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1. Introduction

The first goal of this note is to establish the following two results.

Proposition 1.1. Let Ω ⊂ C be a bounded open set, and assume Ω is a finite-
perimeter domain. Assume

(1.1) f ∈ Lip(Ω), and f is holomorphic on Ω.

Then

(1.2)

∫
∂Ω

f(z) dα(z) = 0.

Here α is a complex Borel measure on ∂Ω that will be described below; see
(3.4)–(3.7).

Proposition 1.2. Let Ω ⊂ C be a bounded open set. Assume ∂Ω has finite 1-
dimensional Hausdorff measure and only a finite number of connected components.
Then (1.2) holds provided

(1.3) f ∈ C(Ω) and f is holomorphic on Ω.

These results lead to the following version of the Cauchy integral formula.
1
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Proposition 1.3. In the setting of either Proposition 1.1 or 1.2, if z0 ∈ Ω, then

(1.4) f(z0) =
1

2πi

∫
∂Ω

f(z)

z − z0
dα(z).

Proof. Propositions 1.1–1.2 apply to

g(z) =
f(z)− f(z0)

z − z0
,

which has a removable singularity at z = z0. Hence (1.4) follows from the identity

(1.5)

∫
∂Ω

1

z − z0
dα(z) = 2πi.

In turn, we can apply Proposition 1.1 to f(z) = 1/(z − z0), with Ω replaced by

Ω \Dε(z0), where Dε(z0) is a small disk centered at z0, to get

(1.6)

∫
∂Ω

1

z − z0
dα(z) =

∫
∂Dε(z0)

1

z − z0
dα(z).

The formula (3.7) for the measure α makes it clear that the right side of (1.6) is
equal to

(1.7)

∫
∂Dε(z0)

dz

z − z0
,

whose identity with 2πi is standard.

Of the results described above, Proposition 1.1 is well known, and is included
just as a starting point. The goal in subsequent propositions is to establish (1.2)
and (1.4) under weaker hypotheses on f than (1.1).

We define some terms used above, starting in a general n-dimensional setting.
Given Ω ⊂ Rn, bounded and open, let χΩ(x) = 1 for x ∈ Ω, 0 for x /∈ Ω, and

form

(1.8) ∇χΩ = µ,

an Rn-valued distribution, supported on the boundary ∂Ω. We say Ω is a finite-
perimeter domain if µ is a finite Rn-valued measure. In such a case, the Radon-
Nikodym theorem allows us to write

(1.9) µ = −ν σ,
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where σ is a positive measure supported on ∂Ω and ν is a bounded, Rn-valued
Borel function of ∂Ω, satisfying

(1.10) |ν(x)| = 1, σ-a.e.

Via distribution theory, we can restate (1.8)–(1.9) as follows. TakeX ∈ C∞(Rn,Cn),
a complex vector field. Then

(1.11) ⟨divX,χΩ⟩ = −⟨X,∇χΩ⟩.

Hence (1.8)–(1.9) is equivalent to

(1.12)

∫
Ω

divX dx =

∫
∂Ω

⟨ν,X⟩ dσ.

Applying a mollifier, Xε = φε ∗ X, and noting that divXε = φε ∗ divX, we see
that, if

(1.13) X ∈ C(Rn), divX ∈ L1(Rn),

then

(1.14)
Xε −→ X uniformly on Ω (hence on ∂Ω), and

divXε −→ divX in L1-norm,

so we have the identity (1.12) whenever X satisfies (1.13), in particular whenever
X ∈ Lip(Rn). This leads to the following:

Proposition 1.4. If Ω ⊂ Rn is a finite-perimeter domain, (1.12) holds whenever
X ∈ Lip(Ω).

Proof. Each X ∈ Lip(Ω) has a Lipschitz extension to Rn.

For later use, we record the following simple consequence.

Proposition 1.5. Let Ω ⊂ Rn be a finite-perimeter domain. Assume

(1.15) X ∈ C(Ω), divX
∣∣
Ω
∈ L1(Ω),

and assume there exist Xk ∈ Lip(Ω) such that

(1.16) Xk → X uniformly on Ω, divXk → divX in L1(Ω).

Then X satisfies (1.12).

The rest of this note is organized as follows. Section 2 recalls basic facts about
finite-perimeter domains Ω ⊂ Rn, the measure σ on ∂Ω, and its relation to (n− 1)-
dimensional Hausdorff measure. In §3 we prove Proposition 1.1. Along the way to
proving Proposition 1.2, we bring in the following.
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Proposition 1.6. Let Ω ⊂ C be a bounded, open, finite-perimeter domain. Assume
Ω has a “tame interior approximation.” That is, assume there exist finite-perimeter
domains Ωk ⊂ Ωk ⊂ Ω and C <∞ such that

(1.17) χΩk
→ χΩ a.e., and σ(∂Ωk) ≤ C.

