Karamata’s Tauberian Theorem

MICHAEL TAYLOR

1. Basics

Let \(\mu \) be a positive Borel measure on \([0, \infty)\). Assume \(e^{-s \lambda} \in L^1(\mathbb{R}^+, \mu) \) for each \(s > 0 \), and assume

\[
\int_0^\infty e^{-s \lambda} \, d\mu(\lambda) \sim A \varphi(s), \quad \text{as } s \searrow 0,
\]

where \(\varphi(s) \nearrow +\infty \) as \(s \searrow 0 \), and we say

\[
\Phi(s) \sim A \varphi(s) \iff \Phi(s) = A \varphi(s) + o(\varphi(s)), \quad \text{as } s \searrow 0.
\]

Regarding \(\varphi(s) \), we will assume that

\[
\varphi(s) = L \psi(s) = \int_0^\infty e^{-s \lambda} \psi(\lambda) \, d\lambda, \quad \psi > 0.
\]

The classical examples are

\[
\psi(\lambda) = \lambda^{\alpha - 1}, \quad \varphi(s) = \Gamma(\alpha) s^{-\alpha}, \quad \alpha > 0.
\]

Slightly more exotic examples are

\[
\psi(\lambda) = \lambda^{\alpha - 1} \log \lambda, \quad \varphi(s) = (\Gamma'(\alpha) - \Gamma(\alpha) \log s) s^{-\alpha},
\]

again for \(\alpha > 0 \). Actually, in this case \(\psi(\lambda) < 0 \) for \(\lambda \in (0, 1) \), so we would want to cut this off, obtaining

\[
\psi(\lambda) = \lambda^{\alpha - 1} (\log \lambda)_+, \quad \varphi(s) = \Gamma(\alpha) \left(\log \frac{1}{s} \right) s^{-\alpha} + O(s^{-\alpha}),
\]

as \(s \searrow 0 \). See §2 for another example, in which \(\varphi(s) \sim \log 1/s \).

Our goal is to establish (under some natural hypotheses on \(\varphi \) and \(\psi \)) that

\[
\mu([0, R]) = A \int_0^R \psi(\lambda) \, d\lambda + o(\varphi(R^{-1})), \quad \text{as } R \nearrow +\infty.
\]

In case \(\varphi \) and \(\psi \) are given by (1.4), this yields the implication

\[
\int_0^\infty e^{-s \lambda} \, d\mu(\lambda) \sim A s^{-\alpha}, \quad \text{as } s \searrow 0 \implies \mu([0, R]) \sim \frac{A}{\Gamma(\alpha + 1)} R^\alpha, \quad \text{as } R \nearrow +\infty,
\]
which is the most basic version of the Karamata Tauberian theorem.

We tackle the problem of establishing (1.7) in stages, examining when we can show that

\[\int_0^\infty f(s\lambda) \, d\mu(\lambda) = A \int_0^\infty f(s\lambda) \psi(\lambda) \, d\lambda + o(\varphi(s)), \]

for various classes of functions \(f(\lambda) \), ultimately including

\[\chi_I(\lambda) = \begin{cases} 1 & \text{for } 0 \leq \lambda \leq 1, \\ 0 & \text{for } \lambda > 1. \end{cases} \]

We start with the function space

\[\mathcal{E} = \left\{ \sum_{k=1}^M \gamma_k e^{-k\lambda} : \gamma_k \in \mathbb{R}, M \in \mathbb{N} \right\}. \]

Note that this is an algebra of functions that separates the points of \([0, \infty)\), hence, by the Stone-Weierstrass theorem, it is dense in

\[C_0([0, \infty)) = \{ f \in C([0, \infty)) : f(\infty) = 0 \}. \]

Now, if \(f \in \mathcal{E} \), say

\[f(\lambda) = \sum_{k=1}^M \gamma_k e^{-k\lambda}, \]

then the hypothesis (1.1) implies

\[\int_0^\infty f(s\lambda) \, d\mu(\lambda) = \sum_{k=1}^M \gamma_k \int_0^\infty e^{-sk\lambda} \, d\mu(\lambda) \]

\[= A \sum_{k=1}^M \gamma_k \varphi(ks) + o\left(\sum_{k=1}^M \varphi(ks) \right) \]

\[= A \int_0^\infty f(s\lambda) \psi(\lambda) \, d\lambda + o(\varphi(s)), \]

since

\[\varphi(ks) \leq \varphi(s), \quad \text{for } k \geq 1. \]

Hence (1.9) holds for all \(f \in \mathcal{E} \). The following is the next key result.
Lemma 1.1. Given (1.1), the result (1.9) holds for all

\[f \in C_0([0, \infty)) \] such that \(e^\lambda f \in C_0([0, \infty)) \).

