit ball in $L^p(I)$ to a relatively compact subset of $L^p(I)$, for each $p \in [1, \infty]$. Given this, if $\sigma(A)$ contains an element $\lambda \neq 0$, then there must exist a nonzero $f \in L^p(I)$ such that

\[(B.36) \quad Af = \lambda f.\]

See Proposition 6.8 of [T1]. Hence

\[(B.37) \quad f(x) = \frac{1}{\lambda} \int_0^x f(y) \, dt.\]

It follows that $f \in C(I)$ and then, inductively, that $f \in C^k(I)$ for each $k \in \mathbb{N}$. We can then differentiate (B.37), to get

\[(B.38) \quad f'(x) = \frac{1}{\lambda} f(x),\]

with general solution

\[(B.39) \quad f(x) = Ce^{x/\lambda}.\]

But (B.37) also implies $f(0) = 0$, which forces $C = 0$, and hence $f = 0$.
C. Rich Banach algebras of continuous functions

Let M be a compact Hausdorff space, and let \mathcal{B} be a Banach algebra of continuous functions on M, with pointwise sum and product, and norm $f \mapsto \|f\|$. For each $p \in M$, $f \mapsto f(p)$ is a character on \mathcal{B}, so (2.3) implies

\[(C.1) \sup_{p \in M} |f(p)| \leq \|f\|, \quad \forall f \in \mathcal{B}.\]

We say such \mathcal{B} is a rich Banach algebra of continuous functions on M provided there exists an algebra \mathcal{C} of continuous functions on M, closed under $f \mapsto \overline{f}$, such that

\[(C.2) \quad \mathcal{C} \subset \mathcal{B} \text{ is dense},\]

and

\[(C.3) \quad f \in \mathcal{C} \text{ nowhere vanishing on } M \implies f^{-1} \in \mathcal{C}.\]

We have the following considerable generalization of Proposition 3.2.

Proposition C.1. Let \mathcal{B} be a rich Banach algebra of continuous functions on a compact Hausdorff space M. Then, for each character $\varphi : \mathcal{B} \to \mathbb{C}$, there exists $p \in M$ such that

\[(C.4) \quad \varphi(f) = f(p), \quad \forall f \in \mathcal{B}.\]

Proof. If we compose φ with (C.2), we get a linear map $\varphi : \mathcal{C} \to \mathbb{C}$ satisfying, for all $f, g \in \mathcal{C}$,

\[(C.5) \quad \varphi(fg) = \varphi(f)\varphi(g), \quad \varphi(1) = 1.\]

Hence Proposition C.1 is a consequence of the following.

Proposition C.2. With \mathcal{C} as above, if $\varphi : \mathcal{C} \to \mathbb{C}$ is a linear map satisfying (C.5), then there exists $p \in M$ such that

\[(C.6) \quad \varphi(f) = f(p), \quad \forall f \in \mathcal{C}.\]

Proof. To begin, we claim there exists $p \in M$ such that

\[(C.7) \quad f \in \mathcal{C}, \quad \varphi(f) = 0 \implies f(p) = 0.\]
In fact, if no such \(p \) exists, we can cover \(M \) with a finite number of open sets \(U_j, \ 1 \leq j \leq K \), and take \(f_j \in \mathcal{C} \), nowhere vanishing on \(U_j \), such that \(\varphi(f_j) = 0 \). Then

\[
(C.8) \quad f = \sum_{j=1}^{K} |f_j|^2 \implies f \in \mathcal{C}, \ \varphi(f) = 0.
\]

However, \(f > 0 \) on \(M \), so \(f^{-1} \in \mathcal{C} \), so the assertion \(\varphi(f) = 0 \) contradicts \(\varphi(f^{-1} f) = \varphi(1) = 1 \).

Now, take \(p \in M \) such that \((C.7)\) holds, and set

\[
(C.9) \quad \psi(f) = f(p), \quad \psi : \mathcal{C} \to \mathbb{C}.
\]

We see that both \(\psi \) and \(\varphi \) obey \((C.5)\), and

\[
(C.10) \quad f \in \mathcal{C}, \ \varphi(f) = 0 \implies \psi(f) = 0.
\]

Given this, if \(f \in \mathcal{C} \),

\[
(C.11) \quad \varphi(f) = \alpha \Rightarrow \varphi(f - \alpha) = 0 \Rightarrow \psi(f - \alpha) = 0 \Rightarrow f(p) = \alpha,
\]

and we have \((C.6)\).

To apply Proposition C.1 to Proposition 3.2, i.e., to

\[
(C.12) \quad M = S^1, \quad \mathcal{B} = \mathcal{A}(S^1),
\]

we can take

\[
(C.13) \quad \mathcal{C} = \mathcal{C}^\infty(S^1).
\]

Note that we are not assuming in Proposition C.1 that \(\mathcal{C} \) is a Banach algebra.

