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Abstract. These notes develop the study of the Dirichlet-to-Neumann map N
associated to a domain Ω in a compact Riemannian manifold M , as a positive,
self-adjoint operator on L2(∂Ω, µ), in a variety of situations. We start with the
classical case of a smoothly bounded domain, with µ given by surface measure on
∂Ω, then consider Lipschitz domains.

We move on to rougher finite perimeter domains. The study here includes special
results for uniformly rectifiable domains. We also examine finite perimeter domains
with rectifiable “inclusions” S, for which ∂Ω = ∂O ∪ S, and see that it is useful

to construct N as a self adjoint operator on L2(∂̃Ω, µ), where ∂̃Ω = ∂O ∪ S1 ∪ S2,
with S1 and S2 denoting two copies of S.

Finally we take up more exotic cases, in which ∂Ω has a fractal character (it
might be totally disconnected), and µ is completely different from surface area.

One enduring theme is the analysis of the semigroup {e−tN : t ≥ 0}, as a
semigroup of positivity-preserving operators, shown in various settings to have the
property of “irreducibility.” These semigroups give rise to Markov processes on ∂Ω.
In the fractal cases arising in Chapters 5 and 7, these can be seen as providing new
Markov processes on fractals.
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Preface

Two of the most basic boundary problems in PDE are the Dirichlet problem,

(0.1) ∆u = 0 on Ω, u = f on ∂Ω,

and the Neumann problem,

(0.2) ∆u = 0 on Ω, ∂νu = g on ∂Ω.

Here ∆ is the Laplace operator, which on Euclidean space Rn is

(0.3) ∆ = ∂21 + · · ·+ ∂2n,

and solutions to ∆u = 0 on Ω are known as harmonic functions. More generally,
we take Ω to be a relatively compact domain in a Riemannian manifold M , and
∆ to be the Laplace-Beltrami operator on M . In (0.2), ∂νu denotes the normal
derivative of u on ∂Ω.

The Dirichlet problem (0.1) is seen to have a unique solution for large classes of
domains Ω, the solution denoted

(0.4) u = PI f.

The Neumann problem (0.2) has a solution u, unique up to an additive constant
(assuming Ω is connected), provided g satisfies the condition

(0.5)

∫
∂Ω

g dS = 0.

It has long been observed that a map connecting these two boundary problems is
of special significance. This is the Dirichlet-to-Neumann map N , defined by

(0.6) Nf = ∂ν(PI f) = g.

One use of the Dirichlet-to-Neumann map is to enable one to analyze solutions to
the Neumann problem, given a knowledge of the solutions to the Dirichlet problem,
via the representation of a solution to (0.2) as

(0.7) u = PI f, f = N−1g,

where N−1 is defined initially on functions satisfying (0.5), and extended to an-
nihilate constants. Going further, a study of the behavior of N and N−1 enables
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one to relate other boundary problems to the Dirichlet problem, such as the Robin
problem,

(0.8) ∆u = 0 on Ω, (∂ν + a)u = h on ∂Ω,

where a is a real valued function on ∂Ω, using the identity

(0.9) u = PI f =⇒ (∂ν + a)u = Nf + af,

and the oblique derivative problem,

(0.10) ∆u = 0 on Ω, (∂ν +X)u = h on ∂Ω,

where X is a real vector field on ∂Ω, via the identity

(0.11) u = PI f =⇒ (∂ν +X)u = (N +X)f.

The Dirichlet-to-Neumann map also arises in models of non-invasive imaging,
such as for electrical impedance tomography. One such model leads to a problem
posed by A.P. Calderón. Given a bounded region Ω, with an unknown metric
tensor, one has information on the behavior of the map N on functions on ∂Ω, and
desires to obtain information on the metric tensor on Ω. This inverse problem has
motivated much work, and for tools to tackle it one seeks information on the direct
problem of how the metric tensor affects the behavior of N .

The purpose of this text is to explore the structure of the Dirichlet-to-Neumann
map N in a variety of settings. We start with smoothly bounded domains, where
N can be analyzed as a first-order pseudodifferential operator. In such a setting
we see that the semigroup e−tN is positivity preserving. In subsequent chapters
we analyze N on more general sorts of domains, tackling Lipschitz domains, then
more general classes of finite perimeter domains. In Chapter 7 we take a further
step, considering domains with fractal boundaries. At each step, e−tN is seen to
be positivity preserving, hence a symmetric Markov semigroup, which consequently
gives rise to a Markov process on ∂Ω. In cases treated in Chapter 7, this introduces
a class of Markov processes on sets that might be Cantor sets.

Early parts of the text present results of many researchers, but each chapter in-
cludes original results, the ratio of such results increasing with the chapter number.
This monograph should prove useful to people doing research on the Dirichlet-to-
Neumann map. It could also be used in a topics course, following a basic graduate
course in PDE. Students can find sufficient background in several sources, including
Chapters 5 and 7 of [T1] and Chapter 4 of [T2], or, alternatively, Chapters 1 and
3 of [T4].
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1. Introduction

Let Ω be an open, connected subset of a compact, connected Riemannian mani-
fold M , satisfying

(1.1) M \ Ω 6= ∅.

If ∂Ω has some smoothness, the Dirichlet-to-Neumann map N is defined on an
appropriate class of functions on ∂Ω by

(1.2) Nf = g,

where

(1.3) g = ∂νu, ∆u = 0 on Ω, u
∣∣
∂Ω

= f.

Here ∂νu = 〈ν,∇u〉, and ν is the outward pointing unit normal to ∂Ω. It has an
approximate inverse, the Neumann-to-Dirichlet map

(1.4) Kg = f,

defined also by (1.3) when
∫
∂Ω
g dS = 0, and one normalizes f to satisfy

∫
∂Ω
f dS =

0. (We set K1 = 0.)
Our goal here is to analyze the operator N for a variety of classes of domains Ω,

starting with domains Ω for which the characterization (1.2)–(1.3) has a straight-
forward realization, and proceeding to classes of domains for which significant ad-
ditional work is required to define N .

In Chapter 2 we deal with regions Ω with smooth boundary, and we also assume
M carries a smooth metric tensor. In this classical case, basic L2-Sobolev space
analysis of the Dirichlet and Neumann problems readily yields that N and K are
well defined by (1.2)–(1.4) and satisfy

(1.5) N : Hs+1(∂Ω) −→ Hs(∂Ω), K : Hs(∂Ω) −→ Hs+1(∂Ω),

for s > 0. We see that K and N are symmetric, and then duality yields (1.5) for
all s ∈ R. In this case, one can also analyze N as a pseudodifferential operator,

(1.6) N ∈ OPS1(∂Ω).

This property allows one to extend (1.5) to mapping properties on Lp-Sobolev
spaces, and a variety of other spaces. The operator N is elliptic, and we can
compare it with Λ =

√
−∆X , where ∆X is the Laplace operator on ∂Ω. We also
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study the semigroup {e−tN : t ≥ 0}. In §2.3 we give an elementary proof of the
positivity property that, for f ∈ L2(∂Ω),

(1.7) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

Such positivity has been established in rougher situations in [AM] and [AtE], using
more sophisticated techniques, involving the Beurling-Deny positivity criterion. We
will return to this issue in subsequent chapters, and seek further settings where (1.7)
holds. We also look at a stronger version of (1.7), which leads to the concept of
irreducibility of e−tN .

In Chapter 3 we treat Lipschitz domains. A number of results on N for this class
of domains have been derived in [AM] and [BtE]. Here, making use of results on
the Dirichlet and Neumann problems from [Dah], [DK], [Ver], and [MT1]–[MT4],
we establish further results. These include allowing for fairly rough metric tensors
on M ; cf. (3.0.1)–(3.0.2). We show that there exists q(Ω) > 2 such that

(1.8) N : H1,p(∂Ω) → Lp(∂Ω), K : Lp(∂Ω) → H1,p(∂Ω), 1 < p < q(Ω).

We do not have (1.6) in this setting, but layer potentials do provide useful tools
for the analysis of N , as discussed in §3.2. We also discuss (1.7) in this setting,
and further operator estimates on e−tN . Using these estimates, we establish results
on the spectrum of N , extending to the class of Lipschitz domains results that are
known for smooth domains as a consequence of (1.6).

In Chapter 4 we treat finite perimeter domains, defined in (4.0.2)–(4.0.4). This
class of domains contains the class studied in [AtE], and a number of analytical
techniques used in Chapter 4 are adapted from those in that paper. One such
technique involves an extension of the Friedrichs method of producing a self-adjoint
operator on a Hilbert space from a quadratic form. We give a version of this in
Appendix A. Here our Hilbert space is L2(∂Ω, µ), where µ is a finite Borel measure
on ∂Ω satisfying µ ≥ σ, with σ as in (4.0.4), surface area on the measure theoretic
boundary ∂∗Ω. If ∂Ω contains big pieces that are disjoint from ∂∗Ω, µ might
be quite different from surface area on these pieces. The self-adjoint operator N
constructed by this process has the property that

(1.9) Lip(∂Ω) is dense in D(N1/2).

We verify (1.7) in this setting, as in [AM] and [AtE] by showing that the Beurling-
Deny criterion applies. Another topic treated in Chapter 4 is the Dirichlet problem,
from (1.3). We construct two “solution operators,”

(1.10) PI : D(N1/2) −→ H1(Ω), PI0 : C(∂Ω) −→ L∞(Ω),

the first by a process closely related to the construction of N , the second by a
classical method. We examine conditions under which these two operators can be
shown to coincide on their common domain (which contains Lip(∂Ω)).
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In most of Chapter 4 we assume M has a C∞ metric tensor. In §4.6 we extend
the analysis to include rough metric tensors.

In Chapter 5 we continue the study of N on finite perimeter domains, concen-
trating on domains Ω for which ∂Ω has “inclusions,” which are pieces that are
disjoint from ∂∗Ω, and typically lie in the interior of Ω. An example is the slit in a
slit disk. More exotic examples include fractal inclusions, of Hausdorff dimension
s ∈ (n− 2, n) (where n = dimΩ). In the former case, i.e., for inclusions K that are
(n− 1)-dimensional surfaces, we look at a variant of the operator N constructed in
Chapter 4, which pays attention to the varying behavior of a harmonic function on
Ω as one approaches the two separate sides of K. One approach to this, discussed
in §5.1, is to cut along K and produce a blow-up. Another, much more broadly
applicable approach, developed in §5.2, involves taking a finite perimeter domain
O ⊂ M , partitioning it into two finite perimeter domains Ω1 and Ω2, and taking
Ω = O \ S, where the inclusion S is a subset of ∂Ω1 ∩ ∂Ω2. Section 5.3 deals with
fractal inclusions. There, a goal is to produce measures µ that give rise to opera-
tors N whose behavior appropriately reflects the appearance of K. This study is
naturally done under the hypothesis that Cap(K) > 0.

In Chapter 6 we treat N on an important class of of finite perimeter domains
known as uniformly rectifiable domains. This is a maximal class of domains on
which there is a viable theory of singular integral operators that allows one to
apply layer potential methods to the study of N . Using these tools, we show in
§6.3 that the construction ofN for Lipschitz domains in Chapter 3 is consistent with
the construction in Chapter 4. We also discuss results on N for another important
class of domains, which we call regular SKT domains.

In Chapter 7 we pass beyond the class of finite perimeter domains, to open sets
Ω ⊂M with a much wilder boundary ∂Ω, assumed to carry a positive finite measure
µ satisfying a certain estimate (cf. (7.0.1)) that allows us to push the methods of
Chapter 4 to construct N as a self adjoint operator on L2(∂Ω, µ), and analyze e−tN

as a semigroup satisfying (1.7). In this setting, with µ unrelated to “surface area,”
one might refer to N , not as a Dirichlet-to-Neumann map in a straightforward way
involving (1.3), but as some “generalized” D-to-N map. We mention that here we
also drop the hypothesis (1.1), and consider cases where ∂Ω = M \ Ω, including
cases where ∂Ω is totally disconnected. In §7.3 we focus on a beautiful special case,

in which M = Ĉ is the Riemann sphere and ∂Ω is the Julia set of a rational map

on Ĉ, typically a marvelously fractal object.
At the end are some appendices. As mentioned above, Appendix A describes

the construction of a self-adjoint operator on a Hilbert space via a quadratic form,
starting with the classical Friedrichs method and then bringing in a recent variant
of [AtE], of use in Chapter 4. Appendix B discusses a version of Green’s formula,
valid for the class of finite perimeter domains known as Ahlfors regular domains
(which in turn contains the class of UR domains), established in [HMT], and of use
here in Chapter 6.
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2. Smoothly bounded domains

Let Ω be a compact, connected, n-dimensional Riemannian manifold with smooth
boundary. For consistency with later sections, we take Ω to be a smoothly bounded,
open subset of a compact, conected Riemannian manifold M , without boundary.
Our hypothesis on Ω entails

(2.0.1) M \ Ω 6= ∅.

In this chapter we also assume the metric tensor on M is smooth.
The Dirichlet-to-Neumann map N is very well studied in this situation. Our

description of N in this chapter will largely serve as a guide to what to look for in
subsequent chapters.

In §2.1 we introduce

(2.0.2) Nf = ∂ν PI f
∣∣
∂Ω
,

and derive basic properties that follow from the L2-Sobolev space theory of the
Dirichlet and Neumann boundary problems. These include the mapping properties

(2.0.3) N : Hs+1(∂Ω) −→ Hs(∂Ω), s ∈ R,

with approximate inverse K : Hs(∂Ω) → Hs+1(∂Ω) given by solving the Neumann
problem. Also, N is a positive semidefinite self-adjoint operator on L2(∂Ω), with

(2.0.4) D(N) = H1(∂Ω).

It follows that −N generates a contraction semigroup e−tN on L2(∂Ω).
In §2.2 we show that N is a pseudodifferential operator on ∂Ω, and its principal

symbol is the same as that of Λ =
√
−∆X , where ∆X is the Laplace operator on

X = ∂Ω. Hence

(2.0.5) N,Λ ∈ OPS1(∂Ω), N − Λ = B ∈ OPS0(∂Ω).

One approach to (2.0.5) involves the identity

(2.0.6) SN = −1

2
I +A,

where S and A are given by a single and a double layer potential; cf. (2.2.3). The
identity (2.0.6) will continue to play a role for Lipschitz domains, in Chapter 3,
though it will no longer lead to the representation of N as a pseudodifferential
operator.
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In §2.3 we show that e−tN has the positivity property: given f ∈ L2(∂Ω),

(2.0.7) f ≥ 0 =⇒ e−tNf ≥ 0.

Hence {e−tN} is a symmetric Markov semigroup, and is therefore associated with
a stochastic process. Furthermore, for each y ∈ ∂Ω,

(2.0.8) e−tNδy(x) > 0, ∀ t > 0, x ∈ ∂Ω.

One consequence of (2.0.8) is irreducibility of {e−tN}: there are so proper invariant
subspaces of the form L2(Σ), with Σ ⊂ ∂Ω, even when ∂Ω is not connected. The
proofs of (2.0.7) and (2.0.8) are fairly easy consequences of the weak maximum
principle for (2.0.7) and of Zaremba’s principle for (2.0.8). Extensions of (2.0.7)
and the irreducibility of {e−tN} to rougher domains require more effort, and more
powerful tools, as will be seen in subsequent sections.

The results in (2.0.5) suggest comparing e−tN and e−tΛ. We do this in §2.4,
showing that, for each K ∈ N, we can write

(2.0.9) e−tN = (I + P1t+ · · ·+ PKt
K)e−tΛ −QK(t), t > 0,

with Pj ∈ OPS0(∂Ω) and, for each j ∈ {0, 1, . . . ,K},

(2.0.10) QK(t) = O(tj) in OPS
−(K−j)
1,0 (∂Ω), as t↘ 0.

We also produce results on the integral kernels of e−tΛ and e−tN .

In §2.5 we show by example that e−tN2

need not be positivity preserving.
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2.1. N and K on smoothly bounded domains

Here Ω is an open connected subset of a compact Riemannian manifold, and we
assume ∂Ω is smooth and nonempty. Recall that the Poisson integral PI f solves
the Dirichlet problem

(2.1.1) ∆u = 0 on Ω, u
∣∣
∂Ω

= f, for u = PI f.

A classical L2-Sobolev space analysis, described, e.g., in §5.1 of [T1], gives

(2.1.2) PI : Hs(∂Ω) −→ Hs+1/2(Ω), s ≥ 1

2
.

Stronger results are available, but we will stick with (2.1.2) for now. Consequently,
if ν is the unit outward-pointing normal to ∂Ω, we have

(2.1.3) Nf = ∂ν PI f
∣∣
∂Ω
,

defining

(2.1.4) N : Hs+1(∂Ω) −→ Hs(∂Ω), s > 0.

Now if u = PI f, v = PI g, f, g ∈ Hs+1(∂Ω), s > 0, then Green’s formula gives

(2.1.5) (∇u,∇v) =
∫
Ω

∂νu v dS = 〈Nf, g〉,

where ( , ) denotes the inner product on L2(Ω) and 〈 , 〉 the inner product on
L2(∂Ω). It follows that

(2.1.6) 〈Nf, g〉 = 〈f,Ng〉,

for f, g ∈ Hs+1(∂Ω), s > 0. Thus, by duality

(2.1.7) N : H−s(∂Ω) −→ H−s−1(∂Ω), s > 0.

Interpolation with (2.1.4) then yields

(2.1.8) N : Hs+1(∂Ω) −→ Hs(∂Ω), s ∈ R.

Next, we recall results from §5.7 of [T1] on the Neumann boundary problem

(2.1.9) ∆u = 0 on Ω, ∂νu
∣∣
∂Ω

= g.
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It is shown in Proposition 7.7 in Chapter 5 of [T1] that if

(2.1.10) g ∈ Hk+1/2(∂Ω), k ∈ Z+,

∫
∂Ω

g dS = 0,

then there is a solution u ∈ Hk+2(Ω) to (2.1.9), unique up to an additive constant.
We set

(2.1.11) Kg = u
∣∣
∂Ω
, normalized so that

∫
∂Ω

Kg dS = 0,

if g satisfies (2.1.10), and we set

(2.1.12) K1 = 0.

Then we have

(2.1.13) K : Hk+1/2(∂Ω) −→ Hk+3/2(∂Ω), k ∈ {0, 1, 2, . . . },

and interpolation yields

(2.1.14) K : Hs(∂Ω) −→ Hs+1(∂Ω), s ≥ 1

2
.

To continue, it is useful to bring in the notation

(2.1.15) f = f# + f b, f b = const.,

∫
∂Ω

f# dS = 0.

We have

(2.1.16) Kf = Kf#, NKf = f#, ∀ f ∈ Hs(∂Ω), s ≥ 1

2
,

and also

(2.1.17) KNf = f#, f ∈ Hs(∂Ω), s ≥ 3

2
.

It follows that, if f, g ∈ Hs(∂Ω), s ≥ 1/2,

(2.1.18)

〈Kf, g〉 = 〈Kf, g#〉 = 〈Kf,NKg〉
= 〈NKf,Kg〉 = 〈f#,Kg〉
= 〈f,Kg〉.
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Thus, by duality, we proceed from (2.1.14) to

(2.1.19) K : H−s−1(∂Ω) −→ H−s(∂Ω), s ≥ 1

2
,

and then interpolation with (2.1.14) gives

(2.1.20) K : Hs(∂Ω) −→ Hs+1(∂Ω), s ∈ R.

The identities (2.1.16)–(2.1.17) then extend to all f ∈ Hs(∂Ω), s ∈ R. An example
of (2.1.20) is

(2.1.21) K : H−1/2(∂Ω) −→ H1/2(∂Ω).

Since K = K∗, we have in particular that

(2.1.22) K : L2(∂Ω) −→ L2(∂Ω) is compact and self adjoint.

It follows that L2(∂Ω) has an orthonormal basis {ϕj : j = 0, 1, 2, . . . }, satisfying

(2.1.23) Kϕj = µjϕj , µ0 = 0, µj ↘ 0 for j ≥ 1.

The positivity follows from (2.1.5), which in turn implies 〈Kf, f〉 = 〈NKf,Kf〉 ≥ 0
for f ∈ H1(∂Ω), hence for f ∈ L2(∂Ω). From (2.1.20), we have

(2.1.24) ϕj ∈ C∞(∂Ω), ∀ j.

From (2.1.16)–(2.1.17) we have

(2.1.25) Nϕj = λjϕj , λ0 = 0, λj =
1

µj
↗ +∞ for j ≥ 1.

We see that N is a positive semi-definite self adjoint operator on L2(∂Ω), with
domain

(2.1.26) D(N) = H1(∂Ω).

Furthermore, by our identities for KN and NK,

(2.1.27) D(Nk) = Hk(∂Ω), k ∈ N.
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2.2. N as a pseudodifferential operator

A classical attack on the representation of N and K uses single and double layer
potentials,

(2.2.1)

Sf(x) =
∫
∂Ω

E(x, y)f(y) dS(y),

Df(x) =
∫
∂Ω

∂νy
E(x, y)f(y) dS(y), x ∈ Ω,

where E(x, y) is a fundamental solution for ∆ on a neighborhood O of Ω. More
precisely, E(x, y) denotes the integral kernel of (∆ − V )−1, where V ∈ C∞(M)
satisfies V ≥ 0, V = 0 on a neighborhood of Ω, and V > 0 on a nonempty subset
of each connected component of M \ Ω. One has limits

(2.2.2)

Sf±(x) = Sf(x),

Df±(x) =
(
±1

2
I +A

)
f(x), x ∈ ∂Ω,

where the limits are taken from within Ω+ = Ω and from within Ω− = M \ Ω,
respectively. Here,

(2.2.3)

Sf(x) =

∫
∂Ω

E(x, y)f(y) dS(y),

Af(x) =

∫
∂Ω

∂νy
E(x, y)f(y) dS(y).

When ∂Ω is smooth, the operators S and A are pseudodifferential operators of
negative order,

(2.2.4) S,A ∈ OPS−1(∂Ω).

See §3 for a discussion of the behavior for rougher boundaries.
The following provides a neat connection to the Dirichlet-to-Neumann map N .

Namely, one can deduce from Green’s formula that

(2.2.5)
Df(x)− SNf(x) = PI f(x), x ∈ Ω,

0, x ∈M \ Ω.
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Consequently, (2.2.2) gives

(2.2.6) SN = −1

2
I +A.

Going further, an examination of the integral kernel of S in (2.4.3) allows one to
calculate the principal symbol of S. One obtains

(2.2.7) σS(x, ξ) = −1

2
|ξ|−1

x , x ∈ ∂Ω, ξ ∈ T ∗
x (∂Ω),

where |ξ|2x is the square-norm on T ∗
x (∂Ω) induced from the natural Riemann metric

tensor on ∂Ω. Hence S is an elliptic operator in OPS−1(∂Ω), and (2.2.6) implies

(2.2.8) N ∈ OPS1(∂Ω), σN (x, ξ) = |ξ|x.
Another natural operator on ∂Ω with the same principal symbol as (2.2.8) is√
−∆X , where ∆X denotes the Laplace-Beltrami operator on functions on X = ∂Ω.

We hence have

(2.2.9) N =
√
−∆X , mod OPS0(∂Ω).

One can go further and show that

(2.2.10) N =
√

−∆X +B, B ∈ OPS0(∂Ω),

with B having principal symbol

(2.2.11) σB(x, ξ) = −1

2
Tr(ANP

0
ξ ),

where AN : Tx(∂Ω) → Tx(∂Ω) is the Weingarten map, associated to the second
fundamental form of ∂Ω ⊂ M , and, for nonzero ξ ∈ T ∗

x (∂Ω), P
0
ξ is the orthogonal

projection of Tx(∂Ω) onto the subspace annihilated by ξ. See Chapter 12, Appendix
C of [T1] for a proof (and connection to the ∂-Neumann problem).

Example. If Ω is the unit ball in Rn, with boundary X = ∂Ω = Sn−1, then it
follows from (4.5)–(4.6) in Chapter 8 of [T1] (which, however, used a different sign
convention) that

(2.2.12) N =
√

−∆X + c2n − cn, cn =
n− 2

2
.

As for K, comparison of (2.2.6) and (2.1.16)–(2.1.17) shows that

(2.2.13) K ∈ OPS−1(∂Ω), and K = −2S, mod OPS−2(∂Ω).

The operator results (2.2.8) and (2.2.13) allow us to extend the mapping prop-
erties (2.1.8) and (2.1.20) considerably. For example, we have Lp-Sobolev results
(2.2.14)
N : Hs+1,p(∂Ω) → Hs,p(∂Ω), K : Hs,p → Hs+1,p(∂Ω), s ∈ R, p ∈ (1,∞),

and also Besov space results, and endpoint results, involving Hardy spaces and
bmo.
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2.3. e−tN as a symmetric Markov semigroup

The operator −N generates a one-parameter contraction semigroup of self ad-
joint operators on L2(∂Ω), specified by

(2.3.1) e−tN
∑
j≥0

cjϕj =
∑
j≥0

cje
−tλjϕj , t > 0,

with ϕj and λj as in (2.1.23)–(2.1.25). We note that

(2.3.2) e−tN1 ≡ 1.

Another useful formula for e−tN is

(2.3.3) e−tNf = lim
k→∞

(
I +

t

k
N
)−k

f,

the limit existing in L2-norm, for each f ∈ L2(∂Ω).
Our goal here is to establish some positivity results, starting with the following.

Proposition 2.3.1. For f ∈ L2(∂Ω),

(2.3.4) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

Proof. By (2.3.3), it suffices to prove that, for f ≥ 0, λ > 0,

(2.3.5) (λ+N)−1f ≥ 0.

It also suffices to prove (2.3.5) for smooth f > 0. Then, denoting the left side of
by g, we have g ∈ C∞(∂Ω) satisfying

(2.3.6) Ng + λg > 0,

and if (2.3.5) fails, there exists such g that has a negative minimum, say at x0 ∈ ∂Ω.
Let u = PI g, so u ∈ C∞(Ω). Clearly, ∂νu(x0) ≤ 0, so Ng(x0) ≤ 0. But λ > 0 ⇒
λg(x0) < 0. This contradicts (2.3.6), so the proposition is proved.

It follows that e−tN is a strongly continuous, positivity preserving, contraction
semigroup on C(∂Ω). By duality, it also yields a weak∗ continuous contraction
semigroup on M(∂Ω), the space of finite (signed) measures on ∂Ω. The following
result strengthens Proposition 2.3.1. Recall that we assume Ω is connected, but we
do not assume ∂Ω is connected.
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Proposition 2.3.2. If µ is a positive measure on ∂Ω and µ 6= 0, then

(2.3.7) e−tNµ(x) > 0, ∀x ∈ ∂Ω, t > 0.

Proof. We know that f(t, x) = e−tNµ(x) is C∞ and ≥ 0 on (0,∞)× ∂Ω. If (2.3.7)
fails, there exists t0 > 0 and x0 ∈ ∂Ω such that f(t0, x0) = 0. Then ∂tf(t0, x0) = 0.
Let u(x) = PI f(t0, x), so u ∈ C∞(Ω) and

(2.3.8) ∆u = 0 on Ω, u(x) = f(t0, x) for x ∈ ∂Ω.

We have u ≥ 0 on Ω and u(x0) = 0, so Zaremba’s principle implies ∂νu(x0) < 0,
hence Nf(t0, x0) < 0, contradicting the equation ∂tf = −Nf .

Since ∂Ω can have several connected components, the result (2.3.7) is quite
interesting. Here is an illustration, in the simplest possible case. Namely, take

(2.3.9) Ω = (0, 1).

Thus L2(∂Ω) ≈ R2, via f 7→ (f(0), f(1))t. In this case,

(2.3.10) PI

(
1

1

)
= 1, PI

(
0

1

)
= x,

so

(2.3.11) N

(
1

1

)
=

(
0

0

)
, N

(
0

1

)
=

(
−1

1

)
,

hence N(1, 0)t = (1,−1)t, so

(2.3.12) N =

(
1 −1
−1 1

)
,

and hence

(2.3.13) e−tN = e−t

(
cosh t sinh t
sinh t cosh t

)
,

which clearly satisfies (2.3.7) for t > 0. The associated Markov process is a special
case of Markov processes treated in Chapter 4 of [Str].