Proof. Given such \(f \), and given \(\varepsilon > 0 \), take \(h \in E \) such that \(\sup |h(\lambda) - e^\lambda f(\lambda)| \leq \varepsilon \), and set \(g = e^{-\lambda} h \), so

\[g \in E, \quad |f(\lambda) - g(\lambda)| \leq \varepsilon e^{-\lambda}. \]

This implies

\[\int_0^\infty |f(s\lambda) - g(s\lambda)| d\mu(\lambda) \leq \varepsilon \int_0^\infty e^{-s\lambda} d\mu(\lambda) \]

and

\[\int_0^\infty |f(s\lambda) - g(s\lambda)| \psi(\lambda) d\lambda \leq \varepsilon \int_0^\infty e^{-s\lambda} \psi(\lambda) d\lambda. \]

The fact that the right sides of (1.18) and (1.19) are both \(\leq C \varepsilon \varphi(s) \), for \(s \in (0, 1] \), follows from (1.1) and (1.3), respectively. But we know that (1.9) holds with \(g \) in place of \(f \). Hence

\[\left| \int_0^\infty f(s\lambda) d\mu(\lambda) - A \int_0^\infty f(s\lambda) \psi(\lambda) d\lambda \right| \leq 2C \varepsilon \varphi(s) + o(\varphi(s)), \]

for each \(\varepsilon > 0 \). Taking \(\varepsilon \searrow 0 \) yields the lemma.

We now tackle (1.9) for \(f = \chi_I \), given by (1.10). For each \(\delta \in (0, 1/2] \), take \(f_\delta, g_\delta \in C_0([0, \infty)) \) such that

\[0 \leq f_\delta \leq \chi_I \leq g_\delta \leq 1, \]

with

\[f_\delta(\lambda) = 1 \quad \text{for} \quad 0 \leq \lambda \leq 1 - \delta, \]

\[0 \quad \text{for} \quad \lambda \geq 1, \]

and

\[g_\delta(\lambda) = 1 \quad \text{for} \quad 0 \leq \lambda \leq 1, \]

\[0 \quad \text{for} \quad \lambda \geq 1 + \delta. \]

Note that Lemma 1.1 is applicable to each \(f_\delta \) and \(g_\delta \). Hence

\[\int_0^\infty \chi_I(s\lambda) d\mu(\lambda) \leq \int_0^\infty g_\delta(s\lambda) d\mu(\lambda) \]

\[= A \int_0^\infty g_\delta(s\lambda) \psi(\lambda) d\lambda + o(\varphi(s)), \]
and

\[
\int_0^\infty \chi_I(s\lambda) \, d\mu(\lambda) \geq \int_0^\infty f_\delta(s\lambda) \, d\mu(\lambda) = A \int_0^\infty f_\delta(s\lambda)\psi(\lambda) \, d\lambda + o(\varphi(s)).
\]

Next,

\[
\int_0^\infty [g_\delta(s\lambda) - f_\delta(s\lambda)]\psi(\lambda) \, d\lambda \\
\leq \int_{(1-\delta)/s}^{(1+\delta)/s} \psi(\lambda) \, d\lambda \\
\leq \frac{2\delta}{s} \max\{|\psi(\lambda)| : |\lambda - \frac{1}{s}| \leq \frac{\delta}{s}\}.
\]

We now make the hypothesis that, for some \(\varepsilon > 0, b > 0, B < \infty\),

\[
\max\{|\psi(\lambda)| : |\lambda - \frac{1}{s}| \leq \frac{\varepsilon}{s}\} \leq Bs\varphi(s), \quad \text{for } 0 < s \leq b.
\]

Note that such a condition holds in cases (1.4) and (1.6). When such an estimate holds, (1.26) yields

\[
\int_0^\infty [g_\delta(s\lambda) - f_\delta(s\lambda)]\psi(\lambda) \, d\lambda \leq 2B\delta \varphi(s), \quad \text{for } \delta \leq \varepsilon, s \leq b.
\]

It then follows from (1.24)–(1.26) that

\[
\lim_{s \to 0}^\infty \varphi(s)^{-1}\left|\int_0^\infty \chi_I(s\lambda) \, d\mu(\lambda) - A \int_0^\infty \chi_I(s\lambda)\psi(\lambda) \, d\lambda\right| \\
\leq \inf_{\delta \leq \varepsilon} 2B\delta = 0.
\]

We have the following conclusion.

Proposition 1.2. Let \(\mu\) be a positive measure on \([0, \infty)\), and assume (1.1)–(1.3) hold, with \(\psi \notin L^1(\mathbb{R}^+)\), and that (1.27) holds. Then \(\mu\) satisfies (1.7).