Then (1.2) holds whenever f satisfies (1.3).

We prove Proposition 1.6 in §4, and then address the proof of Proposition 1.2 in
§5. We tie Propositions 1.2 and 1.6 together with a result on domains satisfying a
“lower Ahlfors regularity” condition.

In §6 we specialize Proposition 1.2 to the case where Ω ⊂ C is a bounded open
set whose boundary ∂Ω is a disjoint union of a finite number of rectifiable Jordan
curves, and make contact with a version of the Cauchy integral theorem given in
[Si].

In §7 we mention some variants of Propositions 1.2–1.3, valid for holomorphic
functions on Ω such that

(1.18) N f ∈ Lp(∂Ω, σ),

where N f is the nontangential maximal function of f . Such results are established
in [HMT], [MMT], and [MMM], for certain classes of finite perimeter domains.

We have two appendices. Appendix A verifies that, when Ω ⊂ Rn is a bounded
open set, the definition of when Ω is a finite-perimeter domain (and what its perime-
ter is) given in [CR] is equivalent to that given in this note (which follows a number
of sources, such as [EG]). Appendix B treats some removable singularity theorems,
describing compact sets K ⊂ C with the property that

(1.19) f ∈ C(C), f holomorphic on C \K =⇒ f holomorphic on C.

Results of such a nature arise from the analysis in §4.
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2. Structure of finite-perimeter domains

We give a further discussion of the structure of a bounded open Ω ⊂ Rn that
is a finite-perimeter domain. Recall from §1 the vector measure µ, the positive
measure σ, and the function ν on ∂Ω. When ∂Ω is C1, ν is continuous on ∂Ω and
ν(x) is the outward pointing unit normal to ∂Ω at x. For general finite-perimeter
domains, ∂Ω can be quite rough, and it is useful to specify some distinguished
subsets. We define these subsets below and state some results, established in works
of DeGiorgi and Federer, referring to [EG] for proofs. These subsets will be denoted
∂∗Ω ⊂ ∂0Ω ⊂ ∂∗Ω ⊂ ∂Ω.

We first define the reduced boundary ∂∗Ω. By the Besikovitch differentiation
theorem,

(2.1) lim
r→0

1

σ(Br(x))

∫
Br(x)

ν dσ = ν(x),

for σ-a.e. x. If x ∈ ∂Ω and the limit (2.1) exists, and |ν(x)| = 1, we say x ∈ ∂∗Ω.
It is an important structural result that ∂∗Ω is countably (n− 1)-rectifiable, i.e., it
is a countable disjoint union

(2.2) ∂∗Ω =
∪
k

Mk ∪N,

where eachMk is a compact subset of an (n−1)-dimensional C1 surface (to which ν
is normal in the usual sense) and Hn−1(N) = 0, where Hn−1 is (n−1)-dimensional
Hausdorff measure. Furthermore,

(2.3) σ = Hn−1⌊∂∗Ω.

Next, given a unit vector νE and x ∈ ∂Ω, set

(2.4) H±
νE

(x) = {y ∈ Rn : ⟨±νE , y − x⟩ ≥ 0}.

Then (cf. [EG], p. 203), for x ∈ ∂∗Ω, Ω+ = Ω, and Ω− = Rn \ Ω, one has

(2.5) lim
r→0

r−nLn
(
Br(x) ∩ Ω± ∩H±

νE
(x)

)
= 0,

when νE = ν(x), as in (2.1). Here Ln denotes Lebesgue measure on Rn. More
generally, a unit vector νE for which (2.5) holds is called the measure-theoretic unit
normal to ∂Ω at x. If such νE exists, it is unique. Thus we define ∂0Ω to consist
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of x ∈ ∂Ω for which (2.5) holds, with νE(x) denoting the measure-theoretic outer
normal. We have ∂0Ω ⊃ ∂∗Ω and νE(x) = ν(x) on ∂∗Ω.

Third, we define ∂∗Ω, the measure-theoretic boundary of Ω, to consist of x ∈ ∂Ω
such that

(2.6) lim sup
r→0

r−nLn
(
Br(x) ∩ Ω±

)
> 0.