Remark. As will be explained around Proposition 3.3.7, Proposition 2.3.2 implies
that {e−tN : t ≥ 0} is irreducible.
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2.4. Comparison of e−tN and e−tΛ

Here we compare the semigroups e−tN and e−tΛ, where

(2.4.1) Λ =
√

−∆X , X = ∂Ω.

As stated in (2.2.10),

(2.4.2) N = Λ+B, B ∈ OPS0(∂Ω),

and the principal symbol of B is given in (2.2.11). We will construct a smooth
family P (t) of elements of OPS0(∂Ω) with the property that

(2.4.3) e−tN ∼ P (t)e−tΛ,

in the sense (to be made precise in (2.4.14) below) that the right side of (2.4.3) is
an accurate approximation to e−tN as t↘ 0.

To get P (t), we apply d/dt to (2.4.3):

(2.4.4) −(Λ +B)e−tN ∼ [−P (t)Λ + P ′(t)]e−tΛ,

suggesting that P (t) satisfy P ′(t)− P (t)Λ ∼ −(Λ +B)P (t), hence

(2.4.5) P ′(t) ∼ [P (t),Λ]−BP (t), P (0) = I.

Thus we construct P (t) as follows. Pick K ∈ N (large) and set

(2.4.6) P (t) = I + P1t+ · · ·+ PKt
K , Pj ∈ OPS0(∂Ω),

with the coefficients to be determined. Plugging (2.4.6) into (2.4.5) uniquely spec-
ifies Pj , for 1 ≤ j ≤ K, such that

(2.4.7)
P ′(t) = [P (t),Λ]−BP (t) +RK(t),

RK(t) = RKt
K , RK ∈ OPS0(∂Ω).

For example,

(2.4.8) P1 = −B, P2 =
1

2

(
[Λ, B] +B2

)
.

With P (t) so specified, we compare e−tN with P (t)e−tΛ, using

(2.4.9)

d

dt
P (t)e−tΛ = −(Λ +B)P (t)e−tΛ +RK(t)e−tΛ,

d

dt
e−tN = −(Λ +B)e−tN .
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Thus

(2.4.10) Q(t) = P (t)e−tΛ − e−tN

satisfies

(2.4.11) Q′(t) = −(Λ +B)Q(t) +RK(t)e−tΛ, Q(0) = 0,

so DuHamel’s formula gives

(2.4.12) Q(t) =

∫ t

0

e−(t−s)(Λ+B)RK(s)e−sΛ ds.

Now {e−tN : t ≥ 0} and {e−tΛ : t ≥ 0} are both bounded subsets of OPS0
1,0(∂Ω),

and furthermore, for j, k ≥ 0,

(2.4.13) tj+ke−tΛ is O(tj) in OPS−k
1,0 (∂Ω), as t↘ 0.

See [T0], Chapter 12. It follows that, for each j ∈ {0, 1, . . . ,K},

(2.4.14) P (t)e−tΛ − e−tN is O(tj) in OPS
−(K−j)
1,0 (∂Ω), as t↘ 0.

One has parametrix constructions of both e−tN and e−tΛ, via (a simplified ver-
sion of) complex geometrical optics; cf. [T0], Chapters 8 and 12. However, one
can obtain a parametrix for e−tΛ by a more elementary construction, as follows.
Picking p ∈ X = ∂Ω, set

(2.4.15) up(t, x) = (sgn t)e−|t|Λδp(x).

Then

(2.4.16) ∂tup(t, x) = −Λe−|t|Λδp(x) + 2δ(t)δp(x),

and

(2.4.17)
∂2t up(t, x) = (sgn t)Λ2e−|t|Λδp(x) + 2δ′(t)δp(x)

= −∆Xup(t, x) + 2δ′(t)δp(x),

hence

(2.4.18) (∂2t +∆X)up = 2∂tδ(0,p).

Consequently, if we fix T > 0, we can say that, for 0 < t ≤ T ,

(2.4.19) e−tΛδp(x) = 2∂tGp(t, x),
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where Gp(t, x) is specified on [−T, T ]×X as the solution to

(2.4.20) (∂2t +∆X)Gp = δ(0,p),

with Neumann boundary data

(2.4.21) ∂tGp(±T, x) = ±1

2
e−TΛδp(x).

These conditions specify Gp uniquely, up to an additive constant, and hence specify
up uniquely, on [−T, T ] × ∂Ω. Of course, we do not have an explicit formula for
the boundary data in (2.4.21), so what we get out of this is that Gp is a solution
to (2.4.20) that is even in t, and as such is uniquely determined up to a harmonic
function on [−T, T ] × ∂Ω that is even in t, hence up is uniquely specified up to a
harmonic function on [−T, T ]× ∂Ω that is odd in t (hence vanishes at t = 0).

A standard parametrix construction for L = ∂2t + ∆X yields, in a coordinate
system about (0, p) in R× ∂Ω,

(2.4.22) Gp(z) ∼
∑
ℓ≥0

(
Epℓ(z) + qpℓ(z) log |z|

)
, z = (t, x− p),

where Epℓ ∈ C∞(Rn\0) is homogeneous of degree 2−n+`, and qpℓ is a polynomial,
homogeneous of degree 2− n+ `, which appears only for ` ≥ n− 2. If one uses an
exponential coordinate system centered at p on a neighborhood O of p in ∂Ω, and
then product coordinates on R×O, we can identify the leading term and write

(2.4.23) Gp(t, x) ∼ −cn
(
t2 + |x− p|2

)−(n−2)/2
+ · · · , if n ≥ 3,

where cn = (n− 2)AreaSn−1, and

(2.4.24) Gp(t, x) ∼
1

2π
log

(
t2 + |x− p|2

)1/2
+ · · · , if n = 2.

Consequently,

(2.4.25) up(t, x) ∼ c′nt
(
t2 + |x− p|2

)−n/2
+ · · · , c′n > 0.

Given the coordinate system we are using,

(2.4.26) |x− p| = dist(x, p),

the geodesic distance in ∂Ω from p to x.
We next look at the behavior of

(2.4.27) vp(t, x) = Qe−tΛδp(x), Q ∈ OPS0(∂Ω).
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The principal term in (2.4.25) contributes to (2.4.27) a positive constant times

(2.4.28)

∫
Rn−1

q(x, ξ)e−t|ξ|eix·ξ dξ,

where q(x, ξ) is the principal symbol of Q, which is homogeneous of degree 0 in ξ.
This is is an exponential coordinate system centered at p (and here we take p = 0).
This can be rewritten as

(2.4.29)

t−(n−1)

∫
Rn−1

q(x, ξ)e−|ξ|ei(x/t)·ξ dξ

= t−(n−1)q̂1

(
x,
x

t

)
, q1(x, ξ) = q(x, ξ)e−|ξ|,

where q̂1 denotes the partial Fourier transform of q1(x, ξ) with respect to the second
argument, i.e.,

(2.4.30) q̂1(x, y) =

∫
Rn−1

q1(x, ξ)e
iy·ξ dξ.

Since q1(x, ξ) is smooth and rapidly decreasing in ξ ∈ Rn \ 0, q̂1(x, y) is smooth on
Rn−1×Rn−1. The singularity of q1(x, ξ) at ξ = 0 controls the asymptotic behavior
of q̂1(x, y) as y → ∞, yielding

(2.4.31) q̂1(x, y) ∈ S
−(n−1)
cl (Rn−1 × Rn−1).

In particular, we can bound the absolute value of (2.4.29):

(2.4.32)
t−(n−1)

∣∣∣q̂1(x, x
t

)∣∣∣ ≤ Ct−(n−1)
(
1 +

∣∣∣x
t

∣∣∣)−(n−1)

= C
(
t+ |x|

)−(n−1)
.

This leads to a bound

(2.4.33) |tP1e
−tΛδp(x)| ≤ Ct

(
t2 + |x− p|2

)−(n−1)/2
,

where we have resurrectd the label p, to exhibit the parallel with (2.4.25). As one
should expect, (2.4.33) exhibits a weaker blow-up very near x = p as t ↘ 0 than
(2.4.25) does. On the other hand, away from x = p, say for |x − p| ≥ δ > 0, both
quantities tend to 0 at the same rate. There is a simple explanation of why this
must be the case. In fact,

(2.4.34)
d

dt

(
e−tNδp(x)− e−tΛδp(x)

)∣∣∣
t=0

= −(N − Λ)δp(x) = −Bδp(x),

and Bδp(x) ∈ C∞(∂Ω \ p) is typically not 0, except in special cases in which
B ∈ OPS0(∂Ω) is a local operator. In particular, this would require that the
Weingarten map AN : Tp(∂Ω) → Tp(∂Ω) be scalar for all p. Of course, if the
principal symbol of B is independent of ξ, then the main singularity at ξ = 0 of
the Fourier integral (2.4.30), with Q = P1 = −B, is ameliorated, and arises from
the singularity of e−t|ξ| at ξ = 0 rather than from that of σB(x, ξ).

We refer to [EO] and [GG] for other approaches to the analysis of e−tNδp(x),
and further results on related material.
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2.5. e−tN2

need not be positivity preserving

Here we give an example of a Dirichlet-to-Neumann map N with the property

that e−tN2

is not positivity preserving for all t > 0. In this example, Ω = Bn is the
unit ball in Rn, with boundary X = ∂Bn = Sn−1, and, as in (2.2.12),

(2.5.1) N =
√

−∆X + c2n − cn, cn =
n− 2

2
.

A calculation gives

(2.5.2)
N2 = −∆X + 2c2n − 2cn

√
−∆X + c2n

= −∆X − 2cnN.

Hence, for t > 0,

(2.5.3) e−tN2

= et(∆X+2cnN),

or, equivalently,

(2.5.4) et∆X = e−tN2

e−2cntN .

We will use this identity together with known behavior of the heat semigroup et∆X

to establish:

Proposition 2.5.1. Assume n ≥ 3. Then, for N given by (2.5.1), there exists

t > 0 such that e−tN2

is not positivity preserving.

To start the proof, we recall two formulas for the Poisson integral on Bn, solving

(2.5.5) ∆u = 0 on Bn, u
∣∣
∂Bn = f.

One is

(2.5.6) u(rω) = rNf(ω), ω ∈ Sn−1,

and the other is

(2.5.7) u(rω) =
1− r2

An−1

∫
Sn−1

f(y)

|rω − y|n
dS(y).

See [T1], Chapter 8, §4. Let us fix p ∈ Sn−1 and take f = δp. We have

(2.5.8) rNδp(ω) =
1− r2

An−1
|rω − p|−n,
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hence

(2.5.9)

min
ω∈Sn−1

rNδp(ω) =
1− r2

An−1
min

ω∈Sn−1
|rω − p|−n

=
1− r2

An−1
(1 + r)−n.

It follows that

(2.5.10) e−2cntNδp(ω) ≥ αn(1− r), ∀ω ∈ Sn−1,

with αn = 1/(2n−1An−1) and

(2.5.11) r = e−2cnt.

Consequently, if e−tN2

is positivity preserving, one has from (2.5.4) that

(2.5.12) et∆X δp(ω) ≥ αn(1− e−2cnt), ∀ω ∈ Sn−1.

This, however, contradicts the readily established rapid decay of et∆X δp(ω) as t↘
0, when ω is bounded away from p. Thus the positivity preserving property for

e−tN2

must fail, at least for t > 0 sufficiently small.

Remark. For n = 2, we have c2 = 0, hence N2 = −∆X , so e−tN2

is positivity
preserving for all t > 0 in that case. Furthermore, for n = 1, N is given by a 2× 2

matrix, somewhat like (2.3.12) (up to a factor of 1/2), and again e−tN2

is positivity
preserving.
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3. Lipschitz domains

Let M be a compact, connected Riemannian manifold and Ω ⊂ M an open
subset. Assume M \ Ω 6= ∅. We say Ω is a Lipschitz domain if, for each p ∈ ∂Ω,
there exists a coordinate neighborhoof U of p in M such that ∂Ω ∩ U is the graph
of a Lipschitz function, and Ω ∩ U lies on one side of this graph.

Here we analyze the Dirichlet-to-Neumann map on such domains, building on
work of [AM] and [BtE]. We make use of fundamental results on the Dirichlet and
Neumann boundary problems for the Laplace operator ∆ on Ω. Seminal work on
these boundary problems was done in [Dah], [JK], and [Ver], the latter making
use of the work of [CMM] on singular integral operators on Lipschitz surfaces.
These works were done in the setting of Lipschitz domains in Euclidean space. An
extension to domains in Riemannian manifolds, with non-flat metric tensors, was
accomplished in [MT1]-[MT4]. These papers covered progressively rougher metric
tensors, from those that are C1 in local coordinates in [MT1] to those in [MT4] that
have a modulus of continuity satisfying a Dini-type condition in local coordinates,
namely

(3.0.1) |gjk(x)− gjk(y)| ≤ Cω(|x− y|),

with

(3.0.2)

∫ 1

0

√
ω(t)

t
dt <∞.

In §3.1 we use results on the Dirichlet and Neumann problems to construct the
Dirichlet-to-Neumann and Neumann-to-Dirichlet maps

(3.0.3) N : H1(∂Ω) −→ L2(∂Ω), K : L2(∂Ω) −→ H1(∂Ω),

inverses to each other on functions that integrate to 0. We show that K is compact
and self adjoint on L2(∂Ω), and deduce that N is a positive semidefinite self-adjoint
operator on L2(∂Ω), with

(3.0.4) D(N) = H1(∂Ω).

The mapping properties (3.0.3) extend to Lp-Sobolev space mapping properties.
Namely, there exists q(Ω) > 2 such that

(3.0.5) N : H1,p(∂Ω) → Lp(∂Ω), K : Lp(∂Ω) → H1,p(∂Ω), 1 < p < q(Ω),

and duality and interpolation yield further mapping properties.
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In §3.2 we produce formulas that relate N and K to singular integral operators
arising from certain single and double layer potentials.

In §3.3 we study the semigroup e−tN , which is a contraction semigroup of self-
adjoint operators in L2(∂Ω). Results from §3.1 yield mapping properties

(3.0.6) e−tN : Lp0(∂Ω) −→ Lp1(∂Ω), t > 0, 1 < p0 < p1 <∞,

and

(3.0.7) e−tN : Lp0(∂Ω) −→ H1,p1(∂Ω), t > 0, 1 < p0 < p1 < q(Ω).

We then bring in the positivity result, established in [AM], that, given f ∈ L2(∂Ω),

(3.0.8) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

Since e−tN1 ≡ 1, this makes {e−tN} a symmetric Markov semigroup. On general
principles, this implies {e−tN} is a strongly continuous contraction semigroup on
Lp(∂Ω) for 1 ≤ p <∞. Also, results of [Var] and [EO] yield quantitative estimates
on the operator norms of e−tN in (3.0.6), and we supplement these with operator
norm estimates on e−tN in (3.0.7).

In §3.4 we consider the spectrum of N , which thanks to (3.0.4) must be discrete,
so N has eigenvalues λj , j ≥ 0, satisfying 0 = λ0 ≤ λ1 ≤ · · · ↗ +∞. Estimates on
e−tN from §3.3 imply

(3.0.8)
∑
j≥0

e−tλj ≤ C(t ∧ 1)−(n−1),

where n = dimΩ, which in turn yields estimates on
∑

j≥0(λj + 1)−s for s > n− 1.
This series is seen to diverge when s = n − 1. These results agree with those for
the case when ∂Ω is smooth, though pseudodifferential operator methods from §2
are not available to produce finer asymptotic expansions.

In §3.5 we discuss proofs of the positivity result (3.0.8), describing the approach
in [AM], via the Beurling-Deny positivity criterion, and also an alternative ap-
proach.

Remark. The quantity q(Ω) that appears in (3.0.5) and (3.0.7), and elsewhere
in this section, depends on the Lipschitz character of ∂Ω (and also on M and its
metric tensor). It is the case that

(3.0.9) Ω is a C1 domain =⇒ q(Ω) = ∞.

In §6 we will obtain such results for a more general class of domains, namely regular
SKT domains.
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3.1. N and K on Lipschitz domains

Here Ω is a connected Lipschitz domain, with nonempty boundary ∂Ω, in a
compact Riemannian manifold M . The Poisson integral PI f solves the Dirichlet
problem

(3.1.1) ∆u = 0 on Ω, u
∣∣
∂Ω

= f, u = PI f.

It follows from material in §7 of [MT1] for C1 metric tensors, and in §5 of [MT4]
for metric tensors satisfying (3.0.1)–(3.0.2), that

(3.1.2)
f ∈ H1(∂Ω) ⇒ (∇u)∗ ∈ L2(∂Ω), and

lim
x→z

∇u(x) exists for a.e. z ∈ ∂Ω.

Here (∇u)∗ denotes the nontangential maximal function of ∇u, and the limit is
taken nontangentially. This is proven by representing u in (3.1.1) in terms of a
single layer potential (cf. (7.32) of [MT1]), together with basic properties of such
layer potentials (see (3.2.10)). Consequently, we have

(3.1.3) Nf = ∂ν PI f
∣∣
∂Ω
,

defining

(3.1.4) N : H1(∂Ω) −→ L2(∂Ω).

Now if u = PI f, v = PI g, f, g ∈ H1(∂Ω), one has, by Green’s formula,

(3.1.5) (∇u,∇v) =
∫
∂Ω

∂νu v dS = 〈Nf, g〉,

where, as in §2, ( , ) denotes the inner product on L2(Ω) and 〈 , 〉 that on L2(∂Ω).
See Appendix B for a discussion of Green’s formula in a setting broad enough to
apply here.

It follows from (3.1.5) that

(3.1.6) 〈Nf, g〉 = 〈f,Ng〉, for f, g ∈ H1(∂Ω).

Then, by duality

(3.1.7) N : L2(∂Ω) −→ H−1(∂Ω),
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and interpolation with (3.1.4) gives

(3.1.8) N : Hs+1(∂Ω) −→ Hs(∂Ω), −1 ≤ s ≤ 0.

Next, we look at the Neumann boundary problem

(3.1.9) ∆u = 0 on Ω, ∂νu
∣∣
∂Ω

= g.

As shown in §6 of [MT1] for C1 metric tensors, and in §5 of [MT4] for Dini-type
metric tensors, if

(3.1.10) g ∈ L2(∂Ω),

∫
∂Ω

g dS = 0,

this has a solution u, satisfying

(3.1.11) (∇u)∗ ∈ L2(∂Ω), and lim
x→z

∇u(x) exists for a.e. z ∈ ∂Ω,

parallel to (3.1.2). The solution is unique up to an additive constant. We set

(3.1.12) Kg = u
∣∣
∂Ω
, normalized so that

∫
∂Ω

Kg dS = 0,

parallel to (2.1.11), if g satisfies (3.1.10), and we also set

(3.1.13) K1 = 0.

Thus we have

(3.1.14) K : L2(∂Ω) −→ H1(∂Ω).

Parallel to (2.1.16)–(2.1.17),

(3.1.15) Kf = Kf#, NKf = f#, ∀ f ∈ L2(∂Ω),

and

(3.1.16) KNf = f#, f ∈ H1(∂Ω).

Then a calculation parallel to (2.1.18) gives

(3.1.17) 〈Kf, g〉 = 〈f,Kg〉,
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for f, g ∈ L2(∂Ω). Thus, by duality, we have from (3.1.14) that

(3.1.18) K : H−1(∂Ω) −→ L2(∂Ω),

and then interpolation with (3.1.14) gives

(3.1.19) K : Hs(∂Ω) −→ Hs+1(∂Ω), −1 ≤ s ≤ 0.

The identity (3.1.15) then extends to f ∈ Hs for −1 ≤ s ≤ 0, and (3.1.16) extends
to f ∈ Hs+1(∂Ω) for −1 ≤ s ≤ 0.

Since K = K∗, we have from (3.1.14) that

(3.1.20) K : L2(∂Ω) −→ L2(∂Ω) is compact and self adjoint.

It follows that L2(∂Ω) has an orthonormal basis {ϕj : j = 0, 1, 2, . . . } satisfying

(3.1.21) Kϕj = µjϕj , µ0 = 0, µj ↘ 0 for j ≥ 1.

From (3.1.17) we have

(3.1.22) ϕj ∈ H1(∂Ω), ∀ j.

From (3.1.15)–(3.1.16), we have

(3.1.23) Nϕj = λjϕj , λ0 = 0, λj =
1

µj
↗ +∞ for j ≥ 1.

We see that N is a positive semi-definite self adjoint operator on L2(∂Ω), and, by
(3.1.15)–(3.1.16),

(3.1.24) D(N) = H1(∂Ω).

Note that interpolation applied to (3.1.24) gives

(3.1.25) D(N1/2) = H1/2(∂Ω).

As shown in §5 of [MT1] (for C1 metrics),

(3.1.26) PI : H1/2(∂Ω) −→ H1(Ω),

complementing the trace result

(3.1.27) u ∈ H1(Ω) =⇒ u
∣∣
∂Ω

∈ H1/2(∂Ω),
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valid for Lipschitz domains. In concert with (3.1.5), it follows that the quadratic
form

(3.1.28) Q(f, g) = (∇u,∇v), u = PI f, v = PI g,

with form domain D(Q) = H1/2(∂Ω), gives rise, via the Friedrichs construction, to
the non-negative self-adjoint operator N , and that

(3.1.29) D(N) = {f ∈ D(Q) : Q(f, g) ≤ C‖g‖L2(∂Ω), ∀ g ∈ D(Q)}.

This agrees with the characterization of N as a self-adjoint operator given at the
end of §2.2 in [AM].

There are also Lp-Sobolev space results for N and K, though not as general as
those given in (2.4.14) for the case of smooth boundary. As shown in [MT3] and
[MT4], following work on domains in Euclidean space in [Ver] and [DK], one has
the following results on the Dirichlet problem (3.1.1) and the Neumann problem
(3.1.9). Namely, there exists

(3.1.30) q(Ω) > 2, such that, if 1 < p < q(Ω),

then, in (3.1.1), the solution u satisfies

(3.1.31) (∇u)∗ ∈ Lp(∂Ω), and lim
x→z

∇u(x) exists for a.e. z ∈ ∂Ω,

provided

(3.1.32) f ∈ H1,p(∂Ω),

and, in (3.1.9), with
∫
∂Ω
g dS = 0, the solution u satisfies (3.1.31) provided

(3.1.33) g ∈ Lp(∂Ω).

In follows that

(3.1.34)
N : H1,p(∂Ω) −→ Lp(∂Ω),

K : Lp(∂Ω) −→ H1,p(∂Ω), for 1 < p < q(Ω).

Then duality arguments, parallel to those used in (3.1.7) and (3.1.18), give

(3.1.35)
N : Lp′

(∂Ω) −→ H−1,p′
(∂Ω),

K : H−1,p′
(∂Ω) −→ Lp′

(∂Ω),

for such p, and one can interpolate to get other mapping properties.
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The identities (3.1.15)–(3.1.16) extend, to

(3.1.36) NK = I − P0 on Lp(∂Ω), KN = I − P0 on H1,p(∂Ω),

for 1 < p < q(Ω), where

(3.1.37) P0f = α〈f, 1〉1, α = (Area ∂Ω)−1.

A useful variant is

(3.1.38) (N+P0)(K+P0) = I on Lp(∂Ω), (K+P0)(N+P0) = I on H1,p(∂Ω),

for 1 < p < q(Ω), hence

(3.1.39)
N + P0 : H1,p(∂Ω)

≈−→ Lp(∂Ω), with inverse

K + P0 : Lp(∂Ω)
≈−→ H1,p(∂Ω), for 1 < p < q(Ω).

It follows that, for each λ ∈ R,

(3.1.40) N + λ : H1,p(∂Ω) −→ Lp(∂Ω) is Fredholm, of index 0,

for 1 < p < q(Ω). A standard monotonicity argument implies that (for fixed λ) the
kernel and cokernel of (N + λ)|H1,p(∂Ω) are independent of p ∈ (1, q(Ω)). Clearly
Ker (N + λ) = 0 if p = 2 and λ > 0, so

(3.1.41) N + λ : H1,p(∂Ω)
≈−→ Lp(∂Ω), for 1 < p < q(Ω), λ > 0,

hence

(3.1.42) (N + λ)−1 : Lp(∂Ω) −→ H1,p(∂Ω), 1 < p < q(Ω), λ > 0.

Parallel to (3.1.35), duality gives

(3.1.43) (N + λ)−1 : H−1,p′
(∂Ω) −→ Lp′

(∂Ω), 1 < p < q(Ω), λ > 0.

Equivalently, the range of p′ in (3.1.43) is

(3.1.44) q′(Ω) < p′ <∞, with q′(Ω) < 2.

For later use, we record implications of iterating (3.1.42) and (3.1.43). Fix λ > 0.
Take q0 > q′(Ω), f ∈ H−1,q0(∂Ω). Then

(N + λ)−1f ∈ Lq0(∂Ω) ⊂ H−1,q1(∂Ω),

with q1 > q0, given by the Sobolev embedding theorem. Consequently,

(N + λ)−2f ∈ Lq1(∂Ω) ⊂ H−1,q2(∂Ω),

with q2 > q1, also given by the Sobolev embedding theorem. Continuing, we get
the following.
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Proposition 3.1.1. Given q0 > q′(Ω), p1 < ∞, there exists k = k(q0, p1, n) such
that

(3.1.45) (N + λ)−k : H−1,q0(∂Ω) −→ Lp1(∂Ω),

for λ > 0. A fortiori,

(3.1.46) (N + λ)−k : L2(∂Ω) −→ Lp1(∂Ω).

By duality, we have the following.

Proposition 3.1.2. Given q0 > 1, p1 ∈ [2, q(Ω)), there exists k = k(q0, p1, n) such
that

(3.1.47) (N + λ)−k : Lq0(∂Ω) −→ H1,p1(∂Ω),

for λ > 0. A fortiori,

(3.1.48) (N + λ)−k : Lq0(∂Ω) −→ L2(∂Ω).
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3.2. Connections with singular integral operators

Let Ω ⊂ M be a connected Lipschitz domain with nonempty boundary, as in
§3.1. If f ∈ H1(∂Ω), the result (2.2.5), i.e.,

(3.2.1)
Df(x)− SNf(x) = PI f(x), x ∈ Ω,

0, x ∈M \ Ω,

extends to this setting, with D and S defined as in (2.2.1); cf. (7.37) of [MT1]. One
continues to have the limiting results (2.2.2), with S as in (2.2.3), but the formula
for A in (2.2.3) needs to be rewritten as

(3.2.2) Af(x) = PV

∫
∂Ω

∂νy
E(x, y)f(y) dS(y).

The necessary distinction arises as follows. The kernel ∇yE(x, y) has leading part

blowing up like d(x, y)−(n−1) as y → x, if n = dimM . Now taking ∂νy
E(x, y) =

〈ν(y),∇yE(x, y)〉 cancels the leading part of this singularity on ∂Ω × ∂Ω if ∂Ω is
C2, leading to an easy proof that A is bounded on Lp(∂Ω) in such a case. This
fails when ∂Ω is C1 and fails even more severely when ∂Ω is merely Lipschitz. The
fact that

(3.2.3) A : Lp(∂Ω) −→ Lp(∂Ω), 1 < p <∞

when Ω is a Lipschitz domain, and the accompanying maximal function estimate

(3.2.4) ‖(Df)∗‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p <∞,

were established in [CMM] in the Euclidean space setting, with E(x, y) = E(x−y).
Variable coefficient extensions, valid in the manifold setting, were estabished in
[MT1] (with improvements for successively less regular metric tensors in [MT2]–
[MT4]). From these results, the boundary trace results (2.2.2) follow, the limits
being nontangential limits, existing a.e. on ∂Ω.

In the Lipschitz setting, (2.2.4) fails. We do, however, have

(3.2.5) S : Lp(∂Ω) −→ H1,p(∂Ω), 1 < p <∞,

and the associated nontangential maximal function estimate

(3.2.6) ‖(∇Sf)∗‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p <∞.
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In connection with this, it is shown in §3 of [MT1] that

(3.2.7) ∂νSf±(x) =
(
∓1

2
I +A∗

)
f(x), for a.e. x ∈ ∂Ω,

given f ∈ Lp(∂Ω), 1 < p <∞, the limit taken nontangentially.
Another important property of S, established in Proposition 7.5 of [MT1] for C1

metric tensors, and in Theorem 3.5 of [MT4] for Dini-type metric tensors, is that

(3.2.8) S : L2(∂Ω) −→ H1(∂Ω) is an isomorphism.

