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1. Bessel functions

Bessel functions arise as a natural generalization of harmonic analysis of radial
functions. To see this, let F (x) be a radial function on Rn, F (x) = f(|x|). Then

(1.1) F̂ (ξ) = (2π)−n/2

∫ ∞

0

f(r)ψn(r|ξ|)rn−1 dr,

where

(1.2) ψn(|ξ|) = Ψn(ξ) =
∫

Sn−1

eiξ·ω dS(ω).

For n ≥ 2, we get

(1.3) ψn(r) = An−2

∫ 1

−1

eirs(1− s2)(n−3)/2 ds.

Recall An−2 = 2π(n−1)/2/Γ((n− 1)/2). It is standard to write

(1.4) ψn(r) = (2π)n/2r1−n/2Jn/2−1(t),

where, for Re ν > −1/2, Jν is the Bessel function, defined by

(1.5) Jν(z) =
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2eizt dt.

(Shortly we will define Jν for all ν ∈ C.) Then (1.1) becomes

(1.6) F̂ (ξ) = |ξ|1−n/2

∫ ∞

0

f(r)Jn/2−1(r|ξ|)rn/2 dr.

This is a special case of a Hankel transform. In general, we define the (modified)
Hankel transform H̃ν by

(1.7)
H̃νf(λ) =

∫ ∞

0

f(r)
Jν(λr)
(λr)ν

r2ν+1 dr

= λ−ν

∫ ∞

0

f(r)Jν(λr)rν+1 dr.

1
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From (1.6), we have

(1.8) F̂ (ξ) = H̃n/2−1f(|ξ|).

We can compare (1.8) with other Euclidean space results results, coming from

(1.9)
F̂ (x) = (2π)n/2f(

√
−∆)δ(x)

= (2π)(n−1)/2Φn(|x|),

where

(1.10) Φ2k+1(r) =
(
− 1

2πr

d

dr

)k

f̂(r),

and

(1.11) Φ2k(r) = 2
∫ ∞

r

Φ2k+1(s)
s√

s2 − r2
ds.

See [T].
One consequence of (1.9)–(1.11), coupled to (1.8), is that

(1.12) −1
r

d

dr
H̃νf(r) = H̃ν+1f(r),

at least for ν = n/2− 1, n ≥ 2. This is equivalent to

(1.13)
1
2

d

dr

Jν(r)
rν

= −Jν+1(r)
rν+1

,

which in turn is equivalent to

(1.14)
d

dz
Jν(z)− ν

z
Jν(z) = −Jν+1(z).

This can be verified for all ν with Re ν > 1/2, directly by differentiating the integral
formula (1.5), applying an integration by parts, and using

(1.15) Γ(s + 1) = sΓ(s),

with s = ν + 1/2. A similar argument also gives the identity

(1.16)
d

dz
Jν(z) +

ν

z
Jν(z) = Jν−1(z),

initially for Re ν > 1/2. Having this, since the left side of (1.16) is well defined for
Re ν > −1/2, so is the right side, i.e., Jν(z) is analytically continued to {Re ν >
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−3/2}. We can iterate, and analytically continue Jν(z) to all ν ∈ C. Then the
identity (1.14) also holds for all ν ∈ C. Putting together (1.14) and (1.16), we see
that Jν(z) solves the following second order differential equation,

(1.17)
[ d2

dz2
+

1
z

d

dz
+

(
1− ν2

z2

)]
Jν(z) = 0,

known as Bessel’s equation.
From (1.5) it is elementary to see that

(1.18) J1/2(z) =
( 2

πz

)1/2

sin z.

Applying (1.16) to (1.18) gives

(1.19) J−1/2(z) =
( 2

πz

)1/2

cos z,

while applying (1.14) repeatedly to (1.18) gives

(1.20) Jk+1/2(z) = (−1)k
{ k∏

j=1

( d

dz
− j − 1/2

z

)} sin z√
2πz

.

Note that, while we needed n ≥ 2 in (1.3)–(1.4), (1.19) also gives (1.6) for n = 1,
and, via (1.14), the contact with (1.9)–(1.10) is complete, for all odd n.

