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Preface

The first time I cracked open a differential equations text, it was instant love. I
don’t remember the exact title of the book, or the author’s name, but I do remember
that the book was thinner than the ones I have seen selected for use in introductory
courses in recent times. It was a book a student could read from cover to cover,
while taking a course in the subject. I began to write course notes, with the aim
of producing a text more to my liking. After a few years of this, the current book
emerged.

This book has four chapters. I use Chapter 1 and parts of Chapters 2 and 3 for
a first semester introduction to differential equations, and I use the rest of Chapters
2 and 3 together with Chapter 4 for the second semester.

Chapter 1 deals with single differential equations, first equations of order 1,

(0.0.1)
dx

dt
= f(t, x),

then equations of order 2,

(0.0.2)
d2x

dt2
= f(t, x, x′).

We have a brief discussion of higher order equations. For second order equations,
we concentrate on the case

(0.0.3)
d2x

dt2
= f(x, x′),

which can be reduced to a first order equation for v = x′, as a function of x.
Newton’s law F = ma for motion of a particle on a line gives such equations. We
also specialize (0.0.2) to the linear case,

(0.0.4) x′′ + bx′ + cx = f(t),

and discuss techniques for solving such equations.

While the study of single equations is the place to start, the subject of differ-
ential equations is and always has been mainly about systems of equations. This

xi



xii Preface

study requires a healthy dose of linear algebra. For a number of good reasons, it
is not desirable to require a course in linear algebra as a prerequisite (or even a
corequisite) for a course in differential equations, but rather the course includes
some basic instruction in linear algebra. Chapter 2 provides the needed minicourse
in linear algebra. We differ from most introductions to differential equations in
providing complete proofs of the relevant results, including material on determi-
nants, eigenvalues and eigenvectors of a linear transformation, and also generalized
eigenvectors.

Chapter 3 deals with linear systems of differential equations. We start with the
n× n system

(0.0.5)
dx

dt
= Ax, x(0) = x0 ∈ Cn,

where A is an n×n matrix, and define the matrix exponential etA, which produces
the solution

(0.0.6) x(t) = etAx0.

Material from Chapter 2 plays a central role in analyzing this matrix exponential.
We proceed from (0.0.5) to the inhomogeneous system

(0.0.7)
dx

dt
= Ax+ f(t), x(0) = x0.

We also study variable coefficient equations

(0.0.8)
dx

dt
= A(t)x+ f(t).

In particular, we study power series expansions for the solution, when A(t) and f(t)
are given by convergent power series. We also consider expansions when (0.0.8) has
a “regular singular point.” These power series topics are usually introduced in the
context of a single second order equation, before the study of systems. Indeed, in
Chapter 1, §1.15 touches on this, and §1.16 goes into some detail in the important
special case of Bessel’s equation. We have saved the general study for Chapter
3, both to speed the introduction to systems and because the presentation in the
system context is both more compact and more general than in the context of a
single, second order equation.

Chapter 4 crowns the text, with a study of nonlinear systems of differential
equations. These can have the form

(0.0.9)
dx

dt
= F (t, x), x(t0) = y,

which resembles (0.0.1), except that now x(t) and F (t, x) take values in Rn. We
begin with general existence and uniqueness results. For this, we convert (0.0.9) to
the integral equation

(0.0.10) x(t) = y +

∫ t

t0

F (s, x(s)) ds.

and use the Picard iteration to produce the solution, for |t− t0| subject to certain
limitations, as a limit of a certain sequence of approximate solutions. This is
followed by results on how large the interval of existence can be taken. Next, we
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look into results on the smooth dependence of solutions x = x(t, y) to (0.0.9) on
the initial data y. An important role is played by the linearization of (0.0.9).

From here we proceed to some qualitative studies of solutions, particularly in
the autonomous case, F (t, x) = F (x), in which we interpret F as a vector field, and
the solution as the flow Φt generated by this vector field. One useful tool is the
phase portrait, which depicts the behavior of solution curves (also called orbits)
for nonlinear n× n systems. From the point of view of visualization, the portraits
work particularly well for n = 2, and are also quite useful for n = 3.

We study a variety of problems from mathematical physics, including the plan-
etary motion problem, for two bodies interacting by the gravitational force, whose
solution by Newton was a seminal inspiration to the field of ODE. We also bring in
further advances in the study of equations of physics, due to Euler and Lagrange,
involving the variational method. This theory impacts both physical and geomet-
rical applications of ODE, the latter including equations for geodesics on surfaces
in Rn.

By this point we are looking at nonlinear systems whose solutions are not
necessarily amenable to formulas. In addition to qualitative studies of the nature
of these solutions, numerical studies arise as an important tool. This is taken up in
§4.11. We introduce difference schemes, with emphasis on the Runge-Kutta scheme,
as a very useful computational tool.

In Sections 4.13–4.14 we turn to some problems arising in mathematical biology.
This is followed with some results on systems with chaotic dynamics, which arise in
dimension ≥ 3. This chapter closes with a number of appendices, some providing
useful background in calculus, and others taking up further topics in nonlinear
systems of ODE.

We follow this introduction with a record of some standard notation that will
be in use throughout the text.





Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

Z+ is the set of integers ≥ 0.

N is the set of integers ≥ 1 (the “natural numbers”).

Q is the set of rational numbers.

x ∈ R means x is an element of R, i.e., x is a real number.

(a, b) denotes the set of x ∈ R such that a < x < b.

[a, b] denotes the set of x ∈ R such that a ≤ x ≤ b.

{x ∈ R : a ≤ x ≤ b} denotes the set of x in R such that a ≤ x ≤ b.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.

z = x− iy if z = x+ iy ∈ C, x, y ∈ R.

xv



xvi Some basic notation

f : A→ B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.

x→ x0 means the variable x tends to the limit x0.



Chapter 1

Single differential equations

This first chapter is devoted to differential equations for a single unknown function,
with emphasis on equations of the first and second order, i.e.,

(1.0.1)
dx

dt
= f(t, x),

and

(1.0.2)
d2x

dt2
= f

(
t, x,

dx

dt

)
.

Section 1.1 looks at the simplest case of (1.0.1), namely

(1.0.3)
dx

dt
= x.

We construct the solution x(t) to (1.0.3) such that x(0) = 1 as a power series,
defining the exponential function

(1.0.4) x(t) = et.

More generally, x(t) = ect solves dx/dt = cx, with x(0) = 1. This holds for all
real c and also for complex c. Taking c = i and investigating basic properties of
x(t) = eit, we establish Euler’s formula,

(1.0.5) eit = cos t+ i sin t,

which in turn leads to a self-contained exposition of basic results on the trigono-
metric functions.

Section 1.2 treats first order linear equations, of the form

(1.0.6)
dx

dt
+ a(t)x = b(t), x(t0) = x0,

and produces solutions in terms of the exponential function and integrals. Section
1.3 considers some nonlinear first order equations, particularly equations for which
“separation of variables” allows one to produce a solution, in terms of various
integrals.