It follows that the solution to

(3.2.9) ∆u = 0 on Ω, u
∣∣
∂Ω

= f ∈ H1(∂Ω),

is given by

(3.2.10) u = S(S−1f).

The result (3.1.4) on the map N follows from this, together with (3.2.6)–(3.2.7).
That is, one has

(3.2.11) N : H1(∂Ω) −→ L2(∂Ω).

Then, applying results related to (3.2.3)–(3.2.4) to (3.2.1), we have (as in (2.4.6)),

(3.2.12) SNf =
(
−1

2
I +A

)
f, f ∈ H1(∂Ω).

One consequence of (3.2.12) and (3.2.11) is that we can complement (3.2.3) by

(3.2.13) A : H1(∂Ω) −→ H1(∂Ω).

Using (3.2.8), we can write

(3.2.14) N = S−1
(
−1

2
I +A

)
, on H1(∂Ω).

By comparison, (3.2.10) plus (3.2.7) give

(3.2.15) N =
(
−1

2
I +A∗

)
S−1, on H1(∂Ω).

As seen in Proposition 4.6 of [MT1] for C1 metric tensors, and in Theorem 3.5 of
[MT4] for Dini-type metric tensors,

(3.2.16) −1

2
I +A∗ : L2

0(∂Ω) −→ L2
0(∂Ω) is an isomorphism,
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where L2
0(∂Ω) consists of elements of L2(∂Ω) with mean value 0 over ∂Ω.

In fact, with g ∈ L2
0(∂Ω), the solution to the Neumann problem (3.1.9), satisfying

(3.1.11), is given, up to an additive constant, by

(3.2.17) u = S
(
−1

2
I +A∗

)−1

g

(cf. [MT1], Theorem 6.1, and [MT4], Theorem 4.2). Hence, consistent with (3.2.15),

(3.2.18) Kg = (I − P0)S
(
−1

2
I +A∗

)−1

g, g ∈ L2
0(∂Ω),

where P0 is the orthogonal projection of L2(∂Ω) onto L2
0(∂Ω).

Remark. Complementing (3.2.8) and (3.2.16), we have isomorphisms

(3.2.19)
S : Lp(∂Ω)

≈−→ H1,p(∂Ω), and

−1

2
I +A∗ : Lp

0(∂Ω)
≈−→ Lp

0(∂Ω), for 1 < p < q(Ω),

with q(Ω) as in §3.1, as shown in [MT3], Theorems 7.1 and 7.3, and [MT4], Corollary
5.4, for metric tensors that are Lipschitz, or satisfy (3.0.1)–(3.0.2), respectively.
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3.3. The semigroup e−tN

As we have seen, N is a positive self-adjoint operator on L2(∂Ω), with domain
D(N) = H1(∂Ω). It follows that

(3.3.1) e−tN : L2(∂Ω) −→ L2(∂Ω)

is, for t ≥ 0, a strongly continuous contraction semigroup of positive self-adjoint
operators. For t > 0, e−tN has additional mapping properties, not as extensive
for general Lipschitz domains as for those that are smoothly bounded, but worth
noting. First, if we write

(3.3.2) e−tN = (N + 1)−k
[
(N + 1)ke−tN

]
,

and note that the factor in brackets is bounded on L2(∂Ω) for each t > 0, we deduce
from (3.1.46) that

(3.3.3) e−tN : L2(∂Ω) −→ Lp(∂Ω), ∀ t > 0, p <∞.

By duality,

(3.3.4) e−tN : Lp(∂Ω) −→ L2(∂Ω), ∀ t > 0, p > 1,

and then, via e−tN = e−(t/2)Ne−(t/2)N ,

(3.3.5) e−tN : Lp0(∂Ω) −→ Lp1(∂Ω), t > 0, 1 < p0 < p1 <∞.

We can also use (3.3.2) in conjunction with (3.1.47) to obtain

(3.3.6) e−tN : L2(∂Ω) −→ H1,p1(∂Ω), ∀ t > 0, p1 < q(Ω),

and then use this plus (3.3.4) and e−tN = e−(t/2)Ne−(t/2)N to get

(3.3.7) e−tN : Lp0(∂Ω) −→ H1,p1(∂Ω), t > 0, 1 < p0 < p1 < q(Ω).

If n = dimΩ, we can deduce from (3.3.7) that

(3.3.8) q(Ω) > n− 1 ⇒ e−tN : Lp0(∂Ω) −→ C(∂Ω), ∀ t > 0, p0 > 1,

and then, by duality plus e−tN = e−(t/2)Ne−(t/2)N ,

(3.3.9) q(Ω) > n− 1 ⇒ e−tN : M(∂Ω) −→ C(∂Ω), t > 0,

where M(∂Ω) denotes the space of finite signed measures on ∂Ω. Note that the
hypothesis in (3.3.8)–(3.3.9) holds for all Lipschitz domains of dimension n ≤ 3.

The following positivity result was established in [AM].
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Proposition 3.3.1. Given f ∈ L2(∂Ω),

(3.3.10) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

See §3.5 for a proof. Given this, and noting that

(3.3.11) e−tN1 ≡ 1,

we see that if f ∈ L2(∂Ω) and a < b ∈ R,

(3.3.12) a ≤ f ≤ b =⇒ a ≤ e−tNf ≤ b,

hence

(3.3.13) e−tN : L∞(∂Ω) −→ L∞(∂Ω), t ≥ 0,

and

(3.3.14) ‖e−tNf‖L∞(∂Ω) ≤ ‖f‖L∞(∂Ω).

Note that interpolation with ‖e−tNf‖L2 ≤ ‖f‖L2 gives

(3.3.15) ‖e−tNf‖Lp(∂Ω) ≤ ‖f‖Lp(∂Ω), for 2 ≤ p ≤ ∞.

By duality,

(3.3.16) ‖e−tNf‖Lp(∂Ω) ≤ ‖f‖Lp(∂Ω), for 1 < p ≤ ∞.

We are now prepared to prove the following.

Proposition 3.3.2. The family {e−tN : t ≥ 0} is a strongly continuous semigroup
on Lp(∂Ω) for each p ∈ (1,∞).

Proof. We already have this for p = 2. For p ∈ (1, 2), the result follows from the
uniform bound (3.3.16) together with the denseness of L2(∂Ω) in Lp(∂Ω) and the
strong continuity on L2(∂Ω). For p ∈ (2,∞), it follows from the estimate (valid for
f ∈ L∞(∂Ω))
(3.3.17)

‖e−tjNf − e−tNf‖Lp(∂Ω) ≤ ‖e−tjNf − e−tNf‖θL2(∂Ω)‖e
−tjNf − e−tNf‖1−θ

L∞(∂Ω),

with θ = θ(p) ∈ (0, 1), that strong continuity in Lp-norm holds for f ∈ L∞(∂Ω),
and then strong continuity for all f ∈ Lp(∂Ω) follows from denseness of L∞(∂Ω) in
Lp(∂Ω), together with the uniform operator bounds in (3.3.16).

We next establish the left endpoint case of Proposition 3.3.2.
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Proposition 3.3.3. The family {e−tN : t ≥ 0} is a strongly continuous semigroup
on L1(∂Ω).

Proof. Given f ∈ L2(∂Ω), t ≥ 0, we have

(3.3.18)

‖e−tNf‖L1(∂Ω) = sup {|〈e−tNf, g〉| : ‖g‖L∞(∂Ω) ≤ 1}
= sup {|〈f, e−tNg〉| : ‖g‖L∞(∂Ω) ≤ 1}
≤ sup {‖f‖L1(∂Ω)‖e−tNg‖L∞(∂Ω) : ‖g‖L∞(∂Ω) ≤ 1}
≤ ‖f‖L1(∂Ω),

the last inequality by the contraction property of e−tN on L∞(∂Ω). Since L2(∂Ω)
is dense in L1(∂Ω), it follows that e−tN has a unique continuous extension

(3.3.19) e−tN : L1(∂Ω) −→ L1(∂Ω),

for each t ≥ 0, and each e−tN has L1-operator norm ≤ 1. The semigroup property
follows from the denseness of L2(∂Ω) in L1(∂Ω), together with the uniform operator
norm bounds, as does the strong continuity of the semigroup on L1(∂Ω).

The arguments proving Propositions 3.3.2–3.3.3 apply quite generally when (3.3.10)–
(3.3.11) hold, as long as (∂Ω, dS) is a finite measure space. The following results
make use of properties special to Lipschitz domains, starting with the following
consequence of an application of (3.1.41) to Proposition 3.3.2.

Proposition 3.3.4. The family {e−tN : t ≥ 0} is a strongly continuous semigroup
on

(3.3.20) H1,p(∂Ω), for each p ∈ (1, q(Ω)).

A Sobolev embedding argument plus (3.3.14) leads to the following.

Corollary 3.3.5. The family {e−tN : t ≥ 0} is a strongly continuous contraction
semigroup on C(∂Ω), provided dimΩ = n and q(Ω) > n − 1. In particular, this
holds when dimΩ ≤ 3.

From here, a duality argument gives the following.

Corollary 3.3.6. If q(Ω) > n− 1, then

(3.3.21) e−tN : M(∂Ω) −→ M(∂Ω), t ≥ 0,

is a weak∗ continuous contraction semigroup.

We next discuss irreducibility of the semigroup {e−tN}, defined as follows. Given
measurable Γ0 ⊂ ∂Ω and Γ1 = ∂Ω \ Γ0, set L

2(Γj) = {f ∈ L2(∂Ω) : supp f ⊂ Γj}.
We say {e−tN} is reducible if such Γj exist, both with positive measure, and

(3.3.22) e−tN : L2(Γ0) −→ L2(Γ0), ∀ t ≥ 0.

Note that if (3.3.22) holds, then, by self adjointness, e−tN also preserves the orthog-
onal complement of L2(Γ0), which is L2(Γ1). If no such Γj exist, we say {e−tN} is
irreducible. The next result is contained in Theorem 4.2 of [AM]. See also Propo-
sition 2.2 of [AtE].
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Proposition 3.3.7. Assume that Ω is connected. Then {e−tN : t ≥ 0} is irre-
ducible.

Proof. Take measurable Γ0 ⊂ ∂Ω and Γ1 = ∂Ω\Γ0, and assume (3.3.22) holds. Set
χj = χΓj

. Using the facts

(3.3.23) supp e−tNχj ⊂ Γj , 0 ≤ e−tNχj ≤ 1, e−tNχ0 + e−tNχ1 = etN1 ≡ 1,

we deduce that

(3.3.24) e−tNχj ≡ χj , ∀ t ≥ 0.

It follows that

(3.3.25) χj ∈ D(N) = H1(∂Ω), and Nχj = 0.

Then, thanks to (3.1.2), u = PIχ0 satisfies (3.1.9)–(3.1.11) with g = 0. Conse-
quently uniqueness for the Neumann problem implies u is a constant, say u = c.
Meanwhile, u|∂Ω = χ0. Hence either c = 0 and χ0 = 0 or c = 1 and χ1 = 0, i.e.,
either Γ0 or Γ1 has measure 0. This proves irreducibility.

Remark. In case ∂Ω is smooth, Proposition 2.3.2 implies irreducibility. It is
tempting to ask if Proposition 2.3.2 continues to work for Lipschitz domains, at
least in the setting of Corollary 3.3.6 (where we also have (3.3.9)).

We return to mapping properties of e−tN , such as (3.3.3)–(3.3.7), and seek quan-
titative estimates, particularly on the rate of blow-up as t↘ 0. To start, we have

(3.3.26)

‖e−tNf‖H1(∂Ω) ≤ Cet‖(N + 1)e−t(N+1)f‖L2(∂Ω)

≤ C
et

t
‖f‖L2(∂Ω),

since t(N + 1)e−t(N+1) has uniformly bounded L2-operator norm. More generally,
we have

(3.3.27) D((N + 1)s) = [L2(∂Ω),H1(∂Ω)]s = Hs(∂Ω), 0 ≤ s ≤ 1,

hence

(3.3.28) ‖e−tNf‖Hs(∂Ω) ≤ C
et

ts
‖f‖L2(∂Ω), 0 ≤ s ≤ 1.

It is an exercise to improve this for t ≥ 1, and replace ett−s by (t ∧ 1)−s. Next, we
can use Sobolev embedding results,

(3.3.29) Hs(∂Ω) ⊂ L2(n−1)/(n−1−2s)(∂Ω), 0 ≤ s <
n− 1

2
, s ≤ 1.
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For example,

(3.3.30)

H1(∂Ω) ⊂ L2(n−1)/(n−3)(∂Ω), n > 3,

H1/2(∂Ω) ⊂ L2(n−1)/(n−2)(∂Ω), n > 2,

H1/4(∂Ω) ⊂ L2(n−1)/(n−3/2)(∂Ω), n > 1.

From (3.3.28) (with ett−s replaced by (t ∧ 1)−s) and (3.3.29), one has estimates of
the form

(3.3.31) ‖e−tNf‖Lp(∂Ω) ≤ C(t ∧ 1)−s‖f‖L2(∂Ω),

with

(3.3.32) p =
2(n− 1)

n− 1− 2s
, provided 0 ≤ s <

n− 1

2
and s ≤ 1,

or equivalently

(3.3.33) s = (n− 1)
(1
2
− 1

p

)
, provided 0 ≤ s <

n− 1

2
and s ≤ 1.

Since e−tN satisfies the Markovian conditions (3.3.10)–(3.3.11), results of [Var]
and [EO] allow us to extend the scope of (3.3.31) as follows.

Proposition 3.3.8. For each p ∈ [2,∞],

(3.3.34) ‖e−tNf‖Lp(∂Ω) ≤ Cp(t ∧ 1)−(n−1)(1/2−1/p)‖f‖L2(∂Ω).

Proof. First we treat the case n > 2. As shown in §2 of [Var], with complements
in §7, the following are equivalent:

(3.3.35) ‖f‖2L2σ/(σ−1)(∂Ω) ≤ C1

[
〈Nf, f〉+ ‖f‖2L2(∂Ω)

]
, ∀f ∈ D(N),

and

(3.3.36) ‖e−tNf‖L∞(∂Ω) ≤ C2t
−σ/2‖f‖L2(∂Ω), 0 < t ≤ 1,

as long as σ > 1. The estimate (3.3.35) is equivalent to

(3.3.37) ‖f‖2Lp(∂Ω) ≤ ‖f‖2H1/2(∂Ω), p =
2σ

σ − 1
,

which, by (3.3.30), holds with σ = n− 1. Consequently, the results of [Var] yield

(3.3.38) ‖e−tNf‖L∞(∂Ω) ≤ Ct−(n−1)/2‖f‖L2(∂Ω), 0 < t ≤ 1,
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provided n > 2. This plus interpolation gives (3.3.34), since estimates for t ≥ 1 are
elementary.

When n = 2, these results of [Var] do not apply. Note that in this case (3.3.31)–
(3.3.33) hold for 0 ≤ s < 1/2, and hence we already have (3.3.34) for 2 ≤ p <∞.

To get the endpoint case p = ∞ when n = 2, we can follow [EO] and use the
fact that (again thanks to the Markov property), estimates of the form (3.3.34)
extrapolate, from a given p = p0 ∈ (2,∞) to all p ∈ (2,∞], via a result of [Cou].

Here is another approach to the endpoint case p = ∞ of (3.3.34) when n = 2. In
that case, we can use the estimate

(3.3.39) ‖g‖2L∞(∂Ω) ≤ C‖g‖L2(∂Ω)‖g‖H1(∂Ω), dim ∂Ω = 1.

We get

(3.3.40)
‖e−tNf‖2L∞(∂Ω) ≤ C‖e−tNf‖L2(∂Ω)‖e−tNf‖H1(∂Ω)

≤ C(t ∧ 1)−1‖f‖2L2(∂Ω),

the last inequality by (3.3.21) (with ett−1 replaced by (t∧1)−1). This gives (3.3.34)
for n = 2, p = ∞.

Let us linger on the case n = 3 of Proposition 3.3.8. In that case, the range of
s in (3.3.33) is 0 ≤ s < 1, so the range of p in (3.3.32) is 2 ≤ p < ∞. Again, the
results of (3.3.31)–(3.3.33) cover all of (3.3.34) except the endpoint case, p = ∞.
We will provide an alternative treatment of this case shortly, after looking into
H1,p(∂Ω)-estimates on e−tNf , for p ∈ (2, q(Ω)).

We resume study of the general case dimΩ = n. We have, for 2 < p < q(Ω),

(3.3.41)

‖e−tNf‖H1,p(∂Ω) ≤ C‖(N + 1)e−tNf‖Lp(∂Ω)

= C‖e−tN (N + 1)f‖Lp(∂Ω)

≤ C(t ∧ 1)−(n−1)(1/2−1/p)‖(N + 1)f‖L2(∂Ω)

≤ C(t ∧ 1)−(n−1)(1/2−1/p)‖f‖H1(∂Ω),

the third line by (3.3.34). Replacing f by e−tNf and rescaling t, we have

(3.3.42)
‖e−tNf‖H1,p(∂Ω) ≤ C(t ∧ 1)−(n−1)(1/2−1/p)‖e−(t/2)Nf‖H1(∂Ω)

≤ C(t ∧ 1)−1−(n−1)(1/2−1/p)‖f‖L2(∂Ω),

for 2 < p < q(Ω).
Returning to the case n = dimΩ = 3, we bring in the following Gagliardo-

Nirenberg type inequality:

(3.3.43) ‖g‖L∞(∂Ω) ≤ C‖g‖1−2/p
Lp(∂Ω)‖g‖

2/p
H1,p(∂Ω), dim ∂Ω = 2, p > 2.
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Taking p ∈ (2, q(Ω)) and g = e−tNf , we have

(3.3.44)

‖e−tNf‖L∞(∂Ω)

≤ C‖e−tNf‖1−2/p
Lp(∂Ω)‖e

−tNf‖2/pH1,p(∂Ω)

≤ C(t ∧ 1)−(n−1)(1/2−1/p)(1−1/p)(t ∧ 1)−(2/p)(1+(n−1)(1/2−1/p))‖f‖L2(∂Ω)

= C(t ∧ 1)−1‖f‖L2(∂Ω),

thereby yielding another proof of (3.3.34) for p = ∞, n = 3.
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3.4. On the spectrum of N

Since D(N) = H1(∂Ω), we know that N has compact resolvent and discrete
spectrum. As in §3.1, we have an orthonormal basis {ϕj} of L2(∂Ω) consisting of
eigenfunctions of N with

(3.4.1) Nϕj = λjϕj , 0 ≤ λj ↗ +∞.

In case ∂Ω is smooth, the fact that N is an elliptic pseudodifferential operator in
OPS1(∂Ω) yields strong results on the behavior of λj as j ↗ +∞. Namely, we
have

(3.4.2) λj ∼ αj1/(n−1) as j ↗ +∞,

where, recall n = dimΩ. One way to get this is to construct a parametrix for e−tN

and show that

(3.4.3) Tr e−tN ∼ At−(n−1), t↘ 0,

with

(3.4.4) A = (Area Sn−2) (Area ∂Ω).

Alternatively, one can use wave equation techniques to get finer results.
When Ω is a general Lipschitz domain, such an analysis is not available. Our

goal here is to derive results on how λj ↗ +∞ that, while weaker than (3.4.2),
have common features.

We start with results on Tr e−tN that are derivable from (3.3.34), with p = ∞,
which allows us to write

(3.4.5) e−tNf(x) =

∫
∂Ω

Kt(x, y)f(y) dS(y),

with

(3.4.6)

∫
∂Ω

|Kt(x, y)|2 dS(y) ≤ C(t ∧ 1)−(n−1).

It follows that the Hilbert-Schmidt norm of e−tN has the estimate

(3.4.7) ‖e−tN‖2HS ≤ Ct−(n−1), t ≤ 1,
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and hence

(3.4.8) Tr e−tN = ‖e−(t/2)N‖2HS ≤ Ct−(n−1), t ≤ 1,

which is a good estimate, in light of the result (3.4.3) for the smooth case. In terms
of the eigenvalues {λj}, this becomes

(3.4.9)
∑
j≥0

e−tλj ≤ C(t ∧ 1)−(n−1).

If we multiply both sides of (3.4.9) by e−tts−1 and integrate over t ∈ (0,∞), we
get

(3.4.10)
∑
j≥0

(λj + 1)−s ≤ C +
C

s− (n− 1)
, s > n− 1.

Furthermore, one can readily show that Tr(N + 1)−s is holomorphic in the half
plane Re s > n − 1. When ∂Ω is smooth, (3.4.3), supplemented by the next term
in the asymptotic expansion, implies a stronger result, namely Tr(N + 1)−s is
meromorphic in the half space Re s > n − 2, with one pole, at s = n − 1. For
general Lipschitz domains, we do not establish such a result, but we will prove the
following.

Proposition 3.4.1. When Ω is an n-dimensional Lipschitz domain,

(3.4.11)
∑
j≥0

(λj + 1)−(n−1) = +∞.

To show this, we bring in the space Ip(∂Ω) of bounded linear operators B on
L2(∂Ω) satisfying

(3.4.12) Tr(B∗B)p/2 <∞.

The content of (3.4.11) is that

(3.4.13) (N + 1)−1 /∈ In−1(∂Ω).

By comparison, (3.4.10) implies

(3.4.14) (N + 1)−1 ∈ Ip(∂Ω), ∀ p > n− 1.

Thus, Proposition 3.4.1 is a consequence of the following.
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Proposition 3.4.2. Let Ω be an n-dimensional Lipschitz domain. If B ∈ L(L2(∂Ω))
and

(3.4.15) B : L2(∂Ω)
≈−→ H1(∂Ω),

then

(3.4.16) B ∈ Ip(∂Ω) ⇐⇒ p > n− 1.

Proof. There exists a smooth compact (n− 1)-dimensional manifold X that is bi-
Lipschitz equivalent to ∂Ω. Under this equivalence, operators in L(L2(∂Ω)) are
taken to operators in L(L2(X)). This correspondence takes Ip(∂Ω) isomorphically
to Ip(X), and since the bi-Lipschitz map takes H1(∂Ω) isomorphically to H1(X),

it takes operators B satisfying (3.4.15) to B̃ : L2(X)
≈−→ H1(X). Note that

(3.4.17) B ∈ Ip(∂Ω) ⇐⇒ B̃ ∈ Ip(X).

Now take a positive, self-adjoint Λ ∈ OPS1(X). By the discussion above,

(Λ + 1)−1 ∈ Ip(X) ⇐⇒ p > n− 1.

Also (Λ + 1)−1 : L2(X)
≈−→ H1(X). It follows that, if B satisfies (3.4.15),

(3.4.18) (Λ + 1)−1 = B̃V, V ∈ L(L2(X)), invertible.

Now Ip(X) is a two-sided ideal in L(L2(X)) (cf. [Si]), so (3.4.18) implies (Λ+1)−1 ∈
Ip(X) if and only if B̃ ∈ Ip(X). This proves (3.4.16).
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3.5. Approaches to the proof of Proposition 3.3.1

Proposition 3.3.1, from [AM], asserts that if Ω ⊂M is a Lipschitz domain, then,
for f ∈ L2(∂Ω),

(3.5.1) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

If ∂Ω is smooth, this result has a simple proof, as seen in §2.3, but the proof given
there does not work on general Lipschitz domains. Here we discuss the more subtle
argument used in [AM], and some variants.

A key tool used in the proof is the following Beurling-Deny positivity criterion.
Let H be a positive semidefinite self-adjoint operator on L2(X, µ), and set

(3.5.2) Q(f, g) = 〈H1/2f,H1/2g〉, f, g ∈ D(Q) = D(H1/2).

Here 〈 , 〉 denotes the inner product in L2(X, µ). Assume

(3.5.3)
f ∈ D(Q) =⇒ |f | ∈ D(Q), and

Q(|f |, |f |) ≤ Q(f, f).

Then

(3.5.4) f ∈ L2(X, µ), f ≥ 0 =⇒ e−tHf ≥ 0.

See [Dav], Theorem 1.3.2.
In the current setting, where X = ∂Ω is the boundary of a Lipschitz domain and

H = N , we have D(Q) = H1/2(∂Ω), by (3.1.25), and the first condition in (3.5.3)
is

(3.5.5) f ∈ H1/2(∂Ω) =⇒ |f | ∈ H1/2(∂Ω).

This is a special case of the result of [CW] that if Φ : R → R is Lipschitz, with
Lipschitz constant K, and Φ(0) = 0, then, for s ∈ (0, 1), p ∈ (1,∞),

(3.5.6) ‖Φ ◦ f‖Hs,p(∂Ω) ≤ CspK‖f‖Hs,p(∂Ω).

See also [T2], Chapter 2, §4.
It is useful to know that one can replace the hypothesis (3.5.3) by the following,

which can be easier to check. Namely, let V ⊂ D(H1/2) be a dense linear subspace,
and assume that

(3.5.7) f ∈ V =⇒ |f | ∈ D(H1/2) and Q(|f |, |f |) ≤ Q(f, f).
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Then (3.5.4) holds. See Lemma 1.3.4 of [Dav].
In light of this result, we see that, to establish (3.5.1), it suffices to show that

(3.5.8) f ∈ Lip(∂Ω) =⇒ 〈N |f |, |f |〉 ≤ 〈Nf, f〉.

To restate this condition, let us set

(3.5.9) f = f+ − f−, |f | = f+ + f−, f+ = max(f, 0).

Then

(3.5.10)

Q(|f |, |f |) = Q(f+ + f−, f+ + f−)

= Q(f+, f+) +Q(f−, f−) + 2Q(f+, f−)

= Q(f, f) + 4Q(f+, f−),

so

(3.5.11) Q(|f |, |f |) ≤ Q(f, f) ⇐⇒ Q(f+, f−) ≤ 0.

Hence, to establish (3.5.1), it suffices to show that

(3.5.12) f ∈ Lip(∂Ω) =⇒ 〈Nf+, f−〉 ≤ 0.

Here is one further simplifying construction. Define Φj : R → R by

(3.5.13)

Φj(s) = 0 for |s| ≤ 1

j
,

s− 1

j
for s ≥ 1

j
,

s+
1

j
for − s ≥ 1

j
.

Given f ∈ Lip(∂Ω), fj = Φj ◦ f is a bounded family of Lipschitz functions, and
we have both fj → f and |fj | → |f | in H1(∂Ω)-norm. (See [T2], Chapter 2,
Proposition 6.5.) Therefore, (3.5.8) follows from 〈N |fj |, |fj |〉 ≤ 〈Nfj , fj〉, and
hence from 〈Nf+j , f

−
j 〉 ≤ 0. We have demonstrated the following.

Lemma 3.5.1. Let Ω ⊂M be a Lipschitz domain. Assume you know that 〈Nf+, f−〉 ≤
0 whenever f+, f− ∈ Lip(∂Ω) satisfy

(3.5.14) f+, f− ≥ 0, and are supported on disjoint compact subsets of ∂Ω.

Then the positivity result (3.5.1) holds.

To proceed, assume

(3.5.15) f+ ∈ Lip(∂Ω), f+ ≥ 0, f+ = 0 on O,
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where O ⊂ ∂Ω is open. Set

(3.5.16) u+ = PI f+,

so (3.1.2) applies to u+. We also have

(3.5.17) u+(x) ≥ 0, ∀x ∈ Ω, u+
∣∣∣
O
= 0,

the latter in the sense of a nontangential trace, a.e. on O. These results lead to

(3.5.18) ∂νu
+
∣∣∣
O
≤ 0, a.e.,

which implies 〈Nf+, f−〉 ≤ 0 in the setting of Lemma 3.5.1.
The proof of (3.5.1) in [AM] did not make use of reductions such as (3.5.8).

Rather, it took f ∈ D(Q) and verified (3.5.3), in the form (3.5.11), as follows. To
fix notation, we set

(3.5.19) u = PI f, u± = PI f±,

and we also write

(3.5.20) u = up − um, up = max(u, 0).