More generally, Proposition C.1 applies to

\[
(C.14) \quad M = \mathbb{T}^k, \quad \mathcal{B} = \mathcal{A}(\mathbb{T}^k), \quad \mathcal{C} = \mathcal{C}^\infty(\mathbb{T}^k),
\]

when \(\mathbb{T}^k \) is the \(k \)-dimensional torus, and \(\mathcal{A}(\mathbb{T}^k) \) consists of functions on \(\mathbb{T}^k \) whose Fourier coefficients \(\hat{f}(\ell) \) satisfy \(\sum_{\ell \in \mathbb{Z}^k} |\hat{f}(\ell)| < \infty \). See Appendix E for a further generalization, replacing \(\mathbb{T}^k \) by a more general compact group.
D. Variants of a theorem of Bochner and Phillips

Let \mathcal{B} be a Banach algebra with unit. Set

\[(D.1)\quad \mathcal{A}(S^1, \mathcal{B}) = \left\{ f \in C(S^1, \mathcal{B}) : \sum_{k \in \mathbb{Z}} \| \hat{f}(k) \|_\mathcal{B} < \infty \right\} .\]

In [BP], the following was proven.

Proposition D.1. Let $f \in \mathcal{A}(S^1, \mathcal{B})$ and assume $f(\zeta)$ is invertible in \mathcal{B} for each $\zeta \in S^1$, so $g(\zeta) = f(\zeta)^{-1}$ gives $g \in C(S^1, \mathcal{B})$. Then in fact $g \in \mathcal{A}(S^1, \mathcal{B})$.

The case $\mathcal{B} = \mathbb{C}$ is a classical result of Wiener (cf. Proposition 3.2). We aim to provide a proof of Proposition D.1 and explore some variants.

To proceed, let M be a compact Riemannian manifold. With \mathcal{B} as above, let \mathcal{A} be a Banach algebra of continuous functions on M, with values in \mathcal{B}. We assume that

\[(D.2)\quad C^\infty(M, \mathcal{B}) \hookrightarrow \mathcal{A} \hookrightarrow C(M, \mathcal{B}),\]

with continuous injections. Given

\[(D.3)\quad f \in \mathcal{A}, \quad f(p) \text{ invertible for all } p \in M,\]

so

\[(D.4)\quad g(p) = f(p)^{-1} \implies g \in C(M, \mathcal{B}),\]

we seek criteria that imply

\[(D.5)\quad g \in \mathcal{A}.\]

We make the following hypothesis. There exists $N \in \mathbb{N}$ such that for $n \geq N$, $p \in M$, there are

\[(D.6)\quad \varphi_{np} \in C_0^\infty(B_{1/n}(p)), \quad 0 \leq \varphi_{np} \leq 1, \quad \varphi_{np} = 1 \text{ on } B_{1/2n}(p),\]

such that

\[(D.7)\quad \forall f \in \mathcal{A}, \quad \| (f - f(p))\varphi_{np} \|_\mathcal{A} \to 0, \text{ as } n \to \infty.\]

Note that, for g as in (D.4), $x \in M$,

\[(D.8)\quad g(x)\varphi_{2n,p}(x) = \left[f(p) + f(x)\varphi_{np}(x) - f(p)\varphi_{np}(x) \right]^{-1} \varphi_{2n,p}(x) = \left(I + g_{np}(x) \right)^{-1} f(p)^{-1} \varphi_{2n,p}(x),\]
where

\[(D.9)\quad g_{np}(x) = f(p)^{-1}(f(x) - f(p))\varphi_{np}(x).\]

Given (D.7), we see that there exists \(n = n(p)\) (depending on \(f\)) such that

\[(D.10)\quad \|g_{np}\|_A \leq \frac{1}{2}.\]

Hence, for each \(p \in M\), there exists \(n = n(p)\) such that

\[(D.11)\quad g_{2n,p} \in A.\]

Now \(\{B_{1/4n(p)}(p) : p \in M\}\) covers \(M\), so there is a finite subcover, i.e., points \(p_j, 1 \leq j \leq K\) (depending on \(f \in A\)) such that

\[(D.12)\quad \varphi_j(x) = \varphi_{2n(p_j),p_j} \implies \Phi = \sum_{j=1}^{K} \varphi_j \geq 1 \text{ on } M.\]

We have

\[(D.13)\quad g\Phi \in A,\]

and of course \(1/\Phi \in C^\infty(M) \subset A\). We record our result.

Proposition D.2. Let \(A\) be a Banach algebra of \(\mathcal{B}\)-valued functions on \(M\), satisfying (D.2). Assume that for each \(p \in M\), \(n \geq N\), there exist \(\varphi_{np}\) satisfying (D.6)–(D.7). Then

\[(D.14)\quad f \in A, \quad f^{-1} \in C(M, \mathcal{B}) \implies f^{-1} \in A.\]

Regarding cases where the hypothesis (D.7) applies, clearly it holds for \(A = C(M, \mathcal{B})\). On the other hand, it fails for \(A = \text{Lip}^\alpha(M, \mathcal{B}), \alpha \in (0,1]\). Since the conclusion (D.14) holds for such \(A\), Proposition D.2 is by no means definitive. It applies to a Banach algebra \(A\) of \(\mathcal{B}\)-valued functions with a topology barely stronger than that of \(C(M, \mathcal{B})\). We next show that the hypothesis (D.7) holds for \(A = A(S^1, \mathcal{B})\), given by (D.1).