1



2 1. Single differential equations

We differ from many introductions in not lingering on the topic of first order
equations. For example, we do not treat exact equations and integrating factors in
this chapter. We consider it more important to get on to the study of second order
equations. In any case, exact equations do get their due, in §4.4 of Chapter 4.

In §1.4 we take up second order differential equations. We concentrate there on
two special classes, each allowing for a reduction to first order equations. In §1.5
we consider differential equations arising from some physical problems for motion
in one space dimension, making use of Newton’s law F = ma. The equations that
arise in this context are amenable to methods of §1.4. In §1.5 we restate these
methods in terms that celebrate the physical quantities of kinetic and potential
energy, and the conservation of total energy. Section 1.6 deals with the classical
pendulum, a close relative of motion on a line. In §1.7 we discuss motion in the
presence of resistance, including the pendulum with resistance.

Formulas from §1.6 give rise to complicated integrals, and problems of §1.7 have
additional complications. These complications arise because of nonlinearities in the
equations. In §1.8 we discuss “linearization” of these equations. The associated
linear differential equations are amenable to explicit analysis.

Sections 1.9–1.15 are devoted to linear second order differential equations, start-
ing with constant coefficient equations

(1.0.7) a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

first with f ≡ 0 in §1.9, then allowing f to be nonzero. In §1.10 we consider certain
special forms of f(t), including

(1.0.8) eκt, sinσt, cosσt, tk,

treating these cases by the “method of undetermined coefficients.” We discuss im-
plications of results here, when f(t) = A sinσt, for the forced, linearized pendulum,
in §1.11. Sections 1.12–1.13 treat other physical problems leading to equations of
the form (1.0.7), namely spring motion problems and models of certain simple elec-
trical circuits, called RLC circuits. In §1.14 we bring up another method, “variation
of parameters,” which applies to general functions f in (1.0.7).

Section 1.15 gives some results on variable coefficient second order linear dif-
ferential equations. Techniques brought to bear on these equations include power
series representations, extending the power series attack used on (1.0.3), and the
Wronskian, first introduced in the constant-coefficient context in §1.12. In §1.16
we concentrate on a particularly important second-order ODE with variable coef-
ficients, Bessel’s equation, further pushing power series techniques and the use of
the Wronskian. In §1.17 we discuss differential equations of order ≥ 3. In §1.18
we introduce the Laplace transform as a tool to treat nonhomogeneous differen-
tial equations, such as (1.0.7) and higher order variants. Material introduced in
§§1.15–1.18 will be covered, on a much more general level, in Chapter 3.

We end this chapter with three appendices. Appendix 1.A explains how Bessel
functions arise in the search for solutions to some basic partial differential equations.
Appendix 1.B has some basic material on Euler’s gamma function, of use in §1.16.
Appendix 1.C establishes that convergent power series can be differentiated term
by term. We also derive the power series of f(t) = (1− t)−r.
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1.1. The exponential and trigonometric functions

We construct the exponential function to solve the differential equation

(1.1.1)
dx

dt
= x, x(0) = 1.

We seek a solution as a power series

(1.1.2) x(t) =

∞∑
k=0

akt
k.

If such a power series converges for t in an interval in R, it can be differentiated
term-by-term. (See (1.1.45)–(1.1.50) below, and also §1.C, for more on this.) In
such a case,

(1.1.3)

x′(t) =

∞∑
k=1

kakt
k−1

=

∞∑
ℓ=0

(ℓ+ 1)aℓ+1t
ℓ,

so for (1.1.1) to hold we need

(1.1.4) a0 = 1, ak+1 =
ak
k + 1

,

i.e., ak = 1/k!, where k! = k(k − 1) · · · 2 · 1. Thus (1.1.1) is solved by

(1.1.5) x(t) = et =

∞∑
k=0

1

k!
tk, t ∈ R.

This defines the exponential function et.

More generally, we can define

(1.1.6) ez =

∞∑
k=0

1

k!
zk, z ∈ C.

The issue of convergence for complex power series is essentially the same as for real

power series. Given z = x + iy, x, y ∈ R, we have |z| =
√
x2 + y2. If also w ∈ C,

then |z + w| ≤ |z|+ |w| and |zw| = |z| · |w|. Hence∣∣∣m+n∑
k=m

1

k!
zk
∣∣∣ ≤ m+n∑

k=m

1

k!
|z|k.

The ratio test then shows that the series (1.1.6) is absolutely convergent for all
z ∈ C, and uniformly convergent for |z| ≤ R, for each R <∞. Note that

(1.1.7) eat =

∞∑
k=0

ak

k!
tk

solves

(1.1.8)
d

dt
eat = aeat,

and this works for each a ∈ C.
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We claim that eat is the only solution to

(1.1.9)
dy

dt
= ay, y(0) = 1.

To see this, compute the derivative of e−aty(t):

(1.1.10)
d

dt

(
e−aty(t)

)
= −ae−aty(t) + e−atay(t) = 0,

where we use the product rule, (1.1.8) (with a replaced by −a) and (1.1.9). Thus
e−aty(t) is independent of t. Evaluating at t = 0 gives

(1.1.11) e−aty(t) = 1, ∀ t ∈ R,

whenever y(t) solves (1.1.9). Since eat solves (1.1.9), we have e−ateat = 1, hence

(1.1.12) e−at =
1

eat
, ∀ t ∈ R, a ∈ C.

Thus multiplying both sides of (1.1.11) by eat gives the asserted uniqueness:

(1.1.13) y(t) = eat, ∀ t ∈ R.

We can draw further useful conclusions from applying d/dt to products of ex-
ponential functions. In fact, let a, b ∈ C; then

(1.1.14)

d

dt

(
e−ate−bte(a+b)t

)
= −ae−ate−bte(a+b)t − be−ate−bte(a+b)t + (a+ b)e−ate−bte(a+b)t

= 0,

so again we are differentiating a function that is independent of t. Evaluation at
t = 0 gives

(1.1.15) e−ate−bte(a+b)t = 1, ∀ t ∈ R.

Using (1.1.12), we get

(1.1.16) e(a+b)t = eatebt, ∀ t ∈ R, a, b ∈ C,

or, setting t = 1,

(1.1.17) ea+b = eaeb, ∀ a, b ∈ C.

We next record some properties of exp(t) = et for real t. The power series
(1.1.5) clearly gives et > 0 for t ≥ 0. Since e−t = 1/et, we see that et > 0 for all
t ∈ R. Since det/dt = et > 0, the function is monotone increasing in t, and since
d2et/dt2 = et > 0, this function is convex. Note that

(1.1.18) e1 = 1 + 1 +
1

2
+ · · · > 2,

so ek > 2k ↗ +∞ as k → +∞. Hence

(1.1.19) lim
t→+∞

et = +∞.

Since e−t = 1/et,

(1.1.20) lim
t→−∞

et = 0.
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Figure 1.1.1. Exponential function

As a consequence,

(1.1.21) exp : R −→ (0,∞)

is smooth and one-to-one and onto, with positive derivative, so the inverse function
theorem of one-variable calculus applies. There is a smooth inverse

(1.1.22) L : (0,∞) −→ R.