Thus up, um ∈ H1(Ω) and up|∂Ω = f+, um|∂Ω = f−. As noted in [AM], this
directly gives f± ∈ D(Q). We also set

(3.5.21) u0 = u+ − up, so u0 ∈ H1
0 (Ω), ∆u0 = −∆up ∈ H−1(Ω).

Note that um − u− has the same properties, so

(3.5.22) um − u− = u0.

We now compute:

(3.5.23)

Q(f+, f−) = (∇u+,∇u−)
= (∇up +∇u0,∇um −∇u0)
= (∇up,∇um) + (∇u,∇u0)− ‖∇u0‖2L2(Ω).

Now

(3.5.24) (∇up,∇um) = 0 and (∇u,∇u0) = 0,

so

(3.5.25) Q(f+, f−) = −‖∇u0‖2L(Ω) ≤ 0,

as desired.
One advantage of this argument of [AM] over the reduction argument, via Lemma

3.5.1, is its extendability to rougher settings, as pursued in [AtE]. We discuss this
further in §4.3.



48

4. Finite perimeter domains

LetM be a compact, connected, n-dimensional Riemannian manifold and Ω ⊂M
a nonempty open subset. We will assume

(4.0.1) M \ Ω 6= ∅.

We say Ω is a finite perimeter domain if and only if its characteristic function χΩ

has the property that ∇χΩ, defined a priori as a distribution on M , is a finite
(vector valued) measure. In such a case, we can write

(4.0.2) ∇χΩ = −νσ,

where σ is a positive measure on ∂Ω and ν(x) ∈ TxM satisfies |ν(x)| = 1 for σ-
a.e. x. A useful characterization is that Ω is a finite perimeter domain if and only
if

(4.0.3) Hn−1(∂∗Ω) <∞,

whereHn−1 denotes (n−1)-dimensional Hausdorff measure and ∂∗Ω is the measure-
theoretic boundary of Ω, consisting by definition of all points p ∈ ∂Ω at which both
Ω and M \ Ω have positive density. It is an important structural result that if Ω
has finite perimeter, then ∂∗Ω is countably rectifiable and

(4.0.4) σ = Hn−1b∂∗Ω.

Proofs of these results can be found in Chapter 5 of [EG], in the case of domains in
Euclidean space, with complements in [HMT] for domains in Riemannian manifolds.
One consequence of these results is that Ω is a finite perimeter domain whenever
Hn−1(∂Ω) < ∞. On the other hand, there are finite perimeter domains for which
Hn−1(∂Ω \ ∂∗Ω) = ∞.

An important property of finite perimeter domains is the divergence formula,
derived as follows. Let X be a smooth vector field on M . Taking the inner product
(in the distributional sense) of both sides of (4.0.2) with X and passing from ∇,
acting on χΩ, to its adjoint, −div, acting on X, yields

(4.0.5)

∫
Ω

divX dV =

∫
∂∗Ω

〈ν,X〉 dσ.

A straightforward approximation argument (cf. [HMT], §2.2 and §5.3) extends the
scope of this identity from vector fields X ∈ C∞(M) to

(4.0.6) X ∈ C(M) such that divX ∈ L1(M).
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In particular, (4.0.5) holds for vector fields X ∈ Lip(Ω).
In this chapter we pick a measure µ on ∂Ω such that µ ≥ σ and construct the

Dirichlet-to-Neumann map N as a positive semidefinite self-adjoint operator on
L2(∂Ω, µ), following [AtE], which considered

(4.0.7) Ω ⊂ Rn, Hn−1(∂Ω) <∞, µ = Hn−1b∂Ω.

The approach of [AtE] involved a generalization of the Friedrichs method of pro-
ducing a positive self-adjoint operator from a quadratic form. We give an abstract
version of such a result in Appendix A of this work. Another important ingredient
in [AtE] is an estimate of the L2-norm of a function u on Ω in terms of the L2-
norm of ∇u on Ω and the L2-norm of u on ∂Ω, due to [Maz], in case Ω ⊂ Rn and
Hn−1(∂Ω) <∞. We give an extension of this result in §4.1, and proceed in §4.2 to
use this to implement the general method described in Appendix A to define N . A
key object in the construction is the space W#, the closure in H1(Ω)⊕ L2(∂Ω, µ)
of {(u, u|∂Ω) : u ∈ Lip(Ω)}. The restriction map τ : Lip(Ω) → Lip(∂Ω) given by
τu = u|∂Ω gives rise to a continuous map τ# :W# → L2(∂Ω, µ), and we have

(4.0.8) D(N1/2) = τ#(W#) ⊂ L2(∂Ω, µ).

Also D(N1/2) is the isomorphic image under τ# of the space V ⊂W#, the orthog-
onal complement of Ker τ# in W#, with respect to the inner product

(4.0.9) β
(
(u, f), (v, g)

)
=

∫
Ω

〈∇u,∇v〉 dV +

∫
∂Ω

fg dµ.

In §4.3 we consider e−tN and show that this is a symmetric Markov semigroup.
As in [AtE], the crux is to show that the Beurling-Deny criterion is applicable.

In §4.4 we consider the Poisson integral. We define

(4.0.10) PI : D(N1/2) −→ H1(Ω)

by

(4.0.11) PI f = u, where (u, f) ∈ V.

We note that C∞(∂Ω) is dense in D(N1/2), and compare PI |C∞(∂Ω) as defined
above with a common alternative, described in various places, including [GT] and

[T1]. We see that the two maps coincide provided
◦
H1(Ω) = H1

0 (Ω), where H
1
0 (Ω)

is the closure in H1(Ω) of C∞
0 (Ω), and

(4.0.12)
◦
H1(Ω) = {u ∈ H1(Ω) : (u, 0) ∈W#}.

Issues such as whether
◦
H1(Ω) = H1

0 (Ω), whether Lip(Ω) is dense in H1(Ω), and
others, which can be regarded as regularity conditions on Ω, are examined in §4.5.

In §§4.1–4.5, we assume M carries a C∞ metric tensor. In §4.6 we extend our
analysis of finite perimeter Ω ⊂M to cases where the metric tensor on M is rough.
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4.1. A Sobolev space estimate

As in the introduction to this section, we assume Ω ⊂ M is a finite perimeter
domain satisfying (4.0.1). Our goal is to prove the following.

Proposition 4.1.1. There exists C = C(Ω) <∞ such that, for all u ∈ Lip(Ω),

(4.1.1)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂∗Ω

|u|2 dσ.

A result of this nature, taken from [Maz], was used in [AtE], for a more restricted
class of domains Ω. There it was assumed that Ω ⊂ Rn and Hn−1(∂Ω) < ∞, and
the boundary integral was taken to be

∫
∂Ω

|u|2 dHn−1.

Proof of Proposition 4.1.1. We use the divergence formula (4.0.5), valid for vector
fields X ∈ Lip(Ω), taking

(4.1.2) X = |u|2Y, Y ∈ C∞(M), div Y = 1 on Ω,

which can be arranged, given (4.0.1). For example, take Y = ∇v with ∆v = 1 on
a neighborhood of Ω. From (4.1.2) we have

(4.1.3) divX = |u|2 div Y + 2u〈∇u, Y 〉,

and (4.0.5) yields

(4.1.4)

∫
Ω

|u|2 dV =

∫
∂∗Ω

|u|2〈ν, Y 〉 dσ − 2

∫
Ω

u〈∇u, Y 〉 dV.

Now

(4.1.5) 2
∣∣∣∫
Ω

u〈∇u, Y 〉 dV
∣∣∣ ≤ 1

2

∫
Ω

|u|2 dV + 2

∫
Ω

〈∇u, Y 〉2 dV,

so (4.1.4) yields

(4.1.6)
1

2

∫
Ω

|u|2 dV ≤ 2

∫
Ω

〈∇u, Y 〉2 dV +

∫
∂∗Ω

|u|2〈ν, Y 〉 dσ,

and this implies (4.1.1).
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4.2. Construction of N

Let Ω ⊂ M be a finite perimeter domain, as in §4.1. We continue to as-
sume (4.0.1). Adapting arguments from [AtE], we will construct the Dirichlet-
to-Neumann map N as a positive semidefinite, self-adjoint operator on a Hilbert
space H of the form

(4.2.1) H = L2(∂Ω, µ),

where µ is a finite measure on ∂Ω satisfying

(4.2.2) µ ≥ σ,

with σ as in (4.0.2) and (4.0.4). In case ∂Ω = ∂∗Ω, we are happy to take µ = σ,
but if ∂Ω \ ∂∗Ω has big pieces, we might want to add a measure supported on
this complement. For example, if Hn−1(∂Ω) < ∞ but Hn−1(∂Ω \ ∂∗Ω) > 0, we
could take µ = Hn−1b∂Ω, as is done in [AtE]. Note that (4.2.2) combined with
Proposition 4.1.1 yields

(4.2.3)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂Ω

|u|2 dµ,

for all u ∈ Lip(Ω).
We will construct N via the general program described in Appendix A. Ingre-

dients include, in addition to H in (4.2.1), a space W0 and maps τ and α, as in
(A.14)–(A.15). We take

(4.2.4) W0 = Lip(Ω), τu = u
∣∣
∂Ω
.

Clearly the range of τ is dense in C(∂Ω), which in turn is dense in L2(∂Ω, µ), so
(A.14) holds. Next, we take

(4.2.5) α :W0 ×W0 −→ R, α(u, v) =

∫
Ω

〈∇u,∇v〉 dV.

Elements of Kerα are constant on each connected component of Ω, so clearly Kerα∩
Ker τ = 0, giving (A.16). Now, as in (A.17), we set

(4.2.6)

β(u, v) = α(u, v) + (τu, τv)H

=

∫
Ω

〈∇u,∇v〉 dV +

∫
∂Ω

uv dµ.
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Thanks to (4.2.3), this is a positive-definite inner product on W0, and as in (A.18),
we denote by W# its Hilbert space completion, to which τ extends continuously:

(4.2.7) τ# :W# −→ H.

Note that, by (4.2.3), a sequence (uk) in Lip(Ω) that is Cauchy in the norm
defiuned by β is also Cauchy in L2(Ω), hence in H1(Ω), while simultaneously
(τuk) = (uk|∂Ω) is Cauchy in L2(∂Ω, µ). Thus we have a natural map

(4.2.8) πΩ :W# −→ H1(Ω),

such that if (uk) is such a Cauchy sequence, uk → U in W#, uk → u in H1(Ω),
and τuk → f in L2(∂Ω, µ), then

(4.2.9) πΩU = u, τ#U = f,

and

(4.2.10) πΩ ⊕ τ# :W# −→ H1(Ω)⊕ L2(∂Ω, µ)

is a topological isomorphism of W# onto a closed linear subspace of H1(Ω) ⊕
L2(∂Ω, µ).

If Ω is a Lipschitz domain and µ = σ, then πΩ in (4.2.8)–(4.2.9) is an isomor-
phism, there is a trace map Tr : H1(Ω) → H1/2(∂Ω), and τ# = Tr ◦πΩ. However,
for rougher domains these properties can fail, as has been noted in [AtE].

It is natural to identify W# with the closure of

(4.2.11) G = {(u, u|∂Ω) : u ∈ Lip(Ω)} in H1(Ω)⊕ L2(∂Ω, µ),

and note that inherited from (4.2.3) is

(4.2.12)

(u, f) ∈ G =W#

=⇒
∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂Ω

|f |2 dµ.

Thus

(4.2.13) β
(
(u, f), (v, g)

)
=

∫
Ω

〈∇u,∇v〉 dV +

∫
∂Ω

fg dµ

is a Hilbert space inner product on W#.
To continue, as in (A.19) we form

(4.2.14) V =W#/Ker τ#,
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which inherits from τ# a continuous injection

(4.2.15) J : V −→ L2(∂Ω, µ),

whose image contains Lip(∂Ω) and hence is dense. The space V has a Hilbert space
structure, naturally isomorphic to the orthogonal complement of Ker τ# in W#,
with respect to the inner product (4.2.13):

(4.2.16) V = {(u, f) ∈W# : β((u, f), (v, g)) = 0, ∀ (v, g) ∈ Ker τ#}.

Of course,

(4.2.17)

(v, g) ∈ Ker τ# =⇒ g = 0

=⇒ β
(
(u, f), (v, g)

)
=

∫
Ω

〈∇u,∇v〉 dV.

Consequently, we can rewrite (4.2.16) as

(4.2.18) V =
{
(u, f) ∈W# :

∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈
◦
H1(Ω)

}
,

where (cf. (4.2.11))

(4.2.18A)
◦
H1(Ω) = {v ∈ H1(Ω) : (v, 0) ∈W#}.

Note that

(4.2.18B) H1
0 (Ω) ⊂

◦
H1(Ω),

where H1
0 (Ω) denotes the closure of C∞

0 (Ω) in H1(Ω). Consequently,

(4.2.19)
(u, f) ∈ V =⇒

∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈ H1
0 (Ω)

=⇒ ∆u = 0 on Ω.

We also mention that

(4.2.19A) H1
0 (Ω) =

◦
H1(Ω) =⇒ V = {(u, f) ∈W# : ∆u = 0 on Ω}.

From the injection (4.2.15), the Friedrichs method yields a positive self-adjoint
operator B on H = L2(∂Ω, µ), as described in Appendix A. To recap, the adjoint
J t : H → V ′ is also injective, with dense range, yielding

(4.2.20) V ↪→ H ↪→ V ′.
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The inner product β, given by (4.2.13), restricted to V = (Ker τ#)⊥, yields an

isomorphism Bβ : V
≈→ V ′, with inverse Tβ : V ′ → V . We restrict Tβ to H, to get a

bounded linear operator T : H → H, which is seen to be self-adjoint and injective,
hence with dense range R(T ) ⊂ H. Then the inverse B of T is densely defined,

(4.2.21) B : H −→ H, D(B) = R(T ) = {f ∈ J(V ) : Bβf ∈ H},

and B is self-adjoint. We have

(4.2.22)

(u, f), (v, g) ∈ V, f, g ∈ D(B)

=⇒ 〈Bf, g〉 =
∫
Ω

〈∇u,∇v〉 dV +

∫
∂Ω

fg dµ,

where 〈Bf, g〉 is the inner product of Bf and g in H = L2(∂Ω, µ). In particular,
SpecB ⊂ [1,∞). We set

(4.2.23) N = B − 1,

so N is self-adjoint and SpecN ⊂ [0,∞). In the setting of (4.2.22),

(4.2.24) 〈Nf, g〉 =
∫
Ω

〈∇u,∇v〉 dV.

Also, as noted in (A.24),

(4.2.25) D(N1/2) = τ#(W#).

We restate this last part.

Proposition 4.2.1. Given f ∈ L2(∂Ω, µ), we have f ∈ D(N1/2) if and only if
there exist uk ∈ Lip(Ω) and u ∈ H1(Ω) such that

(4.2.26) uk

∣∣∣
∂Ω

−→ f in L2(∂Ω, µ)

and

(4.2.27) uk −→ u in H1(Ω).

In such a case, we can pick (uk) such that

(4.2.28) ∆u = 0 on Ω.

By construction, for f ∈ D(B1/2) = D(N1/2),

(4.2.29) 〈B1/2f,B1/2f〉 = inf
{∫
Ω

|∇u|2 dV +

∫
∂Ω

|f |2 dµ : (u, f) ∈W#
}
.
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Also

(4.2.30) 〈N1/2f,N1/2f〉 = 〈B1/2f,B1/2f〉 − 〈f, f〉.

In fact, for f ∈ D(N), the left side is 〈Nf, f〉, and (4.2.23) yields the right side.
Denseness of D(N) in D(N1/2) then gives (4.2.30) for general f ∈ D(N1/2). Hence,
for f ∈ D(N1/2),

(4.2.31) 〈N1/2f,N1/2f〉 = inf
{∫
Ω

|∇u|2 dV : (u, f) ∈W#
}
.

Clearly (1, 1) ∈W#, so we have

(4.2.32) 1 ∈ KerN1/2 = KerN.

Keeping in mind that the inf on the right side of (4.2.29) is achieved, we see that,
for f ∈ L2(∂Ω, µ),

(4.2.33) f ∈ KerN ⇔ (u, f) ∈W# for some u ∈ H1(Ω) satisfying ∇u ≡ 0.

If Ω is connected, such u is constant on Ω, and we have the following.

Proposition 4.2.2. If Ω is connected,

(4.2.34) KerN = Span(1) + Z(Ω, µ),

where

(4.2.35) Z(Ω, µ) = {f ∈ L2(∂Ω, µ) : (0, f) ∈W#}.

If Ω is a Lipschitz domain (and µ = σ), Z(Ω, µ) = 0. In fact, this holds whenever
there is an estimate

(4.2.36)

∫
∂Ω

|u|2 dµ ≤ C

∫
Ω

(
|∇u|2 + |u|2

)
dV, ∀u ∈ Lip(Ω).

See Proposition 4.5.1 for more general conditions that guarantee Z(Ω, σ) = 0. How-
ever, there exist domains for which Z(Ω, µ) 6= 0, as seen in §4 of [AtE], and in
(4.5.19) below.
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4.3. The semigroup e−tN

The positive semidefinite, self-adjoint operator N constructed on H = L2(∂Ω, µ)
in §4.2 yields a contraction semigroup e−tN on H. Our first goal here is to prove
the following.

Proposition 4.3.1. Given f ∈ L2(∂Ω, µ),

(4.3.1) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

The proof, adapted from that of Proposition 3.7 in [AtE], centers around an
application of the Beurling-Deny positivity criterion. That is, we need to show
that f ∈ D(N1/2) ⇒ |f | ∈ D(N1/2) and

(4.3.2) 〈N1/2|f |, N1/2|f |〉 ≤ 〈N1/2f,N1/2f〉.

As seen in (4.2.31),

(4.3.3) 〈N1/2f,N1/2f〉 = inf
{∫
Ω

|∇u|2 dV : (u, f) ∈W#
}
.

Furthermore, we have (cf. [T2], Chapter 2, Proposition 6.4)

uk → u in H1(Ω) =⇒ |uk| → |u| in H1(Ω).

It follows that

(4.3.4) (u, f) ∈W# =⇒ (|u|, |f |) ∈W#.

Thus it suffices to show that

(4.3.5)

∫
Ω

|∇|u| |2 dV ≤
∫
Ω

|∇u|2 dV,

for each u in the closure of Lip(Ω) in H1(Ω). In fact, (4.3.5) holds for all u ∈ H1(Ω),
by Lemma 7.6 of [GT].

Since 1 ∈ KerN , we have

(4.3.6) e−tN1 ≡ 1,

so e−tN is a symmetric Markov semigroup. The argument involving (3.3.23)–
(3.3.24), used to prove Proposition 3.3.7, adapts readily to prove the following
(cf. [AtE], Proposition 2.2).

Proposition 4.3.2. Assume Ω is connected. If Z(Ω, µ) = 0, then {e−tN : t ≥ 0}
is irreducible.

For an extension to a class of sets Ω that are not connected, see §7.2.
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4.4. The Poisson integral

We take Ω ⊂M as in §4.1. Let us set
(4.4.1) H

1
(Ω) = closure of Lip(Ω) in H1(Ω),

and recall that

(4.4.2)
D(N1/2) = {f ∈ L2(∂Ω, µ) : (w, f) ∈W# for some w ∈ H

1
(Ω)}

= {f ∈ L2(∂Ω, µ) : (u, f) ∈ V for some u ∈ H
1
(Ω)}.

We define the continuous linear map

(4.4.3) PI : D(N1/2) −→ H
1
(Ω)

by

(4.4.4) PI f = u, where (u, f) ∈ V.

Recall that V was constructed so that such u is unique. We have

(4.4.5)

(u, f) ∈ V ⇐⇒ (u, f) ∈W# and∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈
◦
H1(Ω),

with
◦
H1(Ω) defined as in (4.2.18A). Also recall that (u, f) ∈ W# if and only if

there exist uk ∈ Lip(Ω) such that

(4.4.6) uk → u in H1(Ω) and uk
∣∣
∂Ω

→ f in L2(∂Ω, µ).

Also, reiterating the second identity in (4.4.2), we emphasize that

(4.4.7) ∀ (w, f) ∈W#, ∃ ! u ∈ H
1
(Ω) such that (u, f) ∈ V.

Furthermore, the construction of V as the orthogonal complement of Ker τ# inW#

yields, for (u, f) ∈ V ,

(4.4.7A) ‖∇u‖2L2(Ω) = inf
{
‖∇w‖2L2(Ω) : (w, f) ∈W#

}
.

Clearly w ∈ Lip(Ω) ⇒ (w,w|∂Ω) ∈W#, so we have

(4.4.8) Lip(∂Ω) ⊂ D(N1/2).

Actually, to call this natural map an inclusion, we want to require that

(4.4.9) Lip(∂Ω) −→ L2(∂Ω, µ) is injective,

which holds if and only if

(4.4.10) suppµ = ∂Ω.

From here on, we make this a requirement.
Since {(u, u|∂Ω) : u ∈ Lip(Ω)} is dense in W#, it is clear that Lip(∂Ω) is dense

in D(N1/2). The following stronger result is useful. Let C∞(∂Ω) denote {u|∂Ω :
u ∈ C∞(M)}.
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Proposition 4.4.1. The space C∞(∂Ω) is dense in D(N1/2).

Proof. It suffices to show that {(u|Ω, u|∂Ω : u ∈ C∞(M)} is dense in {(u, u|∂Ω) :

u ∈ Lip(Ω)}, in the W# norm, given by

(4.4.11) ‖(u, f)‖2W# = ‖u‖2H1(Ω) + ‖f‖2L2(∂Ω,µ).

To get this, take u ∈ Lip(Ω) and extend it to v ∈ Lip(M). Apply a standard
mollifier to obtain vk → C∞(M) such that

(4.4.12)
vk −→ v in H1,p(M), ∀ p <∞,

vk
∣∣
∂Ω

−→ v
∣∣
∂Ω
, uniformly.

This proves the denseness.

It follows that PI in (4.4.3) is uniquely determined by its restriction to C∞(∂Ω):

(4.4.13) PI : C∞(∂Ω) −→ H
1
(Ω).

It is natural to compare (4.4.13) with a variant,

(4.4.14) PI0 : C∞(∂Ω) −→ H
1
(Ω),

defined as follows. Given f ∈ C∞(∂Ω), pick F ∈ C∞(M) such that f = F |∂Ω, and
set

(4.4.15) PI0 f = F + v,

where v is defined by

(4.4.16) ∆v = −∆F ∈ L2(Ω), v ∈ H1
0 (Ω).

This operator is analyzed in §5.5 of [T1]. (For this, Ω can be any open subset of M
satisfying (4.0.1).) It is shown that PI0 f is independent of the choice of extension
F and that, given constants a, b ∈ R,

(4.4.17) a ≤ f ≤ b =⇒ a ≤ PI0 f ≤ b.

Thus PI0 has a unique extension from (4.4.14) to

(4.4.18) PI0 : C(∂Ω) −→ L∞(Ω), ∆PI0 f = 0 on Ω.

To compare (4.4.13) and (4.4.14), we note that

(4.4.19) u = PI f, u0 = PI0 f

have the following characterizations:

(4.4.20)

u− F ∈
◦
H1(Ω),

∫
Ω

〈∇u,∇w〉 dV = 0, ∀w ∈
◦
H1(Ω),

u0 − F ∈ H1
0 (Ω),

∫
Ω

〈∇u0,∇w〉 dV = 0, ∀w ∈ H1
0 (Ω).

Consequently we have the following.
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Proposition 4.4.2. Take Ω ⊂ M as in §4.1 and assume µ is a measure on ∂Ω
satisfying (4.2.2). Then

(4.4.21)
◦
H1(Ω) = H1

0 (Ω) =⇒ PI f = PI0 f, ∀ f ∈ C∞(∂Ω).

We prepare to give an example of a domain Ω for which the hypothesis and the
conclusion in (4.4.21) fail. Before doing so, we introduce notation that records how

the objects W#,
◦
H1(Ω), V , and PI all depend on the choice of measure µ on ∂Ω.

In detail, we use the (temporary) notation

(4.4.22) W#(µ),
◦
H1(Ω, µ), V (µ), and PI(µ),

respectively. Here W#(µ) is the completion of W0 = Lip(Ω) with respect to the

norm arising from (4.2.6),
◦
H1(Ω, µ) is defined as in (4.2.18A), with W#(µ) for

W#, V (µ) is as in (4.2.18), with
◦
H1(Ω, µ) for

◦
H1(Ω), and PI(µ) is as in (4.4.8),

with V (µ) for V . (In concert with this, we might also use the notation Nµ, given
as in (4.2.20)–(4.2.23), with V (µ) for V .)

Now, consider the following example. Take

(4.4.23) D = {x ∈ R2 : |x| < 1}, Ω = D \ γ, γ = {(t, 0) : −1 < t ≤ 0}.

Then

(4.4.24) ∂Ω = ∂D ∪ γ, ∂∗Ω = ∂D.

We use the measures

(4.4.25) σ = H1b∂D, µ = H1b∂Ω.

In these cases,

(4.4.26)

◦
H1(Ω, σ) = {u ∈ H1(Ω) : u|∂Ω = 0},
◦
H1(Ω, µ) = H1

0 (Ω),

so (4.4.21) holds for
◦
H1(Ω) =

◦
H1(Ω, µ), and we have

(4.4.27) PI(µ) f = PI0 f.

However, the hypothesis of (4.4.21) fails for
◦
H1(Ω, σ), and so does the conclusion.

In fact, given f ∈ C∞(∂Ω),

(4.4.28) PI(σ) f = PID(f |∂D),
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where PID is the Poisson integral on D. Also, the hypothesis (4.4.10) fails for σ,
so we bring in another measure, for which (4.4.10) holds. Namely, let {pj} be a
countable dense subset of γ, and set

(4.4.29) λ = σ +
∑
j≥1

2−jδpj
.

Then suppλ = ∂Ω, and we again have

(4.4.30) PI(λ) = PID .

We also mention that (4.4.1) fails for Ω in (4.4.23). The example (4.4.23) will
arise again in §5.1.
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4.5. Domains satisfying mild regularity conditions

Take Ω ⊂ M to be a finite perimeter domain satisfying (4.0.1). Here are some
properties that hold if Ω is a Lipschitz domain, and µ = σ.

H1(Ω) = H
1
(Ω),(4.5.1)

H1
0 (Ω) =

◦
H1(Ω),(4.5.2)

Z(Ω, σ) = 0.(4.5.3)

We want to identify broader classes of domains for which these properties hold.
First, it is well known and elementary that (4.5.1) holds whenever ∂Ω is locally

the graph of a continuous function, with the property that, for each p ∈ ∂Ω, there
is a neighborhood U of p in M and coordinates on U such that Ω ∩ U is given by

(4.5.4) xn < g(x′),

where x′ = (x1, . . . , xn−1) and g is continuous. For this, Ω need not have finite
perimeter. On the other hand, as shown in §§2.2 and 5.3 of [HMT], Ω has finite
perimeter provided one can cover ∂Ω with such open sets and take g in (4.5.4) to
satisfy

(4.5.5) g continuous and ∇g ∈ L1.

In these coordinates,

(4.5.6) ν(x) = (1 + |∇g(x′)|2)−1/2(−∇g(x′), 1), σ-a.e. on U ∩ ∂Ω,

up to a smooth positive factor if M has a non-flat metric. Furthermore, for this
class of domains,

(4.5.7) Hn−1(∂Ω \ ∂∗Ω) = 0.

Using (4.5.6) and a partition of unity, we can construct a smooth vector field Y
on M such that

(4.5.8) 〈ν, Y 〉 > 0, σ-a.e. on ∂∗Ω,

when Ω is a domain whose behavior near its boundary is locally described by
(4.5.4)–(4.5.5). Consequently the following result applies.
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Proposition 4.5.1. Let Ω ⊂ M be a finite perimeter domain satisfying (4.0.1).
Assume there is a smooth vector field Y on M such that (4.5.8) holds. Then
Z(Ω, σ) = 0.