To complete the contact of (1.6) with (1.11) for n = 2k, by (1.14) it is sufficient
to treat the case k = 1, i.e., n = 2. Thus we are comparing the formula

(1.21) F̂ (x) =
∫ ∞

0

f(r)J0(r|x|)r dr,

for radial F ∈ S(R2) with

(1.22) F̂ (x) =
√

2π Φ2(|x|) = 2
√

2π

∫ ∞

|x|
Φ3(t)

t√
t2 − |x|2 dt.

By (1.10),

(1.23) Φ3(t) = − 1
2πt

d

dt
f̂(t),

so

(1.24) F̂ (x) = −
√

2
π

∫ ∞

|x|
f̂ ′(t)

1√
t2 − |x|2 dt.
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We next express f̂ ′(t) as an integral and change order of integration. In order to
get absolutely convergent integrals, we throw in a convergence factor:

(1.25)

F̂ (x) = lim
ε↘0

−
√

2
π

∫ ∞

|x|
f̂ ′(t)

e−εt

√
t2 − |x|2 dt

= lim
ε↘0

2
π

∫ ∞

|x|

∫ ∞

0

f(r)r sin rt
e−εt

√
t2 − |x|2 dr dt

= lim
ε↘0

2
π

∫ ∞

0

f(r)
[∫ ∞

|x|

e−εt sin rt√
t2 − |x|2 dt

]
r dr.

Furthermore, the inner integral in (1.25) transforms under t = |x|s to

(1.26)
∫ ∞

1

e−ε|x|s sin r|x|s√
s2 − 1

ds.

Comparison with (1.21) gives

(1.27)
J0(r) = lim

ε↘0

2
π

∫ ∞

1

e−εs sin rs√
s2 − 1

ds

=
2
π

∫ ∞

1

sin rs√
s2 − 1

ds,

a known formula for J0(r). The last integal is not absolutely convergent, but it is
equal to

(1.28) lim
T→+∞

∫ T

1

sin rs√
s2 − 1

ds,

as can be seen by a standard alternating series comparison.
We move on to a power series expansion for Jν(z). For this, we take (1.5), write

eizt as a power series in zt, and integrate term by term (the odd powers all yielding
zero integrals). To carry this out, we need two facts about the gamma function,
namely Euler’s formula for the beta function, which implies

(1.29)
∫ 1

−1

t2k(1− t2)ν−1/2 dt =
Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
,

and Legendre’s duplication formula, which implies

(1.30)
Γ(k + 1/2)

Γ(1/2)Γ(2k + 1)
=

2−2k

Γ(k + 1)
.
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So, from (1.5), we have

(1.31)

Jν(z) =
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∞∑

k=0

1
(2k)!

∫ 1

−1

(izt)2k(1− t2)ν−1/2 dt

=
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∞∑

k=0

1
(2k)!

(iz)2k Γ(k + 1/2)Γ(ν + 1/2)
Γ(k + ν + 1)

,

hence

(1.32) Jν(z) =
(z

2

)ν ∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

(z

2

)2k

.

The second identity in (1.31) uses (1.29) and passage to (1.32) uses (1.30). This
argument works for Re ν > −1/2, but then each side of (1.32) is entire in ν, and
the identity holds for all ν ∈ C. Taking ν = ±1/2, one recovers (1.18)–(1.19).

We note the leading behavior as z → 0,

(1.33) Jν(z) =
zν

2νΓ(ν + 1)
+ O(zν+1),

and

(1.34) J ′ν(z) =
zν−1

2νΓ(ν)
+ O(zν).

The leading coefficients are nonzero as long as ν is not a negative integer (or 0, for
(1.34)).

Note that both Jν and J−ν solve Bessel’s equation (1.17). From the expression
(1.32) it is clear that Jν and J−ν are linearly independent provided ν is not an
integer. On the other hand, comparison of power series shows

(1.35) J−n(z) = (−1)nJn(z), n = 0, 1, 2, . . . .

We want to construct a basis of solutions to Bessel’s equation, uniformly good for
all ν. This construction can be motivated by a calculation of the Wronskian.

Generally, for a pair of solutions u1 and u2 to a second-order differential equation

(1.36) a(z)u′′ + b(z)u′ + c(z)u = 0,

u1 and u2 are linearly independent if and only if their Wronskian

(1.37) W (z) = W (u1, u2)(z) = u1u
′
2 − u2u

′
1
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is nonvanishing. Note that the Wronskian satisfies the first-order differential equa-
tion

(1.38) W ′(z) = − b

a
W (z).