We call this inverse the natural logarithm:

(1.1.23) log x = L(x).

See Figures 1.1.1 and 1.1.2 for graphs of x = et and t = log x.

Applying d/dt to

(1.1.24) L(et) = t

gives

(1.1.25) L′(et)et = 1, hence L′(et) =
1

et
,

i.e.,

(1.1.26)
d

dx
log x =

1

x
.



6 1. Single differential equations

Figure 1.1.2. The logarithm

Since log 1 = 0, we get

(1.1.27) log x =

∫ x

1

dy

y
.

An immediate consequence of (1.1.17) (for a, b ∈ R) is the identity

(1.1.28) log xy = log x+ log y, x, y ∈ (0,∞).

We move on to a study of ez for purely imaginary z, i.e., of

(1.1.29) γ(t) = eit, t ∈ R.

This traces out a curve in the complex plane, and we want to understand which
curve it is. Let us set

(1.1.30) eit = c(t) + is(t),

with c(t) and s(t) real valued. First we calculate |eit|2 = c(t)2+s(t)2. For x, y ∈ R,

(1.1.31) z = x+ iy =⇒ z = x− iy =⇒ zz = x2 + y2 = |z|2.

It is elementary that

(1.1.32)
z, w ∈ C =⇒ zw = z w =⇒ zn = zn,

and z + w = z + w.
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Figure 1.1.3. Behind Euler’s formula

Hence

(1.1.33) ez =

∞∑
k=0

zk

k!
= ez.

In particular,

(1.1.34) t ∈ R =⇒ |eit|2 = eite−it = 1.

Hence t 7→ γ(t) = eit has image in the unit circle centered at the origin in C. Also

(1.1.35) γ′(t) = ieit =⇒ |γ′(t)| ≡ 1,

so γ(t) moves at unit speed on the unit circle. We have

(1.1.36) γ(0) = 1, γ′(0) = i.

Thus, for t between 0 and the circumference of the unit circle, the arc from γ(0) to
γ(t) is an arc on the unit circle, pictured in Figure 1.1.3, of length

(1.1.37) ℓ(t) =

∫ t

0

|γ′(s)| ds = t.

Standard definitions from trigonometry say that the line segments from 0 to
1 and from 0 to γ(t) meet at angle whose measurement in radians is equal to the
length of the arc of the unit circle from 1 to γ(t), i.e., to ℓ(t). The cosine of this
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angle is defined to be the x-coordinate of γ(t) and the sine of the angle is defined
to be the y-coordinate of γ(t). Hence the computation (1.1.37) gives

(1.1.38) c(t) = cos t, s(t) = sin t.

Thus (1.1.30) becomes

(1.1.39) eit = cos t+ i sin t,

which is Euler’s formula. The identity

(1.1.40)
d

dt
eit = ieit,

applied to (1.1.39), yields

(1.1.41)
d

dt
cos t = − sin t,

d

dt
sin t = cos t.

We can use (1.1.17) to derive formulas for sin and cos of the sum of two angles.
Indeed, comparing

(1.1.42) ei(s+t) = cos(s+ t) + i sin(s+ t)

with

(1.1.43) eiseit = (cos s+ i sin s)(cos t+ i sin t)

gives

(1.1.44)
cos(s+ t) = (cos s)(cos t)− (sin s)(sin t),

sin(s+ t) = (sin s)(cos t) + (cos s)(sin t).

Returning to basics, we recall that the calculations done so far in this section
were all predicated on the fact that the power series (1.1.7) can be differentiated
term by term. This is a special case of a general result about convergent power
series, established in §1.C. However, making use of the special structure of (1.1.7),
we include a direct demonstration here. To begin, look at

(1.1.45) Ean(t) =

n∑
k=0

ak

k!
tk,

which satisfies

(1.1.46)

d

dt
Ean(t) =

n∑
k=1

ak

(k − 1)!
tk−1

=

n−1∑
ℓ=0

aℓ+1

ℓ!
tℓ

= aEan−1(t).

Integration gives

(1.1.47) a

∫ t

0

Ean−1(s) ds = Ean(t)− 1.

Now we have

(1.1.48) Ean−1(s) −→ eas, Ean(t) −→ eat,
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uniformly on finite intervals, as n→ ∞, and then the integral estimate∣∣∣∫ t

0

(E(s)− F (s)) ds
∣∣∣ ≤ |t| max

0≤s≤t
|E(s)− F (s)|

implies

(1.1.49)

∫ t

0

Ean−1(s) ds −→
∫ t

0

eas ds,

as n→ ∞. Consequently, we can pass to the limit n→ ∞ in (1.1.47) and get

(1.1.50) a

∫ t

0

eas ds = eat − 1.

Applying d/dt to the left side of (1.1.50) gives aeat, by the fundamental theorem
of calculus. Hence this must be the derivative of the right side of (1.1.50), and this
gives (1.1.8).

Having the integral formula (1.1.50), we proceed to obtain formulas for
∫
tneat dt.

In fact, from (1.1.46), (1.1.8), and the product rule, we obtain

(1.1.51)

d

dt

(
e−atEan(t)

)
= −ae−atEan(t) + ae−atEan−1(t)

= −a
n+1

n!
tne−at.

Then the fundamental theorem of calculus gives

(1.1.52)

∫
tne−at dt = − n!

an+1
Ean(t)e

−at + C

= − n!

an+1

(
1 + at+

a2t2

2!
+ · · ·+ antn

n!

)
e−at + C.

We have an analogous formula for
∫
tneat dt, by replacing a by −a.

Exercises

1. As noted, if z = x+ iy, x, y ∈ R, then |z| =
√
x2 + y2 is equivalent to |z|2 = z z.

Use this to show that if also w ∈ C,

|zw| = |z| · |w|.

Note that
|z + w|2 = (z + w)(z + w)

= |z|2 + |w|2 + wz + zw

= |z|2 + |w|2 + 2Re zw.

Show that Re(zw) ≤ |zw| and use this in concert with an expansion of (|z|+ |w|)2
and the first identity above to deduce that

|z + w| ≤ |z|+ |w|.
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Figure 1.1.4. Hexagon

2. Define π to be the smallest positive number such that eπi = −1. Show that

eπi/2 = i, eπi/3 =
1

2
+

√
3

2
i.

Hint. See Figure 1.1.4, showing a = eπi/3.

3. Show that

cos2 t+ sin2 t = 1,

and

1 + tan2 t = sec2 t,

where

tan t =
sin t

cos t
, sec t =

1

cos t
.

4. Show that
d

dt
tan t = sec2 t = 1 + tan2 t,

d

dt
sec t = sec t tan t.
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5. Evaluate ∫ y

0

dx

1 + x2
.

Hint. Set x = tan t.

6. Evaluate ∫ y

0

dx√
1− x2

.

Hint. Set x = sin t.

7. Show that
π

6
=

∫ 1/2

0

dx√
1− x2

.

Hint. Show that sinπ/6 = 1/2. Use Exercise 2 and the identity eπi/6 = eπi/2e−πi/3.