Proof. From (4.0.5) with X = |u|2Y , we have the following variant of (4.1.4):

(4.5.9)

∫
∂∗Ω

|u|2〈ν, Y 〉 dσ =

∫
Ω

|u|2(div Y ) dV + 2

∫
Ω

u〈∇u, Y 〉 dV,

for each u ∈ Lip(Ω). Now suppose f ∈ Z(Ω, σ), so there exist uk ∈ Lip(Ω) such
that

(4.5.10) uk → 0 in H1(Ω), uk
∣∣
∂Ω

→ f in L2(∂Ω, σ).

By (4.5.9),

(4.5.11)

∫
∂∗Ω

|uk|2〈ν, Y 〉 dσ ≤ C‖uk‖2H1(Ω) −→ 0.

But the left side of (4.5.11) tends to the limit

(4.5.12)

∫
∂∗Ω

〈ν, Y 〉|f |2 dσ.

If (4.5.8) holds, this forces f = 0.

Remark. Extending the scope of Proposition 4.5.1, we note that, for Y , it suffices
to have Y ∈ C(M), div Y ∈ L∞(M), and (4.5.8).

Here is a more general class of domains to which Proposition 4.5.1 applies.

Proposition 4.5.2. Let Ω ⊂ M be a finite perimeter domain satisfying (4.0.1).
Assume that, for σ-a.e. p ∈ ∂∗Ω, there is a neighborhood U of p in M and coordi-
nates on U such that Ω∩U is given by (4.5.4)–(4.5.5). Then there exists a smooth
vector field Y on M such that (4.5.8) holds. Hence Z(Ω, σ) = 0.

Proof. Let Γ ⊂ ∂Ω denote the set of p ∈ ∂Ω for which such a neighborhood U
exists. Note that Γ is a relatively open subset of ∂Ω. Our hypothesis is that
σ(∂Ω \ Γ) = 0. Let Γk ⊂ Γ be an increasing sequence of compact subsets of Γ such
that σ(Γ\Γk) ↘ 0. Each Γk has a finite cover by such open sets U , and a partition
of unity argument yields smooth vector fields Yk on M such that

(4.5.13) 〈ν, Yk〉 ≥ 0 on ∂Ω, 〈ν, Yk〉 > 0, σ-a.e. on Γk.
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Then one can choose αk ↘ 0 sufficiently fast that Y =
∑

k αkYk does the trick.

Example. Let S = {pk} be a sequence of points in the unit squareQ = (0, 1)×(0, 1)
such that

(4.5.14) S = S ∪ γ, γ = {(1, y) : 0 ≤ y ≤ 1}.

Pick εk > 0 such that
∑

k εk < ∞ and the open disks Dk = Dεk(pk) are disjoint,
and set

(4.5.15) Ω =
⋃
k

Dk.

Then Ω is a finite perimeter domain. We have

(4.5.16) ∂∗Ω =
⋃
k

∂Dk, ∂Ω = ∂∗Ω ∪ γ.

Clearly Proposition 4.5.2 applies to Ω, so

(4.5.17) Z(Ω, σ) = 0.

On the other hand, if we take

(4.5.18) µ = H1b∂Ω = σ +H1bγ,

it is readily verified that

(4.5.19) Z(Ω, µ) = L2(γ, µ).

Note. The set Ω described above is not connected. One can form a connected 3D
domain with similar properties by taking the Cartesian product with the interval
(0, 1) and putting this product on a slab. This yields a domain similar to that
depicted in Fig. 1 of [AtE].

For some further results, suppose O ⊂M is another open set, and that

(4.5.20) Φ : Ω −→ O, Φ : Ω −→ O

is a bi-Lipschitz map. We have the action on functions, Φ∗u(x) = u(F (x)), and the
following isomorphisms:

(4.5.21)

Φ∗ : H1(O) −→ H1(Ω), Φ∗ : Lip(O) −→ Lip(Ω),

Φ∗ : H
1
(O) −→ H

1
(Ω), Φ∗ : H1

0 (O) −→ H1
0 (Ω),

Φ∗ :
◦
H1(O) −→

◦
H1(Ω), Φ∗ : Z(O,Φ∗µ) −→ Z(Ω, µ).

Regarding the action on
◦
H1(O), recall that the space

◦
H1(Ω) depends on the choice

of measure µ on ∂Ω, so we use the push-forward measure Φ∗µ on ∂O to define
◦
H1(O). In light of these isomorphisms, we have the following.
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Proposition 4.5.3. Assume there is a smoothly bounded O ⊂M and a bi-Lipschitz
map Φ satisfying (4.5.20). Use µ = σ. Then the conditions (4.5.1)–(4.5.3) hold.

There are domains Ω that are bi-Lipschitz equivalent to the unit ball but are not
Lipschitz domains, as ∂Ω is not everywhere locally given as the graph of a Lipschitz
function. One famous example is the “two brick” domain in R3:

(4.5.22) Ω = [−2, 2]× [−1, 1]× [0, 1] ∪ [−1, 1]× [−2, 2]× [−1, 0].
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4.6. Rough metric tensors

So far in this chapter we have assumed M carries a smooth metric tensor. This
contrasts with Chapter 3, where we dealt with Lipschitz domains contained in
compact manifolds endowed with metric tensors which, in local coordinate systems,
satisfied a Dini-type modulus of continuity, described by (3.0.1)–(3.0.2). Here we
want to deal with finite perimeter domains in a compact manifold M with a rough
metric tensor, for example,

(4.6.1) gjk ∈ C(U).

One motivating example for considering rough metric tensors here will be de-
scribed in §5.1. It arises from “blowing up” an inclusion in a finite perimeter domain
Ω, assumed to lie in a manifold with a smooth metric tensor. The blow-up will be
seen to produce a metric tensor which, in local coordinates, satisfies

(4.6.2) gjk ∈ H1,p(U), ∀ p <∞.

As stated above, we are also interested in more singular metrics.
We will assume Ω ⊂ M where M is a compact manifold, and (4.0.1) holds. We

will assume that M is endowed with a C∞ structure as a differential manifold, but
that its metric tensor is not smooth. This is for simplicity. One could work with
the fact that metrics with a certain limited smoothness are naturally associated
with differential structures with a related degree of smoothness (cf. [T3]), but we
will not do this here.

We begin with a preliminary discussion of some of the analytical tools that carry
over from the case of smooth metric tensors to more general situations.

For one, the validity of the divergence theorem

(4.6.3)

∫
Ω

divX dV =

∫
∂∗Ω

〈ν,X〉 dσ,

for a vector field X on M satisfying

(4.6.4) X ∈ C(M), divX ∈ L1(M),

was established in §5.3 of [HMT] in the setting of continuous metric tensors.
In connection with this, we note that, in a local coordinate patch U ,

(4.6.5) divX = g−1/2 div0(g
1/2X),

where div0 denotes the divergence operator on flat Euclidean space, and we assume
div0(g

1/2X) ∈ L1. If (4.6.2) holds, then g1/2 ∈ H1,p(U), for all p <∞, and

(4.6.6) divX = div0X + g−1/2∇g1/2 ·X,
so

(4.6.7) given X ∈ C(U), divX ∈ L1(U) ⇔ div0X ∈ L1(U).

Next, we have the following extension of Proposition 4.1.1.
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Proposition 4.6.1. Let Ω ⊂ M have finite perimeter and assume (4.0.1) holds.
Then the estimate (4.1.1) holds, for all u ∈ Lip(Ω), provided that the metric tensor
is continuous, or even more generally,

(4.6.8) gjk, g
jk ∈ L∞.

Proof. Given that M has a C∞ structure, you can put a smooth metric tensor on
M . Now, note that the validity of the estimate (4.1.1) is invariant under passing
from a metric tensor satisfying (4.6.8) to such a smooth metric tensor. Hence the
conclusion follows from Proposition 4.1.1

To proceed, letM have a metric tensor g satisfying (4.6.8) and also a C∞ metric
tensor h. The inner product on tangent vectors associated to g will be denoted
〈 , 〉, and that associated to h, 〈 , 〉h. Similarly we have dV and dVh, ∇u and ∇hu,
etc. We also modify µ to µh, but note that

(4.6.9) 0 < c0 <
dµ

dµh
≤ c1 <∞.

The following observation will be key in our analysis.

Proposition 4.6.2. Let Ω ⊂ M be a finite perimeter domain satisfying (4.0.1).
The following spaces are the same for M endowed with the metric tensors g and h:

(4.6.10) Lip(Ω), H1(Ω), H
1
(Ω),

◦
H1(Ω), H1

0 (Ω), W
#.

The various Hilbert spaces have different inner products, but they yield equivalent
norms. Also the spaces L2(∂Ω, µ) and L2(∂Ω, µh) coincide, with equivalent inner
products, and the two metric tensors lead to the same map

(4.6.11) τ# :W# −→ L2(∂Ω, µ) = L2(∂Ω, µh).

Furthermore,

(4.6.12) Z(Ω, µ) = Z(Ω, µh).

On W# we have the two inner products,

(4.6.13)

β
(
(u, f), (v, g)

)
=

∫
Ω

〈∇u,∇v〉 dV +

∫
∂Ω

fg dµ,

βh
(
(u, f), (v, g)

)
=

∫
Ω

〈∇hu,∇hv〉h dVh +

∫
∂Ω

fg dµh.
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These lead to two (typically different) spaces

(4.6.14)

V =
{
(u, f) ∈W# :

∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈
◦
H1(Ω)

}
,

Vh =
{
(u, f) ∈W# :

∫
Ω

〈∇hu,∇hv〉h dVh = 0, ∀ v ∈
◦
H1(Ω)

}
,

though there is a natural isomorphism between the two, produced by the isomor-
phism of each with W#/Ker τ#. In particular, they have the same isomorphic
image in L2(∂Ω, µ) = L2(∂Ω, µh), namely τ#(W#).

We now have all the ingredients to apply the general construction of Appendix A,
as done in §4.2. We obtain two operators, N and Nh, on L

2(∂Ω, µ) = L2(∂Ω, µh),
positive semidefinite and self-adjoint for the respective Hilbert space inner products.
Note that

(4.6.15) D(N1/2) = D(N
1/2
h ) = τ#(W#).

The operator Nh is of the sort constructed in §4.2, and N represents an extension
of that construction, to the broader setting of metric tensors satisfying (4.6.8). We
have

(4.6.16)

∫
∂Ω

(N1/2f)(N1/2g) dµ =

∫
Ω

〈∇u,∇v〉 dV, (u, f), (v, g) ∈ V,

and

(4.6.17)

∫
∂Ω

(N
1/2
h f)(N

1/2
h g) dµh =

∫
Ω

〈∇huh,∇hvh〉h dVh, (uh, f), (vh, g) ∈ Vh.
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5. Finite perimeter domains with inclusions

In (4.5.14)–(4.5.19) we have an example of a finite perimeter domain Ω for which
∂Ω \ ∂∗Ω is sizable but lies “outside” Ω. Here we consider finite perimeter domains
for which ∂Ω\∂∗Ω is sizable but lies “inside” Ω, in the sense of lying in the interior
of Ω. We call the domains considered “domains with inclusions.” One point we
make is that, while the considerations of Chapter 4 apply to these domains, one
can obtain a richer theory by modifying our notion of the Dirichlet and Neumann
boundary problems on these domains, to take into account the two-sided nature of
these inclusions.

We begin in §5.1 with some examples, involving planar domains. We show how
cutting these along the inclusions produces modified domains on which this richer
analysis can be performed. In the first case, cutting along the inclusion produces a
Lipschitz domain, to which the results of §3 apply. In the second case, cutting along
the inclusion and “blowing up” along this cut produces a domain with a cusp, in
a Riemannian manifold with a non-smooth metric tensor, to which results of §4.6
apply. We proceed to some more exotic examples. The first is S2 with a segment γ
of an arc removed, a setting that violates (4.0.1). When the inclusion γ is cut and
blown up, one obtains a domain with cusps in a manifold with non-smooth metric
tensor, to which §4.6 again applies. Another example is the “jelly roll” of [Si2], a
two-dimensional domain with an inclusion whose H1-measure is infinite.

In §5.2 we treat a general class of inclusions that arise from partitioning one finite
perimeter domain into finite perimeter subdomains. In more detail, let O ⊂M be
a finite perimeter domain in a compact Riemannian manifold M , and let Ω1 and
Ω2 be nonempty disjoint open subsets of O that are finite perimeter domains and
that “partition” O (cf. (5.2.2)–(5.2.3)). Then let S be a subset of ∂Ω1 ∩ ∂Ω2 ∩ O
that is closed in O, and has positive σ-measure, and let Ω = O \ S. The set S is
the inclusion. Under the hypothesis that S is “thick,” as defined below (5.2.17), we
extend the construction of §4.2 to produce a positive, self-adjoint operator N on
H = L2(∂O∪S1∪S2, σ), where S1 and S2 are two copies of S (as seen, respectively,
from Ω1 and from Ω2). We also show that {e−tN : t ≥ 0} is a symmetric Markov
semigroup on H, and examine conditions for it to be irreducible.

In §5.3 we tackle another class of inclusions, namely those of positive capacity,
but generally not of finite, positive (n− 1)-dimensional measure. Examples include
inclusions K of Hausdorff dimension s ∈ (n − 2, n). These cases include many
fractals, and are in a number of respects more exotic than the examples considered
in §§5.1–5.2. One issue is to determine what sort of measures µ yield interesting
results regarding the effect of K on Nµ. Sometimes Hausdorff measure Hs on K
works, sometimes not. Another class that works is the class of harmonic measures.
The inclusions treated in §5.3 are as singular as the boundaries treated in Chapter 7.
One difference is that here we also require ∂Ω to have a “regular” (finite perimeter)
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part, which facilitates the use of results of Chapter 4.
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5.1. Some key examples

Here we look at several planar domains with inclusions.
The first two will be subdomains of a disk and an annulus:

(5.1.1) D = {z ∈ C : |z| < 1}, A = {z ∈ C : 1
4 < |z| < 1}.

For convenience we vaccilate between the use of real coordinates (x, y) and complex
coordinates z = x+ iy. We take

(5.1.2) γ1 = D ∩ {x+ i0 : x ≤ 0}, γ2 = A ∩ {x+ i0 : x ≤ 0},

and set

(5.1.3) Ω1 = D \ γ1, Ω2 = A \ γ2.

Then

(5.1.4)
∂∗Ω1 = ∂D, ∂Ω1 \ ∂∗Ω1 = γ1,

∂∗Ω2 = ∂A, ∂Ω2 \ ∂∗Ω2 = γ2.

The measure σ arising as in (4.0.2) is arc-length measure on ∂D and ∂A, in these
two cases. For the measure µ, as in (4.2.1)–(4.2.2), we take

(5.1.5) µ = H1b∂Ωj ,

so µ is σ plus linear measure on γj .
Now define fj on ∂Ωj by

(5.1.6) fj = y
∣∣
∂Ωj

.

We have

(5.1.7) uj = PI fj = y on Ωj .

One can show that

(5.1.8) Nfj
∣∣
γj

= 0.

On the other hand, if we approach γj from above, we get

(5.1.9)
∂uj
∂ν+

= lim
y↘0

−∂uj
∂y

(x, y) = −1,
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and if we approach γj from below, we get

(5.1.10)
∂uj
∂ν−

= lim
y↗0

∂uj
∂y

(x, y) = +1.

Clearly (5.1.9)–(5.1.10) contain information on the boundary behavior of ∇uj that
is lost in (5.1.8).

It is desirable to have modified Dirichlet and Neumann boundary problems,
defined on domains Oj , whose interiors coincide with Ωj , but whose boundaries
ramify over γj . Here is a construction that works well for Ω2, but not as well for
Ω1. Let us take

(5.1.11) Φj : Oj −→ Ωj , Φj(z) = z2,

where

(5.1.12)
O1 = {z ∈ C : |z| < 1, Re z > 0},
O2 = {z ∈ C : 1

2 < |z| < 1, Re z > 0}.

We put on Oj not the Euclidean metric, but the metric tensor pulled back via Φj

from the Euclidean metric tensor on Ωj , that is to say, |dz|2 on Ωj pulled back to
the metric tensor

(5.1.13) |Φ′
j(z)|2 · |dz|2 = 4|z|2 · |dz|2.

This is a smooth, nondegenerate metric tensor on a neighborhood of O2, but not
on O1, due to the degeneracy at z = 0.

It is an exercise to cast O2 as a Lipschitz domain in a compact 2D Riemannian
manifold, and then all the material in §3 is applicable.

As for Ω1, we still want to cut along γ1, but we need to pull the domain apart
in a different fashion. We set

(5.1.14)
β(x) = e1/x, x < 0,

0, x ≥ 0,

and define

(5.1.15) ϕ : U1 −→ Ω1

by

(5.1.16) ϕ(x, y) = (x, y − β(x)(sgn y)).

We specify U1 such that (5.1.15) is a diffeomorphism. In particular,

(5.1.17) (x, y) ∈ U1, x < 0 =⇒ |y| > β(x).
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Note that

(5.1.18) Dϕ(x, y) =

(
1 0

β′(x)(sgn y) 1

)
, for (x, y) ∈ U1.

The metric tensor ϕ∗(dx2 + dy2) induced on U1 via ϕ has components

(5.1.19)

G(x, y) = Dϕ(x, y)tDϕ(x, y)

=

(
1 + β′(x)2 β′(x)(sgn y)
β′(x)(sgn y) 1

)
, (x, y) ∈ U1.

Calculation of the limit

(5.1.20) G(x,±β(x)) =
(
1 + β′(x)2 ±β′(x)
±β′(x) 1

)
reveals that the components of G(x, y), while extending continuously to U1, are
not quite Lipschitz continuous, since the off-diagonal elements of (5.1.20) differ by
an amount 2β′(x) across a gap of width 2β(x), for x < 0, but

(5.1.21)
β′(x)

β(x)
=

d

dx
log β(x) = − 1

x2
, for x < 0.

With this in mind, we can extend G(x, y) by setting

(5.1.22) G(x, y) =

(
1 + β′(x)2 yβ′(x)/β(x)
yβ′(x)/β(x) 1

)
, |y| ≤ β(x), x < 0.

Computing ∂xG and ∂yG, we have the following.

Lemma 5.1.1. If U is a bounded open neighborhood of U1 in R2, then G belongs
to the Lp-Sobolev space

(5.1.23) G ∈ H1,p(U), ∀ p <∞.

Our next example is

(5.1.24) Ω = S2 \ γ,

where γ is a geodesic arc from one point of S1 to another. In this case, Ω = S2,
so (4.0.1) fails, and results of §§4.1–4.2 do not apply. However, we can “blow up”
γ in a fashion parallel to the way done for example 2 in §5.1. We obtain O ⊂ M ,
where O is isometric to Ω above, M carries a metric tensor with components

(5.1.25) gjk ∈ H1,p, ∀ p <∞,
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in local coordinates, and M \O 6= ∅. Then material in §4.6 applies to this blow-up.
Our fourth example is B. Simon’s “jelly roll” (cf. [Si2]):

(5.1.26) Ω = A \ γ, A = {z ∈ C : 1
2 < |z| < 1},

where γ : R → A is given by

(5.1.27) γ(t) = r(t)eit, r(t) =
3

4
+

1

2π
tan−1 t.

Note that |γ(t)| → 1/2 as t→ −∞ and |γ(t)| → 1 at t→ +∞. We have

(5.1.28) ∂∗Ω = ∂A, ∂Ω = ∂∗Ω ∪ γ, H1(γ) = ∞.

We place on ∂Ω a finite measure of the form

(5.1.29) µ = σ + γ∗(ϕdt),

where, as usual, σ = H1b∂∗Ω, and ϕ is a positive, continuous, integrable function
on R, e.g., ϕ(t) = (1 + t2)−1. Then results of §§4.1–4.5 are applicable.

This time, if we blow up the inclusion γ, we get a domain O such thatH1(∂∗O) =
∞, so results of Chapter 4 are not applicable to this blow-up. On the other hand,
O is a complete Riemannian manifold with smooth boundary, a setting in which
the Dirichlet-to-Neumann map has been studied; cf. [LTU].

For our fifth example, take Dk and γ as in (4.5.15)–(4.5.16), and set

(5.1.30) O =
⋃
k

Dk, Ω = Q̃ \ O,

where Q̃ = (−1, 2)× (−1, 2), so

(5.1.31) ∂∗Ω = ∂Q̃ ∪
⋃
k

∂Dk, ∂Ω = ∂∗Ω ∪ γ.

In this case, γ is not contained in the interior of Ω. It is an “inclusion” in the
weaker sense that Ω has density 1 at each point of γ. One can still cut along γ and

blow it up, obtaining a domain Ω̃ ⊂ M̃ to which §4.6 applies.
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5.2. Inclusions via finite perimeter partitions

Let M be a conpact, connected, n-dimensional Riemannian manifold, O ⊂ M
an open subset. Assume that O is a finite perimeter domain, satisfying (4.0.1), i.e.,

(5.2.1) M \ O 6= ∅.

Let Ω1 and Ω2 be nonempty open subsets of O such that

(5.2.2) Ω1 ∩ Ω2 = ∅, Ω1 ∪ Ω2 = O.

Assume that, for each j,

(5.2.3)
Ωj is a finite perimeter domain, and

Hn(∂Ωj) = 0.

In particular, χΩ1
+ χΩ2

= χO in L1(M). Then let

(5.2.4) S ⊂ (∂Ω1 ∩ ∂Ω2) ∩ O be closed in O,

and set

(5.2.5) Ω = O \ S.

The set S is the inclusion. Note that

(5.2.6) S ∩ ∂∗Ω1 = S ∩ ∂∗Ω2.

Let us introduce some notation. We denote by π the “partition” of O described
above:

(5.2.7) π = {Ω1,Ω2},

and say

(5.2.8)

u ∈ Lipπ(Ω) provided

u ∈ C(Ω), ∇u ∈ L∞(Ω), and

uj = u
∣∣
Ωj

extends to an element of Lip(Ωj).

An element u ∈ Lipπ(Ω) could have a jump across S.
We next provide a useful version of the divergence theorem. Before stating it,

let us denote by νj the measure theoretic unit outer normal to ∂Ωj , and note that

(5.2.9) ν1 = −ν2, σ-a.e. on ∂Ω1 ∩ ∂Ω2,

with σ as in (4.0.2)–(4.0.3), adjusted to the current setting, involving both Ω, Ω1,
and Ω2.
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Lemma 5.2.1. Given a vector field X ∈ Lipπ(Ω), we have

(5.2.10)

∫
Ω

divX dV =

∫
∂∗O

〈ν,X〉 dσ +

∫
S

〈ν1, X1 −X2〉 dσ.

Proof. Here, Xj denotes the restriction of X to Ωj , extended to a Lipschitz vector

field on Ωj . For each j, (4.0.5) gives

(5.2.11)

∫
Ωj

divXj dV =

∫
∂∗Ωj

〈νj , Xj〉 dσ.

The sum over j = 1, 2 of the left side of (5.2.11) is the left side of (5.2.10). The
corresponding sum over j of the right side of (5.2.11) is equal to

(5.2.12)

∫
∂∗O

〈ν,X〉 dσ +

∫
∂∗Ω1∩∂∗Ω2

{
〈ν1, X1〉+ 〈ν2, X2〉

}
dσ.

Thanks to (5.2.9), the last integral on the right side of (5.2.12) is equal to the last
integral on the right side of (5.2.10).

With this result in hand, we can establish the following extension of Proposition
4.1.1.

Proposition 5.2.2. In the setting of Lemma 5.2.1, assume also that (5.2.1) holds.
Then there exists C = Cπ(Ω) <∞ such that, for all u ∈ Lipπ(Ω),

(5.2.13)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV +C

∫
∂∗O

|u|2 dσ+C

∫
S

|u1 −u2|(|u1|+ |u2|) dσ.

Proof. As in the proof of Proposition 4.1.1, we take a vector field Y ∈ C∞(M) such
that div Y = 1 on O, and set

(5.2.14) X = |u|2Y, so divX = |u|2 div Y + 2u〈∇u, Y 〉,

and (5.2.10) yields

(5.2.15)

∫
Ω

|u|2(div Y ) dV = − 2

∫
Ω

u〈∇u, Y 〉 dV

+

∫
∂∗O

|u|2〈ν, Y 〉 dσ

+

∫
S

〈ν1, (|u1|2 − |u2|2)Y 〉 dσ.
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Arguing as in (4.1.5)–(4.1.6), we obtain (5.2.13).

To proceed, parallel to (4.2.4) we take

(5.2.16) W0 = Lipπ(Ω), τu =
(
u
∣∣
∂O, u1

∣∣
S
, u2

∣∣
S

)
.

We have

(5.2.17)
τ : Lipπ(Ω) −→ H = L2(∂O, σ)⊕ L2(S, σ)⊕ L2(S, σ)

= L2(∂O ∪ S1 ∪ S2, σ),

where Sj denotes a copy of S, regarded as a part of ∂Ωj .

Definition. We say the inclusion S is thick if τ in (5.2.17) has dense range.

The inclusions γ1 and γ2 in (5.1.2) are thick. On the other hand, if we replace γj
here by a subset γ̃j that is a Cantor set of positive one-dimensional measure, then
γ̃1 and γ̃2 are not thick.

If S is thick, then (A.14) holds. We proceed to define N as a self adjoint operator
on the Hilbert space H (defined in (5.2.17)), via the general program described in
Appendix A, in a fashion parallel to the method used in §4.2. For the next step,
parallel to (4.2.5), we take

(5.2.18) α :W0 ×W0 −→ R, α(u, v) =

∫
Ω

〈∇u,∇v〉 dV.

Again, elements of Kerα are constant on each connected component of Ω, so Kerα∩
Ker τ = 0, and (A.16) holds. Now, as in (A.17) (and parallel to (4.2.6)), we set

(5.2.19)

β(u, v) = α(u, v) + (τu, τv)H

=

∫
Ω

〈∇u,∇v〉 dV +

∫
∂∗O

uv dσ

+

∫
S

u1v1 dσ +

∫
S

u2v2 dσ.

Thanks to (5.2.13), this is a positive-definite inner product onW0, and as in (A.18),
we denote by W# its Hilbert space completion, to which τ extends continuously:

(5.2.20) τ# :W# −→ H.

Parallel to (4.2.11), we identify W# with the closure of

(5.2.21) G = {(u, τu) : u ∈ Lipπ(Ω)} in H1(Ω)⊕H,
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and note that (5.2.13) yields

(5.2.22)

(u, f) ∈ G =W#

=⇒
∫
Ω

|u|2 dV ≤ C‖∇u‖2L2(Ω) + C‖f‖2H .

Thus

(5.2.23) β
(
(u, f), (v, g)

)
= (∇u,∇v)L2(Ω) + (f, g)H

is a Hilbert space inner product on W#.
To continue, as in (A.19) (and (4.2.14)) we form

(5.2.24) V =W#/Ker τ#,

which inherits from τ# a continuous injection

(5.2.28) J : V −→ H,

whose image contains the image of τ in (5.2.17), and hence is dense (assuming S
is thick). The space V has a Hilbert space structure, naturally isomorphic to the
orthogonal complement of Ker τ# in W#, with respect to the inner product in
(5.2.23). Parallel to (4.2.16)–(4.2.18), we can write

(5.2.29) V =
{
(u, f) ∈W# :

∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈
◦
H1(Ω)

}
,

where

(5.2.30)
◦
H1(Ω) = {v ∈ H1(Ω) : (v, 0) ∈W#}.

Parallel to (4.2.18B), we have

(5.2.31) H1
0 (Ω) ⊂

◦
H1(Ω),

where H1
0 (Ω) denotes the closure of C∞

0 (Ω) in H1(Ω). As in (4.2.19),

(5.2.32) (u, f) ∈ V =⇒ ∆u = 0 on Ω.

Also, as in (4.2.19A),

(5.2.33) H1
0 (Ω) =

◦
H1(Ω) =⇒ V = {(u, f) ∈W# : ∆u = 0 on Ω}.

From the injection (5.2.28), the Friedrichs method yields a positive self adjoint
operator B on H, as described in Appendix A. We have SpecB ⊂ [1,∞), and we
set

(5.2.34) N = B − 1,

as in (4.2.23), so N is self adjoint and SpecN ⊂ [0,∞). As in (4.2.22)–(4.2.24),

(5.2.35) (u, f), (v, g) ∈ V =⇒ 〈Nf, g〉 =
∫
Ω

〈∇u,∇v〉 dV.