In the case of Bessel’s equation (1.17), this becomes

(1.39) W ′(z) = −W (z)
z

,

so

(1.40) W (z) =
K

z
,

for some K, independent of z, but perhaps depending on ν. If u1 = Jν , u2 = J−ν ,
we can compute K by considering the behavior of W (z) as z → 0. From (1.33) and
(1.34), we get

(1.41)
W (Jν , J−ν)(z) = −

[ 1
Γ(ν)Γ(1− ν)

− 1
Γ(ν + 1)Γ(−ν)

]1
z

= −2
sin πν

πz
,

where we have used the identity

(1.42) Γ(s)Γ(1− s) =
π

sinπs
.

This recaptures the observation that Jν and J−ν are linearly independent, and
consequently a basis of solutions to (1.17), if and only if ν is not an integer.

To construct a basis of solutions uniformly good for all ν, we set

(1.43) Yν(z) =
Jν(z) cos πν − J−ν(z)

sinπν

when ν is not an integer, and define

(1.44) Yn(z) = lim
ν→n

Yν(z) =
1
π

[∂Jν(z)
∂ν

− (−1)n ∂J−ν(z)
∂ν

]∣∣∣
ν=n

.

We have

(1.45) W (Jν , Yν)(z) =
2
πz

,

for all ν.
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Another important pair of solutions to Bessel’s equation is the pair of Hankel
functions

(1.46) H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z).

For H
(1)
ν , there is the integral formula

(1.47) H(1)
ν (z) =

2e−πiν

i
√

πΓ(ν + 1/2)

(z

2

)ν
∫ ∞

1

eizt(t2 − 1)ν−1/2 dt,

for Re ν > −1/2, Imz > 0. To prove this, one can show that the right side of (1.47)
satisfies the same recursion formulas as Jν(z) and hence solves the Bessel equation;
thus it is a linear combination of Jν(z) and Yν(z). The coefficients can be found
by examining the limiting behavior as z → 0, to establish the asserted identity. We
note that (1.27) follows from (1.47).

2. Hankel transforms

We recall the modified Hankel transform, defined in (1.7),

(2.1)
H̃νf(λ) =

∫ ∞

0

f(r)
Jν(λr)
(λr)ν

r2ν+1 dr

= λ−ν

∫ ∞

0

f(r)Jν(λr)rν+1 dr.

We take λ ∈ (0,∞), but allow ν ∈ C. By (1.8) plus the Fourier inversion formula,
we get H̃νH̃νf = f for ν = n/2− 1, n ∈ N. One of our goals here will be to obtain
this “Hankel inversion formula” for arbitrary ν ∈ [−1/2,∞). We begin with the
following mapping property. Set

(2.2) S(R+) = {f |R+ : f ∈ S(R) is even}.
Lemma 2.1. If ν ≥ −1/2, then

(2.3) H̃ν : S(R+) −→ S(R+).

Proof. By (1.2), Jν(λr)/(λr)ν is a smooth function of λr. The formula (1.5) yields
∣∣∣Jν(λr)

(λr)ν

∣∣∣ ≤ Cν < ∞,

for λr ∈ [0,∞), ν > −1/2, a result that, by (1.19), also holds for ν = −1/2. This
readily yields

(2.4) H̃ν : S(R+) −→ L∞(R+),
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whenever ν ≥ −1/2. Now consider the differential operator L̃ν , given by

(2.5)
L̃νf(r) = −r−2ν−1 ∂

∂r

(
r2ν+1 ∂f

∂r

)

= −∂2f

∂r2
− 2ν + 1

r

∂f

∂r
.

Using Bessel’s equation (1.17), we have

(2.6) L̃ν

(Jν(λr)
(λr)ν

)
= λ2 Jν(λr)

(λr)ν
,

and, for f ∈ S(R+),

(2.7)
H̃ν(L̃νf)(λ) = λ2H̃νf(λ),

H̃ν(r2f)(λ) = L̃νH̃νf(λ).

Since f ∈ L∞(R+) belongs to S(R+) if and only if arbitrary iterated applications of
L̃ν and multiplication by r2 to f yield elements of L∞(R+), the result (2.3) follows.
We also have that this map is continuous with respect to the natural Frechet space
structure on S(R+).

Lemma 2.2. Consider the elements Eb ∈ S(R+), given for b > 0 by

(2.8) Eb(r) = e−br2
.