The special case (1.8) has already been mentioned. We turn to the case (1.6), for which (1.1) leads to (1.7) with

\[
\int_0^R \psi(\lambda) \, d\lambda = \int_1^R \lambda^{\alpha-1}(\log \lambda) \, d\lambda = \frac{1}{\alpha} \int_1^R \left(\frac{d}{d\lambda} \lambda^\alpha\right)(\log \lambda) \, d\lambda \\
= \frac{1}{\alpha} R^\alpha(\log R) + O(R^\alpha).
\]

This leads to the following.
Corollary 1.3. Let μ be a positive measure on [0, ∞). Assume
\[(1.31) \quad \int_0^\infty e^{-s\lambda} \, d\mu(\lambda) \sim A \left(\log \frac{1}{s} \right) s^{-\alpha}, \quad s \searrow 0, \]
with \(\alpha > 0 \). then
\[(1.32) \quad \mu([0, R]) \sim \frac{A}{\Gamma(\alpha + 1)} R^\alpha (\log R), \quad R \nearrow +\infty. \]

We mention some other results of Karamata. To state them, let us set
\[(1.33) \quad \Psi(R) = \int_0^R \psi(\lambda) \, d\lambda. \]

Here is Karamata’s Abelian theorem.

Proposition 1.4. Let \(\psi > 0 \). Assume that \(\Psi \), given by (1.33), has the form
\[(1.34) \quad \Psi(R) = R^\alpha F(R), \quad \text{with} \quad \alpha > 0, \]
where \(F \) is slowly varying at \(\infty \), in the sense that
\[(1.35) \quad \lim_{R \to \infty} \frac{F(tR)}{F(R)} = 1, \]
uniformly in \(t \) in compact subsets of \((0, \infty)\). Then
\[(1.36) \quad \mathcal{L}\psi(s) \sim \Gamma(\alpha + 1) s^{-\alpha} F(s^{-1}) = \Gamma(\alpha + 1) \Psi(s^{-1}), \]
as \(s \searrow 0 \).

Note that (1.4) and (1.6) provide special cases of the functions \(\psi \), considered here, with \(F(R) = 1 \) and \(F(R) = (\log R)_+ \), respectively.

The following result is Karamata’s Tauberian theorem.

Proposition 1.5. Take \(\psi(\lambda) \) and \(\Psi(R) \) as in Proposition 1.4. In particular, assume that (1.34)–(1.35) hold. Let \(\mu \) be a positive measure on \([0, \infty)\), and assume
\[(1.37) \quad \int_0^\infty e^{-s\lambda} \, d\mu(\lambda) \sim A\varphi(s), \]
as \(s \searrow 0 \), with
\[(1.38) \quad \varphi(s) = \Gamma(\alpha + 1) \Psi(s^{-1}) = \Gamma(\alpha + 1) s^{-\alpha} F(s^{-1}). \]

Then
\[(1.39) \quad \mu([0, R]) \sim A\Psi(R), \quad \text{as} \quad R \nearrow +\infty. \]
2. Another special case

We want to extend the treatment of (1.4) to $\alpha = 0$. Since $\psi(\lambda) = \lambda^{-1}$ is not integrable on $(0, 1]$, we instead take

\begin{equation}
\psi(\lambda) = \lambda^{-1}, \quad \text{for } \lambda \geq 1, \\
0, \quad \text{for } 0 < \lambda < 1.
\end{equation}

Then

\begin{equation}
\varphi(s) = \int_0^\infty e^{-s\lambda} \psi(\lambda) \, d\lambda = \int_s^\infty e^{-y} \frac{dy}{y} \\
= \int_s^1 e^{-y} \frac{dy}{y} + \int_1^\infty e^{-y} \frac{dy}{y} \\
= \log \frac{1}{s} - \int_s^1 (1 - e^{-y}) \frac{dy}{y} + c \\
\sim \log \frac{1}{s},
\end{equation}

as $s \searrow 0$.

Let μ be a positive measure on $[0, \infty)$, and assume (1.1) holds, with $\varphi(s)$ given by (2.1)–(2.2). We want to check that Proposition 1.2 holds. Certainly $\psi \notin L^1(\mathbb{R})$.

It remains to check (1.27). We look at

\begin{equation}
\max \left\{ \frac{1}{\lambda} : \left| \lambda - \frac{1}{s} \right| \leq \frac{\varepsilon}{s} \right\} = \max \left\{ \frac{1}{\lambda} : \lambda \geq \frac{1 - \varepsilon}{s} \right\} \\
= \frac{s}{1 - \varepsilon},
\end{equation}

while, for some $b > 0$,

\begin{equation}
s\varphi(s) \geq \frac{s}{2} \log \frac{1}{s}, \quad \text{for } 0 < s \leq b.
\end{equation}

Hence (1.27) holds, and we deduce from Proposition 1.2 the following.

Corollary 2.1. Let μ be a positive measure on $[0, \infty)$. Assume

\begin{equation}
\int_0^\infty e^{-s\lambda} \, d\mu(\lambda) \sim A \log \frac{1}{s}, \quad s \searrow 0.
\end{equation}

Then

\begin{equation}
\mu([0, R]) \sim A \int_1^R \frac{1}{\lambda} \, d\lambda = A \log R, \quad R \nearrow +\infty.
\end{equation}