Also, parallel to (4.2.25),

(5.2.36) D(N1/2) = τ#(W#).

We have the following parallel to Proposition 4.2.1.
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Proposition 5.2.3. Given f ∈ H, we have f ∈ D(N1/2) if and only if there exist
uk ∈ Lipπ(Ω) and u ∈ H1(Ω) such that

(5.2.37) τuk −→ f in H = L2(∂O, σ)⊕ L2(S, σ)⊕ L2(S, σ),

and

(5.2.38) uk −→ u in H1(Ω).

In such a case, we can pick (uk) such that

(5.2.39) ∆u = 0 on Ω.

Next, parallel to (4.2.31), we have, for f ∈ D(N1/2),

(5.2.40) 〈N1/2f,N1/2f〉 = inf
{∫
Ω

|∇u|2 dV : (u, f) ∈W#
}
,

where 〈 , 〉 denotes the inner product in H. Furthermore, as in §4.2, this inf is
achieved, so, for f ∈ D(N1/2),

(5.2.41) f ∈ KerN ⇐⇒ (u, f) ∈W# for some u ∈ H1(Ω) satisfying ∇u ≡ 0.

This gives the following, parallel to Proposition 4.2.2.

Proposition 5.2.4. If S is thick and Ω is connected, then

(5.2.42) KerN = Span(1) + Z(Ω, σ),

where

(5.2.43) Z(Ω, σ) = {f ∈ L2(∂O ∪ S1 ∪ S2, σ) : (0, f) ∈W#}.

Now the results of §4.3 extend readily to the current setting. The operator N
yields a contraction semigroup e−tN on H = L2(∂O∪S1∪S2, σ), and the arguments
proving Propositions 4.3.1–4.3.2 extend, to give:

Proposition 5.2.5. Take Ω as in Proposition 5.2.2, and assume S is thick. Then,
given f ∈ H = L2(∂O ∪ S1 ∪ S2, σ),

(5.2.44) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

Furthermore, e−tN1 ≡ 1, so e−tN is a symmetric Markov semigroup. In addition,
if Ω is connected and Z(Ω, σ) = 0, then {e−tN : t ≥ 0} is irreducible.

Regarding the condition Z(Ω, σ) = 0, we have the following variant of Proposition
4.5.1.
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Proposition 5.2.6. In the setting of Proposition 5.2.5, assume there is a vector
field Y ∈ Lipπ(Ω) such that

(5.2.45)
〈ν, Y 〉 > 0, σ-a.e. on ∂O,
〈νj , Y 〉 > 0, σ-a.e. on Sj .

Here, the limit Y |Sj
is taken from inside Ωj. Then Z(Ω, σ) = 0.

Proof. From (5.2.10), with X = |u|2Y , we have the following variant of (5.2.15):

(5.2.46)

∫
∂O

|u|2〈ν, Y 〉 dσ +

∫
S1

|u|2〈ν1, Y 〉 dσ +

∫
S2

|u|2〈ν2, Y 〉 dσ

=

∫
Ω

|u|2(div Y ) dV + 2

∫
Ω

u〈∇u, Y 〉 dV,

for each u ∈ Lipπ(Ω). Now suppose f ∈ Z(Ω, σ). Then there exist uk ∈ Lipπ(Ω)
such that

(5.2.47) uk −→ 0 in H1(Ω), τuk −→ f in L2(∂O ∪ S1 ∪ S2, σ).

By (5.2.46),

(5.2.48)

∫
∂O

|uk|2〈ν, Y 〉 dσ +

∫
S1

|uk|2〈ν1, Y 〉 dσ

+

∫
S2

|uk|2〈ν2, Y 〉 dσ ≤ C‖uk‖2H1(Ω) −→ 0.

But the left side of (5.2.48) tends to the limit

(5.2.49)

∫
∂O

|f |2〈ν, Y 〉 dσ +

∫
S1

|f |2〈ν1, Y 〉 dσ +

∫
S2

|f |2〈ν2, Y 〉 dσ.

If (5.2.45) holds, this forces f = 0.
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5.3. Fractal inclusions with positive capacity

Let O ⊂ M be an open subset of the compact, connected, n-dimensional Rie-
mannian manifold M . Assume O is a finite perimeter domain and M \ O 6= ∅.
Take

(5.3.1) K ⊂ O, K compact, Hn(K) = 0,

and set

(5.3.2) Ω = O \K.

Then Ω is a finite perimeter domain,

(5.3.3) ∂∗Ω = ∂∗O, ∂Ω = ∂O ∪K,

and K ⊂ Ω is an inclusion.
We define the capacity

(5.3.4) Cap(K) = inf{‖u‖2H1(M) : u ∈ Lip(M), u ≥ 1 on a neighborhood of K},

and, following [AW] and [AtE], the relative capacity

(5.3.5) CapΩ(K) = inf{‖u‖2H1(Ω) : u ∈ Lip(Ω), u ≥ 1 on a neighborhood of K}.

Clearly

(5.3.6) CapΩ(K) ≤ Cap(K).

Also, in the setting (5.3.1)–(5.3.2), it is straightforward that

(5.3.7) Cap(K) = 0 ⇐⇒ CapΩ(K) = 0,

by considering u 7→ ψu, with ψ ∈ C∞
0 (O), ψ = 1 on a neighborhood of K. We

remark that, for n ≥ 2,

(5.3.8)
Hn−2(K) <∞ =⇒ Cap(K) = 0,

Cap(K) = 0 =⇒ Hs(K) = 0, ∀ s > n− 2.

Cf. [EG], §4.7. In particular,

(5.3.9) Hs(K) > 0 for some s ∈ (n− 2, n) =⇒ Cap(K) > 0.
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Now let µ be a measure on ∂Ω satisfying µ ≥ σ, and assume

(5.3.10) suppµ ⊃ K.

Construct the self adjoint operator Nµ = N on L2(∂Ω, µ) by the methods of §4.2.
It is clear that

(5.3.11)
CapΩ(K) = 0 =⇒ fχK ∈ Z(Ω, µ)

=⇒ Nµ(fχK) = 0, ∀ f ∈ Lip(K).

Thus we want to confine our attention to sets K as in (5.3.1) that satisfy Cap(K) >
0, and look for measures µ ≥ σ such that Nµ(fχK) 6= 0.

To proceed, given Ω and K as in (5.3.1)–(5.3.2) and a positive, finite Borel
measure µ on ∂Ω, we say

(5.3.12)
µ is Cap-regular on K provided that, if K0 is compact,

K0 ⊂ K, Cap(K0) = 0 =⇒ µ(K0) = 0.

If the hypothesis in (5.3.12) holds for all compact K0 ⊂ K, then it holds for all
Borel K0 ⊂ K, since µ is regular. The following result is essentially a consequence
of Theorem 3.3 of [AW], but due to our hypotheses on K, the proof simplifies.

Proposition 5.3.1. If K and Ω are as in (5.3.1)–(5.3.2), and µ is Cap-regular
on K, then

(5.3.13) L2(K,µ) ∩ Z(Ω, µ) = 0.

Proof. Assume f ∈ L2(K,µ) ∩ Z(Ω, µ). Take

(5.3.14) uk ∈ Lip(Ω), uk → 0 in H1(Ω), uk
∣∣
K

→ f in L2(K,µ).

Since Hn(K) = 0, ‖uk‖H1(O) = ‖uk‖H1(Ω), so

(5.3.15) uk −→ 0 in H1(O).

Passing to a subsequence, we can assume

(5.3.16) uk −→ 0, q.e. on O

(cf. [EG], §4.8), and passing to a further subsequence, we can assume

(5.3.17) uk −→ f, µ-a.e. on K.

Consequently, there exists a Borel set E ⊂ K such that

(5.3.18) Cap(E) = 0 and uk(x) → 0, ∀x ∈ K \ E.

Our hypotheses imply µ(E) = 0, so f = 0, µ-a.e. on K. This proves (5.3.13).

We have the following result on the degree to which the action of Nµ is affected

by the presence of K. (Recall from (4.2.25) that Lip(K) ⊂ D(N
1/2
µ ).)
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Proposition 5.3.2. Take the setting of Proposition 5.3.1, and assume that Ω is
connected. Then

(5.3.19) dimKerNµ ∩ L2(K,µ) ≤ 1.

Proof. Take two linearly independent fj ∈ L2(K,µ). If fj ∈ KerNµ, then, by
Proposition 4.2.2,

(5.3.20) fj = cj + gj , cj ∈ R, gj ∈ Z(Ω, µ).

If cj = 0, then gj ∈ Z(Ω, µ) ∩ L2(K,µ), so also gj = 0. If c1 and c2 are not both 0,
consider

(5.3.21) c2f1 − c1f2 = c2g1 − c1g2 ∈ Z(Ω, µ) ∩ L2(K,µ).

Again, by Proposition 5.3.1, this forces c2f1 − c1f2 = 0, a contradiction.

We now look at some examples to which Proposition 5.3.2 applies. Assume
(5.3.1)–(5.3.2). Suppose

(5.3.22) 0 < Hs(K) <∞, for some s ∈ (n− 2, n),

and take µ ≥ σ such that

(5.3.23) µbK = HsbK.

If necessary, shrink K so that (5.3.10) holds. The result (5.3.9), applied to compact
subsets of K, implies that µ is Cap-regular on such K.

There are many examples of compact sets K satisfying (5.3.22), from various
Cantor sets to arcs of Koch snowflakes (cf. [AW], Example 4.4). However, many
compact sets with positive capacity, even those with Hausdorff dimension s ∈ (n−
2, n), do not satisfy (5.3.22). It is therefore of interest to know that, whenever K is
compact and Cap(K) > 0, there is a nontrivial measure that is Cap-regular on K.

A simple family of examples is provided by harmonic measure on ∂Ω. Given
p ∈ Ω, the harmonic measure ω = ωp is defined by

(5.3.24)

∫
∂Ω

f dωp = PI0 f(p), f ∈ C(∂Ω),

with PI0 as in (4.4.14)–(4.4.18). As is well known (see §7.1 for cases where more
precise results are available),

(5.3.25) Cap(K) > 0 =⇒ ωp(K) > 0,

and one has the following.

Proposition 5.3.3. In the setting of Proposition 5.3.1, with Cap(K) > 0, it fol-
lows that ωp is Cap-regular on K. Hence Proposition 5.3.1 applies for µ ≥ σ
satisfying µbK = ωpbK.
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6. Uniformly rectifiable domains

As before we assume Ω is an open subset of a compact, n-dimensional Riemann-
ian manifold M , satisfying M \ Ω 6= ∅. Here we work with uniformly rectifiable
domains (UR domains, for short), defined as follows. First, we assume Ω is a finite
perimeter domain, and that

(6.0.1) Hn−1(∂Ω \ ∂∗Ω) = 0.

In this case, (4.0.4) becomes σ = Hn−1b∂Ω. Next, we assume there exist cj ∈ (0,∞)
such that

(6.0.2) c0r
n−1 ≤ σ

(
Br(x0) ∩ ∂Ω

)
≤ c1r

n−1, ∀x0 ∈ ∂Ω,

for r ∈ (0, 1]. We call such Ω an Ahlfors regular domain. An Ahlfors regular domain
is said to be a UR domain if, in addition, ∂Ω contains “big pieces of Lipschitz
surfaces,” in the sense that there exist ε, L ∈ (0,∞) such that, for each x ∈ ∂Ω,
R ∈ (0, 1], there is a Lipschitz map ϕ : Bn−1

R → M , with Lipschitz constant ≤ L,
such that

(6.0.3) Hn−1
(
∂Ω ∩BR(x) ∩ ϕ(Bn−1

R )
)
≥ εRn−1.

Here, Bn−1
R is a ball of radius R in Rn−1.

The class of UR domains is a natural class on which to study layer potentials,
thanks to the following results. Assume G ∈ OPS−1(M) is a pseudodifferential
operator of order −1, with odd principal symbol, and integral kernel K(x, y), so

(6.0.4) Gu(x) =

∫
M

K(x, y)u(y) dV (y), u ∈ C∞(M).

(More generally, we can take such G to belong to OPC0S−1(M); cf. [HMT].)
Consider the “principal value” singular integral

(6.0.5)

Bf(x) = PV

∫
∂Ω

K(x, y)f(y) dσ(y)

= lim
ε↘0

∫
∂Ω\Bε(x)

K(x, y)f(y) dσ(y).

Then

(6.0.6) B : Lp(∂Ω) −→ Lp(∂Ω), ∀ p ∈ (1,∞).
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This was demonstrated in [D] when M = Rn and G is a convolution operator. Also
[D] established associated Lp-estimates on the maximal function

(6.0.7) sup
0<ε≤1

∣∣∣ ∫
∂Ω\Bε(x)

K(x, y)f(y) dσ(y)
∣∣∣,

in the convolution setting. In [HMT] this was extended to the variable coefficient
setting, and to manifolds. Also [HMT] studied the “double layer potential”

(6.0.8) Bf(x) =
∫
∂Ω

K(x, y)f(y) dσ(y), x ∈ Ω,

supplemented estimates on (6.0.7) with the nontangential maximal function esti-
mate

(6.0.9) ‖(Bf)∗‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p <∞,

and established nontangential a.e. convergence

(6.0.10) Bf
∣∣
∂Ω

(x) =
1

2i
σG(x, ν(x)) +Bf(x), a.e. x ∈ ∂Ω,

where σG(x, ξ) is the principal symbol of G and B is as in (6.0.5)–(6.0.6).
These results have important consequences for the single layer potential

(6.0.11) Sf(x) =
∫
∂Ω

E(x, y)f(y) dσ(y), x ∈ Ω,

defined as in Chapters 2–3, as follows. The function E(x, y) is the integral kernel
of L−1, with L = ∆− V , where ∆ is the Laplace operator on M and V ∈ C∞(M)
satisfies V ≥ 0 on M , V = 0 on Ω, and V > 0 on a nonempty subset of each
connected component ofM \Ω. Thus L−1 ∈ OPS−2(M) has even principal symbol,
so ∇L−1 ∈ OPS−1(M) has odd principal symbol, and the results (6.0.9)–(6.0.10)
apply to B = ∇S. We have

(6.0.12) ‖(∇Sf)∗‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p <∞.

In particular, if X is a smooth vector field on M , XS is of the form (6.0.8) with
K(x, y) = XxE(x, y), and (6.0.10) yields, for f ∈ Lp(∂Ω), 1 < p <∞,

(6.0.13) XSf
∣∣
∂Ω

(x) = −1

2
〈X, ν(x)〉f(x) +BXf(x), a.e. x ∈ ∂Ω,
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since σXL−1(x, ξ) = −i〈X, ξ〉|ξ|−2. Here

(6.0.14) BXf(x) = PV

∫
∂Ω

XxE(x, y)f(y) dσ(y).

Taking linear combinations (with measurable coefficients), we get

(6.0.15) ∂νSf
∣∣
∂Ω

(x) =
(
−1

2
I +A∗

)
f(x), a.e. x ∈ ∂Ω,

for f ∈ Lp(∂Ω), 1 < p <∞, where

(6.0.16) A∗f(x) = PV

∫
∂Ω

∂νx
E(x, y)f(y) dσ(y),

which defines the bounded linear operator

(6.0.17) A∗ : Lp(∂Ω) → Lp(∂Ω), 1 < p <∞.

Closely related to ∇S and (6.0.15)–(6.0.17) is the following double layer poten-
tial:

(6.0.18) Df(x) =
∫
∂Ω

∂νy
E(x, y)f(y) dσ(y), x ∈ Ω.

We have

(6.0.19) ‖(Df)∗‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p <∞,

and nontangential limits, for f ∈ Lp(∂Ω), 1 < p <∞, given by

(6.0.20) Df
∣∣
∂Ω

(x) =
(1
2
I +A

)
f(x), a.e. x ∈ ∂Ω,

where A is the adjoint of A∗ in (6.0.16), as a consequence of the symmetry E(x, y) =
E(y, x).

Our goal here is to use these layer potentials to obtain information on the op-
erator N , constructed in Chapter 4, when Ω is a UR domain. This task is tackled
in §6.2, following some further layer potential estimates, established in §6.1, which
will be useful for the task. In §6.2 we show that, if Ω is a UR domain of dimension
n,

(6.0.21) S : Lp(∂Ω, σ) −→ D(N1/2),
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provided p ≥ 2(n − 1)/n for n ≥ 3, or p > 1 for n = 2. Under certain further

conditions, namely that
◦
H1(Ω) = H1

0 (Ω) and that S(L2(∂Ω, σ)) is dense in D(N1/2)
(for example, contains Lip(∂Ω)), we show that

(6.0.22) S : L2(∂Ω, σ) −→ D(N),

and

(6.0.23) N(Sf) = ∂νSf
∣∣
∂Ω
, ∀ f ∈ L2(∂Ω, σ).

We also give a sufficient condition to guarantee that S is an isomorphism in (6.0.22).
In §6.3, we revisit the class of Lipschitz domains. We show that, for this class

of domains, and with N defined as in Chapter 4, we have (6.0.22)–(6.0.23), with
isomorphism in (6.0.22). We conclude that, for Lipschitz domains, the definition of
N given in Chapter 3 is consistent with that given in Chapter 4.

In §6.4 we treat N on another special class of UR domains, called regular SKT
domains. This class was introduced in [Se] and [KT], and studied in a number
of places, including [HMT] (which proposed our current label). See §6.4 for a
definition. We obtain (6.0.22)–(6.0.23) for this class (subject to the hypotheis that
◦
H1(Ω) = H1

0 (Ω)), and use this to derive further properties of N in this setting,
including spectral properties parallel to those obtained for Lipschitz domains in
§3.4.
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6.1. Further layer potential estimates

We produce further estimates on the single layer potential

(6.1.1) Sf(x) =
∫
∂Ω

E(x, y)f(y) dσ(y),

defined after (6.0.11). In the next two propositions, it is desirable to take x ∈ M ,
rather than merely x ∈ Ω. While we concentrate on UR domains, our first result
actually applies more broadly.

Proposition 6.1.1. Let Ω ⊂M be an Ahlfors regular domain. Then

(6.1.2) S : L∞(∂Ω) −→ Cω(M),

where, for h ∈ (0, 1/e],

(6.1.3) ω(h) = h log
1

h
.

Here, we say

(6.1.4) u ∈ Cω(M) ⇐⇒ |u(x)− u(z)| ≤ Cω(d(x, z)),

for x, z ∈M .

Proof. Take x, z ∈M , and set ε = d(x, z). We desire to estimate

(6.1.5) Sf(x)− Sf(z) =
∫
∂Ω

{E(x, y)− E(z, y)}f(y) dσ(y).

We have

(6.1.6)

|Sf(x)− Sf(z)| ≤ ‖f‖L∞(∂Ω)

{ ∫
∂Ω\B2ε(x)

|E(x, y)− E(z, y)| dσ(y)

+

∫
∂Ω∩B2ε(x)

(
|E(x, y)|+ |E(z, y)|

)
dσ(y)

}
.

Now, for x, y ∈M ,

(6.1.7)

|E(x, y)| ≤ Cd(x, y)−(n−2), n ≥ 3,

C log
K

d(x, y)
, n = 2,
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where K = 2 diamM . Also,

(6.1.8) |∇xE(x, y)| ≤ Cd(x, y)−(n−1).

Since d(x̃, y) has size comparable to d(x, y) for all x̃ on the geodesic segment from
x to z, when y ∈ ∂Ω \ B2ε(x) and d(x, z) = ε, we bound the first integral on the
right side of (6.1.6) by

(6.1.9) Cε

∫
∂Ω\B2ε(x)

d(x, y)−(n−1) dσ(y),

and, using Ahlfors regularity, we bound this by

(6.1.10) Cε

∫ K

2ε

ds

s
= Cε log

K

2ε
.

A similar analysis applies to the second integral on the right side of (6.1.6), yielding
(6.1.2).

Proposition 6.1.2. Let Ω ⊂M be a UR domain. Then

(6.1.11) S : L∞(∂Ω) −→ H1,p(M), ∀ p <∞.

Proof. We continue to have (6.0.12) if u∗ denotes the nontangential maximal func-
tion for ∂Ω ⊂M . This result implies that

(6.1.12) f ∈ L∞(∂Ω) =⇒ ∇Sf ∈ Lp(Ω)⊕ Lp(Ω−), ∀ p <∞,

where Ω− =M \Ω. Say g = ∇Sf |Ω∪Ω− . We can regard g as an element of Lp(M),
for each p <∞. Meanwhile, Proposition 6.1.1 implies that, if f ∈ L∞(∂Ω),

(6.1.13) ∇Sf ∈ H−ε,p(M), ∀ ε > 0, p <∞.

Therefore,

(6.1.14) v = ∇Sf − g =⇒ v ∈
⋂

ε>0,p<∞
H−ε,p(M) and supp v ⊂ ∂Ω.

But then

(6.1.15) Hn−1(∂Ω) <∞ =⇒ v = 0 =⇒ ∇Sf = g,

and we have (6.1.11).

For the next result, recall from (4.2.11) (with µ = σ) that

(6.1.16)
W# = closure in H1(Ω)⊕ L2(∂Ω, σ) of

{(u, u|∂Ω) : u ∈ Lip(Ω)}.
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Propositon 6.1.3. Let Ω ⊂M be a UR domain. If we set

(6.1.17) S#f = (Sf, Sf),

then

(6.1.18) S# : L2(∂Ω, σ) −→W#.

Proof. We know that

(6.1.19) S# : L2(∂Ω, σ) −→ H1(Ω)⊕ L2(∂Ω, σ).

Since L∞(∂Ω) is dense in L2(∂Ω, σ), it suffices to show that

(6.1.20)
f ∈ L∞(∂Ω) ⇒ ∃wν ∈ Lip(Ω) such that

wν → Sf in H1(Ω) and wν

∣∣
∂Ω

→ Sf in L2(∂Ω, σ).

We have seen that

(6.1.21) f ∈ L∞(∂Ω) =⇒ Sf ∈ Cω(M) ∩H1,p(M), ∀ p <∞,

so setting wν = Φν(Sf), where Φν is a standard mollifier on M , yields

(6.1.22)
wν −→ Sf in H1,p(M), ∀ p <∞, and

wν

∣∣
∂Ω

−→ Sf uniformly on ∂Ω,

which is sufficient.

Recalling that H
1
(Ω) is the closure of Lip(Ω) in H1(Ω), we have:

Corollary 6.1.4. Let Ω ⊂M be a UR domain. Then

(6.1.23) S : L2(∂Ω, σ) −→ H
1
(Ω).

We note that (6.1.19) can be improved, and this leads to improvements of Propo-
sition 6.1.3 and Corollary 6.1.4. In fact, as shown in §3.2 of [MMT], given that
n = dimM ,

(6.1.24) ‖u‖Lpn/(n−1)(Ω) ≤ C‖u∗‖Lp(∂Ω,σ),

for p ∈ [1,∞), as long as Ω is Ahlfors regular. Also, given the estimate (6.1.7), use
of Ahlfors regularity implies that

(6.1.25) S : L1(∂Ω, σ) −→ Lq(∂Ω, σ), ∀ q ∈
[
1,
n− 1

n− 2

)
,
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and, by duality,

(6.1.26) S : Lr(∂Ω, σ) −→ L∞(∂Ω), ∀ r > n− 1.

Interpolation gives

(6.1.27) S : Lr(∂Ω, σ) −→ L2(∂Ω, σ), ∀ r > 2(n− 1)

n+ 1
(and r ≥ 1).

It follows that

(6.1.28) S# : L2(n−1)/n(∂Ω, σ) −→ H1(Ω)⊕ L2(∂Ω, σ), for n ≥ 3,

and

(6.1.29) S# : Lp(∂Ω, σ) −→ H1(Ω)⊕ L2(∂Ω, σ), ∀ p > 1, if n = 2.

The conclusion (6.1.18) is accordingly improved:

Proposition 6.1.5. In the setting of Proposition 6.1.3,

(6.1.30) S# : Lp(∂Ω, σ) −→W#,

for

(6.1.31)
p ≥ 2(n− 1)

n
if n ≥ 3,

p > 1 if n = 2.

Consequently,

(6.1.32) S : Lp(∂Ω, σ) −→ H
1
(Ω),

for such p.

For later use, we record the following result.

Proposition 6.1.6. If Ω ⊂M is a UR domain, then

(6.1.33) S : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) is injective, ∀ p ∈ (1,∞).

Proof. Assume f ∈ Lp(∂Ω, σ) and Sf = 0. Set u = Sf . Then u,∇u ∈ L2(Ω) ⊕
L2(Ω−) and

(6.1.34) ∆u = 0 on Ω, (∆− V )u = 0 on Ω−, u
∣∣
∂Ω

= 0.

Hence u ≡ 0, so

(6.1.35) 0 = ∂νu
∣∣
∂Ω± =

(
∓1

2
I +A∗

)
f.

Taking the difference of these two identities yields the desired result, f = 0.

The symmetry E(x, y) = E(y, x) implies S = S∗, so we have the following:

Corollary 6.1.7. In the setting of Proposition 6.1.6,

(6.1.36) S : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) has dense range, ∀ p ∈ (1,∞).
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6.2. Behavior of N and PI on UR domains

Here Ω ⊂M is a UR domain. The operator N is defined as in §4.2. Recall from
(4.2.25) that

(6.2.1)
D(N1/2) = τ#(W#)

= {f ∈ L2(∂Ω, σ) : (u, f) ∈W# for some u ∈ H
1
(Ω)}.

We hence have from Proposition 6.1.5 the following.

Proposition 6.2.1. If Ω ⊂M is a UR domain of dimension n,

(6.2.2) S : Lp(∂Ω, σ) −→ D(N1/2),

for

(6.2.3)
p ≥ 2(n− 1)

n
if n ≥ 3,

p > 1 if n = 2.

Recall from §4.4 that we defined (in the setting of finite-perimeter domains)

(6.2.4) PI : D(N1/2) −→ H
1
(Ω)

in (4.4.3)–(4.4.5) and showed in Proposition 4.4.1 that C∞(∂Ω) is dense in D(N1/2).
We also brought in

(6.2.5) PI0 : C∞(∂Ω) −→ H
1
(Ω)

in (4.4.14), as an operator that is positivity-preserving and has a unique continuous
linear extension to

(6.2.6) PI0 : C(∂Ω) −→ L∞(Ω),

cf. (4.4.18). In Proposition 4.4.2 we showed that, if

(6.2.7)
◦
H1(Ω) = H1

0 (Ω),

where H1
0 (Ω) is the closure of C

∞
0 (Ω) in H1(Ω) and

◦
H1(Ω) is defined by (4.2.18A),

then

(6.2.8) PI f = PI0 f, ∀ f ∈ C∞(∂Ω).
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We will make (6.2.7) a standing hypothesis for the rest of this section.
To take (6.2.8) further, let us set

(6.2.9) T 1,p(∂Ω) = {u|∂Ω : u ∈ H1,p(M)}, given p > n.

Then T 1,p(∂Ω) is a Banach space, via

(6.2.10) T 1,p(∂Ω) ≈ H1,p(M)/{u ∈ H1,p(M) : u|∂Ω = 0}.

It follows from (6.2.1) that

(6.2.11) ∀ p > n, T 1,p(∂Ω) ⊂ D(N1/2),

and since C∞(∂Ω) is dense in D(N1/2), so is T 1,p(∂Ω), for p > n. The results
described in (6.2.4)–(6.2.8) imply that, if (6.2.7) holds, then

(6.2.12) PI f = PI0 f, ∀ f ∈ T 1,p(∂Ω), p > n.

We are now ready to bring in material from §6.1.

Proposition 6.2.2. Assume Ω ⊂M is a UR domain satisfying (6.2.7). Then

(6.2.13) PI(Sf) = Sf on Ω, ∀ f ∈ L∞(∂Ω).

Proof. Given f ∈ L∞(∂Ω), it follows from Proposition 6.1.2 that Sf ∈ H1,p(M)
for all p <∞, and hence that Sf ∈ T 1,p(∂Ω) for all p ∈ (n,∞). We have

(6.2.14) Sf = PI0(Sf), ∀ f ∈ L∞(∂Ω),

since the left side is a harmonic function in C(Ω) with boundary value equal to Sf .
Then (6.2.13) follows from (6.2.12).