Regard \(S^1\) as \([-\pi, \pi]\), with endpoints identified. It suffices to take \(p = 0\). We take \(\varphi \in C_0^\infty(-1,1), \varphi = 1\) on \([-1/2, 1/2]\), \(0 \leq \varphi \leq 1\), and set \(\varphi_n(x) = \varphi(nx)\). We claim that, for all \(f \in A = A(S^1, \mathcal{B})\),

\[(D.15)\quad \|(f - f(0))\varphi_n\|_A \longrightarrow 0, \quad n \rightarrow \infty.\]

It suffices to establish this when \(f \in A\) satisfies

\[(D.16)\quad \text{supp } f \subset [-1,1].\]

We can then consider \(f\) as a function on \(\mathbb{R}\). As such, its Fourier transform \(\hat{f}(\xi)\) exists and is holomorphic in \(\xi \in \mathbb{C}\).
Lemma D.3. There exists $C \in (1, \infty)$ such that for all $f \in A = A(S^1, \mathcal{B})$ satisfying (D.16),

\begin{equation}
\frac{1}{C} \int_{-\infty}^{\infty} \|\hat{f}(\xi)\|_B \, d\xi \leq \sum_{k=-\infty}^{\infty} \|\hat{f}(k)\|_B \leq C \int_{-\infty}^{\infty} \|\hat{f}(\xi)\|_B \, d\xi.
\end{equation}

Proof. With φ as above, set $\psi(x) = \varphi(x/2)$ and, for $\eta \in \mathbb{C}$, set

\begin{equation}
\psi_\eta(x) = e^{-i\eta x} \psi(x), \quad \text{so} \quad \hat{\psi_\eta f}(\xi) = \hat{f}(\xi + \eta),
\end{equation}

for $\xi \in \mathbb{C}$. We have

\begin{equation}
\hat{\psi_\eta f}(k) = \sum_\ell \hat{\psi_\eta}(\ell) \hat{f}(k - \ell),
\end{equation}

and $\psi_\eta \in A(S^1, \mathcal{B})$, locally bounded in η, hence $\psi_\eta f$ belongs to $A(S^1, \mathcal{B})$ and is locally bounded in η. Now, for $k \in \mathbb{Z},$

\begin{equation}
\int_k^{k+1} \|\hat{f}(\xi)\|_B \, d\xi = \int_0^1 \|\hat{f}(k + \eta)\|_B \, d\eta
= \int_0^1 \|\hat{\psi_\eta f}(k)\|_B \, d\eta,
\end{equation}

and (by (D.19))

\begin{equation}
\sum_k \|\hat{\psi_\eta f}(k)\|_B \leq C \sum_k \|\hat{f}(k)\|_B, \quad |\eta| \leq 1,
\end{equation}

so

\begin{equation}
\int_{-\infty}^{\infty} \|\hat{f}(\xi)\|_B \, d\xi \leq C \sum_k \|\hat{f}(k)\|_B.
\end{equation}

This gives the first inequality in (D.17).

For the converse, we have

\begin{equation}
\hat{f}(k) = \hat{\psi_{-\eta} f}(k + \eta),
\end{equation}

hence there exists $C < \infty$ such that

\begin{equation}
\sum_k \|\hat{f}(k)\|_B \leq C \sum_k \|\hat{f}(k + \eta)\|_B, \quad \forall \eta \in [0, 1].
\end{equation}

Integrating over $\eta \in [0, 1]$ gives the second inequality in (D.17).
Having Lemma D.3, we proceed as follows. To prove (D.15), it suffices to show that

\[(D.28) \quad \int_{-\infty}^{\infty} \| \hat{f} * \hat{\varphi}_n(\xi) - f(0)\hat{\varphi}_n(\xi) \|_{\mathcal{B}} d\xi \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty,\]

when \(f \in C(\mathbb{R}, \mathcal{B}) \) satisfies (D.16) and

\[(D.26) \quad \int_{-\infty}^{\infty} \| \hat{f}(\xi) \|_{\mathcal{B}} d\xi < \infty.\]

Note that \(\hat{\varphi}_n(\xi) = n^{-1} \hat{\varphi}(\xi/n) \). Since

\[(D.27) \quad \hat{f} * \varphi_n(\xi) - f(0)\hat{\varphi}_n(\xi) = \int_{-\infty}^{\infty} \left(\hat{\varphi}_n(\xi-\eta)\hat{f}(\eta) - \hat{\varphi}_n(\xi)\hat{f}(\eta) \right) d\eta,\]

we see that the integral in (D.25) is

\[(D.28) \quad \leq \int \int |\hat{\varphi}_n(\xi-\eta) - \hat{\varphi}_n(\xi)| \cdot \| \hat{f}(\eta) \|_{\mathcal{B}} d\eta d\xi \]

\[= \int \int |\hat{\varphi}(\zeta - \frac{1}{n}\eta) - \hat{\varphi}(\zeta)| \cdot \| \hat{f}(\eta) \|_{\mathcal{B}} d\zeta d\eta, \]

\[\rightarrow 0, \quad \text{as} \quad n \rightarrow \infty,\]

the limit holding by the Lebesgue dominated convergence theorem, as long as (D.26) holds. This completes the proof of (D.15), and hence proves Proposition D.1.
E. The spaces $\mathcal{A}(G)$

Let G be a compact group, \hat{G} the set of (equivalence classes of) irreducible unitary representations of G. Given $\pi \in \hat{G}$, we say π represents G on V_π, of dimension d_π. Given $f \in L^1(G)$, we set

\begin{equation}
\pi(f) = \int_G f(x)\pi(x) \, dx,
\end{equation}

dx denoting Haar measure on G. The Plancherel formula (following from the Weyl orthogonality relations and the Peter-Weyl theorem) is

\begin{equation}
\|f\|_{L^2}^2 = \sum_\pi d_\pi \|\pi(f)\|^2_{HS}.
\end{equation}