It is clear that ∂∗Ω ⊃ ∂0Ω. Furthermore (cf. [EG], p. 208) one has

(2.7) Hn−1(∂∗Ω \ ∂∗Ω) = 0.

Consequently the formula (1.12) can be written

(2.8)

∫
Ω

divX dx =

∫
∂∗Ω

⟨ν,X⟩ dHn−1,

for X satisfying the conditions of Proposition 1.4 or Proposition 1.5.
We remark that ∂∗Ω is well defined whether or not Ω has finite perimeter. It is

known that Ω has finite perimeter if and only if Hn−1(∂∗Ω) <∞ (cf. [EG], p. 222).
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3. Proof of Proposition 1.1

Let us now take n = 2 and address Proposition 1.1. We take a complex valued
f ∈ C(Ω) and form the vector field

(3.1) X =

(
if

−f

)
.

Then, as a distribution on Ω,

(3.2) divX = i
∂f

∂x
− ∂f

∂y
.

Hence

(3.3) divX = 0 on Ω ⇐⇒ f is holomorphic on Ω.

Now if f ∈ Lip(Ω), then X ∈ Lip(Ω), and Proposition 1.4 applies, yielding

(3.4)

∫
∂Ω

f⟨ν,E⟩ dσ = 0, E =

(
i

−1

)
.

This proves Proposition 1.1, with the complex measure α given by

(3.5) α = ⟨ν,E⟩σ.

Note that if we implement the natural identification R2 ≈ C, we obtain

(3.6) ν =

(
ν1
ν2

)
7→ ν1 + iν2 = ν̃, while ⟨ν,E⟩ = iν1 − ν2,

hence

(3.7) α = iν̃ σ.
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4. Proof of Proposition 1.6

To prepare for the proof of Proposition 1.6, we introduce a concept that arose
in [HMT].

Let Ω ⊂ Rn be a bounded, open, finite-perimeter domain. We say Ω has a tame
interior approximation if there exist finite perimeter domains Ωk ⊂ Ωk ⊂ Ω and
C <∞ such that

(4.1) χΩk
→ χΩ a.e., as k → ∞, and σ(∂Ωk) ≤ C.

We remark that it need not be the case that σ(∂Ωk) → σ(∂Ω). Actually, the
first part of our hypothesis in (4.1) is weaker than given in [HMT], which required
Ωk ↗ Ω. Thus the following result is a little stronger than its counterpart in
[HMT], though the proof is essentially the same.

Proposition 4.1. If Ω ⊂ Rn is a bounded, open finite-perimeter domain with tame
interior approximation, and if

(4.2) X ∈ C(Ω), divX ∈ L1(Ω),

then

(4.3)

∫
Ω

divX dx =

∫
∂Ω

⟨ν,X⟩ dσ.

Proof. The argument involving (1.13)–(1.14) implies

(4.4)

∫
χΩk

(x) divX dx = −⟨∇χΩk
, X⟩,

for each k. The first part of (4.1) implies, via the Lebesgue dominated convergence
theorem, that the left side of (4.4) tends to

(4.5)

∫
Ω

divX dx, as k → ∞,

given divX ∈ L1(Ω). We also have

(4.6) χΩk
−→ χΩ in Lp(Rn), ∀ p ∈ [1,∞),

all supported in Ω, hence

(4.7) ∇χΩk
−→ ∇χΩ, in E ′(Rn).
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But the second part of (4.1) implies {∇χΩk
} is a bounded family of Rn-valued

measures, supported in Ω, and this together with (4.7) gives

(4.8) ∇χΩk
−→ ∇χΩ, weak∗ in M(Ω).

Thus the right side of (4.4) tends to

(4.9)

∫
∂Ω

⟨ν,X⟩ dσ,

as k → ∞, given X ∈ C(Ω). We hence have (4.3).

Given Proposition 4.1, arguments from §3 establish the following, which is Propo-
sition 1.6.

Proposition 4.2. Let Ω ⊂ C be a bounded, open, finite-perimeter domain, and
assume Ω has a tame interior approximation. Assume

(4.10) f ∈ C(Ω) and f is holomorphic on Ω.

Then

(4.11)

∫
∂Ω

f(z) dα(z) = 0,

where α is the complex Borel measure on ∂Ω given by (3.5)–(3.7).

Though we have Proposition 1.6 at this point, we will linger, and derive some
more results for the class of domains with tame interior approximations. First,
from (4.8) and the formula (3.5)–(3.7) for α, we have the following complement to
Proposition 4.2.

