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1. Introduction

A Banach algebra B is a Banach space (over C), equipped with a product (making
B an algebra over C), satisfying

(1.1) ‖xy‖ ≤ ‖x‖ ‖y‖.

We say B has a unit I if I ∈ B satisfies

(1.2) Ix = xI = x, ∀x ∈ B, ‖I‖ = 1.

Banach algebras arise in a variety of settings. Examples include L(V ), the space
of bounded linear operators on a Banach space V (with the operator norm), C(X),
the space of continuous functions on a compact space X (with the sup norm), the
space of functions on the circle S1 with absolutely summable Fourier series,

(1.2A) A(S1) = {f ∈ C(S1) :
∑

|f̂(k)| <∞}, ‖f‖ =
∑

|f̂(k)|,

where f̂(k) are the Fourier coefficients of f , and many others, such as algebras of
bounded holomorphic functions on a complex domain, or closed subalgebras of such
algebras as mentioned above. It is useful and informative to have a general theory
of Banach algebras that encompasses such examples.

The purpose of these notes is to discuss some basic aspects of such a theory. One
major theme we take up centers on the question of when an element x of a Banach
algebra B is invertible, i.e., when there exists x−1 ∈ B such that xx−1 = x−1x = I.
This study gets started with the following simple observation. Let y ∈ B; then

(1.3) ‖y‖ < 1 =⇒ I − y is invertible.

In fact,

(1.4) (I − y)−1 =
∞∑
k=0

yk.

To proceed, it is useful to introduce the resolvent set ρ(x) and spectrum σ(x) of
x ∈ B, defined as follows. For ζ ∈ C,

(1.5) ζ ∈ ρ(x) ⇔ ζ − x is invertible, σ(x) = C \ ρ(x).

If ζ ∈ ρ(x), let us set Rζ = (ζ − x)−1. Note that if ζ0 ∈ ρ(x),

(1.6) ζ − x = ζ0 − x+ (ζ − ζ0) = (ζ0 − x)(I + (ζ − ζ0)Rζ0),

and, by (1.3), this is invertible as long as |ζ − ζ0| ≤ 1/‖Rζ0‖, and one has a
convergent power series in ζ − ζ0. Hence
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Proposition 1.1. If B is a Banach algebra with unit and x ∈ B, then ρ(x) ⊂ C is
open, and (ζ − x)−1 is holomorphic on ρ(x).

Note also that, for x ∈ B,

(1.7) ζ − x = ζ(I − ζ−1x),

and, by (1.3), this is invertible as long as |ζ| > ‖x‖. Hence

Proposition 1.2. In the setting of Proposition 1.1, σ(x) is a compact set, con-
tained in {ζ ∈ C : |ζ| ≤ ‖x‖}.

It follows readily from (1.7) that

(1.8) ‖(ζ − x)−1‖ ≤ C

|ζ|
, for |ζ| > 2‖x‖.

If σ(x) = ∅, (ζ − x)−1 would be an entire holomorphic function. Then (1.8) would
contradict Liouville’s theorem. This yields

Proposition 1.3. In the setting of Proposition 1.1, σ(x) 6= ∅.

It is useful to have a more precise knowledge of σ(x). One ingredient in the
study of σ(x) is the spectral radius:

(1.9) r(x) = sup {|ζ| : ζ ∈ σ(x)}.

From (1.7), we have

(1.10) (ζ − x)−1 =
1

ζ

∞∑
k=0

1

ζk
xk,

for |ζ| > ‖x‖. Hence (as already stated in Proposition 1.2)

(1.11) r(x) ≤ ‖x‖.

Some sharper results will be mentioned below.
These notes are structured as follows. In §2 we discuss some results of I. Gelfand

on commutative Banach algebras B (satisfying xy = yx for all x, y ∈ B), with unit.
This theory centers in the study of characters on B, i.e., linear maps satisfying

(1.12) ϕ : B −→ C, ϕ(xy) = ϕ(x)ϕ(y), ϕ(I) = 1.

The set M(B) of such characters is shown to be a compact subset of the dual space
B′ (with the weak∗ topology), and the central result is that, for all x ∈ B,

(1.13) σ(x) = {ϕ(x) : ϕ ∈ M(B)}.
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These characters fit together to yield the Gelfand transform

(1.14) γ : B −→ C(M(B)), γ(x)(ϕ) = ϕ(x).

This map need not be injective (though it often is), and it need not have dense
range (though it often does). There is an important class of algebras, described
below, for which (1.14) is an isomorphism.

Given the results of §2, one is motivated to classify the characters of a given
commutative Banach algebra with unit. In §3 we discuss some classes of Banach
algebras of continuous functions on the circle S1 for which we can produce a natural
one-to-one correspondence M(B) ≡ S1. This class includes the algebra A(S1),
given by (1.2A). In such a case, the result (1.13) establishes a classical theorem of
N. Wiener on A(S1).

In §4 we discuss C∗ algebras, which are Banach algebras C with a conjugate
linear involution x 7→ x∗, satisfying

(1.15) (xy)∗ = y∗x∗, ‖x∗x‖ = ‖x‖2, ∀x, y ∈ C

(and I∗ = I if C has the unit I). Examples include C(X) (f∗ = f), L(H), the space
of bounded linear operators on a Hilbert space H (with the operator adjoint), and
closed subalgebras of such examples, provided such a subalgebra is invariant under
x 7→ x∗. In this setting, self-adjoint elements a ∈ C (satisfying a = a∗) play a major
role. Key results of §4 include

(1.16) a = a∗ =⇒ σ(a) ⊂ R and r(a) = ‖a‖.

In §5, we concentrate on commutative C∗ algebras, and refine results of §2 in
this setting. The central result is that if A is a commutative C∗ algebra with unit,
then the Gelfand map

(1.17) γ : A −→ C(M(A))

is an isometric ∗-isomorphism of algebras. The results in (1.16) play an important
role in proving this.

In §6, we apply the results of §5 to prove the spectral theorem for a bounded
self-adjoint operator on a Hilbert space H, or more generally for a family {Aj}
of mutually commuting self-adjoint operators in L(H). This family generates a
commutative C∗ algebra A. The version of the spectral theorem we prove can be
stated as follows. There exists a measure space (X, µ), a unitary map Φ : H →
L2(X, µ), and an isometric ∗-homomorphism Γ : A → L∞(X, µ), such that

(1.18) ΦAΦ−1f = Γ(A)f, ∀A ∈ A, f ∈ L2(X, µ).

The ∗-isomorphism (1.17) plays a key role in the proof of this result; X arises as a
disjoint union of copies of M(A), each carrying a certain positive Radon measure.
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Section 7 studies the set C+ of positive elements of a C∗ algebra C, defined by

(1.19) x = x∗, σ(x) ⊂ [0,∞).

Major results are that C+ is a closed convex cone in C and that

(1.20) x ∈ C =⇒ x∗x ∈ C+.

These notes end with several appendices. Appendix A discusses the holomorphic
functional calculus, which defines f(x) ∈ B whenever x ∈ B and f is holomorphic
on a neighborhood of σ(x), as follows:

(1.21) f(x) =
1

2πi

∫
∂Ω

f(ζ)(ζ − x)−1 dζ,

where Ω is a smoothly bounded neighborhood of σ(x) and f is holomorphic on a
neighborhood of Ω. Results of this appendix are applied in remarks at the end of
§2, and to properties of etx for x ∈ B in §4.

Appendix B establishes the identity

(1.22) r(x) = lim
k→∞

‖xk‖1/k,

which is more precise than (1.11). This is useful in §4, perhaps ironically, to prove
the latter result in (1.16).

Appendices A and B cover material basic to the development in §§2–4. The
next appendices provide material supplementary to that of our main text. (One
who needs only “bare bones” might skip this material.) Appendix C extends the
conclusion of Proposition 3.2 to a class of Banach algebras we call “rich Banach
algebras of continuous functions.” Appendices D and E derive some further exten-
sions of Proposition 3.2.

Appendix F considers “Banachable algebras,” for which (1.1) is replaced by
‖xy‖ ≤ C‖x‖ · ‖y‖, and we do not require ‖I‖ = 1. Several natural examples are
mentioned, such as C2(M) when M is a compact smooth manifold. It is shown
that there is an equivalent norm for which (1.1) holds, and for which I has norm 1.

Appendix G extends results of Appendix A to the study of holomorphic functions
of several commuting elements of a Banach algebra. Material in the latter part of
this appendix makes use of results treated in [Ho].

Appendix H applies the Gelfand theory to the Banach algebra L∞(T) to prove a
lifting theorem, involving an algebra homomorphism ψ : L∞(T) → L∞(T), where
L∞(T) denotes the space of (everywhere defined) bounded measurable functions on
T.

The material described above touches on just a small subset of the lore on Banach
algebras. For more on this topic, one can consult Chapters 7–9 of [C] and Chapter
9 of [Y], which are useful texts on functional analysis. In addition, one can consult
[HR] and [L], which apply Banach algebra theory to the study of harmonic analysis
on topological groups, and [M], which gives a general treatment of C∗ algebra
theory.
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2. The Gelfand transform

Throughout this section, B is a Banach algebra with unit I, satisfying ‖I‖ = 1,
and we assume B is commutative, i.e., xy = yx, for all x, y ∈ B.

A character on B is an algebraic homomorphism,

(2.1) ϕ : B −→ C, ϕ(xy) = ϕ(x)ϕ(y), ϕ(I) = 1.

Such a linear map is automatically bounded. This is seen as follows (using (1.3)):

(2.2) ‖y‖ < 1 ⇒ (I − y)−1 ∈ B ⇒ ϕ(I − y) 6= 0 ⇒ ϕ(y) 6= 1.

Applying this to y = x/α,

(2.3) ϕ(x) = α 6= 0 ⇒ ϕ(α−1x) = 1 ⇒ ‖α−1x‖ ≥ 1 ⇒ |ϕ(x)| ≤ ‖x‖,

so ‖ϕ‖ = 1. We denote the set of characters of B by M(B). This is a subset of
the unit ball in B′, closed with respect to the weak∗ topology, so it is a compact
Hausdorff space.

Given such ϕ,

(2.4) I = Kerϕ

is a closed linear subspace of B, and it is an ideal:

(2.5) x ∈ I, y ∈ B =⇒ xy ∈ I.

Since (2.4) has codimension 1 in B it must be a maximal ideal.
It is useful to linger on the concept of an ideal, so let I ⊂ B be a proper ideal.

Then x ∈ I ⇒ x is not invertible. On the other hand, ‖I−x‖ < 1 ⇒ x is invertible,
so

(2.6) dist(I, I) = 1.

Hence the closure of such I is also a proper ideal. When I ⊂ B is a closed ideal,
the quotient B/I is a Banach space, with norm ‖[x]‖ = inf{‖x− z‖ : z ∈ I}. It has
a product:

(2.7)

[x], [y] ∈ I ⇒ [x][y] = (x+ I)(y + I)
= xy + xI + Iy + II
= [xy].

Furthermore, one readily verifies

(2.8) ‖[x] [y]‖ ≤ ‖[x]‖ ‖[y]‖,

so B/I is a Banach algebra.
As we have noted, each element of a proper ideal I ⊂ B is not invertible. Con-

versely, if x ∈ B is not invertible, (x) = {xy : y ∈ B} is a proper ideal in B. Zorn’s
lemma gives
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Proposition 2.1. Each proper ideal B is contained in a maximal (proper) ideal in
B.

Hence we have

Corollary 2.2. If x ∈ B is not invertible, there exists a maximal ideal I ⊂ B such
that x ∈ I.

We now relate this to characters.