Here and in sums below, π runs over \hat{G}. By polarization,

\begin{equation}
(f, g)_{L^2} = \sum_\pi d_\pi \text{Tr}(\pi(f)\pi(g)^*).
\end{equation}

For sufficiently “regular” functions u on G, there is the “Fourier inversion formula,”

\begin{equation}
f(x) = \sum_\pi d_\pi \text{Tr}(\pi(u)\pi(x)^*).
\end{equation}

For a condition guaranteeing absolute and uniform convergence in (E.4), note that

\begin{equation}
\sum_\pi d_\pi |\text{Tr}(\pi(u)\pi(x)^*)| \leq \sum_\pi d_\pi \|\pi(u)\|_{\text{Tr}}.
\end{equation}

We say

\begin{equation}
u \in \mathcal{A}(G) \iff \sum_\pi d_\pi \|\pi(u)\|_{\text{Tr}} < \infty,
\end{equation}

and set

\begin{equation}
\|u\|_{\mathcal{A}(G)} = \sum_\pi d_\pi \|\pi(u)\|_{\text{Tr}}.
\end{equation}

Clearly $\mathcal{A}(G)$ is a Banach space, and $\mathcal{A}(G) \subset C(G)$, densely. In case $G = S^1$ or more generally $G = \mathbb{T}^k$, we get the spaces treated in §3 and Appendix C.

The following is proven in [E].
Proposition E.1. If \(u, v \in \mathcal{A}(G) \), then \(uv \in \mathcal{A}(G) \).

The proof of Proposition E.1 seems to be harder for general compact \(G \) than for \(G = \mathbb{T}^k \). (Furthermore, [E] treats locally compact \(G \).) It follows from Proposition E.1 that (if \(G \) is a compact group) \(\mathcal{A}(G) \) is a Banach algebra. To achieve \(\beta = 1 \) in \(\|uv\|_\mathcal{A} \leq \beta \|u\|_\mathcal{A} \|v\|_\mathcal{A} \), it might be necessary to replace (E.7) by an equivalent norm.

If \(\mathcal{F}(G) \) denotes the set of finite sums of the form (E.4), we easily see that
\[
(F.8) \quad \mathcal{F}(G) \subset \mathcal{A}(G) \text{ is dense.}
\]
Also (decompose tensor products) \(\mathcal{F}(G) \) is an algebra. However, generally \(u \in \mathcal{F}(G) \), \(u^{-1} \in C(G) \) does not imply \(u^{-1} \in \mathcal{F}(G) \). If \(G \) is a compact Lie group, we have
\[
(F.8) \quad \mathcal{F}(G) \subset C^\infty(G) \subset \mathcal{A}(G).
\]
Then we can apply Proposition C.1, with \(B = \mathcal{A}(G) \), \(C = C^\infty(G) \), obtaining the following.

Proposition E.2. Let \(G \) be a compact Lie group. For each character \(\varphi : \mathcal{A}(G) \to \mathbb{C} \), there exists \(p \in G \) such that
\[
(E.10) \quad \varphi(u) = u(p), \quad \forall u \in \mathcal{A}(G).
\]
Consequently,
\[
(E.11) \quad u \in \mathcal{A}(G), \quad u^{-1} \in C(G) \implies u^{-1} \in \mathcal{A}(G).
\]
In [E], such a result is established for an arbitrary compact group, not necessarily a Lie group.

We record some further properties of \(\mathcal{A}(G) \). First, note that
\[
(E.12) \quad A \in \text{End}(V_\pi) \implies \|A\|_\text{Tr} = \inf\{\|B\|_{\text{HS}}\|C\|_{\text{HS}} : A = BC\}.
\]
From this it is readily deduced, via (E.2), plus
\[
(E.13) \quad \pi(f \ast g) = \pi(f) \pi(g),
\]
that
\[
(E.14) \quad \mathcal{A}(G) = L^2(G) \ast L^2(G),
\]
and
\[
(E.15) \quad \|u\|_{\mathcal{A}(G)} = \inf\{\|f\|_{L^2(G)}\|g\|_{L^2(G)} : u = f \ast g\}.
\]
An important class of functions on \(G \) is the class of positive definite functions \(\mathcal{P}(G) \). Given \(u \in L^1(G) \), we say
\[
(E.16) \quad u \in \mathcal{P}(G) \iff \pi(u) \geq 0, \quad \forall \pi \in \hat{G}.
\]
We have
\[
(E.17) \quad \mathcal{P}(G) \cap C(G) \subset \mathcal{A}(G),
\]
and, for \(u \in \mathcal{P}(G) \cap C(G) \),
\[
(E.18) \quad u(e) = \sum \pi d_\pi \text{Tr} \pi(u) = \|u\|_{\mathcal{A}(G)}.
\]
F. Banachable algebras

Here we discuss a slight generalization of the notion of a Banach algebra with unit, as introduced in §1. We assume \mathcal{B} is a Banach space, with norm $\| \cdot \|$, with an associative \mathbb{C}-bilinear product $x, y \mapsto xy$, and a unit I, satisfying $xI = Ix = x$ for all $x \in \mathcal{B}$, but we weaken the hypothesis (1.1) to

\[(F.1) \quad \|xy\| \leq C\|x\| \cdot \|y\|,\]

for some $C < \infty$, and we do not make the hypothesis that $\|I\| = 1$. Note that

\[(F.2) \quad \|I\| = \|I^2\| \leq C\|I\|^2 \implies \|I\| \geq \frac{1}{C}.\]

We say \mathcal{B} is a *Banachable algebra*.