Proposition 4.3. Let {Ωk} be a tame interior approximation to a bounded finite-
perimeter domain Ω ⊂ C. Define the complex measure α on ∂Ω as in (3.5)–(3.7),
and similarly define the measures αk on ∂Ωk. Then

(4.12) αk −→ α weak∗ in M(Ω).

Note. One might not have σk → σ weak∗. Thus cancellation effects can play a
role in (4.12). For an example, consider the slit disk,

(4.13) Ω = D1(0) \ [0, 1),

where D1(0) = {z ∈ C : |z| < 1}. Then

(4.14) Ω = D1(0), ∂Ω = S1 ∪ [0, 1], ∂∗Ω = S1,
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where S1 = {z ∈ C : |z| = 1}. One can readily find a tame interior approximation
to Ω, e.g.,

(4.15) Ωk = {z ∈ Ω : dist(z, ∂Ω) > 2−k}.

Note that

(4.16) {Ωk} is also a tame interior approximation to D1(0),

by the definition (4.1) (though not by the definition in [HMT]).

Consideration of the last example points to a removable singularities theorem:

Proposition 4.4. Let O ⊂ C be a bounded open set, K ⊂ O a closed set of 2D
Lebesgue measure 0. Assume Ω = O\K has a tame interior approximation, Ωk ⊂ Ω
(which is automatically also a tame interior approximation to O). Then

(4.17) f ∈ C(O), f holomorphic on Ω = O \K =⇒ f holomorphic on O.

Proof. Proposition 4.2 applies to Ω, and the accompanying Cauchy integral formula
holds:

(4.18) f(ζ) =
1

2πi

∫
∂∗Ω

f(z)

z − ζ
dαΩ(z),

for all ζ ∈ Ω. By (4.12), the complex measure αΩ on ∂Ω is equal to the measure
αO in ∂O. Thus, for ζ ∈ Ω,

(4.19) f(ζ) =
1

2πi

∫
∂∗O

f(z)

z − ζ
dαO(z).

But the right side of (4.19) is holomorphic on C \ ∂∗O, and in particular on O.

In caseO = D1(0) and Ω is given by (4.13), the fact thatK = [0, 1] is a removable
set of singularities (in the category C(O)) can be established directly, via Morera’s
theorem. Proposition 4.4 deals with sets K much more irregular than a slit. One
might investigate for what class of compact sets K ⊂ O a direct proof of (4.17) via
Morera’s theorem can be made.

See Appendix B for comments on a related removable singularity problem.
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5. Proof of Proposition 1.2

Proposition 1.2 follows directly from Proposition 1.6 and the next result:

Proposition 5.1. Let Ω ⊂ C be a bounded open set. Assume H1(∂Ω) < ∞ and
that ∂Ω has a finite number of connected components. Then Ω has a tame interior
approximation. More precisely, there exist finite perimeter domains Ωk ⊂ Ωk ⊂ Ω
and C <∞ such that

(5.1) Ωk ↗ Ω, and σ(∂Ωk) ≤ C.

Note that the condition (5.1) is stronger than (1.17). In fact, it is the condition
initially used in [HMT].

The first step in the proof of Proposition 5.1 brings in the following concept,
which we formulate in the general n-dimensional context. Let Ω ⊂ Rn be a bounded
open set. Assume Hn−1(∂Ω) < ∞. We say ∂Ω is lower Ahlfors regular if there
exists C1 ∈ (0,∞) such that, for all r ∈ (0, 1],

(5.2) C1r
n−1 ≤ Hn−1(∂Ω ∩Br(p)), ∀ p ∈ ∂Ω.

We have the following.

Proposition 5.2. Let Ω ⊂ C satisfy the hypotheses of Proposition 5.1. Also as-
sume each connected component Γk of ∂Ω has positive diameter, dk (i.e., consists
of more than one point). Then ∂Ω is lower Ahlfors regular.

Proof. For such Ω, if p ∈ Γk, we have

(5.3) H1(∂Ω ∩Br(p)) ≥ r, ∀ r ∈ (0, dk).

Proposition 5.2 together with the next result establish Proposition 5.1.

Proposition 5.3. Let Ω ⊂ Rn be a bounded open set. Assume Hn−1(∂Ω) < ∞
and that ∂Ω is lower Ahlfors regular. Then Ω has the tame interior approximation
property, satisfying (5.1).

In order to prove Proposition 5.3, we bring in the following lemma, which arose,
in another context, in [HMT].

Lemma 5.4. Let Ω ⊂ Rn satisfy the hypotheses of Proposition 5.3. Set

(5.4) Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}.