Proposition 2.3. If I ⊂ B is a maximal ideal, there exists a character ϕ : B → C
such that I = Kerϕ.

The proof makes use of the following result, called the Gelfand-Mazur theorem.

Proposition 2.4. If I ⊂ B is a maximal ideal, then there is a canonical isomor-
phism

(2.9) B/I ≡ C.

Proof. B/I is a Banach algebra with unit. Given [x] ∈ B/I, we claim that

(2.10) [x] 6= 0 =⇒ [x]−1 ∈ B/I.

In fact, x /∈ I ⇒ (x) + I = {xy + I : y ∈ B} is a larger ideal, hence = B, so there
exists y ∈ B such that xy = I mod I. This gives (2.10). In other words, B/I is a
field. Now we know that the spectrum σ([x]) 6= ∅, and

(2.11) λ ∈ σ([x]) =⇒ λ− [x] not invertible in B/I,

so (2.10) gives [x] = λ. This proves (2.9).

Proof of Proposition 2.3. The character ϕ is given by the composition

(2.12) B −→ B/I ≈−→ C.

Note. There is just one such character; if ψ is also a character, Kerϕ = Kerψ ⇒
ϕ ≡ ψ.

Having Proposition 2.3, we can restate Corollary 2.2:

Corollary 2.5. If x ∈ B is not invertible, there exists a character ϕ : B → C such
that ϕ(x) = 0.

Note that the converse is clear; if x is invertible and ϕ is a character, then
1 = ϕ(xx−1) = ϕ(x)ϕ(x−1), so ϕ(x) 6= 0. We hence have the following important
result.
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Proposition 2.6. Given x ∈ B,
(2.13) σ(x) = {ϕ(x) : ϕ ∈ M(B)}.

Proof. The identity (2.13) is equivalent to the assertion that, for λ ∈ C, λ − x is
not invertible if and only if there exists ϕ ∈ M(B) such that ϕ(λ − x) = 0, an
assertion which clearly follows from Corollary 2.5.

The Gelfand transform is the map

(2.14)
γ : B −→ C(M(B)),
γ(x)(ϕ) = ϕ(x).

From (2.13) (plus (1.20)) we have

(2.15) sup
φ

|γ(x)(ϕ)| = r(x) = lim
k→∞

‖xk‖1/k.

In particular,

(2.16) Ker γ = {x ∈ B : r(x) = 0}.
Frequently, this is 0, but not always. The range of γ is sometimes dense in C(M(B))
and sometimes not.

Recall that if x ∈ B and we have a smoothly bounded open Ω ⊃ σ(x) and f is
holomorphic on a neighborhood of Ω, then f(x) ∈ B is given by

(2.17) f(x) =
1

2πi

∫
∂Ω

f(ζ)(ζ − x)−1 dζ.

This is related to the action of characters as follows.

Proposition 2.7. Given ϕ ∈ M(B),
(2.18) ϕ(f(x)) = f(ϕ(x)).

Proof. For ζ ∈ ρ(x), 1 = ϕ((ζ − x)(ζ − x)−1) = (ζ − ϕ(x))ϕ((ζ − x)−1), so

(2.19) ϕ((ζ − x)−1) =
1

ζ − ϕ(x)
.

Hence, applying ϕ to (2.17) gives

(2.20) ϕ(f(x)) =
1

2πi

∫
∂Ω

f(ζ)
1

ζ − ϕ(x)
dζ = f(ϕ(x)),

as asserted.

To restate Proposition 2.7 in the language of (2.14), we have

(2.21) γ(f(x)) = f(γ(x)),

whenever x ∈ B and f is holomorphic on a neighborhood of σ(x).
The following consequence of Propositions 2.6–2.7 is a special case of the spectral

mapping theorem; see Appendix A for a more general version, in the setting of
noncommutative Banach algebras.



9

Proposition 2.8. Given x ∈ B (a commutative Banach algebra with unit) and f
holomorphic on a neighborhood of σ(x),

(2.22) σ(f(x)) = f(σ(x)).
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3. Banach algebras of functions on S1

Let B be an algebra of continuous functions on the circle S1, with pointwise sum
and product. We assume B is equipped with a norm making it a Banach algebra.
We also assume 1 ∈ B and ‖1‖ = 1. Note that for each ζ ∈ S1, f 7→ f(ζ) is a
character, so (2.3) implies

(3.1) sup
ζ∈S1

|f(ζ)| ≤ ‖f‖, ∀ f ∈ B.

We place the following somewhat restrictive hypotheses on B. Taking ek(ζ) =
ζk, k ∈ Z, we assume

(3.2) e±1 ∈ B, ‖e±1‖ = 1.

We also assume

(3.3) P = Span {ek : k ∈ Z} is dense in B.

Examples of Banach algebras satisfying these hypotheses include C(S1), and also

(3.4) A(S1) = {f ∈ C(S1) :
∑

|f̂(k)| <∞}, ‖f‖ =
∑

|f̂(k)|.

We note parenthetically that (3.2) ⇒ ‖e±k‖ ≤ 1. Since also 1 = eke−k, this yields

(3.5) ‖e±k‖ = 1, ∀ k ∈ Z.

We seek to classify all the characters ϕ : B → C for such a Banach algebra B.
This works as follows. Given such a character, set

(3.6) ζ = ϕ(e1), ζ ∈ C.

It follows that ϕ(ek) = ζk, ∀ k ∈ Z. By (3.6) plus (2.3),

(3.7) |ζ| = |ϕ(e1)| ≤ ‖e1‖ = 1, |ζ−1| = |ϕ(e−1)| ≤ ‖e−1‖ = 1,

so

(3.8) ϕ(e1) = ζ ∈ S1, ∀ϕ ∈ M(B).

Hence ϕ(e1) = e1(ζ) and, more generally, ϕ(ek) = ek(ζ), ∀ k ∈ Z, so

(3.9) ϕ(f) = f(ζ),

for all f ∈ P, given in (3.3), so (3.9) holds for all f ∈ B. Together with Proposition
2.6, this gives the following.
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Proposition 3.1. If B satisfies (3.2)–(3.3), then

(3.10) f ∈ B =⇒ σ(f) = {f(ζ) : ζ ∈ S1}.

Such a result is obvious for B = C(S1). For B = A(S1), given by (3.4), it is a
classical result of N. Wiener, often stated in the following form.

Proposition 3.2. If f ∈ A(S1) and f(ζ) 6= 0, ∀ ζ ∈ S1, then 1/f ∈ A(S1).

We want to extend the scope of Proposition 3.1 to a larger class of Banach
algebras. We retain the hypothesis (3.3) but relax (3.2) to the following:

(3.11) ‖e±k‖ ≤ Cεe
ε|k|, ∀ ε > 0, k ∈ Z.

Now let ϕ : B → C be a character, and define ζ ∈ C by (3.6). We still have
ϕ(ek) = ζk, ∀ k ∈ Z, and this time, in place of (3.7),

(3.12) |ζk| = |ϕ(ek)| ≤ ‖ek‖ ≤ Cεe
ε|k|, ∀ k ∈ Z =⇒ |ζ| = 1.

Thus the conclusions (3.8) and (3.9) continue to hold, and we have

Proposition 3.3. If B satisfies (3.3) and (3.11), the conclusion (3.10) holds.

See Appendix C for a substantial generalization of Proposition 3.2.
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4. C∗ algebras

A C∗ algebra C is a Banach algebra, equipped with a conjugate linear involution
x 7→ x∗, satisfying

(4.1) (xy)∗ = y∗x∗, ‖x∗x‖ = ‖x‖2, ∀x, y ∈ C.

The paradigm example of a C∗ algebra is L(H), the space of bounded linear oper-
ators on a Hilbert space H. In such a case, x : H → H has an adjoint x∗ defined
by (xv,w) = (v, x∗w), for v, w ∈ H. Note that ‖x∗x‖ ≤ ‖x∗‖ ‖x‖ plus (4.1) implies
‖x‖ ≤ ‖x∗‖, for all x ∈ C, hence

(4.2) ‖x∗‖ = ‖x‖, ∀x ∈ C.

We typically consider C∗ algebras with unit, so C has a unit I, satisfying ‖I‖ = 1,
and I∗ = I. In such a case, recall the definitions of the resolvent set ρ(x) and
spectrum σ(x) of x ∈ C from §1. As shown there, ρ(x) is open and σ(x) is compact
and nonempty, for each x ∈ C.

We say a ∈ C is self adjoint provided a = a∗. One of the first basic results we
aim to establish is

(4.3) a = a∗ =⇒ σ(a) ⊂ R.

This is more straightforward for C = L(H) than for general C∗ algebras. It turns
out to be convenient first to address the analogous issue of σ(u) when u ∈ C is
unitary, i.e.,

(4.4) u∗u = uu∗ = I.

(We say u ∈ U.) Note that (4.4) and (4.2) imply

(4.5) ‖u‖ = ‖u∗‖ = ‖u−1‖ = 1,

so certainly σ(u) ⊂ {ζ ∈ C : |ζ| ≤ 1}, by Proposition 1.2. Also, writing

(4.6) ζ − u = −u(I − ζu−1),

we see that

(4.6A) |ζ| < 1 =⇒ (ζ − u)−1 = −(I − ζu−1)−1u−1,

and (I − ζu−1)−1 is given by a convergent power series, since ‖ζu−1‖ = |ζ| < 1.
Hence

(4.7) u ∈ U =⇒ σ(u) ⊂ S1 = {ζ ∈ C : |ζ| = 1}.

We now prove
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Proposition 4.1. The implication (4.3) holds.

Proof. Using the power series

(4.8) u(t) = eita =
∞∑
k=0

(it)k

k!
ak,

we readily verify that

(4.9) a = a∗ =⇒ u(t)∗ = u(−t), ∀ t ∈ R.
Also, basic results on the exponential (cf. (A.25) and (A.30)) give

(4.10) u(s+ t) = u(s)u(t), ∀ s, t ∈ R,
and of course u(0) = I, hence u(−t) = u(t)−1. Thus

(4.11) a = a∗ =⇒ u = eia ∈ U.

Now, for λ ∈ C,

(4.12)
eia − eiλ = (ei(a−λ) − I)eiλ

= i(a− λ)beiλ,

with

(4.13) b =
∞∑
k=1

1

k!
(i(a− λ))k−1 ∈ C,

so

(4.14) λ ∈ σ(a) =⇒ eiλ ∈ σ(eia).

By (4.7) and (4.11), σ(eia) ⊂ S1 if a = a∗, so (4.14) implies (4.3).

Now that we have (4.3), we can associate to a self-adjoint a ∈ C another unitary
element, known as the Cauchy transform:

(4.15) u = (a+ i)(a− i)−1, a = a∗.

To see that this is unitary, note that (a − i)(a − i)−1 = (a − i)−1(a − i) implies
(a− i)−1 commutes with a, hence with a+ i, so also

(4.16) u = (a− i)−1(a+ i).

If x ∈ C is invertible with inverse y ∈ C, then (xy)∗ = y∗x∗ yields (x∗)−1 = (x−1)∗,
so (4.15) yields

(4.17) u∗ = ((a− i)−1)∗(a+ i)∗ = (a+ i)−1(a− i),

and comparison with (4.16) gives

(4.18) u∗u = uu∗ = I,

proving unitarity.
In general, if B is a Banach algebra with unit I and A ⊂ B a closed subalgebra,

containing I, then x ∈ A ⊂ B might be invertible in B but not in A, so its
spectrum might depend essentially on which Banach algebra one is concerned with.
It is useful to know that this does not happen in the C∗ algebra context. We have
the following.
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Proposition 4.2. Let C be a C∗ algebra with unit I and A ⊂ C a closed subalgebra,
invariant under x 7→ x∗ and containing I. Then x ∈ A ⊂ C is invertible in C if and
only if it is invertible in A.