We now show that we can endow \mathcal{B} with a new norm, topologically equivalent to $\| \cdot \|$, for which \mathcal{B} is a Banach algebra as defined in §1. In fact, we set

\[(F.3) \quad \|\|x\|| = \sup\{\|xy\| : \|y\| \leq 1\},\]

or equivalently

\[(F.4) \quad \|\|x\|| = \|L_x\|,\]

the operator norm on \mathcal{B} (with its old norm) of L_x, where, for $x \in \mathcal{B}$,

\[(F.5) \quad L_x : \mathcal{B} \rightarrow \mathcal{B}, \quad L_xy = xy.\]

Note that, for $x, y, z \in \mathcal{B}$,

\[(F.6) \quad L_x(L_yz) = L_x(yz) = x(yz) = (xy)z,\]

so

\[(F.7) \quad L_xL_y = L_{xy}.\]

Hence

\[(F.5) \quad \|\|xy\|| = \|L_{xy}\| \leq \|L_x\| \cdot \|L_y\| = \|\|x\|| \cdot \|\|y\||.\]

Also

\[(F.9) \quad \|\|I\|| = \|L_I\| = 1.\]
To compare the norms $\| \cdot \|$ and $\| \| \cdot \|$ on \mathcal{B}, first we note that

\[(F.10)\]
\[
\|x\| \leq \sup\{C\|x\| : \|y\| \leq 1\} = C\|x\|.
\]

Next,

\[(F.11)\]
\[
E = \|I\|^{-1}I \implies \|E\| = 1 \\
\implies \|x\| \geq \|xE\| = \|I\|^{-1}\|x\|.
\]

In summary,

\[(F.12)\]
\[
\|I\|^{-1}\|x\| \leq \|x\| \leq C\|x\|,
\]
so the two norms on \mathcal{B} define the same topology. Note also that

\[(F.13)\]
\[
\|I\| = C = 1 \implies \|x\| = \|x\|.
\]

Examples of Banachable algebras include the algebras \mathcal{B}_j defined in (A.47), in cases where $\|P_j\| > 1$. In these cases one has (F.1) with $C = 1$, but the norm of the unit would exceed 1. For another family of examples, we mention

\[(F.14)\]
\[
\mathcal{B} = C^2(M),
\]

where M is a compact Riemannian manifold. There are many ways to pick a Banach space norm on $C^2(M)$. Most choices one is likely to make lead to $\|1\| = 1$, but typically one will need $C > 1$ in (F.1).
G. Holomorphic functional calculus for commuting elements

Here we extend the material of §A to a holomorphic functional calculus for elements \((x_1, \ldots, x_n)\) of a Banach algebra with unit that commute, i.e.,
\begin{equation}
G.1 \quad x_j x_k = x_k x_j, \quad \forall j, k \in \{1, \ldots, n\}.
\end{equation}

Assume
\begin{equation}
G.2 \quad \sigma(x_j) \subset \mathcal{O}_j,
\end{equation}
where \(\mathcal{O}_j \subset \mathbb{C}\) is a smoothly bounded, open set, and assume
\begin{equation}
G.3 \quad F : \bar{\mathcal{O}}_1 \times \cdots \times \bar{\mathcal{O}}_n \rightarrow \mathbb{C} \text{ is holomorphic,}
\end{equation}
where \(\bar{\mathcal{O}}_j\) is an open neighborhood of \(\mathcal{O}_j\). We will define \(F(x_1, \ldots, x_n)\), using a formula suggested by the following \(n\)-dimensional extension of the Cauchy integral formula:
\begin{equation}
G.4 \quad F(z_1, \ldots, z_n) = (2\pi i)^{-n} \int_{b\mathcal{O}(n)} F(\zeta_1, \ldots, \zeta_n)(\zeta_1 - z_1)^{-1} \cdots (\zeta_n - z_n)^{-1} d\zeta_1 \cdots d\zeta_n,
\end{equation}
with
\begin{equation}
G.5 \quad (z_1, \ldots, z_n) \in \mathcal{O}_1 \times \cdots \times \mathcal{O}_n, \quad b\mathcal{O}(n) = \partial \mathcal{O}_1 \times \cdots \times \partial \mathcal{O}_n.
\end{equation}
Parallel to (A.1), we set
\begin{equation}
G.6 \quad F(x_1, \ldots, x_n) = (2\pi i)^{-n} \int_{b\mathcal{O}(n)} F(\zeta_1, \ldots, \zeta_n)(\zeta_1 - x_1)^{-1} \cdots (\zeta_n - x_n)^{-1} d\zeta_1 \cdots d\zeta_n,
\end{equation}
for \(x_j \in \mathcal{B}\) satisfying (G.1)–(G.2). It follows from the Cauchy integral theorem that (G.5) is independent of the choice of \(\mathcal{O}_j \supset \sigma(x_j)\), as long as (G.3) holds.

For some basic results on this functional calculus, we start with the following:
\begin{equation}
G.7 \quad F(z) = f_1(z_1) \cdots f_n(z_n), \quad f_j : \bar{\mathcal{O}}_j \rightarrow \mathbb{C} \text{ holomorphic}
\end{equation}
\[\Rightarrow F(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n),\]
with \(f_j(x_j)\) defined as in (A.1). The proof is just an application of Fubini’s theorem.