Using Proposition 6.2.1, we can extend the scope of Proposition 6.2.2.

Proposition 6.2.3. In the setting of Proposition 6.2.2, if p ≥ p(n), where p(n) is
such that (6.2.3) holds, then

(6.2.15) p ≥ p(n) =⇒ PI(Sf) = Sf, ∀ f ∈ Lp(∂Ω, σ).

Proof. Both sides of (6.2.15) are continuous in f ∈ Lp(∂Ω), with values in H
1
(Ω),

the left side by Proposition 6.2.1, and the right side by Proposition 6.1.5. Proposi-
tion 6.2.2 gives identity for f in the dense linear subspace L∞(∂Ω).

To proceed, take f, g ∈ Lp(∂Ω, σ), p ≥ p(n), and set

(6.2.16) ϕ = Sf, ψ = Sg, ϕ, ψ ∈ D(N1/2).
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Then

(6.2.17) 〈N1/2ϕ,N1/2ψ〉 =
∫
Ω

〈∇u,∇v〉 dV,

with

(6.2.18) u = PIϕ = Sf, v = PIψ = Sg.

Now, by Proposition B.3,

(6.2.19) f, g ∈ L2(∂Ω, σ) =⇒ ∇u,∇v ∈ L2(Ω) and v ∈ Lq(Ω), q > 2,

and then Proposition B.2 gives

(6.2.20)

∫
Ω

〈∇u,∇v〉 dV =

∫
∂Ω

(∂νu)v dσ.

Taking into account (6.0.15), we get

(6.2.21)

〈N1/2(Sf), N1/2(Sg)〉 =
∫
∂Ω

(∂νSf)(Sg) dσ

=
〈(

−1

2
I +A∗

)
f, Sg

〉
,

for all f, g ∈ L2(∂Ω, σ), with A∗ as in (6.0.16)–(6.0.17). This leads to the following
result.

Proposition 6.2.4. Assume Ω ⊂ M is a UR domain satisfying (6.2.7), and as-
sume

(6.2.22) S(L2(∂Ω, σ)) is dense in D(N1/2).

Then

(6.2.23) S : L2(∂Ω, σ) −→ D(N),

and

(6.2.24) N(Sf) = ∂νSf
∣∣
∂Ω

=
(
−1

2
I +A∗

)
f, ∀ f ∈ L2(∂Ω, σ).

Remark. A sufficient condition for (6.2.22) is

(6.2.25) S(L2(∂Ω, σ)) ⊃ Lip(∂Ω).

We will see in §§6.3–6.4 cases where this holds.

The following result will be useful in the next two sections.
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Proposition 6.2.5. Let Ω ⊂ M be a UR domain satisfying (6.2.7) and (6.2.22).
Assume

(6.2.26) −1

2
I +A∗ : L2(∂Ω, σ) −→ L2(∂Ω, σ) is Fredholm, of index 0.

Then

(6.2.27) S : L2(∂Ω, σ) −→ D(N) is an isomorphism.

Proof. From (6.2.24), we have

(6.2.28) (N + 1)S = −1

2
I +A∗ + S on L2(∂Ω, σ).

It is elementary that

(6.2.29) S : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) is compact, ∀ p ∈ (1,∞),

so (6.2.26) implies that the right side of (6.2.28) is Fredholm of index 0 on L2(∂Ω, σ).
On the other hand, Proposition 6.1.6 implies that the left side of (6.2.28) is injective
on L2(∂Ω, σ). Thus the right side is invertible on L2(∂Ω, σ). Since N +1 : D(N) →
L2(∂Ω, σ) is an isomorphism, this gives (6.2.27).
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6.3. Lipschitz domains revisited

The special class of UR domains known as Lipschitz domains was described in
§3. Our goal here is to show that the operator N , constructed in §4.2 and studied
in §6.2, coincides with that constructed in §3.1 when Ω is a Lipschitz domain.

To start, we note that a Lipschitz domain Ω always satisfies the condition (6.2.7),
as a special case of Proposition 4.5.3. Also, Proposition 4.5.2 implies Z(Ω, σ) = 0.
Going further, we have the following.

Proposition 6.3.1. If Ω ⊂ M is a Lipschitz domain, Proposition 6.2.5 is appli-
cable, hence

(6.3.1) S : L2(∂Ω, σ) −→ D(N) is an isomorphism.

Proof. We need to verify (6.2.22) and (6.2.26). First, as mentioned in (3.2.19),

(6.3.2) S : Lp(∂Ω, σ)
≈−→ H1,p(∂Ω), ∀ p ∈ (1, q(Ω)),

where q(Ω) > 2. Taking p = 2, we get (6.2.25), hence (6.2.22). Next,

(6.3.3) −1

2
I +A∗ : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) is Fredholm, of index 0,

for 1 < p < q(Ω). This is shown in [MT3] and [MT4], for metric tensors that are
Lipschitz, or satisfy (3.0.1)–(3.0.2), respectively, following earlier work applicable
to Lipschitz domains in Euclidean space.

Together, (6.3.1) and (6.3.2) yield

(6.3.4) D(N) = H1,2(∂Ω).

Also, (6.2.24) applies, so we have

(6.3.5) Nf = ∂νS(S−1f) =
(
−1

2
I +A∗

)
S−1f, ∀ f ∈ H1,2(∂Ω).

This coincides with (3.2.15), and hence leads back to the characterization of N in
(3.1.3)–(3.1.4).



96

6.4. Regular SKT domains

The class of regular SKT domains arose in work [Se], [KT] of Semmes, Kenig,
and Toro, where they were called chord-arc domains with vanishing constant. The
label “regular SKT domains” was proposed in [HMT]. This class can be defined as
follows. First, we assume Ω ⊂M is an Ahlfors regular domain. Then Ω is a regular
SKT domain provided

(6.4.1)
Ω satisfies a 2-sided local John condition, and

ν ∈ vmo(∂Ω).

To say Ω satisfies a local John condition is to say that there exist θ ∈ (0, 1) and
R > 0 with the following properties. For each p ∈ ∂Ω and r ∈ (0, R), there is a
point pr ∈ Br(p) ∩ Ω such that

(6.4.2) Bθr(pr) ⊂ Ω,

and, for each x ∈ ∂Ω∩Br(p), there is a path γx from x to pr, of length ≤ r/θ, such
that

(6.4.3) dist(γx(t), ∂Ω) ≥ θ dist(γx(t), x), ∀ t.

The first hypothesis in (6.4.1) is that both Ω andM\Ω satisfy a local John condition.

This characterization of regular SKT domains is given in §4.2 of [HMT], where
it is shown to be equivalent to the definitions given in [Se] and [KT]. It is also
shown in [HMT] that an Ahlfors regular domain that satisfies a 2-sided local John
condition is a UR domain. Here is another result of [HMT]:

(6.4.4) If Ω ⊂M is a vmo1 domain, then it is a regular SKT domain.

One says Ω is a vmo1 domain if ∂Ω is locally the graph of a function g, satisfying
(4.5.4), but with (4.5.5) replaced by

(6.4.5) ∇g ∈ vmo .

Thus the class of vmo1 domains is larger than the class of C1 domains. On the
other hand, a vmo1 domain need not be a Lipschitz domain, and vice-versa.

Parallel to Proposition 6.3.1, we have the following result.
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Proposition 6.4.1. Let Ω ⊂M be a regular SKT domain. Assume that

(6.4.6)
◦
H1(Ω) = H1

0 (Ω).

Then

(6.4.7) S : L2(∂Ω, σ) −→ D(N) is an isomorphism.

Proof. As in Proposition 6.3.1, we want to show that Proposition 6.2.5 is applicable,
so we need to verify (6.2.22) and (6.2.26). One key result, established in §5.2 of
[HMT], is that

(6.4.8) A∗ : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) is compact, ∀ p ∈ (1,∞),

when Ω is a regular SKT domain. Hence,

(6.4.9) −1

2
I +A∗ : Lp(∂Ω, σ) −→ Lp(∂Ω, σ) is Fredholm, of index 0,

for 1 < p <∞, so (6.2.26) holds. Furthermore, it was shown in §6.4 of [HMT] that

(6.4.10) S : Lp(∂Ω, σ) −→ H1,p(∂Ω) is an isomorphism,

for 1 < p <∞. This implies (6.2.22), and completes the proof.

As in §6.3, we can deduce from (6.4.7) and (6.4.10) that

(6.4.11) D(N) = H1,2(∂Ω),

and that

(6.4.12) Nf = ∂νS(S−1f) =
(
−1

2
I +A∗

)
S−1f, ∀ f ∈ H1,2(∂Ω).

Remark. There is a theory of Lp-Sobolev spaces H1,p(∂Ω) for Ahlfors regular
domains Ω. It is less straightforward than for Lipschitz domains. For this develop-
ment, see §3.6 and §4.3 of [HMT], and also Appendix A.2 of [MMT]. It is still the
case that Lip(∂Ω) ⊂ H1,p(∂Ω), for each p ∈ (1,∞).

As in (6.2.28), we can pass from (6.4.12) to

(6.4.13) N + 1 =
(
−1

2
I +A∗ + S

)
S−1
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on H1,2(∂Ω). By (6.4.10) and (6.0.17), the right side extends uniquely to a bounded
linear operator from H1,p(∂Ω) to Lp(∂Ω, σ), for each p ∈ (1,∞). Furthermore,

(6.4.14) −1

2
I +A∗ + S : Lp(∂Ω, σ) −→ Lp(∂Ω, σ)

is Fredholm, of index 0, for each p ∈ (1,∞). As we have seen, it is injective on
L2(∂Ω, σ), hence on Lp(∂Ω, σ) for p ∈ [2,∞), hence invertible on Lp(∂Ω, σ) for
p ∈ [2,∞). Thus its adjoint is invertible on Lp(∂Ω, σ) for p ∈ (1, 2], hence injective
on Lp(∂Ω, σ) for p ∈ [2,∞), and also Fredholm of index 0, hence invertible. We
deduce that (6.4.14) is invertible on Lp(∂Ω, σ) for all p ∈ (1,∞). Hence

(6.4.15) N + 1 : H1,p(∂Ω)
≈−→ Lp(∂Ω, σ), ∀ p ∈ (1,∞).

It is also useful to have Sobolev embedding theorems in this setting. As shown
in §4.3 of [HMT], if Ω is an n-dimensional Ahlfors regular domain that satisfies a
local 2-sided John condition, then

(6.4.16)
H1,p(∂Ω) ↪→ Lp∗(∂Ω, σ), p∗ =

(n− 1)p

n− 1− p
, if 1 < p < n− 1,

H1,p(∂Ω) ↪→ Cα(∂Ω), α = 1− n

p
, if n < p <∞,

and

(6.4.17) H1,p(∂Ω) ↪→ Lp(∂Ω, σ) is compact, ∀ p ∈ (1,∞).

In the current setting of regular SKT domains, (6.4.17) also follows from (6.4.10)
and the compactness of S on Lp(∂Ω, σ). It follows from (6.4.15)–(6.4.16) that, in
the setting of Proposition 6.4.1,

(6.4.18) (N + 1)−1 : Lp(∂Ω, σ) −→ Lp∗
(∂Ω, σ), 1 < p < n− 1,

with p∗ as in (6.4.16). Iteration then yields a natural analogue of Proposition 3.1.2.
It is also of interest to consider the semigroup e−tN in this setting. We know it

is a semigrup of positive self-adjoint contractions on L2(∂Ω, σ). Also, Proposition
4.3.1 applies, so this is a symmetric Markov semigroup. Therefore a number of
results of §3.3 can be established in this setting. Let us focus on Proposition 3.3.8.
Results of [Var] imply that an estimate of the form

(6.4.19) ‖e−tNf‖L∞(∂Ω) ≤ C2t
−σ/2‖f‖L2(∂Ω), 0 < t ≤ 1,

is equivalent to

(6.4.20) ‖f‖2L2σ/(σ−1)(∂Ω) ≤ C1

[
〈Nf, f〉+ ‖f‖2L2(∂Ω)

]
, f ∈ D(N),
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as long as σ > 1. Note that the right side of (6.4.20) is C1 times

(6.4.21) ‖N1/2f‖2L2(∂Ω) + ‖f‖2L2(∂Ω) = ‖f‖2D(N1/2).

Since N is positive and self adjoint, general Hilbert space theory gives

(6.4.21) D(N1/2) = [L2(∂Ω, σ),D(N)]1/2,

the right side denoting the complex interpolation space. In view of (6.4.11), this
space is [L2(∂Ω, σ),H1,2(∂Ω)]1/2. It is natural to define fractional-order Sobolev
spaces by interpolation:

(6.4.22) Hs,p(∂Ω) = [Lp(∂Ω, σ),H1,p(∂Ω)]s, 0 < s < 1, 1 < p <∞.

Then

(6.4.23) D(N1/2) = H1/2,2(∂Ω).

In the setting of Lipschitz domains, we have the embedding results (3.3.30). Some
of these follow from (6.4.16) and interpolation in the setting of Ahlfors regular,
2-sided John domains. For example, a special case of (6.4.16) is

(6.4.24) H1,2(∂Ω) ⊂ L2(n−1)/(n−3)(∂Ω, σ), if n > 3.

In such a case, interpolation yields

(6.4.25) H1/2,2(∂Ω) ⊂ L2(n−1)/(n−2)(∂Ω, σ), if n > 3.

This result has the same form as its analogue for Lipschitz domains in (3.3.30),
except that (6.4.25) does not cover the case n = 3. Extending (6.4.25) to n = 3
when Ω is an Ahlfors regular, 2-sided John domain, along with further analyses of
fractional Sobolev spaces Hs,p(∂Ω) in this setting, is an interesting topic for future
work. At this point, we have the following result, via the sort of argument used in
Proposition 3.3.8.

Proposition 6.4.2. In the setting of Proposition 6.4.1,

(6.4.26) ‖e−tNf‖L∞(∂Ω) ≤ C(t ∧ 1)−(n−1)/2‖f‖L2(∂Ω),

provided dimΩ = n > 3.

It is tempting to conjecture that such a result also holds for n = 2 and 3, as it
does for Lipschitz domains, but we leave this aside.

Having Proposition 6.4.2, we can derive results on the spectrum of N parallel to
those done in the setting of Lipschitz domains in §3.4. In fact, parallel to (3.4.5)–
(3.4.7), we deduce from (6.4.26) that

(6.4.27) ‖e−tN‖2HS ≤ Ct−(n−1), 0 < t ≤ 1.

Hence we have (3.4.8)–(3.4.10) in this setting, yielding the following parallel to
Proposition 3.4.1.
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Proposition 6.4.3. In the setting of Proposition 6.4.1, the spectrum of N is dis-
crete, and we have

(6.4.28) Nϕj = λjϕj , 0 ≤ λj ↗ +∞,

where {ϕj : j ≥ 0} is an orthonormal basis of L2(∂Ω, σ). Then

(6.4.29)
∑
j≥0

e−tλj ≤ C(t ∧ 1)−(n−1),

hence

(6.4.30)
∑
j≥0

(λj + 1)−s ≤ C +
C

s− (n− 1)
, s > n− 1,

at least provided dimΩ = n > 3.
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7. More singular domains

In this chapter we continue to take Ω to be an open subset of a compact, con-
nected, n-dimensional Riemannian manifold M , but we move beyond the class of
finite perimeter domains. The finite positive measure µ we place on ∂Ω will typi-
cally have nothing to do with surface area, as given by (n−1)-dimensional Hausdorff
measure. This use of measures beyond surface area played some role in §5.3, but
there we depended very much on σ, surface measure on ∂∗Ω, to guarantee that
µ ≥ σ satisfied

(7.0.1)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂Ω

|u|2 dµ,

for all u ∈ Lip(Ω). This will be the defining condition for the construction of N .
We note that the idea of developing this theory for such a class of measures was
mentioned on p. 2103 of [AtE]. Here we provide tools to construct such measures
and point out some interesting natural examples.

In §7.1 we establish conditions on a measure µ on ∂Ω that yield (7.0.1). We see
that such measures exist as long as

(7.0.2) Cap(∂Ω) > 0,

under some conditions on Ω, such as the existence of a continuous linear extension

map E : H
1
(Ω) → H1(M). Here we do not assume (4.0.1). On the contrary, we

are interested in a number of cases in which

(7.0.3) ∂Ω =M \ Ω,

including some cases where ∂Ω is totally disconnected.
Once we have a postive finite measure µ on ∂Ω for which (7.0.1) holds, construc-

tion of N as a self-adjoint operator on L2(∂Ω, µ) proceeds much as in §4.2. We
record these results in §7.2. We also examine the semigroup {e−tN : t ≥ 0} as a
symmetric Markov semigroup on L2(∂Ω, µ), and establish conditions under which
it is irreducible.

Section 7.3. is devoted to domains Ω in the Riemann sphere Ĉ whose boundaries
are Julia sets. We take

(7.0.4) ∂Ω = JR, Ω = Ĉ \ JR = FR,

where R : Ĉ → Ĉ is a rational map of degree ≥ 2, JR is its Julia set, and FR

its Fatou set. The set JR carries a probability measure λ, known as the maximal
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entropy measure. We show that (7.0.1) holds for µ = λ (provided JR has Lebesgue
measure 0), so the results of §7.2 apply. We show that the semigroup {e−tN : t ≥ 0}
is irreducible in all these cases. Julia sets present a variety of fractal behavior, from
spikey connected sets known as “dendrites” to totally disconnected sets that are
Cantor sets with positive Hausdorff dimension, along with awesomely many other
types of behavor.
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7.1. Measures that satisfy (7.0.1)

As above, Ω is an open subset of the compact, n-dimensional Riemannian man-
ifold M , and µ is a finite positive measure supported on ∂Ω. We seek conditions
that imply the estimate (7.0.1), i.e.,

(7.1.1)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂Ω

|u|2 dµ, ∀u ∈ Lip(Ω).

In the current setting, Ω is not necessarily a finite perimeter domain, and µ might
have nothing to do with (n− 1)-dimensional Hausdorff measure. To tackle (7.1.1),
we need an approach much different from that used in §4.1, which involved the
divergence theorem. We will look for such measures among those that also satisfy

(7.1.2)

∫
∂Ω

|u|2 dµ ≤ C

∫
Ω

|∇u|2 dV + C

∫
Ω

|u|2 dV, ∀u ∈ Lip(Ω).

This is equivalemt to the condition that Tr : Lip(Ω) → Lip(∂Ω), given by Tru =
u|∂Ω, has a continuous extension to

(7.1.3) Tr : H
1
(Ω) −→ L2(∂Ω, µ).

We will give specific conditions on µ implying (7.1.2) below. Given (7.1.2), the
quadratic form

(7.1.4) Q(u, v) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω) +

∫
∂Ω

uv dµ, u, v ∈ Lip(Ω),

is closable, and its closure Q has form domain D(Q) = H
1
(Ω). Thus we have a

positive, self-adjoint operator T such that

(7.1.5) D(T 1/2) = H
1
(Ω), (T 1/2u, T 1/2v)L2(Ω) = Q(u, v).

We set S = T − I. Then S is positive semi-definite and

(7.1.6) ‖S1/2u‖2L2(Ω) = ‖∇u‖2L2(Ω) +

∫
∂Ω

|u|2 dµ, ∀u ∈ H
1
(Ω).

If (7.1.1) is to hold, we certainly want

(7.1.7) KerS = 0.
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If u ∈ KerS ⊂ H
1
(Ω), then u ≡ 0 on Ω, so u is constant on each connected

component of Ω. If

(7.1.8) µ(∂Oj) > 0 for each component Oj of Ω,

then each such constant is 0, and we have (7.1.7). In particular, this holds if Ω is
connected. An alternative condition that leads to (7.1.7) (which will be particularly
useful in §7.3) involves the following concept.

Definition. We say Ω is quasi-connected provided

(7.1.9) u ∈ H
1
(Ω), ∇u ≡ 0 on Ω =⇒ u = const.

Given this (and the hypothesis (7.1.2)), we clearly have

(7.1.10) Ω quasi-connected =⇒ KerS = 0.

Here is a condition that implies Ω is quasi-connected.

Lemma 7.1.1. Assume

(7.1.11) Ω = O \K, K ⊂ O compact, and Hn(K) = 0.

Then

(7.1.12) O connected =⇒ Ω quasi-connected.

Proof. From the hypotheses, we have that Lip(Ω) = Lip(O), that H
1
(Ω) = H

1
(O),

and that u ∈ H
1
(O),∇u ≡ 0 on Ω ⇒ ∇u ≡ 0 on O.

Our next task is to go from (7.1.7) to (7.1.1). The following result gives a
condition under which this can be done.

Proposition 7.1.2. Assume that (7.1.2) holds, that KerS = 0, and that

(7.1.13) H
1
(Ω) ↪→ L2(Ω) is compact.

Then (7.1.1) holds.

Proof. Under these hypotheses, S is a positive, self-adjoint operator with D(S1/2) =

H
1
(Ω), and hence S has compact resolvent. We deduce from KerS = 0 that

SpecS1/2 ⊂ [a,∞) for some a > 0, so ‖S1/2u‖2L2(Ω) ≥ a2‖u‖2L2(Ω), for all u ∈
D(S1/2), giving (7.1.1), with C = a2.
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We turn to a discussion of conditions on Ω and µ that imply (7.1.2). One useful
condition to place on Ω is

(7.1.14) ∃ continuous extension operator E : H
1
(Ω) −→ H1(M).

Note that (7.1.14) holds provided there exists an open O ⊂ M such that (7.1.11)

holds and there is an extension operator E : H
1
(O) → H1(M). In particular,

(7.1.14) holds provided

(7.1.15) Ω =M \K, K compact, and Hn(K) = 0,

since then H
1
(Ω) = H1(M). Note, by the way, that (7.1.14) implies (7.1.13).

When (7.1.14) holds and µ is a finite, positive measure supported on ∂Ω, the
estimate (7.1.2) holds whenever

(7.1.16)

∫
∂Ω

|u|2 dµ ≤ C‖u‖2H1(M), ∀u ∈ Lip(M).

An equivalent condition is that Mµ : Lip(M) → D′(M), defined by

(7.1.17) Mµu = uµ,

has a continuous extension to

(7.1.18) Mµ : H1(M) −→ H−1(M).

Given that

(7.1.19)
u, v ∈ H1(M) ⇒ uv ∈ H1,p(M), for p =

n

n− 1
, if n > 3,

for all p < 2, if n = 2,

we see that (7.1.18) holds provided

(7.1.20)
µ ∈ H−1,n(M), if n ≥ 3,

µ ∈ H−1,r(M), for some r > 2, if n = 2.

We can use this plus Theorem 4.7.4 of [Zie] to deduce that (7.1.18) holds whenever

(7.1.21) µ(Br(x)) ≤ Arα, ∀x ∈M, r > 0,

for some A <∞ and

(7.1.22) α > n− 1− 1

n− 1
.

Here, Br(x) denotes the ball in M is radius r, centered at x. In particular, for
n = 2, it suffices to have (7.1.21) for some α > 0. Let us summarize this result.
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Lemma 7.1.3. If µ is a finite, positive measure on M , we have (7.1.18) (and
hence (7.1.16)) provided (7.1.21) holds, with α satisfying (7.1.22).

Another useful criterion for (7.1.16) is the following result, from Theorem 1.2.2
of [MS].

Lemma 7.1.4. If µ is a finite, positive measure on M , we have (7.1.18) provided
there exists A <∞ such that

(7.1.23) µ(S) ≤ ACap(S), ∀ compact S ⊂M.

Corollary 7.1.5. Under the hypotheses of either Lemma 7.1.3 or Lemma 7.1.4, if
(7.1.14) holds, then (7.1.2) holds.

Examples of measures satisfying (7.1.21)–(7.1.22) include the maximal entropy
measures on Julia sets, as we will discuss in §7.3. Here we record some interesting
metric properties of sets supporting such a measure. Thus, let µ be a positive
measure satisfying (7.1.21), and set

(7.1.24) S = suppµ,

so S is a compact subset of M , µ(M \ S) = 0, and

(7.1.25) p ∈ S, O neighborhood of p in M =⇒ µ(O ∩ S) > 0.

For the measures relevant for (7.1.2), S ⊂ ∂Ω. Frequently, but not always, S = ∂Ω.
Our first result is a Hausdorff dimension estimate.

Proposition 7.1.6. If µ is a positive measure satisfying (7.1.21) and S = suppµ,
then

(7.1.26) the Hausdorff dimension of S is ≥ α.

In fact, there exists C <∞ such that for each compact K ⊂ S,

(7.1.27) µ(K) ≤ CHα(K).

Proof. The α-dimensional Hausdorff measure Hα(K) is characterized by

(7.1.28) hαδ (K) ↗ Hα(K),

as δ ↘ 0, where

(7.1.29) hαδ (K) = inf
{∑
j≥1

(diamAj)
α : K ⊂

⋃
j≥1

Aj , Aj compact, diam Aj ≤ δ
}
.
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Now (7.1.21) implies

(7.1.30) µ(Aj) ≤ C(diamAj)
α,

so

(7.1.31) K ⊂
⋃
j≥1

Aj ⇒ µ(K) ≤
∑
j≥1

µ(Aj) ≤ C
∑
j≥1

(diamAj)
α,

and hence

(7.1.32) µ(K) ≤ Chαδ (K), ∀ δ > 0,

which implies (7.1.27).

Taking into account (5.3.8), we have the following.

Corollary 7.1.7. If µ is a positive measure satisfying (7.1.21)–(7.1.22), and S =
suppµ, then, for each compact K ⊂ S,

(7.1.33) µ(K) > 0 =⇒ Cap(K) > 0.

We now bring in harmonic measure as a class of measures on ∂Ω satisfying
the hypothesis of Lemma 7.1.4. Its construction uses the solution operator to the
generalized Dirichlet problem

(7.1.34) PI0 : C(∂Ω) −→ {u ∈ L∞(Ω) : ∆u = 0}
described in (4.4.14)–(4.4.18), with the scope extended, in so far as the construction
works not merely when (4.0.1) holds, but under the more general hypothesis that

(7.1.35) Cap(M \ Ω) > 0.

This still yields the positivity condition (4.4.17). Hence, for each x ∈ Ω, there is a
unique positive Borel measure

(7.1.36) ωx on ∂Ω, of total mass 1,

such that

(7.1.37) PI0 f(x) =

∫
∂Ω

f dωx, ∀ f ∈ C(∂Ω).

The measure ωx is harmonic measure on ∂Ω. This depends on x. However, a
Harnack inequality argument (cf. [CKL]) shows that, if Ω is connected, given any
compact K ⊂ Ω, there exists C ∈ (0, 1) such that for each positive f ∈ C(∂Ω),

(7.1.38) C PI0 f(x) ≤ PI0 f(y) ≤ C−1 PI0 f(x), ∀x, y ∈ K.

Consequently,

(3.1.39) Cωx(S) ≤ ωy(S) ≤ C−1ωx(S),

for each Borel set S ⊂ ∂Ω. It is also useful to note that PI0 has a natural extension
to the class of bounded, Borel measurable funcitons f on ∂Ω, and (7.1.37) continues
to hold for f in this larger class. For example, if S ⊂ ∂Ω is compact

(7.1.40)
fj ∈ C(∂Ω), fj ↘ χS

=⇒ PI0 fj(x) ↘ PI0 χS(x) = ωx(S), ∀x ∈ Ω.

Our next goal is to establish the following.
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Proposition 7.1.8. Let Ω ⊂ M be open and connected, and satisfy (7.1.35). Fix
x ∈ Ω. Then there exists C ∈ (0,∞) such that, for each compact S ⊂ ∂Ω,

(7.1.41) ωx(S) ≤ C Cap(S).

We define Cap(S) as follows. Take a smoothly bounded closed set B ⊂ Ω such
that M \B is connected and x /∈ B, and set O =M \B. For use below, make sure
that Ω \ B is also connected. We will define Cap(S) for compact S ⊂ O. First, if
S is a smoothly bounded compact subset of O, we define the capacitary potential
US so that

(7.1.42)
US ∈ C(O), ∆US = 0 on O \ S,
US = 1 on S, US = 0 on ∂B.

