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Introduction

These notes are based on lectures I have given on Lie groups, in Math 773, at
UNC. Prerequisites include the basic first-year graduate courses in analysis, algebra,
geometry, and topology, and an introductory course in manifold theory. Algebraic
background can be found in [T5], and basic analytic background can be found in
[T3].

The first three sections introduce the notion of a Lie group and provide a number
of classical examples. These examples are matrix groups, such as groups of invert-
ible matrices, orthogonal matrices, unitary matrices, and others. We also discuss
the matrix exponential, which later will be extended in a fundamental way to the
abstract Lie group setting.

Sections 4–17 deal with the general theory of Lie groups. We discuss integration
on a Lie group, the Lie algebra, and the exponential map from the Lie algebra to the
Lie group. We apply these objects to general results on representations. We present
some classical results on compact Lie groups, such as the Peter-Weyl theorem, on
the completeness of the matrix entries of irreducible unitary representations of a
compact Lie group G in L2(G).

Sections 18–34 concentrate on the unitary groups U(n). Topics discussed include
the classification of irreducible unitary representations of U(n), involving the notion
of roots and weights, and some of their properties. We also treat the decomposi-
tion of ⊗kCn into irreducible spaces for U(n), and the duality with the symmetric
group Sk that arises here, and also classical character formulas and some of their
implications for harmonic analysis on U(n).

Sections 35–38 extend some of the general results of §§19–21 to the setting of
general compact Lie groups, particularly discussing roots of their Lie algebras and
weights of their representations.

Sections 39–44 specialize again, this time to the setting of the orthogonal groups
SO(n) and certain two-fold covers, denoted Spin(n), which are introduced in §42,
via use of Clifford algebras, which are introduced in §41.

These notes end with several appendices, presenting some background material
and also some material complementary to that in the main body of the notes.

After reading these notes, the reader should be prepared to tackle more advanced
treatments of Lie groups and their representation theory, such as mentioned in the
references. In particular, these notes should serve as preparation for study of the
monograph [T1].
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1. Definition and basic examples

A Lie group G is a group that is also a smooth manifold, such that the group
operations G×G → G and G → G given by (g, h) 7→ gh and g 7→ g−1 are smooth
maps.

We consider some examples, starting with

(1.1) Gl(n,R) = {A ∈ M(n,R) : A−1 exists},

where M(n,R) consists of n× n real matrices.

Proposition 1.1. The set Gl(n,R) is open in M(n,R).

Proof. One way to see this is to note that Gl(n,R) = {A ∈ M(n,R) : det A 6= 0},
and det : M(n,R) → R is continuous. Here is another.

Given A ∈ Gl(n,R), we have A+B = A(I +A−1B), which is invertible provided
I + A−1B is invertible. Now if C ∈ M(n,R) we have the operator norm

(1.2) ‖C‖ = sup {‖Cv‖ : v ∈ Rn, ‖v‖ ≤ 1},

and we see that ‖Ck‖ ≤ ‖C‖k, and hence

(1.3) ‖C‖ < 1 =⇒ (I + C)−1 =
∑

k≥0

(−C)k,

with absolute convergence, so ‖A−1B‖ < 1 implies A + B is invertible.

The group Gl(n,R) inherits a manifold structure from the vector space M(n,R).
Since (A,B) 7→ AB is bilinear, it is clearly smooth. Furthermore, κ(A) = A−1

gives a smooth map on Gl(n,R), with

(1.4) Dκ(A)X = −A−1XA−1.

In fact, for ‖X‖ small,

(1.5)
(A + X)−1 = (A(I + A−1X))−1 = (I + A−1X)−1A−1

= A−1 +
∑

k≥1

(−1)k(A−1X)kA−1,

which yields (1.4).
Similar considerations apply to

(1.6) Gl(n,C) = {A ∈ M(n,C) : A−1 exists},
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where M(n,C) consists of n× n complex matrices.
Many other basic examples of Lie groups arise as subgroups of Gl(n,R) and

Gl(n,C). For example, we have

(1.7) Sl(n,F) = {A ∈ M(n,F) : det A = 1} ⊂ Gl(n,F), F = R or C.

Other examples are

(1.8)
O(n) = {A ∈ M(n,R) : A∗A = I},
U(n) = {A ∈ M(n,C) : A∗A = I},

where

(1.9) A = (ajk) =⇒ A∗ = (akj).

Also we have

(1.10)
SO(n) = {A ∈ O(n) : det A = 1},
SU(n) = {A ∈ U(n) : det A = 1}.

The proof that (1.7)–(1.10) define Lie groups follows from the fact these groups
are all smooth submanifolds of M(n,F). This fact in turn can be deduced from the
following result, which is a consequence of the inverse function theorem.

Theorem 1.2. (Submersion mapping theorem) Let V and W be finite-dimensional
vector spaces, and F : V → W a smooth map. Fix p ∈ W , and consider

(1.11) S = {x ∈ V : F (x) = p}.

Assume that, for each x ∈ S, DF (x) : V → W is surjective. Then S is a smooth
submanifold of V . Furthermore, for each x ∈ S,

(1.12) TxS = kerDF (x).

For a proof of this result, see Appendix α. The proof takes the following ap-
proach. Given q ∈ S, define

Gq : V −→ W ⊕ kerDF (q), Gq(x) = (F (x), Pq(x− q)),

where Pq : V → kerDF (q) is a projection. Then the inverse function theorem can
be applied to Gq.

We show how Theorem 1.2 can be applied to show that the groups described
in (1.7)–(1.10) are smooth submanifolds of M(n,F). We start with (1.7). Here we
take

(1.13) V = M(n,F), W = F, F : V → W, F (A) = det A.
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Now given A invertible,

(1.14) F (A + B) = det(A + B) = (det A) det(I + A−1B),

and inspection shows that, for X ∈ M(n,F),

(1.15) det(I + X) = 1 + TrX + O(‖X‖2),

so

(1.16) DF (A)B = (detA)Tr(A−1B).

Now, given A ∈ Sl(n,F), or even A ∈ Gl(n,F), it is readily verified that

(1.17) τA : M(n,F) −→ F, τA(B) = Tr(A−1B),

is nonzero, hence surjective, and Theorem 1.2 applies.

We turn to O(n), defined in (1.8). In this case,

(1.18)
V = M(n,R), W = {X ∈ M(n,R) : X = X∗},

F : V −→ W, F (A) = A∗A.

Now, given A ∈ V ,

(1.19) F (A + B) = A∗A + A∗B + B∗A + O(‖B‖2),

so

(1.20) DF (A)B = A∗B + B∗A = A∗B + (A∗B)∗.

We claim that

(1.21) A ∈ O(n) =⇒ DF (A) : M(n,R) → W is surjective.

Indeed, given X ∈ W , i.e., X ∈ M(n,R), X = X∗, we have

(1.22) B =
1
2
AX =⇒ DF (A)B = X.

Again, Theorem 1.2 applies.
Similar arguments apply to U(n) in (1.8) and to the groups in (1.10). For SU(n)

we take
V = M(n,C), W = {X ∈ M(n,C) : X = X∗} ⊕ R,

F : V −→ W, F (A) = (A∗A, Imdet A).
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Note that A ∈ U(n) implies |det A| = 1, so Imdet A = 0 ⇔ detA = ±1.

As a further comment on O(n), we note that, given A ∈ M(n,R), defining
A : Rn → Rn,

(1.23) A ∈ O(n) ⇐⇒ (Au,Av) = (u, v), ∀ u, v ∈ Rn,

where (u, v) is the Euclidean inner product on Rn:

(1.24) (u, v) =
∑

j

ujvj ,

where u = (u1, . . . , un), v = (v1, . . . , vn). Similarly, given A ∈ M(n,C), defining
A : Cn → Cn,

(1.25) A ∈ U(n) ⇐⇒ (Au,Av) = (u, v), ∀ u, v ∈ Cn,

where (u, v) denotes the Hermitian inner product on Cn:

(1.26) (u, v) =
∑

j

ujvj .

Note that

(1.27) 〈u, v〉 = Re(u, v)

defines the Euclidean inner product on Cn ≈ R2n, and we have

(1.28) U(n) ↪→ O(2n).

Analogues of O(n) and U(n), with R and C replaced by the ring H of quaternions,
will be discussed in §3.

Having defined several matrix groups, we now define a family of Lie groups that
are not a priori subgroups of Gl(N,F). Namely we define the Euclidean group E(n)
as a group of isometries of Rn. As a set, E(n) = O(n)×Rn, and the action of (A, v)
on Rn is given by

(1.29) (A, v)x = Ax + v, A ∈ O(n), v, x ∈ Rn.

The group law is seen to be

(1.30) (A, v) · (B, w) = (AB,Aw + v).

Actually, E(n) is isomorphic to a matrix group, via

(1.31) (A, v) 7→
(

A v
0 1

)
,

as one verifies that

(1.32)
(

A v
0 1

)(
B w
0 1

)
=

(
AB Aw + v
0 1

)
.

There are Lie groups that are not isomorphic to matrix groups, but it is a fact
(not established here) that every connected Lie group is locally isomorphic to a
matrix group.



9

2. The matrix exponential and other functions of matrices

If A ∈ M(n,C), we define

(2.1) etA =
∞∑

k=0

tk

k!
Ak.

We also denote this by Exp(tA). Making use of the operator norm (1.2) and noting
that ‖Ak‖ ≤ ‖A‖k, we see that (2.1) is absolutely convergent for all A and all t.
The power series (2.1) can be differentiated term by term, and we obtain

(2.2)
d

dt
etA = AetA = etAA.

Using this we can establish the identity

(2.3) e(s+t)A = esAetA.

To get this, we can first compute

(2.4)
d

dt

[
e(s+t)Ae−tA

]
= e(s+t)AAe−tA − e(s+t)AAe−tA = 0,

using the product rule; hence e(s+t)Ae−tA is independent of t. Evaluating at t = 0
gives

(2.5) e(s+t)Ae−tA = esA.

Setting s = 0 gives

(2.6) etAe−tA = I.

Thus e−tA is the multiplicative inverse of etA. Using this, we can multiply both
sides of (2.5) on the right by etA and obtain (2.3).

A similar argument, which we leave to the reader, gives

(2.7) AB = BA =⇒ esA+tB = esAetB ,

though such an identity fails when A and B do not commute.
We note a few easy identities:

(2.8) etX−1AX = X−1etAX, etA∗ =
(
etA

)∗
,



10

given X invertible, t ∈ R. If A is diagonal, etA is obtained by exponentiating the
diagonal entries. Also one has

(2.9) det etA = et Tr A.

If A is diagonal this is checked by the remarks above; it then follows for A diagonal-
izable, by (2.8). It can be shown that the set of diagonalizable matrices is dense in
M(n,C), and then (2.9) holds for all A, by continuity. Alternatively, it is quite easy
to show that there exists an open subset of M(n,C) consisting of diagonalizable
matrices. Since both sides of (2.9) are holomorphic on M(n,C), this suffices.

We remark on the behavior of the exponential map on the tangent space at the
identity to the groups described in (1.7)–(1.10). Making use of the criterion (1.12),
one can calculate the following:

(2.10)

TI Sl(n,F) = {A ∈ M(n,F) : TrA = 0},
TI O(n) = {A ∈ M(n,R) : A∗ = −A} = TI SO(n),

TI U(n) = {A ∈ M(n,C) : A∗ = −A},
TI SU(n) = {A ∈ M(n,C) : A∗ = −A, TrA = 0}.

For the first two, take A = I in (1.16) and (1.20), respectively, yielding DF (I)A =
TrA and DF (I)A = A + A∗, respectively. Having (2.10) and making use of (2.8)–
(2.9), one readily verifies the following.

Proposition 2.1. For each Lie group listed above,

(2.11) Exp : TIG −→ G.

We will discuss how this result fits in a more general framework in §12. See also
Appendix E.

We next want to calculate the derivative of the map Exp : M(n,R) → Gl(n,R).
Equivalently, if A,B ∈ M(n,R), we calculate

(2.12)
d

dt
eA+tB

∣∣
t=0

.

Whrn A and B commute, this is easily calculated via (2.7). Otherwise, matters are
more complicated. To calculate (2.12), it is useful to look at

(2.13) U(s, t) = es(A+tB),

which satisfies

(2.14)
∂U

∂s
= (A + tB)U(s, t), U(0, t) = I.
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Then Ut = ∂U/∂t satisfies

(2.15)
∂

∂s
Ut(s, t) = (A + tB)Ut(s, t) + BU(s, t), Ut(0, t) = 0,

and in particular

(2.16)
∂

∂s
Ut(s, 0) = AUt(s, 0) + BU(s, 0), Ut(0, 0) = 0.

This is an inhomogeneous linear ODE, whose solution is

(2.17)
Ut(s, 0) =

∫ s

0

e(s−σ)ABU(σ, 0) dσ

=
∫ s

0

e(s−σ)ABeσA dσ.

We get (2.12) by setting s = 1:

(2.18)
d

dt
eA+tB

∣∣
t=0

=
∫ 1

0

e(1−σ)ABeσA dσ,

so

(2.19) D Exp(A)B = eA

∫ 1

0

e−σABeσA dσ.

The method (2.1) of defining the matrix exponential extends to other cases.
Suppose F (z) is a holomorphic function with a power series expansion

(2.20) F (z) =
∞∑

k=0

akzk.

If (2.20) converges on the disk DR = {z ∈ C : |z| < R}, and if A ∈ M(n,C), ‖A‖ <
R, then we can define

(2.21) F (A) =
∞∑

k=0

akAk,

and this power series is absolutely convergent. Power series manipulations show
that if also G(z) is holomorphic on DR, and we set H(z) = F (z)G(z), then, for
‖A‖ < R,

(2.22) F (A)G(A) = H(A).

We will see more examples of (2.21) in subsequent sections.
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Here we look into one other example, namely, for ‖tA‖ < 1, set

(2.23) log(I + tA) = tA− t2

2
A2 +

t3

3
A3 − · · · =

∞∑

k=1

(−1)k−1

k
tkAk.

We aim to prove that

(2.24) elog(I+tA) = I + tA.

To see this, note that for ‖tA‖ < 1,

(2.25)
X(t) = log(I + tA) ⇒ X ′(t) = A(I − tA + t2A2 − · · · )

= A(I + tA)−1,

as follows from (2.23) by differentiating term by term. For such X(t), we see that
X(t) and X(s) always commute, so it follows from (2.19) (or otherwise) that

(2.26)
d

dt
eX(t) = X ′(t)eX(t).

Consequently, if we set

(2.27) V (t) = (I + tA)−1elog(I+tA),

we have V (0) = I and

(2.28) V ′(t) = −A(I + tA)−2elog(I+tA) + A(I + tA)−2elog(I+tA) = 0,

so (2.24) is established.
It follows directly from (2.1) that

Exp(0 + B) = I + B + O(‖B‖2),
and hence

(2.29) D Exp(0)B = B,

i.e., D Exp(0) is the identity operator on M(n,R). (This is of course also a spe-
cial case of (2.19).) It follows from the inverse function theorem that there are
neighborhoods O of 0 ∈ M(n,R) and Ω of I ∈ Gl(n,R) such that

(2.30) Exp : O −→ Ω, diffeomorphically,

hence there is a smooth inverse from Ω to O. The results (2.23)–(2.24) provide an
explicit formula for this inverse. Putting this together with Proposition 2.1 yields
the following.

Proposition 2.2. For each Lie group G listed in (2.10), there exists a neighborhood
O of 0 in TIG and a neighborhood Ω of I in G such that (2.30) holds.
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3. Quaternions and the group Sp(n)

The space H of quaternions is a four-dimensional real vector space, identified
with R4, with basis elements 1, i, j, k, the element 1 identified with the real number
1. Elements of H are represented as follows:

(3.1) ξ = a + bi + cj + dk,

with a, b, c, d ∈ R. We call a the real part of ξ (a = Re ξ) and bi+cj +dk the vector
part. We also have a multiplication on H, an R-bilinear map H×H→ H coinciding
with the standard product on the real part, and otherwise governed by the rules

(3.2) ij = k = −ji, jk = i = −kj, ki = j = −ik,

and

(3.3) i2 = j2 = k2 = −1.

Otherwise stated, if we write

(3.4) ξ = a + u, a ∈ R, u ∈ R3,

and similarly write η = b + v, b ∈ R, v ∈ R3, the product is given by

(3.5) ξη = (a + u)(b + v) = (ab− u · v) + av + bu + u× v.

Here u · v is the dot product in R3 and u× v is the cross product of vectors in R3.
The quantity ab− u · v is the real part of ξη and av + bu + u× v is the vector part.

We also have a conjugation operation on H:

(3.6) ξ = a− bi− cj − dk = a− u.

A calculation gives

(3.7) ξη = (ab + u · v)− av + bu− u× v.

In particular,

(3.8) Re(ξη) = Re(ηξ) = (ξ, η),

the right side denoting the Euclidean inner product on R4. Setting η = ξ in (3.7)
gives

(3.9) ξξ = |ξ|2,
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the Euclidean square-norm of ξ. In particular, whenever ξ ∈ H is nonzero, it has a
multiplicative inverse:

(3.10) ξ−1 = |ξ|−2ξ.

A routine calculation gives

(3.11) ξη = η ξ.

Hence

(3.12) |ξη|2 = (ξη)(ξη) = ξηηξ = |η|2ξξ = |ξ|2|η|2,

or

(3.13) |ξη| = |ξ| |η|.

Note that C = {a + bi : a, b ∈ R} sits in H as a commutative subring, for which
the properties (3.9) and (3.13) are familiar.

We consider the set of unit quaternions:

(3.14) Sp(1) = {ξ ∈ H : |ξ| = 1}.

Using (3.10) and (3.13) it is clear that Sp(1) is a group under multiplication. It sits
in R4 as the unit sphere S3. We compare Sp(1) with the group SU(2), consisting
of 2× 2 complex matrices of the form

(3.15) U =
(

ξ −η
η ξ

)
, ξ, η ∈ C, |ξ|2 + |η|2 = 1.

The group SU(2) is also diffeomorphic to S3. Furthermore we have:

Proposition 3.1. The groups SU(2) and Sp(1) are isomorphic under the corre-
spondence

(3.16) U 7→ ξ + jη,

for U as in (3.15).

Proof. The correspondence (3.16) is clearly bijective. To see that it is a homomor-
phism of groups, we calculate:

(3.17)
(

ξ −η
η ξ

)(
ξ′ −η′

η′ ξ
′

)
=

(
ξξ′ − ηη′ −ξη′ − ηξ

′

ηξ′ + ξη′ −ηη′ + ξξ
′

)
,
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given ξ, η ∈ C. Noting that, for a, b ∈ R, j(a + bi) = (a− bi)j, we have

(3.18)
(ξ + jη)(ξ′ + jη′) = ξξ′ + ξjη′ + jηξ′ + jηjη′

= ξξ′ − ηη′ + j(ηξ′ + ξη′).

Comparison of (3.17) and (3.18) verifies that (3.16) yields a homomorphism of
groups.

To proceed, we consider n× n matrices of quaternions:

(3.19) A = (ajk) ∈ M(n,H), ajk ∈ H.

If Hn denotes the space of column vectors of length n, whose entries are quaternions,
then A ∈ M(n,H) acts on Hn by the usual formula. If ξ = (ξj), ξj ∈ H, we have

(3.20) (Aξ)j =
∑

k

ajkξk.

Note that

(3.21) A : Hn −→ Hn

is R-linear, and commutes with the right action of H on Hn, defined by

(3.22) (ξb)j = ξjb, ξ ∈ Hn, b ∈ H.

Composition of such matrix operations on Hn is given by the usual matrix product.
If B = (bjk), then

(3.23) (AB)jk =
∑

`

aj`b`k.

We define a conjugation on M(n,H); with A given by (3.19),

(3.24) A∗ = (akj).

A calculation using (3.11) gives

(3.25) (AB)∗ = B∗A∗.

We are ready to define the groups Sp(n) for n > 1:

(3.26) Sp(n) = {A ∈ M(n,H) : A∗A = I}.

Note that A∗ is a left inverse of the R-linear map A : Hn → Hn if and only if it is
a right inverse (by real linear algebra). In other words, given A ∈ M(n,H),

(3.27) A∗A = I ⇐⇒ AA∗ = I.
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In particular,

(3.28) A ∈ Sp(n) ⇐⇒ A∗ ∈ Sp(n) ⇐⇒ A−1 ∈ Sp(n).

Also, given A,B ∈ Sp(n),

(3.29) (AB)∗AB = B∗A∗AB = B∗B = I.

Hence Sp(n), defined by (3.26), is a group. We claim that (3.26) defines a smooth,
compact submanifold of M(n,H), so Sp(n) is a compact Lie group. We omit the
check of smoothness, which goes along the lines of (1.18)–(1.22), but we will estab-
lish compactness, using a construction of separate interest.

We define a quaternionic inner product on Hn as follows. If ξ = (ξj), η = (ηj) ∈
Hn, set

(3.30) 〈ξ, η〉 =
∑

j

ηjξj .

From (3.8) we have

(3.31) Re〈ξ, η〉 = (ξ, η),

where the right side denotes the Euclidean inner product on Hn = R4n. Now, if
A ∈ M(n,H), A = (ajk), then

(3.32)

〈Aξ, η〉 =
∑

j,k

ηjajkξk

=
∑

j,k

ajkηj ξk

= 〈ξ, A∗η〉.

Hence

(3.33) 〈Aξ, Aη〉 = 〈ξ, A∗Aη〉.

In particular, given A ∈ M(n,H), we have A ∈ Sp(n) if and only if A : Hn → Hn

preserves the quaternionic inner product (3.30). Given (3.31), we have

(3.34) Sp(n) ↪→ O(4n).

From here it is easy to show that Sp(n) is closed in O(4n), and hence compact.
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4. Integration on a Lie group

For our first construction, assume G is a compact subgroup of the unitary group
U(n), sitting in M(n,C), the space of complex n× n matrices. The space M(n,C)
has a Hermitian inner product,

(4.1) (A,B) = TrAB∗ = TrB∗A,

giving a real inner product 〈A,B〉 = Re (A, B). This induces a Riemannian metric
on G. Let us define, for g ∈ G,

(4.2) Lg, Rg : M(n,C) −→ M(n,C), LgX = gX, RgX = Xg.

Clearly each such map is a linear isometry on M(n,C) (given that g ∈ U(n)), and
we have isometries Lg and Rg on G.

A Riemannian metric tensor on a smooth manifold induces a volume element on
M , as follows. In local coordinates (x1, . . . , xN ) on U ⊂ M , say the metric tensor
has components hjk(x). Then, on U ,

(4.3) dV (x) =
√

det(hjk) dx1 · · · dxN .

See Appendix β for a demonstration that dV is well defined, independent of the
choice of coordinates.

In such a way we get a volume element on a compact group G ⊂ U(n), and since
Lg and Rg are isometries, they also preserve the volume element. We normalize
this volume element to define normalized Haar measure on G:

(4.4)
∫

G

f(g) dg =
1

V (G)

∫

G

f dV.

We have left invariance

(4.5)
∫

G

f(hg) dg =
∫

G

f(g) dg

and right invariance

(4.6)
∫

G

f(gh) dg =
∫

G

f(g) dg,

for all h ∈ G, in such a situation.
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We give a more general construction of Haar measure, working on any Lie group
G. To start, we fix some Euclidean inner product on TeG ≈ g; call it 〈 , 〉g. Here
e denotes the identity element of G. Defining Lg and Rg on G as in (4.2), we have

(4.7) DLg−1 , DRg−1 : TgG −→ TeG ≈ g.

We define two metric tensors on G as follows. Given U, V ∈ TgG, we define inner
products

(4.8)
〈U, V 〉` = 〈DLg−1U,DLg−1V 〉g,
〈U, V 〉r = 〈DRg−1U,DRg−1V 〉g.

A straightforward computation shows that, for each g ∈ G, Lg : G → G is an
isometry for 〈 , 〉` and Rg : G → G is an isometry for 〈 , 〉r. Now the procedure
(4.3) yields two volume elements on G, which we denote dV` and dVr. As noted
above, isometries of Riemannian manifolds naturally preserve the induced volume
elements, so we have, for all h ∈ G,

(4.9)
∫

G

f(hg) dV`(g) =
∫

G

f(g) dV`(g),
∫

G

f(gh) dVr(g) =
∫

G

f(g) dVr(g).

Thus dV` is left-invariant and dVr is right-invariant. We call these Haar measures.
We discuss the extent to which dV` is unique. If dV ′

` is another left-invariant
measure, given in local coordinates by a smooth multiple of Lebesgue measure, then
dV ′

` = ϕ(g) dV` for a smooth positive function ϕ, and from the left invariance of
both measures one can deduce that ϕ(hg) = ϕ(g) for all g, h ∈ G, so ϕ must be
constant. A similar remark holds for dVr.

We consider the effect of a right translation on dV`. For convenience set

(4.10) I`(f) =
∫

G

f(g) dV`(g),

so right translation by h yields

(4.11) Ih
` (f) =

∫

G

f(gh) dV`(g).

It is easy to check that Ih
` is left-invariant, so by the uniqueness described above

we have

(4.12) Ih
` (f) = α(h)I`(f),

for a map

(4.13) α : G −→ (0,∞).
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It is easy to show that α is smooth, and that

(4.14) α(h1h2) = α(h1)α(h2), ∀ hj ∈ G,

i.e., α is a group homomorphism from G to the multiplicative group (0,∞).
We say G is unimodular if α ≡ 1. In such a case, the left-invariant Haar measure

is also right-invariant; we say Haar measure is bi-invariant on G, and that G is
unimodular. The Haar measure constructed on a compact group G ⊂ U(n) at the
begining of this section is bi-invariant. More generally, note that for any Lie group
G the image of G under α is a subgroup of (0,∞); if G is compact this must be a
compact subgroup, hence {1}, so every compact Lie group has a bi-invariant Haar
measure. If G is compact, we normalize Haar measure as in (4.4), so

(4.15)
∫

G

1 dg = 1.

Lots of noncompact Lie groups are also unimodular, but some are not unimod-
ular. We will discuss this further in a later section.

We now give yet another construction of Haar measure, making use of differential
forms. See Appendix γ for material on this. Let G be any Lie group, say of
dimension N . Pick any nonzero ωe ∈ ΛNT ∗e G, where e denotes the identity element
of G. Then there is a unique N -form ω` on G such that

(4.16) ω`(e) = ωe, L∗gω` = ω`, ∀ g ∈ G,

and a unique N -form ωr on G such that

(4.17) ωr(e) = ωe, R∗gωr = ωr, ∀ g ∈ G.

In fact ωe = L∗gω`(g) and ωe = R∗gωr(g). If we use ω` (or ωr) to define an orientation
on G, then we have volume elements, which we denote dV` and dVr. Again we have
(4.9). Since ΛNT ∗e G is 1-dimensional, it is clear that both dV` and dVr are unique,
up to a constant positive multiple; this provides another demonstration of such
uniqueness.

Note that L∗g and R∗h commute for each g, h ∈ G. Hence R∗gω` is left-invariant
and L∗gωr is right-invariant for each g, h ∈ G. The uniqueness mentioned above
implies

(4.18) R∗hω` = α(h)ω`,

for all h ∈ G, with α as in (4.12). From this point of view, (4.14) follows from the
identity

(4.19) R∗h1h2
= R∗h2

R∗h1
.
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We next comment on integrating f(g−1). It is easily verified that for any left-
invariant Haar measure dV`,

(4.20)
∫

G

f(g−1) dV` = I(f)

is right-invariant, i.e., equal to
∫

G
f(g) dVr(g) for some right-invariant Haar measure

dVr. If G is compact and (4.15) holds, then I(1) = 1, and we have

(4.21)
∫

G

f(g−1) dg =
∫

G

f(g) dg.

To illustrate some of the concepts discussed in this section, we will calculate
explicitly Haar measure on Gl(n,R), in the form

(4.22) dV`(X) = ϕ(X) dX,

where

(4.23) X =




x11 · · · x1n
...

...
xn1 · · · xnn


 , dX = dx11 · · · dxnn,

and ϕ ∈ C∞(Gl(n,R)). The condition ϕ must satisfy is described as follows: we
have

(4.24) Lg : Gl(n,R) −→ Gl(n,R), LgX = gX,

and the standard change of variable formula gives, for each u ∈ C∞0 (Gl(n,R)),

(4.25)

∫
u(X)ϕ(X) dX =

∫
u(LgX)ϕ(LgX) |det DLg(X)| dX

=
∫

u(gX)ϕ(gX) |det g|n dX.

The left invariance of dV` demands that this equal

(4.26)
∫

u(gX)ϕ(X) dX.

Hence ϕ(X) must satisfy the condition

(4.27) ϕ(gX) = | det g|−nϕ(X), ∀ g, X ∈ Gl(n,R).

This clearly holds if and only if ϕ is a constant multiple of

(4.28) ϕ(g) = | det g|−n,

so we have dV` uniquely specified (up to a positive constant factor) as

(4.29) dV`(X) = | detX|−n dX.

Similar calculations show dVr(X) is given by the same formula, so Gl(n,R) is
unimodular.
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5. Representations of a group

We define a representation of a Lie group on a finite-dimensional vector space V
to be a continuous map

(5.1) π : G −→ End(V )

such that

(5.2) π(e) = I, π(gg′) = π(g)π(g′), ∀ g, g′ ∈ G.

Note that then π(g−1) = π(g)−1, so in fact π : G → Gl(V ). If V is a real vector
space with a Euclidean inner product and

(5.3) (π(g)v, π(g)w) = (v, w), ∀ g ∈ G, v, w ∈ V,

we say π is an orthogonal representation. If V is complex with a Hermitian inner
product and (5.3) holds, we say π is a unitary representation. Representations of a
compact Lie group are unitarizable, as follows.

Proposition 5.1. If π is a representation of a compact Lie group on a finite-
dimensional vector space V , then V has an inner product for which (5.3) holds.

Proof. Pick some Hermitian inner product (( , )) on V . Then define ( , ) on V by

(5.4) (u, v) =
∫

G

((π(g)u, π(g)v)) dg.

We have, for all h ∈ G,

(5.5)

(π(h)u, π(h)v) =
∫

G

((π(g)π(h)u, π(g)π(h)v)) dg

=
∫

G

((π(gh)u, π(gh)v)) dg

= (u, v),

by right invariance of Haar measure on G.

We say a representation π of G on V is irreducible if V has no proper invariant
linear subspace. Not all representations break up into irreducibles, but all unitary
representations do.
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Proposition 5.2. If π is a unitary representation of G on a finite-dimensional
space V , then V is a direct sum of subspaces on which π acts irreducibly.

Proof. If V0 ⊂ V is a linear space invariant under the action of π and π is unitary,
then V ⊥

0 is also invariant. If V0 and/or V ⊥
0 have proper invariant subspaces, repeat

this process. Since dim V < ∞, it must terminate.

We now discuss an important result in representation theory known as Schur’s
lemma. This has two parts.

Lemma 5.3. Suppose π and λ are finite-dimensional, irreducible unitary repre-
sentations of G on V and W . Assume A : V → W satisfies

(5.6) Aπ(g) = λ(g)A, ∀g ∈ G.

Then either A = 0 or A is an isomorphism. In the latter case, A must be a scalar
multiple of a unitary map from V to W .

Proof. One sees that Ker A ⊂ V is invariant under π(g) for all g ∈ G, so Ker A = 0
or V . Also the range Ran A ⊂ W is invariant under λ(g) for all g ∈ G, so Ran A = 0
or W . The last statement of Lemma 5.3 follows from the next lemma.

Lemma 5.4. Suppose π is a finite-dimensional, irreducible unitary representation
of G on V . Assume B : V → V satisfies

(5.7) Bπ(g) = π(g)B, ∀ g ∈ G.

Then B is a scalar multiple of the identity.

Proof. Set B = B1 + iB2, B∗
j = Bj . It follows from (5.7) and unitarity that

(5.8) Bjπ(g) = π(g)Bj , ∀ g ∈ G.

Now each Bj is diagonalizable, and

(5.9) Bjv = av ⇒ Bjπ(g)v = π(g)Bjv = aπ(g)v, ∀ g ∈ G,

so π leaves each eigenspace of Bj invariant. Irreducibility implies each Bj is scalar,
so the lemma is proven.

Finally, we set B = A∗A to prove the last assertion in Lemma 5.3. In fact, if λ
and π are unitary, (5.6) implies also A∗λ(g) = π(g)A∗, so A∗Aπ(g) = A∗λ(g)A =
π(g)A∗A, for all g, hence A∗A = aI for some a ∈ C. In fact, a > 0 since A∗A ≥ 0.

Given two finite-dimensional representations π and λ of G on V and W , we say
π and λ are equivalent (π ≈ λ) if and only if there is an isomorphism A : V → W
such that A−1λ(g)A = π(g) for all g ∈ G. If these representations are unitary,
we say they are unitarily equivalent provided such a unitary A exists. It follows
that when π and λ are irreducible and unitary, they are equivalent if and only if
they are unitarily equivalent. In fact, this holds regardless of whether π and λ are
irreducible.

We end with the following result, for which there will be an important analogue
in the next section.
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Proposition 5.5. Let G be a compact Lie group, π a unitary representation of G
on V , a finite-dimensional vector space with an inner product. Set

(5.10) Pv =
∫

G

π(g)v dg.

Then P is the orthogonal projection of V on the space where π acts trivially.

The proof consists of four easy pieces:

(5.11) π(g)Pv = Pv, ∀ g ∈ G,

(5.12) P ∗ =
∫

π(g−1) dg = P,

(5.13) P 2 =
∫∫

π(g)π(h) dg dh =
∫∫

π(gh) dg dh = P,

(5.14) π(g)v = v ∀ g =⇒ Pv = v.

Each step follows from the bi-invariance of Haar measure on G when it is compact.



24

6. Weyl orthogonality

Let G be a compact Lie group. Assume π is an irreducible unitary representation
of G on V and λ an irreducible unitary representation of G on W . Define P acting
on Hom(V,W ) as follows. If A : V → W , set

(6.1) P (A) =
∫

G

λ(g)Aπ(g)−1 dg.

It is readily verified that

(6.2) λ(g)P (A)π(g)−1 = P (A), ∀ g ∈ G.

In other words, P (A) intertwines π and λ. Now Schur’s lemma, established in §5,
gives the following:

(6.3)
π not ≈ λ =⇒ P (A) = 0, ∀A,

π = λ =⇒ P (A) = cπ(A)I,

where cπ(A) is scalar and I the identity operator on V = W .
In the latter case, taking the trace yields dπ cπ(A) = TrA (where dπ = dim V ),

hence cπ(A) = d−1
π TrA, so

(6.4)
∫

G

π(g)Aπ(g)∗ dg = d−1
π (Tr A)I.

If matrix entries are denoted π(g)jk, Ajk, etc., we have

(6.5)

∑

k,`

∫

G

π(g)jkAk`π(g)m` dg = d−1
π δjm Tr A

= d−1
π δjm

∑

k,`

δk`Ak`,

hence

(6.6)
∫

G

π(g)jkπ(g)m` dg = d−1
π δjm δk`.

On the other hand, if π is not ≈ λ, the first case of (6.3) applies. In this case,
P (A)jm is equal to

(6.7)
∑

k,`

∫

G

λ(g)jkAk`π(g)m` dg = 0, ∀A ∈ Hom(V, W ),
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and this yields

(6.8)
∫

G

λ(g)jkπ(g)m` dg = 0, if π not ≈ λ,

for each j, k ∈ {1, . . . , dλ} and `,m ∈ {1, . . . , dπ}. Together, (6.6) and (6.8) make
up the Weyl orhogonality relations.
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7. The Peter-Weyl theorem

Let G be a compact Lie group and let πα, α ∈ I, be a maximal set of mutually
inequivalent irreducible unitary representations of G, on spaces Vα, of dimension
dα. Pick an orthonormal basis of Vα and say the corresponding matrix entries of πα

are πα
jk, 1 ≤ j, k ≤ dα. In §6 it was shown that {d1/2

α πα
jk} forms an orthonormal set

in L2(G). The Peter-Weyl theorem asserts the completeness of this orthonormal
set.

Theorem 7.1. The set {d1/2
α πα

jk : α ∈ I, 1 ≤ j, k ≤ dα} is an orthonormal basis
of L2(G).

What it remains to prove is that the linear span E of {πα
jk} is dense in L2(G). We

will give a proof of this here, under the additional hypothesis that G is isomorphic
to a subgroup of U(N), for some N . We will show that E is dense in the space
C(G) of continuous functions on G, using the Stone-Weierstrass theorem. Since
C(G) is dense in L2(G) and has a stronger topology, this suffices. Clearly E is a
linear space and 1 ∈ E . To apply the Stone-Weierstrass theorem, we need to have
the following:

E separates points of G,(7.1)

u ∈ E =⇒ u ∈ E ,(7.2)

u, v ∈ E =⇒ uv ∈ E .(7.3)

Of these conditions, (7.1) follows directly from the hypothesis G ⊂ U(N). As for
(7.2), if πα has matrix representation (πα

jk), then (πα
jk) is also the matrix of an

irreducible unitary representation of G. Finally, we note that the tensor prod-
uct representation πα ⊗ πβ on Vα ⊗ Vβ can be decomposed into irreducibles, by
Proposition 5.2, and this gives (7.3).

That these arguments can be applied to all compact G can be stated as follows.

Proposition 7.2. If G is a compact Lie group, then there is an injective represen-
tation

(7.4) ρ : G −→ U(N).

We say G has a faithful unitary representation.

Actually, we will prove this result in §11, as a corollary to the Peter-Weyl theo-
rem, which will be proven for all compact Lie groups in that section.

From the Peter-Weyl theorem it follows that, if u ∈ L2(G), then

(7.5) u =
∑

α∈I
d1/2

α

∑

j,k

ûjk(α)πα
jk(g),
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where

(7.6) ûjk(α) = d1/2
α

∫

G

u(g)πα
jk(g) dg,

the convergence in (7.5) holding in L2-norm. Let us also set

(7.7) Pαu = d1/2
α

∑

j,k

ûjk(α)πα
jk(g),

the orthogonal projection of u onto the space

(7.8) Vα = span {πα
jk : 1 ≤ j, k ≤ dα}.

We have, for u ∈ L2(G),

(7.9) u =
∑

α∈I
Pαu,

convergence in L2-norm.
Another way to write (7.7) is as

(7.10) Pαu(g) = d1/2
α Tr

(
û(α)tπα(g)

)
,

where

(7.11) û(α) = d1/2
α

∫

G

u(g)πα(g) dg.

Here we can define πα as the representation of G on V ′
α given by

(7.12) πα(g) = πα(g−1)t : V ′
α −→ V ′

α,

so û(α) : V ′
α → V ′

α. If (πα
jk(g)) is the matrix representation of πα(g) with respect

to an orthonormal basis of Vα, then (πα
jk(g)) is the matrix representation of πα(g)

with respect to the dual basis of V ′
α. The Hermitian inner product ( , ) on Vα gives

rise to a conjugate linear isomorphism

(7.13) C : Vα −→ V ′
α, (u, v) = 〈u,Cv〉,

and a straightforward calculation gives

(7.14) πα(g) = Cπα(g)C−1.

We also note that for a unitary representation πα we have (as asserted shortly below
(7.3))

(7.15) πα irreducible =⇒ πα irreducible.

Indeed, if E ⊂ V ′
α is a C-linear subspace invariant under πα(g) for all g, then

C−1E ⊂ Vα is a C-linear subspace invariant under πα(g).
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8. Characters and central functions

Let G be a Lie group. A function u on G is said to be central provided that, for
each h ∈ G, u(h−1gh) = u(g) (for a.e. g ∈ G if u ∈ L1

loc(G)). Examples of central
functions on G include

(8.1) Tr ρ(g) = χρ(g),

where ρ is a representation of G on a finite-dimensional vector space. We call χρ

the character of ρ.
Suppose now that G is compact. Let πα, α ∈ I be a maximal set of mutually

inequivalent unitary representations of G, on vector spaces Vα. We set χα = Trπα.
Note that, if α 6= β,

(8.2)
∫

G

χα(g)χβ(g) dg =
∑

j,k

∫

G

πα
jj(g)πβ

kk(g) dg = 0,

as a consequence of (6.8). On the other hand, using (6.6) we have

(8.3)

∫

G

χα(g)χα(g) dg =
∑

j,k

∫

G

πα
jj(g)πα

kk(g) dg

=
∑

j,k

d−1
α δjk

= 1.

Hence {χα : α ∈ I} is an orthonormal set in L2(G). We have more, from the Peter-
Weyl theorem, proved for a certain class of compact G in §7, and to be proved for
general compact Lie groups in §11.

Proposition 8.1. The set {χα : α ∈ I} is an orthonormal basis of

(8.4) L2
C(G) = {u ∈ L2(G) : u is central}.

Proof. Take u ∈ L2
C(G). By (7.9)–(7.10) we can write

(8.5) u =
∑

α∈I
Pαu, Pαu = d1/2

α Tr
(
û(α)t πα(g)

) ∈ Vα,

with convergence in L2-norm. We claim that each term Pαu is a multiple of χα.
Note that, for each h ∈ G,

(8.6) uh(g) = u(h−1gh) =⇒ ûh(α) = πα(h)û(α)πα(h)−1.
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Hence

(8.7) u central =⇒ û(α)πα(h) = πα(h)û(α), ∀h ∈ G.

Thus, by Schur’s lemma, û(α) is a scalar multiple of the identity. Taking traces in
(7.11) gives Tr û(α) = d

1/2
α

∫
G

u(g)χα(g) dg, which gives

(8.8)
u central =⇒ û(α) = cα(u)I, cα(u) = d−1/2

α (u, χα)L2(G)

=⇒ Pαu(g) = d1/2
α cα(u)Trπα(g) = (u, χα)L2(G) χα(g),

finishing the proof.

We now establish a generalization of Proposition 5.5.

Proposition 8.2. Let G be a compact Lie group and ρ a unitary representation of
G on a finite-dimensional vector space V . Set

(8.9) Pα = dα

∫

G

χα(g) ρ(g) dg.

Then Pα is the orthogonal projection of V onto the space where G acts like copies
of πα.

Proof. As shown in §5, one has an orthogonal direct sum decomposition

(8.10) V = V1 ⊕ · · · ⊕ VK ,

with Vj invariant under ρ and ρj = ρ|Vj irreducible; say ρj ≈ πβj . The content of
the proposition is that

(8.11)
u ∈ Vj , βj 6= α =⇒ Pαu = 0,

u ∈ Vj , βj = α =⇒ Pαu = u.

The first part of (8.11) follows from the identity

(8.12)
∫

G

χα(g) πβ
k`(g) dg = 0 ⇐ β 6= α,

a consequence of (6.8). The second part of (8.11) follows from the identity

(8.13) dα

∫

G

χα(g) πα
k`(g) dg = δk`,

a consequence of (6.6).

The number of factors Vj in (8.10) for which ρj ≈ πα is called the multiplicity
of the irreducible representation πα in ρ and denoted µ(πα, ρ). This is seen to be
the dimension of the image of Pα divided by dα, i.e., by (8.9),

(8.14) µ(πα, ρ) = d−1
α TrPα =

∫

G

χρ(g)χα(g) dg.

It is apparent that two finite-dimensional unitary representations of a compact
Lie group G are equivalent if and only if they break up into the same irreducible
components, with the same multiplicities. Thus we have the following.
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Proposition 8.3. If ρ and λ are finite-dimensional unitary representations of a
compact Lie group G, then

(8.15) ρ ≈ λ ⇐⇒ χρ = χλ.
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9. Comments on representations of finite groups

Throughout this section G will be a finite group (i.e., a compact Lie group of
dimension zero). We denote its order by o(G). Then the integral is given by

(9.1)
∫

G

f(g) dg =
1

o(G)

∑

g∈G

f(g).

In this case L2(G) is a finite-dimensional vector space, of dimension o(G), and the
regular representation of G on L2(G), given by

(9.2) L(g)u(x) = u(g−1x), g, x ∈ G, u ∈ L2(G),

is a faithful unitary representation of G.
If πα, α ∈ I is a maximal set of mutually inequivalent irreducible unitary rep-

resentations of G, onto vector spaces Vα, of dimension dα, then it is a special case
of the results of §7 that {πα

jk : α ∈ I, 1 ≤ j, k ≤ dα} forms an orthonormal basis of
L2(G). In particular, with Vα as in (7.8), we have

(9.3) L2(G) =
⊕

α∈I
Vα, dimVα = d2

α,

and hence

(9.4)
∑

α∈I
d2

α = o(G).

Note that, for finite G, L2
C(G) is equal to the set of all central functions on G.

Hence

(9.5) dim L2
C(G) = o(C),

where C denotes the set of conjugacy classes in G and o(C) its cardinality. Since
{χα : α ∈ I} is an orthonormal basis of L2

C(G), we deduce that

(9.6) o(I) = o(C),

i.e., the number of distinct irreducible unitary representations of G is equal to the
number of conjugacy classes of G.

Let us illustrate some of these results on a couple of the smallest symmetric
groups. We denote by Sn the group of permutations of {1, . . . , n}; clearly n! =
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o(Sn). Each group has a trivial representation, which we denote 1, acting on C by
1(g) = 1, for all g ∈ G. Each group Sn has another one-dimensional representation,

(9.7) sgn : Sn −→ {±1}.

One way to define sgn(σ) is the following. Consider

(9.8) Dn(x) =
∏

1≤j<k≤n

(xj − xk).

Then, for σ ∈ Sn,

(9.9)
∏

1≤j<k≤n

(xσ(j) − xσ(k)) = sgn(σ) Dn(x).

It is easy to verify that sgn(στ) = sgn(σ) sgn(τ) for σ, τ ∈ Sn.
We next define a representation ρn of Sn on Cn by

(9.10) ρn(σ)ej = eσ(j),

where e1, . . . , en is the standard basis of Cn. This representation is not irreducible,
since

(9.11) ρn(σ)(e1 + · · ·+ en) = e1 + · · ·+ en, ∀ σ ∈ Sn.

The orthogonal complement of this vector is also invariant, so Sn acts on

(9.12) Vn−1 = {u ∈ Cn : u1 + · · ·+ un = 0}.

Let us denote the action of Sn on Vn−1 by πn
S .

Lemma 9.1. The representation πn
S of Sn on Vn−1 is irreducible.

Proof. We note the result is trivial for S2 acting on V1. Now take n ≥ 3 and
consider a nonzero v ∈ Vn−1. We aim to show the span W of {πn

S(σ)v : σ ∈ Sn} is
all of Vn−1. If we can show

(9.13) e1 − e2 ∈ W,

this is easily accomplished. Note that W must contain a vector of the form

(9.14) (v1, v2, . . . , vn), v1 6= v2.

Then

(9.15) (v1, v2, v3, . . . , vn)− (v2, v1, v3, . . . , vn) = (v1 − v2, v2 − v1, 0, . . . , 0) ∈ W
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is nonzero, and we have (9.13). The proof is done.

Note that ρn acts on Rn and this complexifies to the action on Cn given above.
Similarly πn

S acts on V R
n−1 = {u ∈ Rn : u1 + · · · + un = 0} and complexifies to to

action on Vn−1. Acting on Rn, ρn acts as the group of symmetries of the simplex
spanned by e1, . . . , en, lying in the surface {u : u1 + · · ·+ un = 1}. The projection
onto V R

n−1 sends {e1, . . . , en} to the vertices of a simplex centered at the origin, and
πn

S acts as the group of symmetries of this simplex.
For example, via πn

S , S3 acts as the group of symmetries of an equilateral triangle
in R2 and S4 acts as the group of symmetries of a regular tetrahedron in R3.

We claim that, when n = 3, the set

(9.16) 1, sgn, πn
S

exhausts the set of irreducible representations of S3. In fact, in view of (9.4), the
dimension check

(9.17) o(S3) = 6 = 12 + 12 + 22

verifies this.
The group S4 has the irreducible representations (9.16) and a couple more. One

is given by

(9.18) π4
Q(σ) = sgn(σ)π4

S(σ),

acting on V3. Since the representations π4
S and π4

Q are three-dimensional represen-
tations, we have

(9.19) det π4
Q(σ) = sgn(σ) det π4

S(σ),

so they cannot be equivalent. (By contrast, sgn ·π3
S is equivalent to π3

S .)
So far the representations of S4 we have contribute 1 + 1 + 32 + 32 = 20 to

o(S4) = 24. In addition, there is a two-dimensional representation of S4, coming
from a surjective homomorphism

(9.20) β : S4 −→ S3.

To construct β, we need to have S4 act on a 3-point set. To this end, consider
the following situation. The regular tetrahedron T has 4 vertices, 4 faces, and 6
edges. The edges come in 3 sets of opposite pairs. The action of S4 on T preserves
this pairing, and gives the action of S4 on a 3-point set, yielding (9.20). Then the
representation

(9.21) π3
S ◦ β
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is a 2-dimensional irreducible representation of S4, completing the list.
We make some more comments on the representations π4

S and π4
Q. Note that,

for all σ ∈ S4,

(9.22) det π4
S(σ) = sgn(σ), detπ4

Q(σ) = 1.

Hence π4
Q acts as a group of rotations on V R

3 ≈ R3. In fact, we claim π4
Q acts

as the group of rotational symmetries of a cube Q ⊂ R3, centered at the origin.
To see this, let GQ denote the group of such symmetries of Q and refer to Figure
9.1, which shows a tetrahedron T , with vertices A,B,C, D, sitting in a cube, with
vertices A,B, C, D and also A′ = −A, B′ = −B, C ′ = −C, D′ = −D. Each g ∈ GQ

either takes T to T or takes T to −T . This dichotomy defines a homomorphism
γ : GQ → {±1}, and we see that g 7→ γ(g)g gives the group of symmetries of T .
This is equivalent to

(9.23) π4
S(σ) = sgn(σ)π4

Q(σ),

which is another way of putting (9.18).
We note another perspective on (9.20). Namely π4

Q acts on the 3-point set
consisting of opposite pairs of faces of the cube Q.
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10. The convolution product and group algebras

Let G be a Lie group. Given integrable functions u, v : G → C (for example,
continuous functions with compact support) we define the convolution u∗v : G → C
by

(10.1) u ∗ v(x) =
∫

G

u(g)v(g−1x) dg.

We use left-invariant Haar measure. One easily sees that u ∗ v is continuous with
compact support if u and v are. It is a consequence of Fubini’s theorem that
u, v ∈ L1(G) ⇒ u ∗ v ∈ L1(G). This convolution product is easily seen to have the
associative property:

(10.2) u ∗ (v ∗ w) = (u ∗ v) ∗ w.

Let π be a unitary representation of G. For u ∈ L1(G), we set

(10.3) π(u) =
∫

G

u(g)π(g) dg.

The following relates (10.3) to the convolution product.

Proposition 10.1. We have

(10.4) π(u ∗ v) = π(u)π(v).

Proof. The definitions give

(10.5)

π(u ∗ v) =
∫

(u ∗ v)(g)π(g) dg

=
∫∫

u(h)v(h−1g)π(g) dg dh

=
∫∫

u(h)π(h) v(h−1g)π(h−1g) dg dh

=
∫

u(h)π(h) dy π(v)

= π(u)π(v),

where left invariance of Haar measure is used in the fourth identity.

In the rest of this section we restrict attention to the case where G is compact;
in particular its Haar measure is bi-invariant. The following result bears on the
meaning of “central.”
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Proposition 10.2. If u is central, then for all v ∈ L1(G), u ∗ v = v ∗ u.

Proof. Recall that to say u is central is to say u(g−1xg) = u(x). We have

(10.6)

v ∗ u(x) =
∫

v(g)u(g−1x) dg

=
∫

v(g)u(xg−1) dg (if u is central)

=
∫

v(h−1x)u(h) dh

= u ∗ v(x).

When u is central, π(u) has a special behavior, as we now derive. To see this,
let us set

(10.7) Cgu(x) = u(g−1xg),

and note that

(10.8)

π(Chu) =
∫

π(g)u(h−1gh) dg

=
∫

π(hxh−1)u(x) dx

= π(h)π(u)π(h)−1,

so

(10.9) u central =⇒ π(u)π(h) = π(h)π(u), ∀ h ∈ G.

In particular, if u is central and πα is irreducible (on Vα, of dimension dα), then,
by Schur’s lemma, πα(u) must be scalar. Taking traces yields

(10.10)
u central =⇒ πα(u) = σα(u)I,

σα(u) =
1
dα

∫
χα(g)u(g) dg,

where χα(g) = Trπα(g). Compare (8.8), noting that û(α) = d
1/2
α πα(u).

Generalizing (10.7)–(10.8), we note that

(10.11) Gg,hu(x) = u(g−1xh) ⇒ π(Cg,hu) = π(g)π(u)π(h)−1.

The following is a useful formula for the projection Pα defined in (7.7).
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Proposition 10.3. For u ∈ L2(G),

(10.12) Pαu = dα χα ∗ u = dα u ∗ χα.

Proof. By Proposition 10.2, the last two functions in (10.12) are equal. By (7.10)–
(7.11) we have

(10.13)
Pαu(g) = d1/2

α Tr
(
û(α)tπα(g)

)

= dα Tr
(
πα(u)tπα(g)

)
.

Meanwhile

(10.14)

u ∗ χα(g) = Tr
∫

G

u(h)πα(h−1g) dh

= Tr
[∫

G

u(h)πα(h−1) dh πα(g)
]
.

Finally,

(10.15) πα(h) = πα(h−1)t ⇒ πα(u)t =
∫

G

u(h)πα(h−1) dh.

Then (10.13)–(10.15) yield (10.12).

We define the following involution on functions on G:

(10.16) u∗(g) = u(g−1),

and note that

(10.17) (u ∗ v)∗ = v∗ ∗ u∗,

and if π is a unitary representation of G,

(10.18) π(u∗) = π(u)∗,

as is readily checked.
Given f ∈ L1(G), we can define the operator

(10.19) Kf : L2(G) −→ L2(G), Kfu(x) = f ∗ u(x) =
∫

f(g)u(g−1x) dg.

The estimate

(10.20) ‖Kfu‖L2 ≤ ‖f‖L1‖u‖L2
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follows from the triangle inequality for the L2 norm. Also, if (u, v) denotes the
L2-inner product, we have

(10.21)

(Kfu, v) =
∫∫

f(g)u(g−1x)v(x) dg dx

=
∫∫

f(xy−1)u(y)v(x) dy dx

= (u,Kf∗v),

or

(10.22) K∗
f = Kf∗ .

Also it follows from (10.2) that

(10.23) Kf∗g = KfKg.

We can draw some parallels between Kf and π(f) as follows. Consider the left-
and right-regular representations of G on L2(G):

(10.24) L(g)u(x) = u(g−1x), R(g)u(x) = u(xg).

These unitary representations are infinite dimensional, but many of the previously
studied concepts apply. We have, for f ∈ L1(G), u ∈ L2(G),

(10.25) L(f)u(x) =
∫

f(g)u(g−1x) dg = f ∗ u(x) = Kfu(x),

and

(10.26) R(f)u(x) =
∫

f(g)u(xg) dg =
∫

f(hx−1)u(h) dh = u ∗ f̌(x),

where

(10.27) f̌(g) = f(g−1).

Then (10.23) becomes L(f ∗ g) = L(f)L(g), a result parallel to (10.4). Similarly
one has R(f ∗ g) = R(f)R(g).

Here is another useful result.

Proposition 10.4. For all f ∈ L1(G), we have

(10.28) R(g)Kf = KfR(g), ∀ g ∈ G.

In addition,

(10.29) f central =⇒ L(g)Kf = KfL(g), ∀ g ∈ G.
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The proof involves more calculations like those done above. We leave it as an
exercise.

We make note on the continuity of the representations L(g) and R(g). They are
strongly continuous on L2(G), in the sense that

(10.30) ∀ u ∈ L2(G), L(g)u and R(g)u are continuous from G to L2(G).

This continuity is obvious if u ∈ C(G) and it follows for general u via the denseness
of C(G) in L2(G) and the fact that ‖L(g)u‖L2 = ‖u‖L2 = ‖R(g)u‖L2 for all g.

We make some comments on the convolution algebra of a finite group G, with
integral given by (9.1). In such a case, the convolution algebra L1(G) is also denoted
`1(G). Another common notation for u ∈ `1(G) is

(10.31) u =
∑

g∈G

u(g)g.

Then convolution is given by

(10.32)

u ∗ v =
1

o(G)

∑

g,h∈G

u(g)v(h) gh

=
1

o(G)

∑

g,x∈G

u(g)v(g−1x) x,

which is consistent with (10.1).
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11. Approximate identities and the Peter-Weyl theorem in general

Let G be a compact Lie group. We give G a bi-invariant Riemannian metric.
Indeed, if any left-invariant Riemannian metric tensor is put on G, as discussed
in §4, we can integrate over G its pull-back under the action of right translations
to get a bi-invariant metric tensor. It is clear that the pull-back of such a metric
tensor under g 7→ g−1 is also bi-invariant. In fact, the two agree, but rather than
argue this let us just average the two, obtaining a bi-invariant metric tensor that
is also invariant under g 7→ g−1.