Proof. Clearly x is invertible in C (resp., A) if and only if x∗x and xx∗ are, so it
suffices to prove the result when x = x∗. Then (with obvious notation)

σC(x) ⊂ σA(x) ⊂ R,

and we desire to show that, in this setting,

(4.19) σC(x) = σA(x).

The key observation is that

(4.20) Rζ = (ζ − x)−1 (inverse in C) is holomorphic on C \ σC(x),

and it clearly agrees with

(4.21) R̃ζ = (ζ − x)−1 (inverse in A),

for |ζ| > ‖x‖, since in both cases

(4.22) Rζ = R̃ζ =
1

ζ

∞∑
k=0

1

ζk
xk.

We conclude that, if ω ∈ C′ and ω ⊥ A, then

(4.23) 〈Rζ , ω〉 = 0,

whenever |ζ| > ‖x‖. By analytic continuation (since C \ σC(x) is connected), (4.23)
holds for all ζ ∈ C \ σC(x), and Proposition 4.2 is proven.

The following is a useful result on the spectral radius of a self-adjoint element
a ∈ C.
Proposition 4.3. If C is a C∗ algebra with unit and a ∈ C, then

(4.24) a = a∗ =⇒ r(a) = ‖a‖.

Proof. As shown in Appendix B, Proposition B.1,

(4.25)
r(a) = lim

k→∞
‖ak‖1/k

= lim
n→∞

‖a2
n

‖1/2
n

.

Now (4.1) implies, for a = a∗,

(4.26) ‖a2
n

‖ = ‖a2
n−1

‖2 = · · · = ‖a‖2
n

,

so

(4.27) lim
n→∞

‖a2
n

‖1/2
n

= ‖a‖,

and we have (4.24).



15

5. Commutative C∗ algebras

Throughout this section, A will be a commutative C∗ algebra, with unit I. We
derive further results on the Gelfand transform γ : A → C(M(A)) in this setting.
Recall that, for x ∈ A,

(5.1) γ(x)(ϕ) = ϕ(x),

where

(5.2) ϕ : A −→ C is a character,

so ϕ is linear, ϕ(xy) = ϕ(x)ϕ(y), ϕ(I) = 1. M(A) denotes the set of characters,
which is a compact subset of the dual space A′, with the weak∗ topology. By
Proposition 2.6,

(5.3) x ∈ A =⇒ σ(x) = {ϕ(x) : x ∈ M(A)}.

In particular, by Proposition 4.1,

(5.4) a = a∗ ∈ A, ϕ ∈ M(A) =⇒ ϕ(a) ∈ R.

This gives the following.

Proposition 5.1. If x ∈ A and ϕ ∈ M(A), then

(5.5) ϕ(x∗) = ϕ(x).

Proof. We can write

x = a+ ib, a = a∗, b = b∗,

taking a = (x+ x∗)/2, b = (x− x∗)/2i. Then x∗ = a− ib, so

(5.6) ϕ(x) = ϕ(a) + iϕ(b), ϕ(x∗) = ϕ(a)− iϕ(b).

Since ϕ(a), ϕ(b) ∈ R, (5.5) follows.

The following is a crucial estimate.
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Proposition 5.2. If x ∈ A, then

(5.7) ‖x‖ = sup
φ∈M(A)

|ϕ(x)|.

Proof. Since ϕ(x∗x) = |ϕ(x)|2 and ‖x∗x‖ = ‖x‖2, (5.7) is equivalent to

(5.8) sup
φ∈M(A)

|ϕ(x∗x)| = ‖x∗x‖, ∀x ∈ A.

This in turn would follow from

(5.9) sup
φ∈M(A)

|ϕ(a)| = ‖a‖, when a = a∗ ∈ A.

Now (2.13) implies

(5.10) sup
φ∈M(A)

|ϕ(x)| = r(x), ∀x ∈ A.

and specializing to x = a = a∗, this shows that (5.9) holds provided

(5.11) ‖a‖ = r(a), when a = a∗ ∈ A.

Now (4.24) gives the result (5.11), so Proposition 5.2 is proven.

Recall the Gelfand transform

(5.12) γ : A −→ C(M(A)), γ(x)(ϕ) = ϕ(x).

From (5.5) we have

(5.13) γ(x∗) = γ(x), ∀x ∈ A,

and from (5.7) we have

(5.14) ‖x‖ = sup
φ∈M(A)

|γ(x)(ϕ)|, ∀x ∈ A.

This leads to the following.

Proposition 5.3. If A is a commutative C∗ algebra with unit,

(5.15) γ : A −→ C(M(A))

is an isometric ∗-isomorphism of C∗ algebras.

Proof. From (5.13)–(5.14), we see that γ is a ∗-homomorphism of C∗ algebras,
and it is an isometry. Hence it is an isomorphism of A onto its image under γ in
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C(M(A)). The image (call it Ã) is an algebra of functions on the compact space
M(A), containing 1 (since ϕ(I) = 1), invariant under conjugation (by (5.13)), and
closed in C(M(A)). Furthermore, the image separates points in M(A). That is,

(5.16) ϕ 6= ψ ∈ M(A) =⇒ ϕ(x) 6= ψ(x), for some x ∈ A.

(This is a tautology.) It follows by the Stone-Weierstrass theorem that Ã =
C(M(A)), and this concludes the proof of Proposition 5.3.

Continuous functional calculus

When A is a commutative C∗ algebra, we can use the Gelfand transform (5.15)
to define a functional calculus that is much richer than the holomorphic functional
calculus defined on a general Banach algebra. In detail, if

(5.17) x ∈ A, f : σ(x) −→ C is continuous,

we define f(x) ∈ A by

(5.18) γ(f(x)) = f(γ(x)).

Note how this extends (2.21). Examples include

(5.19) f(ζ) = ζ ⇒ f(x) = x∗, f(ζ) = |ζ|2 ⇒ f(x) = x∗x.

More generally, if p is a polynomial, of the form

(5.20) p(ζ) =
∑

j+k≤n

ajkζ
jζ

k
,

then

(5.21) p(x) =
∑

j+k≤n

ajkx
j(x∗)k.

The Stone-Weierstrass theorem implies that for each continuous f : σ(x) → C,
there is a sequence pν of polynomials such that pν → f uniformly on σ(x). We
then have

(5.22) pν(x) −→ f(x), in A-norm.
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6. Applications to the spectral theorem

Given a Hilbert space H, let {Aj : j ∈ J} ⊂ L(H) be a family of commuting
self-adjoint operators:

(6.1) A∗
j = Aj AjAk = AkAj , ∀ j, k ∈ J.

Let A ⊂ L(H) be the Banach algebra with unit generated by {Aj}; A is the norm
closure of the space of polynomials in the operators Aj (with complex coefficients).
Clearly A is commutative. The self-adjointness implies that if T ∈ A, then T ∗ ∈ A,
so A is a commutative C∗ algebra. From §5 we have the isometric isomorphism of
C∗ algebras

(6.2) γ : A −→ C(X), X = M(A).

We will use this to establish a “spectral representation” of A, by an algebra of
multiplication operators on some L2 space.

To proceed, we pick v ∈ H and define

(6.3) W : C(X) −→ H

(W =WA,v) as follows:

(6.4) W (f) = τ(f)v, τ = γ−1 : C(X) −→ A.

We also define a linear functional

(6.5) µ : C(X) → C, µ(f) = (W (f), v) = (τ(f)v, v).

The following positivity result gets us on our way.

Proposition 6.1. If f ∈ C(X) and f ≥ 0, then µ(f) ≥ 0.

Proof. The claim is that if f ≥ 0, then τ(f) is a positive semi-definite operator on
H. To see this, take

(6.6) g = f1/2 ∈ C(X), g ≥ 0.

Since γ and τ are ∗-isomorphisms, A = τ(g) is self-adjoint on H, and τ(f) =
τ(g2) = A2, so (τ(f)v, v) = (A2v, v) = ‖Av‖2 ≥ 0. This completes the proof.

Hence µ = µv defines a positive Radon measure on X:

(6.7) (W (f), v) = (τ(f)v, v) =

∫
X

f dµ.
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We are now set up to perform an inner product computation. Take f, g ∈ C(X).
Then

(6.8)

(W (f),W (g))H = (τ(f)v, τ(g)v)

= (τ(fg)v, v)

=

∫
X

fg dµ

= (f, g)L2(X,µ).

It follows that W in (6.3)–(6.4) has a unique extension to a linear isometry

(6.9) W : L2(X,µ) −→ H.

The range of W is

(6.10) Hv = closure in H of {Av : A ∈ A}.

What is interesting about W is that it intertwines the action of an operator A ∈ A
on H with the action of multiplication by γ(A) on L2(X,µ). In fact, given A ∈ A
and f ∈ C(X),

(6.11)

W (γ(A)f) = τ(γ(A)f)v

= Aτ(f)v

= AW (f).

This extends by continuity from f ∈ C(X) to all f ∈ L2(X,µ).
We call Hv the cyclic subspace of H generated by A and v. If Hv = H, we say

v is a cyclic vector for A. The following is a variant of the spectral theorem for the
case where there is a cyclic vector.

Proposition 6.2. If A ⊂ L(H) is a commutative C∗ algebra with unit and v ∈ H
is a cyclic vector for A, then

(6.12) W : L2(X,µ) −→ H

is unitary, and

(6.13) W−1AWf = γ(A)f, ∀A ∈ A, f ∈ L2(X,µ).

In general, we cannot say that A has a cyclic vector, but we have the following.
For simplicity, we assume H is separable.
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Proposition 6.3. If H is separable and A ⊂ L(H) is a commutative C∗ algebra
with unit, then there exist vj ∈ H such that Hvj are mutually orthogonal subspaces
of H, with span dense in H.

Proof. Let {wj : j ∈ N} be a dense subset of H, all wj 6= 0. Take v1 = w1, and
construct H1 = Hv1 as above. Note that

(6.14) A : H1 −→ H1, ∀A ∈ A.

If H1 = H, we are done. If not, we proceed as follows. We claim that, when
H1 ⊂ H is a linear subspace,

(6.15) A ∈ A, A : H1 → H1 =⇒ A∗ : H⊥
1 → H⊥

1 .

In fact, if v ∈ H1, w ∈ H⊥
1 , then

(6.16) (v,A∗w) = (Av,w) = 0, (given Av ∈ H1),

so (6.15) follows.
To continue, consider the first j ≥ 2 such that wj /∈ H1, and let v2 denote the

orthogonal projection of wj onto H⊥
1 . Then set

(6.17) H2 = closure in H of {Av2 : A ∈ A},

which is a linear subspace of H⊥
1 , by (6.15). Clearly H1 ⊕H2 contains Span {wk :

1 ≤ k ≤ j}. If H1 ⊕H2 = H, we are done. If not,

(6.18) A : (H1 ⊕H2)
⊥ −→ (H1 ⊕H2)

⊥, ∀A ∈ A.

Take the first j3 > j such that wj3 /∈ H1 ⊕ H2, and let v3 denote the orthogonal
projection of wj3 onto (H1 ⊕H2)

⊥. Then set

(6.19) H3 = closure in H of {Av3 : A ∈ A}.

Continue. If for some K, H1 ⊕ · · · ⊕ HK = H, we are done. If not, we get a
countable sequence of mutually orthogonal spaces

(6.20) Hk = closure in H of {Avk : A ∈ A},

whose span contains wj for all j ∈ N, so is dense in H. This proves Proposition
6.3.