To proceed, we have the following extension of Proposition A.2.
Proposition G.1. If F and G are both holomorphic on $\widetilde{O}_1 \times \cdots \times \widetilde{O}_n$, then

\begin{equation}
(FG)(x_1, \ldots, x_n) = F(x_1, \ldots, x_n)G(x_1, \ldots, x_n).
\end{equation}

We leave it to the reader to modify the proof of Proposition A.2 to apply to this situation.

We also have the following extension of Proposition A.7, whose proof is a simple modification of the one used there.

Proposition G.2. Assume F_k and F are holomorphic on $\widetilde{O}_1 \times \cdots \times \widetilde{O}_n$ and $F_k \to F$ uniformly on this set. Then

\begin{equation}
F_k(x_1, \ldots, x_n) \to F(x_1, \ldots, x_k),
\end{equation}

in \mathcal{B}-norm, as $k \to \infty$.

We next discuss the joint spectrum of commuting n-tuples (x_1, \ldots, x_n). For this, it is convenient to assume that

\begin{equation}
\mathcal{B} \text{ is a commutative Banach algebra with unit,}
\end{equation}

and this condition will be in force for the rest of this section. Recall from §2 the Gelfand transform

\begin{equation}
\gamma : \mathcal{B} \to C(\mathcal{M}(\mathcal{B})).
\end{equation}

We adopt the notation

\begin{equation}
\hat{x} = \gamma(x), \text{ for } x \in \mathcal{B}.
\end{equation}

Taking a cue from (2.13), if $x_j \in \mathcal{B}$ we define the joint spectrum

\begin{equation}
\sigma(x_1, \ldots, x_n) \subset \mathbb{C}^n
\end{equation}

by

\begin{equation}
\sigma(x_1, \ldots, x_n) = \{(\hat{x}_1(\varphi), \ldots, \hat{x}_n(\varphi)) : \varphi \in \mathcal{M}(\mathcal{B})\}.
\end{equation}

Here is an alternative characterization.

Proposition G.3. Given $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$, one has $\lambda \in \sigma(x_1, \ldots, x_n)$ if and only if the ideal \mathcal{I}_λ generated by $(x_1 - \lambda_1 I), \ldots, (x_n - \lambda_n I)$ is not all of \mathcal{B}.

Proof. As seen in §2, if $\mathcal{I} \subset \mathcal{B}$ is a proper ideal, there exists $\varphi \in \mathcal{M}(\mathcal{B})$ such that $\varphi(y) = \hat{y}(\varphi) = 0$ for all $y \in \mathcal{I}$. Hence if \mathcal{I}_λ is proper, we have $\varphi \in \mathcal{M}(\mathcal{B})$ such that $\hat{x}_j(\varphi) = \lambda_j$ for each j.

For the converse, if $\mathcal{I}_\lambda = \mathcal{B}$, there exist $y_j \in \mathcal{B}$ such that $\sum_j y_j(x_j - \lambda_j I) = I$, hence $\sum_j \hat{y}_j(\hat{x}_j - \lambda_j) = 1$, so λ does not belong to the set (G.14).

The following is an immediate consequence of Proposition 2.6.
Proposition G.4. If $\sigma(x_j) \subset O_j$, open in \mathbb{C}, then

\[(G.14) \quad \sigma(x_1, \ldots, x_n) \subset O_1 \times \cdots \times O_n.\]

We have the following extension of Proposition 2.7.

Proposition G.5. Assume the sets O_j are smoothly bounded and F is holomorphic on a neighborhood of $\overline{O}_1 \times \cdots \times \overline{O}_n \subset \mathbb{C}^n$. Then

\[(G.15) \quad y = F(x_1, \ldots, x_n) \implies \hat{y} = F(\hat{x}_1, \ldots, \hat{x}_n).\]

Proof. We use the formula (G.6) for y and apply the character $\varphi \in \mathcal{M}(B)$, to get

\[(G.16) \quad \hat{y}(\varphi) = (2\pi i)^{-n} \int_{\partial O(n)} F(\zeta_1, \ldots, \zeta_n)(\zeta_1 - \hat{x}_1(\varphi))^{-1} \cdots (\zeta_n - \hat{x}_n(\varphi))^{-1} d\zeta_1 \cdots d\zeta_n = F(\hat{x}_1(\varphi), \ldots, \hat{x}_n(\varphi)),\]

by (G.4), with $z_j = \hat{x}_j(\varphi)$.

Now typically, when $n > 1$, there can be open sets $U \subset \mathbb{C}^n$ such that

\[(G.17) \quad \sigma(x_1, \ldots, x_n) \subset U,\]

but U is not of the form $O_1 \times \cdots \times O_n$ in (G.14). One can take

\[(G.18) \quad F : U \to \mathbb{C}, \quad \text{holomorphic},\]

and then

\[(G.19) \quad F(\hat{x}_1, \ldots, \hat{x}_n) \in C(\mathcal{M}(B))\]

is well defined. It is natural to ask if one can assign a meaning to $F(x_1, \ldots, x_n) \in B$. We proceed to tackle this question.

The results that follow make heavier use of the theory of analytic functions of several complex variables, for which we refer to Chapters 2–3 of [Ho]. The next result is established in Theorem 3.2.2 of [Ho]. (See also [AC].)