If d(x, y) denotes the resulting distance function between x and y in G, we note
that, for any continuous function ϕ : R→ R,

(11.1) ψ(g) = ϕ(d(g, e)) is a central function on G.

Also, with ψ∗ defined as in (10.12), we have ψ∗ = ψ. Hence, for any unitary
representation π of G, π(ψ) is self-adjoint.

Let us assume ϕ is ≥ 0, Lipschitz, and satisfies ϕ(s) = 1 for |s| ≤ 1/2, ϕ(s) = 0
for |s| ≥ 1, and let us set

(11.2) ψν(g) = ϕ(νd(g, e)), ν ≥ 1.

Then ψν ∈ Lip(G), and it is supported on B1/ν(e), where Br(h) = {g ∈ G :
d(g, h) ≤ r}. Set

(11.3) Ψν(g) = A−1
ν ψν(g), Aν =

∫
ψν(g) dg,

so Ψν ∈ Lip(G) is also supported in B1/ν(e) and
∫

Ψν(g) dg = 1. Now set

(11.4) Φν(g) = Ψν ∗Ψν(g).

Then Φν ∈ Lip(G) is supported in B2/ν(e) and
∫

Φν(g) dg = 1. Now define the
convolution operators

(11.5) Cνu = Ψν ∗ u, Kνu = Φν ∗ u.

Proposition 11.1. The operators Cν and Kν are approximate identities. That is,
as ν →∞,

(11.6) u ∈ C(G) =⇒ Cνu → u and Kνu → u uniformly.

Also

(11.7) u ∈ L2(G) =⇒ Cνu → u and Kνu → u in L2-norm.
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Proof. We note that, for every g ∈ G, Cνu(g) is a weighted average of u over the
set B1/ν(g) and Kνu(g) is a weighted average of u over the set B2/ν(g). Thus if u
has the modulus of continuity ω, i.e., |u(g)− u(h)| ≤ ω(d(g, h)), then

(11.8) ‖Cνu− u‖sup ≤ ω(1/ν), ‖Kνu− u‖sup ≤ ω(2/ν).

This gives (11.6). The result (11.7) for Cν follows from

(11.9) ‖Cνu‖L2 ≤ ‖u‖L2 , ‖u‖L2 ≤ ‖u‖sup, C(G) dense in L2(G).

In fact, given u ∈ L2(G) and ε > 0, pick v ∈ C(G) such that ‖u − v‖L2 < ε. Pick
N such that ν ≥ N ⇒ ‖Cνu− u‖sup < ε. Then, for ν ≥ N ,

(11.10)

‖Cνu− u‖L2 = ‖Cνu− Cνv + Cνv − v + v − u‖L2

≤ ‖Cν(u− v)‖L2 + ‖Cνv − v‖sup + ‖v − u‖L2

< 3ε,

giving (11.7) for Cνu. The proof for Kνu is similar.

For other properties of Cν and Kν on L2(G), we note from (10.22)–(10.23) that

(11.11) Cν = C∗ν , Kν = C2
ν ;

hence

(11.12) (Kνu, u) = ‖Cνu‖2L2 ≥ 0, ∀ u ∈ L2(G),

i.e., Kν is a positive semi-definite self-adjoint operator on L2(G).

Proposition 11.2. For each ν, Cν and Kν are compact operators on L2(G).

There are several ways to prove this. The integral kernel of Cν is Lipschitz on
G×G, hence square-integrable, so Cν is a Hilbert-Schmidt operator, hence compact.
Also, for each ν,

(11.13) Cν : L2(G) −→ Lip(G).

Now Lip(G) ↪→ C(G) is compact, by Ascoli’s theorem, while C(G) ↪→ L2(G) is
continuous.

Now if K is a compact self-adjoint operator on L2(G), then the eigenspaces Eλ

corresponding to nonzero eigenvalues are all finite dimensional, and these spaces
together with Ker K span L2(G). The following result will help us prove the Peter-
Weyl theorem for general compact Lie groups. As usual, let {πα : α ∈ I} be
a maximal set of inequivalent irreducible unitary representations of G, acting on
spaces Vα.
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Proposition 11.3. Let K : L2(G) → L2(G) be compact and self-adjoint, and
assume

(11.14) KR(g) = R(g)K, ∀ g ∈ G,

where R(g) denotes the right-regular representation of G on L2(G), given by (10.24).
Let Eλ be the eigenspace of K for some nonzero eigenvalue λ. Then each u ∈ Eλ

is a finite linear combination of matrix entries πα
jk.

Proof. By (11.14), R(g) : Eλ → Eλ. We know this representation decomposes into
irreducibles; Eλ = V1 ⊕ · · · ⊕ VK . Say R(g)|V`

≈ πα, so there is a unitary map
U : V` → Vα intertwining these representations. Say an orthonormal basis {uj} of
V` corresponds to an orthonormal basis {ej} of Vα, with respect to which πα has
matrix entries πα

jk. Then, for all g ∈ G, all k,

(11.15) R(g)uk = U−1πα(g)ek = U−1
∑

j

πα
jk(g)ej ,

or

(11.16) uk(xg) =
∑

j

uj(x)πα
jk(g), ∀ x, g ∈ G.

Taking x = e gives

(11.17) uk(g) =
∑

j

uj(e)πα
jk(g),

proving the proposition.

We are now ready for our second proof of the Peter-Weyl theorem, one that
works for all compact Lie groups G.

Proposition 11.4. Let G be a compact Lie group, {πα : α ∈ I} a maximal set
of irreducible unitary representations of G, on vector spaces Vα, of dimension dα.
Then {d1/2

α πα
jk : α ∈ I, 1 ≤ j, k ≤ dα} is an orthonormal basis of L2(G).

Proof. It suffices to prove the span of πα
jk is dense in L2(G). Suppose we have a

positive, self-adjoint, compact operator K : L2(G) → L2(G), satisfying (11.14), and
suppose Ker K = 0. Then the span of the eigenspaces of K is dense in L2(G), and
the result then follows from Proposition 11.3. The task that remains is to construct
such an injective operator K.

To this end, set

(11.18) K =
∑

ν≥0

2−νKν ,
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with Kν as in (11.4)–(11.5). Then K is a norm limit of compact operators, hence
compact, and also clearly positive, self-adjoint. By Proposition 10.4 each Kν has
the property (11.14), hence so does K.

Finally, we show K is injective. Suppose u ∈ Ker K. Thus 0 = (Ku, u) =∑
2−ν(Kνu, u). Since each Kν is ≥ 0, we must have Kνu = 0 for each ν. But

Proposition 11.1 implies Kνu → u in L2-norm, so u = 0, and we are done.

Let us again denote by Vα the linear span of {πα
jk : 1 ≤ j, k ≤ dα}, and Pα the

orthogonal projection of L2(G) on Vα. We want to show that the span of {Vα}
is dense in C(G), for any compact G (not yet knowing the properties used in the
demonstration in §7 under the hypothesis G ⊂ U(N)). The following will be useful
for this. Here, Ku denotes a convolution operator, as in (10.19).

Proposition 11.5. For any u ∈ L1(G),

(11.19) Ku : Vα −→ Vα.

Furthermore, for any v ∈ L2(G),

(11.20) Pα(u ∗ v) = u ∗ (Pαv).

Proof. Recall from Proposition 10.3 that

(11.21) Pαv = dα χα ∗ v.

Hence, by Proposition 10.2,

(11.22)
Pα(u ∗ v) = dα χα ∗ u ∗ v

= dα u ∗ χα ∗ v,

and we have (11.19)–(11.20).

To proceed, we know that I is countable (i.e., L2(G) is separable), so make an
ordering so I ≈ Z+, and set

(11.23) ΠN f =
∑

|α|≤N

Pαf.

Then the content of Proposition 11.4 is that, as N →∞,

(11.24) f ∈ L2(G) =⇒ ΠNf → f in L2-norm.

Here is a result on uniform convergence.
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Proposition 11.6. Assume f ∈ C(G) has the form

(11.25) f = u ∗ v, u, v ∈ L2(G).

Then, as N →∞,

(11.26) ΠNf → f uniformly on G.

Proof. It follows from (11.20) that

(11.27) ΠNf = u ∗ (ΠNv).

Now convolution yields a continuous bilinear map

(11.28) L2(G)× L2(G) −→ C(G),

so using ΠNv → v in L2-norm in (11.27) yields (11.26).

From Proposition 11.1 it follows that the set of functions of the form (11.25) is
dense in C(G), so we have:

Corollary 11.7. The linear span L of {πα
jk : α ∈ I, 1 ≤ j, k ≤ dα} is dense in

C(G).

We use this to prove:

Proposition 11.8. Every compact Lie group has a faithful finite-dimensional uni-
tary representation.

To see this, let

(11.29) Kα = {g ∈ G : πα(g) = I}.

We want to show that there is a finite set S ⊂ I such that ∩α∈SKα = {e}. Then
⊕α∈Sπα provides such a representation.

By Corollary 11.7, for any g ∈ G, g 6= e, there exists α ∈ I such that πα(g) 6= I.
Otherwise, πα(gx) = πα(x) for all x ∈ G, α ∈ I, hence u(gx) = u(x) for all
x ∈ G, u ∈ L, which forces g = e. We use this as follows. Take any open
neighborhood O of e in G. Then G \ O is compact. By the reasoning above, for
each g ∈ G \O there exists α ∈ I and a neighborhood Ug of g such that πα(h) 6= I
for all h ∈ Ug. Since any open cover of G \ O has a finite subcover, we have the
following.

For any open neighborhood O of e, there is a finite set S ⊂ I such that

(11.30)
⋂

α∈S
Kα ⊂ O.

Thus the proof of Proposition 11.8 is completed by the following assertion.
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Proposition 11.9. If G is a Lie group, then there is an open O 3 e such that if
K is a subgroup of G and K ⊂ O, then K = {e}.
Proof. Let Sq : G → G be defined as Sq(g) = g2. In §12 we will prove

(11.31) D Sq(e) = 2I.

In other words, if we take a coordinate system on a neighborhood U of e, in which
e corresponds to 0 ∈ Rn, then

(11.32) Sq(x) = 2x + R(x), |R(x)| ≤ C|x|2.
We use the Euclidean norm |x|. It follows that, in this coordinate system,

(11.33) |x| < 1
2C

=⇒ | Sq(x)| > 3
2
|x|.

Thus if O = {x : |x| < 1/4C}, we see that the orbit of any g 6= e (given here by
e = 0) under Sq cannot remain in O.

We can also use approximate identities to study the smoothness of representa-
tions of a (not necessarily compact) Lie group G. Let us consider the case of a
representation π of G on a Banach space V . We assume π is strongly continuous,
i.e., for each u ∈ V , π(g)u is a continuous function of g with values in V . As we
have seen, the regular representations L and R of G on L2(G) have this property
(when G has, respectively, left-invariant or right-invariant Haar measure). It is a
consequence of the uniform boundedness principle that the operator norm ‖π(g)‖
is bounded on compact subsets of G. If f is compactly supported and integrable
on G, we can define π(f) as before:

(11.34) π(f)u =
∫

G

f(g)π(g)u dg, π(f) : V → V.

Here we will use left-invariant Haar measure. Note that, for any h ∈ G,

(11.35) π(h)π(f)u =
∫

f(h−1g)π(g)u dg.

From this it is easy to see that, for all u ∈ V ,

(11.36) f ∈ C∞0 (G) ⇒ π(h)π(f)u is a smooth V -valued function of h,

Generally we say v ∈ V is a smooth vector for the representation π if π(g)v is a
smooth function of g with values in V .

Now we can construct a sequence fν ∈ C∞0 (G), each integrating to 1, supported
on progressively smaller neighborhoods of the identity element e, and (as in the
proof of Proposition 11.1) we have

(11.37) π(fν)u −→ u in V, ∀ u ∈ V.

We hence have:
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Proposition 11.10. If π is a strongly continuous representation of a Lie group G
on a Banach space V , then the space V0 of smooth vectors is a dense linear subspace
of V . In particular, if V is finite dimensional, then all vectors in V are smooth.

We close this section with the following corollary to the Peter-Weyl theorem,
which will prove useful later.

Proposition 11.11. If G1 and G2 are two compact Lie groups, then the irreducible
unitary representations of G = G1 × G2 are, up to unitary equivalence, precisely
those of the form

(11.38) π(g) = π1(g1)⊗ π2(g2),

where g = (g1, g2) ∈ G, and πj is a general irreducible unitary representation of
Gj.

Proof. Given πj irreducible unitary representations of Gj , the unitarity of (11.38)
is clear, and irreducibility can be established as follows. We have χπ(g1, g2) =
χπ1(g1)χπ2(g2), and hence

(11.39)
∫∫

G1×G2

|χπ(g1, g2)|2 dg1 dg2 = 1.

It remains to prove the completeness of the set of such representations. For this,
it suffices to show that the matrix entries of such representations have dense linear
span in L2(G1 ×G2). This follows from the general elementary fact that products
ϕj(g1)ψk(g2) of orthonormal bases {ϕj} of L2(G1) and {ψk} of L2(G2) form an
orthonormal basis of L2(G1 ×G2).
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12. Lie algebras

Let G be a Lie group, TeG the tangent space to the identity element. For each
X0 ∈ TeG, there is a unique left-invariant vector field X on G such that X(e) = X0.
Here to say X is left-invariant is to say

(12.1) DLg(h)X(h) = X(gh),

where

(12.2) Lg : G → G, Lgx = gx, DLg : ThG → TghG.

In fact, such X is uniquely specified by

(12.3) X(g) = DLg(e) X0.

To justify this, we claim that one can deduce from the chain rule that if X0 ∈ TeG
and X(g) is defined by (12.3), then (12.1) holds. In detail, if (12.3) holds for each
g, then

DLg(h)X(h) = DLg(h)DLh(e)X0

= D(Lg ◦ Lh)(e)X0

= DLgh(e)X0,

giving (12.1).
We denote by g the set of left-invariant vector fields on G, so g ≈ TgG as a linear

space.
A vector field X ∈ g generates a flow F t

X on G; cf. Appendix A. The general
theory of ODE gives us a local flow, but in fact calculations below will yield a global
flow when X ∈ g. The defining property of F t

Xg is

(12.4) F0
Xg = g,

d

dt
F t

Xg = X(F t
Xg).

The following property helps reveal the nature of this flow.

Proposition 12.1. Given X ∈ g, g, h ∈ G,

(12.5) gF t
Xh = F t

X(gh).

Proof. Denote the left side of (12.5) by x(t) and the right side by y(t). Then
x(0) = y(0) = gh. The result (12.4) easily gives y′(t) = X(y). Meanwhile,

x′(t) = DLg(F t
Xh)X(F t

Xh) = X(x),
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the first identity by the chain rule and the second by (12.1). Uniqueness for ODE
then yields x(t) ≡ y(t).

Let us set

(12.6) γX(t) = F t
Xe,

for X ∈ g. Then taking h = e in (12.5) gives

(12.7) F t
Xg = g γX(t).

The following is a key group property.

Proposition 12.2. For X ∈ g,

(12.8) γX(s + t) = γX(s)γX(t).

Proof. This follows from (12.7) plus the fact that Fs+t
X = F t

X ◦ Fs
X (a general

property of flows). In detail,

γX(s + t) = F t
X(Fs

Xe) = F t
XγX(s)

= γX(s)γX(t),

the second identity by (12.6) and the third by (12.7).

We see that γX(t) is a one-parameter subgroup of G. Note that (12.8) implies
γX(t) is well defined for all t ∈ R, hence, by (12.7), F t

X is well defined for all t ∈ R,
when X ∈ g. We can characterize γX(t) as the unique smooth one-parameter sub-
group of G satisfying γ′X(0) = X(e). In fact, if γ(t) is another such one-parameter
subgroup and we set F tg = gγ(t), we see that

(12.9)

d

dt
F tg =

d

ds
gγ(t + s)

∣∣
s=0

=
d

ds
gγ(t)γ(s)

∣∣
s=0

= DLgγ(t)(e)X(e)

= X(F tg),

so by uniqueness for ODE, F t ≡ F t
X .

We pause to prove (11.31), i.e.,

(12.10) Sq(x) = x · x =⇒ D Sq(e)X = 2X, ∀ X ∈ TeG.

To see this, since we know Sq is smooth, it suffices to note that

(12.11) Sq(γX(t)) = γX(2t) =⇒ d

dt
Sq(γX(t))

∣∣
t=0

= 2X.
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Thus the last detail in the proof of Proposition 11.9 is taken care of.
We now define the exponential map:

(12.12) Exp : g → G, Exp X = γX(1) = F1
Xe.

Results covered in Appendix D imply Exp is C∞. In view of the results above, we
have γsX(t) = γX(st), and hence

(12.13) Exp tX = γX(t).

Also the unique characterization of γX(t) given above implies the following. If
G = Gl(n,F) (F = R or C), or if G is a matrix group, such as O(n) or U(n), then,
with X ∈ TeG ≈ g,

(12.14) Exp tX = etX ,

the right side denoting the matrix exponential defined in §2.
Note that (12.13) implies

(12.15) D Exp(0) : TeG → TeG is the identity map.

Hence, by the inverse function theorem, Exp is a diffeomorphism from some open
neighborhood O of 0 in g onto a neighborhood U of e in G. This provides what is
known as an exponential coordinate system.

A vector field on G yields a first-order differential operator on smooth functions
on G, via

(12.16) Xf(x) =
d

dt
f(F t

Xx)
∣∣
t=0

.

See Appendix A for more details. If X ∈ g, then, by (12.7), we can write this as

(12.17) Xf(x) =
d

dt
f(xγX(t))

∣∣
t=0

.

It then follows that, when X is a vector field on G, then X is left-invariant (i.e.,
X ∈ g) if and only if

(12.18) XL(g)f = L(g)Xf, ∀ g ∈ G, f ∈ C∞(G),

where, as usual,

(12.19) L(g)f(x) = f(g−1x).

In fact, the map f(x) 7→ f(xγX(t)) commutes with L(g), so any vector field X
of the form (12.17), i.e., any X ∈ g, commutes with L(g). For the converse, note
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that if X is a vector field that commutes with L(g) for all g ∈ G, then, for each
f ∈ C∞(G),

Df(g)X(g) = Xf(g) = L(g−1)Xf(e)

= XL(g−1)f(e) = X(f ◦ Lg)(e)

= Df(g)DLg(e)X(e),

so X(g) = DLg(e)X(e), hence X ∈ g.
If X and Y have the property (12.18), then so does the commutator (or Lie

bracket)

(12.20) [X, Y ] = XY − Y X,

i.e., X,Y ∈ g ⇒ [X, Y ] ∈ g. This structure makes g a Lie algebra.
In general, a Lie algebra is a vector space g on which there is a bilinear map

(12.21) g× g → g, (X,Y ) 7→ [X, Y ],

satisfying two identities. One is

(12.22) [X, Y ] = −[Y,X].

The other, known as the Jacobi identity, can be expressed as follows. Given X ∈ g,
define the linear map ad X : g → g by

(12.23) ad X(Y ) = [X, Y ].

Then the Jacobi identity is

(12.24) ad[X, Y ] = [ad X, ad Y ],

where

(12.25) [ad X, adY ] = (ad X)(ad Y )− (ad Y )(ad X).

Plugging in the definition (12.23), one can write out the Jacobi identity as

(12.26) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

It is routine to show that the commutator (12.20) satisfies (12.22) and (12.26).
The fact that each X ∈ g generates a one-parameter subgroup of G has the

following generalization, to a fundamental result of S. Lie. Suppose G is a Lie
group with Lie algebra g, and suppose h is a Lie subalgebra of g. That is, h is a
linear subspace of g and Xj ∈ h ⇒ [X1, X2] ∈ h. By Frobenius’ theorem (discussed
in Appendix C), through each point p ∈ G there is a smooth manifold Mp, of
dimension k = dim h, which is an integral manifold for h (i.e., h spans the tangent
space of Mp at each q ∈ Mp). We can take Mp to be the maximal such (connected)
manifold, and then it is unique. Let H be the maximal integral manifold of h
containing the identity element.
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Proposition 12.3. H is a subgroup of G.

Proof. Take h0 ∈ H and consider H0 = h−1
0 H. Clearly e ∈ H0. By left-invariance,

H0 is also an integral manifold of h, so H0 ⊂ H. This shows that h0, h1 ∈ H ⇒
h−1

0 h1 ∈ H, so H is a group.

The next result gives one sense in which the Lie algebra g of a Lie group G
generates G, at least when G is connected.

Proposition 12.4. Let G be a connected Lie group, g ∈ G. Then there exist
X1, . . . , XK ∈ g such that

(12.27) g = (Exp X1) · · · (ExpXK).

Proof. Put a left-invariant Riemannian metric on G. By (12.15) and the inverse
function theorem, there exists δ > 0 such that, for h ∈ G,

(12.28) dist(h, e) < δ =⇒ h = Exp Y (h), for some Y (h) ∈ g.

Given any g ∈ G, pick a smooth path σ(t) from e to g, and find g0, . . . , gK on the
path such that

(12.29) g0 = e, . . . , gK = g, dist(gj−1, gj) < δ.

Then

(12.30) g = (g−1
0 g1)(g−1

1 g2) · · · (g−1
K−2gK−1)(g−1

K−1gK),

and dist(g−1
j−1gj , e) = dist(gj , gj−1) < δ, so each g−1

j−1gj = Exp(Xj) for some Xj ∈ g.
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13. Lie algebra representations

Let G be a Lie group and π a (strongly continuous) representation of G on a
finite-dimensional vector space V . As we have seen in Proposition 11.10, when
dim V < ∞ all vectors v ∈ V are smooth. We define the map dπ : g → End(V ) as
follows:

(13.1) dπ(X)v =
d

dt
π(Exp tX)v

∣∣
t=0

, X ∈ g, v ∈ V.

Recall that X is a left-invariant vector field on G. The following lemma will be
helpful to understand dπ. Given f ∈ C∞0 (G), we set

(13.2) π(f) =
∫

G

f(g)π(g) dg,

as before, except now we use right-invariant Haar measure on G.

Lemma 13.1. Given f ∈ C∞0 (G), X ∈ g, we have

(13.3) π(f)dπ(X) = −π(Xf).

Proof. Plugging in the definitions yields

(13.4)

π(f)dπ(X)v =
d

dt

∫
f(g)π(g)π(Exp tX)v dg

∣∣∣
t=0

=
d

dt

∫
f(g)π(g Exp tX)v dg

∣∣∣
t=0

=
d

dt

∫
f
(
g Exp(−tX)

)
π(g)v dg

∣∣∣
t=0

= −
∫

(Xf)(g)π(g)v dg

= −π(Xf)v.

Here the third identity uses the right invariance of Haar measure and the fourth
identity uses (12.17).

We can deduce the following important consequence.

Proposition 13.2. Given X ∈ g,

(13.5) dπ([X,Y ]) = [dπ(X), dπ(Y )].
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Proof. For any f ∈ C∞0 (G), v ∈ V , we have

(13.6)

π(f)
(
dπ(X)dπ(Y )− dπ(Y )dπ(X)

)
v

= π(Y Xf)v − π(XY f)v

= −π([X, Y ]f)v

= π(f)dπ([X, Y ])v.

Letting f = fν be an approximate identity gives the result.

The following is an important connection between Lie algebra and Lie group
representations.

Proposition 13.3. For all X ∈ g,

(13.7) π(Exp tX) = et dπ(X).

Proof. Let A = dπ(X) ∈ End(V ) and let γ(t) denote the left side of (13.7). We want
to show that γ(t) ≡ etA. It is clear that γ : R→ Gl(V ) is a smooth one-parameter
group, and (13.1) gives γ′(0) = dπ(X) = A. The group property gives

(13.8) γ′(t) =
d

ds
γ(s + t)

∣∣
s=0

= Aγ(t) = γ(t)A,

and hence

(13.9)
d

dt
γ(t)e−tA = γ(t)Ae−tA − γ(t)Ae−tA = 0,

so γ(t)e−tA ≡ I.
Alternatively, the uniqueness of the one-parameter subgroup γ of Gl(V ) satisfy-

ing γ′(0) = A (cf. (12.9)) gives γ(t) = etA.

We next relate irreducibility of π and of dπ.

Proposition 13.4. Assume G is connected. Then π is an irreducible representa-
tion of G if and only if dπ is an irreducible representation of g.

Proof. Let V0 ⊂ V be a linear subspace of V . First suppose V0 is invariant under
π(g) for all g ∈ G. Then, for any X ∈ g,

(13.10) v ∈ V0 ⇒ dπ(X)v =
d

dt
π(Exp tX)v

∣∣
t=0

∈ V0,

so V0 is invariant under dπ(X) for all X ∈ g.
Next suppose V0 is invariant under dπ(X) for all X ∈ g. Then, for any X ∈ g,

(13.11) v ∈ V0 ⇒ π(Exp tX)v = et dπ(X)v =
∑

k≥0

tk

k!
dπ(X)k v ∈ V0.
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Now if G is connected, any g ∈ G can be written in the form (12.27), so

(13.12) v ∈ V0 ⇒ π(g)v = π(ExpX1) · · ·π(ExpXK)v ∈ V0.

Suppose V has a Hermitian inner product and the representation π of G on V
is unitary. Then, for X ∈ g,

(13.13) e−t dπ(X) = π(γX(t))−1 = π(γX(t))∗ = (et dπ(X))∗,

and hence

(13.14) dπ(X)∗ = −dπ(X).

In other words, g is represented by skew-Hermitian operators on V . The following
is a Lie algebra variant of Schur’s lemma.

Proposition 13.5. Let g be a Lie algebra and α : g → End(V ) a Lie algebra
representation of g by skew-Hermitian operators on V . Then α is irreducible if and
only if the following holds:

(13.15)
A ∈ End(V ), α(X)A = Aα(X) for all X ∈ g

=⇒ A is a scalar multiple of the identity.

The proof is as for Lemma 5.4. One sees that if A commutes with α(X), so do
A1 = A + A∗ and A2 = (A−A∗)/i, and the eigenspaces of Aj are invariant.

This gives one implication. For the converse, observe that if V0 ⊂ V is invariant
under α, so is V ⊥

0 , so the orthogonal projection of V nto V0 commutes with α(X),
for all X.
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14. The adjoint representation

Here we consider a particularly important representation of a Lie group G on its
Lie algebra g, the adjoint representation, defined as follows. Take

(14.1) Kg : G → G, Kg(x) = gxg−1,

and set

(14.2) Ad(g) = DKg(e) : TeG → TeG ≈ g.

Note that

(14.3) Kgh = Kg ◦Kh =⇒ Ad(gh) = Ad(g)Ad(h).

Proposition 14.1. For g ∈ G, X ∈ g,

(14.4) Exp(t Ad(g)X) = g Exp(tX) g−1.

Proof. Both sides of (14.4) are one-parameter subgroups of G. Call them γ(t)
and σ(t), respectively. It follows from (12.13) that γ′(0) = Ad(g)X. Meanwhile,
since σ(t) = Kg(Exp(tX)), the chain rule plus (14.2) gives σ′(0) = Ad(g)X. The
uniqueness result established in (12.9) then implies γ(t) ≡ σ(t).

Let us take g = Exp sY . By (12.7) the right side of (14.4) is then equal to

(14.5)

gγX(t)g−1 = F−s
Y (gγX(t))

= F−s
Y ◦ F t

Xg

= F−s
Y ◦ F t

X ◦ Fs
Y e

= F t
X(s) e, X(s) = Fs

Y #X,

the last identity using (B.1). Consequently, comparing the left side of (14.4), and
noting that F t

X(s)e = Exp(tX(s)), we have

Exp(t Ad(Exp sY )X) = Exp(tFs
Y #X),

hence

(14.6) Ad(Exp sY )X = Fs
Y #X.
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Taking the s-derivative at s = 0 and using (B.3)–(B.5), we have

(14.7)
d

ds
Ad(Exp sY )X

∣∣
s=0

= [Y,X].

According to (13.1), the left side of (14.7) is the Lie algebra representation derived
from Ad, i.e., d Ad(Y )X. We use the notation ad(Y ) instead of d Ad(Y ):

(14.8) ad(Y )X = [Y, X],

a notation already brought forward in (12.23).
Having examined the adjoint representation in the setting of abstract Lie groups,

let us take a second look in the concrete setting where G is a matrix group, e.g.,
G = Gl(n,F), F = R or C. Then Kg in (14.1) extends to a map linear in x ∈
M(n,F), and we simply have

(14.9) Ad(g)X = gXg−1, X ∈ g ⊂ M(n,F).

If g = Exp sY = γY (s), we have

(14.10) Ad(Exp sY )X = γY (s) X γY (−s), X, Y ∈ g ⊂ M(n,F).

Since the matrix product (A,B) 7→ AB is bilinear on M(n,F), we can apply the
Leibniz rule to differentiate such a product, and obtain

(14.11)
d

ds
Ad(Exp sY )X

∣∣
s=0

= Y X −XY, X, Y ∈ g ⊂ M(n,F).

Thus the Lie bracket on g ⊂ M(n,F) is seen to be the matrix commutator. This re-
sult is consistent with (13.5), applied to the “identity” representation G ↪→ Gl(n,F)
of G on Fn. Compare also the presentation in Appendix E.

The adjoint representation can be used to tell whether G is unimodular. In fact,
take a nonzero ω0 ∈ ΛNT ∗e G (N = dim G). and define a left Haar measure via
ω0 = L∗gω(g). We have

(14.12) R∗g−1ω = R∗g−1L∗gω = K∗
gω = det Ad(g) ω.

(Otherwise said, K∗
gω(e) = ΛNDKg(e)tω0 = det Ad(g)ω0.) Hence G is unimodular

if and only if detAd(g) = 1 for all g ∈ G.
We can make use of the identity

(14.13) Ad(ExpX) = ead X ,

which is a special case of (13.7), to formulate the unimodularity condition in purely
Lie algebra terms. In view of Proposition 12.4, when G is connected, det Ad(g) = 1
for all g ∈ G if and only if det Ad(Exp X) = 1 for all X ∈ g. Now, for a general
linear map A on a finite-dimensional vector space,

(14.14) det eA = eTr A,

so we have:
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Proposition 14.2. A connected Lie group G is unimodular if and only if Tr ad(X) =
0 for all X ∈ g.

We give an example of a Lie group that is not unimodular, namely the 2-
dimensional group Aff(1), known as the “ax+b-group.” As a set, Aff(1) = R+×R;
it acts on R by (a, b) · x = ax + b, so the group law is

(14.15) (a, b)(a′, b′) = (aa′, b + ab′).

This group is isomorphic to the group of matrices

(14.16)
{(

a b
0 1

)
: a > 0, b ∈ R

}
.

Compare (1.19)–(1.22). The Lie algebra of Aff(1) is isomorphic to the matrix Lie
subalgebra of M(2,R) spanned by

(14.17) X =
(

1 0
0 0

)
, Y =

(
0 1
0 0

)
.

We have

(14.18) [X, Y ] = Y, Tr ad X = 1.

It is instructive to compute left and right invariant measures on this group, or
equivalently left and right invariant 2-forms:

ωL = ϕ(x, y) dx ∧ dy, ωR = ψ(x, y) dx ∧ dy,

on {(x, y) : x > 0, y ∈ R}. Using

La,b(x, y) = (ax, ay + b), Ra,b(x, y) = (ax, bx + y),

we have
L∗a,bωL = a2ϕ(ax, ay + b) dx ∧ dy,

R∗a,bωR = aψ(ax, bx + y) dx ∧ dy.

Invariance is achieved by setting ϕ(x, y) = 1/x2 and ψ(x, y) = 1/x, so we have

ωL = x−2 dx ∧ dy, ωR = x−1 dx ∧ dy.

We next express the formula (2.19) for the derivative of the matrix exponential
in terms of Ad. As shown in (2.19), if we consider

(14.19) Exp : M(n,R) −→ Gl(n,R), Exp X = eX ,
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then

(14.20) D Exp(X)Y = eX

∫ 1

0

e−σXY eσX dσ.

Now, by (14.9) and (14.13),

(14.21) e−σXY eσX = Ad(e−σX)Y = e−σ ad XY,

so we can rewrite (14.20) as

(14.22) D Exp(X)Y = eX Ξ(adX)Y,

where

(14.23) Ξ(z) =
∫ 1

0

e−σz dσ =
1− e−z

z

is an entire holomorphic function and Ξ(A) is defined as in (2.20)–(2.21) for a
linear transformation A on a finite-dimensional vector space; in this case V = g
and A = ad X.

We now point out analogues of (14.19)–(14.23) valid for a general Lie group G,
arising by defining etX for x ∈ g as an operator on functions:

(14.24) etXu(x) = u(F t
Xx) = u(x · Exp tX).

Note that, for u ∈ C∞(G),

(14.25)

d

dt
etXu(x) = Du(F t

Xx) X(F t
Xx)

= Xu(F t
Xx)

= etXXu(x).

We claim that

(14.26) etXXu(x) = XetXu(x).

Indeed, since Xv(y) = (d/ds)v(Fs
Xy)|s=0,

(14.27)

X(etXu)(x) =
d

ds
(etXu)(Fs

Xx)|s=0

=
d

ds
u(F t

XFs
Xx)|s=0

=
d

ds
u(Fs

XF t
Xx)|s=0

= Xu(F t
Xx),
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yielding (14.26). Thus

(14.28)
d

dt
etXu(x) = etXXu(x) = XetXu(x).

From here, the derivation of (2.18)–(2.19) readily extends to yield

(14.29)
D Exp(X)Y =

d

dt
eX+tY

∣∣
t=0

= eX

∫ 1

0

e−σXY eσX dσ.

Actually, (14.29) works for general smooth vector fields X and Y on a smooth
manifold, assuming their flows are erveywhere defined. However, the next step,

(14.30) e−σXY eσX = e−σ ad XY,

extending (14.21), is problematic for such general vector fields, particularly if one
wants to treat the right hand side as a convergent power series. We establish that
(14.30) holds if G is a Lie group, with Lie algebra g, and X, Y ∈ g.

To get this, note that

(14.31) Y (σ) = e−σXY eσX

commutes with L(g) for all g ∈ G, hence is a smooth curve in g. Also,

(14.32)

Y ′(σ) = −Xe−σXY eσX + e−σXY eσXX

= −[X, Y (σ)]

= − ad X(Y (σ)),

the first identity by (14.28). Since g is finite dimensional, ad X is a bounded linear
operator on g, so the unique solution to (14.32) that is a smooth curve in g satisfying
Y (0) = Y is

(14.33) Y (σ) = e−σ ad XY.

To proceed, we now have

(14.34)
D Exp(x)Y = eX

∫ 1

0

e−σ ad XY dσ

= eXΞ(ad X)Y,

as in (14.22). This will be useful in §15.
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15. The Campbell-Hausdorff formula

The Campbell-Hausdorff formula has the form

(15.1) Exp(X) Exp(Y ) = Exp
(C(X, Y )

)
,

where G is any Lie group, with Lie algebra g, and Exp : g → G is the exponential
map defined by (12.12); X and Y are elements of g in a sufficiently small neigh-
borhood U of zero. The map C : U × U → g has a “universal” form, independent
of g. We give a demonstration similar to one in [HS], which was also independently
discovered by [Str].

We begin with the case G = Gl(n,R), and produce an explicit formula for the
matrix-valued analytic function X(s) of s in the identity

(15.2) eX(s) = eXesY ,

near s = 0. Note that this function satisfies the ODE

(15.3)
d

ds
eX(s) = eX(s)Y.

We can produce an ODE for X(s) by using the following formula, derived in (2.19):

(15.4)
d

ds
eX(s) = eX(s)

∫ 1

0

e−τX(s)X ′(s)eτX(s) dτ.

As shown in (14.22), we can rewrite this as

(15.5)
d

ds
eX(s) = eX(s)Ξ

(
ad X(s)

)
X ′(s),

with

(15.6) Ξ(z) =
∫ 1

0

e−τz dτ =
1− e−z

z
.

Comparing (15.3) and (15.5), we obtain

(15.7) Ξ
(
ad X(s)

)
X ′(s) = Y, X(0) = X.

We can obtain a more convenient ODE for X(s) as follows. Note that

(15.8) ead X(s) = Ad eX(s) = Ad eX ·Ad esY = ead X es ad Y .
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Now let Ψ(ζ) be holomorphic near ζ = 1 and satisfy

(15.9) Ψ(ea) =
1

Ξ(a)
=

a

1− e−a
,

explicitly,

(15.10) Ψ(ζ) =
ζ log ζ

ζ − 1
,

for |ζ − 1| < 1. (Note that the singularity at ζ = 1 is removable.) It follows that

(15.11) Ψ
(
ead Xes ad Y

)
Ξ

(
ad X(s)

)
= I,

so we can transform (15.7) to

(15.12) X ′(s) = Ψ
(
ead Xes ad Y

)
Y, X(0) = X.

Integrating gives the Campbell-Hausdorff formula for X(s) in (15.2):

(15.13) X(s) = X +
∫ s

0

Ψ
(
ead Xet ad Y

)
Y dt.

This is valid for ‖sY ‖ small enough, if also X is close enough to 0.
Taking the s = 1 case, we can rewrite this formula as

(15.14) eXeY = eC(X,Y ), C(X,Y ) = X +
∫ 1

0

Ψ
(
ead Xet ad Y

)
Y dt.

The formula (15.14) gives a power series in ad X and ad Y which is norm-summable
provided

(15.15) ‖ad X‖ ≤ x, ‖ad Y ‖ ≤ y,

with ex+y − 1 < 1, i.e.,

(15.16) x + y < log 2.

We can extend the analysis above to the case where X and Y belong to the Lie
algebra g of a Lie group G. As shown in §14, if X(s) is a smooth curve in g, then
(15.5) continues to hold. Since ad X and ad Y are bounded linear transformations
on g, the argument involving (15.7)–(15.16) extends. We have

(15.18) F t
XF t

Y = F t
C(t,X,Y ),
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with

(15.19) C(t,X, Y ) = X +
∫ 1

0

Ψ
(
ead tXead stY

)
Y ds,

provided ‖ad tX‖ + ‖ad tY ‖ < log 2, the operator norm ‖ad X‖ being computed
using any convenient norm on g. This yields the Campbell-Hausdorff formula for
general Lie groups.

Another way to describe the extention of the Campbell-Hausdorff formula to
general Lie groups is given by studying etX as operators for X ∈ g, given by
(14.24). In this approach, we take X,Y ∈ g, near 0, and look for C(X, Y ) ∈ g such
that

(15.20) eXeY u(x) = eC(X,Y )u(x).

The construction of C(X,Y ) uses the same formulas as in (15.2)–(15.14). Again we
have

(15.21) C(X, Y ) = X +
∫ 1

0

Ψ(ead Xet ad Y )Y dt.

Note that the left and right sides of (15.20) are equal respectively to

(15.22) u
(
x(ExpX)(ExpY )

)
and u(x · Exp C(X, Y )),

so from (15.20) we again deduce

(15.23) (Exp X)(ExpY ) = Exp C(X, Y ).

One remarkable property of Lie groups that follows readily from the Campbell-
Hausdorff formula is the existence of a natural real analytic structure on any Lie
group G. (Recall we originally assumed G has a C∞ structure.) This comes about
as follows. Pick a neighborhood U of the origin 0 in the Lie algebra g of G sufficiently
small that

(15.24) Exp : U −→ G

is a diffeomorphism of U onto a neighborhood O of e ∈ G. Then, for each p ∈ G,
define

(15.25) ψp : U −→ G, ψp(X) = p Exp(X).
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Proposition 15.1. The coordinate cover {ψp : p ∈ G} gives G the structure of
a real-analytic manifold, on which the maps (g, h) 7→ gh and g 7→ g−1 are real
analytic.

Proof. We need to show that, if p and q are sufficiently close, then ψ−1
q ◦ψp is real

analytic on a neighborhood of 0 in g. In fact, in such a case,

(15.26) ψ−1
q ◦ ψp(X) = Y =⇒ Exp(Y ) = q−1p Exp(X),

and hence, if Zpq = Exp−1(q−1p), we have

(15.27) ψ−1
q ◦ ψp(X) = C(Zpq, X).

The analyticity in X then follows from the explicit formula (15.19).
The formula (15.19) immediately gives analyticity of (g, h) 7→ gh for g and h

in a small neighborhood of e. We now want to show that, for p, q ∈ G fixed,
(p Exp X)(q ExpY ) is analytic in X and Y (near 0 ∈ g). To see this, write

(15.28)

(p Exp X)(q Exp Y ) = pq(q−1 Exp X q) Exp Y

= pq Exp(Ad(q−1)X) Exp Y

= pq Exp(C(Ad(q−1)X, Y )),

the second identity by (14.4). This gives the desired analyticity. The analyticity of
g 7→ g−1 is established similarly.

It is customary to write down a few terms in the series expansion for C(X,Y ).
We note that

(15.29)

Ψ(1 + z) = (1 + z)
log(1 + z)

z
= (1 + z)

(
1− z

2
+

z2

3
− · · ·

)

= 1 +
∑

k≥1

(−1)k−1

k(k + 1)
zk

= 1 +
z

2
− z2

6
+ · · · .

If we set adX = ξ and ad Y = η, we have

(15.30)

Ψ(eξetη) = Ψ
(
(I + ξ + 1

2ξ2 + · · · )(I + tη + 1
2 t2η2 + · · · ))

= Ψ(I + ξ + tη + 1
2ξ2 + tξη + 1

2 t2η2 + · · · )
= I + 1

2ξ + 1
2 tη + 1

12ξ2 + 1
3 tξη − 1

6 tηξ + 1
12 t2η2 + · · · .

Noting that η(Y ) = [Y, Y ] = 0, we see that

(15.31)
∫ 1

0

Ψ(ead Xet ad Y )Y dt = Y +
1
2
ξ(Y ) +

1
12

ξ2(Y )− 1
12

ηξ(Y ) + · · · ,
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and hence

(15.32) C(X, Y ) = X + Y +
1
2
[X, Y ] +

1
12

[X, [X, Y ]]− 1
12

[Y, [X,Y ]] + · · · .

We complement (15.32) with a complete power series expansion, as follows. We
have

(15.33) Ψ(eξetη) = I +
∞∑

k=1

(−1)k−1

k(k + 1)
(
eξetη − I

)k
,

and

(15.34) (eξetη − I)k =
( ∑

(`,m)∈S1

ξ`

`!
tmηm

m!

)k

,

where we set S1 = {(`, m) : `,m ≥ 0, ` + m > 0}. More generally, set

(15.35) Sk = {(`1, . . . , `k,m1, . . . , mk) : `j ≥ 0,mj ≥ 0, `j + mj > 0}.

Then we can expand the right side of (15.34), to obtain

(15.36) (eξetη − I)k =
∑

Sk

tm1+···+mk
ξ`1

`1!
ηm1

m1!
· · · ξ

`k

`k!
ηmk

mk!
.

Plugging this into (15.33) and then into (15.21), we obtain
(15.37)

C(X, Y ) = X + Y +
∞∑

k=1

(−1)k−1

k(k + 1)

∑

Sk

1
m1 + · · ·+ mk + 1

(ad X)`1

`1!
(ad Y )m1

m1!
· · ·

× (ad X)`k

`k!
(ad Y )mk

mk!
Y.
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16. More Lie group – Lie algebra connections

We establish an essential equivalence between Lie group and Lie algebra homo-
morphisms. Our first result is in some sense a generalization of Proposition 13.2.
Let G and H be Lie groups, and suppose
(16.1) ρ : G −→ H

is a smooth group homomorphism. Denote the Lie algebras by g and h, respectively,
and set
(16.2) σ = Dρ(e) : g −→ h.

Thus, if X ∈ g, generating the one-parameter group γX(t), we have
(16.3) ρ ◦ γX(t) = γσ(X)(t).

Proposition 16.1. The linear map σ in (16.2) is a Lie algebra homomorphism,
i.e.,
(16.4) X, Y ∈ g =⇒ σ([X, Y ]) = [σ(X), σ(Y )].

Proof. We make use of results on the adjoint representation established in §14.
With Kg given by (14.1), we have

(16.5) ρ ◦Kg(x) = ρ(gxg−1) = Kρ(g)(ρ(x)).

Regard each side of (16.5) as a smooth function of x, mapping G to H. Differentiate
each side, using the chain rule, and evaluate the derivatives at x = e. This yields
(16.6) Dρ(e) ◦DKg(e) = DKρ(g)(e) ◦Dρ(e),
or
(16.7) σ ◦Ad(g) = Ad(ρ(g)) ◦ σ,

as maps from g to h. Taking g = γX(t) and using (16.3), we have
(16.8) σ ◦Ad(γX(t)) = Ad(γσ(X)(t)) ◦ σ.

Taking d/dt at t = 0 and using (14.7) then gives
(16.9) σ ◦ adX = ad σ(X) ◦ σ,

which is equivalent to (16.4).

We aim for a converse to Proposition 16.1. Suppose σ : g → h is a Lie algebra
homomorphism. We desire to obtain a Lie group homomorphism. To start things
off, let U be a neighborhood of 0 ∈ g such that Exp : U → G is a diffeomorphism
onto a neighborhoodO of e ∈ G, and assume the Cambell-Hausdorff formula (15.19)
holds for t ∈ [0, 1], X, Y ∈ U . Let us define
(16.10) ρ : O −→ H

by
(16.11) ρ(g) = Exp(σ ◦ Exp−1(g)).
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Lemma 16.2. Let O1 be a sufficiently small neighborhood of e ∈ G. In particular
assume O1 ⊂ O has the properties

g1, g2 ∈ O1 =⇒ g−1
1 ∈ O1, g1g2 ∈ O.

Then

(16.12) g1, g2 ∈ O1 =⇒ ρ(g1g2) = ρ(g1)ρ(g2).

Proof. With Xj = Exp−1(gj), we have ρ(g1g2) = Exp(σC(X1, X2)). Now the
Campbell-Hausdorff formula (15.19) implies that, if σ is a Lie algebra homomor-
phism, then, for Xj sufficiently close to 0,

(16.13) σC(X1, X2) = C(σ(X1), σ(X2)).

Hence

(16.14)

ρ(g1g2) = Exp C(σ(X1), σ(X2))

= Exp σ(X1) Expσ(X2)

= ρ(g1)ρ(g2),

as asserted.

A map ρ : O → H as in Lemma 16.2 is called a local homomorphism of G to H.
We have the following result.

Proposition 16.3. Let O1 ⊂ O and ρ : O → H be as in Lemma 16.2. If G is
simply connected, then ρ extends uniquely from O1 to a real-analytic homomorphism
ρ : G → H.

Proof. Put a left-invariant metric on G and assume for simplicity that O = Bδ(e) =
{g ∈ G : dist(g, e) < δ} and O1 = Bε/2(e), with ε and δ small enough. Given
g ∈ G, let γ be a smooth path from e to g, parametrized by arc length, say with
γ(0) = e, γ(L) = g. We first define ργ(g) as follows. Pick gj = γ(tj) with
0 = t0 < t1 < · · · < tN = L and |tj+1 − tj | < ε/2. Thus

(16.15) g0 = e, gN = g, gj+1 = xjgj , xj ∈ O1, g = xN−1 · · ·x2x1.

See Figure 16.1. We set

(16.16) ργ(g) = ρ(xN−1) · · · ρ(x2)ρ(x1).

First we show that ργ(g) is well defined, independent of the partition 0 = t0 <
t1 < · · · < tN = L described above. Any two such partitions have a common
refinement, so it suffices to show that refining a given partition does not change the
value of ργ(g) presented in (16.16). So say we add one point, tj+1/2 ∈ (tj , tj+1).
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Then the factor ρ(xj) in (16.16) gets replaced by ρ(zj)ρ(yj), where γ(tj+1/2) =
gj+1/2 = yjgj and gj+1 = zjgj+1/2. But xj , yj and zj all belong to O1 and xj =
yjzj , so, by (16.12), ρ(zj)ρ(yj) = ρ(xj), and indeed (16.16) is not changed.

Now that we have ργ(g) well defined for a smooth path γ from e to g, we want to
show that ργ(g) is independent of the path. This is where simple connectivity comes
in. We will show that ργ(g) = ρσ(g) if γ and σ are smoothly homotopic paths from e
to g. It suffices to show that ργ(g) = ρσ(g) when γ and σ are close enough, so assume
σ(t) is defined for t ∈ [0, L], σ(0) = e, σ(L) = g, and assume dist(σ(t), γ(t)) < δ/8
for each t ∈ [0, L]. Pick a partition 0 = t0 < t1 < · · · < tN = L such that
|tj+1 − tj | < δ/8. Let gj = γ(tj) as in (16.15) and take g′j = σ(tj), with

(16.17) g′0 = e, g′N = g, g′j+1 = x′jg
′
j , g = x′N−1 · · ·x′2x′1.

See Figure 16.2. Here dist(xj , e) < δ/8 and dist(x′j , e) < δ/8. We also have

(16.18) g′j = zjgj , dist(zj , e) <
δ

8
.

In order to show that ργ(g) = ρσ(g), it will suffice to show that, for each k,

(16.19) ρσ(g′k) = ρ(zk)ργ(gk),

and we do this by induction.
Clearly (16.19) holds for k = 0. Suppose it holds for k = j − 1. That is, we

assume

(16.20) ρσ(g′j−1) = ρ(zj−1)ργ(gj−1),

and try to show

(16.21) ρσ(g′j) = ρ(zj)ργ(gj),

assuming j ≤ N . In fact,

(16.22) g′j = x′jzj−1x
−1
j gj , and g′j = zjgj , so zj = x′jzj−1x

−1
j ,

and x′j , xj , zj−1 are all sufficiently close to the identity that (16.12) gives

(16.23) ρ(zj) = ρ(x′j)ρ(zj−1)ρ(x−1
j ),

which does lead to (16.21) from (16.20).
At this point we can define

(16.24) ρ : G −→ H, ρ(g) = ργ(g),
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where γ is any smooth path from e to g, and we know that ρ is uniquely defined.
To show that ρ is a homomorphism in (16.24), take any h ∈ G and write

(16.25) h = yM−1 · · · y2y1, yj ∈ O1,

parallel to (16.15), with partial products hk = yk−1 · · · y2y1 lying along a smooth
curve from e to h. Then

(16.26) gh = xN−1 · · ·x2x1yM−1 · · · y2y1

has the form developed above, so the construction of ρ in (16.24) yields

(16.27) ρ(gh) = ρ(xN−1) · · · ρ(x2)ρ(x1)ρ(yM−1) · · · ρ(y2)ρ(y1).

However the right side of (16.27) is equal to ρ(g)ρ(h), so indeed

(16.28) ρ(gh) = ρ(g)ρ(h), ∀ g, h ∈ G.

Finally, the analyticity of ρ on O1 follows from (16.11) and the analyticity of
ρ near a general g0 ∈ G follows by writing g = g0h, h ∈ O1, and using ρ(g) =
ρ(g0)ρ(h), plus analyticity of multiplication on G and H.

Thus we have a converse to Proposition 16.1:

Corollary 16.4. If G is simply connected, then, for any Lie algebra homomor-
phism σ : g → h, there is a unique Lie group homomorphism ρ : G → H such that
dρ = σ.

We return to the setting of Proposition 16.1 and apply it to the family of group
automorphisms

(16.29) Kg : G −→ G, Kg(x) = gxg−1.

Recall that

(16.30) DKg(e) = Ad(g) : g −→ g.

Thus Proposition 16.1 applies to H = G, σ = Ad(g), to yield:

Proposition 16.5. For each g ∈ G, Ad(g) : g → g is a Lie algebra automorphism:

(16.31) Ad(g)([X, Y ]) = [Ad(g)X, Ad(g)Y ].

Note that taking g = Exp tZ and applying d/dt at t = 0 simply recovers the
Jacobi identity, in the following form (compare (12.23)–(12.26)):

(16.32) ad Z([X, Y ]) = [ad Z(x), Y ] + [X, adZ(y)].
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17. Enveloping algebras

Associated to the Lie algebra g of a Lie group G is an associative algebra U(g),
called the universal enveloping algebra of g, defined as

(17.1) U(g) =
⊗

gC/J,

where gC is the complexification of G and J is the two-sided ideal in the tensor
algebra ⊗gC generated by

(17.2) {XY − Y X − [X, Y ] : X, Y ∈ g}.

It is easy to show that each element of U(g) defines a left-invariant differential
operator on G. In fact, it can be shown that U(g) is isomorphic to the algebra of
left-invariant differential operators on G, but we will not need the proof of this. See
Appendix F for further comments related to this.

Given a representation π of G on a finite-dimensional vector space V, there is
also a representation of U(g), defined as follows. If

(17.3) P =
∑

µ≤m

ci1···iµXi1 · · ·Xiµ , Xj ∈ g,

with ci1···iµ ∈ C, we have

(17.4) dπ(P ) =
∑

µ≤m

ci1···iµdπ(Xi1) · · · dπ(Xiµ).

The following result is an immediate consequence of Proposition 13.5. As we will
see it will be quite useful.

Proposition 17.1. Suppose G is connected. Let P ∈ U(g) and assume

(17.5) PX = XP, ∀ X ∈ g.

If π is an irreducible unitary representation of G on V, then dπ(P ) is a scalar
multiple of the identity:

dπ(P ) = λI.
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18. Representations of SU(2) and related groups

Recall that SU(2) is the group of 2× 2 complex unitary matrices of determinant
1, i.e.,

(18.1) SU(2) =
{(

z1 z2

−z2 z1

)
: |z1|2 + |z2|2 = 1, zj ∈ C

}
.

As a set, SU(2) is naturally identified with the unit sphere S3 in C2. Its Lie algebra
su(2) consists of 2×2 complex skew adjoint matrices of trace zero. A basis of su(2)
is formed by

(18.2) X1 =
1
2

(
i 0
0 −i

)
, X2 =

1
2

(
0 1
−1 0

)
, X3 =

1
2

(
0 i
i 0

)
.

Note the commutation relations

(18.3) [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

We also recall that the group SO(3) is the group of linear isometries of R3 with
determinant 1. Its Lie algebra so(3) is spanned by elements J`, ` = 1, 2, 3, which
generate rotations about the x`-axis. One readily verifies that these satisfy the
same commutation relations as in (18.3). Thus SU(2) and SO(3) have isomorphic
Lie algebras. There is an explicit homomorphism

(18.4) p : SU(2) −→ SO(3),

which exhibits SU(2) as a double cover of SO(3). One way to construct p is the
following. The linear span g of (18.2) over R is a three-dimensional real vector
space, with an inner product given by (X,Y ) = − Tr XY. It is clear that the
representation p of SU(2) by a group of linear transformations on g given by p(g) =
gXg−1 preserves this inner product and gives (18.4). Note that Ker p = {I,−I}.
(Note also that p(g) = Ad(g).)

If we regard Xj as left-invariant vector fields on SU(2), set

(18.5) ∆ = X2
1 + X2

2 + X2
3 ,

a second-order, left-invariant differential operator. It follows easily from (18.3) that
Xj and ∆ commute:

(18.6) ∆Xj = Xj∆, 1 ≤ j ≤ 3.
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Suppose π is an irreducible unitary representation of SU(2) on V. Then π induces
a skew-adjoint representation dπ of the Lie algebra su(2), and an algebraic repre-
sentation of the universal enveloping algebra. By (18.6), dπ(∆) commutes with
dπ(Xj), j = 1, . . . , 3. Thus, if π is irreducible, Proposition 17.1 implies

(18.7) dπ(∆) = −λ2I,

for some λ ∈ R. (Since dπ(∆) is a sum of squares of skew-adjoint operators, it must
be negative.) Let

(18.8) Lj = dπ(Xj).

Now we will diagonalize L1 on V. Set

(18.9) Vµ = {v ∈ V : L1v = iµv}, V =
⊕

iµ∈ spec L1

Vµ.

The structure of π is defined by how L2 and L3 behave on Vµ. It is convenient to
set

(18.10) L± = L2 ∓ iL3,

i.e., L± = dπ(X±) where

(18.10A) X+ = X2 − iX3 =
(

0 1
0 0

)
, X− = X2 + iX3 =

(
0 0
−1 0

)
.

We have the following key identities, as a direct consequence of (18.3):

(18.11) [X1, X±] = ±iX±, hence [L1, L±] = ±iL±.

Using this, we can establish the following:

Lemma 18.1. We have

(18.12) L± : Vµ −→ Vµ±1.

In particular, if iµ ∈ spec L1, then either L+ = 0 on Vµ or i(µ + 1) ∈ spec L1, and
also either L− = 0 on Vµ or i(µ− 1) ∈ spec L1.