We now extend Proposition 6.2 to the following version of the spectral theorem.
The reader can compare this with Theorems 1.1–1.2 of [T2].
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Proposition 6.4. Let H be a separable Hilbert space. If A ⊂ L(H) is a commu-
tative C∗ algebra with unit, there exists a sigma-compact space X, equipped with
a locally finite measure µ, a unitary map Φ : H → L2(X, µ), and an isometric
∗-homomorphism of algebras

(6.21) Γ : A −→ L∞(X, µ),

such that

(6.22) ΦAΦ−1f = Γ(A)f, ∀A ∈ A, f ∈ L2(X, µ).

Proof. With vj as in Proposition 6.3, write

(6.23) H =
⊕
j≥1

Hj , Hj = Hvj ,

and

(6.24) Wj =WA,vj
: C(X) −→ Hj , Wj(f) = τ(f)vj ,

extending to unitary maps

(6.25) Wj : L
2(X,µj) −→ Hj , µj(f) = (τ(f)vj , vj),

satisfying

(6.26) W−1
j AWjf = γ(A)f, ∀A ∈ A, f ∈ L2(X,µj).

Thus we can define the measure space (X, µ) as the disjoint union

(6.27) (X, µ) =
⋃
j≥1

(Xj , µj), Xj = X,

so

(6.28) L2(X, µ) =
⊕
j≥1

L2(Xj , µj),

and the Wj in (3.15) fit together to give a unitary map

(6.29) W : L2(X, µ) −→ H,

satisfying

(6.30) W−1AWf = Γ(A)f, ∀A ∈ A, f ∈ L2(X, µ),

where Γ : A → L∞(X, µ) is given by

(6.31) Γ(A)(x) = γ(A)(x), x ∈ Xj .

Then Φ : H → L2(X, µ) is Φ =W−1.

If H is not separable, one can produce a suitable replacement for Proposition
6.3 using Zorn’s lemma. An uncountable number of copies of X might be involved.
We omit details.
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7. Positive elements in a C∗ algebra

Let C be a C∗ algebra with unit, x ∈ C. We say

(7.1) x ∈ C+ ⇐⇒ x = x∗ and σ(x) ⊂ [0,∞).

Given x ∈ C+, we also say x is positive, and write x ≥ 0. Here are some simple
properties of C+.

Proposition 7.1. In the setting described above,
(a) x = x∗ ⇒ x2 ∈ C+,
(b) If x = x∗ and ‖x‖ ≤ 1, then

x ∈ C+ ⇐⇒ ‖1− x‖ ≤ 1.

(c) If x, y ∈ C+, then x+ y ∈ C+.

Proof. For (a), apply the spectral mapping theorem.
For (b), apply the Gelfand transform to x, as an element of the commutative C∗

algebra generated by 1 and x, and keep Proposition 4.2 in mind.
For (c), it suffices to get this when ‖x‖ ≤ 1 and ‖y‖ ≤ 1, in which case (b) gives

‖1− x‖ ≤ 1, and ‖1− y‖ ≤ 1.

hence
‖1− 1

2 (x+ y)‖ ≤ 1.

Also, ‖(x+ y)/2‖ ≤ 1, and then (b) yields (x+ y)/2 ∈ C+, which gives (c), in light
of the fact that

x ∈ C+, r ∈ R+ =⇒ rx ∈ C+.

Remark. We see furthermore that

(7.2) C+ ⊂ C is a closed, convex cone.

The following result complements part (a) of Proposition 7.1.

Proposition 7.2. If x ∈ C+, then there is a unique x1/2 ∈ C+ such that (x1/2)2 =
x.

Proof. For existence, let A be the commutative C∗ algebra generated by 1 and x,
and apply the Gelfand transform. Note that if I = [0, ‖x‖] and pk are polynomials
such that

(7.3) pk(λ) −→ λ1/2, uniformly for λ ∈ I,
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then

(7.4) pk(x) −→ x1/2.

For uniqueness, suppose y ∈ C+ and y2 = x. Then applying the Gelfand transform
to the commutative C∗ algebra generated by 1 and y gives

(7.5) pk(y
2) −→ y,

since pk(λ
2) → λ uniformly on the interval I. Comparison with (7.4) gives y = x1/2.

We next aim to establish the following.

Proposition 7.3. If C is a C∗ algebra with unit,

(7.6) x ∈ C =⇒ x∗x ∈ C+.

To start the proof, note that w = x∗x⇒ w = w∗. Define ψ± : R → R+ by

(7.7)
ψ+(λ) = λ for λ ≥ 0, 0 for λ < 0,

ψ−(λ) = |λ| for λ ≤ 0, 0 for λ > 0,

and set

(7.8) u = ψ+(x
∗x), v = ψ−(x

∗x),

so

(7.9) x∗x = u− v, u, v ∈ C+, uv = 0.

We want to show that v = 0. To this end, set

(7.10) y = xv1/2, so y∗y = −v2.

Clearly σ(−v2) ⊂ (−∞, 0], by part (a) of Proposition 7.1. We will prove the
following.

Lemma 7.4. If y ∈ C and σ(y∗y) ⊂ (−∞, 0], then y = 0.

This lemma plus (7.10) yields v = 0, and proves Proposition 7.3.

In order to prove Lemma 7.4, it is useful to bring in the following.
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Lemma 7.5. If x, y ∈ C, then σ(xy) \ {0} = σ(yx) \ {0}.

Proof. Applying dilations to x and y, it suffices to show that

(7.11) 1− xy invertible =⇒ 1− yx invertible.

Indeed, if w = (1− xy)−1, then

(7.12)

(1 + ywx)(1− yx) = 1− yx+ ywx− ywxyx

= 1− y(1− w(1− xy))x

= 1,

and similarly (1− yx)(1 + ywx) = 1, so we have (7.11).

Proof of Lemma 7.4. Lemma 7.5 implies σ(yy∗) ⊂ (−∞, 0], and then part (c) of
Proposition 7.1 gives −(y∗y + yy∗) ∈ C+, i.e.,

(7.13) σ(y∗y + yy∗) ⊂ (−∞, 0].

Now set

(7.14) y = b+ ic, b = b∗, c = c∗.

We have

(7.15)
y∗y = b2 + c2 + i(bc− cb),

yy∗ = b2 + c2 − i(bc− cb),

hence

(7.16) y∗y + yy∗ = 2b2 + 2c2,

and parts (a) and (c) of Proposition 7.1 gives b2 + c2 ∈ C+, so

(7.17) σ(y∗y + yy∗) = {0}.

Since y∗y+ yy∗ is self adjoint, this implies y∗y+ yy∗ = 0, hence b2 + c2 = 0, hence
b2 = −c2. Hence

(7.18) σ(b2) = σ(c2) = {0},

so b = c = 0, hence y = 0, as asserted.
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A. Holomorphic functional calculus

Let B be a Banach algebra, with unit I. Given x ∈ B, we have defined the
resolvent set ρ(x) and spectrum σ(x) in §1. We have seen that σ(x) ⊂ C is compact
and that Rζ = (ζ − x)−1 is holomorphic in ζ ∈ ρ(x).

Let f be holomorphic on a neighborhood of σ(x). In fact, let Ω be a smoothly
bounded neighborhood of σ(x) and assume f is holomorphic on a neighborhood of
Ω. We set

(A.1) f(x) =
1

2πi

∫
∂Ω

f(ζ)(ζ − x)−1 dζ.

If B = C, this is just Cauchy’s formula. Note that the element of B defined by
(A.1) is independent of the choice of Ω satisfying the conditions stated above, by
Cauchy’s theorem, which is valid in the setting of Banach space valued holomorphic
functions.

In case f is holomorphic on a neighborhood of {ζ : |ζ| ≤ ‖x‖}, or even {ζ : |ζ| ≤
r(x)}, we can let Ω be a disk centered at the origin and replace Rζ by its power
series expansion:

(A.2) Rζ = (ζ − x)−1 =
1

ζ

∞∑
k=0

1

ζk
xk.

For example,

(A.3)

pn(ζ) = ζn (n ∈ Z+)

⇒ pn(x) =
1

2πi

∫
|ζ|=R

ζnζ−1
∞∑
k=0

ζ−kxk dζ (take R > ‖x‖)

=
1

2πi

∞∑
k=0

∫
|ζ|=R

ζn−1−k dζ xk

= xn.

To establish further properties of this functional calculus, it will be useful to
have the following result, known as the resolvent identity:

Proposition A.1. If x ∈ B and z, ζ ∈ ρ(x), then

(A.4) Rz −Rζ = (ζ − z)RzRζ .
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Proof. Note that Rζ commutes with ζ − x, hence with x, hence with z − x. Hence
RzRζ(z − x) = Rz(z − x)Rζ = Rζ , and multiplying on the right by Rz gives

(A.5) RzRζ = RζRz.

Thus

(A.6)
Rz −Rζ = (ζ − x)RζRz − (z − x)RzRζ

= (ζ − z)RζRz,

proving (A.4).

Now for our multiplicative property.

Proposition A.2. If x ∈ B and f and g are holomorphic on a neighborhood of
σ(x), then

(A.7) f(x)g(x) = (fg)(x).

Proof. Suppose σ(x) ⊂ Ω ⊂ Ω ⊂ Ω1 and f and g are holomorphic on a neighbor-
hood of Ω1. Write

(A.8) g(x) =
1

2πi

∫
∂Ω1

g(z)(z − x)−1 dz,

and, using (A.1), write f(x)g(x) as a double integral. The product RζRz of resol-
vents appears in the integral. Using the resolvent identity (A.4), we obtain

(A.9) f(x)g(x) =
1

(2πi)2

∫
∂Ω1

∫
∂Ω

(ζ − z)−1f(ζ)g(z)(Rz −Rζ) dζ dz.

The term involving Rz as a factor has dζ-integral equal to zero, by Cauchy’s theo-
rem. Doing the dz-integral for the other term, using Cauchy’s identity

(A.10) g(ζ) =
1

2πi

∫
∂Ω1

(z − ζ)−1g(z) dz,

we obtain from (A.9)

(A.11) f(x)g(x) =
1

2πi

∫
∂Ω

f(ζ)g(ζ)Rζ dζ,

which gives (A.7).
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Corollary A.3. If x ∈ B, f is holomorphic in a neighborhood of σ(x), and z /∈
f(σ(x)), then z − f(x) is invertible.

Proof. Set

(A.12) gz(ζ) =
1

z − f(ζ)
, holomorphic in ζ on a neighborhood of σ(x).

Then (A.7) gives

(A.13) gz(x)(z − f(x)) = (z − f(x))gz(x) = I.

Another way to phrase Corollary A.3 is that

(A.14) σ(f(x)) ⊂ f(σ(x)).

This is completed by the following result, known as the spectral mapping theorem.
(Compare Proposition 2.8, valid when B is commutative.)

Proposition A.4. In the setting of Corollary A.3,

(A.15) σ(f(x)) = f(σ(x)).

Proof. Say f is holomorphic on a neighborhood Ω of σ(x). Taking λ ∈ σ(x), we
have

(A.16) f(x)− f(λ) = (x− λ)Gλ(x),

where

(A.17) Gλ(ζ) =
f(ζ)− f(λ)

ζ − λ
,

which is holomorphic in ζ ∈ Ω (with a removable singularity at ζ = λ). Clearly, if
λ ∈ σ(x), the right side of (A.16) is not invertible, so the left side is not invertible.
This yields

(A.18) λ ∈ σ(x) =⇒ f(λ) ∈ σ(f(x)),

which together with (A.14) gives (A.15).