8. Set

cosh t =
1

2
(et + e−t), sinh t =

1

2
(et − e−t).

Show that
d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t,

and

cosh2 t− sinh2 t = 1.

9. Evaluate ∫ y

0

dx√
1 + x2

.

Hint. Set x = sinh t.

10. Evaluate ∫ y

0

√
1 + x2 dx.

11. Using Exercise 4, verify that

d

dt
(sec t+ tan t) = sec t(sec t+ tan t),

d

dt
(sec t tan t) = sec3 t+ sec t tan2 t,

= 2 sec3 t− sec t.

12. Next verify that
d

dt
log | sec t| = tan t,

d

dt
log | sec t+ tan t| = sec t.
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13. Now verify that ∫
tan t dt = log | sec t|,∫
sec t dt = log | sec t+ tan t|,

2

∫
sec3 t dt = sec t tan t+

∫
sec t dt.

(Here, we omit the arbitrary additive constants.)

14. Here is another approach to the evaluation of
∫
sec t dt. We evaluate

I(u) =

∫ u

0

dv√
1 + v2

in two ways.
(a) Using v = sinh y, show that

I(u) =

∫ sinh−1 u

0

dy = sinh−1 u.

(b) Using v = tan t, show that

I(u) =

∫ tan−1 u

0

sec t dt.

Deduce that ∫ x

0

sec t dt = sinh−1(tanx), for |x| < π

2
.

Deduce from the formula above that also

cosh
(∫ x

0

sec t dt
)
= secx,

and hence that

exp
(∫ x

0

sec t dt
)
= secx+ tanx.

Compare these formulas with the analogue in Exercise 13.

15. For Ean(t) as in (1.1.45), k ≥ 1, 0 < T <∞, show that

(1.1.53) max
|t|≤T

|Ean+k(t)− Ean(t)| ≤
|aT |n+1

(n+ 1)!

(
1 +

|aT |
n+ 2

+
|aT |2

(n+ 2)(n+ 3)
+ · · ·

)
,

and that this is

(1.1.54) ≤ 2
|aT |n+1

(n+ 1)!
, for n+ 2 > 2|aT |.

Deduce that

(1.1.55) max
|t|≤T

|eat − Ean(t)|

satisfies (1.1.54). Show that, for each a, T , (1.1.54) tends to 0 as n → ∞, yielding
the assertion made about convergence in (1.1.48).
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16. Show that ∣∣∣∫ t

0

eas ds−
∫ t

0

Ean(s) ds
∣∣∣ ≤ |t| max

|s|≤|t|
|eas − Ean(s)|,

and observe how this, together with Exercise 15, yields (1.1.49).

17. Show that

(1.1.56) |t| < 1 ⇒ log(1 + t) =

∞∑
k=1

(−1)k−1

k
tk = t− t2

2
+
t3

3
− · · · .

Hint. Rewrite (1.1.27) as

log(1 + t) =

∫ t

0

ds

1 + s
,

expand
1

1 + s
= 1− s+ s2 − s3 + · · · , |s| < 1,

and integrate term by term.

18. Use (1.1.52) with a = −i to produce formulas for∫
tn cos t dt and

∫
tn sin t dt.

19. Figure 1.1.5 (a)–(b) shows graphs of the image of

γ(t) = eαt, 0 ≤ t ≤ 6π,

for

α = −1

4
+ i,

α = −1

8
− i.

Match each value of α to (a) or (b).

20. Given t > 0 and a ∈ C, we define ta by

ta = ea log t.

Show that, for t > 0,
d

dt
ta = ata−1.
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Figure 1.1.5. Spirals

1.2. First order linear equations

Here we tackle first order linear equations. These are equations of the form

(1.2.1)
dx

dt
+ a(t)x = b(t), x(t0) = x0,

given functions a(t) and b(t), continuous on some interval containing t0. As a
warm-up, we first treat

(1.2.2)
dx

dt
+ ax = b, x(0) = x0,

with a and b constants. One key to solving (1.2.2) is the identity

(1.2.3)
d

dt
(eatx) = eat

(dx
dt

+ ax
)
,

which follows by applying the product formula and (1.1.8). Thus, multiplying both
sides of (1.2.2) by eat gives

(1.2.4)
d

dt
(eatx) = eatb,

and then integrating both sides from 0 to t gives

(1.2.5) eatx(t) = x0 +

∫ t

0

easb ds.
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We can carry out the integral, using (1.1.45), and get

(1.2.6) eatx(t) = x0 +
eat − 1

a
b,

and finally division by eat yields

(1.2.7)
x(t) = e−atx0 +

b

a
(1− e−at)

=
b

a
+ e−at

(
x0 −

b

a

)
.

In order to tackle (1.2.1), we need a replacement for (1.2.3). To get it, note
that if A(t) is differentiable, the chain rule plus (1.1.8) gives

(1.2.8)
d

dt
eA(t) = eA(t)A′(t).

Hence

(1.2.9)
d

dt

(
eA(t)x

)
= eA(t)

(dx
dt

+A′(t)x
)
.

Thus we can multiply (1.2.1) by eA(t) and get

(1.2.10)
d

dt

(
eA(t)x

)
= eA(t)b(t),

provided

(1.2.11) A′(t) = a(t).

To arrange this, we can set

(1.2.12) A(t) =

∫ t

t0

a(s) ds.

Then we can integrate (1.2.10) from t0 to t, to get

(1.2.13) eA(t)x(t) = x0 +

∫ t

t0

eA(s)b(s) ds,

and hence

(1.2.14) x(t) = e−A(t)x0 + e−A(t)

∫ t

t0

eA(s)b(s) ds.

For example, consider

(1.2.15)
dx

dt
− tx = b(t), x(0) = x0.

From (1.2.12) we get

(1.2.16) A(t) = − t
2

2
,

and (1.2.10) becomes

(1.2.17)
d

dt
(e−t

2/2x) = e−t
2/2b(t),
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hence

(1.2.18) e−t
2/2x(t) = x0 +

∫ t

0

e−s
2/2b(s) ds.

Let us look at two special cases. First,

(1.2.19) b(t) = t.

Then the integral in (1.2.18) is

(1.2.20)

∫ t

0

e−s
2/2s ds =

∫ t2/2

0

e−σ dσ = 1− e−t
2/2.

The second case is

(1.2.21) b(t) = 1.

Then the integral in (1.2.18) is

(1.2.22)

∫ t

0

e−s
2/2 ds.

This is not an elementary function, but it can be related to the special function

(1.2.23) Erf(t) =
1√
2π

∫ t

−∞
e−s

2/2 ds.

Namely,

(1.2.24)
1√
2π

∫ t

0

e−s
2/2 ds = Erf(t)− Erf(0).

Note that

(1.2.25) Erf(0) =
1

2
Erf(∞) =

1

2

1√
2π
I,

where

(1.2.26)

I =

∫ ∞

−∞
e−s

2/2 ds⇒ I2 =

∫
R2

e−|x|2/2 dx

=

∫ 2π

0

∫ ∞

0

e−r
2/2r dr dθ

= 2π

∫ ∞

0

e−s ds

= 2π.