Proof. Let v ∈ Vµ. By (18.11) we have

L1L±v = L±L1v ± iL±v = i(µ± 1)L±v,

which establishes the lemma. The operators L± are called “ladder operators.”
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To continue, if π is irreducible on V , we claim that spec (1/i)L1 must consist of
a sequence

(18.13) spec
1
i
L1 = {µ0, µ0 + 1, . . . , µ0 + k = µ1},

with

(18.14) L+ : Vµ0+j → Vµ0+j+1 isomorphism, for 0 ≤ j ≤ k − 1,

and

(18.15) L− : Vµ1−j → Vµ1−j−1 isomorphism, for 0 ≤ j ≤ k − 1.

In fact, we can compute

(18.16) L−L+ = L2
2 + L2

3 + i[L3, L2] = −λ2 − L2
1 − iL1

on V, and

(18.17) L+L− = −λ2 − L2
1 + iL1

on V, so

(18.18)
L−L+ = µ(µ + 1)− λ2 on Vµ,

L+L− = µ(µ− 1)− λ2 on Vµ.

Note that, since L2 and L3 are skew-adjoint, L+ = −L∗−, so

L+L− = −L∗−L−, L−L+ = −L∗+L+.

Thus

(18.18A) Ker L+ = Ker L−L+, Ker L− = Ker L+L−.

From (18.18) we see that, if µ0 = min Spec(1/i)L1 and µ1 = max Spec(1/i)L1,
then, since L+ = 0 on Vµ1 and L− = 0 on Vµ0 ,

µ1(µ1 + 1) = λ2 = µ0(µ0 − 1).

Hence

(18.19) µ1 − µ0 = k =⇒ µ0 = −k

2
, µ1 =

k

2
, λ2 =

1
4
k(k + 2).
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If L+ is not injective on Vµ, then, by (18.18)–(18.18A), L+ = 0 on Vµ, so (by
(18.18)),

µ = −1
2
± 1

2

√
1 + 4λ2 = −1

2
± 1

2
(k + 1),

i.e., µ = k/2 = µ1 or µ = −k/2− 1 = µ0− 1, which is not allowed. Similarly, if L−
is not injective on Vµ, then

µ =
1
2
± 1

2

√
1 + 4λ2 =

1
2
± 1

2
(k + 1),

i.e., µ = −k/2 = µ0 or µ = k/2 + 1 = µ1 + 1, which is not allowed. These
observations establish (18.13)–(18.15).

Considering that dπ preserves the linear span of {v, L+v, . . . Lµ1−µ0
+ v} for any

nonzero v ∈ Vµ0 , and that irreducibility implies this must be all of V, we have

(18.20) dim Vµ = 1, µ0 ≤ µ ≤ µ1.

Hence we have

(18.21) dim V = k + 1, λ2 =
1
4
k(k + 2) =

1
4
(dim V 2 − 1).

A nonzero element v ∈ V such that L+v = 0 is called a “highest weight vector”
for the representation π of SU(2) on V. It follows from the analysis above that all
highest weight vectors for an irreducible representation on V belong to the one-
dimensional space Vµ1 .

The calculations above establish that an irreducible unitary representation π of
SU(2) on V is determined uniquely up to equivalence by dim V. We are ready to
prove:

Proposition 18.2. There is precisely one equivalence class of irreducible unitary
representation of SU(2) on Ck+1, for each k = 0, 1, 2, . . . .

We will realize each such representation, which is denoted Dk/2, on the space

(18.22) Pk = {p(z) : p homogeneous polynomial of degree k on C2},

with SU(2) acting on Pk by

(18.23) Dk/2(g)f(z) = f(g−1z), g ∈ SU(2), z ∈ C2.

Note that, for X ∈ su(2),

(18.24) dDk/2(X)f(z) =
d

dt
f
(
e−tXz

)∣∣
t=0

= −(∂1f, ∂2f) ·X
(

z1

z2

)
,
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where ∂jf = ∂f/∂zj . A calculation gives

(18.25)

L1f(z) = − i

2
(z1∂1f − z2∂2f),

L2f(z) = −1
2
(z2∂1f − z1∂2f),

L3f(z) = − i

2
(z2∂1f + z1∂2f).

In particular, for

(18.26) ϕkj(z) = zk−j
1 zj

2 ∈ Pk, 0 ≤ j ≤ k,

we have

(18.27) L1ϕkj = i
(
−k

2
+ j

)
ϕkj ,

so

(18.28) V = Pk =⇒ span ϕkj = V−k/2+j , 0 ≤ j ≤ k.

Note that

(18.29) L+f(z) = −z2∂1f(z), L−f(z) = z1∂2f(z),

so

(18.30) L+ϕkj = −(k − j)ϕk,j+1, L−ϕkj = jϕk,j−1.

We see that the structure of the representation Dk/2 of SU(2) on Pk is as de-
scribed in (18.12)–(18.21). The last detail is to show that Dk/2 is irreducible. If not,
then Pk splits into a direct sum of several irreducible subspaces, each of which have
a one-dimensional space of highest weight vectors, annihilated by L+. But as seen
above, within Pk, only multiples of zk

2 are annihilated by L+, so the representation
Dk/2 of SU(2) on Pk is irreducible.

We can deduce the classification of irreducible unitary representations of SO(3)
from the result above as follows. We have the covering homomorphism (18.4),
and Ker p = {±I}. Now each irreducible representation dj of SO(3) defines an
irreducible representation dj ◦ p of SU(2), which must be equivalent to one of the
representations Dk/2 described above. On the other hand, Dk/2 factors through to
yield a representation of SO(3) if and only if Dk/2 is the identity on Ker p, i.e., if
and only if Dk/2(−I) = I. Clearly this holds if and only if k is even, since

Dk/2(−I) = (−1)kI.
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Thus all the irreducible unitary representations of SO(3) are given by representa-
tions D̃j on P2j , uniquely defined by

(18.31) D̃j

(
p(g)

)
= Dj(g), g ∈ SU(2).

It is conventional to use Dj instead of D̃j to denote such a representation of SO(3).
Note that Dj represents SO(3) on a space of dimension 2j + 1, and

(18.32) dDj(∆) = −j(j + 1).

Also we can classify the irreducible representations of U(2), using the results on
SU(2). To do this, use the exact sequence

(18.33) 1 → K → S1 × SU(2) → U(2) → 1,

where “1” denotes the trivial multiplicative group, and

(18.34) K = {(ω, g) ∈ S1 × SU(2) : g = ω−1I, ω2 = 1} = {±(1, I)}.

The irreducible representations of S1 × SU(2) are given by

(18.35) πmk(ω, g) = ωmDk/2(g) on Pk,

with m, k ∈ Z, k ≥ 0. Those giving a complete set of irreducible representations of
U(2) are those for which πmk(K) = I, i.e., those for which (−1)mDk/2(−I) = I.

Since Dk/2(−I) = (−1)kI, we see the condition is that m + k be an even integer.
For another perspective on the irreducible representations of U(2), note that

(18.23), i.e., Dk/2(g)p(z) = p(z−1z), for p ∈ Pk, is clearly well defined for g ∈ U(2).
If g = ωg0, with |ω| = 1, g0 ∈ SU(2), then

Dk/2(ωg0) = ω−kDk/2(g0) = πkk(ω, g0),

so the general irreducible representation of U(2) has the form

πk+2j,k(ω, g0) = (det ωg0)jDk/2(ωg0), j ∈ Z, k ∈ Z+,

i.e.,

(18.35A) (det g)j Dk/2(g), j ∈ Z, k ∈ Z+.

We now consider the representations of SO(4). First note that SO(4) is covered
by SU(2)× SU(2). To see this, equate the unit sphere S3 ⊂ R4, with its standard
metric, to SU(2), with a bi-invariant metric. Then SO(4) is the identity component



76

in the isometry group of S3. Meanwhile, SU(2)×SU(2) acts as a group of isometries,
by

(18.36) (g1, g2) · x = g1xg−1
2 , gj ∈ SU(2), x ∈ SU(2) ≈ S3.

Thus we have a map

(18.37) τ : SU(2)× SU(2) −→ SO(4).

This is a group homomorphism. Note that (g1, g2) ∈ Ker τ implies g1 = g2 = ±I.
In fact, if g1xg−1

2 = x for all x ∈ SU(2), taking x = e implies g1 = g2, then Schur’s
lemma implies g1 = g2 is a scalar, and then g1 ∈ SU(2) implies g1 = g2 = ±I.
Furthermore, a dimension count shows τ must be surjective, so

(18.38) SO(4) ≈ SU(2)× SU(2)/{±(I, I)}.

As shown in Proposition 11.11, if G1 and G2 are compact Lie groups, and G =
G1 ×G2, then the set of all irreducible unitary representations of G, up to unitary
equivalence, is given by

(18.39) {π(g) = π1(g1)⊗ π2(g2) : πj ∈ Ĝj},

where g = (g1, g2) ∈ G and Ĝj parametrizes the irreducible unitary representations
of Gj . In particular, the irreducible unitary representations of SU(2)×SU(2), up to
equivalence, are precisely the representations of the form

(18.40) γk`(g) = Dk/2(g1)⊗D`/2(g2), k, ` ∈ {0, 1, 2, . . . },

acting on Pk⊗P` ≈ Ck+1⊗C`+1. By (18.38), the irreducible unitary representations
of SO(4) are given by all γk` such that k + ` is even, since, for p0 = (−I,−I) ∈
SU(2)× SU(2), γk`(p0) = (−1)k+`I.

We next consider the problem of decomposing the tensor product representa-
tions Dk/2 ⊗D`/2 of SU(2), i.e., the composition of (18.40) with the diagonal map
SU(2) ↪→ SU(2)× SU(2), into irreducible representations. We may as well assume
that ` ≤ k. Note that πk` = Dk/2 ⊗D`/2 acts on

(18.41)
Pk` = {f(z, w) : polynomial on C2 × C2,

homogeneous of degree k in z, ` in w},

as

(18.42) πk`(g)f(z, w) = f(g−1z, g−1w).
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Parallel to (18.25) and (18.29), we have, on Pk`,

(18.43)
L1f = − i

2
(z1∂z1f − z2∂z2f + w1∂w1f − w2∂w2f),

L+f = −z2∂z1f − w2∂w1f,

L−f = z1∂z2f + w1∂w2f.

To decompose Pk` into irreducible subspaces, we specify Ker L+. In fact, a holo-
morphic function f(z, w) annihilated by L+ is of the form

(18.44) f(z, w) = g(z2, w2, w2z1 − z2w1).

In more detail, if L+f(z, w) = 0, then f(etX+z, etX+w) is independent of t, with
X+ as in (18.10A), i.e.,

(18.44A) f(z1 + tz2, z2, w1 + tw2, w2) is independent of t.

If z2 6= 0, take t = −z1/z2, to conclude

f(z1, z2, w1, w2) = f(0, z2, w1 − (z1/z2)w2), w2).

If f ∈ Pk` and k ≥ `, this yields

f(z1, z2, w1, w2) = zk−`
2 f(0, 1, w1z2 − z1w2, z2w2),

which also holds at z2 = 0.
Thus the kernel of L+ in Pk` is the linear span of

(18.45) ψk`µ(z, w) = zk−µ
2 w`−µ

2 (w2z1 − z2w1)µ, 0 ≤ µ ≤ `.

A calculation gives

(18.46) L1ψk`µ =
i

2
(k + `− 2µ)ψk`µ.

In fact, since e−tX1z = (e−(i/2)tz1, e
(i/2)tz2), and similarly for e−tX1w, we see that

(18.46A) ψk`µ(e−tX1z, e−tX1w) = e(i/2)(k+`−2µ)tψk`µ(z, w),

which gives (18.46).
It follows that, for fixed k, `, 0 ≤ ` ≤ k, and for each µ = 0, . . . , `, ψk`µ is the

highest weight vector of a representation equivalent to D(k+`−2µ)/2, so we have

(18.47) Dk/2 ⊗D`/2 ≈
⊕̀
µ=0

D(k+`−2µ)/2 = D(k−`)/2 ⊕D(k−`)/2+1 ⊕ · · · ⊕D(k+`)/2.
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This is called the Clebsch-Gordon series.
We make some general comments about decomposing a unitary representation

π of SU(2) on V into irreducible pieces. First, one identifies

(18.48) K = Ker L+ ⊂ V.

We know that π splits into mutually orthogonal irreducible pieces, π1 ⊕ · · · ⊕ πM ,
on V1 ⊕ · · · ⊕ VM = V , and K is spanned by the one-dimensional highest weight
subspaces of each Vj , each of them eigenspaces of L1. Hence

(18.49) L1 : K −→ K,

and of course L1|K is skew-adjoint. To find the pieces Vj , one diagonalizes L1|K
(and each space Vj is spanned by the images of an eigenvector of L1|K under L− and
its powers). This procedure can be seen to have been followed in the decomposition
described above of Dk/2 ⊗D`/2 on Pk`.

Note also how it has been convenient to analyze Ker L+ and eigenspaces of L1

via passage back to the group SU(2), via

(18.50)
L+v = 0 ⇐⇒ π(etX+)v = v, ∀ t,

L1v = iµv ⇐⇒ π(etX1)v = eiµtv, ∀ t.

Compare (18.44A) and (18.46A). Analogous observations will be useful in §19.
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19. Representations of U(n), I: roots and weights

Here we begin to take a detailed look at U(n) and its representations. Recall
that the Lie algebra of U(n) is

(19.1) u(n) = {X ∈ M(n,C) : X∗ = −X}.

The complexified Lie algebra gC of g = u(n) is just M(n,C), which is the Lie algebra
of Gl(n,C), which in turn can be regarded as the complexification of U(n). We can
write

(19.2) M(n,C) = Ch⊕ n+ ⊕ n−.

Here

(19.3) h = {diag(ia1, . . . , ian) : aj ∈ R}

is the Lie algebra of

(19.4) T = {diag(eia1 , . . . , eian) : aj ∈ R} ⊂ U(n).

In addition n+ consists of strictly upper triangular matrices and n− of strictly lower
triangular matrices, in M(n,C). It is clear that each of the three factors on the
right side of (19.2) is a Lie algebra. The Lie algebra Ch generates

(19.5) D = {diag(c1, . . . , cn) : cj ∈ C \ 0} ⊂ Gl(n,C),

while n+ generates N+, the group of upper triangular matrices in Gl(n,C) with
ones on the diagonal, and n− generates N−, the group of lower triangular matrices
in Gl(n,C) with ones on the diagonal. There is the Gauss decomposition:

(19.6) N−DN+ = Greg is dense in Gl(n,C),

or (in a weaker form)

(19.6A) Greg contains a neighborhood of the identity.

The latter result follows fairly easily from the spanning property (19.2).
Convenient bases for the factors in (19.2) are provided by the matrices ejk. Here

we define ejk to be the n×n matrix with a 1 in row j, column k, and zeros elsewhere.
Equivalently, let u1, . . . , un denote the standard basis of Cn. Then

(19.7) ejku` = δk` uj .
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Then {ejk : j < k} spans n+, {ejk : j > k} spans n−, and, with

(19.8) ej = iejj ,

the set {ej : 1 ≤ j ≤ n} spans h.
Suppose now that π is a unitary representation of U(n) on V , assumed to be

finite dimensional. Since T is commutative, we can simultaneously diagonalize
{π(h) : h ∈ T}. Equivalently, we can simultaneously diagonalize {dπ(X) : X ∈ h}.
In other words,

(19.9) V =
⊕

λ∈h′
Vλ,

where, for λ ∈ h′,

(19.10) Vλ = {v ∈ V : dπ(X)v = iλ(X)v, ∀ X ∈ h}.

If λ ∈ h′ and Vλ 6= 0, we call λ a weight for π, and a nonzero v ∈ Vλ is called a
weight vector. Note that the spaces Vλ in (19.9) are mutually orthogonal.

Let us apply this notion to the adjoint representation of U(n) on u(n)C =
M(n,C). It is convenient to use the basis ejk defined in (19.7). A computation
gives eijek` = δjkei`, hence

(19.11) [eij , ek`] = δjkei` − δi`ekj .

In particular, [ejj , ek`] = δjkej` − δj`ekj , and hence

(19.12) X =
∑

j

xjej ∈ h =⇒ [X, ejk] = i(xj − xk)ejk.

In other words, if we define

(19.13) ωjk ∈ h′, ωjk(X) = xj − xk,

then ωjk is a weight for the adjoint representation, with weight vector ejk. We
call ωjk a root, and ejk a root vector. Note the parallel between (19.12) and the
commutator relation [X1, X±] = ±iX±, from (18.11).

Let us return to a general unitary representation π of U(n) on V . The following
can be compared with Lemma 18.1.

Proposition 19.1. Set Ejk = dπ(ejk). Then

(19.14) Ejk : Vλ −→ Vλ+ωjk
.

Thus if λ ∈ h′ is a weight for the representation π, then either Ejk annihilates Vλ

or λ + ωjk is a weight for π.
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Proof. The commutation relation (19.12), which can be rewritten as

(19.15) [X, ejk] = iωjk(X)ejk, X ∈ h,

leads to the identity

(19.16) dπ(X)Ejk = Ejk

(
dπ(X) + iωjk(X)I

)
, X ∈ h,

which implies (19.14).

Let us define an order on h′ as follows. Use the basis {ej : 1 ≤ j ≤ n} to make
h ≈ Rn; then h′ ≈ Rn. Given α, β ∈ Rn, we say α < β if the first nonzero entry of
β − α is positive. With respect to this order, we have

(19.17)
λ + ωjk > λ if j < k,

λ + ωjk < λ if j > k.

Hence we call Ejk a raising operator if j < k (so ejk ∈ n+) and a lowering operator
if j > k (in which case ejk ∈ n−).

In (19.9) only finitely many weights appear. Thus there is a highest weight λm

and a lowest weight λs. All the raising operators annihilate Vλm and all the lowering
operators annihilate Vλs . Nonzero elements of Vλm are called highest weight vectors.

In view of this discussion, we have the following criterion for irreducibility. A
converse will be established below.

Proposition 19.2. Let π be a unitary representation of U(n) on V , finite dimen-
sional. Consider the set A(π) of weight vectors annihilated by all raising operators.
If A(π) ∪ {0} is a linear space of dimension 1, then π is irreducible.

Proof. Suppose V = V1⊕V2 with Vj invariant. We see from the previous paragraph
that both V1 and V2 contain a nonzero element of A(π).

Remark. A vector v ∈ V is annihilated by all raising operators if and only if

(19.17A) dπ(X+)v = 0, ∀X+ ∈ n+.

Let us note the following. Set

(19.18) H(π) =
⋂

j<k

KerEjk.

From (19.16) it follows that

(19.19) X ∈ h =⇒ dπ(X) : H(π) → H(π),
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and of course {dπ(X)|H(π) : X ∈ h} forms a commuting family of skew-adjoint
operators, so they are simultaneously diagonalizable on H(π), i.e., H(π) is spanned
by weight vectors. Thus the hypothesis thatA(π)∪{0} is a linear space of dimension
1 is equivalent to the hypothesis that dimH(π) = 1.

We next bring in the notion of contragredient representations. If π is a represen-
tation of a Lie group G on a finite dimensional space V , we define its contragredient
representation π on V ′ by

(19.20) 〈v, π(g)w〉 = 〈π(g−1)v, w〉, v ∈ V, w ∈ V ′,

as in (7.12). Suppose π is unitary and V is given an orthonormal basis, so π(g) is
given by a unitary matrix (πjk(g)). Then the matrix entries of π(g), with respect
to the dual basis of V ′, are just the complex conjugates of those of π. If π is
irreducible, so is π.

Now assume π is an irreducible representation of U(n) on V , with contragredient
representation π on V ′. Let ξ0 ∈ A(π) ⊂ V (i.e., ξ0 is a weight vector annihilated by
all raising operators) and let η0 ∈ Ab(π) (i.e., η0 is a weight vector for π annihilated
by all lowering operators). Assume ξ0 and η0 are nonvanishing. Say ξ0 has weight
λ ∈ h′ and η0 has weight −µ ∈ h′. We form

(19.21) ψ(X) = 〈dπ(X)ξ0, η0〉 = −〈ξ0, dπ(X)η0〉, X ∈ M(n,C).

Note that

(19.22)

X+ ∈ n+ =⇒ ψ(X+) = 0,

X− ∈ n− =⇒ ψ(X−) = 0,

H ∈ h =⇒ ψ(H) = iλ(H)〈ξ0, η0〉 = iµ(H)〈ξ0, η0〉.

We aim to show that 〈ξ0, η0〉 6= 0, which will imply that λ = µ. First, it is
convenient to bring in the following group level analogue of (19.21). Thus, with π
a representation of U(n) on V , and with nonzero ξ0 ∈ A(π), η0 ∈ Ab(π) as before,
set

(19.23) α(g) = 〈π(g)ξ0, η0〉 = 〈ξ0, π(g−1)η0〉.

As we will show in §22, a finite-dimensional representation π of U(n) always extends
to a holomorphic representation of Gl(n,C). (Another proof is given in Appendix
G.) Hence α(g) is well defined for g ∈ Gl(n,C) and is holomorphic in g. At this
point it is useful to note that dπ(X+)ξ0 = 0 for all X+ ∈ n+ (cf. (19.17A)), and

dπ(X+)ξ0 = 0 =⇒ π(etX+)ξ0 = etdπ(X+)ξ0 = ξ0, ∀ t.

Hence, since Exp : n+ → N+ has range containing a neighborhood of e ∈ N+,

π(ζ+)ξ0 = ξ0, ∀ ζ+ ∈ N+.
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Similarly, π(ζ−1
− )η0 = η0 for all ζ− ∈ N−. Hence, parallel to (19.22), we have, for

all g ∈ Gl(n,C),

(19.24)
α(gζ+) = α(g), ζ+ ∈ N+,

α(ζ−g) = α(g), ζ− ∈ N−,

Also

(19.25)
α(gδ) = eiλ(H)α(g), δ = eH ∈ T,

α(δg) = eiµ(H)α(g),

since π(eH)ξ0 = eiλ(H)ξ0 and π(e−H)η0 = eiµ(H)η0. More generally,

(19.26)
α(δg) = ei(λ(H1)+iλ(H2))α(g), δ = eH1+iH2 ∈ D,

α(gδ) = ei(µ(H1)+iµ(H2))α(g).

We have from (19.24)–(19.26) that

(19.27) ζ± ∈ N±, δ = eH1+iH2 ∈ D =⇒ α(ζ−δζ+) = α(δ) = ei(λ(H1)+iλ(H2))α(e).

We are now prepared to prove:

Lemma 19.3. Given that π is irreducible,

(19.28) 〈ξ0, η0〉 6= 0.

Hence λ = µ.

Proof. We have 〈ξ0, η0〉 = α(e). By (19.27), (19.6A) and holomorphy, if α(e) = 0
then α(g) ≡ 0. Consider

(19.29) V0 = {ξ ∈ V : 〈π(g)ξ, η0〉 = 0, ∀ g ∈ Gl(n,C)}.

Then V0 is an invariant linear subspace of V and ξ0 ∈ V0, so V0 6= 0. Irreducibility
forces V0 = V , but this is clearly false, since η0 6= 0, and the contradiction forces
(19.28) to hold.

Having λ = µ, we can rewrite (19.26) as

(19.30) α(gδ) = α(δg) = ei(λ(H1)+iλ(H2))α(g), δ = eH1+iH2 ∈ D.

We next prove:
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Proposition 19.4. If π is an irreducible representation of U(n) on V , then H(π),
given in (19.18), is a one-dimensional linear space. Hence the highest weight vector
for π is unique, up to a constant multiple.

Proof. Suppose ξ1 ∈ H(π) is a weight vector. The argument above also shows
〈ξ1, η0〉 6= 0. Normalize so 〈ξ1, η0〉 = 〈ξ0, η0〉. Then computations parallel to
(19.21)–(19.27) give 〈π(g)ξ1, η0〉 ≡ α(g), so

(19.31) 〈π(g)(ξ1 − ξ0), η0〉 = 0, ∀ g,

or

(19.32) 〈ξ1 − ξ0, π(g)η0〉 = 0, ∀ g.

Since π is irreducible, this implies ξ1 = ξ0.

We next show that inequivalent irreducible representations of U(n) have distinct
highest weights.

Proposition 19.5. If π and π′ are irreducible representations of U(n) with the
same highest weight, then π ≈ π′.

Proof. Suppose π′ also has highest weight λ. Pick ξ′0 ∈ A(π′), η′0 ∈ Ab(π′) and
arrange that 〈ξ0, η0〉 = 〈ξ′0, η′0〉. Consider

(19.33) β(g) = 〈π′(g)ξ′0, η
′
0〉.

We have β(e) = α(e) 6= 0, and results parallel to (19.24)–(19.27) for β imply

(19.34) β(ζ−δζ+) = α(ζ−δζ+), ∀ ζ− ∈ N−, δ ∈ D, ζ+ ∈ N+.

As both α and β are holomorphic on Gl(n,C) and N−DN+ contains a neighborhood
of e ∈ Gl(n,C), it follows that α ≡ β on Gl(n,C) and a fortiori α ≡ β on U(n).
But if π and π′ are not equivalent the Weyl orthogonality relations imply α ⊥ β in
L2(U(n)), so the proposition is proven

It remains to characterize which elements λ ∈ h′ are highest weights of irreducible
representations of U(n). We take this up in §21.
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20. Representations of U(n), II: some basic examples

Here we now consider some basic examples of representations of U(n). First,
define representations S` and S

`
of U(n) on

(20.1) P` = space of polynomials on Cn homogeneous of degree `,

by

(20.2) S`(g)f(z) = f(gtz), S
`
(g)f(z) = f(g−1z).

Note that (20.2) extends to g ∈ Gl(n,C), and we have

(20.3) dS
`
(X)f(z) =

d

dt
f(e−tXz)

∣∣
t=0

=
d

dt
f(z − tXz)

∣∣
t=0

, X ∈ M(n,C).

Hence

(20.4)
dS

`
(ejk)p(z) =

d

dt
p(z1, . . . , zj − tzk, . . . , zn)

∣∣
t=0

= −zk
∂p

∂zj
,

and in particular

(20.5) dS
`
(ej)p(z) = −izj

∂p

∂zj
.

We see that, for zα = zα1
1 · · · zαn

n with |α| = α1 + · · ·+ αn = `,

(20.6) dS
`
(ej)zα = −iαjz

α.

Thus zα is a weight vector for S
`
, with weight−α. The highest weight is (0, . . . , 0,−`),

with weight vector z`
n. It is clear from (20.4) that the only weight vector annihilated

by all raising operators is z`
n. Hence S

`
is irreducible.

Note that

(20.7) dS`(X)f(z) =
d

dt
f(etXt

z)
∣∣
t=0

= −dS
`
(Xt).

Hence

(20.8) dS`(ejk)p(z) = −dS
`
(ekj)p(z) = zj

∂p

∂zk
, dS`(ej)p(z) = izj

∂p

∂zj
.
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In particular zα is a weight vector for S`, with weight α. The highest weight is
(`, 0, . . . , 0), with weight vector z`

1. This is the only weight vector annihilated by
all raising operators, so S` is also irreducible.

Next, we define representations Λ` of U(n) on Λ`Cn (0 ≤ ` ≤ n) by

(20.9) Λ`(g) v1 ∧ · · · ∧ v` = gv1 ∧ · · · ∧ gv`.

This is also well defined for g ∈ Gl(n,C), and we have, for X ∈ M(n,C),

(20.10)
dΛ`(X) v1 ∧ · · · ∧ v` =

d

dt
etXv1 ∧ · · · ∧ etXv`

∣∣
t=0

= Xv1 ∧ v2 ∧ · · · ∧ v` + · · ·+ v1 ∧ · · · ∧ v`−1 ∧Xv`.

In this case, with u1, . . . , un as before denoting the standard basis of Cn, if we set

(20.11) uJ = uj1 ∧ · · · ∧ uj`
, J = (j1, . . . , j`),

with j1 < · · · < j`, then

(20.12)
EjkuJ = uj1 ∧ · · · ∧ ujν−1∧ uj ∧ ujν+1 ∧ · · · ∧ uj`

, if k = jν ,

0, if k /∈ {j1, . . . , j`},

and

(20.13)
dΛ`(ej)uJ = iuJ if j ∈ {j1, . . . , j`},

0 if j /∈ {j1, . . . , j`}.

Thus uJ is a weight vector for Λ`, of weight γ(J), where γ(J)j = 1 if j ∈
{j1, . . . , j`}, 0 otherwise. Also from (20.12) it follows that the only weight vec-
tor annihilated by all raising operators is u1∧· · ·∧u`. Hence Λ` is irreducible, with
highest weight (1, . . . , 1, 0, . . . , 0) (with ` ones).

We compute the dimensions of the representation spaces described above. A
look at a standard basis shows that

(20.14) dimΛ`Cn =
(

n

`

)
.

As for P` ≈ S`Cn, we have

(20.15) dim S`Cn = #{β ≥ 0 : zβ = zβ1
1 · · · zβn

n , |β| = `}.

If we set ϑn(`) = dim S`Cn, we can see that

(20.16) ϑn+1(`) = ϑn(`) + ϑn(`− 1) + · · ·+ ϑn(0).
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Since clearly ϑ1(`) = 1, we see inductively that

(20.17) dim S`Cn+1 =
(

n + `

n

)
.

We next reconsider the adjoint representation of U(n) on M(n,C), given by

(20.18) Ad(g)X = gXg−1,

and the derived representation ad of u(n) on M(n,C), and its extension to the
representation Cu(n) = M(n,C) on M(n,C), given by

(20.19) ad X(Y ) = [X, Y ].

These representations are not irreducible. We have a decomposition into invariant
subspaces

(20.20) M(n,C) = {cI} ⊕M0(n,C), M0(n,C) = {X ∈ M(n,C) : TrX = 0}.

Ad acts trivially on {cI}. We claim it acts irreducibly on M0(n,C). The analysis
below will establish this.

Using (19.11)–(19.13), we have the weight space (aka root space) decomposition

(20.21)

M(n,C) = Ch⊕
⊕

j 6=k

Span(ejk)

= g0 ⊕
⊕

j 6=k

gωjk
,

where, for X =
∑

xjej , ωjk(X) = xj − xk. Recall from (19.14) that E`m = ad e`m

satisfies

(20.22) E`m : gωjk
−→ gωjk+ω`m

.

Now ωjk(X) + ω`m(X) = xj − xk + x` − xm, so, given that ` < m and j 6= k,

(20.23) ωjk + ω`m is a root ⇐⇒ k = ` or j = m.

Furthermore,

(20.24)
E`mejk = [e`m, ejk] = δmje`k − δ`kejm

= 0 provided m 6= j and ` 6= k,

and also

(20.25)
m = j ⇒ E`mejk = e`k − δ`kemm = e`k if ` 6= k

e`` − emm if ` = k,
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and

(20.26)
` = k ⇒ E`mejk = δmje`` − ejm = − ejm if m 6= j,

e`` − emm if m = j.

In conclusion, we deduce that

(20.27)
E`mejk = 0, ∀ ` < m ⇐⇒ m 6= j and ` 6= k, ∀ ` < m

⇐⇒ j = 1 and k = n.

Hence the subspace of ⊕j 6=kgωjk
annihilated by all raising operators is gω1n =

Span(ejn), with weight ω1n = (1, 0, . . . , 0,−1).
It remains to investigate which elements of g0 = Ch are annihilated by all raising

operators. In fact, by (19.12), for X ∈ h, −[e`m, X] = [X, e`m] = iω`m(X)e`m,
hence

(20.28) E`m

(∑
xjej

)
= −i(x` − xm)e`m,

which is 0 for all ` < m if and only if x1 = · · · = xn.
It follows from these arguments that H(Ad) is spanned by e1n and e11+· · ·+enn.

These are weight vectors with weights

(20.29) (1, 0, . . . , 0,−1) and (0, . . . , 0).

This establishes the irreducibility of Ad on each of the two factors in (20.20).
The irreducibility of the representation Ad of U(n) on M0(n,C) is equivalent

to the irreducibility of ad, representing M(n,C) on M0(n,C), In turn, since {cI}
is the center of M(n,C), this is equivalent to the irreducibility of ad, representing
M0(n,C) on M0(n,C).

Generally, if g is a Lie algebra, the representation ad of g on g has an invariant
linear subspace h ⊂ g if and only if

(20.30) X ∈ g, Y ∈ h =⇒ [X, Y ] ∈ h,

i.e., if and only if h is an ideal of g. If g has no proper ideals, we say g is a simple Lie
algebra. Hence the content of the irreducibility of the action of U(n) on M0(n,C)
derived above is that

(20.31) M0(n,C) is a simple Lie algebra.
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21. Representations of U(n), III: identification of highest weights

In this section we characterize which elements of h′ are highest weights of irre-
ducible representations of U(n) and hence parametrize the set of such representa-
tions. As in §19, we use the basis {ej : 1 ≤ j ≤ n} of h and the dual basis of h′ to
identify these spaces with Rn, so λ ∈ h′ is written as λ = (λ1, . . . , λn). Here is our
main result.

Theorem 21.1. The elements of h′ that are highest weights of an irreducible rep-
resentation of U(n) are precisely given by

(21.1) {(k1, . . . , kn) : kν ∈ Z, k1 ≥ · · · ≥ kn}.

Hence the set of equivalence classes of irreducible unitary representations of U(n)
is in natural one-to-one correspondence with the set (21.1).

First we show that if λ = (λ1, . . . , λn) ∈ h′ is a highest weight, then it must
have the form (21.1). Since iλ : h → iR must exponentiate to a homomorphism
T→ S1 ⊂ C, we must have λ = (k1, . . . , kn), kν ∈ Z. The fact that k1 ≥ · · · ≥ kn

is a consequence of the following.

Lemma 21.2. If λ = (λ1, . . . , λn) is a weight of a representation π of U(n) on V ,
so is λ(σ) = (λσ(1), . . . , λσ(n)), for each σ ∈ Sn.

Proof. Let Eσ denote the permutation matrix, Eσuk = uσ(k), where {u1, . . . , un}
is the standard basis of Cn; thus Eσ ∈ U(n). It is readily verified that

(21.2) E−1
σ diag (c1, . . . , cn) Eσ = diag(cσ(1), . . . , cσ(n)).

Now, given λ = (λ1, . . . , λn), the weight space Vλ has the characterization

(21.3) v ∈ Vλ ⇐⇒ π
(
diag(c1, . . . , cn)

)
v = (cλ1

1 · · · cλn
n )v.

It follows that

(21.4) π(E−1
σ ) : Vλ −→ Vλ(σ)

is an isomorphism.

It remains to show that each element of the form (21.1) is the highest weight
of an irreducible representation of U(n). First note that if (k1, . . . , kn) ∈ h′ is the
highest weight of π, then, for each j ∈ Z,

(21.5) jπ(g) = (det g)j π(g) has highest weight (k1 + j, . . . , kn + j),
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with the same weight vector as π, as follows readily from (21.3).
Thus it suffices to construct an irreducible representation of U(n) with highest

weight (k1, . . . , kn) satisfying kν ∈ Z and k1 ≥ · · · ≥ kn ≥ 0. In this case we can
write

(21.6) (k1, . . . , kn) = j1γ1 + · · ·+ jnγn, jν ∈ Z+,

where γ` is the highest weight of the representation Λ` of U(n) discussed in (20.9)–
(20.13), i.e.,

(21.7) γ` = (1, . . . , 1, 0, . . . , 0) (with ` ones).

The following gives the key construction.

Proposition 21.3. A weight of the type (21.6) occurs as the highest weight of an
irreducible component of the representation

(21.8) (Λ1)⊗j1 ⊗ · · · ⊗ (Λn)⊗jn

of U(n) on (Λ1Cn)⊗j1 ⊗ · · · ⊗ (ΛnCn)⊗jn .

Here V ⊗j denotes the j-fold tensor product V ⊗ · · · ⊗ V . More generally than
Proposition 21.3, we have the following.

Proposition 21.4. Suppose πj is a unitary representation of U(n) on Vj, with
highest weight λj. Then the representation

(21.9) π1 ⊗ · · · ⊗ πK on V1 ⊗ · · · ⊗ VK

has highest weight λ1 + · · ·+ λK .

Proof. Indeed, suppose we have weight space decompositions

(21.10) Vj =
⊕

µ∈Sj⊂h′
Vjµ

for πj . Then V1 ⊗ · · · ⊗ VK is spanned by

(21.11) V1µ1 ⊗ · · · ⊗ VKµK
, µν ∈ Sν ,

which consists of weight vectors for π1 ⊗ · · · ⊗ πK , of weight µ1 + · · ·+ µK .

To return to Proposition 21.3, we have that (21.6) is the highest weight of the
representation (21.8). Now when a representation π of U(n) on V is decomposed
into irreducible factors, the weights that occur in these factors are precisely the
weights that occur in π, so an irreducible factor of (21.8) has the desired highest
weight. This finishes the proof of Theorem 21.1.
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We will denote by D(k1,...,kn) an irreducible unitary representation of U(n) with
highest weight (k1, . . . , kn), satisfying (21.1). In particular, from §20 we have

(21.12) S` ≈ D(`,0,...,0), S
` ≈ D(0,...,0,−`),

and

(21.13) Λ` ≈ D(1,...,1,0,...,0), (with ` ones), 0 ≤ ` ≤ n.

It is useful to record explicitly the content of (21.5) in this notation:

(21.14) D(k1+j,...,kn+j)(g) = (det g)j D(k1,...,kn)(g).

Also from §20 we have

(21.15) Ad ≈ D(1,0,...,0,−1) ⊕D(0,...,0).

One simple corollary of Theorem 21.1 and Lemma 21.2 is the following.

Proposition 21.4. All the one-dimensional representations of U(n) are equivalent
to the representations

(21.16) θj(g) = (det g)j ,

for some j ∈ Z, in turn equivalent to D(j,...,j).

Proof. A representation of U(n) on V when dim V = 1 has only one weight, say
λ = (k1, . . . , kn), with k1 ≥ · · · ≥ kn. By Lemma 21.2, each (kσ(1), . . . , kσ(n)) must
also be a weight. This forces k1 = · · · = kn = j (say), which gives (21.16).
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22. Connections between representations of U(n), SU(n), and Gl(n,C)

Here we compare finite-dimensional representations of the three groups U(n), SU(n),
and Gl(n,C). We first show that any such representation of U(n) extends to
Gl(n,C), as a holomorphic representation. (See Appendix G for another proof.)
To this end, let π be a representation of U(n) on V , dim V < ∞. We have a Lie
algebra representation

(22.1) dπ : u(n) −→ End(V ),

which extends to a Lie algebra representation

(22.2) dπ : M(n,C) −→ End(V ),

which is also C-linear. By Corollary 16.4, this exponentiates to a representation

(22.3) π : G̃l(n,C) −→ Gl(V ),

where G̃l is the universal cover of Gl(n,C). In order to obtain

(22.4) π : Gl(n,C) −→ Gl(V ),

we need to show that π in (22.3) has the property

(22.5) π(g) = I, ∀ g ∈ Ker β,

where

(22.6) β : G̃l(n,C) −→ Gl(n,C)

is the natural covering map. To see this let

(22.7) α : Ũ(n) −→ U(n)

denote the natural projection of the universal group Ũ(n) onto U(n). We have a
commutative diagram

Ũ(n) −−−−→ G̃l(n,C)

α

y β

y
U(n) −−−−→ Gl(n,C)

The following result is key:
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Lemma 22.1. We have

(22.8) Ker α = Ker β.

Proof. Since Ker α and Ker β are naturally isomorphic to the fundamental groups
of U(n) and Gl(n,C), it suffices to note:

(22.9) U(n) ↪→ Gl(n,C) is a deformation retract.

As for this result, this follows by polar decomposition:

(22.10) Gl(n,C) ≈ U(n)×P(n),

where P(n) denotes the set of positive definite operators on Cn. If A ∈ Gl(n,C),
we have

(22.11) A = UP, U ∈ U(n), P ∈ P(n),

uniquely defined by

(22.12) P = (A∗A)1/2, U = AP−1.

Returning to (22.5), we see this is true when π represents U(n), since, on Ũ(n),
we have π(g) = I for g ∈ Kerα, and (22.8) holds. Thus (22.4) is established. Since

(22.13) Exp : M(n,C) −→ Gl(n,C)

is holomorphic, we also have that π in (22.3) is holomorphic on Gl(n,C).
Our next topic in this section is the comparison of the unitary irreducible repre-

sentations of U(n) and SU(n). The key to this study comes from the exact sequence
of groups

(22.14) 1 −→ Kn −→ S1 × SU(n) −→ U(n) −→ 1,

where (ω, g) 7→ ωg and

(22.15) Kn = {(ω, g) ∈ S1 × SU(n) : g = ω−1I, ωn = 1},

a cyclic group of order n, generated by

(22.16) (ζ−1, ζI), ζ = e2πi/n.

Let {σα : α ∈ I} denote a complete set of irreducible unitary representations of
SU(n). By Proposition 11.11, a complete set of irreducible unitary representations
of S1 × SU(n) is given by {πmα : m ∈ Z, α ∈ I}, defined by

(22.17) πmα(ω, g) = ωmσα(g).
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Such a representation of S1 × SU(n) produces a representation of U(n) if and only
if πmα(Kn) = I, i.e., if and only if

(22.18) σα(ζI) = ζmI,

when ζ = e2πi/n. Now, since ζI is in the center of SU(n), it follows that, for any
α ∈ I, σα(ζI) is a scalar that is an nth root of unity, i.e.,

(22.19) σα(ζI) = ζµI, µ = µ(α) ∈ Z.

Then πmα in (22.17) gives a representation of U(n) if and only if

(22.20) m = µ(α) mod n.

Since we have already produced a complete set of irreducible unitary represen-
tations of U(n), it is appropriate to turn this around. We have the following.

Proposition 22.2. Each irreducible unitary representation of U(n) restricts to an
irreducible unitary representation of SU(n), and all irreducible unitary representa-
tions of SU(n) are obtained in this fashion. Furthermore, two irreducible unitary
representations π1 and π2 of U(n) restrict to the same representation of SU(n) if
and only if, for some j ∈ Z,

(22.21) π2(g) = (det g)j π1(g), ∀ g ∈ U(n).

Hence the set of equivalence classes of irreducible unitary representations of SU(n)
is parametrized by

(22.22) {(d1, . . . , dn−1, 0) : dν ∈ Z, d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 0}.

Proof. It remains to show that if π` are irreducible and π1 = π2 on SU(n), then
there exists j ∈ Z such that (22.21) holds. To see this, suppose π` are as in (22.17),
which we rewrite as

(22.23) π`(ωg) = ωm`σ`(g), ω ∈ S1, g ∈ SU(n),

where σ` is an irreducible representation of SU(n), so, as in (22.18),

(22.24) σ`(ζI) = ζm`I,

where ζ = e2πi/n. We have

(22.25) π1 = π2 on SU(n) ⇐⇒ σ1 ≡ σ2,

which implies

(22.26) π1(ωg) = ωm1−m2π2(ωg), ∀ω ∈ S1, g ∈ SU(n).
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We claim

(22.27) n|(m1 −m2), i.e., m1 −m2 = nj, j ∈ Z.

Since det ωg = ωn, this would give (22.21). To verify (22.27), we note that (22.24)–
(22.25) give

(22.28) ζm1−m2 = 1,

from which (22.27) follows. This proves (22.21).

Recall from §21 the notation D(k1,...,kn) for an irreducible representation of U(n)
with highest weight (k1, . . . , kn). We keep this notation for the restriction to SU(n),
noting that

(22.29) D(k1,...,kn) ≈ D(k1+j,...,kn+j) on SU(n), ∀ j ∈ Z.

Note that the representations Dk/2 of SU(2) produced in §18, by (18.23), are given
in this nomenclature (cf. (21.12), in light of (20.2)) as

(22.30)
Dk/2 = D(0,−k)

≈ D(k,0), on SU(2),

the last equivalence (special to n = 2) by (22.29).



96

23. Decomposition of Sk ⊗ S
`

Here we consider how to decompose the representation

(23.1) Sk
` = Sk ⊗ S

`

of U(n) into irreducible pieces. This representation acts on Pk ⊗P`, which we can
identify with the space of polynomials p(z, w), homogeneous of degree k in z and `
in w. We have

(23.2) Sk
` (g)p(z, w) = p(gtz, g−1w),

for g ∈ U(n), extending holomorphically to g ∈ Gl(n,C). This induces an action
dSk

` (X) on such polynomials, for X in u(n), and its complexification M(n,C).
Parallel to (20.4) and (20.8) we have

(23.3) dSk
` (eµν) = zµ

∂

∂zν
− wν

∂

∂wµ
.

To decompose Sk
` into irreducible pieces, it will be helpful to identify the set of

elements of Pk⊗P` annihilated by all raising operators, i.e., by all operators of the
form (23.3) with µ < ν. The following result accomplishes this.

Lemma 23.1. If p(z, w) is a polynomial annihilated by all operators of the form
(23.3) with µ < ν, then

(23.4) p(z, w) = q(z1, wn, z · w),

for some polynomial q on C3, where z · w = z1w1 + · · ·+ znwn.

Proof. The polynomials we are considering can be characterized by

p(gtz, g−1w) = p(z, w), ∀g ∈ N+.

In particular, p(z, w) is invariant under the action of one-parameter subgroups:

(23.5) zν 7→ zν + tzµ, wµ 7→ wµ − twν , µ < ν.

Suppose z1 6= 0 and take, successively for ν = 2, . . . , n, parameters t such that
zν + tz1 = 0. We deduce that

(23.6) p(z, w) = p((z1, 0, . . . , 0), w̃),
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where w̃ differs from w only in the first coordinate. Note that z · w = z1w̃1, since
gtz · g−1w = z · w for all g ∈ Gl(n,C). Next, taking ν = n and µ ∈ {1, . . . , n − 1}
in (23.5), if wn 6= 0 we can transform w̃ to a vector whose first n − 1 coordinates
vanish, while leaving unchanged its last coordinate, and also leaving unchanged all
coordinates of (z1, 0, . . . , 0) but the last. Hence (23.5) implies

(23.7) p(z, w) = p((z1, 0, . . . , 0, ζ), (0, . . . , 0, wn)).

Again z · w = (z1, 0, . . . , 0, ζ) · (0, . . . , 0, wn) = ζwn, so

(23.8) ζ =
z · w
wn

.

Consequently, for p ∈ Pk ⊗P`, (23.7) yields

p(z, w) = w`−k
n p((z1wn, 0, . . . , 0, z · w), (0, . . . , 0, 1)),

for z1 6= 0, wn 6= 0, an identity that clearly extends to z1 = 0. If ` ≥ k, it also
extends to wn = 0, yielding (23.4).

If ` < k, we can argue in the opposite order, obtaining the following analogue of
(23.7):

p(z, w) = p((z1, 0, . . . , 0), (ζ, 0, . . . , 0, wn)),

this time with ζ = (z · w)/z1. Hence, for p ∈ Pk ⊗P`,

p(z, w) = zk−`
1 p((1, 0, . . . , 0), (z · w, 0, . . . , 0, z1wn)),

for z1 6= 0, wn 6= 0. This extends to wn = 0 and also, given k > `, to z1 = 0, and
again we have (23.4).

It follows from Lemma 23.1 that the space Zk` of elements of Pk⊗P` annihilated
by all raising operators is spanned by

(23.9) ψk`µ(z, w) = zk−µ
1 w`−µ

n (z1w1 + · · ·+ znwn)µ, 0 ≤ µ ≤ k ∧ `.

Each of these elements is a weight vector for Sk
` . In fact,

(23.10)
dSk

` (eν)ψk`µ(z, w) = i
(
zν

∂

∂zν
− wν

∂

∂wν

)
ψk`µ(z, w)

= i[(k − µ)δν1 − (`− µ)δνn]ψk`µ(z, w).

The weight so obtained is

(23.11) (k − µ, 0, . . . , 0, µ− `), 0 ≤ µ ≤ k ∧ `.

Alternatively, note that if g = diag(c1, . . . , cn) then

(23.11A)

Sk
` (g)ψk`µ(z, w) = ψk`µ(gtz, g−1w)

= ck−µ
1 c−(`−µ)

n zk−µ
1 w`−µ

n (z · w)µ

= ck−µ
1 cµ−`

n ψk`µ(z, w),

again leading to (23.11). These calculations establish the following.
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Proposition 23.2. For k, ` ≥ 0 we have

(23.12) Sk ⊗ S
` ≈

⊕

0≤µ≤k∧`

D(k−µ,0,...,0,µ−`),

as representations of U(n). The highest weight vectors for the irreducible compo-
nents on the right side of (23.12) are given by (23.9).

Remark 1. For n = 2, this result captures the Clebsch-Gordon series (18.47), in
view of the identities in (22.30).

Remark 2. In case k = ` = 1, we have S1 ⊗ S
1 ≈ Ad, analyzed in §20. Compare

this case of (23.12) with (21.15).

Note that the highest weight that occurs in (23.12) is (k, 0, . . . , 0,−`). We specif-
ically identify the subspace of Pk ⊗ P` on which Sk

` acts like D(k,0,...,0,−`).

Proposition 23.3. The irreducible component of Pk ⊗ P` containing the highest
weight vector ψk`0(z, w) = zk

1w`
n is given by

(23.13) P#
k` =

{
p(z, w) ∈ Pk ⊗ P` :

n∑

j=1

∂2p

∂zj∂wj
= 0

}
.

Proof. That P#
k` is invariant under the action of U(n) follows from the fact that the

operator
∑

∂2/∂zj∂wj commutes with all the operators in (23.3). Now we consider
which elements of P#

k` are annihilated by all raising operators, i.e., we identify the
intersection of P#

k` with the linear span of the elements ψk`µ given by (23.9). A
calculation gives

(23.14)
n∑

j=1

∂2

∂zj∂wj
ψk`µ(z, w) = µ(n− 1 + k + `− µ)

ψk`µ(z, w)
z · w .

Hence the only element in P#
k` annihilated by all raising operators is (up to a scalar

multiple) ψk`0(z, w) = zk
1w`

n. This establishes irreducibility of the action of U(n)
on P#

k` and finishes the proof.

In conclusion, we see that

(23.15) D(k,0,...,0,−`) is realized on P#
k`.

Let us specialize to n = 3. We have representations

(23.16) D(k,0,−`) of U(3) on P#
k`.
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Multiplying by (det g)j gives representations

(23.17) D(k+j,j,j−`) of U(3) on P#
k`.

The results of §21 show that (23.17) produces a complete set of irreducible repre-
sentations of U(3).

We can produce an alternative realization of (23.15) as follows. An element of
Pk ⊗ P` can be written

(23.18) p(z, w) =
∑

Aj1···jk

i1···i`
zj1 · · · zjk

wi1 · · ·wi`
,

with A······ symmetric in the js and the is. A computation gives

(23.19)
n∑

j=1

∂2

∂zj∂wj
p(z, w) =

∑

ν,i,j

Aνj2···jk

νi2···i`
zj2 · · · zjk

wi2 · · ·wi`
.

In other words, we have U(n) acting on

(23.20) Pk ⊗ P` ≈ (SkCn)⊗ (S`Cn)′,

and

(23.21) P#
k` ≈

{
Aj1···jk

i1···i`
∈ (SkCn)⊗ (S`Cn)′ : Aνj2···jk

νi2···i`
≡ 0

}
,

where the summation convention is indicated over ν.
Let us return to (23.12) and set k = ` = 1, so (23.12) gives

(23.22) S1 ⊗ S
1 ≈ D(1,0,...,0,−1) ⊕D(0,...,0).

Note that S1 acts on Cn and S
1

acts on (Cn)′, and via Cn ⊗ (Cn)′ ≈ M(n,C), we
have

(23.23) S1 ⊗ S
1 ≈ Ad,

so (23.22) is equivalent to (21.15).
Contrast this with the decomposition of Cn ⊗ Cn into symmetric and antisym-

metric 2-tensors. This yields

(23.24) S1 ⊗ S1 ≈ Λ2 ⊕ S2 ≈ D(1,1,0,...,0) ⊕D(2,0,...,0).

The decomposition of ⊗kCn into irreducible spaces for larger k will be studied in
§26.
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24. Commutants, double commutants, and dual pairs

In this section we make some general observations on decomposing a unitary
representation π of a compact Lie group G on a finite-dimensional space V into
irreducible pieces. Recall that π is irreducible if and only if the set of operators on
V commuting with π(g) for all g ∈ G consists of scalar multiples of the identity. In
the general case, it is useful to look at

(24.1) A = algebra generated by π(g) : g ∈ G, A ⊂ End(V ),

and its commutant, defined by

(24.2) A′ = {B ∈ End(V ) : BA = AB, ∀ A ∈ A}.

As we know, V can be decomposed into irreducible subspaces. Say

(24.3) V =
k⊕

j=1

njVj ,

where njVj = Vj⊕· · ·⊕Vj (nj factors), with π acting irreducibly on each Vj (call the
irreducible representation Uj). Arrange the decomposition (24.3) so that distinct
js correspond to inequivalent Ujs. We can write njVj = Vj ⊗Wj , Wj ≈ Cnj , i.e.,

(24.4) V =
k⊕

j=1

Vj ⊗Wj ,

with πj = π|Vj⊗Wj given by

(24.5) πj(g) = Uj(g)⊗ I,

and

(24.6) Uj irreducible on Vj , j1 6= j2 ⇒ Uj1 inequivalent to Uj2 .

The following result records some important structure.

Proposition 24.1. In the set-up described above,

(24.7) A =
{ k⊕

j=1

Aj ⊗ I : Aj ∈ End(Vj)
}

.
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If we set

(24.8) B = A′,

then

(24.9) B =
{ k⊕

j=1

I ⊗Bj : Bj ∈ End(Wj)
}

.

Furthermore,

(24.10) B′ = A.

Proof. It is immediate from (24.5) that every element of A has the form given on
the right side of (24.7). For the converse, pick a basis u

(j)
1 , . . . , u

(j)
dj

for Vj and, for

`,m ∈ {1, . . . , dj}, let e
(j)
`m ∈ End(Vj) be given by e

(j)
`mu

(j)
µ = δµmu

(j)
` . Also write

(U (j)
`m(g)) as the matrix representation of Uj(g) ∈ End(Vj) with respect to this basis.

It follows from the Weyl orthogonality relations (6.6)–(6.7) that

(24.11) dj

∫

G

U
(j)

`m(g)π(g) dg = e
(j)
`m ⊗ I,

on Vj⊗Wj , and vanishes on V`⊗W` for ` 6= j, so every element on the right side of
(24.7) is a limit of superpositions of elements of A, hence an element of A (since the
linear subspace A of the finite-dimensional space End(V ) must be closed). Thus
we have (24.7).

To prove (24.9), first note that whenever A is given by (24.7), then clearly the
right side of (24.9) is contained in A′. We establish the reverse inclusion. Let
Pj be the orthogonal projection of V onto Vj ⊗ Wj . By (24.7), Pj ∈ A. Hence
B ∈ A′ ⇒ BPj = PjB, 1 ≤ j ≤ k, i.e., B leaves each Vj ⊗ Wj invariant; say
B|Vj⊗Wj = B̃j . We have

(24.12) B̃j : Vj ⊗Wj → Vj ⊗Wj , B̃j(A⊗ I) = (A⊗ I)B̃j , ∀ A ∈ End(Vj).

Taking A = e
(j)
`` we see that B̃j leaves invariant each space (u(j)

` ) ⊗Wj . Taking a
basis w

(j)
1 , . . . , w

(j)
nj of Wj , we have

(24.13) B̃j(u
(j)
` ⊗ w(j)

m ) =
∑

µ

βµ
`m u

(j)
` ⊗ w(j)

µ .

If we next take A = e
(j)
`ν ⊗I and compute B̃jA(u(j)

ν ⊗w
(j)
m ) and AB̃j(u

(j)
ν ⊗w

(j)
m ) and

compare, we see that βµ
`m = βµ

νm, i.e., βµ
`m is independent of `. Hence B̃j = I ⊗Bj
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with Bj ∈ End(Wj), proving (24.9). The way we got (24.9) from (24.7) immediately
gives (24.10).

The result (24.10) is a special case of a result known as the double commutant
theorem. It holds when A is a subalgebra of End(V ) closed under adjoints (we say
A is a C∗-algebra). In fact there is a far ranging extension to a special class of
C∗-algebras (called von Neumann algebras) valid when V is an infinite dimensional
Hilbert space. See [Sak].

Now we add structure by bringing in two groups, acting on V .

Proposition 24.2. Let G and K be compact Lie groups, π a unitary representation
of G on V , τ a unitary representation of K on V . Let

(24.14)
A = algebra generated by π(g), g ∈ G,

B = algebra generated by τ(k), k ∈ K.

Assume

(24.15) A′ = B.

Let Sπ = {αj} denote the set of irreducible unitary representations of G contained
in π, and let Sτ = {βj} denote the set of irreducible unitary representations of K
contained in τ (up to equivalence). Then there exists a bijective map Q : Sπ → Sτ

and a decomposition

(24.16) V =
k⊕

j=1

Vj ⊗Wj , k = #(Sπ) = #(Sτ ),

such that

(24.17) π(g) =
k⊕

j=1

αj(g)⊗ I, τ(k) =
k⊕

j=1

I ⊗ βQ(j)(k).