Remark. A special case of the argument (A.16)–(A.18) appears in (4.12)–(4.14);
see also (B.11)–(B.12).

We next have a composition identity.
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Proposition A.5. Given x ∈ B, f holomorphic on a neighborhood of σ(x), and h
holomorphic on a neighborhood of f(σ(x)) (so h◦f is holomorphic on a neighborhood
of σ(x)), we have

(A.19) (h ◦ f)(x) = h(f(x)).

Proof. There is no loss in assuming σ(x) ⊂ Ω, f holomorphic on a neighborhood
of Ω, and h holomorphic on a neighborhood of f(Ω).

First, for ζ ∈ Ω, γ the boundary of some neighborhood of f(Ω), we have

(A.20)

(h ◦ f)(ζ) = h(f(ζ)) =
1

2πi

∫
γ

h(z)(z − f(ζ))−1 dz

=
1

2πi

∫
γ

h(z)gz(ζ) dz,

where, as in (A.12),

(A.21) gz(ζ) =
1

z − f(ζ)
.

Hence

(A.22)

(h ◦ f)(x) = 1

2πi

∫
∂Ω

(h ◦ f)(ζ)(ζ − x)−1 dζ

=
1

(2πi)2

∫
∂Ω

∫
γ

h(z)gz(ζ)(ζ − x)−1 dz dζ.

Reversing the order of integration (doing the dζ-integral first) gives

(A.23)

(h ◦ f)(x) = 1

2πi

∫
γ

h(z)gz(x) dz

=
1

2πi

∫
γ

h(z)(z − f(x))−1 dz (by (A.13))

= h(f(x)),

as desired.

The following is an important family of holomorphic functions to apply to ele-
ments x ∈ B, namely et(ζ) = etζ . We have the power series

(A.24) etx =
∞∑
k=0

tk

k!
xk, t ∈ R, x ∈ B.
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Applying (A.7) to f(ζ) = esζ , g(ζ) = etζ gives

(A.25) e(s+t)x = esxetx, ∀ s, t ∈ R, x ∈ B,
from the standard identity e(s+t)ζ = esζetζ , valid for s, t ∈ R, ζ ∈ C. This is used
in (4.10). A direct proof of (A.25) can be given as follows. Applying d/dt to (A.24)
gives

(A.26)
d

dt
etx = xetx = etxx, ∀t ∈ R, x ∈ B.

Hence, via the product rule,

(A.27)
d

dt

(
e(s+t)xe−tx

)
= e(s+t)xxe−tx − e(s+t)xxe−tx = 0,

so e(s+t)xe−tx is independent of t ∈ R. Taking t = 0 gives

(A.28) e(s+t)xe−tx = esx, ∀ s, t ∈ R, x ∈ B.
Taking s = 0 in (A.28) gives

(A.29) etxe−tx = I, ∀ t ∈ R, x ∈ B,
so we can multiply each side of (A.28) on the right by etx and get (A.25).

A variant of this last argument yields the following useful result (justifying the
first identity in (4.12)).

Proposition A.6. If x and y ∈ B commute (i.e., xy = yx), then

(A.30) et(x+y) = etxety, ∀ t ∈ R.

Proof. Using (A.28) and the product rule, we compute

(A.31)

d

dt

(
et(x+y)e−tye−tx

)
= et(x+y)(x+ y)e−tye−tx − et(x+y)ye−tye−tx − e−t(x+y)e−tyxe−tx

= et(x+y)xe−tye−tx − et(x+y)e−tyxe−tx.

If we show that

(A.32) xe−ty = e−tyx, ∀ t ∈ R, provided xy = yx,

it will follow that (A.31) is zero, so et(x+y)e−tye−tx is independent of t, hence

(A.33) et(x+y)e−tye−tx = I, ∀ t ∈ R,
from which (A.30) follows upon right multiplication, first by etx (using (A.29)),
then by ety. As for (A.32), we have

(A.34) e−tyx =
∞∑
k=0

(−t)k

k!
ykx.

Provided xy = yx, we also have ykx = xyk, and (A.32) readily follows. Proposition
A.6 is proven.

It is desirable to demonstrate that the formula (A.24) for etx is equivalent to
(A.1) with f(ζ) = etζ . This follows from (A.3) and a limiting argument, a neat
general version of which is the following.
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Proposition A.7. Take x ∈ B. Assume gk and g are holomorphic on a neighbor-
hood O of σ(x) and gk → g uniformly on O. Then gk(x) → g(x) in B-norm.

Proof. Take a smoothly bounded open set Ω such that σ(x) ⊂ Ω ⊂ Ω ⊂ O. For f
holomorphic on O, (A.1) implies

(A.35) ‖f(x)‖ ≤ C sup
ζ∈∂Ω

|f(ζ)|,

with

(A.36) C =
`(∂Ω)

2π
sup
ζ∈∂Ω

‖Rζ‖.

Applying this estimate to f = g − gk gives ‖g(x)− gk(x)‖ → 0.

Corollary A.8. Take x ∈ B. Assume f : DR(0) → C is holomorphic, where
DR(0) = {ζ ∈ C : |ζ| < R}. Assume σ(x) ⊂ DR(0). Then f(x) ∈ B is given by the
norm-convergent series

(A.37) f(x) =
∞∑
k=0

f (k)(0)

k!
xk.

We also record a variant of this, involving Laurent series. Given a, b ∈ R such
that 0 ≤ a < 1 < b, consider the annulus

(A.38) Aa,b = {ζ ∈ C : a < |ζ| < b}.

If f : Aa,b → C is holomorphic, it has a Laurent series expansion of the form

(A.39) f(ζ) =
∞∑

k=−∞

f̂(k)ζk,

converging uniformly on compact subsets of Aa,b, with coefficients f̂(k) given by

(A.40) f̂(k) =
1

2πi

∫
γ1

f(ζ)

ζk+1
dζ,

where γ1 is the unit circle, {eiθ : 0 ≤ θ ≤ 2π}. Equivalently,

(A.41) f̂(k) =
1

2π

∫ 2π

0

f(eiθ)e−ikθ dθ.

If 0 /∈ σ(x), then, arguing as in Corollary A.3, we can complement (A.3) by

p−1(ζ) = ζ−1 =⇒ p−1(x) = x−1,

and then
p−n(ζ) = ζ−n =⇒ p−n(x) = x−n.

Proposition A.7 then gives the following.
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Corollary A.9. Take x ∈ B. Assume f is holomorphic on the annulus Aa,b,
satisfying (A.39)–(A.40). Assume σ(x) ⊂ Aa,b. Then f(x) is given by the norm-
convergent series

(A.42) f(x) =
∞∑

k=−∞

f̂(k)xk.

We next take a look at cases where σ(x) is not connected. Assume there exist
smoothly bounded open sets Ωj such that

(A.43) σ(x) ⊂
M⋃
j=1

Ωj , Ωj mutually disjoint.

Assume each set σj(x) = σ(x) ∩ Ωj is nonempty. For j ∈ {1, . . . ,M}, set

(A.44) Pj =
1

2πi

∫
∂Ωj

(ζ − x)−1 dζ = χΩj
(x).

We see that

(A.45) P 2
j = Pj , PjPk = 0 if j 6= k,

and

(A.46) P1 + · · ·+ PM = I.

the elements Pj of B are called projections.
Now, for each j ∈ {1, . . . ,M}, let us set

(A.47)
Bj = {PjyPj : y ∈ B}

= {y ∈ B : P⊥
j y = yP⊥

j = 0},

where P⊥
j = I − Pj . Clearly Bj is a closed linear subspace of B, also closed under

products. Furthermore Pj ∈ Bj is a multiplicative unit, so Bj has the structure of a
Banach algebra with unit (more precisely, a “Banachable algebra” with unit, since
possibly ‖Pj‖ > 1; see §F). We have the following.

Proposition A.10. In the setting described above, for each j ∈ {1, . . . ,M}, the
element xj = PjxPj ∈ Bj has spectrum

(A.48) σBj
(xj) = σj(x).
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Proof. Assume λ /∈ σj(x). Shrinking Ω, we can assume λ /∈ Ωj . Then, taking

(A.49) Ej,λ(ζ) = (λ− ζ)−1χΩj
(ζ)

yields

(A.50)

Ej,λ(x) = PjEj,λ(x)Pj ∈ Bj ,

Ej,λ(x)(λ− xj) = Ej,λ(x)(λ− x) = Pj ,

(λ− xj)Ej,λ(x) = (λ− x)Ej,λ(x) = Pj ,

so σBj
(xj) ⊂ Ωj , and shrinking Ωj leads to

(A.51) σBj (xj) ⊂ σj(x).

We leave the reverse inclusion as an exercise.

It is of interest to recast Proposition A.10 in the important case B = L(V ),
the space of bounded linear operators on a Banach space V . We change notation,
replacing x ∈ B by A ∈ L(V ). We place the hypothesis (A.43) on σ(A). As in
(A.44), we have

(A.52) Pj =
1

2πi

∫
∂Ωj

(ζ −A)−1 dζ = χΩj
(A),

satisfying (A.45)–(A.46). We can now recognize Pj as a projection of V onto the
closed linear subspace

(A.53) Vj = Pj(V ) = Ker(I − Pj).

We have the direct sum decomposition

(A.54) V = V1 ⊕ · · · ⊕ VM ,

and A : Vj → Vj . We set

(A.55) Aj = A
∣∣
Vj

= PjA
∣∣
Vj
,

so

(A.56) A = A1 ⊕ · · · ⊕AM .

With Ej,λ as in (A.49), we see that

(A.57) λ /∈ Ωj =⇒ Ej,λ(A) : Vj → Vj ,

and provides a two-sided inverse to λ−Aj on Vj . Hence

(A.58) σ(Aj) ⊂ σj(A) = σ(A) ∩ Ωj ,

and the reverse inclusion is readily established. Thus Proposition A.10 has the
following variant.

Proposition A.11. In the setting described above, for each j ∈ {1, . . . ,M},

(A.59) σ(Aj) = σj(A).
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B. The spectral radius

Let B be a Banach algebra with unit I. Recall from §1 that if x ∈ B we define
its spectral radius as

(B.1) r(x) = sup {|ζ| : ζ ∈ σ(x)}.

From (1.7), we have

(B.2) (ζ − x)−1 =
1

ζ

∞∑
k=0

1

ζk
xk,

for |ζ| > ‖x‖. Hence, as noted in §1

(B.3) r(x) ≤ ‖x‖.

Here we establish the following more precise result, an identity for r(x) that is
of use in §§4–5.

Proposition B.1. If B is a Banach algebra with unit and x ∈ B,

(B.4) r(x) = lim
k→∞

‖xk‖1/k.

We will establish the following two inequalities, which together imply (B.4). The
first is

(B.5) lim sup
k→∞

‖xk‖1/k ≤ r(x),

and the second is

(B.6) r(x) ≤ inf
k≥1

‖xk‖1/k.

To prove (B.5), we note that, since Rζ = (ζ − x)−1 is holomorphic in ζ for
ζ ∈ ρ(x).

(B.7) F (ζ) = (I − ζx)−1

is holomorphic for |ζ| < 1/r(x). By (1.3)–(1.4), F (ζ) is given by the power series

(B.8) F (ζ) =
∞∑
k=0

xkζk,
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convergent for |ζ| < 1/‖x‖.
In fact, whenever a function

(B.9) F : DR(0) −→ B is holomorphic,

where DR(0) = {ζ ∈ C : |ζ| < R}, its power series

(B.10) F (ζ) =

∞∑
k=0

akζ
k, ak ∈ B,

converges absolutely for |ζ| < R, i.e.,

(B.11)

∞∑
k=0

‖ak‖ · |ζ|k <∞, for |ζ| < R.