Hence we have

(1.2.27) Erf(∞) = 1, Erf(0) =
1

2
.

Bernoulli equations
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Equations of the form

(1.2.28)
dx

dt
+ a(t)x = b(t)xn

are called Bernoulli equations. Such an equation is not linear if n ̸= 1 or 0, but in
these cases one gets a linear equation by the substitution

(1.2.29) y = x1−n.

In fact, (1.2.29) gives y′ = (1− n)x−nx′, and plugging in (1.2.28) gives

(1.2.30)
dy

dt
= (1− n)[b(t)− a(t)y],

which is linear.

Exercises

Solve the following initial value problems. Do the integrals if you can.

1.
dx

dt
+

1

t
x = t2, x(1) = 0.

2.
dx

dt
+ t2x = t2, x(0) = 1.

3.
dx

dt
+ x = cos t, x(0) = 0.

4.
dx

dt
+ tx = t3, x(0) = 1.

5.
dx

dt
+ tx = x3, x(0) = 1.

6.
dx

dt
+ (tan t)x = cos t, x(0) = 1.

7.
dx

dt
+ (sec t)x = cos t, x(0) = 1.
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1.3. Separable equations

A separable differential equation is one for which the method of separation of vari-
ables, which we introduce in this section, is applicable. We illustrate this with
another approach to the equation (1.2.2), which we rewrite as

(1.3.1)
dx

dt
= b− ax, x(0) = x0.

Separating variables involves moving the x-dependent objects to the left and the
t-dependent objects to the right, when possible. In case (1.3.1), this is possible; we
have

(1.3.2)
dx

b− ax
= dt.

We next integrate both sides. A change of variable allows us to use (1.1.27), to
obtain

(1.3.3)

∫
dx

b− ax
= −1

a

∫
dx

x− b/a
= −1

a
log
∣∣∣x− b

a

∣∣∣+ C.

Hence (1.3.2) yields

(1.3.4) −1

a
log
∣∣∣x− b

a

∣∣∣ = t− C,

hence

(1.3.5) x(t)− b

a
= ±e−at+aC = Ke−at.

Here K is a constant, which can be found by using the initial condition x(0) = x0.
We get x0 − b/a = K, so (1.3.5) yields

(1.3.6) x(t) =
b

a
+ e−at

(
x0 −

b

a

)
,

consistent with (1.2.7).

Generally, a separable differential equation is one that can be put in the form

(1.3.7)
dx

dt
= f(x)g(t),

and then separation of variables gives

(1.3.8)
dx

f(x)
= g(t) dt,

integrating to

(1.3.9)

∫
dx

f(x)
=

∫
g(t) dt.

Here is another basic example:

(1.3.10)
dx

dt
= x2, x(0) = 1.

We get

(1.3.11)
dx

x2
= dt,
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which integrates to

(1.3.12) − 1

x
= t+ C,

hence x = −1/(t + C). The initial condition in (1.3.10) gives C = −1, so the
solution to (1.3.10) is

(1.3.13) x(t) =
1

1− t
.

Note that this solution blows up as t↗ 1.

The hanging cable

Suppose a length of cable, lying in the (x, y)-plane, is fastened at (−a, 0) and at
(a, 0), and hangs down freely, in equilibrium, as pictured in Figure 1.3.1. The force
of gravity acts in the direction of the negative y-axis. We want the equation of the
curve traced out by the cable, which we assume to have length 2L (not stretchable)
and uniform mass density.

To tackle this problem, we introduce θ(x), the angle the tangent to the curve
at (x, y(x)) makes with the x-axis, which is given by

(1.3.14) tan θ(x) = y′(x).

We will derive a differential equation for θ(x), as follows.

At each point (x, y(x)), there is a tension on the cable, of magnitude T (x), and
the physical laws governing the behavior of the cable are the following. First, the
horizontal component of the tension, given by T (x) cos θ(x), is constant. Second,
the vertical component of the tension, given by T (x) sin θ(x), is proportional to the
weight of the cable lying below y = y(x), hence to the length L(x) of the cable,
from (0, y(0)) to (x, y(x)). In other words, we have

(1.3.15)
T (x) cos θ(x) = T0,

T (x) sin θ(x) = κL(x),

where T0 and κ are certain constants (whose quotient will be specified below). As
for L(x), we have

(1.3.16)

L(x) =

∫ x

0

√
1 + y′(t)2 dt

=

∫ x

0

sec θ(t) dt,

by (1.3.14) and Exercise 3 of §1.1.
Taking the quotient of the two identities in (1.3.15) yields

(1.3.17) tan θ(x) = β

∫ x

0

sec θ(t) dt, β =
κ

T0
.
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Figure 1.3.1. Catenary

Differentiating (1.3.17) with respect to x and using Exercise 4 of §1.1, we get

(1.3.18) sec2 θ(x)
dθ

dx
= β sec θ(x),

i.e.,

(1.3.19)
dθ

dx
= β cos θ.

We can separate variables here, to obtain

(1.3.20)

∫
sec θ dθ =

∫
β dx.

Exercise 14 of §1.1 applies to the integral on the left, and we get

(1.3.21) sec θ(x) = cosh(βx+ α).

To yield the expected result θ(0) = 0 (see Figure 1.3.1 again), we set α = 0.

To get a formula for y(x), use (1.3.14) to write

(1.3.22) y(x) = y0 +

∫ x

0

tan θ(t) dt, y0 = y(0).

Now, by Exercises 3 and 8 of §1.1, together with (1.3.21), we have

(1.3.23) tan2 θ(x) = sec2 θ(x)− 1 = cosh2 βx− 1 = sinh2 βx,
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so (3.22) gives

(1.3.24)

y(x) = y0 +

∫ x

0

sinhβt dt

= y0 −
1

β
+

1

β
coshβx.

The graph of such a curve is called a catenary.

If we are given that the endpoints of the cable are at (±a, 0) and that the total
length is 2L (necessarily L > a), we can recover β and y0 in (1.3.24), as follows.
From (1.3.16) and (1.3.21),

(1.3.25) L =

∫ a

0

coshβt dt =
1

β
sinhβa,

so β is uniquely determined by the property that

(1.3.26)
sinh τ

τ
=
L

a
, β =

τ

a
> 0.

Note that h(τ) = (sinh τ)/τ is smooth, h(0) = 1, h′(τ) > 0 for τ > 0, and h(τ) ↗
+∞ as τ ↗ +∞. Once one has β, then the identity y(a) = 0 gives

(1.3.27) y0 =
1

β
− 1

β
coshβa.

Homogeneous equations, separable in new variables

One can make a change of variable to convert a differential equation of the form

(1.3.28)
dx

dt
= f(t, x)

to a separable equation when f(t, x) has the following homogeneity property:

(1.3.29) f(rt, rx) = f(t, x), ∀ r ∈ R \ 0.