Proof. The representation π of G decomposes as in (24.3). The orthogonal pro-
jections Pj of V on njVj are the minimal projections in the center of A, so such
minimal projections match up bijectively with Sπ. Similarly Sτ is in one-to-one
correspondence with the minimal orthogonal projections in the center of B. Now
we are given that A′ = B, and hence, by Proposition 24.1, B′ = A. Hence central
projections in A are precisely projections in A∩B and similarly for central projec-
tions in B. Thus both Sπ and Sτ are in one-to-one correspondence with the same
set of projections.

Let us focus on the range of the projection Pj , relabeling this space as V , so π
contains n1 copies of one irreducible representation (say α1) of G and τ contains
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m1 copies of one irreducible representation (say β1) of K. Our final claim is that
in such a case

(24.18) V ≈ V1 ⊗W1,

with

(24.19) π(g) = α1(g)⊗ I, τ(k) = I ⊗ β1(k),

given (24.15). In fact Proposition 24.1 gives a tensor product decomposition (24.18)
such that (24.19) holds for π(g). Then the fact that A′ is given by (24.9) also puts
τ(k) in the general form indicated in (24.19), i.e.,

τ(k) = I ⊗ γ(k).

It remains to dispose of the possibility that γ is a sum of several copies of an
irreducible representation (i.e., of β1). Indeed, again by Proposition 24.1, the com-
mutant of the set of operators generated by α1(g)⊗ I is all of I ⊗End(W1), which
(by hypothesis) is the algebra generated by I ⊗ γ(k), so γ cannot decompose into
several irreducibles.

When compact G and K act on V as in Proposition 24.2, with (24.15) holding,
we say G and K act as a dual pair on V . A key family of examples of dual pairs
will be given in §25.

Note that, in the setting of Proposition 24.2, π(g)τ(k) gives a representation of
G×K on V , and (24.17) gives

(24.20) π(g)τ(k) =
k⊕

j=1

αj(g)⊗ βQ(j)(k).

In particular, taking traces gives

(24.21) Trπ(g)τ(k) =
k∑

j=1

χαj (g)χβQ(j)(k).
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25. The first fundamental theorem of invariant theory

The group U(n) acts on ⊗kCn via

(25.1) ⊗kg(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk, g ∈ U(n), vν ∈ Cn.

In addition, the permutation group Sk acts on ⊗kCn via

(25.2) τ(σ)(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k), σ ∈ Sk.

It is clear that ⊗kg commutes with τ(σ) for each g ∈ U(n), σ ∈ Sk, so we get a
representation of Sk×U(n) on ⊗kCn. The following is the key result of this section.

Proposition 25.1. The groups Sk and U(n) act as a dual pair on ⊗kCn.

To restate this, let

(25.3)
A = algebra generated by τ(σ), σ ∈ Sk, A ⊂ End(⊗kCn),

B = algebra generated by ⊗k g, g ∈ U(n).

It is clear that B ⊂ A′ and A ⊂ B′, as we have already mentioned. To prove
Proposition 25.1, we will show that

(25.4) A′ = B.

In view of Proposition 24.1, this gives also

(25.5) B′ = A.

Our treatment follows [Si].
To begin our analysis of A′, we note that

(25.6) End(⊗kCn) ≈ ⊗k End(Cn),

via

(25.7) A1 ⊗ · · · ⊗Ak(v1 ⊗ · · · ⊗ vk) = A1v1 ⊗ · · · ⊗Akvk.

In fact, (25.7) yields a homomorphism ⊗k End(Cn) → End(⊗kCn). One verifies
that this map is injective, hence bijective, since the dimensions of the two sides of
(25.6) are equal. We let σ ∈ Sk act on ⊗k End(Cn) by

(25.8) T (σ)A1 ⊗ · · · ⊗Ak = Aσ(1) ⊗ · · · ⊗Aσ(k).
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Lemma 25.2. Given X ∈ End(⊗kCn), σ ∈ Sk,

(25.9) T (σ)X = τ(σ)Xτ(σ)−1.

Proof. It suffices to check (25.9) for X = A1 ⊗ · · · ⊗Ak. Then

(25.10)

τ(σ)(A1 ⊗ · · · ⊗Ak)τ(σ)−1(v1 ⊗ · · · ⊗ vk)

= τ(σ)A1 ⊗ · · · ⊗Ak(vσ−1(1) ⊗ · · · ⊗ vσ−1(k))

= τ(σ)A1vσ−1(1) ⊗ · · · ⊗Akvσ−1(k)

= Aσ(1)v1 ⊗ · · · ⊗Aσ(k)vk,

which gives (25.9).

At this point we have

(25.11)

A′ = {X : τ(σ)X = Xτ(σ), ∀ σ ∈ Sk}
= {X : T (σ)X = X, ∀ σ ∈ Sk}
= Sk End(Cn).

The next lemma is an exercise in linear algebra.

Lemma 25.3. If W is a finite-dimensional vector space,

(25.12) SkW = Span {a⊗ · · · ⊗ a : a ∈ W}.

Hence we have from (25.11)

(25.13) A′ = Span {A⊗ · · · ⊗A : A ∈ End(Cn)}.

By comparison,

(25.14) B = Span {g ⊗ · · · ⊗ g : g ∈ U(n)}.

To prove (25.4), it remains to show that the spaces (25.13) and (25.14) coincide.
To see this, note that, for Y ∈ u(n),

(25.15) d⊗k (Y )(v1⊗ · · · ⊗ vk) = Y v1⊗ v2⊗ · · · ⊗ vk + · · ·+ v1⊗ · · · ⊗ vk−1⊗Y vk

has the property that

(25.16) d⊗k (Y ) ∈ B,

since this is a limit of difference quotients of elements of B, by (25.14). Then (25.16)
holds for all Y ∈ Cu(n) = End(Cn), and exponentiating this gives

(25.17) A⊗ · · · ⊗A ∈ B, ∀ A ∈ Gl(n,C).
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Since Gl(n,C) is dense in End(Cn), we have A⊗ · · · ⊗A ∈ B for all A ∈ End(Cn),
so in view of (25.13) we now have A′ = B, as advertised in (25.4), and Proposition
25.1 is proven.

It is useful to restate the result (25.5) as follows. Define the representation ϑnk

of U(n) on End(⊗kCn) by

(25.18) ϑnk(g)A = (⊗kg)A(⊗kg−1), g ∈ U(n), A ∈ End(⊗kCn).

Denote by Enk the subspace of End(⊗kCn) on which ϑnk acts trivially. Then (25.5)
implies that Enk is spanned by the operators τ(σ), σ ∈ Sk, given by (25.2). To
elaborate, (25.2) yields a linear map

(25.19) τ#
nk : `1(Sk) −→ End(⊗kCn),

as a special case of the construction in §10, and

(25.20) Enk = Range of τ#
nk.

Note that

(25.21) ϑnk ≈ (⊗k)⊗ (⊗k),

acting on (⊗kCn)⊗ (⊗kCn)′, via

(25.22) g · (v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wk) = gv1 ⊗ · · · ⊗ gvk ⊗ g′w1 ⊗ · · · ⊗ g′wk,

where g′ = (gt)−1, so g ∈ U(n) ⇒ g′ = g. Hence Enk is isomorphic to the space

(25.23) Enk ⊂ (⊗kCn)⊗ (⊗kCn)′ where U(n) acts trivially.

The following restatement of (25.20) is known as the first fundamental theorem of
invariant theory (for unitary invariants).

Proposition 25.4. The space Enk ⊂ (⊗kCn)⊗ (⊗kCn)′ on which U(n) acts triv-
ially is spanned by {tσ : σ ∈ Sk}, where

(25.24) tσ(w1 ⊗ · · · ⊗ wk, v1 ⊗ · · · ⊗ vk) = 〈v1, wσ(1)〉 · · · 〈vk, wσ(k)〉,
with vν ∈ Cn, wν ∈ (Cn)′, and the standard identification of V ⊗ V ′ with the space
of bilinear maps on V ′ × V .

It follows from Proposition 5.5 that the orthogonal projection of (⊗kCn) ⊗
(⊗kCn)′ onto Enk is given by

(25.25) Pnk =
∫

U(n)

(⊗kg)⊗ (⊗kg) dg.

Hence

(25.26) dim Enk = TrPnk =
∫

U(n)

|Tr g|2k dg.

A computation of this dimension is of interest; “half” the cases are elementary:
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Proposition 25.5. If k ≤ n, then the map τ#
nk in (25.19) is injective. Hence

(25.27) k ≤ n =⇒ dim Enk = k!

Proof. Let {u1, . . . , un} denote the standard basis of Cn. If k ≤ n, then the elements

(25.28) τ(σ) u1 ⊗ · · · ⊗ uk = uσ(1) ⊗ · · · ⊗ uσ(k), σ ∈ Sk,

are linearly independent in ⊗kCn, which implies injectivity of τ#
nk.

If k > n, neither the left nor the right side of (25.26) is easy to evaluate. We will
make further comments on this in §26.
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26. Decomposition of ⊗kCn

Since Sk and U(n) act as a dual pair on ⊗kCn, Proposition 24.2 is applicable.
Hence ⊗kCn has a decomposition of the form (24.16), with Sk acting irreducibly
on Vj and U(n) acting irreducibly on Wj . In this section we give a more explicit
description of these factors and representations, though we refer to other sources
for proofs.

To start, we recall from §21 irreducible representations of U(n) that were pro-
duced on subspaces of ⊗kCn. Namely we have the representation Dλ of U(n) on
the linear subspace of

(26.1) (Λ1Cn)⊗j1 ⊗ · · · ⊗ (ΛnCn)⊗jn ,

generated by the weight vector (u1)j1 ⊗ (u1 ∧ u2)j2 ⊗ · · · ⊗ (u1 ∧ · · · ∧ un)jn , with
highest weight

(26.2) λ = j1γ1 + · · ·+ jnγn = (r1, . . . , rn), rν = jν + · · ·+ jn.

The cases that arise for which (26.1) is a subspace of ⊗kCn are those for which

(26.3) r1 ≥ · · · ≥ rn ≥ 0, r1 + · · ·+ rn = k, rν ∈ Z+.

We denote by Fnk the set of n-tuples λ = (r1, . . . , rn) satisfying (26.3). Such λ is
called a Young frame on k for U(n). It turns out that precisely these representations
Dλ of U(n) occur in the decomposition (24.16) when V = ⊗kCn.

We now describe the associated representation Sλ of Sk. To the Young frame
λ ∈ Fnk we associate a Young diagram as follows. The diagram consists of boxes,
arranged in columns. Proceeding from left to right, there are jn columns of length
n, then jn−1 columns of length n − 1, . . . , to j1 columns of length 1. See Figure
26.1. Note that the top row has length r1 = j1 + · · ·+ jn, the next row has length
r2 = j2 + · · ·+ jn, etc. We number these boxes as follows. The leftmost column is
numbered 1, . . . , n from the top down (if jn 6= 0). The numbering proceeds to the
next column, from top to bottom, etc. With this set-up, we define some special
subsets of Sk, as follows. Let Fλ denote the Young diagram just described. We set

(26.4)
Pλ = {σ ∈ Sk : σ preserves each row of Fλ},
Qλ = {σ ∈ Sk : σ preserves each column of Fλ}.

We define pλ, qλ, cλ ∈ `1(Sk) by

(26.5) pλ =
∑

σ∈Pλ

σ, qλ =
∑

σ∈Qλ

(sgnσ)σ, cλ = pλ ∗ qλ.
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Proposition 26.1. In the convolution algebra `1(Sk),

(26.6) cλ ∗ cλ = µ cλ,

for some µ ∈ (0,∞).

Thus µ−1cλ is an idempotent in `1(Sk), yielding a projection Cλ on `2(Sk), via
right convolution. The range Eλ of Cλ in `2(Sk) is a linear subspace of `2(Sk) that
is invariant under the left regular representation of Sk on `2(Sk). We denote the
resulting representation of Sk on Eλ by Sλ.

Proposition 26.2. The representation Sλ of Sk on Eλ is irreducible.

The following result is due to H. Weyl.

Proposition 26.3. For the representations τ of Sk and ⊗k of U(n) on ⊗kCn, we
have

(26.7) τ · ⊗k ≈
⊕

λ∈Fnk

Sλ ⊗Dλ.

Complete proofs of Propositions 26.1–26.3 can be found in [FH] and [Si]. Let
us explicitate how much of Proposition 26.3 has been proven in these notes. That
τ ·⊗k has a decomposition of the form (26.7), as λ ranges over some set of maximal
weights for irreducible representations of U(n), is a consequence of Proposition 24.2,
combined with Proposition 25.1. That each λ ∈ Fnk arises in this decomposition
follows from our observations about (26.1). For a complete proof of Proposition
26.3, it remains to establish two things:

(i) There are no other highest weights that should appear in (26.7).
(ii) The irreducible representation of Sk that is paired with Dλ, whose existence

is established in Proposition 24.2, is in fact the representation Sλ described
above.

Proofs of these results, which can be found on p. 251 if [Si], rely strictly on the
representation theory of Sk.

We obtain some consequences of (26.7) for characters. Let us set

(26.8) χU
λ (g) = TrDλ(g), χS

λ(σ) = TrSλ(σ).

Then (26.7) implies

(26.9) Tr
(
τ(σ) · ⊗kg

)
=

∑

λ∈Fnk

χS
λ(σ) χU

λ (g), σ ∈ Sk, g ∈ U(n).

In particular, taking σ = e, the identity element of Sk, gives

(26.10) (Tr g)k =
∑

λ∈Fnk

fλ χU
λ (g),
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where

(26.11) fλ = χS
λ(e)

is the dimension of the representation space for Sλ. The Weyl orthogonality rela-
tions imply

(26.12)
∫

U(n)

|Tr g|2k dg =
∑

λ∈Fnk

(fλ)2.

Recall that the left side of (26.12) also satisfies (25.26). In other words, (26.12) is
equal to

(26.13) dim Enk = k!− dimKer τ#
nk,

where τ#
nk : `1(Sk) → End(⊗kCn) is as in (25.19).

We illustrate the decomposition (26.7) in the case k = n = 3. The three Young
diagrams that arise in F33 are pictured in Figure 26.2. They correspond, respec-
tively, to

(26.14) λ = (1, 1, 1), λ = (2, 1, 0), λ = (3, 0, 0).

The representations of S3 so obtained are

(26.15) S(1,1,1) = sgn, S(2,1,0) = π3
S , S(3,0,0) = 1.

The representation π3
S , discussed in Lemma 9.1, represents S3 as the group of

symmetries of an equilateral triangle. Hence (26.7) leads to

(26.16) ⊗3C3 ≈ Λ3C3 ⊕ V8 ⊕ V8 ⊕ S3C3,

where U(3) acts on V8 as D(2,1,0). As for dimensions, clearly dim⊗3C3 = 27 and
dimΛ3C3 = 1. We also have

(26.17) dim S3C3 = 10,

as a special case of the general result

(26.18) dim SkCn+1 =
(

n + k

n

)
,

as shown in §20. Hence

(26.19) dim V8 = 8.
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In fact, more can be said about V8. The adjoint representation of U(3) on M(3,C)
is

(26.20) S1 ⊗ S
1 ≈ D(0,0,0) ⊕D(1,0,−1),

by (23.12). Here D(0,0,0) is a one-dimensional representation and D(1,0,−1) is an
8-dimensional representation, acting on

(26.21) {A ∈ M(3,C) : TrA = 0}.
On the other hand, by (21.5),

(26.22) D(2,1,0)(g) = (det g)D(1,0,−1)(g).

Let us turn to ⊗4C3. The five Young diagrams that arise in F44 are pictured in
Figure 26.3, but the first one does not belong to F34, though the others do. They
correspond, respectively, to

(26.23) λ = (2, 1, 1), λ = (2, 2, 0), λ = (3, 1, 0), λ = (4, 0, 0).

Recall the representations of S4 as described in §9:

(26.24) 1, sgn, π4
S , π4

Q, π3
S ◦ β,

where β : S4 → S3 is as in (9.20). Of these, of course

(26.25) S(4,0,0) = 1.

As we have noted, the representation sgn of S4 does not arise in ⊗4C3. We claim
that

(26.26) S(2,2,0) ≈ π3
S ◦ β,

and that

(26.27) D(2,2,0) acts on S2(Λ2C3).

Note that

(26.28) D(2,2,0)(g) = (det g)2 S
2
(g).

We ask the reader to pair π4
S and π4

Q with the two remaining weights listed in
(26.23), and to work out explicit descriptions (or at least dimension counts) for the
representation spaces for Dλ in these two cases.

Look at the formula (26.12) for k = 4, n = 3. The right side involves all the
representations of S4 but sgn, which is one dimensional, so we have

(26.29)
∫

U(3)

|Tr g|8 dg = 23.

One has a parallel treatment of ⊗4Cn for n ≥ 4. One significant difference is
that the representation sgn of S4 now appears, too. Another is that S2(Λ2Ck) is
not irreducible, when k ≥ 4.
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27. The Weyl integration formula

Say G is a compact, connected Lie group, T ⊂ G a maximal torus. The following
is Weyl’s integration formula:

(27.1)
∫

G

f(x) dx =
1
w

∫

T

(∫

G

f(g−1kg) dg
)
| det(I −Ad k)g/h| dk.

Here h is the Lie algebra of T , and w = w(G) is a constant, which we will specify
below. For most of this section we work in the context of a general compact,
connected Lie group, but right at the point of specifying w we will need to refer
the reader to other sources for details when G is not U(n).

The formula (27.1) arises from a study of

(27.2) F : G× T −→ G, F (g, h) = ghg−1,

and its induced action

(27.3) F̃ : (G/T )× T −→ G.

Since there are natural volume elements on (G/T )×T and on G, we need to compute
detDF̃ . Note that DF (g, h) : TgG ⊕ ThT → Tghg−1G; it is convenient to produce
a linear map that takes TeG⊕ TeT → TeG. That would be

(27.4) DLgh−1g−1(ghg−1) ◦DF (g, h) ◦ (DLg(e)×DLh(e)),

where Lg(x) = gx. Note that (27.4) is equal to DG(e, e), where

(27.5)
G(x, z) = Lgh−1g−1 ◦ F ◦ (Lg × Lh)(x, z)

= gh−1xhzx−1g−1.

Note that G(e, e) = e; we compute

(27.6) DG(e, e) : g⊕ h −→ g.

First, with Z ∈ h, z(t) a curve in T such that z(0) = e, z′(0) = Z, we have

(27.7)
D2G(e, e)Z =

d

dt
gz(t)g−1

∣∣
t=0

= Ad g(Z),
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the last identity following from (14.2), or alternatively from (14.9). Next, with
X ∈ g, x(t) a curve in G such that x(0) = e, x′(0) = X, we have

(27.8)
D1G(e, e)X =

d

dt
gh−1x(t)hx(t)−1g−1

∣∣
t=0

= Ad g DK(e)X,

where

(27.9) K(x) = h−1xhx−1,

so

(27.10)

DK(e)X =
d

dt
h−1x(t)hx(t)−1

∣∣
t=0

= h−1Xh−X

= (Ad h−1 − I)X.

(Here we take G ⊂ End(Cm), to simplify the calculation.) Putting together (27.7),
(27.8), and (27.10), we have

(27.11) DG(e, e)(X, Z) = Ad g(Adh−1 − I)X + Ad g Z.

Now we can take X ∈ g/h. Thus we have

(27.12) det DF̃ (g, h) = det(Ad h−1 − I)g/h = det(I −Adh)g/h.

The formula (27.1) is now a consequence of the following assertion:

Lemma 27.1. The map F̃ in (27.3) is onto, and there is an integer w = w(G)
and an open dense set O ⊂ G, whose complement has measure zero, such that

F̃−1(g) ⊂ (G/T )× T has w elements, ∀ g ∈ O.

In the case G = U(n), we take T to be the set T of diagonal matrices, with
diagonal entries in S1 ⊂ C, as in (19.4). The surjectivity of F̃ is equivalent to the
statement that every unitary matrix yields an orthonormal basis of eigenvectors. If
g ∈ U(n) has distinct eigenvalues, then the eigenspaces are all 1-dimensional, and
the diagonalized form is determined up to ordering of the eigenvalues, so such a
matrix has n! pre-images in (G/T)× T.

The reader can verify Lemma 27.1 and determine w(G) when G = SO(n). For
general compact, connected G, w(G) is the order of a finite group called the Weyl
group. See [DK], [Si], or another source for a treatment of the general case.

We give an explicit formula for the right side of (27.12) when G = U(n). In such
a case, gC = End(Cn). As in §19, let ejk be the matrix with 1 at row j, column k,
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0 elsewhere, and set ej = iejj . Then h is the real linear span of {ej : 1 ≤ j ≤ n},
and

(27.13) H =
∑

tjej =⇒ [H, ejk] = i(tj − tk)ejk.

Using this, we have that, when G = U(n), h = diag(eiθ1 , . . . , eiθn) ∈ T ,

(27.14) Ad h(ejk) = ei(θj−θk) ejk.

Thus

(27.15)

det(I −Adh)g/h = det(I −Adh)gC/hC

=
∏

j 6=k

(1− ei(θj−θk))

=
∏

j 6=k

e−iθk(eiθk − eiθj ),

and hence

(27.16) |det(I −Adh)g/h| =
∏

j<k

|eiθj − eiθk |2.

We explicitly specialize (27.1) to the case where G = U(n) and f is a central
function, i.e., f(g−1hg) = f(h) for all g, h ∈ U(n).

Corollary 27.2. If f : U(n) → C is a central function, then

(27.17)
∫

U(n)

f(g) dg =
1

(2π)nn!

∫

Tn

f(D(θ))J(θ) dθ1 · · · dθn,

where D(θ) is the diagonal matrix with diagonal entries eiθ1 , . . . , eiθn , and

(27.18) J(θ) =
∏

j<k

|eiθj − eiθk |2.

Here we take Tn = (R/2πZ)n. We mention another way of writing J(θ), namely
as

(27.19) J(θ) = A(θ)A(θ), A(θ) =
∏

j<k

(
1− e−iωjk(θ)

)
,

where we regard θ ∈ Rn ≈ h, and we take ωjk ∈ h′ as in (19.12).
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Here is another way of writing J(θ), which is useful. Set eiθj = ζj . Then

(27.20) J(θ) = V (ζ)V (ζ), V (ζ) =
∏

j<k

(ζk − ζj).

Now V (ζ) is a Vandermonde determinant:

(27.21) V (ζ) = det




1 · · · 1
ζ1 · · · ζn
...

...
ζn−1
1 · · · ζn−1

n


 .

Hence

(27.22) V (ζ) =
∑

σ∈Sn

(sgnσ) ζ
σ(1)−1
1 · · · ζσ(n)−1

n .

Now ζj = ζ−1
j for ζj ∈ S1, so

(27.23) J(θ) =
∑

σ,τ∈Sn

(sgnσ)(sgn τ) ζ
σ(1)−τ(1)
1 · · · ζσ(n)−τ(n)

n .

Note that

(27.24)

(2π)−n

∫

Tn

J(θ) dθ = constant term in (27.23)

=
∑{

(sgn σ)(sgn τ) : σ = τ ∈ Sn

}

= n!,

which gives a check on the coefficient on the right side of (27.17).
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28. The character formula

Here we calculate the character χλ of the irreducible unitary representation Dλ

of U(n) with highest weight λ. We know χλ is a central function, so it suffices to
calculate χλ(h) for h ∈ T, the group of diagonal matrices in U(n). Say h = D(θ) =
diag(eiθ1 , . . . , eiθn). Recall from §19 that the representation space V of Dλ has a
decomposition

(28.1) V =
⊕

µ

Vµ

into spaces of weight vectors. It follows from (19.9) that

(28.2) χλ(D(θ)) =
∑

mµ eiµ(θ), mµ = dim Vµ.

Our goal is to get a more explicit formula for this object. To be sure, (28.2) as
it stands will be a useful tool.

To begin, recall the role of Sn as a group of automorphisms of U(n), as described
in Lemma 21.2 and its proof; σ ∈ Sn acts on U(n) via conjugation by Eσ. This
action leaves T invariant, so Sn acts on h. We denote its adjoint action on h′ by
µ 7→ σ · µ; with h′ ≈ Rn via the usual basis,

(28.3) σ · µ = (µσ(1), . . . , µσ(n)).

In view of (21.4), we have the identity

(28.4) mσ·µ = mµ, ∀ σ ∈ Sn.

Another identity arises by rewriting the identity

(28.5)
∫

U(n)

χλ(g)χλ(g) dg = 1,

using the Weyl integration formula (27.17):

(28.6) (2π)−n

∫

Tn

A(θ)χλ(D(θ)) A(θ)χλ(D(θ)) dθ = n!

To exploit this, we consider

(28.17) ϕ(θ) = A(θ)χλ(D(θ)).
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Recall from (27.19) that

(28.18) A(θ) =
∏

j<k

(
1− e−iωjk(θ)

)
.

In particular, we have a finite sum

(28.19) ϕ(θ) =
∑

cµ eiµ(θ), cµ ∈ Z,

and the identity (28.6) implies

(28.20)
∑

c2
µ = n!

As we will see, this will help place strong constraints on the coefficients cµ, partic-
ularly in concert with the following observation.

Lemma 28.1. For the highest weight λ of Dλ, we have

(28.21) cλ = mλ = 1.

Proof. Since the elements ωjk ∈ h′ are all positive for j < k (with respect to the
ordering defined in §19), it is clear from (28.17)–(28.18) that cλ = mλ. That mλ = 1
follows from Proposition 19.4.

Further progress in understanding ϕ(θ) comes from looking at how it behaves
under the Sn action on Tn. Clearly χλ(D(θ)) is invariant under this action, so we
need to see how A(θ) behaves under the Sn action. We have

(28.22) A(σt · θ) =
∏

j<k

(
1− e−iωσ(j)σ(k)(θ)

)
.

We can break up this product into two products, one over {(j, k) : j < k and σ(j) <
σ(k)} and the second over {(j, k) : j < k and σ(j) > σ(k)}. Write the factors in
the second product as

(28.23) 1− e−iωσ(j)σ(k)(θ) = −e−iωσ(j)σ(k)(θ)
(
1− e−iωσ(k)σ(j)(θ)

)
.

Recombining the two products gives

(28.24) A(σt · θ) = α e−iβ A(θ),

with

(28.25) α =
∏

{(j,k):j<k,σ(j)>σ(k)}
(−1), β =

∑

{(j,k):j<k,σ(j)>σ(k)}
ωσ(j)σ(k)(θ).
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A calculation gives α = sgn σ. Also, if we set

(28.26) ρ =
1
2

∑

j<k

ωjk ∈ h′,

then

(28.27) β =
1
2

∑

j<k

[
ωσ(j)σ(k) − ωjk

]
= σ · ρ− ρ.

Hence (28.24) becomes

(28.28) A(σt · θ) = (sgn σ) ei(ρ(θ)−σ·ρ(θ)) A(θ).

In view of the conjugation invariance of χλ and (21.2), this gives

(28.29) ϕ(σt · θ) = (sgn σ) ei(ρ(θ)−σ·ρ(θ)) ϕ(θ).

Equivalently, the coefficients cµ in (28.19) satisfy

(28.30) cσ·µ+σ·ρ−ρ = (sgn σ)cµ.

We are led to consider a “shifted” action of Sn on h′:

(28.31) σ̃(µ) = σ · µ + σ · ρ− ρ,

where σ · µ = (µσ(1), . . . , µσ(n)). A calculation shows that this is a group action,
i.e., σ̃ ◦ τ̃(µ) = σ̃τ(µ) for σ, τ ∈ Sn. (It is not a linear action, but rather an action
by affine transformations.) The following result will reveal a great deal about the
coefficients cµ.

Lemma 28.2. The orbit of the highest weight λ under the action of Sn given by
(28.31) has n! elements.

Proof. Consider σ ∈ Sn such that σ̃(λ) = λ. This implies

(28.32) σ · λ + σ · ρ = λ + ρ.

Now λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn and

(28.33) ρ = (ρ1, . . . , ρn) =
1
2
(n− 1, n− 3, . . . , 3− n, 1− n),

so ρ1 > · · · > ρn, and hence λ + ρ = (ξ1, . . . , ξn) with ξ1 > · · · > ξn. Thus (28.2)
can hold only if σ is the identity element of Sn.
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Thus taking µ = λ in (28.30) gives n! coefficients cµ that are equal to ±1. In view
of (28.20), these are all the nonzero coefficients in (28.19). We have established

(28.34) A(θ)χλ(D(θ)) =
∑

σ∈Sn

(sgn σ) ei(σ·λ(θ)+σ·ρ(θ)−ρ(θ)).

In view of the formula (28.18) for A(θ), this gives a rather explicit formula for
χλ(D(θ)).

Note that if we take the trivial representation, with highest weight λ = 0, the
character is ≡ 1, and (28.34) yields

(28.35) A(θ) =
∑

σ∈Sn

(sgn σ) ei(σ·ρ(θ)−ρ(θ)),

which one might also try to derive directly from (28.18). This suggests writing the
character formula in terms of

(28.36) Aµ(θ) =
∑

σ∈Sn

(sgn σ) eiσ·µ(θ).

Proposition 28.3. The irreducible representation of U(n) with highest weight λ
has character satisfying

(28.37) χλ(D(θ)) =
Aλ+ρ(θ)
Aρ(θ)

.

Proof. Multiplying both sides of (28.34) by eiρ(θ), one obtains Aλ+ρ(θ) on the right
and A(θ) is turned into Aρ(θ) on the left.

Remark. The entries of ρ = (ρ1, . . . , ρn) might be half-integers, rather than inte-
gers (if n is odd), so then neither the numerator nor the denominator in the right
side of (28.37) is periodic of period 2πZ, but the quotient is. In any case the nu-
merator and denominator have period 4πZ in θ.

We can represent Aµ(θ) as a product in some special cases. First note that since
Aρ(θ) is obtained by multiplying (28.35) by eiρ(θ), the product (28.18) for A(θ)
yields

(28.38) Aρ(θ) =
∏

j<k

(
eiωjk(θ)/2 − e−iωjk(θ)/2

)
.

To proceed, note that our choice of basis for h gives h ≈ Rn and also h′ ≈ Rn, and
hence h′ ≈ h. If we so identify h and h′, we see from (28.36) that Aµ(ξ) = Aξ(µ),
for µ, ξ ∈ Rn, and furthermore Aµ(tξ) = Aξ(tµ). Hence

(28.39) Aµ(tρ) = Aρ(tµ) =
∏

j<k

(
eit〈ωjk,µ〉/2 − e−it〈ωjk,µ〉/2

)
.

Here we have used (28.38) and replaced the pairing µ(ξ) of h′ and h by 〈µ, ξ〉, the
standard inner product in Rn. Using (28.39) we can prove the following dimension
formula.
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Proposition 28.4. The irreducible representation of U(n) with highest weight λ
acts on a space V (λ) whose dimension is

(28.40) dim V (λ) = dλ =
∏

j<k

〈ωjk, λ + ρ〉
〈ωjk, ρ〉 .

Proof. Clearly dλ = χλ(I), and hence

(28.41) dλ = lim
t→0

χλ(D(tρ)) = lim
t→0

Aλ+ρ(tρ)
Aρ(tρ)

,

by (28.37). Now we can apply (28.39) to obtain

(28.42) dλ = lim
t→0

∏

j<k

sin t〈ωjk, λ + ρ〉/2
sin t〈ωjk, ρ〉/2

,

which yields (28.40), granted that
∏

j<k〈ωjk, ρ〉 6= 0. In fact,

(28.43) j < k =⇒ 〈ωjk, ρ〉 = ρj − ρk = k − j,

by (28.33), which leads to the following explicit formula for the denominator that
arises in (28.40):

(28.44)
∏

j<k

〈ωjk, ρ〉 =
∏

1≤j<k≤n

(k − j) =
n−1∏

`=1

`!.
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29. Examples of characters

Let us first specialize the character formula of §28 to the case of U(2). We
consider χλ(D(θ)) with λ = (λ1, λ2), λ1 ≥ λ2, λν ∈ Z. In this case, ω12 =
(1,−1), ρ = (1/2,−1/2), and hence Aµ(θ), defined by (28.35), takes the form

(29.1) Aµ(θ) = ei(µ1θ1+µ2θ2) − ei(µ2θ1+µ1θ2).

In particular, the denominator Aρ(θ) in (28.37) becomes

(29.2) Aρ(θ) = ei(θ1−θ2)/2 − ei(θ2−θ1)/2 = 2i sin
θ1 − θ2

2
.

To evaluate the numerator in (28.37), we take µ = λ + ρ = (λ1 + 1/2, λ2 − 1/2) in
(29.1). For simplicity, let us take

(29.3) λ = (k, 0).

Then

(29.4) Aλ+ρ(θ) = ei(k+1/2)θ1−iθ2/2 − ei(k+1/2)θ2−iθ1/2.

If we also take θ2 = −θ1, so D(θ) ∈ SU(2), then

(29.5) Aλ+ρ(θ) = ei(k+1)θ1 − e−i(k+1)θ1 ,

and hence the character formula (21.37) gives

(29.6) χ(k,0)(D(θ,−θ)) =
sin(k + 1/2)θ

sin θ
.

Taking the limit θ → 0 gives the dimension formula

(29.7) d(k,0) = k + 1,

familiar from our previous discussion of the representations of SU(2).
Note that it is a direct consequence of (18.9), (18.13), (18.19), and (18.20) that

(29.8) χ(k,0)(D(θ,−θ)) =
k∑

j=−k

eijθ,

which sums to the right side of (29.6).
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Let us generalize these calculations to the representations Sk = D(k,0,...,0) of
U(n). Using (20.1)–(20.8), we see that

(29.9) TrSk(D(θ)) =
∑

|α|=k

ei〈α,θ〉,

where in this sum α = (α1, . . . , αn) with αν ∈ Z+ and |α| = α1 + · · · + αn. The
character formula (28.37) then asserts that

(29.10) Aρ(θ) Tr Sk(D(θ)) =
∑

|α|=k

∑

σ∈Sn

(sgnσ) ei〈σ·ρ+α,θ〉

is equal to

(29.11) A(k,0,...,0)+ρ(θ) =
∑

σ∈Sn

(sgnσ) ei〈σ·ρ+σ·(k,0,...,0),θ〉.

To check this for n = 2, note that (29.10) becomes

(29.12)
∑

α1+α2=k

(
ei(α1+1/2)θ1+i(α2−1/2)θ2 − ei(α1−1/2)θ1+i(α2+1/2)θ2

)
.

Note also that (α1 + 1/2) + (α2− 1/2) = k and (α1− 1/2) + (α2 + 1/2) = k. Hence
we get cancellation of all terms except the first part of the sum at α = (k, 0) and
the last part of the sum at α = (0, k). Thus (29.12) telescopes to the right side of
(29.4), verifying identity of (29.10) and (29.11) when n = 2.

Note that if we reverse the order of summation in (29.10) and sum over E =
{(σ, α) : α = σ · (k, 0, . . . , 0)}, we get (29.11). Also note that all the frequencies
that arise in (29.10) with α = σ · (k, 0, . . . , 0) are distinct from all the frequencies
that arise with α 6= σ · (k, 0, . . . , 0). Now we can deduce from (28.20), an analogue
of which also holds for Aρ(θ)χλ(θ), that the rest of the sum in (29.10) vanishes,
due to cancellations. The reader is invited to find a more direct demonstration of
this vanishing.

Next consider the representation Λ` of U(n) on Λ`Cn, discussed in (20.9)–(20.14).
We see that Λ`D(θ) has eigenvalues ei(θj1+···+θj`

), for general j1 < · · · < j`, with
jν running from 1 to n. Hence

(29.13) TrΛ`D(θ) = σ`(eiθ1 , . . . , eiθn),

where σ` is the `th elementary symmetric polynomial. We can write this as

(29.14)

TrΛ`(D(θ)) =
1

`!(n− `)!

∑

σ∈Sn

ei(θσ(1)+···+θσ(`))

=
1
n!

(
n

`

) ∑

σ∈Sn

ei〈σ·γ`,θ〉,
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where γ` = (1, . . . , 1, 0, . . . , 0), with ` ones, is the highest weight of Λ`. Recall that
Λ` = D(1,...,1,0,...,0). According to the character formula (28.37), the quantity

(29.15) Aρ(θ) TrΛ`(D(θ)) =
1
n!

(
n

`

) ∑

σ,τ∈Sn

(sgn τ)ei〈τ ·ρ+σ·γ`,θ〉

is equal to

(29.16) Aγ`+ρ(θ) =
∑

τ∈Sn

(sgn τ)ei〈τ ·(ρ+γ`),θ〉.

Note that by taking σ 7→ τσ, we can rewrite the right side of (29.15) as

(29.17)
1
n!

(
n

`

) ∑

σ,τ∈Sn

(sgn τ)ei〈τ ·(ρ+σ·γ`),θ〉.

The sum in (29.17) over {(σ, τ) : σ fixes γ`} is equal to (29.16). An argument
involving (29.20), similar to that made above comparing (29.10) and (29.11), can
be used to show that all the other terms in (29.17) must cancel out. Again the
reader is invited to find a direct demonstration of this cancellation.
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30. Duality and the Frobenius character formula

We take a further look at the decomposition of the action of Sk×U(n) on ⊗kCn

given by (26.7), i.e.,

(30.1) τ · ⊗k =
⊕

λ∈Fnk

Sλ ⊗Dλ,

and its implication for characters,

(30.2) Tr(τ(σ) · ⊗kg) =
∑

λ∈Fnk

χS
λ(σ)χλ(g), σ ∈ Sk, g ∈ U(n).

Here χλ(g) = TrDλ is the character for which (28.37) furnishes a formula. Our goal
here is to produce a formula for χS

λ(σ). To begin, we have the following explicit
formula for the left side of (30.2).

Lemma 30.1. Suppose σ ∈ Sk has cycles of length `1, . . . , `r (so `1 + · · ·+`r = k).
Then

(30.3) Tr(τ(σ) · ⊗kg) =
r∏

ν=1

Tr(g`ν ).

Proof. Since the left side of (30.3) is invariant under conjugacy of σ and of g, it
suffices to treat the case when

σ = (1 · · · `1)(`1 + 1 · · · `1 + `2) · · · (k − `r + 1 · · · k),

and when g acts on the standard basis {u1, . . . , un} of Cn by gui = ζiui. Then the
left side of (30.3) is given by

(30.4)

∑

1≤j1,...,jk≤n

〈τ(σ) · ⊗kg(uj1 ⊗ · · · ⊗ ujk
), uj1 ⊗ · · · ⊗ ujk

〉

=
∑

〈g ujσ(1) , uj1〉 · · · 〈g ujσ(k) , ujk
〉

=
∑

ζj1 · · · ζjk
δj1jσ(1) · · · δjkjσ(k) .

Meanwhile the right side of (30.3) is equal to

(30.5)
∑

j1,...,jr

ζ`1
j1
· · · ζ`r

jr
.
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Now under our stated hypotheses on σ, the nonzero terms in the last sum in (30.4)
are indexed by (j1, . . . , jk) for which

j1 = · · · = j`1 , j`1+1 = · · · = j`1+`2 , · · · , jk−`r+1 = · · · = jk,

so (30.4) does indeed coincide with (30.5).

We will denote the quantity (30.3) by Ξ(σ, g), so (30.2) reads

(30.6) Ξ(σ, g) =
∑

λ∈Fnk

χS
λ(σ)χλ(g).

Given µ ∈ Fnk, we can multiply both sides of (30.6) by χS
µ(σ) and average over

σ ∈ Sk, obtaining (upon switching notation from µ to λ)

(30.7) χλ(g) =
1
k!

∑

σ∈Sk

Ξ(σ, g)χS
λ(σ).

Similarly,

(30.8) χS
λ(σ) =

∫

U(n)

Ξ(σ, g)χλ(g) dg.

Another way to write Ξ(σ, g) is as follows. Set Pj(ζ) = ζj
1 + · · · + ζj

n and for
σ ∈ Sk set

(30.9) Pσ(ζ) = P`1(ζ) · · ·P`r (ζ)

if σ consists of cycles of length `1, . . . , `r (so `1 + · · ·+ `r = k). Then

(30.10) Ξ(σ, g) = Pσ(ζ)

provided the eigenvalues of g are ζ1, . . . , ζn.
If we insert the character formula (28.37) into (30.8), we can derive the Frobenius

character formula for χS
λ(σ). Let us proceed. Fix k ∈ Z+ and consider λ =

(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0, λν ∈ Z+, and λ1 + · · ·+ λn = k, i.e., λ ∈ Fnk.
We will write (30.8) as an integral over Tn, using the Weyl formula (27.17). Note
that, in place of J(θ) = A(θ)A(θ) as in (27.19), we can write

(30.11) J(θ) = Aρ(θ)Aρ(θ),

with Aρ(θ) the denominator in (28.37). Hence (30.8) yields

(30.12) χS
λ(σ) =

1
(2π)nn!

∫

Tn

Ξ(σ,D(θ)) Aλ+ρ(θ) Aρ(θ) dθ,
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Next, we write

(30.13) Aρ(θ) = ei〈ρ,θ〉
(∏

j<k

e−iθj

)
∆(θ), ∆(θ) =

∏

j<k

(eiθj − eiθk),

and note that

(30.14)
∑

j<k

θj = (n− 1)θ1 + (n− 2)θ2 + · · ·+ θn−1 = 〈Γ, θ〉,

with

(30.15) Γ = (n− 1, n− 2, . . . , 1, 0).

Hence

(30.16)
Aρ(θ) = ei〈ρ−Γ,θ〉∆(θ)

= ei(n−1)(θ1+···+θn)/2 ∆(θ).

We have (via (28.36) with µ = λ + ρ)

(30.17) χS
λ(σ) =

1
n!

∑

τ∈Sn

(sgn τ)Iτ
λ(σ),

with

(30.18) Iτ
λ(σ) =

1
(2π)n

∫

Tn

Ξ(σ,D(θ))∆(θ) ei〈ρ−Γ,θ〉e−i〈τ ·(λ+ρ),θ〉 dθ.

Now Ξ(σ,D(θ)) and ei〈ρ−Γ,θ〉 are symmetric in (θ1, . . . , θn) (the latter by (30.16)),
while applying a permutation τ to θ multiplies ∆(θ) by sgn τ . Hence we have

(30.19)

Iτ
λ(σ) =

sgn τ

(2π)n

∫

Tn

Ξ(σ,D(θ))∆(θ) ei〈ρ−Γ,θ〉e−i〈λ+ρ,θ〉 dθ

=
sgn τ

(2π)n

∫

Tn

Ξ(σ,D(θ))∆(θ)e−i〈λ+Γ,θ〉 dθ.

Plugging this into (30.17), we have Schur’s formula:

Proposition 30.2. Given λ ∈ Fnk, the associated representation Sλ of Sk has
character

(30.20) χS
λ(σ) = (2π)−n

∫

Tn

Ξ(σ,D(θ))∆(θ)e−i〈λ+Γ,θ〉 dθ.
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Equivalently, χS
λ(σ) is equal to the coefficient of ζ`1

1 · · · ζ`n
n in

(30.21) Pσ(ζ)
∏

j<k

(ζj − ζk),

where

(30.22) `1 = λ1 + n− 1, `2 = λ2 + n− 2, . . . , `n = λn.

The dimension of the representation space of Sλ is dS
λ = χS

λ(e), where e is the
identity element of Sk. By (30.9),

(30.23) Pe(ζ) = (ζ1 + · · ·+ ζn)k =
∑

|β|=k

k!
β1! · · ·βn!

ζβ1
1 · · · ζβn

n .

Using the Vandermonde determinant, as in (27.22), we have

(30.24)
∏

i<j

(ζi − ζj) = (−1)n(n−1)/2
∑

σ∈Sn

(sgn σ) ζ
σ(1)−1
1 · · · ζσ(n)−1

n .

After some computation, there results the dimension formula

(30.25) dS
λ =

k!
`1! · · · `n!

∏

i<j

(`i − `j),

for the representation Sλ of Sk, with `1, . . . , `n given by (30.22). For details, see
[FH], pp. 49–50.
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31. Integral of |Tr gk|2 and variants

Integrals of the form

(31.1) I(σ1, σ2) =
∫

U(n)

Ξ(σ1, g)Ξ(σ2, g) dg

are of interest in random matrix theory (cf., e.g., [DS], [DE]). Here Ξ(σ, g) is as in
(30.6)–(30.10). Note that

(31.2) σ ∈ Sk, ϑ ∈ R =⇒ Ξ(σ, eiϑg) = eikϑΞ(σ, g),

and since g 7→ eiϑg is a measure preserving map on U(n) it easily follows that

(31.3) σν ∈ Skν , k1 6= k2 =⇒ I(σ1, σ2) = 0.

on the other hand, if σ1, σ2 ∈ Sk, one can use (30.6) to write

(31.4) I(σ1, σ2) =
∑

λ∈Fnk

χS
λ(σ1)χS

λ(σ2).

Such an identity is applied to random matrix theory in [DE].
Cases of (31.4) where σ1 = σ2 = σ are of particular interest. One example, which

has already been mentioned in (26.12), arises from σ = e, the identity element of
Sk:

(31.5)
∫

U(n)

|Tr g|2k dg =
∑

λ∈Fnk

(fλ)2,

where fλ is the dimension of the representation space of Sλ. Another interesting
example is

(31.6)
∫

U(n)

|Tr gk|2 dg =
∑

λ∈Fnk

|χS
λ(ck)|2, ck = (12 · · · k) ∈ Sk.

See [DE] for a direct evaluation of the right side of (31.6), using results on the
symmetric group. Here we will make a direct calculation of the left side of (31.6),
using the Weyl integration formula.

We have

(31.7) Ink =
∫

U(n)

|Tr gk|2 dM =
1

(2π)n

∫

Tn

|eikθ1 + · · ·+ eikθn |2J(θ) dθ.



129

We re-state this as follows. Set ζj = eiθj , so

(31.8) |eikθ1 + · · ·+ eikθn |2 = |ζk
1 + · · ·+ ζk

n|2 =
∑
µ,ν

ζk
µζ−k

ν .

Also, we use (27.23) for J(θ).
Thus Ink is equal to the constant term in

(31.9)
1
n!

∑
µ,ν,σ,τ

(sgn σ)(sgn τ)ζk
µζ−k

ν ζ
σ(1)−τ(1)
1 · · · ζσ(n)−τ(n)

n ,

which we write as

(31.10)
1
n!

(S1 + S2),

where S1 arises from the sum over µ = ν and S2 arises from the sum over µ 6= ν.
It is straightforward to obtain

(31.11) S1 = n · n!.

It remains to consider S2. We see that, for a given µ 6= ν, a pair σ, τ ∈ Sn

contributes to S2 in the sum (31.9) if and only if σ(j) = τ(j) for all but two values
of j ∈ {1, . . . , n}, namely j = µ and ν, and

(31.12)
σ(µ)− τ(µ) = −k,

σ(ν)− τ(ν) = k.

Equivalently, we require τ = ψσ where ψ ∈ Sn has the property that ψ(j) = j
except for two values of j ∈ {1, . . . , n}, namely j1 = σ(µ) and j2 = σ(ν), and

(31.13) ψ(j1) = j1 + k, ψ(j2) = j2 − k.

This requires ψ(j1) = j2, ψ(j2) = j1, with

(31.14) j1 = j2 − k.

Then

(31.15) S2 =
∑

(sgnσ)(sgn ψσ),

the sum running over such allowable (µ, ν, σ, ψ). Note that (31.14) constrains j1;
we require k+1 ≤ j1 ≤ n. Thus if k ≥ n the sum in (31.15) is empty and S2 = 0. If
1 ≤ k ≤ n−1, then there are (n−k) ·n! terms in the sum (31.15). In fact, if we pick
σ ∈ Sn and then pick one of the n−k permutations ψ ∈ Sn for which (31.13) holds,
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then for each such (σ, ψ), the pair (µ, ν) is uniquely determined. Furthermore, each
term in (31.15) is equal to sgn ψ = −1. Hence

(31.16) S2 = −(n− k) · n!, 1 ≤ k ≤ n− 1.

Putting together these computations, we have, for integers k ≥ 1,

(31.17)
∫

U(n)

|Tr gk|2 dg = k ∧ n.

The formula (31.17) is useful for evaluating inner products of trace functions on
U(n), which arise as follows. If f : S1 → C is a bounded Borel function, define f(g)
by the spectral representation of g ∈ U(n). Set Xf (g) = Tr f(g). Using (31.17),
one can show that

(31.18)
∫

U(n)

Xu(g)Xv(g) dg =
∞∑

k=−∞
ank û(k)v̂(−k),

where û(k) are the Fourier coefficients of u, an0 = n2, and ank = (|k|∧n) for k 6= 0.
To compare the derivation (31.7)–(31.17) with a treatment via (31.6), note that,

by Proposition 30.2, χS
λ(ck) is the coefficient of ζ`1

1 · · · ζ`n
n in

(31.19)

(ζk
1 + · · ·+ ζk

n)
∏

i<j

(ζi − ζj)

= (−1)n(n−1)/2
n∑

j=1

∑

σ∈Sn

(sgnσ)ζk
j ζ

σ(1)−1
1 · · · ζσ(n)−1

n .

Using this one can show that χS
λ(ck) is either 0 or ±1. Computing the right side

of (31.6) then apparently involves calculations somewhat similar to those done in
(31.7)–(31.17).
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32. The Laplace operator on U(n)

If {Xj} is an orthonormal basis of the Lie algebra g = u(n), regarded as an
algebra of left-invariant vector fields, then the Laplace operator on U(n) is the
second order differential operator

(32.1) ∆ =
∑

X2
j .

The ∆ is independent of the choice of orthonormal basis. To see this, let {Yj} be
another orthonormal basis of g. Then

Yj =
∑

k

akjXk, (akj) = A ∈ O(m), m = dim U(n).

Hence ∑

j

Y 2
j =

∑

j

(∑

k

akjXk

)(∑

`

a`jX`

)

=
∑

j,k,`

akja`jXkX`

=
∑

k,`

δk`XkX`

=
∑

k

X2
k ,

as desired (the third identity by AAt = I).
We will give several explicit formulas for ∆ and establish some important basic

properties. One is that ∆ lies in the center of U(g). Hence its image under an
irreducible representation is a scalar, which we will compute.

Recall that Cg = M(n,C), with basis {ejk : 1 ≤ j, k ≤ n}. We have ej = iejj ∈ h.
If we also take xjk, yjk ∈ g, for j < k, as

(32.2) xjk =
1√
2
(ejk − ekj), yjk = − i√

2
(ejk + ekj),

then we have an orthonormal basis of g, so

(32.3) ∆ =
∑

j

e2
j +

∑

j<k

(x2
jk + y2

jk).
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Proposition 32.1. For all X ∈ g, [∆, X] = 0.

Proof. It suffices to show that, for all j, k,

(32.4) [∆, ejk] = 0,

This is a straightforward computation using (19.10), i.e.,

(32.5) [eij , ek`] = δjkei` − δi`ekj .

Details are an exercise.

We produce some more useful formulas for ∆. Note that

(32.5) xjk + iyjk =
√

2 ejk, xjk − iyjk = −
√

2 ekj .

Also, using (32.5), we have

(32.7) [xjk, yjk] = −(ej − ek).

Hence we can rewrite (32.3) as

(32.8)

∆ =
∑

j

e2
j +

∑

j<k

{
(xjk − iyjk)(xjk + iyjk)− i[xjk, yjk]

}

=
∑

j

e2
j + i

∑

j<k

(ej − ek)− 2
∑

j<k

ekjejk.

The significance for representation theory is highlighted by the following:

Proposition 32.2. For the irreducible representation Dλ of U(n) on V (λ), we
have

(32.9) dDλ(∆) = −(|λ + ρ|2 − |ρ|2)I.

Proof. It follows from Proposition 17.1 that dDλ(∆) is scalar on V (λ). Thus it
suffices to evaluate dDλ(∆)v when v is a highest weight vector. In such a case
dDλ(ejk)v = 0 when j < k, so

(32.10) dDλ(∆)v =
∑

j

dDλ(ej)2v + i
∑

j<k

dDλ(ej − ek)v.

Now dDλ(ej)v = iλ(ej)v, so

(32.11)
dDλ(∆)v = −

∑

j

λ(ej)2v −
∑

j<k

λ(ej − ek)v

= −(|λ|2 + 2〈λ, ρ〉)v,
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where we recall from (28.26) that

ρ =
1
2

∑

j<k

ωjk ∈ h′.

This gives (32.8).

These results generalize to any compact Lie group G. Give G a bi-invariant
Riemannian metric tensor and let ∆ be the Laplace-Beltrami operator. Then left
and right translations are isometries, so ∆ commutes with L(g) and R(g) for all
g ∈ G. If πα is an irreducible unitary representation of G, onto a space of dimension
dα, and with matrix form (πα

jk), let

(32.12) Vα = span of {πα
jk : 1 ≤ j, k ≤ dα},

and let Pα denote the orthogonal projection of L2(G) onto Vα, as in Proposition
11.5. We have

(32.13) Pαu(x) = dα

∑

j,k

πα
jk(x)

∫

G

u(y)πα
jk(y) dy.

Writing
∑

πα
jk(x)πα

jk(y) = Tr(πα(x)πα(y)∗) = χα(xy−1), we see that

(32.14) Pαu(x) = dα χα ∗ u(x).

It follows that Pα commutes with ∆, so

∆ : Vα −→ Vα.

Now G×G acts on Vα via

(32.15) Γα(g, h)u(x) = u(g−1xh), u ∈ Vα.

A brief calculation shows that

(32.16) Γα(g, h)πα
jk(x) =

∑

`,m

πα
`j(g)πα

mk(h)πα
`m(x).

It follows readily that

(32.17) TrΓα(g, h) = χα(g)χα(h),

and in particular

(32.18)
∫

G×G

|TrΓα(g, h)|2 dg dh =
∫

G

|χα(g)|2 dg

∫

G

|χα(h)|2 dh = 1,
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so Γα is an irreducible representation of G × G. Since the Laplace operator ∆
commutes with Γα, it must be a scalar on Vα:

(32.19) ∆πα
jk(x) = c(α) πα

jk(x).

The formula (32.1) also holds for ∆ in the more general setting of a compact Lie
group G with a bi-invariant metric, and dπ(∆) is defined for a finite-dimensional
representation π of G. Since R|Vα

acts as a sum of copies of πα, by (32.16), we see
that

(32.20) dπα(∆) = c(α)I.

We mention that (32.9) generalizes from U(n) to a general compact G; see, e.g.,
[T1], pp. 123–124, for a derivation.

Let us return to G = U(n), with irreducible representations Dλ. Specializing the
fact that identical factors of c(α) appear in (32.19) and (32.20), we see that (32.9)
gives

(32.21) ∆πλ
jk(x) = −(|λ + ρ|2 − |ρ|2)πλ

jk(x), 1,≤ j, k ≤ dλ,

if (πλ
jk) denotes a matrix form of Dλ.
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33. The heat equation on U(n)

Before specializing to G = U(n), we begin with an arbitrary compact Lie group
G, with bi-invariant Riemannian metric and Laplace operator ∆, as discussed in
§32. We consider the heat equation for u(t, x) on R+ ×G:

(33.1)
∂u

∂t
= ∆u, u(0, x) = f(x).

As seen in §7, we can write

(33.2) f(x) =
∑

α∈I
dα

∑

j,k

f̂jk(α)πα
jk(x),

where {πα : α ∈ I} is a complete set of irreducible unitary representations of G
and

(33.3) f̂jk(α) = πα
jk(f) =

∫

G

f(y)πα
jk(y) dy.

In view of (32.19), we then have

(33.4) u(t, x) =
∑

α∈I
dαec(α)t

∑

j,k

f̂jk(α)πα
jk(x).

We can write

(33.5) u(t, x) = Ht ∗ f(x),

with Ht(x), known as the heat kernel, given as follows. By (10.5), (33.5) is equiva-
lent to

(33.6) Ĥt(α) = ec(α)t I,

so, parallel to (33.2),

(33.7) Ht(x) =
∑

α∈I
dαec(α)t χα(x).

Specializing to U(n), with irreducible representations Dλ, parametrized by P+ =
{λ ∈ Zn : λ1 ≥ · · · ≥ λn}, we have

(33.8) Ht(x) =
∑

λ∈P+

dλe−(|λ+ρ|2−|ρ|2)t χλ(x).
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Note that Ht is a central function, uniquely determined by its values at D(θ), θ ∈
Rn. We bring in the Weyl character formula and the dimension formula to write

(33.9) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑

λ∈P+

∑

σ∈Sn

(sgnσ)∆(λ + ρ)ei〈σ·(λ+ρ),θ〉e−|λ+ρ|2t.