Then

(5.5) Vol(Oδ) ≤ Cδ.
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Proof. Let B denote the unit ball centered at 0 in Rn, with volume Vn, and set

(5.6) χδ(x) = V −1
n δ−nχB(δ

−1x),

so
∫
χδ dx = 1. Set ω = Hn−1⌋∂Ω and

(5.7) Gδ = ω ∗ χδ,

so

(5.8)

∫
Gδ(x) dx = Hn−1(∂Ω), ∀ δ > 0.

We also have the following. If p ∈ ∂Ω and |x− p| = dist(x, ∂Ω),

(5.9)
dist(x, ∂Ω) ≤ δ

2
⇒ Gδ(x) ≥ Cδ−nHn−1(∂Ω ∩Bδ/2(p))

≥ Cδ−1,

the last inequality by (5.2). Hence

(5.10)

Vol(Oδ/2) ≤ Cδ

∫
Oδ/2

Gδ(x) dx

≤ CδHn−1(∂Ω).

This proves (5.5).

Having this lemma, we are ready for the

Proof of Proposition 5.3. Consider φ ∈ Lip(Ω), given by φ(x) = dist(x, ∂Ω), and
set

(5.11) Ωs = {x ∈ Ω : φ(x) ≥ s}.

For δ > 0, set

(5.12)
ψδ(x) = δ, for x ∈ Ωδ,

φ(x), for x ∈ Ω \ Ωδ.

Thus ∇ψδ is supported on Oδ and |∇ψδ| = 1 on Oδ. A version of the co-area
formula (Theorem 5.4.4 of [Zie]) gives

(5.13)

∫
Oδ

|∇ψδ| dx =

∫ δ

0

∥∇χΩs
∥TV ds,

where ∥ · ∥TV is the total variation of a (vector-valued) measure. Now the left side
of (5.13) equals Vol(Oδ), so (5.5) implies

(5.14)

∫ δ

0

∥∇χΩs
∥TV ds ≤ Cδ.

Thus, for each k ≥ 1, there exists s ∈ (0, 1/k) such that ∥∇χΩs∥TV ≤ C. This
proves Proposition 5.3.
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6. Domains bounded by simple, closed, rectifiable curves

Let Ω ⊂ C be a bounded open set, and assume ∂Ω consists of a finite set of
disjoint, rectifiable Jordan curves,

(6.1) ∂Ω = Γ1 ∪ · · · ∪ Γm.

Say Γj is the image of

(6.2) γj : [0, Lj ] −→ C,

with γj(0) = γj(Lj). We parametrize γj by arc-length, so it is a Lipschitz map,
and, for f ∈ C(Γj),

(6.3)

∫ Lj

0

f(γj(t)) dt =

∫
Γj

f(z) dλ(z),

where

(6.4) λ = H1⌊∂Ω.

We have H1(∂Ω) =
∑
Lj <∞, and a fortiori H1(∂∗Ω) <∞. Hence, as seen in §2,

Ω is a finite-perimeter domain. Proposition 1.2 applies, and we have the following.

Proposition 6.1. Take Ω as above, bounded by m rectifiable Jordan curves, Γj,
and assume

(6.5) f ∈ C(Ω), f holomorphic on Ω.

Then

(6.6)
m∑
j=1

∫
Γj

f(z) dα(z) = 0,

where, as in (3.7),

(6.7) α = iν̃ σ,

and σ is the positive measure on ∂Ω specified by (1.8)–(1.10).
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To complement this result, we want to relate
∫
Γj
f(z) dα(z) to the integral

(6.8)

∫
γj

f(z) dz =

∫ Lj

0

f(γj(t))γ
′
j(t) dt

=

∫
Γj

f(z)τ(z) dλ(z),

where

(6.9) τ(γj(t)) = γ′j(t)

defines a bounded, λ-measurable function on Γj . Meanwhile, by (3.4)–(3.7),

(6.10)

∫
Γj

f(z) dα(z) =

∫
Γj

f(z)iν̃(z) dσ(z)

=

∫
Γj

f(z)τ(z) dσ(z),

the last identity because, by (2.2),

(6.11) iν̃(z) = τ(z), σ-a.e.

We are hence motivated to record the following result.

Lemma 6.2. For Ω, λ, and σ as described above,

(6.12) λ = σ.

Equivalently (via (2.7)),

(6.13) H1(∂Ω \ ∂∗Ω) = 0.

Proof. This follows from Theorem I of [CR], whose part (ii) yields

(6.14) σ(∂Ω) =
∑
j

Lj = λ(∂Ω),

which implies (6.13).