We have

(2.9) H̃νE1/2(λ) = E1/2(λ),

and more generally

(2.10) H̃νEb(λ) = (2b)−ν−1E1/4b(λ).

Proof. To establish (2.9), plug the power series (1.32) for Jν(z) into (2.1) and
integrate term by term, to get

(2.11) H̃νE1/2(λ) =
∞∑

k=0

(−1)k2−ν−2k

k!Γ(k + ν + 1)
λ2k

∫ ∞

0

r2k+2ν+1e−r2/2 dr.

This last integral is seen to equal 2k+νΓ(k + ν + 1), so we have

(2.12) H̃νE1/2(λ) =
∞∑

k=0

1
k!

(
−λ2

2

)k

= e−λ2/2 = E1/2(λ).
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Having (2.9), we get (2.10) by an easy change of variable argument.
In more detail, set r2/2 = bs2, or s = r/

√
2b. Then set µ =

√
2bλ, so λr = µs.

Then (2.12), which we can write as

(2.13)
∫ ∞

0

e−r2/2Jν(λr)rν+1 dr = λνe−λ2/2,

translates to

(2.14)
∫ ∞

0

e−bs2
Jν(µs)(2b)(ν+1)/2sν+1(2b)1/2 ds = (2b)−ν/2µνe−µ2/4b,

or, changing notation back,

(2.15)
∫ ∞

0

e−bs2
Jν(λs)sν+1 ds = (2b)−ν−1λνe−λ2/4b,

which gives (2.10).

From (2.10) we have, for each b > 0,

(2.16) H̃νH̃νEb = (2b)−ν−1H̃νE1/4b = Eb,

which verifies our stated Hankel inversion formula for f = Eb, b > 0. To get the
inversion formula for general f ∈ S(R+), it suffices to establish the following.

Lemma 2.3. The space

(2.17) V = Span {Eb : b > 0}

is dense in S(R+).

Proof. Let V denote the closure of V in S(R+). From

(2.18)
1
ε

(
e−br2 − e−(b+ε)r2) → r2e−br2

,

we deduce that r2e−br2 ∈ V, and inductively, we get

(2.19) r2je−br2 ∈ V, ∀ j ∈ Z+.

From here, one has

(2.20) (cos ξr)e−r2 ∈ V, ∀ ξ ∈ R.

Now each even ω ∈ S ′(R) annihilating (2.20) for all ξ ∈ R has the property that
e−r2

ω has Fourier transform zero, which implies ω = 0. The assertion (2.17) then
follows by the Hahn-Banach theorem.

Putting the results of Lemmas 2.1–2.3 together, we have
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Proposition 2.4. Given ν ≥ −1/2, we have

(2.21) H̃νH̃νf = f,

for all f ∈ S(R+).

We promote this to

Proposition 2.5. If ν ≥ −1/2, we have a unique extension of H̃ν from S(R+) to

(2.22) H̃ν : L2(R+, r2ν+1 dr) −→ L2(R+, λ2ν+1 dλ),

as a unitary operator, and (2.21) holds for all f ∈ L2(R+, r2ν+1 dr).

Proof. Take f, g ∈ S(R+), and use the inner product

(2.23) (f, g) =
∫ ∞

0

f(r)g(r)r2ν+1 dr.

Using Fubini’s theorem and the fact that Jν(λr)/(λr)ν is real valued and symmtric
in (λ, r), we get the first identity in

(2.24) (H̃νf, H̃νg) = (H̃νH̃νf, g) = (f, g),

the second identity following by Proposition 2.4. From here, given that the linear
space S(R+) ⊂ L2(R+, r2ν+1 dr) is dense, the assertions of Proposition 2.5 are
apparent.

We now introduce Hν , called the Hankel transform:

(2.25) Hνg(λ) =
∫ ∞

0

g(r)Jν(λr)r dr.

Note that

(2.26) Hν(rνf)(λ) = λνH̃νf(λ),

and that Mνf(r) = rνf(r) has the property that

(2.27) Mν : L2(R+, r2ν+1 dr) −→ L2(R+, r dr) is unitary.

Thus Proposition 2.5 yields

Proposition 2.6. For ν ≥ −1/2, we have

(2.28) Hν : L2(R+, r dr) −→ L2(R+, λ dλ)

unitary, and

(2.29) HνHνg = g, ∀ g ∈ L2(R+, r dr).
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