Here M =
∏n−1

`=1 `! is the denominator calculated in (28.44) and

(33.10) ∆(λ) =
∏

j<k

〈ωjk, λ〉 =
∏

j<k

(λj − λk).

We can rewrite (33.9) as

(33.11) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑

λ∈P̃+

∑

σ∈Sn

(sgnσ)∆(λ)ei〈σ·λ,θ〉e−|λ|
2t,

where

(33.12) P̃+ = {λ ∈ (Z+ γ)n : λ1 > · · · > λn},

and where

(33.13) γ = 0 for n odd, 1/2 for n even.

Note that

(33.14) ∆(σ · λ) = (sgn σ)∆(λ),

and that ∆(λ) = 0 whenever λµ = λν for some µ 6= ν. Hence

(33.15) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑

λ∈(Z+γ)n

∆(λ)ei〈λ,θ〉e−|λ|
2t.

Let us set

(33.16) Eγ(t, θ) =
∑

λ∈(Z+γ)n

ei〈λ,θ〉e−|λ|
2t.

Then (33.15) yields

(33.17) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)
Q(D)Eγ(t, θ),
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where Q(D) is the differential operator on functions of θ:

(33.18) Q(D)v(θ) =
∏

j<k

1
i

( ∂

∂θj
− ∂

∂θk

)
.

Note that Eγ(t, θ) satisfies the heat equation on R+ × Rn:

(33.19)
∂Eγ

∂t
=

n∑

j=1

∂2Eγ

∂θ2
j

.

Also, Eγ(t, θ) is periodic in each variable θj , of period 2π if γ = 0 and of period 4π
if γ = 1/2. In fact,

(33.20)

E0(0, θ) = (2π)n
∑

ν∈Zn

δ2πν(θ),

E1/2(0, θ) = (2π)n
∑

ν∈Zn

(−1)ν1+···+νn δ2πν(θ).

Hence, for t > 0,

(33.21) E0(t, θ) =
(π

t

)n/2 ∑

ν∈Zn

e−|θ−2πν|2/4t,

and

(33.22) E1/2(t, θ) =
(π

t

)n/2 ∑

ν∈Zn

(−1)ν1+···+νn e−|θ−2πν|2/4t.

Both functions have the same asymptotic behavior for |θ| ≤ π as t ↘ 0:

(33.23) Eγ(t, θ) ∼
(π

t

)n/2

e−|θ|
2/4t.

Regarding the heat kernel Ht(x), we also have

(33.24) Ht(x) ∼ (4πt)−n2/2 e−d(x)2/4t, t ↘ 0,

where d(x) denotes the distance from x to the identity element in the Riemannian
metric on U(n). In particular, for X ∈ u(n), |X| ≤ π/2,

(33.25) Ht(eX) ∼ (4πt)−n2/2 e−|X|
2/4t, t ↘ 0.

The n2 in the exponent of t arises as the dimension of U(n). This is a special case of
a general analysis of the heat kernel on a Riemannian manifold; see [T2], Chapter
7 for a proof, and Chapter 10 for important geometrical applications. The reader
might try to obtain (33.25) from (33.17) and (33.23).
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34. The Harish-Chandra/Itzykson-Zuber integral

The integral

(34.1)
∫

U(n)

es Tr(gXg−1Y ) dg = H(s,X, Y ), X, Y ∈ M(n,C),

is of great interest in random matrix theory. Here we give several formulas for this,
with arguments adapted from [AI] and [IZ]. Note that H(s, X, Y ) is holomorphic in
its arguments, so it is uniquely determined from its values on various subsets. Let
us take X = x, Y = y ∈ U(n), and write

(34.2)

H(s, x, y) =
∞∑

k=0

sk

k!

∫

U(n)

(
Tr(gxg−1y)

)k
dg

=
∞∑

k=0

sk

k!

∫

U(n)

Tr⊗k(gxg−1y) dg.

To proceed, we use the following.

Lemma 34.1. Let π, π′ be irreducible representations of a compact Lie group G,
with characters χπ, χπ′ . Then

(34.3)
∫

G

χπ(xy)χπ′(y) dy = d−1
π χπ(x) δππ′ ,

where δππ′ = 1 if π ≈ π′, 0 otherwise. Furthermore,

(34.4)
∫

G

χπ(gxg−1y) dg = d−1
π χπ(x)χπ(y).

Proof. If we write the integrand in the left side of (34.3) as Tr(π(x)π(y))χπ′(y) and
apply Proposition 8.2 to

∫
G

π(y)χπ′(y) dy, we get the identity (34.3). As for (34.4),
one easily shows the left side is invariant under y 7→ h−1yh, h ∈ G. Hence

(34.5)
∫

G

χπ(gxg−1y) dg =
∑

α∈I
ψα(x)χα(y),

with

(34.6) ψα(x) =
∫∫

G G

χπ(gxg−1y)χα(y) dy dg = d−1
π δππα ,
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the last identity by (34.3).

To apply (34.4) to (34.2), we break up ⊗k into irreducibles, using Proposition
26.3. We get

(34.7)
∫

U(n)

Tr⊗k(gxg−1y) dy =
∑

λ∈Fnk

fλ

dλ
χλ(x)χλ(y),

where fλ is the dimension of the representation space for Sλ. Hence

(34.8) H(s, x, y) =
∞∑

k=0

sk

k!

∑

λ∈Fnk

fλ

dλ
χλ(x)χλ(y).

For a second approach, we apply (34.4) to each term in the series (33.8) for the
heat kernel Ht(x), obtaining

(34.9)
∫

U(n)

Ht(gxg−1y) dg =
∑

λ∈P+

e−(|λ+ρ|2−|ρ|2)t χλ(x)χλ(y).

We analyze this in a fashion parallel to (33.9)–(33.15). Denoting the quantity (34.9)
by Kt(x, y), we have

(34.10)

Kt(D(θ), D(ϕ))

=
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑

λ∈P+

∑
σ,τ

(sgn σ)(sgn τ)ei〈σ·(λ+ρ),θ〉ei〈τ ·(λ+ρ),ϕ〉e−|λ+ρ|2t

=
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑

λ∈P̃+

∑
σ,τ

(sgn τ)ei〈σ·λ,θ+τtϕ〉e−|λ|
2t,

where we take τ 7→ τσ to produce the last identity, and we define P̃+ as in (33.16).
To proceed further, we note that

(34.11) Bλ(θ + τ tϕ) =
∑
σ,τ

(sgn τ)ei〈σ·λ,θ+τtϕ〉 = Aλ(θ)Aλ(ϕ),

and

(34.12) Aσ·λ(θ) = (sgn σ)Aλ(θ).

Hence Bλ(θ + τ tϕ) vanishes whenever there exists σ 6= e such that σ · λ = λ and
sgnσ = −1, hence whenever λµ = λν for some µ 6= ν. Thus we can rewrite (34.10)
as

(34.13) Kt(D(θ), D(ϕ)) =
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑

λ∈(Z+γ)n

∑

τ∈Sn

(sgn τ)ei〈λ,θ+τtϕ〉e−|λ|
2t.
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Equivalently, with Eγ(t, θ) as in (33.16),

(34.14) Kt(D(θ), D(ϕ)) =
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑

τ∈Sn

(sgn τ)Eγ(t, θ + τ tϕ).

The relevance of (34.14) to a calculation of (34.1) arises from the heat kernel
asymptotics

(34.15) Ht(g) ∼ (4πt)−n2/2 e−d(g)2/4t, t ↘ 0,

discussed in §33. (Actually, an extra factor An enters, which we will discuss at the
end of this section.) Let us take

(34.16) x = eηX , y = eηY , X, Y ∈ u(n),

with |η| small. Then

(34.17) gxg−1y = eη Ad(g)XeηY = eη(Ad(g)X+Y ) + O(η2).

We take

(34.18) η = 2
√

t.

Then

(34.19)
Ht(gxg−1y) ∼ (4πt)−n2/2 e−η2|Ad(g)X+Y |2/4t

= (4πt)−n2/2 e−(|X|2+|Y |2+2〈Ad(g)X,Y 〉).

Hence, with (34.16) and (34.18) in effect,

(34.20)
Kt(x, y) ∼ (4πt)−n2/2e−(|X|2+|Y |2)

∫

U(n)

e−2〈Ad(g)X,Y 〉 dg

= (4πt)−n2/2e−(|X|2+|Y |2)H(2, X, Y ),

since 〈X, Y 〉 = −Tr(XY ) in this case, so, for X, Y ∈ u(n),

(34.21) H(2, X, Y ) = e|X|
2+|Y |2 lim

t↘0
(4πt)n2/2 Kt(e2

√
tX , e2

√
tY ).

Say

(34.22) eηX ∼ D(ηθ), eηY ∼ D(ηϕ),
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i.e., these matrices are similar. Then (34.14) gives

(34.23)

Kt(e2
√

tX , e2
√

tY )

=
e|ρ|

2t

Aρ(2
√

tθ)Aρ(2
√

tϕ)

∑

τ∈Sn

(sgn τ)Eγ(t, 2
√

t(θ + τ tϕ)).

Now, as t ↘ 0,

(34.24) Aρ(2
√

tθ) ∼ (2i
√

t)n(n−1)/2 ∆(θ),

and, by (33.22),

(34.25) Eγ(t, 2
√

tθ) ∼
(π

t

)n/2

e−|θ|
2
.

Thus, as t ↘ 0,

(34.26) Kt(e2
√

tX , e2
√

tY ) ∼ t−n/2 πn/2

(2i)n(n−1)

1
∆(θ)∆(ϕ)

∑

τ∈Sn

(sgn τ)e−|θ+τtϕ|2 .

Hence, by (34.21),

(34.27) H(2, X, Y ) =
Cn

∆(θ)∆(ϕ)

∑

τ∈Sn

(sgn τ)e−2〈τ ·θ,ϕ〉,

where X and Y are related to θ and ϕ by (34.22). Since clearly H(s,X, Y ) =
H(1, sX, Y ) = H(2, (s/2)X,Y ), we have

(34.28) H(s,X, Y ) = s−n(n−1)/2 C ′n
∆(θ)∆(ϕ)

∑

τ∈Sn

(sgn τ)e−s〈τ ·θ,ϕ〉, X, Y ∈ u(n).

Our renaming of the constants Cn, C ′n derives from the fact that (34.15) holds
when U(n) has the Riemannian metric in which the norm on TI U(n) = u(n) is the
Hilbert-Schmidt norm. However, in normalizing the Haar measure on U(n) to have
mass one, we scale the metric. One way to evaluate C ′n in (34.28) is to consider the
s → 0 limit, using H(0, X, Y ) = 1. In fact,

(34.29) C ′n =
n−1∏

`=1

`!.

We mention that if instead of X and Y being skew-adjoint, as in (34.28), we
take X and Y self-adjoint, with eigenvalues θj and ϕj , respectively, then (34.28)
holds with −s changed to s in the exponent. This is the form in which the identity
commonly appears. See [EM] for a recent application of such an identity.
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35. Roots and weights for general compact Lie groups

The notions of roots and weights, described for U(n) in §19, have natural coun-
terparts for a general compact, connected Lie group G. Take such a group, denote
its Lie algebra by g, and endow G with a bi-invariant Riemannian metric, so g has
an inner product 〈 , 〉 with the property that for each g ∈ G, Ad g is an orthogonal
transformation on g, and hence for each X ∈ g, ad X is a skew-adjoint operator on
g.

Let h be a commutative subalgebra of g of maximal dimension, and denote the Lie
group it generates by T. This group is commutative, and it is closed, hence compact.
Indeed, otherwise its closure T would be a commutative Lie subgroup of G of larger
dimension. Note that the exponential map h → T is a group homomorphism. Hence
T is a compact quotient of a Euclidean space by a discrete subgeoup; hence T is a
torus. It is called a maximal torus in G. The dimension (say n) of T, or equivalently
of h, is called the rank of G.

If {h1, . . . , hn} is a basis of h, we can simultaneously put the skew-adjoint oper-
ators adhj on g in normal form. In fact, for almost all choices rj ∈ R, hb =

∑
rjhj

separates out the spectra of ad hj and it suffices to put ad hb in normal form. Hence
there is a set of elements x1, . . . , xk, y1, . . . , yk ∈ g such that

{h1, . . . , hn, x1, . . . , xk, y1, . . . , yk}

is a basis of g with the property that

(35.1) ad h(xj ± iyj) = ±iαj(h)(xj ± iyj), ∀h ∈ h,

for certain αj ∈ h′. Hence we can decompose the complexified Lie algebra gC as

(35.2) gC = hC ⊕
⊕

α

gα,

where, given α ∈ h′,

(35.3) gα = {z ∈ gC : [h, z] = iα(h)z, ∀h ∈ h}.

If gα 6= 0, we call α a root, and nonzero elements of gα are called root vectors,
provided α 6= 0. Note that g0 = hC. From the Jacobi identity, in the form

(35.4) ad h([zα, zβ ]) = [ad h(zα), zβ ] + [zα, adh(zβ)],

it follows that

(35.5) [gα, gβ ] ⊂ gα+β .
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Note from (35.1) that if α is a root, so is −α.
The choice of ordered basis {hj : j = 1, . . . , n} of h induces an ordering of h′

as follows. Given α, β ∈ h′, we say α > β provided the first nonzero number
(α− β)(hj) is positive. As in §19, the root vectors corresponding to positive roots
will play the role of raising operators in the representation theory of G. We first
consider as a special case the adjoint representation of G on g. This will give some
valuable information on the structure of g.

To begin, associate to each root α ∈ h′ an element Hα uniquely determined by

(35.6) Hα ∈ h, α(h) = 〈Hα, h〉, ∀h ∈ h.

Here 〈 , 〉 is the Ad-invariant inner product on g mentioned above (restricted in
(35.6) to an inner product on h). Next, extend 〈 , 〉 to a symmetric bilinear form
on gC × gC. We have the following.

Lemma 35.1. If X ∈ gα and Y ∈ g−α, then

(35.7) [X, Y ] = i〈X, Y 〉Hα.

Proof. By (35.5), [X, Y ] ∈ hC = g0. Now, for any H ∈ h,

(35.8) 〈[X, Y ],H〉 = 〈Y, [H, X]〉 = iα(H)〈Y, X〉,

and, by (35.6), this identity is equivalent to (35.7).

Note also that

(35.9) α(Hα) = 〈Hα,Hα〉 > 0.

We are ready for the following key result.

Proposition 35.2. For each root α,

(35.10) dim gα = 1.

Proof. Assume dim gα ≥ 2. We will show that gα and g−α are not orthogonal.
Granted this, we can pick X, Z ∈ gα and Y ∈ g−α such that

(35.11) 〈X, Y 〉 = 1, 〈Z, Y 〉 = 0.

This implies

(35.12) [X, Y ] = iHα, [Z, Y ] = 0.

From here an inductive argument shows

(35.13) ad Y (ad X)nZ =
n(n + 1)

2
α(Hα)(ad X)n−1Z.
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To do the induction, we first check (35.13) for n = 1. Indeed,

adY (adX)Z = (ad X)(ad Y )Z − [ad X, adY ]Z

= 0− i adHα(Z)

= α(Hα)Z,

since

[ad X, ad Y ] = ad[X, Y ] = i ad(Hα),(35.13A)

ad Hα = iβ(Hα)Id, on gβ ,(35.13B)

and Z ∈ gα. Now, given n ≥ 2, assume (35.13) holds with n replaced by n − 1.
Then

(35.13C)
ad Y (ad X)nZ = ad X(ad Y )(ad X)n−1Z − [ad X, adY ](adX)n−1Z

=
(n− 1)n

2
α(Hα)(ad X)n−1 − i ad(Hα)(ad X)n−1Z,

the second identity by the inductive hypothesis and (35.13A). Now (ad X)n−1Z ∈
gnα, so taking β = nα in (35.13B) gives

(35.13B) −i ad(Hα)(ad X)n−1Z = nα(Hα)(ad X)n−1Z,

so

(35.13E) ad Y (ad X)nZ =
[ (n− 1)n

2
+ n

]
α(Hα)(ad X)n−1Z,

yielding (35.13).
By (35.9) and (35.13), it follows that, if dim gα ≥ 2, then all the elements

(ad X)nZ ∈ g(n+1)α are nonzero. This contradicts the fact that g is finite dimen-
sional.

To complete the proof of Proposition 35.2, it remains to show that gα and g−α

are not orthogonal with respect to 〈 , 〉. Indeed,

(35.14)
x + iy ∈ gα (x, y ∈ g) =⇒ x− iy ∈ g−α

=⇒ 〈x + iy, x− iy〉 = 〈x, x〉+ 〈y, y〉,
which is > 0 as long as x + iy 6= 0. This completes the proof of Proposition 35.2.

Remark. The endgame of this last proof uses the fact that, if α is a root, then nα
cannot be a root for all n ∈ N. See Proposition 36.4 for a much stronger result.

Given Proposition 35.2, we can pick nonzero vectors eα ∈ gα, and arrange that
e−α be the complex conjugate of eα,

(35.15) e±α = xα ± iyα, xα, yα ∈ g.
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Furthermore, we can scale these elements so that 〈eα, e−α〉 = 1. Thus

(35.16) [eα, e−α] = iHα.

These commutation relations, together with [Hα, e±α] = ±iα(Hα)e±α are equiva-
lent to

(35.17) [xα, yα] = −1
2
Hα, [Hα, xα] = −α(Hα)yα, [Hα, yα] = α(Hα)xα.

The following result bears on the size of the linear span of the set of roots α in
h′.

Proposition 35.3. We have

(35.18)
⋂

α root

kerα = z,

the center of g.

Proof. Given h ∈ h,

(35.19)
α(h) = 0 ∀α ⇐⇒ adh = 0 on each gα

⇐⇒ h ∈ z.

Of course, z ⊂ h, so this gives (35.18). Note that an equivalent statement is that
(with the orthogonal complement taken in h)

⋂
α root

(Span Hα)⊥ = z.

Corollary 35.4. If z = 0, then the set of roots spans h′; hence {Hα : α is a root}
spans h.

Examples. If g = u(n), then z = {iaI : a ∈ R}. If g = su(n), then z = 0. If
g = so(n), then z = 0.

We turn now to the representation theory of G. Let π be a unitary represen-
tation of G on a finite dimensional complex vector space V . This gives rise to a
representation dπ of g by skew adjoint operators on V , which extends to a com-
plex linear representation, also denoted dπ of gC on V . As in §19, we will find it
convenient to bring in the complexification GC of G, and use the following fact:
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Proposition 35.5. The representation π of G on V extends to a holomorphic
representation of GC on V .

See Appendix H for a description of GC and a proof of Proposition 35.5.
To pursue our analysis of the representation π, take a maximal torus T of G as

above, with Lie algebra h, and for λ ∈ h′ set

(35.20) Vλ = {v ∈ V : dπ(h)v = iλ(h)v, ∀h ∈ h}.
We have

(35.21) V =
⊕

λ

Vλ.

If Vλ 6= 0 we call λ a weight, and any nonzero v ∈ Vλ a weight vector. The
decomposition (35.20)–(35.21) is called the weight space decomposition of V .

For the root vectors eα considered above, set

(35.22) Eα = dπ(eα).

We call Eα a raising operator if α > 0 and a lowering operator if α < 0. The
commutation relations

(35.23) [h, eα] = iα(h)eα, ∀h ∈ h

imply

(35.24) dπ(h)Eα = Eαdπ(h) + iα(h)Eα.

Using this we can prove the following.

Proposition 35.6. For each root α, we have

(35.25) Eα : Vλ −→ Vλ+α.

In particular, if λ is a weight and α is a root, then either Eα annihilates Vλ or
λ + α is a weight.

Proof. If ξ ∈ Vλ, we have, for all h ∈ h,

(35.26)
dπ(h)(Eαξ) = Eαdπ(h)ξ + iα(h)Eαξ

= i
(
λ(h) + α(h)

)
Eαξ,

which proves the proposition.

The ordering we have put on h′ induces an ordering on the weights. For a given
finite dimensional representation π, with respect to this ordering thate will be a
highest weight λm, and also a lowest weight λs. From Proposition 35.6 we see that

(35.27)
Eα = 0 on Vλm , for all raising operators Eα,

Eα = 0 on Vλs , for all lowering operators Eα.

In general, call a weight λ nonraisable if Vλ is annihilated by all raising operators
and call it nonlowerable if Vλ is annihilated by all lowering operators. Later in this
section we will show that if π is irreducible, then the only nonraisable weight is
maximal. Here we record our progress up to this point.
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Proposition 35.7. If π is a unitary representation of the compact Lie group G
in a finite dimensional space V , then there exists a highest weight vector ξ, and
in particular there exists a nonzero weight vector ξ ∈ V annihilated by all raising
operators.

This result gives a tool for showing that certain representations of G are irre-
ducible, namely:

Corollary 35.8. Let π be a unitary representation of G on a finite dimensional
space V . Suppose the set of weight vectors ξ ∈ V annihilated by all raising operators
is equal to the set of nonzero multiples of a single element. Then π is irreducible.

Proof. Otherwise, V = V1 ⊕ V2 with π acting on each factor, and Proposition 35.5
produces two linearly independent weight vectors ξj ∈ Vj , annihilated by all raising
operators.

We note the following. Set

(35.28) H(π) =
⋂
α>0

Ker Eα.

From (35.24) it follows that

(35.29) h ∈ h =⇒ dπ(h) : H(π) → H(π),

and of course {dπ(h)|H(π) : h ∈ h} forms a commuting family of skew-adjoint
operators, so they are simultaneously diagonalizable on H(π), i.e., H(π) is spanned
by weight vectors. Hence the hypothesis in Corollary 35.8 is equivalent to the
hypothesis that dimH(π) = 1.

We now head for a circle of results that include a converse to Corollary 35.8,
parallel to Propositions 19.4–19.5. Let π denote the representation of G on V ′

contragredient to π, given by

(35.30) 〈ξ, π(g)η〉 = 〈π(g−1)ξ, η〉, ξ ∈ V, η ∈ V ′.

Suppose ξ0 ∈ V is a nonraisable weight vector for π, with weight λ ∈ h′, and
suppose η0 ∈ V ′ is a nonlowerable weight vector for π, with weight −µ ∈ h′. As in
§19, we will study the function

(35.31) ϕ(g) = 〈π(g)ξ0, η0〉.

As stated in Proposition 35.5, we can extend π to a holomorphic representation of
the complexified group GC, which then extends ϕ to a holomorphic function on GC.

Write the complexified Lie algebra gC as

(35.32) gC = hC ⊕ n+ ⊕ n−, n+ =
⊕
α>0

gα, n− =
⊕
α<0

gα.
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Let D, N+, and N− denote the Lie subgroups of GC with Lie algebras hC, n+, and
n−, respectively. It follows from the inverse function theorem that

(35.33) N−DN+ = Greg

is a subset of GC that contains an open neighborhood of the identity element e. Let

(35.34) g = ζδz, ζ ∈ N−, z ∈ N+, δ = exp(h) = exp(h1 + ih2) ∈ D,

with hj ∈ h. We see that

(35.35)
π(z)ξ0 = ξ0, π(δ)ξ0 = eiλ(h)ξ0,

π(ζ)η0 = η0, π(δ−1)η0 = eiµ(h)η0.

Consequently,

(35.36) ϕ(ζg) = ϕ(g), ϕ(δg) = ei(µ(h1)+iµ(h2))ϕ(g),

and

(35.37) ϕ(gz) = ϕ(g), ϕ(gδ) = ei(λ(h1)+iλ(h2))ϕ(g).

Hence

(35.38)
ϕ(ζδz) = ϕ(δ) = ei(λ(h1)+iλ(h2))ϕ(e)

= ei(µ(h1)+iµ(h2))ϕ(e).

This identity is very significant, in light of the following result.

Lemma 35.9. Assume π is irreducible. Then the function ϕ has the property

(35.39) ϕ(e) 6= 0.

Proof. If ϕ(e) = 0, then (35.38) implies that ϕ(g) = 0 on Greg. Since ϕ is holomor-
phic and Greg contains a neighborhood of g, it follows that ϕ ≡ 0 on G. However,
if π is irreducible and ξ0 6= 0 then

(35.40) Span{π(g)ξ0 : g ∈ G}

is invariant, hence all of V , so ϕ ≡ 0 cannot hold. This proves the lemma.

From (35.38) and the lemma, we can deduce the following important result.
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Theorem 35.10. If π is irreducible on V , the only weight λ that is nonraisable is
the highest weight. Furthermore, the highest weight vector is unique, up to a scalar
multiple. Finally, if π and π2 are irreducible representations with the same highest
weight, they are unitarily equivalent.

Proof. The identity λ = µ (a consequence of (35.38)–(35.39)) proves the uniqueness
of λ, and establishes the first assertion. To proceed, note that if we normalize the
weight vectors so ϕ(e) = 1, the function ϕ(g) is uniquely characterized by the
following three properties:

ϕ is holomorphic on GC,(35.41)

ϕ(ζgz) = ϕ(g), ∀ ζ ∈ N−, z ∈ N+, g ∈ G,(35.42)

ϕ(δ) = ei(λ(h1)+iλ(h2)), ∀ δ = exp(h1 + ih2) ∈ D.(35.43)

Thus, if ξ1 were another highest weight vector, also normalized so 〈ξ1, η0〉 = 1, we
would have

(35.44) 〈π(g)ξ1, η0〉 = ϕ(g), ∀ g ∈ G,

so 〈π(g)(ξ1 − ξ0), η0〉 = 0 for all g, or equivalently

(35.45) 〈ξ1 − ξ0, π(g)η0〉 = 0, ∀ g ∈ G.

Since π is irreducible, this implies ξ1 = ξ0.
As for the final assertion of Theorem 35.10, let π2 be an irreducible representation

on V2, with the same highest weight λ as π. Pick a maximal weight vector ξ2 for π2

and a minimal weight vector η2 for its contragredient representation π2, normalized
so 〈ξ2, η2〉 = 1, and form

(35.46) ϕ2(g) = 〈π2(g)ξ2, η2〉.

Then ϕ2 also satisfies the conditions (35.41)–(35.43). Hence ϕ ≡ ϕ2. Hence π2

must be equivalent to π, since otherwise the Weyl orthogonality relations would
imply that ϕ and ϕ2 are orthogonal in L2(G).
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36. Roots and weights for compact G, II: injections su(2) ↪→ g

Recall from (35.15)–(35.17) the construction of e±α = xα ± iyα, spanning g±α,
satisfying

(36.1) [xα, yα] = −1
2
Hα, [Hα, xα] = −α(Hα)yα, [Hα, yα] = α(Hα)xα,

with Hα ∈ h given by (35.6). This holds for each root α. Recall that α(Hα) =
〈Hα,Hα〉 > 0. If we take the inner product on h′ induced by that on h, we also
have

(36.2) α(Hα) = 〈α, α〉,
and more generally λ(Hα) = 〈λ, α〉 for each λ ∈ h′. Let us set

(36.3) Xα
1 =

1
〈α, α〉Hα, Xα

2 =

√
2

〈α, α〉yα, Xα
3 =

√
2

〈α, α〉xα.

Then the commutation relations (36.1) are equivalent to

(36.4) [Xα
1 , Xα

2 ] = Xα
3 , [Xα

2 , Xα
3 ] = Xα

1 , [Xα
3 , Xα

1 ] = Xα
2 .

Now these commutation relations are identical to those in (18.2). Hence each root
α gives rise to an injective Lie algebra homomorphism su(2) ↪→ g, which in turn,
since SU(2) is simply connected, exponentiates to a Lie group homomorphism

(36.5) γα : SU(2) −→ G,

defined for each root α. Since dγα is injective, either γα is injective or Ker γα =
{±I}, the only proper normal subgroup of SU(2).

The homomorphisms (36.5) have implications for the behavior of a unitary rep-
resentation π of G (say on V ). In fact, given such π, the composition πα = π ◦ γα

is a unitary representation of SU(2), and the material of §18 applies. Suppose λ is
a weight of π, with weight space Vλ ⊂ V . Then

(36.6)

v ∈ Vλ =⇒ π(Exp tXα
1 )v = eitλ(Xα

1 )v

=⇒ π ◦ γα(etX1)v = eitλ(Xα
1 )v

=⇒ dπα(X1)v = iλ(Xα
1 )v.

Results of §18, analyzing (18.1), imply that λ(Xα
1 ) = n/2 for some n ∈ Z, hence

(36.7)
λ(Hα)
〈α, α〉 =

〈λ, α〉
〈α, α〉 =

n

2
, for some n ∈ Z.
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Note that

(36.8) dγα(X2 ∓ iX3) = ∓i

√
2

〈α, α〉 (xα ± iyα) = ∓i

√
2

〈α, α〉e±α,

hence, taking into account (18.10), we see that if Vλ is annihilated by all raising
operators for the representation π of G, then it is annihilated by the raising operator
for the representation π ◦ γα of SU(2), for each α > 0. This forces n ≥ 0 in (36.7),
for α > 0. We record the result.

Proposition 36.1. Let π be a unitary representation of G on V . Then for each
root α of g and each weight λ of π,

(36.9) 2
〈λ, α〉
〈α, α〉

is an integer. If α > 0 and Vλ is annihilated by all raising operators (e.g., if λ is a
highest weight), then (36.9) is a non-negative integer.

Example 1. Take G = U(n), take the basis {ej : 1 ≤ j ≤ n} of h given by
(19.8), which is orthonormal with respect to the Ad-invariant Hilbert-Schmidt inner
product on g = u(n). This then defines an order on h, and an order and an inner
product on h′. The roots are ωjk, given by (19.13), which are positive provided
j < k. An element λ ∈ h′ is given by λ = (d1, . . . , dn). We have 〈ωjk, ωjk〉 = 2 and

(36.10) 2
〈λ, ωjk〉
〈ωjk, ωjk〉 = dj − dk.

This is non-negative for all positive roots if and only if d1 ≥ · · · ≥ dn. For the right
side to be an integer for all j 6= k, it is sufficient (but not necessary) that all dj be
integers. Compare the characterization of highest weights in Theorem 21.1.

Example 2. Take G = SU(n). If u(n)C = hC ⊕ (⊕j 6=kgωjk
), then su(n)C has the

same form, with h replaced by h̃, the codimension one subspace of h defined by

(36.11) h̃ = {h ∈ h : Trh = 0}.

It is natural to take the order on h̃ induced from that on h via inclusion. The roots
for su(n) are the restrictions to h̃ of the elements ωjk, and the root spaces are still
the one-dimensional spans of the elements ejk, for each j 6= k. We have

(36.12) h̃′ = h′/{(r, . . . , r) : r ∈ R}.

The weights are equivalence classes (d1, . . . , dn) ∼ (d1 + r, . . . , dn + r), and (36.10)
holds in this context; note that dj−dk = (dj+r)−(dk+r). Again the condition that
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(36.10) be ≥ 0 whenever j < k becomes d1 ≥ · · · ≥ dn. If we pick r = −dn, then
the representative of λ is (d1, . . . , dn−1, 0), satisfying dj ∈ Z+, d1 ≥ · · · ≥ dn−1.
Compare the description of the highest weights for the irreducible representations
of SU(n) in Proposition 22.2.

Remark. In Example 2 we see that the necessary condition given in Proposition
36.1 for an element λ ∈ h′ to be the highest weight for some irreducible representa-
tion of SU(n) is also sufficient. By contrast, in Example 1 the necessary condition
given in Proposition 36.1 is not quite sufficient, since these conditions do not imply
that the entries dj be integers (only that their differences be integers). It turns
out that what is behind this dichotomy is that the Lie algebra of SU(n) has a triv-
ial center, while the center of the Lie algebra of U(n) is {iaI : a ∈ R}, which is
nontrivial. The following result completes Proposition 36.1.

Theorem of the Highest Weight. If G is a compact, simply connected Lie
group whose Lie algebra g has a trivial center, then the condition that (36.9) be a
non-negative integer for each positive root α is necessary and sufficient for a given
λ ∈ h′ to be the highest weight of some irreducible representation of G. One calls
such λ a dominant integral weight.

A proof can be found in Chapter 4 of [Wal]. We discuss an approach to obtain-
ing such a proof. Namely, one produces a certain finite set {λ1, . . . , λK} ⊂ h′ of
dominant integral weights with the property that each dominant integral weight λ
has the form

λ = n1λ1 + · · ·+ nKλK , nj ∈ Z+.

Then one exhibits irreducible unitary representations πj of G with highest weight
λj , 1 ≤ j ≤ K. Once one has this, the Theorem is a consequence of the following.

Proposition 36.2. Suppose πj is a unitary representation of G on Vj with highest
weight µj (with highest weight vector vj ∈ Vj). Then the representation

π1 ⊗ π2 on V1 ⊗ V2

has highest weight µ1 + µ2 (with highest weight vector v1 ⊗ v2).

Proof. Same as for Proposition 21.4.

Recall that this was the program used in §21 to classify the irreducible represen-
tations of U(n).

We turn our attention to the adjoint representation of G on gC. If we apply
Proposition 36.1 to the adjoint representation, we get:

Corollary 36.3. If α and β are roots, then

(36.13) nαβ = 2
〈α, β〉
〈β, β〉 ∈ Z.
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The integers nαβ are called the Cartan integers.

Remark 1. The orthogonal projection of β onto the linear span of α in h′ is given
by

(36.14) Pαβ =
〈α, β〉
〈α, α〉α.

Hence Corollary 36.3 impacts the geometry of the roots, as a subset of h′. We look
further at this impact.

Remark 2. Of course, one can reverse the roles of α and β in (36.13). Comparing
the results implies the following. If θαβ denotes the angle between α and β in h′,
then

(36.15) cos2 θαβ =
nαβnβα

4
,

and hence, since the numerator must be an integer,

(36.16) cos2 θαβ ∈
{

0,
1
4
,
1
2
,
3
4
, 1

}
.

It also follows that

(36.17) nαβ ∈ {0,±1,±2,±3,±4}.

More precisely, we have the following. Assume

(36.18) 〈α, β〉 6= 0, 〈α, α〉 ≥ 〈β, β〉 (so nαβ ≥ nβα).

Then, with σ = ±1,

cos2 θαβ =
1
4
⇐⇒ nαβ = nβα = σ(36.19)

=⇒ 〈α, α〉 = 〈β, β〉,
cos2 θαβ =

1
2
⇐⇒ nαβ = 2σ, nβα = σ(36.20)

=⇒ 〈α, α〉 = 2〈β, β〉,
cos2 θαβ =

3
4
⇐⇒ nαβ = 3σ, nβα = σ(36.21)

=⇒ 〈α, α〉 = 3〈β, β〉.

Here is another restriction on the set of roots.
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Proposition 36.4. If α is a root and also β = sα is a root, for some s ∈ R \ 0,
then s = ±1.

Proof. Interchanging the roles of α and β and changing the sign of β if necessary,
we see it suffices to show that if α is a root and 0 < s < 1, then sα is not a root.
If such sα were a root, (36.13) would imply 2s ∈ Z. This forces s = 1/2, i.e.,
β = (1/2)α, or α = 2β. Thus it suffices to show:

(36.22) If β is a root, then 2β is not a root.

To see this, consider

(36.23) Wβ = C-Span(Hβ)⊕
⊕

k∈Z
gkβ .

Then Wβ is invariant under Ad ◦γβ , i.e., we have a representation πβ of SU(2) on
Wβ . This representation splits into an orthogonal direct sum of irreducible pieces,
each isomorphic to a representation of the form D`/2, given in Proposition 18.2,
having weight space decomposition

(36.24) V−`/2 ⊕ V−`/2+1 ⊕ · · · ⊕ V`/2, dD`/2(X1) = iµ on Vµ.

Now if we take π = Ad in (36.6) (and replace α by β, and λ by kβ), we get

(36.25)

πβ(g) = Ad(γβ(g)) ⇒ dπβ(X1) = ad dγβ(X1) = adXβ
1

=
1

〈β, β〉 adHβ (by (36.3))

⇒ dπβ(X1) = ik on gkβ ,

since
ad Hβ

∣∣
gkβ

= ikβ(Hβ)Id = ik〈β, β〉Id.

Hence the only representations D`/2 of SU(2) that occur in the decomposition
of πβ are those for which ` is even. Each one of these has a copy of V0, on which
dπβ(X1) = 0. However, comparing (36.23) and (36.24), we see that this occurs only
as the one-dimensional space Span(Hβ). Hence πβ is irreducible. Since Span(Hβ)⊕
gβ⊕g−β is invariant under πβ = Ad ◦γβ , we must have (36.23) equal to Span(Hβ)⊕
gβ ⊕ g−β . This establishes (36.22) and completes the proof of Proposition 36.4.

In light of Proposition 36.4, we can complement (36.19)–(36.21) with

(36.26)
cos2 θαβ = 1 ⇐⇒ α = σβ

=⇒ nαβ = nβα = 2σ,

where again σ = ±1. Also, we can sharpen (36.17) to

(36.27) nαβ ∈ {0,±1,±2,±3}.
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To see this, note that nαβ = ±4 ⇒ nβα = ±1 ⇒ 〈β, β〉 = 4〈α, α〉 and cos2 θαβ = 1,
but these last two identities contradict (36.26).

We also note that, given |α| ≥ |β| and β 6= ±α, then, by (36.19)–(36.21),

(36.27A)

nαβ = 1 ⇔ nβα = 1, nαβ = −1 ⇔ nβα = −1,

nαβ = 2 ⇔ nβα = 1, nαβ = −2 ⇔ nβα = −1,

nαβ = 3 ⇔ nβα = 1, nαβ = −3 ⇔ nβα = −1,

Here is another perspective on the numbers in (36.9). Assume λ is a weight for
the unitary representation π of G on V , take ϕ0 ∈ Vλ, let α be a root of g, and,
with E±α = dπ(e±α), assume

(36.28)
(Eα)jϕ0 = ϕj 6= 0 in Vλ+jα, for 0 ≤ j ≤ p,

(E−α)jϕ0 = ϕ−j 6= 0 in Vλ−jα, for 0 ≤ j ≤ m,

while

(36.29) Eαϕp = 0 = E−αϕ−m.

We call {ϕj : −m ≤ j ≤ p} an α-string.
For such a string, we set

(36.30) ψ0 = (Eα)pϕ0 ∈ Vλ∗ , λ∗ = λ + pα,

and we have

(36.31)
(E−α)kψ0 = ψk 6= 0 in Vλ∗−kα, for 0 ≤ k ≤ q = m + p,

E−αψq = 0, Eαψ0 = 0.

We have the following important identity.

Proposition 36.5. Given an α-string, as described above,

(36.32) m + p = 2
〈λ + pα, α〉
〈α, α〉 ,

hence

(36.33) m− p = 2
〈λ, α〉
〈α, α〉 .

Proof. Equivalently, in the setup (36.30)–(36.31), we claim

(36.34) q = 2
〈λ∗, α〉
〈α, α〉 ,

with q = m + p. Clearly {ψk : 0 ≤ k ≤ q} are linearly independent vectors in V ,
spanning a (q+1)-dimensional space W , on which the complex Lie algebra spanned
by {Eα, E−α,Hα} acts irreducibly. Thus we have the representation Dq/2 of SU(2)
on W . The calculation (36.6)–(36.7), with Vλ replaced by Vλ∗ , and n by q, exactly
gives (36.34).

When Proposition 36.5 is specialized to the adjoint representation of G on gC,
we get some useful results on the roots of g. Here is one.
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Proposition 36.6. If α and β are roots of g and [eα, eβ ] = 0, then gα+β = 0.

Proof. In this case, we have an α-string generated by eβ , of the form {gβ+µα :
−M ≤ µ ≤ 0}, for some M ∈ Z+. By (36.33), with m = M, p = 0,

(36.35) 2
〈β, α〉
〈α, α〉 = M.

Now assume ξ ∈ gα+β and ξ 6= 0. Then we have an α-string generated by ξ, of the
form {gα+β+να : −m ≤ ν ≤ p}, with m, p ∈ Z+. By (36.33),

(36.36) m− p = 2
〈α + β, α〉
〈α, α〉 = 2 + M,

hence

(36.37) m = 2 + M + p ≥ 2 + M ≥ 2.

Also

(36.38)
ad e−α(ξ) = Aeβ (since dim gβ = 1)

6= 0 (since m ≥ 2).

Thus the bottom of this α-string is gβ−Mα = gβ+α−(M+1)α, hence

(36.39) m = M + 1.

However, this contradicts (36.37), so there can be no such ξ.

Corollary 36.7. If α and β are roots of g, then

(36.40) gα+β = ad eα(gβ).

Note that Proposition 36.6 applies with α = β to reprove (36.22), again proving
Proposition 36.4.
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37. The Weyl group

In §21 we found it useful to know that conjugation by a permutation matrix Eσ,
defined on the standard basis {u1, . . . , un} of Cn by

(37.1) Eσuk = uσ(k),

preserves the maximal torus T ⊂ U(n), consisting of diagonal unitary matrices, and
permutes their entries:

(37.2) E−1
σ diag(c1, . . . , cn)Eσ = diag(cσ(1), . . . , cσ(n)).

It followed that if π is a unitary representation of U(n) on V , then applications of
π(Eσ) permute the weight spaces; cf. (21.4).

Here we study an analogous structure on a general compact, connected Lie group
G. The role of the symmetric group Sn for G = U(n) is taken by the Weyl group
W (G), defined as

(37.3) W (G) = N(T)/T,

where T is a maximal torus of G and N(T) is the normalizer of T:

(37.4) N(T) = {g ∈ G : g−1xg ∈ T, ∀x ∈ T}.

Note that

(37.5) g ∈ N(T) =⇒ Ad g : h → h.

We define the representation W of N(T) on h by

(37.6) W(g) = Ad(g)
∣∣
h
, for g ∈ N(T).

Then N(T) has the contragredient representation W on h′:

(37.7) 〈W(g−1)H, λ〉 = 〈H,W(g)λ〉, g ∈ N(T), H ∈ h, λ ∈ h′.

Clearly g ∈ T⇒W(g) = Ad(g)|h = I, so we get representations of W (G) on h and
h′, which we also denote W and W. We put an Ad-invariant inner product on g,
inducing an inner product on h invariant under W(g) for each g ∈ N(T), and this
induces an inner product on h′, invariant under W(g) for each g ∈ N(T). Since the
representation W is real, W and W are equivalent representations, intertwined by
the isomorphism h ≈ h′ induced by the inner product on h just mentioned.

The following result generalizes (21.4).
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Proposition 37.1. Let π be a unitary representation of G on V , with weight space
decomposition V = ⊕Vλ. Then

(37.8) g ∈ N(T) =⇒ π(g) : Vλ → VW(g)λ.

Proof. Recall that

(37.9)
Vλ = {v ∈ V : dπ(h)v = iλ(h)v, ∀h ∈ h}

= {v ∈ V : π(Exph)v = eiλ(h)v, ∀h ∈ h}.

Now

(37.10)
g ∈ N(T), v ∈ Vλ =⇒ π(g−1)π(Exph)π(g)v = π(ExpAd g−1 h)v

= eiλ(Ad g−1 h)v,

and

(37.11) λ(Ad g−1 h) = 〈W(g−1)h, λ〉 = 〈h,W(g)λ〉,

so

(37.12)
g ∈ N(T), v ∈ Vλ =⇒ π(Exph)π(g)v = ei(W(g)λ)(h)π(g)v

=⇒ π(g)v ∈ VW(g)λ,

as stated in (37.8).

In particular, the Weyl group permutes the roots of g. That is, if α is a root, so
is W(g)α, for each g ∈ N(T). The following result gives valuable information on
how W (G) permutes the roots, and implies that W (G) has lots of elements.

Proposition 37.2. For each root α, there exists gα ∈ N(T) such that

(37.13) W(gα)H = H − 2
〈Hα,H〉
〈Hα,Hα〉Hα, ∀H ∈ h,

i.e., W(gα) is reflection across the hyperplane in h orthogonal to Hα. Hence

(37.14) W(gα)λ = λ− 2
〈α, λ〉
〈α, α〉α, ∀λ ∈ h′.

This is reflection across the hyperplane in h′ orthogonal to α.

Proof. We will show that (37.13) holds with gα = Aα(π), where

(37.15) Aα(t) = Exp tXα
3 .
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Here Xα
3 is as in (36.3) and π = 3.14159 · · · . To begin, note that

(37.16) Ad(Aα(t))H = et ad Xα
3 H.

Now

(37.17)

H ∈ kerα ⊂ h =⇒ ad e±α(H) = 0 (since [H, e±α] = ±iα(H)e±α)

=⇒ ad Xα
3 (H) = 0

=⇒ et ad Xα
3 (H) = H.

We note parenthetically that by the same reasoning, α(H) = 0 ⇒ ad Xα
2 (H) = 0,

and of course ad(Hα)H = 0; that is to say, more generally than (37.17), we have

(37.18) H ∈ kerα =⇒ Ad ◦γα(g)H = H, ∀ g ∈ SU(2),

with γα defined by (36.5).
Since α(H) = 〈H,Hα〉, we have ker α = (Hα)⊥. The result (37.13) (and the

containment Aα(π) ∈ N(T)) will hence follow from (37.17) together with the result

(37.19) Ad(Aα(π))Hα = −Hα.

To establish (37.19), we analyze the action of Ad(Aα(t)) on Xα
1 (which by (36.3)

is parallel to Hα). The commutation relations (36.4) give

(37.20) ad Xα
3 (Xα

1 ± iXα
2 ) = ∓i(Xα

1 ± iXα
2 ),

hence

(37.21) et ad Xα
3 (Xα

1 ± iXα
2 ) = e∓it(Xα

1 ± iXα
2 ),

hence

(37.22)

Ad(Aα(t))Xα
1 = et ad Xα

3 Xα
1

=
1
2
et ad Xα

3 [(Xα
1 + iXα

2 ) + (Xα
1 − iXα

2 )]

=
1
2
[e−it(Xα

1 + iXα
2 ) + eit(Xα

1 − iXα
2 )],

hence

(37.23) Ad(Aα(π))Xα
1 = −Xα

1 ,

which gives (37.19). This proves (37.13), and (37.14) follows.

Remark. If α, β ∈ h′ are both roots, then (37.14) together with (36.13) gives

(37.24) W(gα)β = β − nβαα,

where nαβ are the Cartan integers. We use the notation

(37.25) Sαβ = W(gα)β.

The following result implies we can identify W (G) with its image under W in
Gl(h), or under W in Gl(h′).
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Proposition 37.3. If g ∈ G and g−1xg = x for each x ∈ T, then g ∈ T. Hence if
g ∈ N(T) and W(g) = I on h, then g ∈ T.

For a proof valid for general compact, connected G, see [Si], p. 167. In the special
case G = U(n) (or G = SU(n)) we can see the result as follows. Take g ∈ U(n)
and x = diag(c1, . . . , cn) ∈ T. Then forming gx multiplies the jth column of g by
cj and forming xg multiplies the jth row of g by cj . From this it is apparent that
if gx = xg for all such x, then g must be a diagonal matrix.

Here is another proof, for G = U(n). If g ∈ U(n) commutes with each x ∈ T,
then g commutes with superpositions of such elements. In particular, one can take
xj = (1, . . . ,−1, . . . , 1), with all ones except −1 in the jth position, and see that g
commutes with I −xj , hence with the orthogonal projection onto Span ej , for each
j. This requires g to be diagonal, and forces g ∈ T.

The reader is invited to produce a similar argument for G = SO(n).

Regarding the image of W (G) underW, of course each elementW(g) (g ∈ N(T))
acts trivially on the center z of g (z ⊂ h). By Proposition 35.3 and (35.6), we have

(37.26) h = z⊕ Span {Hα : α root}.

Consequently,

(37.27)

g ∈ N(T), W(g)Hα = Hα, ∀α

=⇒W(g) = I on h

=⇒ [g] = [e] in W (G),

where [g] denotes the image of g under N(T) → N(T)/T = W (G). We deduce that
the isomorphic image of W (G) in Gl(h) is in turn isomorphic to a subgroup of the
group of permutations of the set

(37.28) ∆ = {α ∈ h′ : α root of g}.

In particular,

(37.29) #W (G)
∣∣ (#∆)!,

where #S denotes the number of elements of a set S. To reiterate, for g ∈ N(T),
the action of W(g) on h′ is uniquely determined by the action of W(g) on the roots.
The following result complements this assertion.

Proposition 37.4. The image of W (G) under W in Gl(h′) is generated by the set
of reflections Sα, given by (37.24)–(37.25).

For a proof of this, see [Si], Chapter 8. It is easy enough to verify in case
G = U(n). In that case,

(37.30) ∆ = {ωjk : j 6= k, 1 ≤ j, k ≤ n},
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with ωjk as in (19.13). Equivalently, with {ej : 1 ≤ j ≤ n} the basis of h given by
(19.8) and {e′j : 1 ≤ j ≤ n} the dual basis, ωjk = e′j − e′k. A calculation gives

(37.31) Sωjk
ω`m = ωσ(`)σ(m), where σ = (j k),

i.e., σ ∈ Sn is the transposition that switches j and k and leaves the other elements
of {1, . . . , n} fixed. It is well known that the set of transpositions generates Sn, so
{Sωjk

} generates

(37.32) {Sσ : σ ∈ Sn}, Sσω`m = ωσ(`)σ(m).

That this exhausts W (U(n)) follows from:

Proposition 37.5. Let V be an n-dimensional real inner product space with or-
thonormal basis {e′j : 1 ≤ j ≤ n}. Let S be an orthogonal transformation on V
such that S fixes e′1 + · · ·+ e′n and permutes the vectors ωjk = e′j − e′k, j 6= k. Then
S has the form (37.32), for some σ ∈ Sn.

Proof. Left to the reader.

Given Proposition 37.5, we have

(37.33) W (U(n)) ≈ Sn.

We also claim

(37.34) W (SU(n)) ≈ Sn.

The action of σ ∈ Sn on the maximal torus in SU(n) is given by a slight modification
of (37.1)–(37.2), needed because det Eσ = sgn σ. More generally than (37.1), we
can take θ = (θ1, . . . , θn) ∈ {±1} × · · · × {±1} and define Eθ

σ ∈ O(n) ⊂ U(n) by

(37.35) Eθ
σuk = θkuσ(k).

Then

(37.36) det Eθ
σ = θ1 · · · θn · sgnσ,

so for each σ ∈ Sn there exist elements Eθ
σ ∈ SO(n) ⊂ SU(n). One has the following

extension of (37.2):

(37.37) (Eθ
σ)−1 diag(c1, . . . , cn)Eθ

σ = diag(cσ(1), . . . , cσ(n)).

If also Eϕ
σ ∈ SU(n), then Eθ

σ(Eϕ
σ )−1 is a diagonal element of SU(n), so the two ele-

ments define the same element of N(T)/T, where T is the maximal torus consisting
of diagonal elements of SU(n).
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38. A generating function

Let G be a compact, connected Lie group, with maximal torus T, whose Lie
algebra is denoted h. Let λ ∈ h′ run over the collection of highest weights for
irreducible unitary representations of G. Denote the corresponding representation
by πλ, acting on Wλ. Parallel to (35.31), we let ξλ ∈ Wλ be a highest weight vector,
and take ηλ ∈ W ′

λ to be a lowest weight vector for πλ. We know by Lemma 35.9
that 〈ξλ, ηλ〉 6= 0; normalize so that 〈ξλ, ηλ〉 = 1, and set

(38.1) ϕλ(g) = 〈πλ(g)ξλ, ηλ〉.
This is just as in (35.31), except that here we record the dependence on λ. This
family of functions on G has the following important property.

Proposition 38.1. If λ and µ are highest weights, then

(38.2) ϕλ+µ(g) = ϕλ(g)ϕµ(g).

Proof. We know by Proposition 36.2 that λ + µ is the highest weight for an irre-
ducible component of πλ ⊗ πµ on Wλ ⊗Wµ, with weight vector ξλ ⊗ ξµ. Similarly,
−λ− µ is the lowest weight for an irreducible component of πλ ⊗ πµ on W ′

λ ⊗W ′
µ,

with weight vector ηλ ⊗ ηµ. Hence, by uniqueness (cf. Theorem 35.10),

(38.3)
ϕλ+µ(g) = 〈πλ(g)⊗ πµ(g)(ξλ ⊗ ξµ), ηλ ⊗ ηµ〉

= ϕλ(g)ϕµ(g),

as asserted.

Let us recall the conjugate linear map C : Vλ → V ′
λ from (7.13)–(7.14), satisfying

(38.4) (u, v) = 〈u,Cv〉, πλ(g) = Cπλ(g)C−1.

In this setting we have (up to scaling)

(38.5) ηλ = Cξλ,

and hence

(38.6) ϕλ(g) = (πλ(g)ξλ, ξλ),

using the Hermitian inner product on Wλ rather than the Wλ −W ′
λ duality. We

require (ξλ, ξλ) = 1, so as before

(38.7) ϕλ(e) = 1.

We now demonstrate a connection between ϕλ and the character χλ(g) = Trπλ(g).
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Proposition 38.2. We have

(38.8) χλ(x) = dλ

∫

G

ϕλ(g−1xg) dg,

where dλ = dim Wλ.

Proof. Denote the right side of (38.8) by ψλ(x). We have

(38.9) ψλ(g−1xg) = ψλ(x), ∀x, g ∈ G.

That is to say, ψλ is central, so by Proposition 8.1 it must be a constant multiple
of χλ. Since ψλ(e) = dλ = χλ(e), we have the identity (38.8).
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39. Representations of SO(n), n ≤ 5

Before proceeding to general results, in the next section, here we describe maxi-
mal tori of G = SO(n), the root space decompositions, and the Weyl groups, when
n ≤ 5. We start with n = 2. We have

(39.1) SO(2) ≈ S1, so(2) = h ≈ R, no roots.

Moving on to n = 3, as shown in §18, there is a 2-fold covering map

(39.2) SU(2) −→ SO(3), hence so(3) ≈ su(2),

we have h spanned by X1, and root vectors X± = X2 ∓ iX3, with Xj as in (18.3).
Hence

(39.3) dim so(3) = 3, rank so(3) = 1, there are 2 roots.

Next, SO(4) was also studied in §18. As shown there, there is a 2-fold covering map

(39.4) SU(2)× SU(2) −→ SO(4), hence so(4) ≈ su(2)⊕ su(2).

On each factor we have a piece of h and a couple of root vectors (in the complexi-
fication), so

(39.5) dim so(4) = 6, rank so(4) = 2, there are 4 roots.

As a warm-up for studying SO(5), we take a second look at the maximal torus
of SO(4) and the roots of so(4). We have

(39.6) T =
{(

Rθ1 0
0 Rθ2

)
: θj ∈ R/2πZ

}
, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Equivalently,

(39.7) h =
{

Da,b =
(

aJ 0
0 bJ

)
: a, b ∈ R

}
, J =

(
0 −1
1 0

)
.

To get the root spaces gα, we decompose the following linear complement to hC in
so(4)C,

(39.8)
{

AC =
(

0 C
−Ct 0

)
: C ∈ M(2,C)

}
,
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into 4 pieces, each of complex dimension 1, joint eigenvectors for the ad h action.
A computation gives

(39.9) [Da,b, AC ] =
(

0 aJC − bCJ
−bJCt + aCtJ 0

)
.

Thus we look for Ck ∈ M(2,C) such that

(39.10) aJCk − bCkJ = iαk(a, b)Ck,

or equivalently,

(39.11) JCk = iαk(1, 0)Ck, CkJ = iαk(0, 1)Ck.

Such matrices can be found by inspection from the formulas

(39.12) J

(
1
±i

)
= ∓i

(
1
±i

)
, (1,±i)J = ±i(1,±i).

One obtains
(39.13)

C1 =
(

1 i
i −1

)
, C2 =

(
1 −i
−i −1

)
, C3 =

(
1 −i
i 1

)
, C4 =

(
1 i
−i 1

)
,

for which (39.10)–(39.11) hold with
(39.14)
α1(a, b) = −(a + b), α2(a, b) = a + b, α3(a, b) = −(a− b), α4(a, b) = a− b.

We now tackle the case n = 5. A maximal torus of SO(5) is given by

(39.15) T =








Rθ1

Rθ2

1


 : θj ∈ R/2πZ



 ,

with Rθ as in (39.6). In this case,

(39.16) h =



Da,b =




aJ
bJ

0


 : a, b ∈ R



 ,

with J as in (39.7). Parallel to (39.5), we have

(39.17) dim so(5) = 10, rank so(5) = 2, there are 8 roots.
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Four of the root spaces are spanned by

(39.18)




0 Cj

−Ct
j 0

0


 ,

with Cj as in (39.13). The corresponding roots α ∈ h′ ≈ R2, with h ≈ {(a, b) :
a, b ∈ R} via (39.16), are again given by (39.14).

The other 4 root spaces are 1-dimensional complex subspaces of

(39.19)



Ev,w =




v
w

−vt −wt 0


 : v, w ∈ C2



 .

A computation gives

(39.20) [Da,b, Ev,w] =




aJv
bJw

avtJ bwtJ 0


 .