In such a case, f has the form

(1.3.30) f(t, x) = g
(x
t

)
.

We can set

(1.3.31) y =
x

t
,

so x = ty, x′ = ty′ + y, and (1.3.28) turns into

(1.3.32)
dy

dt
=
g(y)− y

t
,

which is separable.

For example, consider

(1.3.33)
dx

dt
=
x2 − t2

x2 + t2
+
x

t
.
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In this case, (1.3.29) applies, and we can take g(y) = (y2−1)/(y2+1)+y in (1.3.30),
so with y as in (1.3.31) we have

(1.3.34)
dy

dt
=

1

t

y2 − 1

y2 + 1
,

which separates to

(1.3.35)
(
1 +

2

y2 − 1

)
dy =

dt

t
.

To integrate the left side of (1.3.35), write

(1.3.36)
2

y2 − 1
=

1

y + 1
− 1

y − 1
,

to get

(1.3.37)

∫
2

y2 − 1
dy = log |y + 1| − log |y − 1|

= log
∣∣∣y + 1

y − 1

∣∣∣,
the latter identity by (1.1.28). Thus the solution to (1.3.33) is given implicitly by

(1.3.38)
x

t
+ log

∣∣∣x+ t

x− t

∣∣∣ = log |t|+ C.

Exercises

Solve the following initial value problems. Do the integrals, if you can.

1.
dx

dt
= x2 + 1, x(0) = 0.

2.
dx

dt
=
√
x2 + 1, x(0) = 0.

3.
dx

dt
=
x2 + 1

t2 + 1
, x(0) = 1.

4.
dx

dt
= (x2 − 1)et, x(0) = 2.

5.
dx

dt
= ex−t, x(0) = 0.

6.
dx

dt
=

xt

x2 + t2
, x(0) = 1.
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1.4. Second order equations – reducible cases

Second order differential equations have the form

(1.4.1) x′′ = f(t, x, x′), x(t0) = x0, x′(t0) = v0.

There are some important cases, with special structure, which reduce to first order
equations for

(1.4.2) v(t) =
dx

dt
.

One such case is

(1.4.3) x′′ = f(t, x′),

which for v given by (1.4.2) yields

(1.4.4)
dv

dt
= f(t, v), v(t0) = v0.

Depending on the nature of f(t, v), methods discussed in §§1.2–1.3 might apply to
(1.4.4). Once one has v(t), then

(1.4.5) x(t) = x0 +

∫ t

t0

v(s) ds.

The following is a more significant special case:

(1.4.6) x′′ = f(x, x′).

Direct substitution of v, given by (1.4.2), yields

(1.4.7)
dv

dt
= f(x, v),

which is not satisfactory, since (1.4.7) contains too many variables. One route to
success is to rewrite the equation as one for v as a function of x, using

(1.4.8)
dv

dt
=
dv

dx

dx

dt
= v

dv

dx
.

Substitution into (1.4.7) gives the first order equation

(1.4.9)
dv

dx
=
f(x, v)

v
, v(x0) = v0.

Again, depending on the nature of f(x, v)/v, methods developed in §§2.2–2.3 might
apply to (1.4.9).

An important special case of (1.4.6) is

(1.4.10) x′′ = f(x),

in which case (1.4.9) becomes

(1.4.11)
dv

dx
=
f(x)

v
,

which is separable:

(1.4.12) v dv = f(x) dx,
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hence

(1.4.13)
1

2
v2 = g(x) + C,

∫
f(x) dx = g(x) + C.

Thus

(1.4.14)
dx

dt
= v = ±

√
2g(x) + 2C,

which in turn is separable:

(1.4.15) ±
∫

dx√
2g(x) + 2C

= t+ C2.

The constants C and C2 are determined by the initial conditions.

Exercises

Use v = dx/dt to transform each of the following equations to first order equations,
either for v = v(t) or for v = v(x), as appropriate. Solve these first order equations,
if you can.

1.
d2x

dt2
= t

dx

dt
.

2.
d2x

dt2
=
dx

dt
+ t.

3.
d2x

dt2
= x

dx

dt
.

4.
d2x

dt2
=
dx

dt
+ x.

5.
d2x

dt2
= x2.
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1.5. Newton’s equations for motion in 1D

Newton’s law for motion in 1D of a particle of mass m, subject to a force F , is

(1.5.1) F = ma,

where a is acceleration:

(1.5.2) a(t) =
dv

dt
=
d2x

dt2
,

the rate of change of the velocity v(t) = dx/dt. In general one might have F =
F (t, x, x′). If F is t-independent, F = F (x, x′), which puts us in the setting of
(1.4.6).

Frequently one has F = F (x), which puts us in the setting of (1.4.10). We
revisit this setting, bringing in some more concepts from physics. We set

(1.5.3) F (x) = −V ′(x).

V (x), defined up to an additive constant, is called the potential energy. The total
energy is the sum of the potential energy and the kinetic energy, mv2/2:

(1.5.4) E =
1

2
mv(t)2 + V (x(t)).

Note that

(1.5.5)

dE

dt
= mv(t)v′(t) + V ′(x(t))x′(t)

= ma(t)v(t)− F (x(t))v(t)

= 0,

the last identity by (1.5.1). This identity celebrates energy conservation. Given
that x solves

(1.5.6) m
d2x

dt2
= −V ′(x), x(t0) = x0, x

′(t0) = v0,

one has from (1.5.5) that for all t,

(1.5.7)
1

2
mx′(t)2 + V (x(t)) = E0,

where

(1.5.8) E0 =
1

2
mv20 + V (x0).

The equation (1.5.7) is equivalent to

(1.5.9)
dx

dt
= ±

√
2

m

(
E0 − V (x)

)
,

which separates to

(1.5.10)

∫
dx√

E0 − V (x)
= ±

√
2

m
t+ C,

or, alternatively,

(1.5.11)

∫ x

x0

dy√
E0 − V (y)

= ±
√

2

m
(t− t0).
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Note that (1.5.7) and (1.5.10) recover (1.4.13) and (1.4.15).

Projectile problem

Let’s look in more detail at a special case, modeling the motion of a projectile
of mass m traveling directly away from (or toward) the earth. In such a case,
Newton’s law of gravity gives

(1.5.12) F (x) = −Km
x2

, hence V (x) = −Km
x

, x ∈ (0,∞).

In such a case, the conserved energy is

(1.5.13) E0 =
m

2

(
v2 − 2K

x

)
=
m

2
E(x, v).

See Figure 1.5.1 for a sketch of level curves of the function E(x, v). There are three
cases to consider:

(1.5.14)
E = −a2 < 0, E = 0, E = a2 > 0, i.e.,

E0 = −m
2
a2 < 0, E0 = 0, E0 =

m

2
a2 > 0.

In the first case, x(t) has a maximum at xmax = 2K/a2. In the other two cases,
x(t) → +∞ as t → +∞ (if v0 > 0) or as t → −∞ (if v0 < 0). Given x0 ∈ (0,∞),
the velocity v0 ∈ (0,∞) for which E(x0, v0) = 0 is called the “escape velocity.”