Now we can restate Proposition 6.1 as follows.
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Corollary 6.3. Take Ω as in Proposition 6.1 and assume f satisfies (6.5). Then

(6.15)
m∑
j=1

∫
γj

f(z) dz = 0.

For m = 1, this is Theorem 4.6.1 of [Si]. To illustrate the extra generality of
Proposition 1.2, we mention that one can readily produce examples of bounded,
open, connected sets Ω ⊂ C such that ∂Ω is connected and H1(∂Ω) < ∞, but
C \ Ω has infinitely many connected components. Indeed, one can arrange that
every neighborhood U of each point p ∈ ∂Ω contains infinitely many connected
components of C\Ω. On the other hand, there is the following notable rectifiability
theorem of [CR].

Theorem ([CR]). Let Ω ⊂ C be a bounded open set with finite perimeter. Assume

(6.16) ∂Ω = ∂(C \ Ω),

i.e., Ω is the interior of Ω, and

(6.17) C \ Ω has m connected components,m ∈ N.

Write Ω = ∪jOj, as the disjoint union of its connected components. Then

(6.18) σ(∂Ω) =
∑
j

σ(∂Oj),

and each ∂Oj consists of ≤ m rectifiable Jordan curves γjk. Furthermore, for each
j,

(6.19) σ(∂Oj) =
∑
k

H1(γjk).
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7. Further results

Here we describe some variants of Propositions 1.2–1.3, valid for a broader
class of holomorphic functions on Ω, for certain classes of finite-perimeter domains
Ω. Propositions 7.1–7.2 below are consequences of results of [HMT], [MMT], and
[MMM], to which we refer for proofs.

Given a bounded, finite-perimeter domain Ω ⊂ C, and p ∈ [1,∞], we set

(7.1) Hp(Ω) = {f holomorphic on Ω : N f ∈ Lp(∂Ω, σ)},

where N f denotes the nontangential maximal function,

(7.2) N f(z) = sup
ζ∈Γz

|f(ζ)|,

and where, for z ∈ ∂Ω, and some choice of a ∈ (0, 1),

(7.3) Γz = {ζ ∈ Ω : dist(ζ, ∂Ω) ≥ a|ζ − z|}.

The following result was established in [HMT] and pursued further in [MMT] and
[MMT2].

Proposition 7.1. Let Ω ⊂ C be a bounded, finite-perimeter domain. Assume
H1(∂Ω \ ∂∗Ω) = 0 and that ∂Ω is Ahlfors regular. Assume that

(7.4) f ∈ Hp(Ω), for some p > 1,

and that

(7.5) f has a nontangential a.e. limit fb ∈ Lp(∂Ω, σ).

Then, with α denoting the complex measure on ∂Ω given by (3.4)–(3.7),

(7.6)

∫
∂Ω

fb(z) dα(z) = 0,

and, for each z0 ∈ Ω,

(7.7) f(z0) =
1

2πi

∫
∂Ω

fb(z)

z − z0
dα(z).

Here, to say ∂Ω is Ahlfors regular is to say there exist Cj ∈ (0,∞) such that, for
all r ∈ (0, 1],

(7.8) C1r ≤ H1(∂Ω ∩Br(p)) ≤ C2r, ∀ p ∈ ∂Ω.

Contrast this with the one-sided condition (5.2).
Proposition 7.1 was sharpened in [MMM] in several ways. For one, the endpoint

case p = 1 was included. For another, the class of domains Ω was broadened. These
results of [MMM] include the following.
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Proposition 7.2. Let Ω ⊂ C be a bounded, finite-perimeter domain. Assume ∂Ω
is lower Ahlfors regular (cf. (5.2)), that H1(∂Ω\∂∗Ω) = 0, and that σ is a doubling
measure on ∂Ω. Assume

(7.9) f ∈ H1(Ω),

and f satisfies (7.5), with p = 1. Then (7.6)–(7.7) hold.

The monograph [MMM] also has Fatou theorems, to the effect that, if f ∈ Hp(Ω),
then (7.5) holds. Such results are shown to hold if p > 1 and Ω is a uniformly
rectifiable domain. A stronger Fatou theorem, allowing p = 1, is demonstrated in
[MMM] when Ω is an Ahlfors regular NTA domain.