Referring to (39.12), we take

(39.21) vj = wj =
(

1
(−1)j−1i

)
,

to get

(39.22) [Da,b, Evj ,0] = iβ+
j (a, b)Evj ,0

with

(39.23) β+
j (a, b) = (−1)ja,

and

(39.24) [Da,b, E0,wj ] = iβ−j (a, b)E0,wj ,

with

(39.25) β−j (a, b) = (−1)jb.

In summary, the 8 roots of so(5) are αj (1 ≤ j ≤ 4), given by (39.14), and β±j (1 ≤
j ≤ 2), given by (39.23) and (39.24). These roots, expanded with respect to the
basis dual to {D1,0, D0,1} of h, from (39.16), are depicted in Fig. 39.1.

Take a look at the (image under W of) the elements of the Weyl group, acting
on h′. In particular, the set of reflections {Sα : α ∈ ∆}, given by (37.24)–(37.25),
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generate a group that coincides with the symmetry group of the square, D4. Since
each element W(g), g ∈ N(T), must permute the roots and act as an orthogonal
transformation on h′, we see that W (G) is generated by {Sα : α ∈ ∆} in this case,
illustrating Proposition 37.4. We also have

(39.26) W (SO(5)) ≈ D4.

Another readily verifiable result is that the unique non-raisable weight vector
(up to scaling) is the element C2 of gα2 . Hence the adjoint representation of SO(5)
on so(5)C is irreducible. Equivalently,

(39.27) so(5)C is simple,

as a complex Lie algebra.
Having looked at the roots of so(5), i.e., the weights for the adjoint representa-

tion, we next turn to the standard representation of SO(5) on C5, and decompose
C5 = ⊕Vλ, where

(39.28) Vλ = {v ∈ C5 : Hv = iλ(H)v, ∀H ∈ h}.

Here H takes the form Da,b of (39.16). We have

(39.29) Da,b




1
±i
0
0
0


 = ∓ia




1
±i
0
0
0


 , weights λ∓1 (a, b) = ∓a,

(39.30) Da,b




0
0
1
±i
0


 = ∓ib




0
0
1
±i
0


 , weights λ∓2 (a, b) = ∓b,

and

(39.31) Da,b




0
0
0
0
1


 = 0, weight λ3(a, b) = 0.

In summary:

(39.32)
λ+

1 = a = β+
2 , λ−1 = −a = β+

1

λ+
2 = b = β−2 , λ−2 = −b = β−1 , λ3 = 0.
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The highest weight is λ+
1 = β+

2 , and this can be seen to be the only non-raisable
weight. Hence the standard representation of SO(5) on C5 is irreducible. This
is a special case of the fact that the standard representation of SO(n) on Cn is
irreducible whenever n ≥ 3, which will be proven in §40.

At this point we have identified α2 and β+
2 as highest weights of irreducible

unitary representations of SO(5). Of course, 0 ∈ h′ is the highest weight of the
trivial representation. We can produce other elements of h′ known to be highest
weights of irreducible representations of SO(5), using the observation that

(39.33)
µ1, µ2 highest weights for irreducible representations of G

=⇒ µ1 + µ2 highest weight for an irreducible representation.

Cf. Proposition 36.2. See Figure 39.2 for a depiction of the elements so produced,
depicted by two black dots (representing α2 and β+

2 ) and a collection of circles
(representing the other non-negative integral combinations of α2 and β+

2 ). These
elements of h′ are not all the dominant integral weights, as specified in the Theorem
of the Highest Weight in §36. It is readily checked that α2/2 is also dominant
integral, and the collection of all dominant integral weights is the set of non-negative
integral combinations of α2/2 and β+

2 . The additional dominant integral weights
are depicted as squares in Figure 39.2.

In this context, the group to which the Theorem of the Highest Weight applies
is not SO(5), but its simply connected double cover. In general, for n ≥ 3, SO(n)
has a simply connected double cover

(39.34) Spin(n) −→ SO(n).

This group will be constructed in §42, following prerequisite material on Clifford
algebras presented in §41. Section 43 will present spinor representations of Spin(n).
For n = 5, there will be such a representation with highest weight α2/2.
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40. Representations of SO(n), general n

We present some results on irreducible representations of SO(n) valid for general
n. To start, note that SO(n) (and more generally Gl(n)) acts on Λ`Rn for each
` ∈ {0, 1, . . . , n}, via

(40.1) Λ`(g) v1 ∧ · · · ∧ v` = gv1 ∧ · · · ∧ gv`.

This extends by complexification to Λ`(g) : Λ`Cn → Λ`Cn.

Proposition 40.1. The representation Λ` of SO(n) on Λ`Cn is irreducible for each
` ∈ {0, . . . , n}, except when n is even and ` = n/2.

Proof. To start, we assume ` < n/2. Let {ej : 1 ≤ j ≤ n} be the standard basis of
Rn, hence of Cn. Assume V ⊂ Λ`Cn is a complex linear subspace, invariant under
the SO(n) action, and assume V 6= 0. Pick a nonzero ϕ ∈ V , and write

(40.2) ϕ =
∑

ai1···i`
ei1 ∧ · · · ∧ ei`

,

the sum taken over `-tuples satisfying 1 ≤ i1 < · · · < i` ≤ n.
Suppose there is only one nonzero term, so we can assume

(40.3) ϕ = ei1 ∧ · · · ∧ ei`
.

Then as g runs over elements Eθ
σ ∈ SO(n) given by

(40.4) Eθ
σej = θjeσ(j), σ ∈ Sn, θj = ±1,

such that det Eθ
σ = θ1 · · · θn(sgn σ) = 1, we have Λ`(g)(ei1 ∧ · · · ∧ ei`

) running
over ±ej1 ∧ · · · ∧ ejn for all multiindices satisfying 1 ≤ j1 < · · · < j` ≤ n, hence
V = Λ`Cn.

Next suppose ϕ as in (40.2) belongs to V and at least 2 of the coefficients are
nonzero, say ai1···i`

6= 0 and aj1···j`
6= 0, with (i1, . . . , i`) 6= (j1, . . . , j`). As long as

` < n/2, there exist a, b ∈ {1, . . . , n} such that

(40.5) a ∈ {i1, . . . , i`}, a /∈ {j1, . . . , j`}, b /∈ {i1, . . . , i`} ∪ {j1, . . . , j`}.
Choose g ∈ SO(n) so that

(40.6) gea = −ea, geb = −eb, gej = ej otherwise.

Then

(40.7) ψ = ϕ + Λ`(g)ϕ

has fewer nonzero coefficients than ϕ, but it has at least one. An induction finishes
the irreducibility proof for ` < n/2.

To take care of the case n/2 < ` ≤ n, we have the following.
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Proposition 40.2. For 0 ≤ ` ≤ n, the representations Λ` of SO(n) on Λ`Cn and
Λn−` of SO(n) on Λn−`Cn are equivalent.

Proof. We bring in the Hodge star operator

(40.8) ∗ : Λ`Rn −→ Λn−`Rn,

defined for ψ ∈ Λ`Rn by

(40.9) ϕ ∧ ∗ψ = 〈ϕ,ψ〉ω, ∀ϕ ∈ Λ`Rn,

where ω ∈ ΛnRn is the “volume element” e1 ∧ · · · ∧ en and 〈 , 〉 is the natural
inner product on Λ`Rn specified as follows. An inner product on a real vector
space V induces an isomorphism V → V ′, which gives an isomorphism Λ`V →
Λ`V ′ ≈ (Λ`V )′, hence an inner product on Λ`V . In the case V = Rn with standard
orthonormal basis {ej : 1 ≤ j ≤ n}, the set {ei1 ∧ · · · ∧ ei`

: 1 ≤ i1 < · · · < i` ≤ n}
is an orthonormal basis for Λ`Rn. With such a specification, we have

(40.10) ∗ ◦ Λ`(g) = Λn−`(g) ◦ ∗

whenever g ∈ Gl(n,R) preserves the inner product and ω, i.e., whenever g ∈ SO(n).
Having this, we extend

(40.11) ∗ : Λ`Cn −→ Λn−`Cn

by C-linearity, and (40.10) continues to hold. To complete the proof of Proposition
40.2, we note that ∗ in (40.11) is an isomorphism. In fact, a calculation gives

(40.11A) ∗ei1 ∧ · · · ∧ ei`
= (sgn π)ej1 ∧ · · · ∧ ejn−`

,

where {i1, . . . , i`, j1, . . . , jn−`} = {1, . . . , n}, and the permutation π puts this set of
indices in standard order. It follows that

(40.12) ∗∗ = (−1)`(n−`) on Λ`Cn.

Proposition 40.2 finishes the proof of all the statements in Proposition 40.1 about
the action of SO(n) on Λ`Cn for ` 6= n/2. In case n = 2k and ` = k, we have the
SO(2k) action commuting with ∗ : ΛkC2k → ΛkC2k. Note that if 1 ≤ i1 < · · · <
ik ≤ 2k,

(40.13) ∗ei1 ∧ · · · eik
= ±ej1 ∧ · · · ∧ ejk

, {i1, . . . , ik} ∪ {j1, . . . , jk} = {1, . . . , 2k},

so ∗ is not a multiple of the identity. According to (40.12),

(40.14) ∗2 = (−1)k2
= (−1)k on ΛkC2k.
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Hence

(40.15)
k even =⇒ Spec ∗ = {±1} on ΛkC2k,

k odd =⇒ Spec ∗ = {±i} on ΛkC2k.

(As an aside, the definitions imply that ∗ is orthogonal on Λ`Rn and hence unitary
on Λ`Cn. Consequently, by (40.14), ∗ is self-adjoint on ΛkC2k for k even and skew-
adjoint on ΛkC2k for k odd.) We see that ΛkC2k breaks up into two pieces under
the SO(2k) action:

(40.16)

ΛkC2k = Λk
+C2k ⊕ Λk

−C2k,

Λk
±C2k = ± 1 eigenspace of ∗ for k even

± i eigenspace of ∗ for k odd.

We also have

(40.17)
g ∈ O(n), det g = −1 =⇒ ∗ ◦ Λ`(g) = −Λn−`(g) ◦ ∗, ∀ ` ∈ {1, . . . , n}

=⇒ Λk(g) : Λk
+C2k ≈→ Λk

−C2k,

the latter when n = 2k.
The following is one complement to Proposition 40.1.

Proposition 40.3. The action Λk of O(2k) on ΛkC2k is irreducible.

Proof. This is a variation of the proof of Proposition 40.1. Say V ⊂ ΛkC2k is
invariant under the O(2k) action. Take nonzero ϕ ∈ V , represented as in (40.2). If
ϕ has the form (40.3), the argument given before implies V = ΛkC2k. If there are
at least two nonzero coefficients in (40.2), say ai1···ik

and aj1···jk
, in this situation

we take a ∈ {1, . . . , 2k} such that a ∈ {i1, . . . , ik} but a /∈ {j1, . . . , jk}, and in place
of (40.6) define g ∈ O(n) by

(40.18) gea = −ea, gej = ej otherwise.

Then, as in (40.7),

(40.19) ψ = ϕ + Λk(g)ϕ

has fewer non-vanishing coefficients than ϕ, but is does have at least one. As in
Proposition 40.1, an induction finishes the proof of irreducibility.

Here is another complement to Proposition 40.1.
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Proposition 40.4. The representations Λk
± of SO(2k) on Λk

±C2k are irreducible.

Proof. Take the case Λk
+C2k. Suppose V+ ⊂ Λk

+C2k is nonzero and invariant under
the SO(2k) action. Take g0 ∈ O(2k) with det g0 = −1, and set

(40.20) V− = Λk(g0)V+,

a subspace of Λk
−C2k, by (40.17). Consider

(40.21) V = V+ ⊕ V− ⊂ ΛkC2k.

We have

(40.22) g ∈ O(2k) =⇒ Λk(g) : V → V,

and hence, by Proposition 40.2, V = ΛkC2k. This forces V+ = Λk
+C2k, and proves

irreducibility of Λk
+. The treatment of Λk

− is similar.

We next consider the weights and weight spaces for the representations Λ`. We
take the following maximal torus in SO(n). Assume n = 2k or n = 2k + 1. For
1 ≤ j ≤ k, define Rj(θ) by

(40.23)

Rj(θ)e2j−1 = (cos θ)e2j−1 + (sin θ)e2j

Rj(θ)e2j = −(sin θ)e2j−1 + (cos θ)e2j

Rj(θ)ei = ei for i /∈ {2j − 1, 2j}.
Then we take

(40.24) T = {R1(θ1) · · ·Rk(θk) : θj ∈ R/2πZ}.
The Lie algebra h of T is spanned by {J2j−1,2j : 1 ≤ j ≤ k}, where, for 1 ≤ i < j ≤
k,

(40.25) Jijei = ej , Jijej = −ei, Jijem = 0 for m /∈ {i, j}.
Let us also set

(40.26) Ej = J2j−1,2j .

We prepare to calculate dΛ`(Ej) on Λ`Cn. We assume 0 ≤ ` < n/2, n = 2k or
2k + 1. It is convenient to pass from the standard basis {e1, . . . , en} of Rn (hence
of Cn) to the orthonormal basis {u1, . . . , un} of Cn, given by

(40.27)

u2j−1 =
1√
2
(e2j−1 − ie2j),

u2j =
1√
2
(e2j−1 + ie2j), 1 ≤ j ≤ k,

un = en, if n = 2k + 1.
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We have

(40.28)

Eju2j−1 = iu2j−1,

Eju2j = −iu2j ,

Ejui = 0, if i /∈ {2j − 1, 2j}.
Since

(40.29)
dΛ`(Ej)ui1 ∧ · · · ∧ ui`

= Ejui1 ∧ ui2 ∧ · · · ∧ ui`
+ · · ·

+ ui1 ∧ · · · ∧ ui`−1 ∧ Ejui`
,

we get

(40.30)

dΛ`(Ej)ui1 ∧ · · · ∧ ui`

= i ui1 ∧ · · · ∧ ui`
, if 2j − 1 ∈ {i1, . . . , i`}, and 2j /∈ {i1, . . . , i`},

−i ui1 ∧ · · · ∧ ui`
, if 2j ∈ {i1, . . . , i`}, and 2j − 1 /∈ {i1, . . . , i`},

0 otherwise.

Hence we have the following.

Proposition 40.5. If ` < n/2, then the monomials

{ui1 ∧ · · · ∧ ui`
: 1 ≤ i1 < · · · < i` ≤ n}

form a basis of weight vectors, with weights determined by (40.30), for the represen-
tation Λ` of SO(n) on Λ`Cn. In particular, this representation has highest weight
given by the following k-tuple, if n = 2k or 2k + 1:

(40.31) (1, . . . , 1, 0, . . . , 0) (` ones),

with highest weight vector

(40.32) u1 ∧ u3 ∧ · · · ∧ u2`−1.

Recall Proposition 40.2, which then takes care of the cases n/2 < ` ≤ n. Finally,
consider the case n = 2k, ` = k. The calculations (40.27)–(40.30) still apply. We
have weight vectors

(40.33)
ϕ0 = u1 ∧ u3 ∧ · · · ∧ u2k−1, weight (1, . . . , 1, 1) (k-tuple),

ϕ1 = u1 ∧ u3 ∧ · · · ∧ u2k−3 ∧ u2k, weight (1, . . . , 1,−1).

These are the two highest weights for the representation Λk of SO(2k) on ΛkC2k.
It follows that ϕ0 is the highest weight vector for the representation Λk

σ on Λk
σC2k,

for some choice of sign σ = ± (the reader can have fun figuring out which choice).
By (40.17), if ϕ0 ∈ Λk

σC2k, then ϕ1 ∈ Λk
−σC2k, as one can see by taking g ∈ O(2k)

to switch e2k−1 and e2k and fix the other ej . Thus ϕ1 must be the highest weight
vector for the representation Λk

−σ of SO(2k) on Λk
−σC2k. We summarize:
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Proposition 40.6. The representations Λk
± of SO(2k) on Λk

±C2k have highest
weights given by k-tuples

(40.34) (1, . . . , 1, 1) and (1, . . . , 1,−1),

in some order.

We next take a second look at Λ2Cn. This has the following significance. There
is an isomorphism

(40.35)
A : Λ2Rn −→ Skew(n) = so(n)

A : Λ2Cn −→ soC(n),

defined by

(40.36) A(u ∧ v)x = 〈u, x〉v − 〈v, x〉u,

for u, v, x ∈ Rn, and extended by C-linearity. Note that if u, v, x, y ∈ Rn, then
〈A(u∧v)x, y〉 = 〈u, x〉〈v, y〉−〈v, x〉〈u, y〉, giving the asserted skew-symmetry. Now,
given g ∈ SO(n) (or, more generally, g ∈ O(n)),

(40.37)

gA(u ∧ v)g−1x = 〈u, g−1x〉gv − 〈v, g−1x〉gu

= 〈gu, x, 〉gv − 〈gv, x〉gu

= A(gu ∧ gv)x.

In other words, A intertwines the representations Λ2 and Ad. We record the con-
sequence:

Proposition 40.7. The representation Λ2 of SO(n) on Λ2Cn is unitarily equiva-
lent to the adjoint representation of SO(n) on soC(n).

Thus the study of Λ2 has the potential to reveal information about the structure
of the Lie algebra so(n). In particular, the nonzero weights of Λ2 are the roots of
so(n).

In our second look at Λ2, we relabel the basis (40.27) of Cn as follows. For
convenience, assume n ≥ 4. Set

(40.38) vjε =
1√
2
(e2j−1 − iεe2j), 1 ≤ j ≤ k, ε = ±1.

Then {vjε : 1 ≤ j ≤ k, ε = ±1} forms a basis of Cn if n = 2k. If n = 2k + 1,
complete the basis by taking

(40.39) vn = en if n = 2k + 1.
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Parallel to (40.28), we have

(40.40)
Ejviε = iεδijviε,

Ejvn = 0 if n = 2k + 1.

In the current situation, a basis for Λ2Cn is given by

(40.41) {vi1ε1 ∧ vi2ε2 : 1 ≤ i1 < i2 ≤ k, ε1, ε2 = ±1} ∪ {vi,1 ∧ vi,−1 : 1 ≤ i ≤ k},
if n = 2k, and if n = 2k + 1 we complete the basis by taking

(40.42) {viε ∧ vn : 1 ≤ i ≤ k, ε = ±1}.
Now we calculate dΛ2(Ej) on this basis.

First, we have

(40.43) dΛ2(Ej)(vi1ε1 ∧ vi2ε2) = i(δji1ε1 + δji2ε2)vi1ε1 ∧ vi2ε2 ,

so each vi1ε1 ∧ vi2ε2 is a weight vector, with weight

(40.44)

(0, . . . , ε1, . . . , ε2, . . . , 0) (k-tuple).
↑ ↑
i1 i2

This weight is positive if and only if ε1 = 1. Next,

(40.45) vi,1 ∧ vi,−1 = ie2i−1 ∧ e2i,

and

(40.46) dΛ2(Ej)(vi,1 ∧ vi,−1) = 0,

so each vi,1 ∧ vi,−1 is a weight vector with weight

(40.47) (0, . . . , 0) (k-tuple).

If n = 2k, the weights given by (40.44) and (40.47) are all the weights. If n = 2k+1,
we also have

(40.48) dΛ2(Ej)(viε ∧ vn) = iδijε viε ∧ vn,

so viε ∧ vn is a weight vector, with weight

(40.49)

(0, . . . , ε, . . . , 0) (k-tuple).
↑
i

Taking Proposition 40.7 into account, we have:
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Proposition 40.8. The roots of so(n) are given by (40.44) if n = 2k. If n = 2k+1,
the roots are given by (40.44) and (40.49). The positive roots are given by

(40.50)

(0, . . . , 1, . . . , ε2, . . . , 0) (k-tuple),
↑ ↑
i1 i2

for 1 ≤ i1 < i2 ≤ k, if n = 2k, and if n = 2k + 1, also

(40.51)

(0, . . . , 1, . . . , 0) (k-tuple),
↑
i

for 1 ≤ i ≤ k.

It is useful to record the image under A : Λ2Cn → soC(n) of the weight vectors
given in (40.43), (40.46), and (40.48). The definition (40.36) readily yields

(40.52) A(ei ∧ ej) = Jij ,

which is defined in (40.25). Hence vi,1 ∧ vi,−1 = ie2i−1 ∧ e2i ⇒

(40.53) A(vi,1 ∧ vi,−1) = iJ2i−1,2i, 1 ≤ i ≤ k,

a basis of hC, which is expected since the weights (40.47) are zero.
Next vi1ε1 ∧ vi2ε2 = (1/2)(e2i1−1 ∧ e2i2−1 − ε1ε2e2i1 ∧ e2i2 − iε1e2i1 ∧ e2i2−1 −

iε2e2i1−1 ∧ e2i2) ⇒
(40.54)

A(vi1ε1 ∧ vi2ε2) =
1
2

(
J2i1−1,2i2−1 − ε1ε2J2i1,2i2 − iε1J2i1,2i2−1 − iε2J2i1−1,2i2

)
,

1 ≤ i1 < i2 ≤ k, ε1, ε2 = ±1.

These elements span root spaces with roots given by (40.44). In case n = 2k = 4,
we have

(40.55)

A(v1ε1 ∧ v2ε2) =
1
2

(
J13 − ε1ε2J24 − iε1J23 − iε2J14

)

=
1
2




−1 iε2

iε1 ε1ε2

1 −iε1

−iε2 −ε1ε2


 .

Compare the root space calculation (39.8)–(39.13).
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If n = 2k, the spaces spanned by elements of the form (40.54) give all the
root spaces. If n = 2k + 1, we also have the images under A of (40.48). Then
v1ε ∧ vn = (1/

√
2)(e2i−1 ∧ en − iεe2i ∧ en) ⇒

(40.56) A(viε ∧ vn) =
1√
2

(
J2i−1,n − iεJ2i,n

)
.

These elements span root spaces with roots given by (40.49). In case n = 2k+1 = 5,
we have

(40.56)

A(v1ε ∧ v5) =
1√
2

(
J15 − iεJ25

)

=
1√
2




−1
iε
0
0

1 −iε 0 0 0


 ,

with a similar result for A(v2ε ∧ v5). Compare the root space calculations (39.19)–
(39.21).

Recall from §36 the definition of a dominant integral weight, namely an element
λ ∈ h′ such that

(40.57) 2
〈λ, α〉
〈α, α〉

is a non-negative integer, for each positive root α. Note that 〈α, α〉 = 2 for all
roots of the form (40.50) and 〈α, α〉 = 1 for all roots of the form (40.51). As a
consequence of Proposition 40.8, we have the following.

Proposition 40.9. The dominant integral weights for so(2k) are given by k-tuples
of the form (d1, . . . , dk), satisfying

(40.58) d1 ≥ · · · ≥ dk−1 ≥ |dk|,

where either all the components dj are integers or they are all (non-integral) half-
integers. The dominant integral weights for so(2k + 1) are given by such k-tuples,
satisfying

(40.59) d1 ≥ · · · ≥ dk ≥ 0,

instead of (40.58).

Proof. For each positive root of the form (40.50), the condition that (40.57) belong
to Z+ is that 〈λ, α〉 ∈ Z+, hence, if λ = (d1, . . . , dk), that dj + εd` ∈ Z+, for
1 ≤ j < ` ≤ k, ε = ±1, i.e.,

(40.59A) dj + d`, dj − d` ∈ Z+, for 1 ≤ j < ` ≤ k.
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This requires dj ≥ d` for 1 ≤ j < ` ≤ k, and it also requires 2dj ∈ Z+ for
1 ≤ j < k. Hence d1 is either an integer or a (non-integral) half integer, and then
(40.59A) requires the same property of each dj , 1 ≤ j ≤ k. With j = k − 1,
(40.59A) requires dk−1 ≥ |dk|, and we have (40.58). This takes care of SO(2k).

For SO(2k + 1), we need also consider the positive roots of the form (40.51). If
α is such a root, membership of (40.57) in Z+ requires

(40.59B) 2dj ∈ Z+, for 1 ≤ j ≤ k.

Hence we have (40.59).

The dominant integral weights described above are non-negative integral com-
binations of the highest weight representations of SO(n) described above, provided
dj are all integers, as is seen upon recalling that the previously obtained highest
weights are the k-tuples

(40.60) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1) and (1, . . . , 1,−1)

when n = 2k, for Λ`C2k, 1 ≤ ` ≤ k − 1, and Λk
±C2k, and they are

(40.61) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1)

when n = 2k + 1, for Λ`C2k+1, 1 ≤ ` ≤ k.
The dominant integral weights involving half integral dj are non-negative integral

combinations of these plus the k-tuples

(40.62)
(1

2
, . . . ,

1
2
,
1
2

)
and

(1
2
, . . . ,

1
2
,−1

2

)
,

for n = 2k, and

(40.63)
(1

2
, . . . ,

1
2
,
1
2

)
,

for n = 2k + 1. Constructions of representations of two-fold covers of SO(n) with
these highest weights will be given in §§43–44.

We next specify the Weyl group W (SO(n)) for each n ≥ 3, or more precisely
its image under W in Gl(h′) (defined by (37.6)–(37.7)), which we will denote
W(SO(n)). Recall that for n = 2k the roots of so(n) are given by (40.44); de-
note such roots as

(40.64) ε1E
′
i1 + ε2E

′
i2 = αi1ε1i2ε2 ,

where 1 ≤ i1 < i2 ≤ k, ε1, ε2 ∈ {±1} and {E′
1, . . . , E

′
k} is the basis of h′ dual to the

basis {E1, . . . , Ek}, specified by (40.26) (which is orthonormal with respect to an
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Ad-invariant inner product on so(n)). By Proposition 37.2, the following reflections
belong to W(SO(2k)):

(40.65) ρi1ε1i2ε2(λ) = λ− 〈αi1ε1i2ε2 , λ〉αi1ε1i2ε2 ,

since 〈αi1ε1i2ε2 , αi1ε1i2ε2〉 = 2. Note that

(40.66)

ρi1ε1i2ε2E
′
i1 = −ε1ε2E

′
i2 ,

ρi1ε1i2ε2E
′
i2 = −ε1ε2E

′
i1 ,

ρi1ε1i2ε2E
′
` = E′

`, ` /∈ {i1, i2}.
Noting that (40.66) is a function of −ε1ε2, we can relabel these reflections as

(40.67) {Ri1i2ε : 1 ≤ i1 < i2 ≤ k, ε = ±1},
given by

(40.68)

Ri1i2εE
′
i1 = εE′

i2 ,

Ri1i2εE
′
i2 = εE′

i1 ,

Ri1i2εE
′
` = E′

`, ` /∈ {i1, i2}.

By Proposition 37.4, W(SO(2k)) is the group generated by the set of reflections
(40.67).

The roots of SO(2k + 1)) are given by (40.64) plus

(40.69) εE′
i, 1 ≤ i ≤ k, ε = ±1.

Thus, in addition to the reflections (40.67), W(SO(2k + 1)) contains the set of
reflections

(40.70) {Ri : 1 ≤ i ≤ k},
given by

(40.71)
RiE

′
i = −E′

i,

RiE
′
` = E′

`, ` 6= i.

By Proposition 37.4, W(SO(2k+1)) is the group generated by the set of reflections
given in (40.67) and (40.70). It follows that

(40.72) W(SO(2k + 1)) = {Eθ
σ : σ ∈ Sk, θ = (±1, . . . ,±1)},

where, as in (40.4), Eθ
σ ∈ End(h′) is defined by

(40.73) Eθ
σE′

j = θjE
′
σ(j).

Given this, we have
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Proposition 40.10. For k ≥ 1, W(SO(2k + 1)) is the group of transformations
of h′ ≈ Rk that are symmetries of the k-dimensional cube

(40.74) Qk = {x ∈ Rk : −1 ≤ xi ≤ 1, for 1 ≤ i ≤ k}.

Proof. Each transformation given by (40.73) clearly produces a symmetry of Qk.
Conversely, each symmetry S of Qk is an orthogonal transformation of Rk that is
uniquely specified by the image under S of the ordered basis (E′

1, . . . , E
′
k). This

image is necessarily of the form

(40.75) θ1E
′
σ(1), . . . , θkE′

σ(k)

for some permutation σ of {1, . . . , k} and some θj ∈ {±1}, so S is of the form
(40.73).

Remark. Inspection of (40.68) shows that

(40.76) W(SO(2k)) = {Eθ
σ : σ ∈ Sk, θ1 · · · θk = 1}.

Returning to the issue of highest weights, we recall the central role that the Lie
group homomorphisms

(40.77) γα : SU(2) −→ G,

defined for each root α of g, played in §36, in the statement of the Theorem of the
Highest Weight. We record some results on γα when G = SO(n), starting with the
case n = 2k.

Proposition 40.11. For each root α of so(2k),

(40.78) γα : SU(2) −→ SO(2k) is injective.

Proof. As noted in §36, the kernel of γα is either {I} or {±I} ⊂ SU(2). Now, by
(36.4),

(40.79) γα(Exp tX1) = Exp(tXα
1 ),

and, by (18.2), Exp(2πX1) = −I ∈ SU(2), so our task is to examine Exp(2πXα
1 ) ∈

SO(n). Now, by (36.3) and (35.6), Xα
1 is specified as the element of h satisfying

(40.80) 〈h,Xα
1 〉 =

α(h)
〈α, α〉 , ∀h ∈ h.
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Given that α has the form (40.44) (so 〈α, α〉 = 2), we deduce that

(40.81) 2Xα
1 = ε1Ei1 + ε2Ei2 ,

with i1 6= i2, εj = ±1, and Ej = J2j−1,2j , as in (40.26). Hence

(40.82) Exp(2tXα
1 ) = etε1J2i1−1,2i1 etε2J2i2−1,2i2 ∈ SO(n),

and in particular, for α of the form (40.44),

(40.83)
γα(−I) = Exp(2πXα

1 ) = eπε1J2i1−1,2i1 eπε2J2i2−1,2i2

6= I in SO(n),

since

(40.84) J =
(

0 −1
1 0

)
=⇒ e±πJ =

(−1 0
0 −1

)
.

Here is the contrasting result for SO(2k + 1).

Proposition 40.12. For each root α of so(2k + 1) of the form (40.44),

(40.85) γα : SU(2) −→ SO(2k + 1) is injetive.

However, for each root of so(2k + 1) of the form (40.49),

(40.86) γα(−I) = I in SO(2k + 1),

hence γα(SU(2)) is isomorphic to SO(3).

Proof. If the root α has the form (40.44), the arguments proving Proposition 40.11
apply, to give (40.85). If α has the form (40.49), then 〈α, α〉 = 1, and in place of
(40.81) we have

(40.87) Xα
1 = εEi,

again with ε = ±1 and Ei = J2i−1,2i. Hence

(40.88) Exp(tXα
1 ) = etεJ2i−1,2i ∈ SO(2k + 1),

so

(40.89)
γα(−I) = Exp(2πXα

1 ) = e2πεJ2i−1,2i

= I, in SO(2k + 1),

as asserted in (40.86).
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Note that (40.86) implies that, for each root of so(2k + 1) of the form (40.49),
and each representation π of SO(2k + 1), πα = π ◦ γα is an SO(3) representation,
so in place of (40.59B), we have dj ∈ Z+, for 1 ≤ j ≤ k. This is consistent with
our observation about the irreducible representations of SO(n) whose existence was
proved above. Such an argument does not apply to representations of SO(2k).

However, we can see directly that each dj is an integer, for each irreducible
representation of SO(n), as follows. If π is a representation of SO(n) on V and
v ∈ Vλ is a weight vector, associated to the weight λ = (d1, . . . , dk), with n = 2k
or 2k + 1, then, for each j ∈ {1, . . . , k), Ej = J2j−1,2j , as in (40.26),

(40.90) dπ(Ej)v = idjv,

hence

(40.91) π(etJ2j−1,2j )v = eitdj v.

Since, parallel to (40.89),

(40.92) e2πJ2j−1,2j = I ∈ SO(n),

this requires dj ∈ Z. Hence we have the following.

Proposition 40.13. If n = 2k or 2k +1, the highest weights of irreducible unitary
representations of SO(n) are precisely the k-tuples (d1, . . . , dk) satisfying (40.58) if
n = 2k, (40.59) if n = 2k + 1, and

(40.93) dj ∈ Z, ∀ j ∈ {1, . . . , k}.

Proof. The existence of such representations follows, via Proposition 36.2, from the
results (40.60)–(40.61). The necessity of (40.93) has just been established.
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41. Clifford algebras

Let V be a finite dimensional, real vector space and Q : V ×V → R a symmetric
bilinear form. The Clifford algebra C`(V,Q) is an associative algebra, with unit 1,
generated by V , and satisfying the anticommutation relations

(41.1) uv + vu = −2Q(u, v) · 1, ∀u, v ∈ V.

Formally, we construct C`(V,Q) as

(41.2) C`(V, Q) = ⊗∗V/I,

where ⊗∗V is the tensor algebra:

(41.3) ⊗∗V = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

and

(41.4)
I = two-sided ideal generated by {u⊗ v + v ⊗ u + 2Q(u, v)1 : u, v ∈ V }

= two-sided ideal generated by {ej ⊗ ek + ek ⊗ ej + 2Q(ej , ek)1},

where {ej} is a basis of V . Note that

(41.5) Q = 0 =⇒ C`(V, Q) ≈ Λ∗V (the exterior algebra).

Here is a fundamental property of C`(V, Q).

Proposition 41.1. Let A be an associative algebra with unit, and let

(41.6) M : V −→ A

be a linear map satisfying

(41.7) M(u)M(v) + M(v)M(u) = −2Q(u, v)1,

for each u, v ∈ V (or equivalently for all u = ej , v = ek, where {ej} is a basis of
V ). Then M extends to a homomorphism

(41.8) M : C`(V,Q) −→ A, M(1) = 1.

Proof. Given (41.6), there is a homomorphism M̃ : ⊗∗V → A extending M , with
M̃(1) = 1. The relation (41.7) implies M̃ = 0 on I, so it descends to ⊗∗V/I → A,
giving (41.8).
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From here on we require Q to be nondegenerate. Thus each Clifford algebra
C`(V, Q) we consider will be isomorphic to one of the following. Take V = Rn,
with standard basis {e1, . . . , en}, take p, q ≥ 0 such that p + q = n, and take
Q(u, v) =

∑
j≤p ujvj −

∑
j>p ujvj , where u =

∑
ujej and v =

∑
vjej . In such a

case, C`(V,Q) is denoted C`(p, q).
We also define the complexification of C`(V,Q):

(41.9) C`(V, Q) = C⊗ C`(V, Q).

(We tensor over R.) Note that taking ej 7→ iej for p + 1 ≤ j ≤ n gives, whenever
p + q = n,

(41.10) C`(p, q) ≈ C`(n, 0), which we denote C`(n).

Use of the anticommutator relations (41.1) show that if {e1, . . . , en} is a basis of
V , then each element u ∈ C`(V,Q) can be written in the form

(41.11) u =
∑

iν=0 or 1

ai1···inei1
1 · · · ein

n ,

or, equivalently, in the form

(41.12) u =
n∑

k=0

∑

j1<···<jk

ãj1···jk
ej1 · · · ejk

.

(By convention the k = 0 summand in (41.12) is ã∅ ·1.) In other words, we see that

(41.13) {ej1 · · · ejk
: 0 ≤ k ≤ n, j1 < · · · < jk}

spans C`(V, Q). Again, by convention, the subset of (41.13) for which k = 0 is {1}.
It is very useful to know that the following is true.

Proposition 41.2. The set (41.13) is a basis of C`(V,Q).

This is true for all Q, but we will restrict attention to nondegenerate Q. Since
we know that (41.13) spans, the assertion is that the dimension of C`(p, q) is 2n

when p+ q = n. By (41.10), it suffices to show this for C`(n, 0), and we can assume
{e1, . . . , en} is the standard orthonormal basis of Rn Note that the assertion for
Q = 0 corresponding to Proposition 41.2 is that

(41.14) {ej1 ∧ · · · ∧ ejk
: 0 ≤ k ≤ n, j1 < · · · < jk} is a basis of Λ∗Rn,

where {e1, . . . , en} is the standard basis of Rn. We will use this in our proof of
Proposition 41.2. See Appendix I for a proof of (41.14).
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Given that (41.14) is true, we can define a linear map

(41.15) α : Λ∗Rn −→ C`(n, 0)

by α(1) = 1 and

(41.16) α(ej1 ∧ · · · ∧ ejk
) = ej1 · · · ejk

,

when 1 ≤ j1 < · · · < jk ≤ n. The content of Proposition 41.2 is that α is a linear
isomorphism. On the way to proving this, we construct a representation of C`(n, 0)
on Λ∗Rn, of interest in its own right.

To construct this representation, i.e., homomorphism of algebras

(41.17) M : C`(n, 0) −→ End(Λ∗Rn),

we begin with a linear map

(41.18) M : Rn −→ End(Λ∗Rn),

defined on the basis {e1, . . . , en} as follows. Define

(41.19) ∧j : ΛkRn −→ Λk+1Rn, ιj : ΛkRn −→ Λk−1Rn

by

(41.19) ∧j(ej1 ∧ · · · ∧ ejk
) = ej ∧ ej1 ∧ · · · ∧ ejk

,

and

(41.21)
ιj(ej1 ∧ · · · ∧ ejk

) = (−1)`−1ej1 ∧ · · · ∧êj`
∧ · · · ∧ ejk

if j = j`,

0 if j /∈ {j1, . . . , jk}.

Here the symbol êj`
signifies that ej`

is removed from the product.

Remark. If Λ∗Rn has the inner product such that (41.14) is an orthonormal basis,
then ιj is the adjoint of ∧j .

A calculation (left to the reader) gives the following anticommutator relations
for these operators:

(41.22)

∧j ∧k + ∧k ∧j = 0,

ιjιk + ιkιj = 0,

∧jιk + ιk∧j = δjk.
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Now we define M in (41.18) by

(41.23) M(ej) = Mj = ∧j − ιj .

From (41.22) we get

(41.24) MjMk + MkMj = −2δjk.

Hence Proposition 41.1 applies to give the homomorphism of algebras (41.17), with
M(1) = I, the identity operator.

We can now prove Proposition 41.2. We define a linear map

(41.25) β : C`(n, 0) −→ Λ∗Rn, β(u) = M(u)1.

Recalling the map α from (41.15)–(41.16), we have

(41.26)
β ◦ α(ej1 ∧ · · · ∧ ejk

) = M(ej1 · · · ejk
)1

= M(ej1) · · ·M(ejk
)1.

Now M(ejk
)1 = ejk

, M(ejk−1)ejk
= ejk−1 ∧ ejk

if jk−1 < jk, and inductively we see
that

(41.27) j1 < · · · < jk =⇒ M(ej1) · · ·M(ejk
)1 = ej1 ∧ · · · ∧ ejk

.

It follows that α and β are inverses, and that each is a linear isomorphism. This
proves Proposition 41.2 (granted (41.14)).

We next characterize C`(p, q) for small p and q. For starters, C`(1, 0) and C`(0, 1)
are linear spaces of the form

(41.28) {a + be1 : a, b ∈ R}.

In C`(1, 0), e2
1 = −1, so

(41.29) C`(1, 0) ≈ C, e1 ↔ i.

Meanwhile, in C`(0, 1), e2
1 = 1, so C`(0, 1) is of the form

(41.30)
{αf+ + βf− : α, β ∈ R}
f± =

1± e1

2
⇒ f2

± = f±, f+f− = f−f+ = 0,

and we have

(41.31) C`(0, 1) ≈ R⊕ R ≈ CR({+,−}),

the space of real valued functions on the two-point set {+,−}.
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Next, C`(2, 0), C`(1, 1), and C`(0, 2) are linear spaces of the form

(41.32) {a + be1 + ce2 + de1e2 : a, b, c, d ∈ R}.

In C`(2, 0), e2
1 = e2

2 = (e1e2)2 = −1, and also e2(e1e2) = e1, while (e1e2)e1 = e2,
which are the algebraic relations satisfied by i, j, k in the algebra H of quaternions,
defined by (3.1)–(3.3). Hence

(41.33) C`(2, 0) ≈ H = {a + bi + cj + dk}.

In C`(0, 2), e2
1 = e2

2 = 1, while (e1e2)2 = −1. Meanwhile e2(e1e2) = −e1 and
(e1e2)e1 = −e2, and we have

(41.34)
C`(0, 2) ≈ M(2,R)

=
{

aI + b

(
0 1
1 0

)
+ c

(
1 0
0 −1

)
+ d

(
0 −1
1 0

)
: a, b, c, d ∈ R

}
.

It turns out that also
C`(1, 1) ≈ M(2,R).

We leave this to the reader.
Using (41.31) and (41.34), we find the complexified algebras

(41.35) C`(1) ≈ C⊕ C, C`(2) ≈ M(2,C).

These results are special cases of the following:

Proposition 41.3. The complex Clifford algebras C`(n) have the properties

(41.36)
C`(2k) ≈ M(2k,C),

C`(2k + 1) ≈ M(2k,C)⊕M(2k,C).

Proposition 41.3 follows inductively from (41.35) and the following result.

Proposition 41.4. For n ∈ N, we have isomorphisms of algebras

(41.37) C`(n + 2) ≈ C`(n)⊗ C`(2).

In turn, Proposition 41.4 follows from:

Proposition 41.5. For n ∈ N, we have isomorphisms of algebras

(41.38) C`(n, 0)⊗ C`(0, 2) ≈ C`(0, n + 2).
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It remains to prove (41.38). To do this, we construct a homomorphism of algebras

(41.39) M : C`(0, n + 2) −→ C`(n, 0)⊗ C`(0, 2).

Once it is checked that M is onto, a dimension count guarantees it is an isomor-
phism.

To produce (41.39), we start with a linear map

(41.40) M : Rn+2 −→ C`(n, 0)⊗ C`(0, 2),

defined by

(41.41)
Mej = Mj = ej ⊗ en+1en+2, 1 ≤ j ≤ n,

Mej = Mj = 1⊗ ej , j = n + 1, n + 2.

Here we take {e1, . . . , en} to generate C`(n, 0) and {en+1, en+2} to generate C`(0, 2).
To extend M in (41.40) to (41.39), we need to establish the anticommutation rela-
tions

(41.42) MjMk + MkMj = 2δjk, 1 ≤ j, k ≤ n + 2.

To get this for 1 ≤ j, k ≤ n, we use the computations

(41.43)
(en+1en+2)2 = −e2

n+1e
2
n+2 = −1,

(ej ⊗ en+1en+2)(ek ⊗ en+1en+2) = ejek ⊗ (en+1en+2)2 = −ejek ⊗ 1,

which yield

(41.44)
1 ≤ j, k ≤ n ⇒ MjMk + MkMj = −(ejek ⊗ 1 + ekej ⊗ 1)

= 2δjk,

as desired. Next we have
(41.45)

1 ≤ j ≤ n =⇒ MjMn+1 + Mn+1Mj

= (ej ⊗ en+1en+2)(1⊗ en+1) + (1⊗ en+1)(ej ⊗ en+1en+2)
= ej ⊗ en+1en+2en+1 + ej ⊗ en+1en+1en+2

= 0,

since en+1en+2 = −en+2en+1. Similarly one gets MjMn+2 + Mn+2Mj = 0 for
1 ≤ j ≤ n. Next,

(41.46) Mn+1Mn+1 = (1⊗ en+1)(1⊗ en+1) = 1⊗ e2
n+1 = 1,
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and similarly Mn+2Mn+2 = 1. Finally,
(41.47)

Mn+1Mn+2 + Mn+2Mn+1 = (1⊗ en+1)(1⊗ en+2) + (1⊗ en+2)(1⊗ en+1)

= 1⊗ (en+1en+2 + en+2en+1)
= 0.

This establishes (41.42). Hence, by Proposition 41.1, M extends to the algebra
homomorphism (41.39) (with M1 = I). It is routine to verify that the elements on
the right side of (41.41) generate C`(n, 0)⊗C`(0, 2), so M in (41.39) is onto, hence
an isomorphism. This completes the proof of Proposition 41.5, hence Propositions
41.3–41.4.

Remark. The following companions to (41.38),

(41.48)
C`(0, n)⊗ C`(2, 0) ≈ C`(n + 2, 0),

C`(p, q)⊗ C`(1, 1) ≈ C`(p + 1, q + 1),

have essentially the same proof. From (41.38) and (41.48) it follows that

(41.49) C`(n + 8, 0) ≈ C`(n, 0)⊗ C`(0, 2)⊗ C`(2, 0)⊗ C`(0, 2)⊗ C`(2, 0).

Meanwhile, by (41.33)–(41.34),

(41.50) C`(0, 2)⊗ C`(2, 0) ≈ M(2,R)⊗H.

This, together with the isomorphism

(41.51) H⊗H ≈ M(4,R),

leads to

(41.52) C`(n + 8, 0) ≈ C`(n, 0)⊗M(16,R).

For use in §43, we note that C`(V, Q) has a Z/(2) grading,

(41.53) C`(V, Q) = C`0(V, Q)⊕ C`1(V, Q),

where elements of C`0(V,Q) have the form (41.12) with k restricted to be even and
elements of C`1(V, Q) have such a form with k restricted to be odd. In view of
(41.1), we have

(41.54)
C`0 · C`0 ⊂ C`0, C`0 · C`1 ⊂ C`1,
C`1 · C`0 ⊂ C`1, C`1 · C`1 ⊂ C`0.

If V = Rn with its standard positive definite inner product, we write (41.53) as

(41.55) C`(n, 0) = C`0(n, 0)⊕ C`1(n, 0).

The complexification of C`j(V, Q) is denoted C`j(V, Q), and that of C`j(n, 0) is
denoted C`j(n).
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42. The groups Spin(n)

We will construct Spin(n) as a subset of C`(n, 0). A more general construc-
tion produces groups Spin(p, q) ⊂ C`(p, q), but we will not deal with this here;
cf. [T1], [LM] for material on this. Let us take V = Rn, with the standard basis
{e1, . . . , en} and inner product defined by Q(ej , ek) = 〈ej , ek〉 = δjk. We start with
the observation that if v ∈ V, 〈v, v〉 = 1, then, for x ∈ V ,

(42.1)

τ(v)x = vxv

= −xvv − 2〈v, x〉v
= x− 2〈v, x〉v.

Hence τ(v) : V → V is reflection across the hyperplane (v)⊥. With this in mind,
we set

(42.2) Pin(n) = {v1 · · · vk ∈ C`(n, 0) : k ∈ N, vj ∈ Rn, 〈vj , vj〉 = 1},
and define

(42.3) τ : Pin(n) −→ O(n)

by

(42.4)
τ(v1 · · · vk)x = v1 · · · vkxvk · · · v1

= τ(v1) · · · τ(vk)x,

so τ(v1 · · · vk) is a product of k reflections of the form (42.1).
We need to show that (42.4) is well defined, independently of the representation

of an element of Pin(n) as a particular product. The following takes care of this.

Lemma 42.1. If vj ∈ Rn are unit vectors, so u = v1 · · · vk ∈ Pin(n), then

v1 · · · vk = 1 =⇒ τ(v1 · · · vk) = I.

Proof. First we note that if v1 · · · vk = 1, then k is even. In fact, if k is odd, we
have from (41.54) that v1 · · · vk ∈ C`1(n, 0). Now that we know k must be even, we
have (v1 · · · vk)(vk · · · v1) = 1, so in such a case

τ(u)x = uxu−1,

which is well defined in C`(n, 0) for any invertible u ∈ C`(n, 0), independently of
the representation of u.

Note that det τ(v1 · · · vk) = (−1)k. Hence, if we set

(42.5) Spin(n) = {v1 · · · vk : k ∈ 2N, vj ∈ Rn, 〈vj , vj〉 = 1},
we have

(42.6) τ : Spin(n) −→ SO(n).

Note that Pin(n) and Spin(n) are groups, since (v1 · · · vk)(vk · · · v1) = ±1. Also
±v1v1 = ∓1, so {±1} ⊂ Spin(n). The following result is fundamental.
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Proposition 42.2. The maps (42.3) and (42.6) are surjective, and

(42.7) Ker τ = {±1}.

First we discuss the surjectivity. For v ∈ Rn, τ(v) in (42.1) is a reflection, and
each reflection on Rn has this form. Hence the surjectivity follows from:

Proposition 42.3. Each A ∈ O(n) is a product of reflections.

Proof. We make use of the basic linear algebra result that given such A, there exist
Q ∈ O(n) such that Q−1AQ has the block diagonal form

(42.8) Q−1AQ =




Rθ1

. . .
Rθk

−1
. . .

−1
1

. . .
1




.

Since QτQ−1 is a reflection whenever τ is a reflection, it suffices to show that the
right side of (42.8) is a product of reflections. It suffices to consider the separate
blocks. In particular, we show that each rotation

(42.9) Rθ =
(

cos θ − sin θ
sin θ cos θ

)

is a product of two reflections in R2, of the form

(42.10) ρ(v)x = x− 2〈v, x〉v, x, v ∈ R2, |v| = 1.

In fact, it is readily verified that

(42.11) v ∈ R2, |v| = 1 =⇒ ρ(Rθ/2v)ρ(v) = Rθ.

As far as the diagonal entries ±1 represented as reflections, this is obvious, so the
surjectivity assertion of Proposition 42.2 is proven.

Our next task is to establish (42.7). To tackle this, suppose vj ∈ Rn are unit
vectors such that

(42.12) τ(u) = I, u = v1 · · · vk.
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Since each τ(vj) has determinant −1, k is even in (42.12). So (vk · · · v1)(v1 · · · vk) =
1. Referring to (42.4), we have

(42.13)

τ(u)x = x, ∀x ∈ Rn

⇔ ux = xu, ∀x ∈ Rn,

⇔ xux = −|x|2u, ∀x ∈ Rn

⇔ u = −ejuej ,

for the standard orthonormal basis {ej} of Rn. Now, using Proposition 41.2, set

(42.14) u =
∑

iν=0 or 1

ai1···inei1
1 · · · ein

n .

We have, with i1 + · · ·+ in = 2`,

(42.15)

− ej(ei1
1 · · · eij

j · · · ein
n )ej

= (−1)2`−ij+1ei1
1 · · · eij+2

j · · · ein
n

= (−1)2`−ij+2ei1
1 · · · eij

j · · · ein
n .

Hence, for u as in (42.14), if (42.13) holds, then

(42.16) u =
∑

iν=0 or 1

(−1)ij ai1···inei1
1 · · · ein

n , ∀ j.

Given Proposition 41.2, we deduce that, for u of the form (42.14),

(42.17) τ(u) = I =⇒ ai1···in = 0, except for a0···0,

which gives (42.7), and completes the proof of Proposition 42.2.
The next result is an important complement to Proposition 42.2, to the effect

that (42.6) presents Spin(n) as a connected double cover of SO(n).

Proposition 42.4. For each n ≥ 2, Spin(n) is connected.

Proof. Since we know SO(n) is connected, it suffices to show that there is a con-
tinuous path in Spin(n) from 1 to −1. Set

(42.18) γ(t) = e1 ·
(
(cos t)e1 + (sin t)e2

)
, 0 ≤ t ≤ π.

We have γ : [0, π] → Spin(n), and

(42.19) γ(0) = −1, γ(π) = 1,

so Proposition 42.4 is proven.
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We examine the Lie algebra spin(n) of Spin(n), i.e., the tangent space to Spin(n)
at 1. The Lie algebra so(n) of SO(n) is spanned by elements

(42.20) Jjk = −Ejk + Ekj , j < k,

where Ejk ∈ M(n,R) is defined by

(42.21) Ejke` = δk`ej .

The element Jjk generates the group Rjk(t) = etJjk of rotations in the ej−ek plane,
given by

(42.22)

Rjk(t)ej = (cos t)ej + (sin t)ek

Rjk(t)ek = −(sin t)ej + (cos t)ek

Rjk(t)e` = e`, ` /∈ {j, k}.

Comparing (42.1) with (42.10)–(42.11), we see that

(42.23) Rjk(t) = τ
(
Rjk(t/2)ej · ej

)
= τ(−Rjk(t/2)ej · ej).

The curves γjk(t) = −Rjk(t/2)ej · ej are curves in Spin(n) through the group
identity 1. Since R′jk(0) = Jjk, we have

(42.23A) γ′jk(0) =
1
2
ejek ∈ T1 Spin(n) = spin(n).

From (42.23),

(42.23B)
R′jk(0) = −1

2
Dτ(1)(R′jk(0)ej · ej)

=
1
2
Dτ(1)(ejek),

hence

(42.24) dτ(ejek) = 2Jjk.

Hence

(42.25) spin(n) = Span {ejek : j < k} ⊂ C`(n, 0).

Note that, for j < k,

(42.26)

(ejek)2 = −1 =⇒ etejek = cos t + (sin t)ejek

= −(cos t)e2
j + (sin t)ejek

= −(
(cos t)ej + (sin t)ek)

) · ej

= −Rjk(t)ej · ej ,
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so we recover the result implicit in (42.23)–(42.24) that the one-parameter group
in Spin(n) generated by ejek is

(42.27) Exp(tejek) = −Rjk(t)ej · ej .

Either by a calculation or by applying analogues of reasoning done in Appendix
E, we see that the Lie bracket on spin(n) is given by

(42.28) [ejek, e`em] = ejeke`em − e`emejek,

and

(42.29) dτ([ejek, e`em]) = [2Jjk, 2J`m].

The reader is invited to verify that the right side of (42.28) belongs to the space
described in (42.25).

The space

(42.30) h = Span {Ej : 1 ≤ j ≤ k} ⊂ so(n), Ej = J2j−1,2j ,

is the Lie algebra of a maximal torus of SO(n), when n = 2k or n = 2k + 1. The
preimage under dτ is

(42.31) h̃ = Span {e2j−1e2j : 1 ≤ j ≤ k} ⊂ spin(n).

By (42.26)–(42.27), we can say that there exists ε > 0 such that, with

(42.32)

Ψ :
∏

1≤j<k≤n

R −→ Spin(n),

Ψ((tjk)) =
∏

j<k

Exp(tjkejek) =
∏

j<k

−Rjk(tjk)ej · ej ,

there is a neighborhood O of 1 ∈ Spin(n) such that

(42.33) Ψ :
∏

1≤j<k≤n

(−ε, ε) −→ O, diffeomorphically.

Alternative description of Spin(n)

Since C`(n, 0) is a finite-dimensional associative algebra over R with unit, the
set C`inv(n, 0) of invertible elements is a nonempty open subset, forming a multi-
plicative group. We have a representation ρ of C`inv(n, 0) on C`(n, 0), given by

(42.34) ρ(u)w = uwu−1, u ∈ C`inv(n, 0), w ∈ C`(n, 0).

The set

(42.35) P(n, 0) = {u ∈ C`inv(n, 0) : ρ(u) : Rn → Rn}
(regarding Rn ⊂ C`(n, 0)) is a subgroup of C`inv(n, 0), containing {v ∈ Rn : |v| = 1},
by (42.21). We can describe

(42.36) Spin(n) = subgroup of P(n, 0) generated by {v1v2 : vj ∈ Rn, |vj | = 1},
and

(42.37) Pin(n) = Spin(n) ∪ e1 · Spin(n).
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43. Spinor representations

Let V be an n-dimensional real vector space, with a positive definite inner prod-
uct 〈 , 〉. We want to associate a representation of C`(V, 〈 , 〉) and associated
objects on a space of spinors, which we will define below. To construct this space
we need some extra structure on V .

First consider the case where n is even, i.e., n = 2k. We assume there is given a
complex structure on V , i.e., a linear map J : V → V satisfying J2 = −I, and that
J is an isometry with respect to 〈 , 〉. We denote by V the k-dimensional complex
vector space (V, J), and we endow V with a hermitian inner product

(43.1) (u, v) = 〈u, v〉+ i〈u, Jv〉.

We set

(43.2) S = S(V, 〈 , 〉, J) = Λ∗CV =
k⊕

j=0

Λj
CV.

The inner product (43.1) defines a conjugate linear isomorphism V → V ′, which
gives a conjugate linear isomorphism Λ∗CV → Λ∗CV ′ ≈ (Λ∗CV)′, hence a hermitian
inner product on Λ∗CV. Concretely, if {v1, . . . , vn} is an orthonormal basis of V,
then

(43.3) {vj1 ∧ · · · ∧ vj`
: j1 < · · · < j`} is an orthonormal basis of Λ`

CV.

We may as well take V = Rn, {ej : 1 ≤ j ≤ n} the standard basis, with
〈ej , ek〉 = δjk, and define J by Je2j−1 = e2j , Je2j = −e2j−1, 1 ≤ j ≤ k. (Recall
n = 2k). Then (V, J) = Ck, with orthonormal basis {vj = e2j : 1 ≤ j ≤ k}, and

(43.4) S = Λ∗CCk.