Given ϕ ∈ C∞
0 (O), Green’s formula gives

(7.1.43)

∫
O

US(x)∆ϕ(x) dV (x) = −
∫
∂S

ϕ(y)∂νUS(y) dS(y),

where ν is the unit normal to ∂S, pointing into S. By Zaremba’s principle,
∂νUS(y) > 0 for y ∈ ∂S, so

(7.1.44) ∆US = −µS on O,

where µS is a positive measure supported on ∂S. We set

(7.1.45) Cap(S) =

∫
S

dµS .

For general compact S ⊂ O, we can take smoothly bounded Sj ↘ S and (cf. [T1],
Chapter 11),

(7.1.46) USj
↘ US , Cap(Sj) ↘ Cap(S),

and we also have (7.1.44)–(7.1.45).
To begin the proof of Proposition 7.1.8, note that the left side of (7.1.41) is equal

to PI0 χS(x), if S is a compact subset of ∂Ω. It will be useful to set Ω̃ = Ω \B and
consider

(7.1.47) P̃I0 : C(∂Ω̃) −→ {u ∈ L∞(Ω̃) : ∆u = 0 on Ω̃},

defined as in (7.1.34) but with Ω replaced by Ω̃, and then P̃I0f extended to bounded

Borel measurable f on ∂Ω̃. Clearly, for compact S ⊂ ∂Ω ⊂ ∂Ω̃, x ∈ Ω̃,

(7.1.48) P̃I0χS(x) ≤ PI0 χS(x).

An argument using Harnack’s inequality and the strong maximum principle yields
the following.
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Lemma 7.1.9. Let K be a compact subset of Ω̃. There exists C ∈ (1,∞) such that

for all f ∈ C(∂Ω̃) such that f ≥ 0 on ∂Ω, f = 0 on ∂B,

(7.1.49) PI0 f(x) ≤ CP̃I0f(x), ∀x ∈ K,

and, for each compact S ⊂ ∂Ω,

(7.1.50) PI0 χS(x) ≤ CP̃I0χS(x), ∀x ∈ K.

Proof. As a preliminary, since Ω̃ is connected, use of Harnack’s estimate yields the

following. Given K,K ′ ⊂ Ω̃ compact, there exists A = A(K,K ′) ∈ (1,∞) such
that

(7.1.51)
A−1u(p) ≤ u(q) ≤ Au(p), ∀ p ∈ K, q ∈ K ′, u ∈ C(Ω̃)

such that u > 0 and ∆u = 0 on Ω̃.

To proceed, let B̃ ⊂ Ω̃ be a smoothly bounded closed subset containing B in its

interior, and set K = ∂B̃. For x ∈ K, f ∈ C(∂Ω̃) as in the statement of the lemma,
we have

(7.1.52) PI0 f(x) = P̃I0f(x) + P̃I0g(x),

where

(7.1.53)
g(y) = 0 for y ∈ ∂Ω̃,

PI0f(y) for y ∈ ∂B.

Now the maximal principle applied to harmonic functions on B̃ implies

(7.1.54) sup
y∈∂B

g(y) < sup
x∈∂B̃

PI0 f(x).

We have, for x ∈ K = ∂B̃,

(7.1.55) 0 ≤ P̃I0g(x) ≤ γP̃I0χ(x),

where

(7.1.56) γ = sup
y∈∂B

g(y),

and

(7.1.57)
χ(y) = 0 for y ∈ ∂Ω̃,

1 for y ∈ ∂B.
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Another application of the (strong) maximum principle yields that, for x ∈ K,

(7.1.58) 0 < P̃I0χ(x) ≤ α, α < 1.

We deduce that, for x ∈ K,

(7.1.59) 0 ≤ P̃I0g(x) ≤ α sup
y∈K

PI0 f(y).

Consequently, given f ∈ C(∂Ω̃) such that f ≥ 0 on ∂Ω, f = 0 on ∂B,

(7.1.60) ∃x ∈ K such that P̃I0f(x) ≥ (1− α) PI0 f(x).

In light of (7.1.51), this proves (7.1.49), which in turn readily yields (7.1.50).

To proceed with the proof of Proposition 7.1.8, given compact S ⊂ ∂Ω, we have
from the maximum principle that

(7.1.61) P̃I0χS(x) ≤ US(x), ∀x ∈ Ω̃.

Now Cap(S) is given by (7.1.45), and, by (7.1.42) and (7.1.44), we have

(7.1.62) US(x) = −
∫
O

G(x, y) dµS(y), ∀x ∈ O,

and in particular for all x ∈ Ω̃. Here G(x, y) is the Green kernel for the Laplace
operator on O =M\B, with Dirichlet boundary condition on ∂O, which is bounded

on x ∈ K, y ∈ ∂Ω, with K ⊂ Ω̃ compact. Since µS is supported on S, we have for

each compact K ⊂ Ω̃ a constant C ∈ (0,∞) such that

(7.1.63) 0 ≤ US(x) ≤ CµS(S) = C Cap(S), ∀x ∈ K.

Putting together (7.1.50), (7.1.61), and (7.1.63), and recalling that ωx(S) = PI0 χS(x),
we have Proposition 7.1.8.

Combining Proposition 7.1.8 with Corollary 7.1.5, we have the following.

Proposition 7.1.10. Let Ω ⊂ M be open and connected and satisfy (7.1.35).
Assume there is an extension operator as in (7.1.14). Then, given x ∈ Ω, harmonic
measure µ = ωx satisfies (7.1.2), and consequently it satisfies (7.1.1).

Proof. It remains only to treat the last assertion. For this, note that (7.1.14) implies
the compactness (7.1.13), and that connectedness of Ω implies KerS = 0. Hence
Proposition 7.1.2 applies.
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7.2. Construction of N

Recall that Ω is an open subset of a compact, n-dimensional Riemannian mani-
fold M , that µ is a finite positive measure on ∂Ω, and that (7.0.1) holds, i.e.,

(7.2.1)

∫
Ω

|u|2 dV ≤ C

∫
Ω

|∇u|2 dV + C

∫
∂Ω

|u|2 dµ, ∀u ∈ Lip(Ω).

As opposed to the setup in Chapter 4, we do not assume M \Ω 6= ∅, but explicitly
allow the possibility that Ω = M . The hypothesis (4.0.1) played a key role in
the estimate (4.1.1) (a special case of (7.2.1)), but, as discussed in §7.1, we take
different routes here to (7.2.1), which do not appeal to such an hypothesis.

In the current setting, the construction of N in §4.2 goes through smoothly. In
fact, since (7.2.1) agrees with (4.2.3), no changes (not even notational) are required
in the analysis presented in (4.2.4)–(4.2.36). We summarize the first set of results,
parallel with Proposition 4.2.1:

Proposition 7.2.1. Given (7.2.1), there is a unique positive, self-adjoint operator
N on L2(∂Ω, µ) satisfying

(7.2.2) D(N1/2) = {f ∈ L2(∂Ω, µ) : (u, f) ∈ V for some u ∈ H
1
(Ω)},

and

(7.2.3) 〈N1/2f,N1/2g〉 =
∫
Ω

〈∇u,∇v〉 dV, for (u, f), (v, g) ∈ V.

Here, 〈 , 〉 on the left side denotes the inner product in the Hilbert space
L2(∂Ω, µ),

(7.2.4) V =
{
(u, f) ∈W# :

∫
Ω

〈∇u,∇v〉 dV = 0, ∀ v ∈
◦
H1(Ω)

}
,

(7.2.5) W# = closure of {(u, u|∂Ω) : u ∈ Lip(Ω)} in H
1
(Ω)⊕ L2(∂Ω, µ),

and

(7.2.6)
◦
H1(Ω) = {v ∈ H

1
(Ω) : (v, 0) ∈W#}.
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From (7.2.3) we have

(7.2.7) 〈N1/2f,N1/2f〉 =
∫
Ω

|∇u|2 dV, for (u, f) ∈ V.

Also, parallel to (4.2.31),

(7.2.8) 〈N1/2f,N1/2f〉 = inf
{∫
Ω

|∇u|2 dV : (u, f) ∈W#
}
.

Next we have an extension of Proposition 4.2.2. That result had the hypothesis
that Ω was connected, but here we emphasize that more generally Ω can be quasi-
connected, as defined in (7.1.9).

Proposition 7.2.2. In the setting of Proposition 7.2.1, assume that Ω is quasi-
connected. Then

(7.2.9) KerN = Span(1) + Z(Ω, µ),

where

(7.2.10) Z(Ω, µ) = {f ∈ L2(∂Ω, µ) : (0, f) ∈W#}.

Proof. As in (4.2.33), given f ∈ L2(∂Ω, µ),

(7.2.11) f ∈ KerN ⇐⇒ (u, f) ∈W# for some u ∈ H
1
(Ω) satisfying ∇u = 0.

As noted in §4.2, if Ω is connected, then u ∈ H
1
(Ω), ∇u = 0 implies u is constant

on Ω. The content of (7.1.11) is that this implication holds whenever Ω is quasi-
connected.

Remark. What makes this extension interesting is Lemma 7.1.1.

Note that f ∈ Z(Ω, µ) if and only if there exist uk ∈ Lip(Ω) such that

(7.2.12) uk −→ 0 in H1(Ω), uk
∣∣
∂Ω

−→ f in L2(∂Ω, µ).

Hence, parallel to the remark following Proposition 4.2.2, we have:

Proposition 7.2.3. If (7.1.2) holds, then Z(Ω, µ) = 0.

The results of §4.3 on the semigroup {e−tN : t ≥ 0} also extend in a straightfor-
ward fashion. We move from Proposition 4.3.1 to
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Proposition 7.2.4. Given f ∈ L2(∂Ω, µ),

(7.2.13) f ≥ 0 =⇒ e−tNf ≥ 0, ∀ t > 0.

We can also extend Proposition 4.3.2, and relax the connectivity hypothesis on
Ω.

Proposition 7.2.5. In the setting of Proposition 7.2.1, assume Ω is quasi-connected.
If Z(Ω, µ) = 0, then {e−tN : t ≥ 0} is irreducible.

We illustrate the conclusion of Proposition 7.2.5 with the following example,
involving a quasi-connected, but not connected set Ω (though not at all singular),
namely

(7.2.14) Ω = (−1, 1) \ {0}.

This parallels the calculations in (2.3.9)–(2.3.13). We have L2(∂Ω) ≈ R3, via
f 7→ (f(−1), f(0), f(1))t. In this case

(7.2.15) PI

 1
1
1

 = 1, PI

 0
0
1

 = x+, PI

 1
0
0

 = (−x)+,

so

(7.2.16) N

 1
1
1

 =

 0
0
0

 , N

 0
0
1

 =

 0
−1
1

 , N

 1
0
0

 =

 1
−1
0

 ,

hence

(7.2.17) N =

 1 −1 0
−1 2 −1
0 −1 1

 .

We see that N has eigenvalues

(7.2.18) λ1 = 0, λ2 = 1, λ3 = 3,

with associated eigenvectors

(7.2.19) v1 =

 1
1
1

 , v2 =

 1
0
−1

 , v3 =

 1
−2
1

 .
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Rather than working out e−tN explicitly from (7.2.18)–(7.2.19), let us note that

(7.2.20) M = N − I =

 0 −1 0
−1 1 −1
0 −1 0


has square

(7.2.21) M2 =

 1 −1 1
−1 3 −1
1 −1 1

 .

Now

(7.2.22) e−tN = e−te−tM = e−t
(
I − tM +

t2

2
M2

)
+O(t3),

as t → 0. Plugging in (7.2.20)–(7.2.21) yields that all 9 matrix entries of e−tN are
> 0 for sufficiently small t > 0. Then the semigroup property e−(s+t)N = e−sNe−tN

implies that all the matrix entries of e−tN are > 0, for all t > 0.
More complicated (and interesting) cases of Proposition 7.2.4 arise in §7.3.
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7.3. Domains bounded by Julia sets

Here we consider a class of domains in the Riemann sphere Ĉ = C ∪ {∞} ≈
S2 that are bounded by Julia sets, and a class of probability measures on their
boundary, known as measures of maximal entropy (MME). Let us introduce the
basic concepts.

A rational map

(7.3.1) R(z) =
P (z)

Q(z)
,

where P (z) and Q(z) are polynomials with no nontrivial common factors, yields a

holomorphic map R : Ĉ → Ĉ. Its degree is degR = max{degP, degQ}. One has
the partition

(7.3.2) Ĉ = JR ∪ FR,

where JR is the Julia set of R and FR is the Fatou set. By definition, a point ζ ∈ Ĉ
belongs to FR if and only if there is a neighborhood O of ζ such that {Rn|O : n ≥ 1}
is a normal family of maps from O to Ĉ. The set FR is an open subset of Ĉ, and
JR (which is closed) is defined to be its complement.

The map R preserves JR and FR. On FR its behavior is regular, and on JR it is
chaotic. One signature of the chaos is that, given ζ ∈ JR, and given a neighborhood

O of ζ in Ĉ, there is an m such that

(7.3.3) Rm(O ∩ JR) ⊃ JR.

Whenever degR ≥ 2, JR 6= ∅. If JR 6= Ĉ, then its interior is empty. Proofs of
these facts, and others used below, can be found in [Mil] and [MNTU]. From here

on, we assume degR ≥ 2 and JR 6= Ĉ.
We next describe the maximal entropy measure λ on JR, introduced in [Lyu]

and [FLM]. It is constructed as follows. Pick p ∈ JR and set

(7.3.4) λp,k =
1

dk

∑
q∈R−k(p)

δq,

with q ∈ R−k(p) counted according to multiplicity. Here d = degR, so for each
k, λp,k is a probability measure supported on JR. Then (cf. Theorem 5.4.1 of
[MNTU]), for each p ∈ JR, it is the case that

(7.3.5) λp,k −→ λ, weak∗, as k → ∞,
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and the limit is independent of p. Furthermore,

(7.3.6) suppλ = JR.

Another important property of λ (though not central to the work here) is that

(7.3.7) R preserves λ and acts ergodically on (JR, λ).

The ergodicity is another signature of the chaos on JR, and its proof makes essential
use of (7.3.3); cf. [MNTU], p. 189.

Of key importance here is that Lemma 7.1.3 is applicable to the MME λ. That
is to say, there exist a > 0 and C <∞ such that, for each disk Dρ of radius ρ,

(7.3.8) λ(Dρ) ≤ Cρa.

See [MNTU], p. 190. Since n = 2 here, we have (7.1.21)–(7.1.22).
Consequently, if we take

(7.3.9) Ω = FR ⊂M = Ĉ, ∂Ω = JR,

where R is a rational map of degree ≥ 2 and JR 6= ∅, (7.1.2) applies to µ = λ.
The set FR might or might not be connected; examples will be discussed below.
However, we can apply Lemma 7.1.1 to see that

(7.3.10) FR is quasi-connected,

provided

(7.3.11) H2(JR) = 0.

Then (7.1.10) applies. Also, whenever (7.3.11) holds, we have (7.1.15) (with K =
JR), and hence

(7.3.12) H
1
(FR) = H1(Ĉ),

so Proposition 7.1.2 is applicable. Consequently (7.1.1) holds, with µ = λ. There-
fore, Proposition 7.2.1 applies. We record the result.

Proposition 7.3.1. Let R be a rational map of degree ≥ 2, and assume (7.3.11)
holds. Then there is a unique positive, self-adjoint operator N on L2(JR, λ) satis-
fying

(7.3.13) D(N1/2) = {f ∈ L2(JR, λ) : (u, f) ∈ V for some u ∈ H
1
(FR)},
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and

(7.3.14) 〈N1/2f,N1/2g〉 =
∫
FR

〈∇u,∇v〉 dS, for (u, f), (v, g) ∈ V.

Here dS denotes the standard area element on Ĉ ≈ S2.

Remark. There exist Julia sets JR 6= Ĉ for which H2(JR) > 0, but (7.3.11) is
known to hold under a wide variety of conditions. See [BC].

Continuing with applications of §7.2, we note that, since (7.1.2) applies, with
µ = λ, Proposition 7.2.3 gives

(7.3.15) Z(FR, λ) = 0,

hence, by (7.2.9),

(7.3.16) KerN = Span(1),

given (7.3.11). Next, Propositions 7.2.4–7.2.5 apply, giving:

Proposition 7.3.2. In the setting of Proposition 7.3.1, {e−tN : t ≥ 0} is a sym-
metric Markov semigroup on L2(JR, λ), and it is irreducible.

We now describe some types of Julia sets that occur, referring to [Mil] and
[MNTU] for details. As a preliminary, we note that JR cannot have any isolated
points. More precisely, given (7.3.8), we can apply Proposition 7.1.5 and deduce
that there exists C <∞ such that for each compact K ⊂ JR,

(7.3.17) λ(K) ≤ CHa(K).

Together with (7.3.6), this implies that the Hausdorff dimension of JR ∩ O is ≥ a

for each open O ⊂ Ĉ that intersects JR. Here are some cases.

(A) JR could be totally disconnected.
We see from (7.3.17) that JR must be a Cantor set, of positive Hausdorff dimension.
In this case, FR is connected. One class of examples for this is

(7.3.18) R(z) = z2 + c, c /∈ M,

where M is the Mandelbrot set.

(B) Both JR and FR could be connected.
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For example, JR could be a “dendrite;” see [Mil], pp. 41–42, [Dev], p. 290. A
standard example of this is

(7.3.19) R(z) = z2 + i.

(C) FR could have 2 connected components.
This occurs, for example, for R(z) = z2 + c when c is in the “main cardioid” of the
Mandelbrot set M. For c = 0, JR is the unit circle. In other cases, it is typically
not a smooth curve. In this situation, if O1 and O2 are the two components of FR,
one has

(7.3.20) ∂O1 = ∂O2 = JR.

(D) FR could have infinitely many connected components.
In fact, if FR has more than 2 components, it must have infinitely many (cf. [B],
Theorem 5.6.2). Examples include R(z) = z2 + c when c is in any component of
the interior of M other than the main cardioid. In such a case, we have

(D1) JR is connected.
A popular example is the “Duady rabbit,” arising for

(7.3.21) R(z) = z2 + (−0.122 + 0.745 i).

See [Mil], p. 42. Generally, in this situation, JR might or might not be locally
connected.

For other rational maps, it might be that

(D2) JR is not connected.
For an example, see [Mil], p. 50. It is the case (cf. [Mil], Corollary 4.15) that if JR

is not connected, it must have uncountably many connected components.

In a number of cases, there is a nonempty “residual set,”

(7.3.22) J0 = JR \
⋃
j

∂Oj ,

where {Oj} are the connected components of FR. In such a case, one has

(7.3.23) λ(∂Oj) = 0,

for all j. If R(z) is a polynomial, of degree ≥ 2, then the connected component O∞

of FR containing ∞ has the property that ∂O∞ = JR, and then J0 = ∅. In many
cases, it can be shown that if J0 = ∅, then (7.3.23) holds except for one component
of FR. Further discussion of this matter can be found in [HT].
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A. Quadratic forms and self-adjoint operators

Here we discuss a couple of results that associate a positive semi-definite self-
adjoint operator to a quadratic form, starting with the classical Friedrichs extension
method. All vector spaces will be vector spaces over R.

In the setup for the Friedrichs method, we have a Hilbert space H, with inner
product ( , )H , and another Hilbert space V , with inner product Q( , ), and a
continuous, injective map

(A.1) J : V −→ H,

with dense range. Via J , we identify V with a dense linear subspace of H. Com-
posing with J t : H → V ′ (which is also injective, with dense range), we have

(A.2) V ↪→ H ↪→ V ′.

Meanwhile, the inner product Q( , ) on V induces an isomorphism

(A.3) AQ : V
≈−→ V ′, with inverse TQ : V ′ −→ V.

We restrict TQ to H, mapping H to V ⊂ H, to get the bounded linear operator

(A.4) T : H −→ H.

Given u, v ∈ H, we can pick f, g ∈ V such that u = AQf, v = AQg. Then

(u, Tv)H = (AQf, TQAQg)H

= (AQf, g)H

= Q(f, g).

Hence
(u, Tv)H = (v, Tu)H ,

so the bounded operator T is self-adjoint. Clearly T is injective, hence has dense
range R(T ) ⊂ H. Thus the inverse A of T is densely defined,

(A.5) A : H −→ H, D(A) = R(T ),

and it is a classical result that A is self adjoint (cf. [T1], Appendix A, Proposition
8.2). Clearly

(A.6) u, v ∈ D(A) =⇒ (Au, v)H = Q(u, v).
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One verifies that

(A.7) D(A1/2) = V.

Let us also note that

(A.8) D(A) = {u ∈ V : AQu ∈ H}.

Given that V is a Hilbert space, we say Q is a closed quadratic form. More
generally, we can let V0 have a positive-definite inner product Q and a continuous
injection J : V0 → H. Then we can form the Hilbert space completion V of V0, and
extend J to a continuous linear map J : V → H. If J is injective on V , we say Q is
closable, and associate the self-adjoint operator A by the process described above.

Here is a basic example of a non-closable quadratic form. Set

(A.9) H = L2([0, 1]), V0 = C([0, 1]), α(f, g) = f(0)g(0).

Of course, α is not positive definite, so we fix δ > 0 and set

(A.10) Q : V0 × V0 → R, Q(f, g) = α(f, g) + δ(f, g)H .

It is readily seen that the Hilbert-space completion of V0 is

(A.11) V # = `2({0})⊕ L2([0, 1]),

and that the extension of J , J# : V # → H, annihilates the first factor on the right
side of (A.11) and maps the second factor isomorphically onto H. On the other
hand, we can set

(A.12) V = V #/Ker J#,

and obtain the setting described above. Thus there arises a self-adjoint operator A
on H, and we readily check that

(A.13) A = δI.

Consequently the effect of the quadratic form α on A has disappeared.
We move on to an expanded method of assigning a self-adjoint operator to a

quadratic form, introduced in [AtE2] and used in [AtE]. In this setting, we have a
real Hilbert space H, with inner product ( , )H , a real vector space W0, a linear
map

(A.14) τ :W0 −→ H, with dense range,

and a positive symmetric bilinear form

(A.15) α :W0 ×W0 → R, α(u, u) ≥ 0, ∀u ∈W0.
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We do not want to assume that α is positive definite. However, we do assume that

(A.16) Kerα ∩Ker τ = 0,

which, if necessary, can be arranged by passing to a quotient space of W0. Then

(A.17) β(u, v) = α(u, v) + (τu, τv)H

is a positive-definite inner product on W0. Let W# denote its Hilbert space com-
pletion, yielding the continuous linear extension of τ ,

(A.18) τ# :W# −→ H, with dense range.

Now we form

(A.19) V =W#/Ker τ#,

which has a natural Hilbert space structure, isomorphic to the orthogonal comple-
ment of Ker τ# in W#. Also τ# in (A.18) induces a natural continuous injection

(A.20) J : V −→ H,

with dense range, and we are in the setting described as the beginning of this
appendix, yielding a positive-semidefinite self-adjoint operator

(A.21) B : H −→ H.

In view of how this arises from (A.17), we have SpecB ⊂ [1,∞), and the self-adjoint
operator A associated with α is

(A.22) A = B − I.

Note that

(A.23) D(A1/2) = D(B1/2) = V,

where we identify V with a dense linear subspce of H, via (A.20). Equivalently,

(A.24) D(A1/2) = τ#(W#).
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B. Green’s formula

Here we discuss sufficient conditions for the identity

(B.1)

∫
Ω

〈∇u,∇v〉 dV =

∫
∂Ω

∂u

∂ν
v dσ,

given

(B.2) ∆u = 0 on Ω,

and given further conditions on the domain Ω and on the functions u and v on Ω.
In all cases, we assume Ω ⊂M is a finite perimeter domain, as defined in Chapter
4 (with dimM = n), and σ is surface measure, as in (4.0.2)–(4.0.4).

The identity (B.1) arises in (3.1.5) when Ω ⊂M is a Lipschitz domain and

(B.3) u = PI f, v = PI g, f, g ∈ H1(∂Ω).

As stated in (3.1.2), such an hypothesis on u implies

(B.4) ∇u ∈ L2(Ω),

where we set

(B.5)
Lp(Ω) = {w ∈ C0(Ω) : w∗ ∈ Lp(∂Ω) and ∃ nontangential

limit w
∣∣
∂Ω
, a.e. on ∂Ω}.

(Recall that w∗ denotes the nontangential maximal function.) Meanwhile, since
H1(∂Ω) ⊂ Lq(∂Ω) with q = 2(n − 1)/(n − 3) for n > 3, any q < ∞ if n = 3, and
q = ∞ if n = 2, results on PI g, for g ∈ H1(∂Ω) ⊂ Lq(∂Ω) give

(B.6) v ∈ Lq(Ω), q > 2,

as well as (B.4) for ∇v. Let us note that Lp(Ω) ⊂ Lp(Ω). In fact, a stronger result
holds:

(B.7) Lp(Ω) ⊂ Lpn/(n−1)(Ω).

This is fairly elementary when Ω is a Lipschitz domain. In [HMT], §3.2, it is
established for a broader class of domains, namely the class of Ahlfors regular
domains, defined as follows.
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Let Ω ⊂M be an open subset, and assume

(B.8) Hn−1(∂Ω) <∞, Hn−1(∂Ω \ ∂∗Ω) = 0,

where ∂∗Ω is the measure-theoretic boundary of Ω. Assume also that there exists
α ∈ (1,∞) such that for all p ∈ ∂Ω, r ∈ (0, 1],

(B.9) α−1rn−1 ≤ σ(∂Ω ∩Br(p)) ≤ αrn−1,

where σ is surface area on ∂Ω (i.e., (n − 1)-dimensional Hausdorff measure). It is
elementary that each Lipschitz domain is Ahlfors regular.

Returning to (B.1), we will show that it follows from the divergence theorem, in
the form

(B.10)

∫
Ω

divX dV =

∫
∂Ω

〈ν,X〉 dσ,

when the vector field X is given by

(B.11) X = v∇u,

in which case

(B.12) divX = ∇v · ∇u+ v∆u = ∇v · ∇u,

provided ∆u = 0. Note that (B.4) and (B.6) imply

(B.13) X ∈ Lp(Ω), for some p > 1.

Meanwhile, given ∇u ∈ L2(Ω) and also ∇v ∈ L2(Ω), we have

(B.14) ∇u · ∇v ∈ L1(Ω) ⊂ Ln/(n−1)(Ω) ⊂ L1(Ω).

The following form of the divergence theorem was established in [HMT], in §2.3 for
domains Ω in Euclidean space, and in §5.3 for domains Ω in a compact Riemannian
manifold, with a continuous metric tensor.

Proposition B.1. Let M be a compact Riemannian manifold and let Ω ⊂ M be
an Ahlfors regular domain. Assume that X is a vector field on Ω satisfying

(B.15) X ∈ Lp(Ω), and divX ∈ L1(Ω),

for some p > 1. Then (B.10) holds.

Remark. This result has been extended in [MMM] to include the case p = 1. This
extension is useful for the study of real Hardy spaces on ∂Ω, but we will not use
this extension here.

We record the general result on (B.1) that follows from Proposition B.1 and the
calculations involving (B.10)–(B.14), of use in Chapter 6.
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Proposition B.2. Let Ω ⊂ M be an Ahlfors regular domain. Assume u and v
satisfy

(B.16) ∇u,∇v ∈ L2(Ω), v ∈ Lq(Ω), q > 2,

and ∆u = 0 on Ω. Then (B.1) holds.

Here is a case of direct interest in Chapter 6.

Proposition B.3. Let Ω ⊂M be a UR domain, and let

(B.17) u = Sf, v = Sg, f, g ∈ L2(∂Ω),

where S is the single layer potential operator, given by (6.0.11). Then ∆u = ∆v = 0
on Ω, and u and v satisfy (B.16).

Proof. That ∆u = ∆v = 0 on Ω follows from the construction of E(x, y). That
∇u,∇v ∈ L2(Ω) follows from (6.0.12)–(6.0.14). That v ∈ Lq(Ω) for some q > 2
follows from calculations done in §5.1 of [HMT].
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