We investigate the integral on the left side of (1.5.10), i.e.,

(1.5.15)

∫
dx√

E0 +Km/x
,

which in the three cases in (1.5.14) is
√
2/m times

(1.5.16)

∫
x dx√

2Kx− a2x2
,

∫ √
x

2K
dx,

∫
x dx√

2Kx+ a2x2
,

respectively. The second integral in (1.5.16) is easy; we investigate how to compute
the other two, which we rewrite as

(1.5.17)
1

a

∫
x dx√

2kx− x2
,

1

a

∫
x dx√

2kx+ x2
, k =

K

a2
.

We can compute these integrals by completing the square:

(1.5.18) x2 − 2kx = (x− k)2 − k2, x2 + 2kx = (x+ k)2 − k2.

The respective change of variables y = x − k and y = x + k turn the integrals in
(1.5.17) into the respective integrals

(1.5.19)

∫
(y + k) dy√
k2 − y2

,

∫
(y − k) dy√
y2 − k2

.

By inspection,

(1.5.20)

∫
y dy√
k2 − y2

= −
√
k2 − y2 + C,

∫
y dy√
y2 − k2

=
√
y2 − k2 + C.
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Figure 1.5.1. Projectile paths

The remaining parts of (1.5.19), after a change of variable y = kz, become

(1.5.21) k

∫
dz√
1− z2

, k

∫
dz√
z2 − 1

.

To do these integrals, use

(1.5.22)

z = sin s =⇒
∫

dz√
1− z2

=

∫
cos s

cos s
ds = s+ C,

z = cosh s =⇒
∫

dz√
z2 − 1

=

∫
sinh s

sinh s
ds = s+ C.

Exercises

1. Make calculations analogous to (1.5.12)–(1.5.15) for each of the following forces.
Examine whether you can do the resulting integrals.

(a)

F (x) = −Kx.
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(b)
F (x) = −Kx2.

(c)

F (x) = −K
x
.

(d)
F (x) = x− x3.

2. For such forces as given above, in each case find a potential energy V (x) and
sketch the level curves in the (x, v)-plane of the energy function

E(x, v) =
m

2
v2 + V (x).

3. Use the substitution
x = k2 sin2 θ

to evaluate ∫
dx√
k2

x − 1
,

and use
x = k2 sinh2 u

to evaluate ∫
dx√
k2

x + 1
.

Use these calculations as alternatives for evaluating (1.5.15), for E0 < 0 and E0 > 0,
respectively.
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Figure 1.6.1. Pendulum

1.6. The pendulum

We produce a differential equation to describe the motion of a pendulum, which
will be modeled by a rigid rod, of length ℓ, suspended at one end. We assume the
rod has negligible mass, except for an object of massm at the other end. See Figure
1.6.1. The rod is held at an angle θ = θ0 from the downward pointing vertical, and
released at time t = 0, after which it moves because of the force of gravity. We seek
a differential equation for θ as a function of t.

The end with the mass m traces out a path in a plane, which we identify with
the complex plane, with the origin at the point where the pendulum is suspended,
and the real axis pointing vertically down. We can write the path as

(1.6.1) z(t) = ℓeiθ(t).

The velocity is

(1.6.2) v(t) = z′(t) = iℓθ′(t)eiθ(t),

and the acceleration is

(1.6.3) a(t) = v′(t) = ℓ[iθ′′(t)− θ′(t)2]eiθ(t).

The force of gravity on the mass ismg, where g = 32 ft/sec2, provided the pendulum
is located on the surface of the Earth. The total force F on the mass is the sum of
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the gravitational force and the force the rod exerts on the mass to keep it always
at a distance ℓ from the origin. The force the rod exerts is parallel to eiθ(t), so

(1.6.4) F (t) = mg +Φ(t)eiθ(t),

for some real valued Φ(t) (to be determined). We can rewrite mg as

(1.6.5) mg = mge−iθ(t)eiθ(t) = mg[cos θ(t)− i sin θ(t)]eiθ(t),

and hence

(1.6.6) F (t) = [−img sin θ(t) +mg cos θ(t) + Φ(t)]eiθ(t).

Newton’s law F = ma applied to (1.6.3)–(1.6.6) gives

(1.6.7) mℓ[iθ′′(t)− θ′(t)2] = −img sin θ(t) + (mg cos θ(t) + Φ(t)).

Comparing imaginary parts gives

(1.6.8) mℓθ′′(t) = −mg sin θ(t),
or

(1.6.9)
d2θ

dt2
+
g

ℓ
sin θ = 0.

This is the pendulum equation.

The kinetic energy of this pendulum is

(1.6.10)
1

2
m|v(t)|2 =

mℓ2

2
θ′(t)2,

and its potential energy (up to an additive constant) is given by −mg times the
real part of z(t), i.e.,

(1.6.11) V (θ) = −mgℓ cos θ.
The total energy is hence

(1.6.12) E =
mℓ2

2
θ′(t)2 −mgℓ cos θ(t).

Note that

(1.6.13)

dE

dt
= mℓ2θ′(t)θ′′(t) +mgℓ(sin θ(t))θ′(t)

= mℓ2θ′(t)
(
θ′′(t) +

g

ℓ
sin θ(t)

)
,

so the pendulum equation (1.6.9) implies dE/dt = 0, i.e., we have conservation of
energy. Under the initial condition formulated at the beginning of this section,

(1.6.14) θ(0) = θ0, θ′(0) = 0,

we have initial energy

(1.6.15) E0 = −mgℓ cos θ0,
and the energy conservation gives

(1.6.16) E(θ, θ′) = 2E0

mℓ2
= A0,

where

(1.6.17) E(θ, ψ) = ψ2 − 2g

ℓ
cos θ.
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Figure 1.6.2. Level curves of E(θ, ψ) = ψ2 − (2g/ℓ) cos θ

Level curves of this function are depicted in Figure 1.6.2. If θ(t) solves (1.6.9) and
ψ(t) = θ′(t), then (θ(t), ψ(t)) traces out a path on one of these level curves.

Note that

(1.6.18) ∇E(θ, ψ) =
(2g
ℓ

sin θ, 2ψ
)
,

so E has critical points at θ = kπ, ψ = 0. The matrix of second order partial
derivatives of E is

(1.6.19) D2E(θ, ψ) =
(

2g
ℓ cos θ 0

0 2

)
,

so

(1.6.20) D2E(kπ, 0) =
(
(−1)k 2g

ℓ 0
0 2

)
.

We see that at the critical point (kπ, 0), E has a local minimum if k is even and a
saddle-type behavior if k is odd, as illustrated in Figure 1.6.2.