In order to define a representation of C`(n, 0) on S, we produce an R-linear map

(43.5) M : Rn −→ EndC(Λ∗CV),

in the form

(43.6) M(v) = ∧v − jv,

where

(43.7) ∧v : Λ`
CV −→ Λ`+1

C V, ∧vϕ = v ∧ ϕ,
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with v interpreted as an element of V, and

(43.8) jv : Λ`+1
C −→ Λ`

CV, jvψ = (∧v)∗ψ,

that is,

(43.9) (v ∧ ϕ,ψ) = (ϕ, jvψ), ϕ ∈ Λ`
CV, ψ ∈ Λ`+1

C V.

We claim that, for u, v ∈ Rn,

(43.10) M(u)M(v) + M(v)M(u) = −2〈u, v〉I.

It suffices to show that

(43.11) M(v)2 = −〈v, v〉I,

and insert u ± v into this identity. To prove (43.11), we can assume 〈v, v〉 = 1.
Pick an orthonormal basis {v1, . . . , vk} for Ck with v1 = v. Then use of (43.9)
establishes that, for j1 < · · · < j`+1,

(43.12)
jv(vj1 ∧ · · · ∧ vj`+1) = vj2∧ · · · ∧ vj`+1 if j1 = 1,

0 if j1 > 1.

Since ∧2
v = 0 and (hence) j2

v = 0, we get

(43.13) M(v)2 = −(∧vjv + jv∧v) = −〈v, v〉I,

the last identity via (43.12).
Now Proposition 41.1 implies M extends to a homomorphism of algebras

(43.14) M : C`(2k, 0) −→ EndC(Λ∗CCk),

which in turn extends to a C-linear algebra homomorphism

(43.15) M : C`(2k) −→ EndC(Λ∗CCk).

The following is fundamental.

Proposition 43.1. In (43.15), M is an isomorphism of algebras.

Proof. Note that dimC Λ∗CCk = 2k; hence

(43.16) dimC EndC(Λ∗CCk) = 22k = dimCC`(2k).

Thus it suffices to prove M is injective. Clearly M(v) 6= 0 for nonzero v ∈ Rn,
and Ker M must be a two-sided ideal in C`(2k). Recall from (41.36) that C`(2k) ≈
M(2k,C). It is a fact that, for each m ∈ N,

(43.17) M(m,C) has no proper two-sided ideals;

i.e., M(m,C) is simple. See Appendix J for a proof. This finishes the proof of
Proposition 43.1.

The algebra homomorphism M in (43.15) restricts to Pin(2k) ⊂ C`(2k, 0), yield-
ing a group homomorphism

(43.18) D1/2 : Pin(2k) −→ Gl(Λ∗CCk),

i.e., a representation of Pin(2k) on Λ∗CCk. Since the linear span of Pin(2k) (over
R) is C`(2k, 0), we have from Proposition 43.1 that:



197

Corollary 43.2. The representation D1/2 of Pin(2k) on S = Λ∗CCk is irreducible.

Remark. The operator D1/2(g) is unitary for each g ∈ Pin(2k). In fact, if v ∈ R2k

and 〈v, v〉 = 1, then M(v) is skew-adjoint and M(v)2 = −I, so Spec M(v) ⊂ {±i},
and hence M(v) is unitary.

The restriction of D1/2 to Spin(2k) is not irreducible. In fact, the spaces

(43.19)
⊕

j even

Λ∗CCk = S+(2k),
⊕

j odd

Λ∗CCk = S−(2k)

are invariant under the action of D1/2 restricted to Spin(2k), and more generally
under the action of M restricted to C`0(2k, 0), defined as in (41.53)–(41.55). We
have

(43.20) M : C`0(2k) −→ EndC(S+(2k))⊕ EndC(S−(2k)).

Note that

(43.21) v ∈ R2k, v 6= 0 =⇒ M(v) : S±(2k) → S∓(2k),

while left multiplication by v takes C`0(2k) to C`1(2k), and these maps are all
isomorphisms. We have

(43.22) dimC EndC S+(2k)⊕ EndC S−(2k) = 22k−1 = dimCC`0(2k).

We already know from Proposition 43.1 that M in (43.20) is injective, so it is an
isomorphism. We deduce the following.

Corollary 43.3. The representation D1/2 restricted to Spin(2k) splits into two
factors:

(43.23) D±
1/2 : Spin(2k) −→ Gl(S±(2k)),

and both are irreducible.

We next discuss the spinor representation of Spin(2k− 1). If {e1, . . . , e2k} is the
standard basis of R2k, and R2k−1 = Span {e1, . . . , e2k−1}, the map

(43.24) R2k−1 −→ C`0(2k, 0), v 7→ ve2k, v ∈ R2k−1

satisfies the analogue of (41.7) and hence, via Proposition 41.1, gives rise to a
homomorphism of algebras

(43.25) κ : C`(2k − 1, 0) −→ C`0(2k, 0).
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Explicitly,

(43.26)

κ
( ∑

j1<···<j`

aj1···j`
ej1 · · · ej`

)

=
∑

j1<···<j`

aj1···j`
ej1e2k · · · ej`

e2k.

Now, since eje2k = −e2kej for j < 2k and e2
2k = −1,

(43.27)

ej1e2kej2e2k · · · ej`
e2k

= ej1ej2ej3e2k · · · ej`
e2k

= · · ·
= ej1ej2 · · · ej`

if ` is even
ej1ej2 · · · ej`

e2k if ` is odd,

so

(43.28)

κ
( 2k−1∑

`=0

∑

j1<···<j`

aj1···j`
ej1 · · · ej`

)

=
∑

` even

∑

j1<···<j`

aj1···j`
ej1 · · · ej`

+
∑

` odd

∑

j1<···<j`

aj1···j`
ej1 · · · ej`

e2k.

The map κ is thus clearly injective. Since the dimensions match, it is an isomor-
phism.

The inclusion Pin(2k − 1) ⊂ C`(2k − 1, 0) gives an inclusion

(43.29) Pin(2k − 1) ↪→ Spin(2k),

and restricting D+
1/2 gives a representation

(43.30) D+
1/2 : Pin(2k − 1) −→ Gl(S+(2k)).

There is also a representation D−
1/2 of Pin(2k − 1) on S−(2k)), but these two are

intertwined by the isomorphism M(e2k) : S+(2k) → S−(2k).

Proposition 43.4. The reoresentation (43.30) is irreducible.

Proof. In (43.25), κ is an isomorphism, in (43.20), M is an isomorphism, and
Pin(2k − 1) spans C`(2k − 1, 0).

Remark. Restriction of (43.30) to Spin(2k − 1) gives a representation

(43.31) D+
1/2 : Spin(2k − 1) −→ Gl(S+(2k)).

In §44 we show that this is also irreducible.
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44. Weight spaces for the spinor representations

In §43 we constructed representations of Spin(n) on S±(n) = Λeven/oddCk in case
n = 2k and on S+(n) = ΛevenCk in case n = 2k − 1. Here we will show that the
monomials in these subspaces of Λ∗Ck are weight vectors, compute the weights, and
identify the highest weights. Our ordered basis of h̃, the Lie algebra of a maximal
torus in Spin(n) described in (42.31), will be

(44.1)
{1

2
e1e2,

1
2
e3e4, . . .

}
=

{1
2
e2j−1e2j : 1 ≤ j ≤ k

}
,

given n = 2k or 2k + 1. Recall that this maps via dτ to the ordered basis

(44.2) {J2j−1,2j : 1 ≤ j ≤ k}

for the Lie algebra of a maximal torus of SO(n), described in (42.20); cf. (42.24).
We first treat the case n = 2k. To get started, note that

(44.3)

γij(t) = et(eiej) = (cos t)1 + (sin t)eiej

=⇒ D±
1/2(γij(t))ϕ = (cos t)ϕ + (sin t)M(ei)M(ej)ϕ

=⇒ dD±
1/2(eiej)ϕ = M(ei)M(ej)ϕ = MiMjϕ,

for 1 ≤ i, j ≤ 2k, ϕ ∈ Λ∗Ck, and, as in (43.6), M(v) = ∧v − jv, v ∈ R2k, and we
introduce simplified notation

(44.4) Mi = M(ei) = ∧ei − jei = ∧i − ji.

Hence

(44.5) dD±
1/2(e2j−1e2j)ϕ = M2j−1M2jϕ = (∧2j−1 − j2j−1)(∧2j − j2j)ϕ.

Since the wedge product is in Λ∗Ck, and in Ck we have e2j = ie2j−1, it follows that
∧2j∧2j−1 = 0, and similarly j2jj2j−1 = 0, while ∧2j−1 = −i∧2j and j2j−1 = ij2j .
Hence

(44.6)
dD±

1/2(e2j−1e2j)ϕ = −i(j2j ∧2j − ∧2j j2j)ϕ

= i(1− 2j2j∧2j)ϕ,

the last identity using ∧2jj2j + j2j∧2j = 1.
Let us take ϕ to be a monomial in Λ`Ck, with respect to the basis of Ck given

by

(44.7) {vj : 1 ≤ j ≤ k}, vj = e2j = ie2j−1.
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We have

(44.8) dD±
1/2(e2j−1e2j) = iQj

where, for 1 ≤ i1 < · · · < i` ≤ k,

(44.9)
Qj vi1 ∧ · · · ∧ vi`

= − vi1 ∧ · · · ∧ vi`
if j /∈ {i1, . . . , i`}

+ vi1 ∧ · · · ∧ vi`
if j ∈ {i1, . . . , i`}.

In particular,

(44.10)
1
2
Qj v1 ∧ · · · ∧ vk =

1
2
v1 ∧ · · · ∧ vk, ∀ j ∈ {1, . . . , k},

and

(44.11)

1
2
Qj v1 ∧ · · · ∧ vk−1 = +

1
2
v1 ∧ · · · ∧ vk−1 if j ∈ {1, . . . , k − 1}

− 1
2
v1 ∧ · · · ∧ vk−1 if j = k.

These calculations prove the following:

Proposition 44.1. The vector v1 ∧ · · · ∧ vk is a highest weight vector with weight

(44.12)
(1

2
,
1
2
, . . . ,

1
2

)
.

The vector v1 ∧ · · · ∧ vk−1 is a weight vector with weight

(44.13)
(1

2
, . . . ,

1
2
,−1

2

)
.

The weight (44.12) is the highest weight for D+
1/2 on S+(2k) if k is even and for

D−
1/2 on S−(2k) if k is odd, and vice-versa for the weight (44.13).

We turn to the case n = 2k − 1. Then we replace the basis (44.1) by

(44.14)
{1

2
e2j−1e2j : 1 ≤ j ≤ k − 1

}
.

Recalling the description (43.24)–(43.29) of the representation D+
1/2 of Spin(2k−1)

on S+(2k) = ΛevenCk, we bring in the following counterpoint to (44.3), for 1 ≤
i, j ≤ 2k − 1:

(44.15)

γij(t) = et(eie2keje2k)

= et(eiej)

= (cos t)1 + (sin t)eiej ,

since, for i, j < 2k, we have eie2keje2k = −e1eje
2
2k = eiej . Hence dD+

1/2(eiej)
is given exactly by the formula (44.3), and the calculations (44.4)–(44.10) need
essentially no further changes. We have

(44.16) dD+
1/2(e2j−1e2j) = iQj , 1 ≤ j ≤ k − 1,

where, for 1 ≤ i1 < · · · < i` ≤ k, Qj vi1 ∧ · · · ∧ vi`
is given by (44.9). We thus have

the following counterpart to Proposition 44.1.
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Proposition 44.2. The representation D+
1/2 of Spin(2k−1) on S+(2k) has highest

weight vector v1 ∧ · · · ∧ vκ, with κ = k if k is even and k − 1 if k is odd, and its
highest weight is given by the (k − 1)-tuple

(44.17)
(1

2
,
1
2
, . . . ,

1
2

)
.

We now deduce the following refinement of Proposition 43.4.

Corollary 44.3. The representation D+
1/2 of Spin(2k−1) on S+(2k) is irreducible.

Proof. If not, there would be an irreducible component with highest weight different
from (44.17). However, none of the other weights arising in (44.8)–(44.9) for the
representation D+

1/2 of Spin(2k − 1) are dominant integral weights, so they cannot
be highest weights of a representation of Spin(2k − 1).

In view of the tensor product result of Proposition 36.2, we can combine Propo-
sitions 44.1–44.2 with Proposition 40.13, on representations of SO(n), to obtain
highest weights for representations of Spin(n). A comparison with Proposition 40.9
gives the following definitive result.

Proposition 44.4. Assume n ≥ 3. The highest weights of irreducible representa-
tions of Spin(n) are precisely the dominant integral weights of so(n).

The following is an incidental corollary.

Corollary 44.5. If n ≥ 3, Spin(n) is simply connected.

Proof. Since the center of so(n) is trivial for n ≥ 3, a general result established in
Appendix P implies the universal covering group G̃ of SO(n) is compact. We have
a covering homomorphism µ : G̃ → Spin(n), and claim µ is an isomorphism. Each
irreducible representation π of Spin(n) yields an irreducible representation π ◦ µ

of G̃, with the same derived action on g = spin(n) = so(n), and the same highest
weight. If µ were not an isomorphism, there would have to be other irreducible
representations of G̃, by the Peter-Weyl theorem, but there are no further dominant
integral weights available. Thus µ must be an isomorphism.

One can also give a purely topological proof of this simple connectivity, though it
requires background in homotopy theory, which can be found in [St]. The argument
goes as follows. The quotient result

(44.18) SO(n + 1)/ SO(n) = Sn

yields a homotopy exact sequence

(44.19) πk+1(Sn) −→ πk(SO(n)) −→ πk(SO(n + 1)) −→ πk(Sn),

where πk(M) is the group of homotopy classes of continuous maps Sk → M . See
[St], p. 91 for this.
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Now 0 < k < n ⇒ πk(Sn) = 0, and k + 1 < n ⇒ πk+1(Sn) = 0, so

(44.20) n ≥ 3 =⇒ π1(SO(n)) ≈ π1(SO(n + 1)).

We see directly from the 2-to-1 homomorphism SU(2) → SO(3) that π1(SO(3)) ≈
Z/(2), so

(44.21) n ≥ 3 =⇒ π1(SO(n)) ≈ Z/(2).

Thus

(44.22) n ≥ 3 =⇒ π1(Spin(n)) = 0.

Alternatively, using

(44.23) Spin(n + 1)/ Spin(n) = Sn

in place of (44.18) yields analogues of (44.19)–(44.20), including

(44.24) n ≥ 3 =⇒ π1(Spin(n)) ≈ π1(Spin(n + 1)),

and then (44.22) follows from

(44.25) π1(Spin(3)) = π1(SU(2)) = π1(S3) = 0.
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α. The submersion mapping theorem

Let V and W be finite dimensional real vector spaces, Ω ⊂ V open, and F : Ω →
W . We recall that F is said to be differentiable at x ∈ Ω if and only if there exists
a linear map L : V → W such that, for small y ∈ V ,

(α.1) F (x + y) = F (x) + Ly + r(x, y), |r(x, y)| = o(|y|).
Then we set DF (x) = L. If F is differentiable at each x ∈ Ω, we have DF : Ω →
L(V, W ). If DF is continuous, we say F is C1. Then we can consider differentiability
of DF , etc., and naturally arrive at the concept of F ∈ Ck, in the standard fashion.
The following is the Inverse Function Theorem.

Theorem α.1. Assume dim V = dim W . Let F : Ω → W be Ck (k ≥ 1). Take
x0 ∈ Ω and assume DF (x0) : V → W is an isomorphism. Then there exists a
neighborhood U of x0 and a neighborhood O of y0 = F (x0) such that F : U → O is
bijective, and its inverse F−1 : O → U is Ck.

We assume this is part of the reader’s background. Proofs can be found in §2 of
[T3] and in Appendix B of [T4]. Our goal here is to prove the following Submersion
Mapping Theorem, of use in §1. In this case, dim V ≥ dim W .

Theorem α.2. Let V and W be finite dimensional vector spaces, and F : V → W
a Ck map, k ≥ 1. Fix p ∈ W , and consider

(α.2) S = {x ∈ V : F (x) = p}.
Assume that, for each x ∈ S, DF (x) : V → W is surjective. Then S is a Ck

submanifold of V . Furthermore, for each x ∈ S,

(α.3) TxS = kerDF (x).

Proof. Given q ∈ S, set Kq = ker DF (q) and define

(α.4) Gq : V −→ W ⊕Kq, Gq(x) = (F (x), Pq(x− q)),

where Pq is a projection of V onto Kq. Note that

(α.5) Gq(q) = (F (q), 0) = (p, 0).

Also

(α.6) DGq(x) = (DF (x), Pq), x ∈ V.

We claim that

(α.7) DGq(q) = (DF (q), Pq) : V → W ⊕Kq is an isomorphism.

This is a special case of the following general observation.
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Lemma α.3. If A : V → W is a surjective linear map and P is a projection of V
onto kerA, then

(A, P ) : V −→ W ⊕ kerA is an isomorphism.

We postpone the proof of this lemma and proceed with the proof of Theorem α.2.
Having (α.7), we can apply the Inverse Function Theorem to obtain a neighborhood
U of q in V and a neighborhood O of (p, 0) in W ⊕Kq such that Gq : U → O is
bijective, with Ck inverse

(α.9) G−1
q : O −→ U, G−1

q (p, 0) = q.

By (α.4), given x ∈ U ,

(α.10) x ∈ S ⇐⇒ Gq(x) = (p, v), for some v ∈ Kq.

Hence S∩U is the image under the Ck diffeomorphism G−1
q of O∩{(p, v) : v ∈ Kq}.

Hence S is smooth of class Ck and dim TqS = dim Kq. It follows from the chain
rule that TqS ⊂ Kq, so the dimension count yields TqS = Kq. This proves Theorem
α.2.

It remains to prove Lemma α.3. Indeed, given that A : V → W is surjective, the
fundamental theorem of linear algebra implies dim V = dim(W ⊕ kerA), and it is
clear that (A, P ) in (α.8) is injective, so the isomorphism property follows.

Remark. In case V = Rn and W = R, DF (x) is typically denoted ∇F (x), the
hypothesis on DF (x) becomes ∇F (x) 6= 0, and (α.3) is equivalent to the assertion
that dim S = n− 1 and, for x ∈ S,

∇F (x) ⊥ TxS.

This result (at least for n = 2, 3) appears in standard multivariable calculus courses.
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β. Metric tensors and volume elements

Let M be a C1 manifold of dimension n. A continuous metric tensor on M gives
a continuous inner product on tangent vectors to M . In a local coordinate system
(x1, . . . , xn), identifying an open subset of M with an open set O ⊂ Rn, the metric
tensor is given by a positive definite n × n matrix G(x) = (gjk(x)), and the inner
product of vectors U and V is given by

(β.1) 〈U, V 〉 = U ·G(x)V =
∑

j,k

gjk(x)uj(x)vk(x),

where U =
∑

j uj(x)ej , V =
∑

k vk(x)ek, and {e1, . . . , en} is the standard basis
of Rn. If we change coordinates by a C1 diffeomorphism F : O → Ω, the metric
tensor H(y) = (hjk(y)) in the coordinate system y = F (x) is related to G(x) by

(β.2) DF (x)U ·H(y)DF (x)V = 〈U, V 〉 = U ·G(x)V,

at y = F (x), i.e.,

(β.3) G(x) = DF (x)tH(y)DF (x),

or

(β.4) gjk(x) =
∑

i,`

∂Fi

∂xj

∂F`

∂xk
hi`(y).

Now, for an integrable function u supported on a coordinate patch, the integral
is given by

(β.5)
∫

u dV =
∫

u(x)
√

g dx, g(x) = det G(x).

To see that (β.5) is well defined, note that under the change of coordinates y = F (x)
we have by (β.3) that det G(x) = (det DF (x))2 det H(y). Hence

(β.6)
√

h = |det DF |−1√g, h = det H,

so, by the standard change of variable formula for the integral,

(β.7)

∫
u(y)

√
h dy =

∫
u(F (x))|detDF |−1√g| detDF | dx

=
∫

u(F (x))
√

g dx.
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More generally,
∫

M
u dV is defined by writing u as a sum of terms supported on

coordinate charts. We see that we have a well defined integral over M , determined
by the metric tensor.

In case M is an n-dimensional submanifold of Rm and a local coordinate chart
arises via a C1 map ϕ : O → Rm, the metric tensor induced on O is given by

(β.8) G(x) = Dϕ(x)tDϕ(x),

i.e.,

(β.9) gjk(x) =
m∑

`=1

∂ϕ`

∂xj

∂ϕ`

∂xk
=

∂ϕ

∂xj
· ∂ϕ

∂xk
,

using the dot product on Rm.
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γ. Integration of differential forms

The calculus of differential forms provides a convenient setting for integration
on manifolds, as we will explain in this appendix, due to the efficient way it keeps
track of changes of variables.

A k-form β on an open set O ⊂ Rn has the form

(γ.1) β =
∑

j

bj(x) dxj1 ∧ · · · ∧ dxjk
.

Here j = (j1, . . . , jk) is a k-multi-index. We write β ∈ Λk(O). The wedge product
used in (γ.1) has the anti-commutative property

(γ.2) dx` ∧ dxm = −dxm ∧ dx`,

so that if σ is a permutation of {1, . . . , k}, we have

(γ.3) dxj1 ∧ · · · ∧ dxjk
= (sgn σ) dxjσ(1) ∧ · · · ∧ dxjσ(k) .

In particular, an n-form α on O ⊂ Rn can be written

(γ.4) α = A(x) dx1 ∧ · · · ∧ dxn.

If A ∈ L1(O, dx), we write

(γ.5)
∫

O

α =
∫

O

A(x) dx,

the right side being the usual integral on Euclidean space.
Suppose now Ω ⊂ Rn is open and there is a C1 diffeomorphism F : Ω → O. We

define the pull-back F ∗β of the k-form β in (γ.1) as

(γ.6) F ∗β =
∑

j

bj(F (x)) (F ∗dxj1) ∧ · · · ∧ (F ∗dxjk
),

where

(γ.7) F ∗dxj =
∑

`

∂Fj

∂x`
dx`,

the algebraic computation in (γ.6) being performed using the rule (γ.3).
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If B = (b`m) is an n×n matrix, then, by (γ.3) and the standard formula for the
determinant,

(γ.8)

(∑
m

b1m dxm

)
∧

(∑
m

b2m dxm

)
∧ · · · ∧

(∑
m

bnm dxm

)

=
(∑

σ

(sgn σ) b1σ(1)b2σ(2) · · · bnσ(n)

)
dx1 ∧ · · · ∧ dxn

= (detB) dx1 ∧ · · · ∧ dxn.

Hence, if F : Ω → O is a C1 map and α is an n-form on O, as in (γ.4), then

(γ.9) F ∗α = det DF (x)A(F (x)) dx1 ∧ · · · ∧ dxn.

This formula is especially significant in light of the standard change of variable
formula

(γ.10)
∫

O

A(x) dx =
∫

Ω

A(F (x)) | detDF (x)| dx,

when F : Ω → O is a C1 diffeomorphism. The only difference between the right
side of (γ.10) and

∫
Ω

F ∗α is the absolute value sign around detDF (x). We say a
C1 map F : Ω → O is orientation preserving when det DF (x) > 0 for all x ∈ Ω. In
such a case, (γ.10) yields

Proposition γ.1. If F : Ω → O is a C1 orientation-preserving diffeomorphism
and α an integrable n-form on O, then

(γ.11)
∫

O

α =
∫

Ω

F ∗α.

In addition to the pull-back, there are some other operations on differential
forms. The wedge product of dx`’s extends to a wedge product on forms as follows.
If β ∈ Λk(O) has the form (γ.1) and if

(γ.12) α =
∑

i

ai(x) dxi1 ∧ · · · ∧ dxi`
∈ Λ`(O),

define

(γ.13) α ∧ β =
∑

i,j

ai(x)bj(x) dxi1 ∧ · · · ∧ dxi`
∧ dxj1 ∧ · · · ∧ dxjk

in Λk+`(O). We retain the equivalences (γ.3). It follows that

(γ.14) α ∧ β = (−1)k`β ∧ α.
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It is also readily verified that

(γ.15) F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β).

Another important operator on forms is the exterior derivative:

(γ.16) d : Λk(O) −→ Λk+1(O),

defined as follows. If β ∈ Λk(O) is given by (G.1), then

(γ.17) dβ =
∑

j,`

∂bj

∂x`
dx` ∧ dxj1 ∧ · · · ∧ dxjk

.

The antisymmetry dxm∧dx` = −dx`∧dxm, together with the identity ∂2bj/∂x`∂xm =
∂2bj/∂xm∂x`, implies

(γ.18) d(dβ) = 0,

for any smooth differential form β. We also have a product rule:

(γ.19) d(α ∧ β) = (dα) ∧ β + (−1)jα ∧ (dβ), α ∈ Λj(O), β ∈ Λk(O).

The exterior derivative has the following important property under pull-backs:

(γ.20) F ∗(dβ) = dF ∗β,

if β ∈ Λk(O) and F : Ω → O is a smooth map. To see this, extending (γ.19) to a
formula for d(α ∧ β1 ∧ · · · ∧ β`) and using this to apply d to F ∗β, we have

(γ.21)

dF ∗β =
∑

j,`

∂

∂x`

(
bj ◦ F (x)

)
dx` ∧

(
F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)

+
∑

j,ν

(±)bj

(
F (x)

)(
F ∗dxj1

) ∧ · · · ∧ d
(
F ∗dxjν

) ∧ · · · ∧ (
F ∗dxjk

)
.

Now the definition (γ.6)–(γ.7) of pull-back gives directly that

(γ.22) F ∗dxi =
∑

`

∂Fi

∂x`
dx` = dFi,

and hence d(F ∗dxi) = ddFi = 0, so only the first sum in (γ.21) contributes to
dF ∗β. Meanwhile,

(γ.23) F ∗dβ =
∑

j,m

∂bj

∂xm

(
F (x)

)
(F ∗dxm) ∧ (

F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)
,
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so (γ.20) follows from the identity

∑

`

∂

∂x`

(
bj ◦ F (x)

)
dx` =

∑
m

∂bj

∂xm

(
F (x)

)
F ∗dxm,

which in turn follows from the chain rule.
Here is another important consequence of the chain rule. Suppose F : Ω → O

and ψ : O → U are smooth maps between open subsets of Rn. We claim that for
any form α of any degree,

(γ.24) ψ ◦ F = ϕ =⇒ ϕ∗α = F ∗ψ∗α.

It suffices to check (γ.24) for α = dxj . Then (γ.7) gives the basic identity ψ∗ dxj =∑
(∂ψj/∂x`) dx`. Consequently,

(γ.25) F ∗ψ∗ dxj =
∑

`,m

∂F`

∂xm

∂ψj

∂x`
dxm, ϕ∗ dxj =

∑
m

∂ϕj

∂xm
dxm;

but the identity of these forms follows from the chain rule:

(γ.26) Dϕ = (Dψ)(DF ) =⇒ ∂ϕj

∂xm
=

∑

`

∂ψj

∂x`

∂F`

∂xm
.

One can define a k-form on an n-dimensional manifold M as follows. Say M
is covered by open sets Oj and there are coordinate charts Fj : Ωj → Oj , with
Ωj ⊂ Rn open. A collection of forms βj ∈ Λk(Ωj) is said to define a k-form on
M provided the following compatibility condition holds. If Oi ∩ Oj 6= ∅ and we
consider Ωij = F−1

i (Oi ∩ Oj) and diffeomorphisms

(γ.27) ϕij = F−1
j ◦ Fi : Ωij −→ Ωji,

we require

(γ.28) ϕ∗ijβj = βi.

The fact that this is a consistent definition is a consequence of (γ.24). For example,
if G : M → Rm is a smooth map and γ is a k-form on Rm, then there is a well-defined
k-form β = G∗γ on M , represented in such coordinate charts by βj = (G ◦ Fj)∗γ.
Similarly, if β is a k-form on M as defined above and G : U → M is smooth, with
U ⊂ Rm open, then G∗β is a well-defined k-form on U .

We give an intrinsic definition of
∫

M
α when α is an n-form on M , provided

M is oriented, i.e., there is a coordinate cover as above such that det Dϕjk > 0.
The object called an “orientation” on M can be identified as an equivalence class
of nowhere vanishing n-forms on M , two such forms being equivalent if one is a
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multiple of another by a positive function in C∞(Ω). A member of this equivalence
class, say ω, defines the orientation. The standard orientation on Rn is determined
by dx1∧· · ·∧dxn. The equivalence class of positive multiples a(x)ω is said to consist
of “positive” forms. A smooth map ψ : S → M between oriented n-dimensional
manifolds preserves orientation provided ψ∗σ is positive on S whenever σ ∈ Λn(M)
is positive. We mention that there exist surfaces that cannot be oriented, such as
the famous “Möbius strip.”

We define the integral of an n-form over an oriented n-dimensional manifold as
follows. First, if α is an n-form supported on an open set O ⊂ Rn, given by (γ.4),
then we define

∫
O α by (γ.5).

More generally, if M is an n-dimensional manifold with an orientation, say the
image of an open set O ⊂ Rn by ϕ : O → M , carrying the natural orientation of
O, we can set

(γ.29)
∫

M

α =
∫

O

ϕ∗α

for an n-form α on M . If it takes several coordinate patches to cover M , define∫
M

α by writing α as a sum of forms, each supported on one patch.
We need to show that this definition of

∫
M

α is independent of the choice of
coordinate system on M (as long as the orientation of M is respected). Thus,
suppose ϕ : O → U ⊂ M and ψ : Ω → U ⊂ M are both coordinate patches, so
that F = ψ−1 ◦ ϕ : O → Ω is an orientation-preserving diffeomorphism. We need
to check that, if α is an n-form on M , supported on U, then

(γ.30)
∫

O

ϕ∗α =
∫

Ω

ψ∗α.

To establish this, we use (γ.24). This implies that the left side of (γ.30) is equal to

(γ.31)
∫

O

F ∗(ψ∗α),

which is equal to the right side of (γ.30), by (γ.11) (with slightly altered notation).
Thus the integral of an n-form over an oriented n-dimensional manifold is well
defined.
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A. Flows and vector fields

Let U ⊂ Rn be open. A vector field on U is a smooth map

(A.1) X : U −→ Rn.

Consider the corresponding ODE

(A.2)
dy

dt
= X(y), y(0) = x,

with x ∈ U. A curve y(t) solving (A.2) is called an integral curve of the vector field
X. It is also called an orbit. For fixed t, write

(A.3) y = y(t, x) = F t
X(x).

The locally defined F t
X , mapping (a subdomain of) U to U, is called the flow

generated by the vector field X.
The vector field X defines a differential operator on scalar functions, as follows:

(A.4) LXf(x) = lim
h→0

h−1
[
f(Fh

Xx)− f(x)
]

=
d

dt
f(F t

Xx)
∣∣
t=0

.

We also use the common notation

(A.5) LXf(x) = Xf,

that is, we apply X to f as a first order differential operator.
Note that, if we apply the chain rule to (A.4) and use (A.2), we have

(A.6) LXf(x) = X(x) · ∇f(x) =
∑

aj(x)
∂f

∂xj
,

if X =
∑

aj(x)ej , with {ej} the standard basis of Rn. In particular, using the
notation (A.5), we have

(A.7) aj(x) = Xxj .

In the notation (A.5),

(A.8) X =
∑

aj(x)
∂

∂xj
.

We note that X is a derivation, i.e., a map on C∞(U), linear over R, satisfying

(A.9) X(fg) = (Xf)g + f(Xg).

Conversely, any derivation on C∞(U) defines a vector field, i.e., has the form (A.8),
as we now show.
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Proposition A.1. If X is a derivation on C∞(U), then X has the form (A.8).

Proof. Set aj(x) = Xxj , X# =
∑

aj(x)∂/∂xj , and Y = X − X#. Then Y is a
derivation satisfying Y xj = 0 for each j; we aim to show that Y f = 0 for all f.
Note that, whenever Y is a derivation

1 · 1 = 1 ⇒ Y · 1 = 2Y · 1 ⇒ Y · 1 = 0,

i.e., Y annihilates constants. Thus in this case Y annihilates all polynomials of
degree ≤ 1.

Now we show Y f(p) = 0 for all p ∈ U. Without loss of generality, we can suppose
p = 0, the origin. Then we can take bj(x) =

∫ 1

0
(∂jf)(tx)dt, and write

f(x) = f(0) +
∑

bj(x)xj .

It immediately follows that Y f vanishes at 0, so the proposition is proved.

If U is a manifold, it is natural to regard a vector field X as a section of the
tangent bundle of U . Of course, the characterization given in Proposition A.1 makes
good invariant sense on a manifold.

A fundamental fact about vector fields is that they can be “straightened out”
near points where they do not vanish. To see this, suppose a smooth vector field
X is given on U such that, for a certain p ∈ U, X(p) 6= 0. Then near p there is a
hypersurface M which is nowhere tangent to X. We can choose coordinates near p
so that p is the origin and M is given by {xn = 0}. Thus we can identify a point
x′ ∈ Rn−1 near the origin with x′ ∈ M. We can define a map

(A.10) F : M × (−t0, t0) −→ U

by

(A.11) F(x′, t) = F t
X(x′).

This is C∞ and has surjective derivative, so by the Inverse Function Theorem is
a local diffeomorphism. This defines a new coordinate system near p, in whch the
flow generated by X has the form

(A.12) Fs
X(x′, t) = (x′, t + s).

If we denote the new coordinates by (u1, . . . , un), we see that the following result
is established.

Theorem A.2. If X is a smooth vector field on U with X(p) 6= 0, then there exists
a coordinate system (u1, . . . , un) centered at p (so uj(p) = 0) with respect to which

(A.13) X =
∂

∂un
.
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B. Lie brackets

If F : V → W is a diffeomorphism between two open domains in Rn, or between
two smooth manifolds, and Y is a vector field on W, we define a vector field F#Y
on V so that

(B.1) F t
F#Y = F−1 ◦ F t

Y ◦ F,

or equivalently, by the chain rule,

(B.2) F#Y (x) =
(
DF−1

)(
F (x)

)
Y

(
F (x)

)
.

In particular, if U ⊂ Rn is open and X is a vector field on U, defining a flow F t,
then for a vector field Y, F t

#Y is defined on most of U, for |t| small, and we can
define the Lie derivative:

(B.3) LXY = lim
h→0

h−1
(Fh

#Y − Y
)

=
d

dt
F t

#Y
∣∣
t=0

,

as a vector field on U.
Another natural construction is the operator-theoretic bracket:

(B.4) [X, Y ] = XY − Y X,

where the vector fields X and Y are regarded as first order differential operators
on C∞(U). One verifies that (B.4) defines a derivation on C∞(U), hence a vector
field on U. The basic elementary fact about the Lie bracket is the following.

Theorem B.1. If X and Y are smooth vector fields, then

(B.5) LXY = [X,Y ].

Proof. Let us first verify the identity in the special case

X =
∂

∂x1
, Y =

∑
bj(x)

∂

∂xj
.

Then F t
#Y =

∑
bj(x + te1)∂/∂xj . Hence, in this case LXY =

∑
(∂bj/∂x1)∂/∂xj ,

and a straightforward calculation shows this is also the formula for [X, Y ], in this
case.

Now we verify (B.5) in general, at any point x0 ∈ U. First, if X is nonvanishing at
x0, we can choose a local coordinate system so the example above gives the identity.
By continuity, we get the identity (B.5) on the closure of the set of points x0 where
X(x0) 6= 0. Finally, if x0 has a neighborhood where X = 0, clearly LXY = 0 and
[X, Y ] = 0 at x0. This completes the proof.
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Corollary B.2. If X and Y are smooth vector fields on U, then

(B.6)
d

dt
F t

X#Y = F t
X#[X,Y ]

for all t.

Proof. Since locally F t+s
X = Fs

XF t
X , we have the same identity for F t+s

X#, which
yields (B.6) upon taking the s-derivative. In more detail, (d/dt)F t

X#Y = (d/ds)F t+s
X#Y |s=0 =

(d/ds)F t
X#Y |s=0 = F t

X#LXY , and the last step follows from (B.5).

We make some further comments about cases when one can explicitly integrate
a vector field X in the plane, exploiting “symmetries” that might be apparent. In
fact, suppose one has in hand a vector field Y such that

(B.7) [X,Y ] = 0.

By (B.6), this implies F t
Y #X = X for all t. Suppose one has an explicit hold on

the flow generated by Y, so one can produce explicit local coordinates (u, v) with
respect to which

(B.8) Y =
∂

∂u
.

In this coordinate system, write X = a(u, v)∂/∂u + b(u, v)∂/∂v. The condition
(B.7) implies ∂a/∂u = 0 = ∂b/∂u, so in fact we have

(B.9) X = a(v)
∂

∂u
+ b(v)

∂

∂v
.

Integral curves of (B.9) satisfy

(B.10) u′ = a(v), v′ = b(v)

and can be found explicitly in terms of integrals; one has

(B.11)
∫

b(v)−1 dv = t + C1,

and then

(B.12) u =
∫

a(v(t)) dt + C2.

More generally than (B.7), we can suppose that, for some constant c,

(B.13) [X, Y ] = cX,
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which by (B.6) is the same as

(B.14) F t
Y #X = e−ctX.

An example would be

(B.15) X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

where f and g satisfy “homogeneity” conditions of the form

(B.16) f(rax, rby) = ra−cf(x, y), g(rax, rby) = rb−cg(x, y),

for r > 0; in such a case one can take explicitly

(B.17) F t
Y (x, y) = (eatx, ebty).

Now, if one again has (B.8) in a local coordinate system (u, v), then X must have
the form

(B.18) X = ecu
[
a(v)

∂

∂u
+ b(v)

∂

∂v

]

which can be explicitly integrated, since

(B.19) u′ = ecua(v), v′ = ecub(v) =⇒ du

dv
=

a(v)
b(v)

.

The hypothesis (B.13) implies that the linear span (over R) of X and Y is a
two dimensional solvable Lie algebra. Sophus Lie devoted a good deal of effort to
examining when one could use constructions of solvable Lie algebras of vector fields
to explicitly integrate vector fields; his investigations led to his foundation of the
theory of Lie groups.
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C. Frobenius’ theorem

Let G : U → V be a diffeomorphism. Recall from §B the action on vector fields:

(C.1) G#Y (x) = DG(y)−1Y (y), y = G(x).

As noted there, an alternative characterization of G#Y is given in terms of the flow
it generates. One has

(C.2) F t
Y ◦G = G ◦ F t

G#Y .

The proof of this is a direct consequence of the chain rule. As a special case, we
have the following

Proposition C.1. If G#Y = Y, then F t
Y ◦G = G ◦ F t

Y .

From this, we derive the following condition for a pair of flows to commute. Let
X and Y be vector fields on U.

Proposition C.2. If X and Y commute as differential operators, i.e.,

(C.3) [X,Y ] = 0,

then locally Fs
X and F t

Y commute, i.e., for any p0 ∈ U, there exists δ > 0 such that,
for |s|, |t| < δ,

(C.4) Fs
XF t

Y p0 = F t
Y Fs

Xp0.

Proof. By Proposition C.1, it suffices to show that Fs
X#Y = Y. Clearly this holds

at s = 0. But by (B.6), we have

d

ds
Fs

X#Y = Fs
X#[X, Y ],

which vanishes if (C.3) holds. This finishes the proof.

We have stated that, given (C.3), then (C.4) holds locally. If the flows generated
by X and Y are not complete, this can break down globally. For example, con-
sider X = ∂/∂x1, Y = ∂/∂x2 on R2, which satisfy (C.3) and generate commuting
flows. These vector fields lift to vector fields on the universal covering surface M̃ of
R2 \ (0, 0), which continue to satisfy (C.3). The flows on M̃ do not commute glob-
ally. This phenomenon does not arise, for example, for vector fields on a compact
manifold.

We now consider when a family of vector fields has a multidimensional integral
manifold. Suppose X1, . . . , Xk are smooth vector fields on U which are linearly
independent at each point of a k−dimensional surface Σ ⊂ U. If each Xj is tangent
to Σ at each point, Σ is said to be an integral manifold of (X1, . . . , Xk).
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Proposition C.3. Suppose X1, . . . , Xk are linearly independent at each point of
U and [Xj , X`] = 0 for all j, `. Then, for each x0 ∈ U, there is a k-dimensional
integral manifold of (X1, . . . , Xk) containing x0.

Proof. We define a map F : V → U, V a neighborhood of 0 in Rk, by

(C.5) F (t1, . . . , tk) = F t1
X1
· · · F tk

Xk
x0.

Clearly (∂/∂t1)F = X1(F ). Similarly, since F tj

Xj
all commute, we can put any F tj

Xj

first and get (∂/∂tj)F = Xj(F ). This shows that the image of V under F is an
integral manifold containing x0.

We now derive a more general condition guaranteeing the existence of integral
submanifolds. This important result is due to Frobenius. We say (X1, . . . , Xk) is
involutive provided that, for each j, `, there are smooth bj`

m(x) such that

(C.6) [Xj , X`] =
k∑

m=1

bj`
m(x)Xm.

The following is Frobenius’ Theorem.

Theorem C.4. If (X1, . . . , Xk) are C∞ vector fields on U, linearly independent at
each point, and the involutivity condition (C.6) holds, then through each x0 there
is, locally, a unique integral manifold Σ, of dimension k.

We will give two proofs of this result. First, let us restate the conclusion as
follows. There exist local coordinates (y1, . . . , yn) centered at x0 such that

(C.7) span (X1, . . . , Xk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.

First proof. The result is clear for k = 1. We will use induction on k. So let the set
of vector fields X1, . . . , Xk+1 be linearly independent at each point and involutive.
Choose a local coordinate system so that Xk+1 = ∂/∂u1. Now let

(C.8) Yj = Xj − (Xju1)
∂

∂u1
for 1 ≤ j ≤ k, Yk+1 =

∂

∂u1
.

Since, in (u1, . . . , un) coordinates, no Y1, . . . , Yk involves ∂/∂u1, neither does any
Lie bracket, so

[Yj , Y`] ∈ span (Y1, . . . , Yk), j, ` ≤ k.

Thus (Y1, . . . , Yk) is involutive. The induction hypothesis implies there exist local
coordinates (y1, . . . , yn) such that

span (Y1, . . . , Yk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.
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Now let

(C.9) Z = Yk+1 −
k∑

`=1

(
Yk+1y`

) ∂

∂y`
=

∑

`>k

(Yk+1y`)
∂

∂y`
.

Since, in the (u1, . . . , un) coordinates, Y1, . . . , Yk do not involve ∂/∂u1, we have

[Yk+1, Yj ] ∈ span (Y1, . . . , Yk).

Thus [Z, Yj ] ∈ span (Y1, . . . , Yk) for j ≤ k, while (C.9) implies that [Z, ∂/∂yj ]
belongs to the span of (∂/∂yk+1, . . . , ∂/∂yn), for j ≤ k. Thus we have

[
Z,

∂

∂yj

]
= 0, j ≤ k.

Proposition C.3 implies span (∂/∂y1, . . . , ∂/∂yk, Z) has an integral manifold through
each point, and since this span is equal to the span of X1, . . . , Xk+1, the first proof
is complete.

Second proof. Let X1, . . . , Xk be C∞ vector fields, linearly independent at each
point, and satisfying the condition (C.6). Choose an n − k dimensional surface
O ⊂ U, transverse to X1, . . . , Xk. For V a neighborhood of the origin in Rk, define
Φ : V ×O → U by

(C.10) Φ(t1, . . . , tk, x) = F t1
X1
· · · F tk

Xk
x.

We claim that, for x fixed, the image of V in U is a k dimensional surface Σ tangent
to each Xj , at each point of Σ. Note that, since Φ(0, . . . , tj , . . . , 0, x) = F tj

Xj
x, we

have

(C.11)
∂

∂tj
Φ(0, . . . , 0, x) = Xj(x), x ∈ O.

To establish the claim, it suffices to show that F t
Xj#

X` is a linear combination
with coefficients in C∞(U) of X1, . . . , Xk. This is accomplished by the following:

Lemma C.5. Suppose [Y, Xj ] =
∑
`

λj`(x)X`, with smooth coefficients λj`(x). Then

F t
Y #Xj is a linear combination of X1, . . . , Xk, with coefficients in C∞(U).

Proof. Denote by Λ the matrix (λj`) and let Λ(t) = Λ(t, x) = (λj`(F t
Y x)). Now let

A(t) = A(t, x) be the unique solution to the ODE
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(C.12)
d

dt
A(t) = Λ(t)A(t), A(0) = I.

Write A = (αj`). We claim that

(C.13) F t
Y #Xj =

∑

`

αj`(t, x)X`.

This formula will prove the lemma. Indeed, we have

d

dt
(F t

Y )#Xj = (F t
Y )#[Y, Xj ]

= (F t
Y )#

∑

`

λj`X`

=
∑

`

(λj` ◦ F t
Y )(F t

Y #X`).

Uniqueness of the solution to (C.12) gives (C.13), and we are done.

This completes the second proof of Frobenius’ Theorem.
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D. Variation of flows

We want to derive a formula for the variation of a flow as the vector field gen-
erating the flow is varied. It will be technically convenient to consider first how a
solution to an ODE depends on the initial conditions. Consider a nonlinear system

(D.1)
dy

dt
= F (y), y(0) = x.

Suppose F : U → Rn is smooth, U ⊂ Rn open; for simplicity we assume U is
convex. Say y = y(t, x). We want to examine smoothness in x.

Note that formally differentiating (D.1) with respect to x suggests that W =
Dxy(t, x) satisfies an ODE called the linearization of (D.1):

(D.2)
dW

dt
= DF (y)W, W (0) = I.

In other words, w(t, x) = Dxy(t, x)w0 satisfies

(D.3)
dw

dt
= DF (y)w, w(0) = w0.

To justify this, we want to compare w(t) and

(D.4) z(t) = y1(t)− y(t) = y(t, x + w0)− y(t, x).

It would be convenient to show that z satisfies an ODE similar to (D.3). Indeed,
z(t) satisfies

(D.5)
dz

dt
= F (y1)− F (y) = Φ(y1, y)z, z(0) = w0,

where

(D.6) Φ(y1, y) =
∫ 1

0

DF
(
τy1 + (1− τ)y

)
dτ.

If we assume

(D.7) ‖DF (u)‖ ≤ M for u ∈ U,

then the solution operator S(t, 0) of the linear ODE d/dt − B(t), with B(y) =
Φ(y1(t), y(t)), satisfies a bound ‖S(t, 0)‖ ≤ e|t|M as long as y(t), y1(t) ∈ U. Hence

(D.8) ‖y1(t)− y(t)‖ ≤ e|t|M‖w0‖.



222

This establishes that y(t, x) is Lipschitz in x.
To continue, since Φ(y, y) = DF (y), we rewrite (D.5) as

(D.9)
dz

dt
= Φ(y + z, y)z = DF (y)z + R(y, z), w(0) = w0.

where

(D.10) F ∈ C1(U) =⇒ ‖R(y, z)‖ = o(‖z‖) = o(‖w0‖).

Now comparing the ODE (6.9) with (6.3), we have

(D.11)
d

dt
(z − w) = DF (y)(z − w) + R(y, z), (z − w)(0) = 0.

Then Duhamel’s principle yields

(D.12) z(t)− w(t) =
∫ t

0

S(t, s)R
(
y(s), z(s)

)
ds,

so by the bound ‖S(t, s)‖ ≤ e|t−s|M and (6.10) we have

(D.13) z(t)− w(t) = o(‖w0‖).

This is precisely what is required to show that y(t, x) is differentiable with respect
to x, with derivative W = Dxy(t, x) satisfying (D.2). We state our first result.

Proposition D.1. If F ∈ C1(U), and if solutions to (D.1) exist for t ∈ (−T0, T1),
then for each such t, y(t, x) is C1 in x, with derivative Dxy(t, x) = W (t, x) satis-
fying (D.2).

So far we have shown that y(t, x) is both Lipschitz and differentiable in x, but
the continuity of W (t, x) in x follows easily by comparing the ODEs of the form
(D.2) for W (t, x) and W (t, x + w0), in the spirit of the analysis of (D.11).

If F possesses further smoothness, we can obtain higher differentiability of y(t, x)
in x by the following trick. Couple (6.1) and (6.2), to get an ODE for (y, W ) :

(D.14)
dy

dt
= F (y),

dW

dt
= DF (y)W

with initial condition

(D.15) y(0) = x, W (0) = I.

We can reiterate the argument above, getting results on Dx(y, W ), i.e., on D2
xy(t, x),

and continue, proving:
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Proposition D.2. If F ∈ Ck(U), then y(t, x) is Ck in x.

We now tackle our stated goal: to consider dependence of the solution to a
system of the form

(D.16)
dy

dt
= F (τ, y), y(0) = x

on a parameter τ, assuming F is smooth jointly in τ, y. This result can be deduced
from the previous one by the following trick: consider the ODE

(D.17)
dy

dt
= F (z, y),

dz

dt
= 0; y(0) = x, z(0) = τ.

Thus we get smoothness of y(t, τ, x) in (τ, x). Furthermore, v(t, τ, x) = ∂τy(t, τ, x)
satisfies

(D.18)
dv

dt
= DyF (τ, y)v + Fτ (τ, y), v(0, τ, x) = 0.

Note that (2.15) (with t replaced by s and other notational changes) is a special
case of this.
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E. Lie algebras of matrix groups

Here we present some results on the Lie algebra of a Lie subgroup

(E.1) G ⊂ Gl(n,R).

These results are special cases of more general and systematic results established in
§§12–14. The advantage of the presentation here is that it can be read right after
§2.

As a linear space, the Lie algebra of G can be identified as

(E.2) g = TIG.

One fundamental result is that Exp : M(n,R) → Gl(n,R), given by Exp(A) = eA,
satisfies the following:

Proposition E.1. For A ∈ M(n,R), we have

(E.3) A ∈ g ⇐⇒ etA ∈ G, ∀ t ∈ R.

The “⇐” part is clear from the identity (d/dt)etA|t=0 = A. As for the “⇒” part,
it has been noted in Proposition 2.1 that this follows by inspection for G of the
form (1.7)–(1.10), in which case g is given by (2.10). We will postpone the proof of
Proposition E.1 in the general case until later in this section.

Using (E.3), we establish the following:

Proposition E.2. With [A,B] = AB −BA, we have

(E.4) A,B ∈ g =⇒ [A, B] ∈ g.

Proof. Given g ∈ G, A ∈ g,

(E.5) g−1etAg = etg−1Ag, ∀ t,

and the left side of (6.5) belongs to G, so by (E.3) we have

(E.6) g−1Ag ∈ g, ∀ g ∈ G, A ∈ g.

Setting g = etB , B ∈ g, we have

(E.7) e−tBAetB ∈ g, ∀A,B ∈ g.

Applying d/dt at t = 0 gives (E.4).
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The commutator [A,B] = AB − BA gives g the structure of a Lie algebra. We
aim to establish further relations between the Lie algebra structure of g and the
group structure of G.

To begin, let us take A,B ∈ g and record the calculation

(E.8)
etAesB =

(
I + tA +

t2

2
A2 + O(t3)

)(
I + sB +

s2

2
B2 + O(s3)

)

= I + tA + sB + stAB +
t2

2
A2 +

s2

2
B2 + O(|(s, t)|3),

and similarly

(E.9) esBetA = I + tA + sB + stBA +
t2

2
A2 +

s2

2
B2 + O(|(s, t)|3),

Hence

(E.10) etAesB = esBetA + st[A,B] + O(|(s, t)|3).

We apply these calculations to show how the Lie algebra structure is preserved
under representations of G. Thus, assume we have a smooth homomorphism

(E.11) π : G −→ Gl(m,R).

(It is shown in Proposition 11.10 that every continuous homomorphism of G into
Gl(m,R) is actually smooth.) Let us set

(E.12) σ = Dπ(I) : g −→ M(m,R), so σ(A) =
d

ds
π(esA)

∣∣
s=0

,

for A ∈ g. Note that for such A,

(E.13)

d

dt
π(etA) =

d

ds
π(e(s+t)A)

∣∣
s=0

=
d

ds
π(esA)π(etA)

∣∣
s=0

= σ(A)π(etA),

and since γ(t) = π(etA) satisfies γ(0) = I, this gives

(E.14) π(etA) = etσ(A).

We are ready to prove:
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Proposition E.3. For π, σ as in (E.11)–(E.12), A,B ∈ g, we have

(E.15) σ([A,B]) = [σ(A), σ(B)] = σ(A)σ(B)− σ(B)σ(A).

Proof. Setting s = t in (E.10), we have

(E.16) etAetBe−tAe−tB = I + t2[A,B] + O(t3).

Applying π, and noting that

(E.17) π(etA) = etσ(A), π(etB) = etσ(B),

we have

(E.18) π(etAetBe−tAe−tB) = π(I + t2[A,B] + O(t3))

equal to

(E.19) etσ(A)etσ(B)e−tσ(A)e−tσ(B) = I + t2[σ(A), σ(B)] + O(t3),

the last identity holding by (E.16), with A,B replaced by σ(A), σ(B). Another way
to state these results is to define

γA,B : [0,∞) → G, γσ(A),σ(B) : [0,∞) → Gl(m,R),

by
γA,B(t) = e

√
tAe

√
tBe−

√
tAe−

√
tB ,

γσ(A),σ(B)(t) = e
√

tσ(A)e
√

tσ(B)e−
√

tσ(A)e−
√

tσ(B).

Then (E.16) and (E.19) imply γA,B and γσ(A),σ(B) are differentiable at t = 0, and

γ′A,B(0) = [A,B], γ′σ(A),σ(B)(0) = [σ(A), σ(B)],

while (E.17) implies
π(γA,B(t)) = γσ(A),σ(B)(t).

Applying d/dt at t = 0 yields

(E.20) Dπ(I)γ′A,B(0) = γ′σ(A),σ(B)(0).

Now the left side of (E.20) is σ([A,B]) and the right side is [σ(A), σ(B)], so we
have (E.15).

We next associate to each A ∈ TIG = g a certain vector field on G. To start,
take A ∈ M(n,R), the Lie algebra of Gl(n,R). We define a vector field XA on
Gl(n,R) by

(E.21) XA(g) = gA,

for g ∈ Gl(n,R). This vector field is left-invariant. That is to say, if for each
h ∈ Gl(n,R), we define Lh : Gl(n,R) → Gl(n,R) by

(E.22) Lhg = hg,

then we have

(E.23) XA(hg) = DLh(g)XA(g).

We now have the following simple result:
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Proposition E.4. If A ∈ g = TIG, then XA is tangent to G.

Proof. Given g ∈ G, we have Lg : G → G, and hence

(E.24) DLg(I) : TIG −→ TgG,

hence A ∈ g ⇒ XA(g) ∈ TgG.

Given A ∈ M(n,R), the flow F t
A on Gl(n,R) generated by XA is given by

(E.25) F t
Ag = getA,

as is readily checked:

(E.26)
d

dt
F t

Ag
∣∣
t=0

= XA(g) (by definition)

= gA,

which coincides with (d/dt)getA|t=0. With these observations, we can give a short

Proof of Proposition E.1 (the “⇒” part). The flow F t
A generated by XA preserves

each smooth submanifold of Gl(n,R) to which XA is tangent. If A ∈ g, then G has
this property, and etA = F t

AI.

Generally, a smooth vector field X defines a differential operator (also denoted
X) on smooth functions by Xu(x) = (d/dt)u(F tx)|t=0, where F t is the flow gen-
erated by X. In particular, for A ∈ M(n,R),

(E.27)
XAu(g) =

d

dt
u(getA)

∣∣
t=0

= Du(g) · gA,

where the “dot product” gives the action of Du(g) ∈ L(M(n,R),R) on gA ∈
M(n,R). Recall the Lie bracket of vector fields is given by

(E.28) [XA, XB ] = XAXB −XBXA.

The following result provides an equivalence between the Lie algebra structure on
g as we have defined it here and the Lie algebra structure as it is defined in §12.

Proposition E.5. Given A,B ∈ M(n,R), we have

(E.29) [XA, XB ] = X[A,B].

Proof. To begin, we have

(E.30) XAXBu(g) =
∂2

∂s∂t
u(getAesB)

∣∣
s,t=0

,
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and hence

(E.31) (XAXB −XBXA)u(g) =
∂2

∂s∂t

[
u(getAesB)− u(gesBetA)

]∣∣∣
s,t=0

.

Recalling (E.10), we see that

(E.32)
u(getAesB) = u(gesBetA + stg[A,B] + O(|(s, t)|3))

= u(gesBetA) + stDu(gesBetA) · g[A,B] + O(|(s, t)|3).

Applying (∂2/∂s∂t)|s,t=0, we obtain

(E.33)
[XA, XB ]u(g) = Du(g) · g[A,B]

= X[A,B]u(g),

the last identity holding by (E.27). This proves (E.29).
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F. The Poincaré-Birkhoff-Witt theorem

Given a Lie algebra g, the universal enveloping algebra U(g) =
⊗

gC/J , where J
is the two-sided ideal in

⊗
gC generated by {X ⊗ Y − Y ⊗X − [X, Y ] : X, Y ∈ g},

was introduced in §17. We can also form the space

(F.1) P(g) = {P : g′ → C, polynomial}.