There are other interesting variants. For example, if Ω ⊂ C is smoothly bounded,
and f is holomorphic on Ω, then

(7.10) f ∈ L2(Ω) =⇒ Tr f ∈ H−1/2(∂Ω),

and one has variants of Propositions 1.2–1.3. General results implying (7.10) can be
found in [Se], using pseudodifferential operator calculus. An elementary argument,
using Green’s formula, is given in [T]. There are further results along these lines,
making contact with the “bullet product” developed in [MMM], which we will
discuss in another note.
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A. Complements on finite-perimeter domains

Here we fix a mollifier, of the form

(A.1)

Jεu = φε ∗ u, φε(x) = ε−nφ(ε−1x),

φ ∈ C∞
0 (Rn), φ ≥ 0,

∫
φ(x) dx = 1.

Given a bounded open set Ω ⊂ Rn, we set

(A.2) Fε(x) = φε ∗ χΩ(x).

Our first goal here is to prove the following.

Proposition A.1. Given Ω ⊂ Rn, open and bounded, the following are equivalent:

(A.3) Ω is a finite-perimeter domain and σ(∂Ω) = A,

and

(A.4) lim
ε→0

∫
|∇Fε(x)| dx = A.

We include this result because (A.4) is given as the definition of a finite-perimeter
domain in [CR], and we want to be sure this is equivalent to the definition given in
§1.

To start the proof, note that Fε, defined by (A.2), belongs to C∞
0 (Rn), and

(A.5) ∇Fε = φε ∗ µ,
with

(A.6) µ = ∇χΩ ∈ E ′(Rn),

and

(A.7) φε ∗ µ −→ µ in E ′(Rn).

Now (A.4) implies φε ∗ µ is bounded in L1(Rn). Hence there is a subsequence
εk → 0 such that

(A.8) φεk ∗ µ −→ µ̃, weak∗ in M(K),

the space of finite Borel measures supported on a compact set K ⊂ Rn, chosen
large enough that suppFε ⊂ K for all ε ∈ (0, 1]. Here µ̃ is an Rn-valued measure,
supported on ∂Ω. Furthermore, by Alaoglu’s theorem, if (A.4) holds,

(A.9) ∥µ̃∥TV ≤ A.

Comparison with (A.7) implies µ = µ̃, i.e., µ is an Rn-valued measure, so (1.9)
applies, and

(A.10) ∥µ∥TV = σ(∂Ω) = Ã ≤ A.

Thus we are in the setting of (A.3) (but with Ã in place of A). Hence, to prove
Proposition A.1, it remains only to show that (A.3) ⇒ (A.4).

In fact, we prove the following more precise result.
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Proposition A.2. Assume Ω is a bounded, open, finite-perimeter domain in Rn,
with ∇χΩ = µ = −ν σ, as in (1.8)–(1.9). Take Fε as in (A.2). Then

(A.11) |∇Fε| −→ σ, weak∗ in M(K),

the space of finite Borel measures on K (the compact neighborhood of Ω described
above).

Proof. Take δ > 0. We apply Lusin’s theorem to ν ∈ L1(∂Ω, σ) in (1.9) to see that
there is a compact set K1 ⊂ ∂Ω such that

(A.12) σ(∂Ω \K1) < δ and ν
∣∣
K1

is continuous.

Then there exists

(A.13) ψ ∈ C(K) such that ψ = ν on K1, |ψ| ≤ 1,

and we can write

(A.14) −µ = νσ0 + ψσ1, σ1 = σ⌊K1, σ0 = σ⌊(∂Ω \K1).

Then

(A.15)

−∇Fε = −Jεµ = Jε(νσ0) + Jε(ψσ1)

= Jε(νσ0) + [Jε, ψ]σ1 + ψJεσ1

= g0ε + g1ε + ψJεσ1.

We have

(A.16) ∥g0ε∥L1 ≤ ∥σ0∥TV < δ.

As for g1ε = [Jε, ψ]σ1, we have the following.

Lemma A.3. Given σ1 ∈ M(∂Ω), ψ ∈ C(K), the commutator [Jε, ψ] satisfies

(A.17) ∥[Jε, ψ]σ1∥L1 −→ 0 as ε↘ 0.

Proof. If ψ ∈ C∞
0 (Rn), [Jε, ψ] is bounded in OPS−1

1,0(Rn), so {[Jε, ψ]σ1 : ε ∈ (0, 1]}
is bounded in the Sobolev space Hs,p(K) for some p > 1, s > 0, hence relatively
compact in L1(K). Clearly [Jε, ψ]σ1 → 0 in E ′(Rn), and this leads to (A.17), for
ψ ∈ C∞

0 (Rn). The result for all ψ ∈ C(K) follows readily, via a limiting argument.