The proof works like the case F : DR(0) → C. One has the Cauchy integral formula:

(B.12) F (ζ) =
1

2πi

∫
γS

F (z)(z − ζ)−1 dz, for |ζ| < S < R,

where γS = ∂DS(0). Hence, using

(B.13)
1

z − ζ
=

1

z

1

1− ζ/z
=

∞∑
k=0

ζkz−k−1,

valid for |z| < |ζ|, one gets the absolutely convergent series

(B.14) F (ζ) =

∞∑
k=0

( 1

2πi

∫
γS

F (z)z−k−1 dz
)
ζk, for |ζ| < S < R,

yielding (B.10)–(B.11).
Applying this observation to F (ζ) in (B.7) yields

(B.15) (I − ζx)−1 =
∞∑
k=0

xkζk, absolutely convergent for |ζ| < 1

r(x)
,

hence

(B.16)
∞∑
k=0

‖xk‖ · |ζ|k <∞, for |ζ| < 1

r(x)
.
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Such convergence requires the terms in the series (B.16) to tend to 0 as k → ∞,
hence

(B.17) sup
k≥1

|ζ|k‖xk‖ <∞, ∀ |ζ| < 1

r(x)
,

and this yields (B.5).
To get (B.6), we note the following. From

(B.18) ζk − xk = (ζ − x)(ζk−1 + ζk−2x+ · · ·+ xk−1),

we have the first implication in

(B.19)

ζ ∈ σ(x) =⇒ ζk ∈ σ(xk)

=⇒ |ζk| ≤ ‖xk‖

=⇒ |ζ| ≤ ‖xk‖1/k,

the second implication by (B.3) applied to xk. This yields (B.6) and finishes the
proof of Proposition B.1.

If r(x) = 0, we say x is quasi-nilpotent. By (B.4), this holds if and only if
‖xk‖1/k → 0 as k → ∞. If B is a commutative Banach algebra with unit, it follows
from (2.13)–(2.16) that the set N of quasi-nilpotent elements is given by

(B.20) N = Ker γ,

where γ : B → C(M(B)) is the Gelfand transform. Hence N is a closed ideal in B.
The quotient B/N is also a commutative Banach algebra with unit, and γ factors
through B → B/N to yield an injective homomorphism

(B.21) γb : B/N −→ C(M(B)).

We next describe a family of quasi-nilpotent elements of B = L(V ), where

(B.22) V = Lp(I), 1 ≤ p ≤ ∞,

with I = [0, 1], carrying Lebesgue measure. We define A ∈ L(Lp(I)) by

(B.23) Af(x) =

∫ x

0

f(y) dy.

A calculation gives

(B.24) A2f(x) =

∫ x

0

(x− y)f(y) dy,
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and, inductively,

(B.25)

Anf(x) =
1

(n− 1)!

∫ x

0

(x− y)n−1f(y) dy

=

∫ 1

0

kn(x, y)f(y) dy,

where

(B.26)
kn(x, y) =

(x− y)n−1

(n− 1)!
, for y ∈ [0, x],

0 otherwise.

We can estimate the operator norm of An on Lp(I) as follows. With

(B.27)

C1,n = sup
y

∫ 1

0

|kn(x, y)| dx,

C2,n = sup
x

∫ 1

0

|kn(x, y)| dy,

one has

(B.28) ‖An‖L(Lp) ≤ C
1/p
1,nC

1/q
2,n ,

where q is the dual exponent to p, satisfying p−1 + q−1 = 1. See Proposition 5.1 of
[T1]. In the present case, we have from (B.26) that

(B.29) C1,n = C2,n =
1

n!
,

so

(B.30) ‖An‖L(Lp) ≤
1

n!
.

To estimate ‖An‖1/n, we bring in Stirling’s formula,

(B.31) n! ∼
(n
e

)n√
2πn, as n→ ∞,

which gives

(B.32) ‖An‖1/nL(Lp) ≤
C

n
.
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Thus the operator A defined by (B.23) has spectral radius 0 on Lp(I), for each
p ∈ [1,∞]. Consequently

(B.33) σ(A) = {0}.

In light of (B.33), it is interesting that, for A given by (B.23),

(B.34) KerA = 0

on Lp(I), for each p ∈ [1,∞]. Indeed, for f ∈ Lp(I),

(B.35) Af = 0 ⇔
∫ b

a

f(x) dx = 0 whenever 0 ≤ a < b ≤ 1,

and basic results on the Lebesgue integral yield f = 0 when this holds.
We describe an alternative method of proving (B.33), using the observation that

A in (B.23) is compact, i.e., it maps the unit ball in Lp(I) to a relatively compact
subset of Lp(I), for each p ∈ [1,∞]. Given this, if σ(A) contains an element λ 6= 0,
then there must exist a nonzero f ∈ Lp(I) such that

(B.36) Af = λf.

See Proposition 6.8 of [T1]. Hence

(B.37) f(x) =
1

λ

∫ x

0

f(y) dt.

It follows that f ∈ C(I) and then, inductively, that f ∈ Ck(I) for each k ∈ N. We
can then differentiate (B.37), to get

(B.38) f ′(x) =
1

λ
f(x),

with general solution

(B.39) f(x) = Cex/λ.

But (B.37) also implies f(0) = 0, which forces C = 0, and hence f = 0.
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C. Rich Banach algebras of continuous functions

LetM be a compact Hausdorff space, and let B be a Banach algebra of continuous
functions on M , with pointwise sum and product, and norm f 7→ ‖f‖. For each
p ∈M , f 7→ f(p) is a character on B, so (2.3) implies

(C.1) sup
p∈M

|f(p)| ≤ ‖f‖, ∀ f ∈ B.

We say such B is a rich Banach algebra of continuous functions on M provided
there exists an algebra C of continuous functions on M , closed under f 7→ f , such
that

(C.2) C ⊂ B is dense,

and

(C.3) f ∈ C nowhere vanishing on M =⇒ f−1 ∈ C.

We have the following considerable generalization of Proposition 3.2.

Proposition C.1. Let B be a rich Banach algebra of continuous functions on a
compact Hausdorff space M . Then, for each character ϕ : B → C, there exists
p ∈M such that

(C.4) ϕ(f) = f(p), ∀ f ∈ B.

Proof. If we compose ϕ with (C.2), we get a linear map ϕ : C → C satisfying, for
all f, g ∈ C,

(C.5) ϕ(fg) = ϕ(f)ϕ(g), ϕ(1) = 1.

Hence Proposition C.1 is a consequence of the following.

Proposition C.2. With C as above, if ϕ : C → C is a linear map satisfying (C.5),
then there exists p ∈M such that

(C.6) ϕ(f) = f(p), ∀ f ∈ C.

Proof. To begin, we claim there exists p ∈M such that

(C.7) f ∈ C, ϕ(f) = 0 =⇒ f(p) = 0.
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In fact, if no such p exists, we can cover M with a finite number of open sets
Uj , 1 ≤ j ≤ K, and take fj ∈ C, nowhere vanishing on Uj , such that ϕ(fj) = 0.
Then

(C.8) f =
K∑
j=1

|fj |2 =⇒ f ∈ C, ϕ(f) = 0.

However, f > 0 onM , so f−1 ∈ C, so the assertion ϕ(f) = 0 contradicts ϕ(f−1f) =
ϕ(1) = 1.

Now, take p ∈M such that (C.7) holds, and set

(C.9) ψ(f) = f(p), ψ : C → C.

We see that both ψ and ϕ obey (C.5), and

(C.10) f ∈ C, ϕ(f) = 0 =⇒ ψ(f) = 0.

Given this, if f ∈ C,

(C.11) ϕ(f) = α⇒ ϕ(f − α) = 0 ⇒ ψ(f − α) = 0 ⇒ f(p) = α,

and we have (C.6).

To apply Proposition C.1 to Proposition 3.2, i.e., to

(C.12) M = S1, B = A(S1),

we can take

(C.13) C = C∞(S1).

Note that we are not assuming in Proposition C.1 that C is a Banach algebra.
More generally, Proposition C.1 applies to

(C.14) M = Tk, B = A(Tk), C = C∞(Tk),

when Tk is the k-dimensional torus, and A(Tk) consists of functions on Tk whose

Fourier coefficients f̂(`) satisfy
∑

ℓ∈Zk

|f̂(`)| < ∞. See Appendix E for a further

generalization, replacing Tk by a more general compact group.
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D. Variants of a theorem of Bochner and Phillips

Let B be a Banach algebra with unit. Set

(D.1) A(S1,B) =
{
f ∈ C(S1,B) :

∑
k∈Z

‖f̂(k)‖B <∞
}
.

In [BP], the following was proven.

Proposition D.1. Let f ∈ A(S1,B) and assume f(ζ) is invertible in B for each
ζ ∈ S1, so g(ζ) = f(ζ)−1 gives g ∈ C(S1,B). Then in fact g ∈ A(S1,B).

The case B = C is a classical result of Wiener (cf. Proposition 3.2). We aim to
provide a proof of Proposition D.1 and explore some variants.

To proceed, let M be a compact Riemannian manifold. With B as above, let A
be a Banach algebra of continuous functions on M , with values in B. We assume
that

(D.2) C∞(M,B) ↪→ A ↪→ C(M,B),

with continuous injections. Given

(D.3) f ∈ A, f(p) invertible for all p ∈M,

so

(D.4) g(p) = f(p)−1 =⇒ g ∈ C(M,B),

we seek criteria that imply

(D.5) g ∈ A.

We make the following hypothesis. There exists N ∈ N such that for n ≥ N, p ∈M ,
there are

(D.6) ϕnp ∈ C∞
0 (B1/n(p)), 0 ≤ ϕnp ≤ 1, ϕnp = 1 on B1/2n(p),

such that

(D.7) ∀ f ∈ A, ‖(f − f(p))ϕnp‖A → 0, as n→ ∞.

Note that, for g as in (D.4), x ∈M ,

(D.8)
g(x)ϕ2n,p(x) =

[
f(p) + f(x)ϕnp(x)− f(p)ϕnp(x)

]−1

ϕ2n,p(x)

=
(
I + gnp(x)

)−1

f(p)−1ϕ2n,p(x),
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where

(D.9) gnp(x) = f(p)−1(f(x)− f(p))ϕnp(x).

Given (D.7), we see that there exists n = n(p) (depending on f) such that

(D.10) ‖gnp‖A ≤ 1

2
.

Hence, for each p ∈M , there exists n = n(p) such that

(D.11) gϕ2n,p ∈ A.

Now {B1/4n(p)(p) : p ∈ M} covers M , so there is a finite subcover, i.e., points
pj , 1 ≤ j ≤ K (depending on f ∈ A) such that

(D.12) ϕj(x) = ϕ2n(pj),pj
=⇒ Φ =

K∑
j=1

ϕj ≥ 1 on M.

We have

(D.13) gΦ ∈ A,

and of course 1/Φ ∈ C∞(M) ⊂ A. We record our result.

Proposition D.2. Let A be a Banach algebra of B-valued functions on M , sat-
isfying (D.2). Assume that for each p ∈ M, n ≥ N , there exist ϕnp satisfying
(D.6)–(D.7). Then

(D.14) f ∈ A, f−1 ∈ C(M,B) =⇒ f−1 ∈ A.

Regarding cases where the hypothesis (D.7) applies, clearly it holds for A =
C(M,B). On the other hand, it fails for A = Lipα(M,B), α ∈ (0, 1]. Since the
conclusion (D.14) holds for such A, Proposition D.2 is by no means definitive.
It applies to a Banach algebra A of B-valued functions with a topology barely
stronger than that of C(M,B). We next show that the hypothesis (D.7) holds for
A = A(S1,B), given by (D.1).