Proposition G.6. Take U and F as in (G.17)–(G.18). Then there exists $y \in B$ such that

\[(G.20) \quad \hat{y} = F(\hat{x}_1, \ldots, \hat{x}_n).\]

One limitation of the conclusion (G.20) is that the Gelfand transform $\gamma : B \to C(\mathcal{M}(B))$ might not be injective. Its kernel consists of the quasi-nilpotent elements
of \mathcal{B}. It is of interest to look further at the situation where \mathcal{B} has no quasi-nilpotent elements, i.e.,

\[(G.21) \quad \gamma : \mathcal{B} \rightarrow C(\mathcal{M}(\mathcal{B})) \text{ is injective.}\]

In such a case, if $\mathcal{O}(U)$ denotes the space of holomorphic functions $F : U \rightarrow \mathbb{C}$, we can define

\[(G.22) \quad \Gamma : \mathcal{O}(U) \rightarrow C(\mathcal{M}(\mathcal{B})), \quad \Gamma(F) = F(\hat{x}_1, \ldots, \hat{x}_n),\]

and Proposition G.6 together with (G.21) yield a uniquely defined linear map

\[(G.23) \quad \mathcal{X} : \mathcal{O}(U) \rightarrow \mathcal{B},\]

satisfying

\[(G.24) \quad \gamma \circ \mathcal{X} = \Gamma,\]

namely $\mathcal{X}(F) = y$, the unique element of \mathcal{B} satisfying (G.20). We hence have the following commutative diagram:

\[(G.25) \quad \xymatrix{ \mathcal{O}(U) \ar[r]^-\Gamma & C(\mathcal{M}(\mathcal{B})) \\ \mathcal{O}(U) \ar[u]^-\text{id} & \mathcal{B} \ar[u]_-\gamma & \mathcal{X} \ar[l]_-\mathcal{X} }\]

Now $\mathcal{O}(U)$ is a Frechet space, with the topology of uniform convergence on compact subsets of U. The map Γ defined by (G.22) is clearly continuous, and since γ in (G.21) is a continuous injection, we see from (G.23)–(G.24) that \mathcal{X} has a closed graph, i.e.,

\[(G.26) \quad F_k \rightarrow F \text{ in } \mathcal{O}(U), \quad \mathcal{X}(F_k) \rightarrow y \text{ in } \mathcal{B} \implies \mathcal{X}(F) = y.\]

Indeed, the hypotheses here imply $\Gamma(F_k) \rightarrow \Gamma(F) \text{ in } C(\mathcal{M}(\mathcal{B}))$, and $\Gamma(F_k) = \gamma \circ \mathcal{X}(F_k) \rightarrow \gamma(y) \text{ in } C(\mathcal{M}(\mathcal{B}))$, so $\Gamma(F) = \gamma(y)$, and hence, since γ is injective, $\mathcal{X}(F) = y$. The closed graph theorem then implies the following.

Proposition G.7. If $\gamma : \mathcal{B} \rightarrow C(\mathcal{M}(\mathcal{B}))$ is injective, then the linear map \mathcal{X} given by (G.23)–(G.24) is continuous.

Note that Proposition G.5 yields

\[(G.27) \quad \mathcal{X}(F) = F(x_1, \ldots, x_n),\]

provided F is holomorphic on $\mathcal{O}_1 \times \cdots \times \mathcal{O}_n$, as in (G.14), and

\[(G.28) \quad \sigma(x_1, \ldots, x_n) \subset U \subset \mathcal{O}_1 \times \cdots \times \mathcal{O}_n.\]

This leads to the following:
Corollary G.8. In the setting of Proposition G.7, if \(F \in \mathcal{O}(U) \) and \(F_k \) are holomorphic on \(\mathcal{O}_1 \times \cdots \times \mathcal{O}_n \), and (G.28) holds, then

\[
(G.29) \quad F_k \to F \text{ locally uniformly on } U \implies F_k(x_1, \ldots, x_k) \to \mathfrak{X}(F) \text{ in } \mathcal{B}.
\]

It is of interest to know when, given \(F \in \mathcal{O}(U) \), one can find functions \(F_k \), holomorphic on \(\mathcal{O}_1 \times \cdots \times \mathcal{O}_n \), or perhaps an even larger set, satisfying (G.29). Before tackling this directly, we make note of some special situations that arise when

\[
(G.30) \quad x_1, \ldots, x_n \text{ generate } \mathcal{B},
\]

i.e., the space of polynomials in \(x_1, \ldots, x_n \) (and \(I \)) is dense in \(\mathcal{B} \). We start with the following (which does not require the hypothesis (G.21)).

Proposition G.9. Assume that (G.30) holds. Then the map

\[
(G.31) \quad \Phi : \mathcal{M}(\mathcal{B}) \to \mathbb{C}^n,
\]

\[
\Phi(\varphi) = (\hat{x}_1(\varphi), \ldots, \hat{x}_n(\varphi)),
\]

is a homeomorphism of \(\mathcal{M}(\mathcal{B}) \) onto \(\sigma(x_1, \ldots, x_n) \).

Proof. It suffices to show that \(\Phi \) is one-to-one. Indeed, if \(\varphi \) and \(\psi \) are characters and \(\hat{x}_j(\varphi) = \hat{x}_j(\psi) \) for each \(j \), then \(\hat{x}(\varphi) = \hat{x}(\psi) \) for each \(x \in \mathcal{B} \) that is a polynomial in the \(x_j \)s, and denseness of this space implies \(\hat{x}(\varphi) = \hat{x}(\psi) \) for all \(x \in \mathcal{B} \), hence \(\varphi = \psi \).