Returning to the proof of Proposition A.2, we have from (A.15)–(A.17) that

(A.18) lim sup
ε→0

∥ − ∇Fε − ψJεσ1∥L1 ≤ δ,
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hence

(A.19) lim sup
ε→0

∥ |∇Fε| − |ψ|Jεσ1∥L1 ≤ δ.

Now the L1-bounds on |∇Fε| imply that for each sequence ε → 0, there is a
subsequence εk → 0 and a positive measure α, supported by ∂Ω, such that

(A.20) |∇Fεk | −→ α, weak∗ in M(K).

Meanwhile,

(A.21) |ψ|Jεσ1 −→ |ψ|σ1, weak∗,

and |ψ|σ1 = σ1. In conjunction with (A.19), and via Alaoglu’s theorem, we get

(A.22) ∥α− σ1∥TV ≤ δ,

hence

(A.23) ∥α− σ∥TV ≤ 2δ.

Since the left side of (A.23) is independent of δ, this implies α = σ, and we have
the desired conclusion (A.11).
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B. A removable singularity problem

Motivated by Proposition 4.4, we address the following basic case of a removable
singularity problem. Given K ⊂ C compact, we ask when we have the implication

(B.1) f ∈ C(C), f holomorphic on C \K =⇒ f holomorphic on C.

This is to some degree close to the question of when we have the implication

(B.2) f ∈ L∞(C), f holomorphic on C \K =⇒ f holomorphic on C,

which has been much studied. The fact that, when K = [0, 1] is a slit, (B.1) holds
but (B.2) fails illustrates the subtlety of the questions. Note that (B.1) fails if and
only if there is a nonzero distribution

(B.3) ω ∈ E ′(C), suppω ⊂ K,

such that

(B.4)
1

z
∗ ω ∈ C(C).

Similarly, (B.2) fails if and only if there exists ω satisfying (B.3), with (B.4) replaced
by (1/z) ∗ ω ∈ L∞(C). Note that if K has positive 2D Lebesgue measure,

(B.5) ω = χK =⇒ 1

z
∗ ω ∈ Cr(C), ∀ r < 1,

so (B.1) fails for such K. On the other hand, if we apply Proposition 4.4 with O
taken to be an open disk containing K, we obtain the following.

Proposition B.1. Let K ⊂ C be a compact set with 2D Lebesgue measure 0.
Assume there exist open sets Uk ⊃ K and C <∞ such that

(B.6) L2(Uk) → 0, H1(∂Uk) ≤ C.

Then the implication (B.1) holds.

Corollary B.2. Let K ⊂ C be a compact set with finite 1-dimensional Hausdorff
measure,

(B.7) H1(K) <∞.

Then the implication (B.1) holds.
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Proof. We recall how 1-dimensional Hausdorff measure is constructed. Given δ >
0, S ⊂ C, we set

(B.8) h∗1,δ(S) = inf
{∑
j≥1

(diamBj) : S ⊂
∪
j≥1

Bj ,diamBj ≤ δ
}
,

which is a monotone function of δ, and then set

(B.9) h∗1(S) = lim
δ→0

h∗1,δ(S),

which is a metric outer measure. Every compact K ⊂ C is h∗1-measurable, and we
set

(B.10) H1(K) = h∗1(K).

One can make a construction parallel to (B.8)–(B.10), in which the countable cover
of S in (B.8) is required to consist of open disks of diameter ≤ δ. We denote the
resulting measure by H1

D, which is clearly ≥ H1. Now a set of diameter dj might
not be contained in a disk of diameter dj , but it is certainly contained in a (closed)
disk of radius dj (i.e., diameter 2dj), so we have

(B.11) H1(K) ≤ H1
D(K) ≤ 2H1(K).

If K is compact, any cover of K by open disks has a finite subcover. Hence, for
δ = 2−k, we can take a finite cover of K by open disks Dk,1, . . . , Dk,N(k), such that
diamDk,ℓ ≤ δ and

(B.12)
∑
ℓ

(diamDk,ℓ) ≤ H1
D(K) + 2−k.

If we set

(B.13) Uk =
∪
ℓ

Dk,ℓ ⊃ K,

then

(B.14) σ(∂Uk) ≤ π
∑
ℓ

(diamDk,ℓ),

and

(B.15)

L2(Uk) ≤
π

4

∑
ℓ

(diamDk,ℓ)
2

≤ πδ

4

∑
ℓ

(diamDk,ℓ),

so (B.6) holds, and hence Proposition B.1 applies.
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