Regard S1 as [−π, π], with endpoints identified. It suffices to take p = 0. We
take ϕ ∈ C∞

0 (−1, 1), ϕ = 1 on [−1/2, 1/2], 0 ≤ ϕ ≤ 1, and set ϕn(x) = ϕ(nx). We
claim that, for all f ∈ A = A(S1,B),

(D.15) ‖(f − f(0))ϕn‖A −→ 0, as n→ ∞.

It suffices to establish this when f ∈ A satisfies

(D.16) supp f ⊂ [−1, 1].

We can then consider f as a function on R. As such, its Fourier transform f̂(ξ)
exists and is holomorpic in ξ ∈ C.
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Lemma D.3. There exists C ∈ (1,∞) such that for all f ∈ A = A(S1,B) satisfy-
ing (D.16),

(D.17)
1

C

∫ ∞

−∞
‖f̂(ξ)‖B dξ ≤

∞∑
k=−∞

‖f̂(k)‖B ≤ C

∫ ∞

−∞
‖f̂(ξ)‖B dξ.

Proof. With ϕ as above, set ψ(x) = ϕ(x/2) and, for η ∈ C, set

(D.18) ψη(x) = e−iηxψ(x), so ψ̂ηf(ξ) = f̂(ξ + η),

for ξ ∈ C. We have

(D.19) ψ̂ηf(k) =
∑
ℓ

ψ̂η(`)f̂(k − `),

and ψη ∈ A(S1,B), locally bounded in η, hence ψηf belongs to A(S1,B) and is
locally bounded in η. Now, for k ∈ Z,

(D.20)

∫ k+1

k

‖f̂(ξ)‖B dξ =
∫ 1

0

‖f̂(k + η)‖B dη

=

∫ 1

0

‖ψ̂ηf(k)‖B dη,

and (by (D.19))

(D.21)
∑
k

‖ψ̂ηf(k)‖B ≤ C
∑
k

‖f̂(k)‖B, |η| ≤ 1,

so

(D.22)

∫ ∞

−∞
‖f̂(ξ)‖B dξ ≤ C

∑
k

‖f̂(k)‖B.

This gives the first inequality in (D.17).
For the converse, we have

(D.23) f̂(k) = ψ̂−ηf(k + η),

hence there exists C <∞ such that

(D.24)
∑
k

‖f̂(k)‖B ≤ C
∑
k

‖f̂(k + η)‖B, ∀ η ∈ [0, 1].

Integrating over η ∈ [0, 1] gives the second inequality in (D.17).
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Having Lemma D.3, we proceed as follows. To prove (D.15), it suffices to show
that

(D.28)

∫ ∞

−∞
‖f̂ ∗ ϕ̂n(ξ)− f(0)ϕ̂n(ξ)‖B dξ −→ 0, as n→ ∞,

when f ∈ C(R,B) satisfies (D.16) and

(D.26)

∫ ∞

−∞
‖f̂(ξ)‖B dξ <∞.

Note that ϕ̂n(ξ) = n−1ϕ̂(ξ/n). Since

(D.27)

f̂ ∗ ϕn(ξ)− f(0)ϕ̂n(ξ)

=

∫ ∞

−∞

(
ϕ̂n(ξ − η)f̂(η)− ϕ̂n(ξ)f̂(η)

)
dη,

we see that the integral in (D.25) is

(D.28)

≤
∫∫

|ϕ̂n(ξ − η)− ϕ̂n(ξ)| · ‖f̂(η)‖B dη dξ

=

∫∫ ∣∣∣ϕ̂(ζ − 1

n
η
)
− ϕ̂(ζ)

∣∣∣ · ‖f̂(η)‖B dζ dη,
−→ 0, as n→ ∞,

the limit holding by the Lebesgue dominated convergence theorem, as long as (D.26)
holds. This completes the proof of (D.15), and hence proves Proposition D.1.
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E. The spaces A(G)

Let G be a compact group, Ĝ the set of (equivalence classes of) irreducible

unitary representations of G. Given π ∈ Ĝ, we say π represents G on Vπ, of
dimension dπ. Given f ∈ L1(G), we set

(E.1) π(f) =

∫
G

f(x)π(x) dx,

dx denoting Haar measure on G. The Plancherel formula (following from the Weyl
orthogonality relations and the Peter-Weyl theorem) is

(E.2) ‖f‖2L2 =
∑
π

dπ‖π(f)‖2HS.

Here and in sums below, π runs over Ĝ. By polarization,

(E.3) (f, g)L2 =
∑
π

dπ Tr(π(f)π(g)
∗).

For sufficiently “regular” functions u on G, there is the “Fourier inversion formula,”

(E.4) f(x) =
∑
π

dπ Tr(π(u)π(x)
∗).

For a condition guaranteeing absolute and unifirm convergence in (E.4), note
that

(E.5)
∑
π

dπ|Tr(π(u)π(x)∗)| ≤
∑
π

dπ‖π(u)‖Tr.

We say

(E.6) u ∈ A(G) ⇐⇒
∑
π

dπ‖π(u)‖Tr <∞,

and set

(E.7) ‖u‖A(G) =
∑
π

dπ‖π(u)‖Tr.

Clearly A(G) is a Banach space, and A(G) ⊂ C(G), densely. In case G = S1 or
more generally G = Tk, we get the spaces treated in §3 and Appendix C.

The following is proven in [E].
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Proposition E.1. If u, v ∈ A(G), then uv ∈ A(G).

The proof of Proposition E.1 seems to be harder for general compact G than for
G = Tk. (Furthermore, [E] treats locally compact G.) It follows from Proposition
E.1 that (if G is a compact group) A(G) is a Banach algebra. To achieve β = 1
in ‖uv‖A ≤ β‖u‖A‖v‖A, it might be necessary to replace (E.7) by an equivalent
norm.

If F(G) denotes the set of finite sums of the form (E.4), we easily see that

(E.8) F(G) ⊂ A(G) is dense.

Also (decompose tensor products) F(G) is an algebra. However, generally u ∈
F(G), u−1 ∈ C(G) does not imply u−1 ∈ F(G). If G is a compact Lie group, we
have

(E.8) F(G) ⊂ C∞(G) ⊂ A(G).

Then we can apply Proposition C.1, with B = A(G), C = C∞(G), obtaining the
following.

Proposition E.2. Let G be a compact Lie group. For each character ϕ : A(G) →
C, there exists p ∈ G such that

(E.10) ϕ(u) = u(p), ∀u ∈ A(G).

Consequently,

(E.11) u ∈ A(G), u−1 ∈ C(G) =⇒ u−1 ∈ A(G).

In [E], such a result is established for an arbitrary compact group, not necessarily
a Lie group.

We record some further properties of A(G). First, note that

(E.12) A ∈ End(Vπ) =⇒ ‖A‖Tr = inf{‖B‖HS‖C‖HS : A = BC}.
From this it is readily deduced, via (E.2), plus

(E.13) π(f ∗ g) = π(f)π(g),

that

(E.14) A(G) = L2(G) ∗ L2(G),

and

(E.15) ‖u‖A(G) = inf{‖f‖L2(G)‖g‖L2(G) : u = f ∗ g}.
An important class of functions on G is the class of positive definite functions

P(G). Given u ∈ L1(G), we say

(E.16) u ∈ P(G) ⇐⇒ π(u) ≥ 0, ∀π ∈ Ĝ.

We have

(E.17) P(G) ∩ C(G) ⊂ A(G),

and, for u ∈ P(G) ∩ C(G),

(E.18) u(e) =
∑
π

dπ Tr π(u) = ‖u‖A(G).
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F. Banachable algebras

Here we discuss a slight generalization of the notion of a Banach algebra with
unit, as introduced in §1. We assume B is a Banach space, with norm ‖ · ‖, with
an associative C-bilinear product x, y 7→ xy, and a unit I, satisfying xI = Ix = x
for all x ∈ B, but we weaken the hypothesis (1.1) to

(F.1) ‖xy‖ ≤ C‖x‖ · ‖y‖,

for some C <∞, and we do not make the hypothesis that ‖I‖ = 1. Note that

(F.2) ‖I‖ = ‖I2‖ ≤ C‖I‖2 =⇒ ‖I‖ ≥ 1

C
.

We say B is a Banachable algebra.
We now show that we can endow B with a new norm, topologically equivalent

to ‖ · ‖, for which B is a Banach algebra as defined in §1. In fact, we set

(F.3) |‖x|‖ = sup{‖xy‖ : ‖y‖ ≤ 1},

or equivalently

(F.4) |‖x|‖ = ‖Lx‖,

the operator norm on B (with its old norm) of Lx, where, for x ∈ B,

(F.5) Lx : B −→ B, Lxy = xy.

Note that, for x, y, z ∈ B,

(F.6) Lx(Lyz) = Lx(yz) = x(yz) = (xy)z,

so

(F.7) LxLy = Lxy.

Hence

(F.5) |‖xy|‖ = ‖Lxy‖ ≤ ‖Lx‖ · ‖Ly‖ = |‖x|‖ · |‖y|‖.

Also

(F.9) |‖I|‖ = ‖LI‖ = 1.
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To compare the norms ‖ · ‖ and |‖ · |‖ on B, first we note that

(F.10)
|‖x|‖ ≤ sup{C‖x‖ · ‖y‖ : ‖y‖ ≤ 1}

= C‖x‖.

Next,

(F.11)
E = ‖I‖−1I =⇒ ‖E‖ = 1

=⇒ |‖x|‖ ≥ ‖xE‖ = ‖I‖−1‖x‖.

In summary,

(F.12) ‖I‖−1‖x‖ ≤ |‖x|‖ ≤ C‖x‖,

so the two norms on B define the same topology. Note also that

(F.13) ‖I‖ = C = 1 =⇒ |‖x|‖ = ‖x‖.

Examples of Banachable algebras include the algebras Bj defined in (A.47), in
cases where ‖Pj‖ > 1. In these cases one has (F.1) with C = 1, but the norm of
the unit would exceed 1. For another family of examples, we mention

(F.14) B = C2(M),

where M is a compact Riemannian manifold. There are many ways to pick a
Banach space norm on C2(M). Most choices one is likely to make lead to ‖ 1 ‖ = 1,
but typically one will need C > 1 in (F.1).
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G. Holomorphic functional calculus for commuting elements

Here we extend the material of §A to a holomorphic functional calculus for
elements (x1, . . . , xn) of a Banach algebra with unit that commute, i.e.,

(G.1) xjxk = xkxj , ∀ j, k ∈ {1, . . . , n}.

Assume

(G.2) σ(xj) ⊂ Oj ,

where Oj ⊂ C is a smoothly bounded, open set, and assume

(G.3) F : Õ1 × · · · × Õn −→ C is holomorphic,

where Õj is an open neighborhood of Oj . We will define F (x1, . . . , xn), using a
formula suggested by the following n-dimensional extension of the Cauchy integral
formula:

(G.4)

F (z1, . . . , zn)

= (2πi)−n

∫
bO(n)

F (ζ1, . . . , ζn)(ζ1 − z1)
−1 · · · (ζn − zn)

−1 dζ1 · · · dζn,

with

(G.5) (z1, . . . , zn) ∈ O1 × · · · × On, bO(n) = ∂O1 × · · · × ∂On.