There is a natural linear map

(F.2) β : P(g) −→ U(g),

given as follows. Say n = dim g and {X1, . . . , Xn} is a basis of g. Then {Xα1
1 · · ·Xαn

n }
is a basis of P(g), and we have

(F.3) β(Xα1
1 · · ·Xαn

n ) = (X1 ⊗ · · · ⊗X1)⊗ · · · ⊗ (Xn ⊗ · · · ⊗Xn), mod J,

where on the right side of (F.3) we have αj factors of Xj ⊗ · · ·⊗Xj . The Poincaré-
Birkhoff-Witt theorem is the following:

Theorem F.1. The map β in (F.2) is a linear isomorphism.

To prove that β is surjective, we note that U(g) is spanned by monomials

(F.4) Xj1 ⊗Xj2 ⊗ · · · ⊗Xjk
(mod J).

The assertion that β is surjective is equivalent to the assertion that U(g) is actually
spanned by monomials of the form (F.4) satisfying

(F.5) j1 ≤ j2 ≤ · · · ≤ jk.

To see this, consider for example a monomial of the form (F.4) for which j1 > j2.
We can rewrite it as

Xj2 ⊗Xj1 ⊗Xj3 ⊗ · · · ⊗Xjk
+ [Xj1 , Xj2 ]⊗Xj3 ⊗ · · · ⊗Xjk

(mod J),

that is, as a sum of two terms, the first of which is closer to satisfying the order
criterion (F.5) and the second of which has lower order. A finite iteration rewrites
each monomial (F.4) as a linear combination of monomials satisfying this order
criterion (mod J), showing that β is surjective.

To complete the proof of Theorem F.1, it remains to show that β is injective.
To do this, we bring in another linear map:

(F.6) α : U(g) −→ DL(G),
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where DL(G) is the space of left-invariant differential operators on G. This is
defined by

(F.7) α(Xj1 ⊗ · · · ⊗Xjk
) = Xj1 · · ·Xjk

,

where the right side is the product of first order differential operators Xj1 , . . . , Xjk
.

Now

(F.8) α(X ⊗ Y − Y ⊗X − [X,Y ]) = XY − Y X − [X, Y ] = 0,

so α annihilates J , and hence (F.6) is well defined. Furthermore, we can compose
α and β to get γ = α ◦ β : P(g) → DL(G):

(F.9)
P(g)

β−→ U(g)
γ ↘ ↓ α

DL(G)

The formula looks tautological:

(F.10) γ(Xα1
1 · · ·Xαn

n ) = Xα1
1 · · ·Xαn

n ,

but note that Xα1
1 · · ·Xαn

n on the left side of (F.10) is a polynomial function on g′,
a product of linear functions Xj : g′ → R, while Xα1

1 · · ·Xαn
n on the right side of

(F.10) is a differential operator of order |α| = α1 + · · ·+ αn, a product of powers of
first order differential operators Xj .

In order to prove that β is injective and complete the proof of Theorem F.1, it
suffices to prove:

Lemma F.2. The map γ in (F.9) is injective.

Proof. The injectivity of γ is equivalent to the following assertion. Assume

(F.11)
∑

|α|≤k

CαXα1
1 · · ·Xαn

n = 0 in DL(G).

Then we assert that

(F.12) Cα = 0, ∀α.

To see this, use coordinates (x1, . . . , xn) on g,

(F.13) X = x1X1 + · · ·xnXn,

and use the map Exp : g → G, a diffeomorphism of a neighborhood U of 0 ∈ g onto
a neighborhood O of e ∈ G, to express the basis Xj of g in these local exponential
coordinates as

(F.14) Xj =
n∑

`=1

Aj`(x)
∂

∂x`
.
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Note that

(F.15) Aj`(0) = δj`.

The hypothesis (F.11) implies that

(F.16)
∑

|α|≤k

Cα

(∑

`

A1`(x)
∂

∂x`

)α1 · · ·
(∑

`

An`(x)
∂

∂x`

)αn

= 0.

Now the left side of (F.16) is a differential operator of order k:

(F.17)
∑

|α|≤k

C̃α(x)∂α1
1 · · · ∂αn

n ,

(with ∂j = ∂/∂xj), and from (F.14)–(F.15) we obtain

(F.18) C̃α(0) = Cα, ∀ |α| = k.

Now if (F.14) holds, then C̃α ≡ 0 for all α, so we deduce that Cα = 0 whenever
|α| = k. Recording this in (F.11) then gives

(F.19)
∑

|α|≤k−1

CαXα1
1 · · ·Xαn

n = 0 in DL(G),

and iterating this argument finishes the proof of Lemma F.2.

Remark. It is also the case that α and γ in (F.6) and (F.9) are linear isomorphisms.
This follows from the results proven above plus the result that

(F.20) α is surjective.

For a proof of (F.20), see [T1], p. 24. From these results it follows that α is an
isomorphism of algebras. On the other hand, β and γ are not homomorphisms of
algebras.
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G. Analytic continuation from U(n) to Gl(n,C), another approach

The following result proved useful in the analysis of the irreducible representa-
tions of U(n) in §19.

Theorem G.1. If π is a representation of U(n) on a finite dimensional complex
vector space V , then π extends to a holomorphic representation of Gl(n,C) on V .

This was proven in §22. The proof given there extended dπ, C-linearly, from
the Lie algebra u(n) of U(n) to the Lie algebra M(n,C) of Gl(n,C). Then it was
shown that this Lie algebra representation arose from a representation of Gl(n,C)
itself, and not just its universal covering group. This latter step involved some
topology. Here we give another proof of Theorem G.1, deriving it from Proposition
G.2, which is of independent interest.

To set up Proposition G.2, we define the representation T p.q of U(n) on T p,q(Cn) =
(⊗pCn)⊗ (⊗qCn) by

(G.1)
T p,q(g)v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq

= gv1 ⊗ · · · ⊗ gvp ⊗ (g−1)tw1 ⊗ · · · ⊗ (g−1)twq.

Note that

(G.2) g ∈ U(n) ⇐⇒ (g−1)t = g.

Next, we define the representation TK of U(n) on TK(Cn) = ⊕p+q≤KT p,q(Cn) by

(G.3) TK(g)
( ⊕

p+q≤K

vpq

)
=

⊕

p+q≤K

T p,q(g)vpq.

The following result is closely related to the “easy” proof of the Peter-Weyl theorem
for compact matrix groups given in §7.

Proposition G.2. If π is a finite dimensional representation of U(n) on V , then
there exists K < ∞ such that π is contained in TK .

The content of Proposition G.2 is that, for some K, there is a linear subspace
W ⊂ TK(Cn), invariant under the action of TK , and a linear isomorphism J : V →
W such that

(G.4) π(g) = J−1TK(g)J,

for all g ∈ U(n). Given this result, Theorem G.1 has the following simple proof.
The formula (G.1) is clearly well defined for g ∈ Gl(n,C), holomorphic in g, and
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this formula together with (G.3) provides an explicit extension of TK from U(n) to
Gl(n,C). In turn, (G.4) extends π from U(n) to Gl(n,C).

To prove Proposition G.2, we can produce hermitian inner products so that π
and TK are unitary representations. Also π breaks up into irreducible pieces, and
it suffices to treat each piece. Thus we can assume π is irreducible. Let us assume
such π is not contained in TK for any K and obtain a contradiction.

Let L denote the linear span of the matrix entries of TK , as K varies over
N. If π is not contained in any TK , it is not equivalent to any of the irreducible
representations into which TK breaks up, so by the Weyl orthogonality relations
it follows that the matrix entries of π must be orthogonal to each element of L,
in L2(U(n)). However, from the construction (G.1)–(G.3) it is clear that L is an
algebra of continuous functions on U(n), invariant under complex conjugation, and
L separates the points of U(n). Hence, by the Stone-Weierstrass theorem, L is
dense in C(U(n)), and a fortiori dense in L2(U(n)). This contradiction proves
Proposition G.2.
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H. The complexification of a general compact Lie group

Here we construct the complexification GC of a compact, connected Lie group
G and extend Theorem G.1. To begin, take a faithful unitary representation ρ
of G on some space Cn. The existence of such a representation is guaranteed by
Proposition 11.8, and is apparent for the standard examples. Thus we have

(H.1) ρ : G −→ U(n) ⊂ Gl(n,C),

taking G isomorphically onto its image Gρ, with

(H.2) dρ : g −→ u(n) ⊂ M(n,C),

taking g isomorphically onto its image, gρ. Define Gρ
C to be the Lie subgroup of

Gl(n,C) generated by gρ
C ⊂ M(n,C). Shortly we will show that this complexification

of G is independent of the choice of ρ, up to natural isomorphism.
Here is the extension of Theorem G.1.

Theorem H.1. If π is a representation of G on a finite dimensional complex vector
space V , then there is a holomorphic representation πρ of Gρ

C on V such that

(H.3) πρ ◦ ρ(g) = π(g), ∀ g ∈ G.

The proof will parallel that of Theorem G.1. To set it up, define the representa-
tion T p,q

ρ of G on T p,q(Cn) = (⊗pCn)⊗ (⊗qCn) by

(H.4)
T p,q

ρ (g)v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq

= ρ(g)v1 ⊗ · · · ⊗ ρ(g)vp ⊗ ρ(g−1)tw1 ⊗ · · · ⊗ ρ(g−1)twq.

Note that

(H.5) ρ(g) ∈ U(n) =⇒ ρ(g−1)t = ρ(g).

Next we define the representation TK,ρ of G on TK(Cn) = ⊕p+q≤KT p,q(Cn) by

(H.6) TK,ρ(g)
( ⊕

p+q≤K

vpq

)
=

⊕

p+q≤K

T p,q
ρ (g)vpq.

Then we have:
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Proposition H.2. If π is a finite dimensional representation of G on V , then
there exists K < ∞ such that π is contained in TK,ρ.

Proof. Same as that of Proposition G.2.

The content of Proposition H.2 is that, for some K, there is a linear subspace W
of TK(Cn), invariant under the action of TK,ρ, and a linear isomorphism J : V → W
such that

(H.7) π(g) = J−1TK,ρ(g)J,

for all g ∈ G. Note that, with TK as in (G.3)–(G.4), we have

(H.8) π(g) = J−1TK(ρ(g))J, ∀ g ∈ G.

Theorem H.1 follows easily from this. As noted in Appendix G, TK extends from
U(n) to Gl(n,C), holomorphically, and we obtain (H.3) with

(H.9) πρ(g̃) = J−1TK(g̃)J, g̃ ∈ Gρ
C.

We next establish uniqueness:

Proposition H.3. If σ is another faithful unitary representation of G, on Cm, we
have a natural holomorphic isomorphism

(H.10) Gρ
C ≈ Gσ

C.

Proof. Applying Theorem H.1 to π = σ, we have a holomorphic representation σρ

of Gρ
C on Cm, i.e.,

(H.11) σρ : Gρ
C −→ Gl(m,C),

such that

(H.12) σρ ◦ ρ(g) = σ(g), ∀ g ∈ G.

We see that dσρ takes the Lie algebra gρ isomorphically onto gσ; hence it extends
to an isomorphism of the complexifications of these Lie algebras. This implies

(H.13) σρ : Gρ
C −→ Gσ

C,

with dσρ : gρ
C → gσ

C, isomorphically. Interchanging the roles of ρ and σ, we have a
holomorphic homomorphism

(H.14) ρσ : Gσ
C −→ Gρ

C.

It readily follows that the maps in (H.13) and (H.14) are inverse to each other, so
we have (H.10).

In light of this uniqueness, we choose any such Gρ
C as constructed above, denote

it GC, and call it “the complexification” of G.
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I. Exterior algebra

Let V be an n-dimensional vector space (over R or C), with basis {e1, . . . , en}.
We define Λ∗V by

(I.1) Λ∗V =
⊗ ∗V/I,

where ⊗∗V = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · is the tensor algebra and

(I.2) I is the 2-sided ideal generated by {u⊗ v + v ⊗ u : u, v ∈ V }.

Equivalently, I is the 2-sided ideal generated by {ej ⊗ ek + ek ⊗ ej : 1 ≤ j, k ≤ n}.
We denote the product of ϕ,ψ ∈ Λ∗V by ϕ ∧ ψ. Note that

(I.3) u, v ∈ V =⇒ u ∧ v = −v ∧ u.

We see that

(I.4) Λ∗V =
n⊕

k=0

ΛkV,

where Λ0V = R (or C) and ΛkV is spanned by

(I.5) {ej1 ∧ · · · ∧ ejk
: 1 ≤ j1 < · · · < jk ≤ n}.

Our goal in this appendix is to prove the following result, which was used in §41;
cf. (41.14).

Proposition I.1. The set (I.5) is linearly independent, hence a basis of ΛkV , for
each k ∈ {1, . . . , n}.
Proof. We start with k = n, where the assertion is that

(I.6) e1 ∧ · · · ∧ en 6= 0,

or, equivalently,

(I.7) e1 ∧ · · · ∧ en 6= −e1 ∧ · · · ∧ en.

Note from (I.3) that if σ ∈ Sn, i.e., σ is a permutation of {1, . . . , n}, then

(I.8) eσ(1) ∧ · · · ∧ eσ(n) = (sgn σ) σ1 ∧ · · · ∧ en.
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The content of (I.7) is that sgnσ is well defined, as a one-dimensional representation
of Sn. One way to see this is to represent Sn on the space of functions on Rn ≈ V :

(I.9) R(σ)f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

and note that R(σ) leaves invariant

(I.10) W = Span P (x), P (x) =
∏

1≤j<k≤n

(xj − xk).

Furthermore,

(I.11) R(σ)P (x) = (sgn σ)P (x),

showing that sgn σ is well defined.
Having the result for k = n, we proceed by induction. Let ` < n and suppose we

have the result for all k > `. To establish independence of (I.5) with k = `, suppose

(I.12)
∑

1≤j1<···<j`≤n

aj1···j`
ej1 ∧ · · · ∧ ej`

= 0.

Then, for each m ∈ {1, . . . , n}, wedge this with em on the left to get

(I.13)
∑

m/∈{j1,...,j`}
aj1···j`

em ∧ ej1 ∧ · · · ∧ ej`
= 0.

One can reorder (m, j1, . . . , j`) to express (I.13) as a linear combination of mono-
mials of the form (I.5) with k = ` + 1. The inductive hypothesis yields

(I.14) aj1···j`
= 0,

for all multi-indices (j1, . . . , j`) not containing m, for each m, hence (I.14) holds for
all multi-indices (j1, . . . , j`). This completes the inductive argument.
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J. Simplicity of M(n,F)

The following result (in the case F = C) was useful in the proof of Proposition
43.1.

Proposition J.1. If F is a field, then the associative algebra M(n,F) of n × n
matrices with entries in F is simple, i.e., it has no proper two-sided ideal.

Proof. Suppose I ⊂ M(n,F) is a two-sided ideal, i.e., A ∈ I, X ∈ M(n,F) ⇒
AX ∈ I and XA ∈ I. Suppose I contains a nonzero element A. Say A = (ajk)
and a`m 6= 0. Denote by Ejk the element of M(n,F) with a 1 in the jth row and
kth column and zeros elsewhere. Thus, if {e1, . . . , en} is the standard basis of Fn,

(J.1) Ejke` = δk`ej .

A calculation gives

(J.2) Ej`AEmk = a`mEjk,

for each j, k, `, m ∈ {1, . . . , n}. Hence, if a`m 6= 0 it follows that Ejk ∈ I for each
j, k ∈ {1, . . . , n}, so I = M(n,F).
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K. Two-step nilpotent Lie algebras

Every 2-step nilpotent Lie algebra n has the form

(K.1) n = V ⊕ z,

as a vector space direct sum, where z is central and the Lie bracket on V is uniquely
determined by an anti-symmetric bilinear map

(K.2) A : V × V −→ z.

Namely,

(K.3) [(X1, Z1), (X2, Z2)] = (0, A(X1, X2)), Xj ∈ V, Zj ∈ z.

A structure equivalent to (K.2) is A : Λ2V → z; another equivalent structure is

(K.4) A′ : z′ −→ (Λ2V )′ ≈ Λ2V ′.

Inner products on z and on V produce isomorphisms z′ ≈ z and Λ2V ′ ≈ Skew(V ),
the space of skew-adjoint linear operators on V , and hence the structure (K.4) is
equivalent to

(K.5) j : z −→ Skew(V ),

related to A by

(K.6) 〈j(Z)X, Y 〉 = 〈A(X, Y ), Z〉,

for X,Y ∈ V, Z ∈ z, where the left side of (K.6) uses the inner product on V and
the right side uses the inner product on z.

This precisely captures all 2-step nilpotent Lie algebras. To guarantee that the
center is precisely z, we add the non-degeneracy hypothesis

(K.7) A(X, Y ) = 0 ∀Y ∈ V =⇒ X = 0,

or equivalently, if we have inner products on V and z and use (K.5) to define the
Lie algebra structure,

(K.8)
⋂

Z∈z

ker j(Z) = 0 ⊂ V.
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Example 1. The Heisenberg Lie algebra Hn has the form (K.1)–(K.3) with

(K.9) V = T ∗Rn ≈ R2n, z = R,

and A the symplectic form on V (specified below). For Xj = (xj , yj)t ∈ V , we have

(K.10) A(X1, X2) = x1 · y2 − x2 · y1, 〈X1, X2〉 = x1 · x2 + y1 · y2,

and hence

(K.11) j(Z) = ZJ, J =
(

0 −I
I 0

)
, Z ∈ R.

Generalizing Example 1, one says n is of Heisenberg type if it is defined by the
structures (K.1) and (K.5), with

(K.12) j(Z)2 = −|Z|2I, ∀Z ∈ z.

This is equivalent to requiring

(K.13) j(Z)j(W ) + j(W )j(Z) = −2〈Z, W 〉 I, ∀Z, W ∈ z.

In other words, j extends to a unital representation of the Clifford algebra C`(z)
on V . For example, we can take a representation of C`(z) on a direct sum of spaces
of spinors. Note that

(K.14) j(Z) = σD(Z)

is the symbol of a Dirac operator on z.

We bring in some notation. Given vector spaces V and z, and given A ∈
L(Λ2V, z), we denote by nA the two-step nilpotent Lie algebra given by (K.1)–
(K.3). The set of Lie algebras so produced is hence parametrized by L(Λ2V, z).
The condition (K.7) that the center of nA be exactly z is that A belong to

(K.15) N 0(V, z) = {A ∈ L(Λ2V, z) : A(X,Y ) = 0 ∀Y ∈ V ⇒ X = 0}.

We examine when A1 and A2 ∈ N 0(V, z) yield isomorphic Lie algebras:

(K.16) T : nA1

≈−→ nA2 .

Since T must preserve the common center z, we see that T must have the form

(K.17) T (X, Z) = (QX, RX + SZ), Q ∈ Gl(V ), S ∈ Gl(z), R ∈ L(V, z).
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The condition that such T be a Lie algebra isomorphism is

(K.18) A2(QX, QY ) = SA1(X,Y ), ∀X, Y ∈ V,

or equivalently A2(X, Y ) = SA1(Q−1X, Q−1Y ). Thus, given A1 ∈ N 0(V, z), the
set of elements A2 ∈ N 0(V, z) for which nA2 ≈ nA1 consists of the orbit of A1 under
the natural action on L(Λ2V, z) of Gl(V )×Gl(z).

We next make some remarks on identifying groups of automorphisms of a 2-step
nilpotent Lie algebra n, constructed via (K.1) and either (K.2) or (K.5). Suppose
a group G has representations π on V and ρ on z. If

(K.19) A(π(g)X, π(g)Y ) = ρ(g)A(X, Y ), ∀X, Y ∈ V, g ∈ G,

it is clear that

(K.20) (X,Z) 7→ (π(g)X, ρ(g)Z)

yields a Lie algebra automorphism of n = V ⊕ z. (This specializes (K.18) to A1 =
A2 = A.) If we assume V and z have inner products, via which we pass from (K.2)
to (K.5), and the operators π(g) and ρ(g) preserve these inner products, then the
hypothesis

(K.21) j(ρ(g)Z) = π(g)j(Z)π(g)−1, ∀ g ∈ G, Z ∈ z

readily yields (K.19), displaying the action of G as a group of automorphisms of n
in (K.20). If we do not assume π(g) and ρ(g) preserve these inner products, replace
(K.21) by

(K.22) j(ρ(g)tZ) = π(g)tj(Z)π(g), ∀g ∈ G, Z ∈ z.

Example 2. Dilations. If we take G = R and π(t)X = etX, ρ(t)Z = e2tZ
in (K.20), it is clear that (K.19) holds. Thus each two-step nilpotent Lie algebra
n = V ⊕ z has the group of dilations

(K.23) δ(t)(X,Z) = (etX, e2tZ)

as a group of automorphisms.

Example 3. Let n = Hn = T ∗Rn ⊕R, as in Example 1, and let G = Sp(n,R), the
group of linear operators on T ∗Rn preserving the symplectic form, hence yielding
a representation π of G on V = T ∗Rn. Let ρ be the trivial representation of G on
R. Then (K.19) obviously holds, so Sp(n,R) acts as a group of automorphisms of
Hn.
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Example 4. Let G be a compact semisimple Lie group with Lie algebra g, and let
π be a representation of G on V , via operators preserving its inner product. Let
z = g, as a linear space, with inner product given by the negative of the Killing
form. Then take

(K.24) j = dπ : z −→ Skew(V ),

to define a 2-step nilpotent Lie algebra n. We have (K.21) with

(K.25) ρ(g)Z = (Ad g)Z,

so G acts as a group of automorphisms of n.

Remark. Throughout the constructions above, we need not insist that the inner
products on z and V be positive-definite. They could be non-degenerate inner
products with other signatures. Thus we can extend the scope of Example 4 to
include noncompact semisimple Lie groups. Also we can replace the hypothesis that
G be semisimple by the more general hypothesis that g possess a non-degenerate
Ad-invariant inner product, so G can be a real reductive group. We do need G to
act on V , preserving a non-degenerate inner product. For example, we could take
V = g, π(g) = Ad g, or V could be some G-invariant subspace of ⊗kg, as long as
it inherits a non-degenerate inner product. Other examples:

(K.26) G = SO(p, q), V = Rp,q.

For the nilpotent Lie algebras considered in Examples 3 and 4, we have both the
group of automorphisms constructed there (action of Sp(n,R) and of G, respec-
tively) and the groups of dilations constructed in Example 2. These are mutually
commuting groups of automorphisms of n. Some of the nilpotent Lie algebras of
Example 4 have a much larger group of automorphisms, such as described in the
next example.

Example 5. Let G = SO(n), and let ρ = Ad, as in (K.25). We take V = Rn and
let π be the standard representation of SO(n) on Rn. Then g ≈ Skew(Rn), and we
have

(K.27) π(g)X = gX, ρ(g)Z = gZgt, X ∈ Rn, Z ∈ Skew(Rn),

where we use the fact that g−1 = gt for g ∈ SO(n). We set n = V ⊕ g, with Lie
bracket defined by j as in (K.23), which in this setting is tautological:

(K.28) j(Z) = Z, Z ∈ g ≈ Skew(Rn).



243

Example 4 specializes to yield SO(n) acting on n as a group of automorphisms. We
claim this enlarges to

(K.29) Gl(n,R) −→ Aut n,

given by (K.20), where π(g) and ρ(g) are again defined by (K.27), for g ∈ Gl(n,R).
To verify (K.22), note that

(K.30) j(ρ(g)tZ) = gtZg and π(g)tj(Z)π(g) = gtZg,

for all g ∈ Gl(n,R), Z ∈ Skew(Rn), in the current setting. Note that the automor-
phism group (K.29) contains both the SO(n) action and the group δ(t) of dilations
from Example 2.
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L. More on quaternions and Sp(n)

With αν , βν ∈ C, set

(L.1) ξ = α1 + jα2, η = β1 + jβ2.

We have a C-linear isomorphism

(L.2) κ : H −→ C2, κ(ξ) =
(

α1

α2

)
,

where C acts on H on the right. We set

(L.3) Co ξ = α1, Sp ξ = α2.

Note that

(L.4)
ηξ = (β1 − β2j)(α1 + jα2)

= α1β1 + α2β2 − j(α1β2 − α2β1)

Hence

(L.5)
Co(ηξ) = α1β1 + α2β2

= ((κ(ξ), κ(η) )),

where (( , )) denotes the standard Hermitian inner product on C2, and

(L.6)
Sp(ηξ) = −(α1β2 − α2β1)

= −σ(κ(ξ), κ(η)),

where σ( , ) is the standard (C-bilinear) symplectic form on C2.
Moving on to Hn, we have in analogy to (L.2) a C-linear isomorphism

(L.7) κ : Hn −→ C2n,

where C acts on Hn on the right, and the H-valued inner product 〈 , 〉, defined in
(3.30), satisfies

(L.8)
Co〈ξ, η〉 = ((κ(ξ), κ(η) )),

Sp〈ξ, η〉 = −σ(κ(ξ), κ(η)),

where (( , )) is the Hermitian inner product on C2n and σ( , ) the symplectic form.
It follows that κ produces an isomorphism

(L.9) Sp(n) ≈ U(2n) ∩ Sp(2n,C).
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M. The Frobenius reciprocity theorem

Let G be a compact group, H a closed subgroup. Let ρ be an irreducible repre-
sentation of H. We define the induced representation

(M.1) π = IndG
H(ρ)

as follows. The representation π is given by the left G-action on

(M.2) HWρ = {u ∈ L2(G,Vρ) : u(gh) = ρ(h)−1u(g), ∀h ∈ H}.

The following result is the Frobenius reciprocity theorem.

Theorem M.1. Let ρ and π be as above, and let λ be an irreducible representation
of G. Set

(M.3)
µ(π, λ) = Number of times π contains λ,

ν(λ, ρ) = Number of times λ
∣∣
H

contains ρ.

Then
µ(π, λ) = ν(λ, ρ).

Proof. We first note that, by the orthogonality relations,

(M.4) ν(λ, ρ) =
∫

H

χλ(h)χρ(h) dh.

We aim to show that µ(π, λ) is equal to the same integral.
We next note that, if we set

(M.5) HHρ = {u ∈ L2(G) : HR acts like copies of ρ},

where HR denotes the right regular representation of H on L2(G), then HHρ is
isomorphic to a sum of dρ copies of HWρ, and

(M.6)
the left G-action on HHρ is isomorphic to
a sum of dρ copies of π.

Now the orthogonal projection of L2(G) on HHρ is given by

(M.7) P1v(x) = dρ

∫

H

v(xh)χρ(h) dh,
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and the orthogonal projection of L2(G) onto the space where G acts on the left like
copies of λ is given by

(M.8)

P2w(x) = dλ

∫

G

w(g−1x)χλ(g) dg

= dλ

∫

G

w(g)χλ(g−1x) dg.

Note that these projections commute, and, by (M.6),

(M.9) dρdλµ(π, λ) = TrP2P1.

Now, by (M.7)–(M.8), we have

(M.10)

P2P1v(x) = dρdλ

∫

G

∫

H

v(gh)χρ(h)χλ(g−1x) dh dg

= dρdλ

∫

G

∫

H

v(g)χρ(h)χλ(hg−1x) dh dg,

so TrP2P1 is clearly dρdλ times the right side of (M.4), and the theorem is proved.
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N. The discriminant of a matrix

Take A ∈ End(Cn). Say Spec A = {λ1, . . . , λn}, counting multiplicities. Then

(N.1) LA, RA : End(Cn) −→ End(Cn), LAX = AX, RAX = XA,

have the same spectrum, with n-fold increases in multiplicity. Since LA and RA

commute, we can say about ad A = LA −RA that

(N.2) Spec ad A = {λj − λk : 1 ≤ j, k ≤ n}.

We thus have

(N.3)

det(sI − adA) =
∏

j,k

[
s− (λj − λk)

]

= sn
∏

j<k

[
s2 − (λj − λk)2

]

= (−1)n(n−1)/2 snD(A) + O(sn+1),

as s → 0, where D(A) is the discriminant of A:

(N.4) D(A) =
∏

j<k

(λj − λk)2.

It follows that

(N.5) D(A) =
(−1)n(n−1)/2

n!
dn

dsn
det(sI − adA)

∣∣
s=0

.

Suppose A is diagonal, say A = diag(λ1, . . . , λn). Let Ejk denote the n × n
matrix with a 1 in row j, column k, zeroes elsewhere. We have

(N.6) [A,Ejk] = (λj − λk)Ejk.

It follows readily from (N.6) that, when A is diagonal,

(N.7) D(A) = det ad A
∣∣
End(Cn)/D,

where D is the space of complex diagonal matrices. This yields

(N.8) D(A) = det ad A
∣∣
u/t

,

when A ∈ t, u = set of skew-adjoint operators on Cn, t = space of diagonal matrices
with purely imaginary diagonal entries.
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O. Simple roots and Cartan matrices

Let G be a compact, connected Lie group, with Lie algebra g and maximal torus
T, whose Lie algebra is h. A choice of ordered basis of h produces an order on h′,
hence on the set of roots of g. We set

(O.1) ∆ = set of roots, ∆+ = set of positive roots.

A root α is called a simple root if α is positive and it cannot be written as a sum
of two positive roots. We set

(O.2) Σ = set of simple roots.

For example, if G = U(n), or SU(n), then, with ωjk as in (19.13),

(O.3) ∆ = {ωjk : j 6= k}, ∆+ = {ωjk : j < k},

and one has

(O.4) Σ = {ωj,j+1 : 1 ≤ j ≤ n− 1}.

Recall from (36.13) the quantities

(O.5) nαβ = 2
〈α, β〉
〈β, β〉 ∈ Z,

associated to α, β ∈ ∆, called the Cartan integers. These possess a number of prop-
erties, given in (36.15)–(36.21) and (36.26)–(36.27). We form the Cartan matrix of
g, from (O.5) with α and β from

(O.6) Σ = {α1, . . . , αm}.

This is the m×m matrix A, with entries

(O.7) Ajk = 2
〈αj , αk〉
〈αk, αk〉 .

Clearly Ajj = 2 for each j. We say more about the off-diagonal entries below.
If G = U(n) of SU(n), we take αj = ωj,j+1, as in (O.4). Thus m = n− 1. Note

that

(O.8)

〈ωj,j+1, ωk,k+1〉 = −1 if |j − k| = 1,

2 if j = k,

0 otherwise,
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and we have the (n− 1)× (n− 1) matrix

(O.9) A =




2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −1

−1 2




.

The Dynkin diagram associated to g is produced as follows. It is a graph whose
vertices are the simple roots {αj}. Thus, for each αj ∈ Σ, place a dot. Connect
the dots αj and αk by a number of straight lines equal to AjkAkj . By (36.15),

(O.10)
AjkAkj = 4

〈αj , αk〉2
|αj |2|αk|2

= 4 cos2 θjk,

where θjk is the angle between αj and αk in h′. By (36.16), 4 cos2 θjk ∈ {0, 1, 2, 3, 4}.
However, cos2 θjk = 1 ⇔ αj is a real multiple of αk, which, by Proposition 36.4,
forces αj = αk. Thus

(O.11) j 6= k =⇒ 4 cos2 θjk ∈ {0, 1, 2, 3}.

When αj ⊥ αk, these vertices are not connected by any lines. Otherwise, the
number of lines connecting αj to αk is 1, 2, or 3.

The Dynkin diagram for U(n) or SU(n) has n−1 dots, and is depicted in Figure
O.1.

There is one further ingredient in the constructon of a Dynkin diagram. If g is
a simple Lie algebra, it turns out that there are at most two distinct lengths of the
simple roots. In such a case, darken the dots corresponding to the smaller roots.
For g = su(n), all the simple roots ωj,j+1 have length

√
2, so we do not darken any

of them.
We record some general results concerning simple roots. To begin, we have

Proposition O.1.

(O.12) α, β ∈ Σ =⇒ α− β /∈ ∆.

Proof. If α − β ∈ ∆, then either α − β ∈ ∆+ or β − α ∈ ∆+. Hence either
α = β + (α− β) or β = α + (β − α) is a sum of two positive roots.

Next, we claim
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Proposition O.2.

(O.13) α, β ∈ Σ, α 6= β =⇒ 〈α, β〉 ≤ 0.

Proof. We apply Proposition 36.5, taking π to be the adjoint representation. Given
distinct α, β ∈ Σ, (O.12) implies β is at the bottom of an α-string of roots,

(O.14) β + jα, 0 ≤ j ≤ p,

for some p ∈ Z+. Then (36.33) applies, with λ = β, m = 0:

(O.15) 2
〈β, α〉
〈α, α〉 = −p.

A consequence of (O.13) is that each off-diagonal element of the Cartan matrix
is either 0 or a negative integer. The example (O.9) illustrates this.

From Proposition O.2, we have the following.

Proposition O.3. The set Σ of simple roots is linearly independent in h′.

Proof. If not, there is an identity of the form

(O.16)
∑

αj∈Σ0

xjαj =
∑

αk∈Σ1

ykαk, xj , yk > 0,

with Σ0 and Σ1 disjoint subsets of Σ. Taking the inner product of both sides with
the left side yields

(O.17)
〈∑

xjαj ,
∑

yjαk

〉
> 0,

contradicting (O.13).

There are enough simple roots to yield the following.

Proposition O.4. Each α ∈ ∆+ can be written as a positive sum of simple roots.

Proof. If not, let β ∈ ∆+ be the smallest root for which this is not true. Then β is
not simple, so it is a sum β = β1 + β2 of positive roots βj . But then each βj is a
positive sum of simple roots.

Recall from Corollary 35.4 that if the center z of g is 0, then {α ∈ ∆} spans
h′. Of course, this implies {α ∈ ∆+} spans h′. We then have the following, from
Propositions O.3–O.4:

Corollary O.5. If z = 0, then {α ∈ Σ} is a basis of h′.

Thus dim h = dim h′ = #Σ if z = 0. We see this for g = su(n), where dim h =
n− 1 = #Σ, directly from (O.4).

The following is a stronger statement about how plentiful the simple roots are.
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Proposition O.6. The set {eαj
: αj ∈ Σ} generates the Lie algebra n+ = Span{eα :

α ∈ ∆+}.
Proof. The Lie algebra generated by {eαj : αj ∈ Σ} is the span of

(O.18) ad eαj1
· · · ad eαjµ

(eαj`
),

as jν range independently over {1, . . . ,m}. This is clearly contained in n+. For the
converse, we need to show that, whenever β ∈ ∆+, eβ is a linear combination of
elements of the form (O.18).

Clearly each element of Σ has this property. If not each element of ∆+ does,
there is a smallest γ ∈ ∆+ such that eγ is not a linear combination of elements
of the form (O.18). Since γ /∈ Σ, we have γ = β1 + β2 with βj ∈ ∆+, and each
term is smaller than γ. Hence each eβj is a linear combination of elements of the
form (O.18). By Proposition 36.6, [eβ1 , eβ2 ] must be a nonzero multiple of eγ , so
by Jacobi’s identity eγ must be of the desired form. This contradiction proves the
proposition.

The following refinement of Proposition O.4 will be useful.

Proposition O.7. If β ∈ ∆+, β /∈ Σ, then there exists αj ∈ Σ and βb ∈ ∆+ such
that β = βb + αj.

Proof. If not, then for each αj ∈ Σ, β is at the bottom of an αj-string of roots,
β + ναj , 0 ≤ ν ≤ pj , for some pj ∈ Z+. As in (O.15), we have

2
〈β, αj〉
〈αj , αj〉 = −pj ≤ 0,

for each αj ∈ Σ. Then the argument proving Proposition O.3 would imply that
Σ ∪ {β} is linearly independent, which contradicts Proposition O.4.

Let us now assume gC is simple (so z = 0). We will show that the Cartan matrix
A, with entries (O.7) (for Σ = {α1, . . . , αm}) determines all the roots of g. It
suffices to determine all the positive roots. Each β ∈ ∆+ can be written

(O.19) β =
∑

j

kjαj , kj ∈ Z+.

Call Σjkj the level of the root β, so the simple roots have level 1. Suppose one has
determined all the roots up to level n, and wants to determine those at level n + 1.
For each root β ∈ ∆+ at level n, and each αj ∈ Σ, we need to determine whether
β + αj is a root. By Proposition O.7, this will suffice to determine all the roots at
level n + 1.

Given such knowledge of roots up to level n, for each root β of level n, we know
how far back the αj-string of roots extends: β, β−αj , . . . , β−mαj . From here, we
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can use (36.33) to determine how far forward the string extends: β, β +αj , . . . , β +
pαj . We have

(O.20)

m− p = 2
〈β, αj〉
〈αj , αj〉

= 2
∑

`

k`
〈α`, αj〉
〈αj , αj〉

=
∑

`

k`A`j .

Thus, using Proposition 36.6, we see that β + αj is a root if and only if

(O.21) p = m−
∑

`

k`A`j > 0.

In case g = su(n), with the simple roots (0.4), we have the following:

(O.22)

level 2 : {ωj,j+2 : 1 ≤ j ≤ n− 2},
level 3 : {ωj,j+3 : 1 ≤ j ≤ n− 3},

...

level n− 1 : {ω1n}.

This can be seen directly from (O.3). However, the point of the discussion above is
that it can also be deduced, without a priori knowledge of the set of positive roots
of g, from the Cartan matrix, via (O.21).

To summarize, we start with the linear space h, Σ ⊂ h′, and the Cartan matrix A.
We assume there exists a simple Lie algebra g, of which h is a maximal commutative
Lie subalgebra, for which Σ is the set of simple roots. Given that the center z of g
is 0, we know by Corollary O.5 that Σ is a basis of h′. We assume that A is given
by (O.7), where g has an Ad-invariant inner product, inducing an inner product
on h and hence on h′. Now we have constructed ∆+ ⊂ h′. These roots and their
negatives form ∆ ⊂ h′.

To see how much of the structure of g is revealed by the data h, Σ, and A, we
will find the following result useful.

Proposition O.8. Assume the Lie algebra g of the compact Lie group G has the
property that gC is simple. Then Σ cannot be partitioned into two disjoint nonempty
sets Σ0 ∪ Σ1 such that αj ⊥ αk whenever αj ∈ Σ0 and αk ∈ Σ1. Consequently the
Dynkin diagram of g is connected. Furthermore, the Cartan matrix of g determines
the inner product on h uniquely, up to a constant factor.

Proof. It follows from (36.33) that

(O.23) αj , αk ∈ Σ, 〈αj , αk〉 = 0 =⇒ [eαj , eαk
] = 0,
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since (by (O.13)) in this setting m = 0 in (36.33), hence p = 0. Thus if there were
such a partition Σ = Σ0 ∪ Σ1, we would have

(O.24) αj ∈ Σ0, αk ∈ Σ1 =⇒ [eαj
, eαk

] = 0.

It follows that, if n0
+ is the Lie algebra generated by {eαj : αj ∈ Σ0} and n1

+ that
generated by {eαk

: αk ∈ Σ1}, then

(O.25) X0 ∈ n0
+, X1 ∈ n1

+ =⇒ [X0, X1] = 0.

Furthermore, Proposition O.6 and its proof imply

(O.26) n+ = n0
+ ⊕ n1

+.

Similarly, if n0
− is the Lie algebra generated by {e−αj : αj ∈ Σ0} and n1

− that
generated by {e−αk

: αk ∈ Σ1}, then

(O.27) Y0 ∈ n0
−, Y1 ∈ n1

− =⇒ [Y0, Y1] = 0,

and

(O.28) n− = n0
− ⊕ n1

−.

Furthermore, by Proposition O.1,

(O.29) αj ∈ Σ0, αk ∈ Σ1 =⇒ [eαj , e−αk
] = 0 = [e−αj , eαk

],

so

(O.30) [n0
+, n1

−] = 0 = [n1
+, n0

−].

Now, n+ and n− generate gC, and, by (O.25)–(O.30), if n0
+ and n0

− generate G0 and
n1
+ and n1

− generate G1, then

(O.31) gC = G0 ⊕G1, [G0,G1] = 0.

This implies gC is not simple. This proves the first assertion of Proposition O.8.
The connectedness of the Dynkin diagram is an immediate consequence.

We now address the degree to which the formula (O.7) for the Cartan matrix
determines the inner product on h′, hence on h. Setting |α|2 = 〈α, α〉, we have

(O.32) αj , αk ∈ Σ, 〈αj , αk〉 6= 0 =⇒ Ajk

Akj
=
|αj |2
|αk|2 .

Suppose we select some value a > 0 of |α1|. By the first part of Proposition O.8,
there is a path from α1 to each α` through simple roots whose nearest neighbors
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satisfy (O.32), so |α`| is then determined uniquely for each α` ∈ Σ. Then the
identity

(O.33) 〈αj , αk〉 =
1
2
|αk|2Ajk

uniquely determines the inner product 〈αj , αk〉 for each αj , αk ∈ Σ. Since {αj ∈ Σ}
is a basis for h′, this uniquely determines the inner product on h′ and finishes the
proof of Proposition O.8.

Let us note that the proof of Proposition O.8 produces a factorization of the
Cartan matrix,

(O.34) A = 2GD,

where

(O.35) D = diag(|α1|−2, . . . , |αm|−2), G = (Gjk), Gjk = 〈αj , αk〉.

unique up to a positive scalar factor on D (and its inverse on G). All the diagonal
entries of D are positive, and G is a positive definite matrix.

We now record some necessary conditions on a matrix A for it to be a Cartan
matrix.

Proposition O.9. If A = (Ajk) is the Cartan matrix associated to the Lie algebra
g of a compact Lie group, whose complexified Lie algebra gC is simple, then

Ajj = 2 and j 6= k ⇒ Ajk ∈ {0,−1,−2,−3},(O.36)

Ajk 6= 0 ⇐⇒ Akj 6= 0,(O.37)

Ajk, Aj`, Ak` 6= 0 ⇒ Aj`

A`j
=

Ak`

A`k
· Ajk

Akj
,(O.38)

det A 6= 0.(O.39)

Proof. The result (O.36) follows from (36.27). Each condition in (O.37) is equiva-
lent to 〈αj , αk〉 6= 0. The conclusion in (O.38) follows from

(O.40)
|αj |2
|α`|2 =

|αk|2
|α`|2 ·

|αj |2
|αk|2 ,

in light of (O.32). Actually, we can rewrite (O.38) as

(O.41) Aj`A`kAkj = A`jAk`Ajk,

and, given (O.37), we can say that this holds even in the absence of the nonvanishing
hypothesis in (O.38).
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The result (O.39) follows from (O.34)–(O.35).

Note. In the example (O.9), Ajk = Akj , but this is not always the case. Special-
izing (36.27A), we have, when |αj | ≥ |αk|,

(O.42)

Ajk = −1 ⇐⇒ Akj = −1,

Ajk = −2 ⇐⇒ Akj = −1,

Ajk = −3 ⇐⇒ Akj = −1.

Let us construct the Cartan matrix associated to so(5). As seen in §39, dim so(5) =
10 and dim h = 2, so there are 8 roots, and 4 of them are postive. As shown in
Fig. 39.1, with respect to a natural basis of h, they are

(O.43) β−2 = (0, 1), α4 = (1,−1), β+
2 = (1, 0), α2 = (1, 1).

Then

(O.44) Σ = {α4, β
−
2 },

and β+
2 = α4 +β−2 , α2 = β−2 +β+

2 . We compute as above, with α̃1 = α4, α̃2 = β−2 ,
so

(O.45)
A12 = 2

〈α4, β
−
2 〉

〈β−2 , β−2 〉
= −2,

A21 = 2
〈α4, β

−
2 〉

〈α4, α4〉 = −1.

Hence

(O.46) A =
(

2 −2
−1 2

)
.

The associated Dynkin diagram is given in Figure O.2.
Let us see how the material laid out after Proposition O.7 enables us to construct

the root system (O.43) from the Cartan matrix (O.46). We will change notation to

(O.47) Σ = {α1, α2},

in place of α̃1 and α̃2, given above by α̃1 = α4, α̃2 = β−2 . We have

(O.48) 2
〈α1, α2〉
|α2|2 = A12 = −2, 2

〈α1, α2〉
|α1|2 = A21 = −1,

hence

(O.49)
|α1|2
|α2|2 = 2.
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The angle θ12 between α1 and α2 satisfies

(O.50) cos2 θ12 =
1
4
A12A21 =

1
2
;

cf. (36.15). Hence, taking the negatice square root, by Proposition O.2,

(O.51) cos θ12 =
〈α1, α2〉
|α1| · |α2| = − 1√

2
, so θ12 =

3π

4
.

We can take α2 to be (0, 1) ∈ R2, and then α1 = (1,−1).
As for the members of ∆+, we have

(O.53)

level 1 : α1, α2,

level 2 : α1 + α2,

level 3 : α1 + 2α2.

We explain these results. First, the set Σ of simple roots always makes up level
1. If Σ has just 2 elements, the only possible element of level 2 is their sum. One
can check the α1-string through α2 to verify that this sum is a root, in the current
setting. To investigate level 3, we examine two strings.

(I) The α1-string through α1 + α2. Here m = 1 and

(O.54) m− p = 2
〈α1 + α2, α1〉

|α1|2 = 2 + A21,

hence m− p = 1, so p = 0. This implies α1 + α2 + α1 is not a root.

(II) The α2-string through α1 + α2. Again m = 1, and

(O.55) m− p = 2
〈α1 + α2, α2〉

|α2|2 = 2 + A12,

hence m− p = 0, so p = 1. Thus α1 + α2 + α2 is a root. This exhausts level 3.

When A is given by (O.46), there are no level 4 roots. In fact, by Proposition
O.7, the only candidates for level 4 roots are α1 + 2α2 + α1 = 2(α1 + α2) and
α1 + 2α2 + α2 = α1 + 3α2. Proposition 36.4 implies the former is not a root, and
the calculation p = 1 for the α2-string through α1 + α2 implies α1 + 3α2 is not a
root.

Thus the root system associated to the Cartan matrix (O.46) is as depicted in
Fig. O.3. This is of course identical to Fig. 39.1, except for the re-labeling of the
roots.
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As we have seen in (O.9), the Cartan matrix associated to SU(3) is

(O.56) A =
(

2 −1
−1 2

)
.

Its root system is depicted in Fig. O.4. Here, the level 1 and level 2 roots are as in
(O.53). The calculation (O.54) for the α1-string through α1 +α2 again gives p = 0,
and this time the calculation for the α2-string through α1 + α2 also gives p = 0,
so there are no level 3 roots. This is consistent with the observation that SU(3)
has dimension 8 (and a 2-dimensional maximal torus), so it has 6 roots, 3 of them
positive. (As we have also seen, these positive roots are ωjk, 1 ≤ j < k ≤ 3.)

Another candidate for a 2× 2 Cartan matrix is

(O.57) A =
(

2 −3
−1 2

)
.

This turns out to be the Cartan matrix associated to the exceptional Lie group
known as G2. We construct its root system.

Use the notation (O.47) for Σ. This time, we have

(O.58) 2
〈α1, α2〉
|α2|2 = A12 = −3, 2

〈α1, α2〉
|α1|2 = A21 = −1,

hence

(O.59)
|α1|2
|α2|2 = 3.

The angle θ12 between α1 and α2 satisfies

(O.60) cos2 θ12 =
1
4
A12A21 =

3
4
,

hence (again taking Proposition O.2 into account)

(O.61) cos θ12 = −
√

3
2

, so θ12 =
5π

6
.

We can take

(O.62) α1 = (0, 1), hence α2 =
(√3

6
,−1

2

)
,

since 〈α1, α2〉 = (1/2)|α1|2A21 = −1/2 while |α2|2 = 1/3, and 1/3 = 1/4 + 1/12.
As for the members of ∆+, we have the following.

(O.63)

level 1 : α1, α2,

level 2 : α1 + α2,

level 3 : α1 + 2α2,

level 4 : α1 + 3α2,

level 5 : 2α1 + 3α2.
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The identities of levels 1 and 2 are by the same reasoning as applied to (O.53). To
investigate level 3, we again examine two strings.

(I) The α1-string through α1 + α2. Then m = 1 and (O.54) applies, again yielding
p = 0, so 2α1 + α2 is not a root.

(II) The α2-string through α1 + α2. Again m = 1, and (O.55) applies, this time
yielding p = 2. Thus α1 + 2α2 is a root, the only level 3 root, and α1 + 3α2 is also
a root (a level 4 root).

We have exhausted level 3. The only candidates for level 4 are α1 + 2α2 + α2

(seen above to be a root) and α1 + 2α2 + α1 = 2(α1 + α2), which is not a root, by
Propsition 36.4. This takes care of level 4.

Hence there are two candidates for level 5 roots, 2α1 +3α2 and α1 +4α2. Again
we have two strings to examine.

(I) The α1-string through α1 + 3α2. Here m = 0, since 3α2 is not a root. Then

(O.64) m− p = 2
〈α1 + 3α2, α1〉

|α1|2 = 2 + 3A21,

hence m− p = −1, so p = 1. Thus 2α1 + 3α2 is a root.

(II) The α2-string through α1 + 3α2. We have already seen that α1 + 3α2 is the
end of the α2-string through α1 + α2, so α1 + 4α2 is not a root.

There are no level 6 roots. Candidates would be 3α1 + 3α2 = 3(α1 + α2) and
2α1+4α2 = 2(α1+2α2), not roots by Proposition 36.4. The root system associated
to the Cartan matrix (O.57) is depicted in Fig. O.5. Its Dynkin diagram is shown
in Fig. O.6. Note that we have 12 roots, so dim G2 = 14.

We return to the classical groups and take a look at SO(n). For n = 2k, the
roots of so(n) are given by (40.44). The positive roots are

(O.65)

(0, . . ., 1, . . . , ε, . . . , 0) (k-tuple), ε = ±1,

↑ ↑
i1 i2

From this, one sees that the simple roots are

(O.66) α1 = (1,−1, 0, . . . , 0), α2 = (0, 1,−1, . . . , 0), αk−1 = (0, . . . , 0, 1,−1),

and

(O.67) αk = (0, . . . , 0, 1, 1).
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Thus each |αj |2 = 2 and Aj` = A`j = 〈αj , α`〉. Differences from (O.8) are that

(O.68) 〈αk, αk−1〉 = 0, 〈αk, αk−2〉 = −1.

The Cartan matrix for SO(2k) is given by

(O.69)




2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2




.

The associated Dynkin diagram is depicted in Fig. O.7.
For n = 2k +1, the roots of so(n) are given by (4..44) plus (40.49). The positive

roots consist of (O.65) plus

(O.70)

(0, . . ., ε, . . . , 0), (k-tuple), ε = ±1.

↑
i

Then the simple roots are given by (O.66) plus

(O.71) αk = (0, . . . , 0, 1).

In this case, |αj |2 = 2 for 1 ≤ j ≤ k − 1 and |αk|2 = 1. As opposed to (O.68),

(O.72) Ak−1,k = 2〈αk, αk−1〉 = −2, 〈αk, αk−2〉 = 0.

The Cartan matrix for so(2k + 1) is given by

(O.73)




2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −2

−1 2




.

The associated Dynkin diagram is depicted in Fig. O.8.
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P. Metric properties of Lie groups

Let G be a Lie group. Assume G has a bi-invariant Riemannian metric (as it
would have if it were compact). We will obtain some interesting results on the
interplay between the geometry of G, and the algebraic behavior of G and its Lie
algebra g. Differential geometry background can be found in Appendix C of [T2].

We begin with the observation that the map x 7→ x−1 is an isometry of G, fixing
the identity e ∈ G. More generally, for each g ∈ G, we have

(P.1) ψg : G −→ G, ψg(x) = gx−1g,

an isometry of G, fixing g, and satisfying Dψg(g) = −I on TgG.

Proposition P.1. If γ is a unit speed geodesic on G satisfying γ(0) = e, then
γ(s + t) = γ(s)γ(t).

Proof. It suffices to show that γ(2t) = γ(t)γ(t) for all t. So fix t ∈ R. Consider
σ(s) = γ(t+s). This is the unit speed geodesic satisfying σ(0) = γ(t), σ′(0) = γ′(t).
It follows that σ̃(s) = ψγ(t)(σ(s)) is the unit speed geodesic satisfying σ̃(0) =
γ(t), σ̃′(0) = −γ′(t). This forces σ̃(s) = γ(t− s), i.e.,

γ(t− s) = ψγ(t)(γ(t + s)) = γ(t)γ(t + s)−1γ(t).

In particular, e = γ(t)γ(2t)−1γ(t), so γ(2t) = γ(t)γ(t).

Proposition P.1 implies that if X ∈ g, then γX(t) = Exp tX is a constant speed
geodesic through e. The geodesic equation gives ∇XX = 0. Given also Y ∈ g, we
have ∇Y Y = 0 and ∇X+Y (X + Y ) = 0, hence

(P.2) ∇XY +∇Y X = 0.

Since

(P.3) ∇XY −∇Y X = [X, Y ],

we obtain

(P.4) ∇XY =
1
2
[X,Y ].

The Riemann tensor R is defined by

(P.5) R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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It then follows that, if X, Y, Z ∈ g,

R(X, Y )Z = −1
4
[[X,Y ], Z].

The Ricci tensor is then given by

(P.7) Ric(X,Y ) =
∑

j

〈R(X, Ej)Y, Ej〉,

where {Ej} is an orthonormal basis of g. It follows that if X, Y ∈ g,

(P.8) Ric(X, Y ) =
1
4

∑

j

〈[X, Ej ], [Y, Ej ]〉,

since the inner product on g is Ad-invariant. In particular,

(P.9) Ric(X, X) =
1
4

∑

j

‖[X, Ej ]‖2.

This readily yields the following.

Proposition P.2. Given X ∈ g,

(P.10) Ric(X, X) > 0, unless X ∈ z, the center of g.

Proposition P.2 has the following important consequence.

Proposition P.3. If G is a connected Lie group with a bi-invariant Riemannian
metric, and if the center of its Lie algebra is 0, then G is compact. Hence, if G is a
compact Lie group and its Lie algebra has trivial center, then its universal covering
group G̃ is compact.

Example. The universal covering group of SO(n) is compact, for n ≥ 3.

Proposition P.3 follows from Proposition P.2 together with the following classical
result, known as Meyer’s theorem.

Proposition P.4. If M is a complete, connected Riemannian manifold of dimen-
sion n and

(P.11) Ric(X,X) ≥ (n− 1)κ‖X‖2

for some κ > 0, then M is compact, of diameter ≤ π/
√

κ.
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We sketch a proof of this, refering to Chapter 1 of [CE] or §19 of [Mil] for details.
Let γs be a 1-parameter family of curves such that γs(a) ≡ p and γs(b) ≡ q. Assume
γ0 is a constant speed geodesic. Define the energy

(P.12) E(s) =
1
2

∫ b

a

〈γ′s(t), γ′s(t)〉 dt.

We set T = γ′0(t), V = ∂sγs(t)|s=0. One has

(P.13)
E′(0) =

1
2

∫ b

a

V 〈T, T 〉 dt

=
∫ b

a

〈∇V T, T 〉 dt.

Using T 〈V, T 〉 = 〈∇T V, T 〉+ 〈V,∇T T 〉, we get

(P.14) E′(0) = −
∫ b

a

〈V,∇T T 〉 dt.

If γ0 is a geodesic, this is 0 for all variations γs, fixed at the endpoints t = a and
t = b. This yields the geodesic equation ∇T T = 0. Going further, one has the
second variational formula

(P.15) E′′(0) =
∫ b

a

[
〈R(V, T )V, T 〉+ 〈∇T V,∇T V 〉

]
dt.

With this background, we turn to the proof of Proposition P.4. Let γ0 be a
unit speed geodesic on M , say γ0 : [0, `] → M , so γ0 has length `. Say γ0(0) =
p, γ0(`) = q, and γ′0(t) = T . Let {T, e1, . . . , en−1} be an orthonormal basis of TpM ,
and extend ej along γ0 by ∇T ej = 0. Set

(P.16) Vj(t) = sin
πt

`
ej(t).

For each j, construct a family of curves γs so that ∂sγs(t) = Vj(t) at s = 0. Then
use (P.15) with V = Vj and denote the result by E′′

j (0). We have

(P.17)

∑

j

E′′
j (0) =

∫ `

0

{
(n− 1)

π2

`2
cos2

πt

`
− Ric(T, T ) sin2 πt

`

}
dt

≤ (n− 1)
∫ `

0

{π2

`2
cos2

πt

`
− κ sin2 πt

`

}
dt

= (n− 1)
`

2

(π2

`2
− κ

)
.

This is < 0 if ` > π/
√

κ. In such a case, γ0 cannot be length minimizing from
p = γ0(0) to q = γ0(`). Consequently, given p, q ∈ M , these points can be joined by
a curve of length ≤ π/

√
κ. This proves the diameter estimate of Proposition P.4,

hence the compactness.
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