The next result is established in Theorem 3.1.15 of [Ho].

Proposition G.10. In the setting of Proposition G.9, the set \(\sigma(x_1, \ldots, x_n) \) is polynomially convex.

A compact set \(K \subset \mathbb{C}^n \) is said to be polynomially convex if \(K = \tilde{K} \), where

\[
(G.32) \quad \tilde{K} = \{ z \in \mathbb{C}^n : |P(z)| \leq \sup_{K} |P|, \forall P \in \mathcal{P}(\mathbb{C}^n) \},
\]

where \(\mathcal{P}(\mathbb{C}^n) \) is the space of polynomials in \(z \) on \(\mathbb{C}^n \). The significance of this concept is captured by the following result, established in Theorem 2.7.7 of [Ho].

Proposition G.11. Let \(K \subset \mathbb{C}^n \) be polynomially convex, and assume \(F \) is holomorphic on a neighborhood of \(K \). Then there are polynomials \(P_k \) such that

\[
(G.33) \quad P_k \to F, \text{ uniformly on } K.
\]

Proposition G.11 in itself is not quite applicable to Corollary G.8, but it can be combined with the following result, established in Lemma 2.7.4 of [Ho].
Proposition G.12. Let $K \subset \mathbb{C}^n$ be polynomially convex. Assume $K \subset \Omega$, open. Then there exists a neighborhood \mathcal{O} of K such that

\[(G.34) \quad K \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \Omega,\]

and

\[(G.35) \quad \overline{\mathcal{O}} \text{ is polynomially convex.}\]

The proof produces polynomials $P_1(z), \ldots, P_m(z)$ such that the conclusion holds with

\[(G.36) \quad \mathcal{O} = \{z \in \mathbb{C} : |P_j(z)| < 1, \ j = 1, \ldots, m\}.\]

In such a case, $\overline{\mathcal{O}}$ is called a polynomial polyhedron.

Combining Propositions G.10–G.12, we have the following improvement on Corollary G.8, under hypothesis (G.30).

Proposition G.13. Assume the commutative Banach algebra \mathcal{B} satisfies (G.21) and that x_1, \ldots, x_n generate \mathcal{B}. If F is holomorphic on a neighborhood Ω of $\sigma(x_1, \ldots, x_n)$, then there exists an open U such that

\[(G.37) \quad \sigma(x_1, \ldots, x_n) \subset U \subset \overline{U} \subset \Omega,\]

and polynomials P_k such that $P_k \to F$ uniformly on \overline{U}, and then

\[(G.38) \quad P_k(x_1, \ldots, x_n) \to \mathfrak{K}(F) \text{ in } \mathcal{B}.\]
H. Lifting theorem for $L^\infty(\mathbb{T})$

Take $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, with Lebesgue measure, and consider $L^\infty(\mathbb{T})$, which consists of bounded measurable functions on \mathbb{T}. Then $L^\infty(\mathbb{T})$ consists of equivalence classes of elements of $L^\infty(\mathbb{T})$, with $f_1 \sim f_2$ if and only if $f_1 - f_2$ vanishes almost everywhere. The following result is known as a lifting theorem.

Theorem H.1. There exists a linear map

\[(H.1) \quad \psi : L^\infty(\mathbb{T}) \rightarrow L^\infty(\mathbb{T}),\]

satisfying

\[(H.2) \quad \sup_x |\psi(f)(x)| = \|f\|_{L^\infty},\]

\[(H.3) \quad \psi(fg) = \psi(f)\psi(g),\]

and, for each $f \in L^\infty(\mathbb{T})$,

\[(H.4) \quad \psi(f)(x) = f(x), \quad \text{for a.e. } x \in \mathbb{T}.\]

Proof. Note that $L^\infty(\mathbb{T})$ is a commutative C^* algebra. Given $x \in \mathbb{T}$, let V_x denote the set of $f \in L^\infty(\mathbb{T}^1)$ such that

\[(H.5) \quad \lim_{a \to 0} \frac{1}{2a} \int_{|x-y| \leq a} |f(y)| \, dy = 0.\]

We see that V_x is a closed, proper ideal in $L^\infty(\mathbb{T})$. Therefore there exists a maximal proper ideal I_x containing V_x. The Gelfand-Mazur theorem gives a uniquely defined isomorphism

\[(H.6) \quad \beta_x : L^\infty(\mathbb{T})/I_x \rightarrow C.\]

We define ψ in (H.1) by

\[(H.7) \quad \psi(f)(x) = \beta_x \pi_x f,\]

where

\[(H.8) \quad \pi_x : L^\infty(\mathbb{T}) \rightarrow L^\infty(\mathbb{T})/I_x\]

is the natural projection. Then for each $f \in L^\infty(\mathbb{T})$,

\[(H.9) \quad \psi(f)(x) = f(x), \quad \text{at each Lebesgue point } x \text{ of } f,\]

which by Lebesgue’s theorem yields (H.4), and therefore (H.1). Since π_x and β_x are ring homomorphisms, we get (H.3). We also have $|\psi(f)(x)| \leq \|f\|_{L^\infty}$ for each $x \in \mathbb{T}$, and this together with (H.4) yields (H.2).
References