Parallel to (A.1), we set

(G.6)

F (x1, . . . , xn)

= (2πi)−n

∫
bO(n)

F (ζ1, . . . , ζn)(ζ1 − x1)
−1 · · · (ζn − xn)

−1 dζ1 · · · dζn,

for xj ∈ B satisfying (G.1)–(G.2). It follows from the Cauchy integral theorem that
(G.5) is independent of the choice of Oj ⊃ σ(xj), as long as (G.3) holds.

For some basic results on this functional calculus, we start with the following:

(G.7)
F (z) = f1(z1) · · · fn(zn), fj : Õj → C holomorphic

=⇒ F (x1, . . . , xn) = f1(x1) · · · fn(xn),

with fj(xj) defined as in (A.1). The proof is just an application of Fubini’s theorem.
To proceed, we have the following extension of Proposition A.2.
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Proposition G.1. If F and G are both holomorphic on Õ1 × · · · × Õn, then

(G.8) F (x1, . . . , xn)G(x1, . . . , xn) = (FG)(x1, . . . , xn).

We leave it to the reader to modify the proof of Proposition A.2 to apply to this
situation.

We also have the following extension of Proposition A.7, whose proof is a simple
modification of the one used there.

Proposition G.2. Assume Fk and F are holomorphic on Õ1 × · · · × Õn and
Fk → F uniformly on this set. Then

(G.9) Fk(x1, . . . , xn) −→ F (x1, . . . , xk),

in B-norm, as k → ∞.

We next discuss the joint spectrum of commuting n-tuples (x1, . . . , xn). For this,
it is convenient to assume that

(G.10) B is a commutative Banach algebra with unit,

and this condition will be in force for the rest of this section. Recall from §2 the
Gelfand transform

(G.11) γ : B −→ C(M(B)).

We adopt the notation

(G.12) x̂ = γ(x), for x ∈ B.

Taking a cue from (2.13), if xj ∈ B we define the joint specrum

(G.13) σ(x1, . . . , xn) ⊂ Cn

by

(G.14) σ(x1, . . . , xn) = {(x̂1(ϕ), . . . , x̂n(ϕ)) : ϕ ∈ M(B)}.

Here is an alternative characterization.

Proposition G.3. Given λ = (λ1, . . . , λn) ∈ Cn, one has λ ∈ σ(x1, . . . , xn) if and
only if the ideal Iλ generated by (x1 − λ1I), . . . , (xn − λnI) is not all of B.

Proof. As seen in §2, if I ⊂ B is a proper ideal, there exists ϕ ∈ M(B) such that
ϕ(y) = ŷ(ϕ) = 0 for all y ∈ I. Hence if Iλ is proper, we have ϕ ∈ M(B) such that
x̂j(ϕ) = λj for each j.

For the converse, if Iλ = B, there exist yj ∈ B such that
∑

j yj(xj − λjI) = I,

hence
∑

j ŷj(x̂j − λj) ≡ 1, so λ does not belong to the set (G.14).

The following is an immediate consequence of Proposition 2.6.
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Proposition G.4. If σ(xj) ⊂ Oj, open in C, then

(G.14) σ(x1, . . . , xn) ⊂ O1 × · · · × On.

We have the following extension of Proposition 2.7.

Proposition G.5. Assume the sets Oj are smothly bounded and F is holomorphic

on a neighborhood of O1 × · · · × On ⊂ Cn. Then

(G.15) y = F (x1, . . . , xn) =⇒ ŷ = F (x̂1, . . . , x̂n).

Proof. We use the formula (G.6) for y and apply the character ϕ ∈ M(B), to get
(G.16)

ŷ(ϕ) = (2πi)−n

∫
bO(n)

F (ζ1, . . . , ζn)(ζ1 − x̂1(ϕ))
−1 · · · (ζn − x̂n(ϕ))

−1 dζ1 · · · dζn

= F (x̂1(ϕ), . . . , x̂n(ϕ)),

by (G.4), with zj = x̂j(ϕ).

Now typically, when n > 1, there can be open sets U ⊂ Cn such that

(G.17) σ(x1, . . . , xn) ⊂ U,

but U is not of the form O1 × · · · × On in (G.14). One can take

(G.18) F : U −→ C, holomorphic,

and then

(G.19) F (x̂1, . . . , x̂n) ∈ C(M(B))

is well defined. It is natural to ask if one can assign a meaning to F (x1, . . . , xn) ∈ B.
We proceed to tackle this question.

The results that follow make heavier use of the theory of analytic functions of
several complex variables, for which we refer to Chapters 2–3 of [Ho]. The next
result is established in Theorem 3.2.2 of [Ho]. (See also [AC].)

Proposition G.6. Take U and F as in (G.17)–(G.18). Then there exists y ∈ B
such that

(G.20) ŷ = F (x̂1, . . . , x̂n).

One limitation of the conclusion (G.20) is that the Gelfand transform γ : B →
C(M(B)) might not be injective. Its kernel consists of the quasi-nilpotent elements
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of B. It is of interest to look further at the situation where B has no quasi-nilpotent
elements, i.e.,

(G.21) γ : B → C(M(B)) is injective.

In such a case, if O(U) denotes the space of holomorphic functions F : U → C, we
can define

(G.22)
Γ : O(U) −→ C(M(B)),
Γ(F ) = F (x̂1, . . . , x̂n),

and Proposition G.6 together with (G.21) yield a uniquely defined linear map

(G.23) X : O(U) −→ B,

satisfying

(G.24) γ ◦ X = Γ,

namely X(F ) = y, the unique element of B satisfying (G.20). We hence have the
following commutative diagram:

(G.25)

O(U)
Γ−−−−→ C(M(B))xid

xγ

O(U)
X−−−−→ B

Now O(U) is a Frechet space, with the topology of uniform convergence on
compact subsets of U . The map Γ defined by (G.22) is clearly continuous, and
since γ in (G.21) is a continuous injection, we see from (G.23)–(G.24) that X has a
closed graph, i.e.,

(G.26)
Fk → F in O(U), X(Fk) → y in B

=⇒ X(F ) = y.

Indeed, the hypotheses here imply Γ(Fk) → Γ(F ) in C(M(B)), and Γ(Fk) = γ ◦
X(Fk) → γ(y) in C(M(B)), so Γ(F ) = γ(y), and hence, since γ is injective, X(F ) =
y. The closed graph theorem then implies the following.

Proposition G.7. If γ : B → C(M(B)) is injective, then the linear map X given
by (G.23)–(G.24) is continuous.

Note that Proposition G.5 yields

(G.27) X(F ) = F (x1, . . . , xn),

provided F is holomorphic on O1 × · · · × On, as in (G.14), and

(G.28) σ(x1, . . . , xn) ⊂ U ⊂ O1 × · · · × On.

This leads to the following:
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Corollary G.8. In the setting of Proposition G.7, if F ∈ O(U) and Fk are holo-
morphic on O1 × · · · × On, and (G.28) holds, then

(G.29) Fk → F locally uniformly on U =⇒ Fk(x1, . . . , xk) → X(F ) in B.

It is of interest to know when, given F ∈ O(U), one can find functions Fk,
holomorphic on O1 × · · · × On, or perhaps an even larger set, satisfying (G.29).
Before tackling this directly, we make note of some special situations that arise
when

(G.30) x1, . . . , xn generate B,

i.e., the space of polynomials in x1, . . . , xn (and I) is dense in B. We start with the
following (which does not require the hypothesis (G.21)).

Proposition G.9. Assume that (G.30) holds. Then the map

(G.31)
Φ : M(B) −→ Cn,

Φ(ϕ) = (x̂1(ϕ), . . . , x̂n(ϕ)),

is a homeomorphism of M(B) onto σ(x1, . . . , xn).

Proof. It suffices to show that Φ is one-to-one. Indeed, if ϕ and ψ are characters
and x̂j(ϕ) = x̂j(ψ) for each j, then x̂(ϕ) = x̂(ψ) for each x ∈ B that is a polynomial
in the xjs, and denseness of this space implies x̂(ϕ) = x̂(ψ) for all x ∈ B, hence
ϕ = ψ.

The next result is established in Theorem 3.1.15 of [Ho].

Proposition G.10. In the setting of Proposition G.9, the set σ(x1, . . . , xn) is
polynomially convex.

A compact set K ⊂ Cn is said to be polynomially convex if K = K̃, where

(G.32) K̃ = {z ∈ Cn : |P (z)| ≤ sup
K

|P |, ∀P ∈ P(Cn)},

where P(Cn) is the space of polynomials in z on Cn. The significance of this concept
is captured by the following result, established in Theorem 2.7.7 of [Ho].

Proposition G.11. Let K ⊂ Cn be polynomially convex, and assume F is holo-
morphic on a neighborhood of K. Then there are polynomials Pk such that

(G.33) Pk −→ F, uniformly on K.

Proposition G.11 in itself is not quite applicable to Corollary G.8, but it can be
combined with the following result, established in Lemma 2.7.4 of [Ho].
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Proposition G.12. Let K ⊂ Cn be polynomially convex. Assume K ⊂ Ω, open.
Then there exists a neighborhood O of K such that

(G.34) K ⊂ O ⊂ O ⊂ Ω,

and

(G.35) O is polynomially convex.

The proof produces polynomials P1(z), . . . , Pm(z) such that the conclusion holds
with

(G.36) O = {z ∈ C : |Pj(z)| < 1, j = 1, . . . ,m}.

In such a case, O is called a polynomial polyhedron.
Combining Propositions G.10–G,12, we have the following improvement on Corol-

lary G.8, under hypothesis (G.30).

Proposition G.13. Assume the commutative Banach algebra B satisfies (G.21)
and that x1, . . . , xn generate B. If F is holomorphic on a neighborhood Ω of
σ(x1, . . . , xn), then there exists an open U such that

(G.37) σ(x1, . . . , xn) ⊂ U ⊂ U ⊂ Ω,

and polynomials Pk such that Pk → F uniformly on U , and then

(G.38) Pk(x1, . . . , xn) −→ X(F ) in B.
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H. Lifting theorem for L∞(T)

Take T = R/Z, with Lebesgue measure, and consider L∞(T), which consists of
bounded measurable functions on T. Then L∞(T) consists of equivalence classes of
elements of L∞(T), with f1 ∼ f2 if and only if f1 − f2 vanishes almost everywhere.
The following result is known as a lifting theoorem.

Theorem H.1. There exists a linear map

(H.1) ψ : L∞(T) −→ L∞(T),

satisfying

sup
x

|ψ(f)(x)| = ‖f‖L∞ ,(H.2)

ψ(fg) = ψ(f)ψ(g),(H.3)

and, for each f ∈ L∞(T),

(H.4) ψ(f)(x) = f(x), for a.e. x ∈ T.

Proof. Note that L∞(T) is a commutative C∗ algebra. Given x ∈ T, let Vx denote
the set of f ∈ L∞(T1) such that

(H.5) lim
a→0

1

2a

∫
|x−y|≤a|

|f(y)| dy = 0.

We see that Vxis a closed, proper ideal in L∞(T). Therefore there exists a maximal
proper ideal Ix containing Vx. The Gelfand-Mazur theorem gives a uniquely defined
isomorphism

(H.6) βx : L∞(T)/Ix
≈−→ C.

We define ψ in (H.1) by

(H.7) ψ(f)(x) = βxπxf,

where

(H.8) πx : L∞(T) −→ L∞(T)/Ix

is the natural projection. Then for each f ∈ L∞(T),

(H.9) ψ(f)(x) = f(x), at each Lebesgue point x of f,

which by Lebesgue’s theorem yields (H.4), and therefore (H.1). Since πx and βx
are ring homomorphisms, we get (H.3). We also have |ψ(f)(x)| ≤ ‖f‖L∞ for each
x ∈ T, and this together with (H.4) yields (H.2).
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