Note that if the initial condition (1.6.14) holds, then A0 = −(2g/ℓ) cos θ0, and
hence A0 < 2g/ℓ, so the curve traced by (θ(t), ψ(t)) is a closed curve. One might
instead have initial data of the form

(1.6.21) θ(0) = θ0, θ′(0) = ψ0,

and one could pick ψ0 so that E(θ0, ψ0) > 2g/ℓ.
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We proceed to formulas parallel to (1.5.7)–(1.5.11). Starting from the energy
conservation (1.6.16), which we rewrite as

(1.6.22) θ′(t)2 − 2g

ℓ
cos θ(t) = A0,

we have

(1.6.23) θ′(t) = ±
√

2g

ℓ

√
A1 + cos θ, A1 =

ℓ

2g
A0 =

E0

mgℓ
,

which separates and integrates to

(1.6.24)

∫
dθ√

A1 + cos θ
= ±

√
2g

ℓ
t+ C.

In the current set-up, where, by (1.6.12), E0 ≥ −mgℓ, we have

(1.6.25) A1 ≥ −1.

Note that to achieve A1 = −1 requires θ(0) = 0 and θ′(0) = 0, in which case
(1.6.23) yields the initial value problem

(1.6.26) θ′(t) = ±
√

2g

ℓ

√
−1 + cos θ, θ(0) = 0,

with solution

(1.6.27) θ(t) ≡ 0.

In this case (1.6.24) has no meaning. Indeed, if θ > 0 and one considers

(1.6.28)

∫ θ

0

dφ√
−1 + cosφ

,

the integrand is imaginary and furthermore it is not integrable. Nevertheless, θ(t) ≡
0 is a solution to the original problem.

Let us now assume A1 > −1. Write

(1.6.29) B1 = A1 + 1 > 0,

so

(1.6.30)

A1 + cos θ = B1 − (1− cos θ)

= B1 − 2 sin2
θ

2
,

thanks to the identity cos 2φ = cos2 φ − sin2 φ = 1 − 2 sin2 φ. We can rewrite the
left side of (1.6.24) as

(1.6.31)

∫
dθ√

A1 + cos θ
=

∫
dθ√

B1 − 2 sin2 θ/2

=
β√
2

∫
dθ√

1− β2 sin2 θ/2
,

with

(1.6.32) β =

√
2

B1
> 0.
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The last integral in (1.6.31) is known as an elliptic integral when β2 ̸= 1, i.e., when
A1 ̸= 1. Material on such integrals can be found in books that treat elliptic function
theory, including [47].

The case β = 1 (i.e., A1 = 1, or E0 = mgℓ) does give rise to an elementary
integral, namely

(1.6.33)

∫
dθ√

1 + cos θ
=

1√
2

∫
sec

θ

2
dθ

=
√
2 sinh−1

(
tan

θ

2

)
+ C,

for |θ| < π, the latter identity by Exercise 14 of §1.1.

Further study of the elliptic integral in (1.6.24) – separatrices, periodic
solutions, and their periods

Let us pursue the computations arising from (1.6.24) in more detail, taking the
initial condition

(1.6.34) θ(0) = 0, θ′(0) = ψ0, ψ0 ∈ (0,∞).

Then (1.6.24) yields, for the solution θ(t),

(1.6.35)

∫ θ(t)

0

dϑ√
A1 + cosϑ

=

√
2g

ℓ
t.

In such a case,

(1.6.36) A1 =
E0

mgℓ
=

ℓ

2g
ψ2
0 − 1, hence B1 =

ℓ

2g
ψ2
0 .

Then (1.6.31) yields

(1.6.37)

∫ θ(t)

0

dϑ√
1− β2 sin2 ϑ/2

=

√
2

β

√
2g

ℓ
t

= ψ0t,

with

(1.6.38) β =

√
2

B1
=

2

ψ0

√
g

ℓ
.

Let us specialize (1.6.37) to

(1.6.39) β = 1, hence ψ0 = 2

√
g

ℓ
, so E0 = mgℓ.

By (1.6.33), we get

(1.6.40) tan
θ(t)

2
= sinh

ψ0

2
t = sinh

√
g

ℓ
t,

or

(1.6.41) θ(t) = 2 tan−1 sinh

√
g

ℓ
t.
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Applying d/dt yields

(1.6.42) θ′(t) = ψ(t) = 2

√
g

ℓ

1

cosh
√

g
ℓ t
.

In this case,

(1.6.43) θ(t) → ±π and ψ(t) → 0, as t→ ±∞.

The curve (θ(t), ψ(t)) and its mirror image are called separatrices. They separate
bounded periodic solutions from unbounded solution curves.

We turn to the case

(1.6.44) β > 1, hence 0 < ψ0 < 2

√
g

ℓ
, so E < mgℓ.

In this case,

(1.6.45) θ(t) is periodic, say of period Π(ψ0),

and we want to find a formula for Π(ψ0). Looking at Figure 1.6.2, we see that

(1.6.46) ψ(t) = 0 at t =
1

4
Π(ψ0).

Comparison with the formula

(1.6.47)

ψ(t) =
dθ

dt
=

√
2g

ℓ

√
B1 − 2 sin2

θ

2

= β

√
g

ℓ

√
1− β2 sin2

θ

2

gives

(1.6.48) ψ = 0 when sin2
θ

2
=
B1

2
,

and hence

(1.6.49)

1

4
Π(ψ0) =

√
ℓ

2g

∫ θ1

0

dϑ√
B1 − 2 sin2 ϑ/2

,

sin2
θ1
2

=
B1

2
=

1

β2
=

ℓ

4g
ψ2
0 .

Equivalently,

(1.6.50)

1

4
Π(ψ0) =

1

ψ0

∫ θ1

0

dϑ√
1− β2 sin2 ϑ/2

=
2

ψ0

∫ θ1/2

0

dφ√
1− β2 sin2 φ

,

with θ1 as in (1.6.49). Making the change of variable x = sinφ, we get

(1.6.51)
1

4
Π(ψ0) =

2

ψ0

∫ 1/β

0

dx√
(1− x2)(1− β2x2)

,
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and finally, setting y = βx yields

(1.6.52)

1

4
Π(ψ0) =

2α

ψ0

∫ 1

0

dy√
(1− y2)(1− α2y2)

=

√
ℓ

g

∫ 1

0

dy√
(1− y2)(1− α2y2)

,

with

(1.6.53) α =
1

β
=

√
B1

2
=

1

2

√
ℓ

g
ψ0,

so 0 < α < 1. Clearly α→ 0 when ψ0 → 0, so we have

(1.6.54)

lim
ψ0→0

Π(ψ0) = 4

√
ℓ

g

∫ 1

0

dy√
1− y2

= 2π

√
ℓ

g
.

This coincides with the period of solutions to

(1.6.55)
d2θ

dt2
+
g

ℓ
θ = 0,

which we will identify in §1.8 with the linearization of the pendulum equation about
the zero solution.

Finally, we examine the case

(1.6.56) 0 < β < 1, hence ψ0 =
2

β

√
g

ℓ
> 2

√
g

ℓ
, so E > mgℓ.

In such a case, we see from (1.6.47) that θ(t) is monotone in t. However, it does
possess the “periodicity”

(1.6.57) θ(t+ s) = θ(t) + 2π, with s = Π(ψ0),

where, when (1.6.56) holds,

(1.6.58)

Π(ψ0) =

√
ℓ

2g

∫ 2π

0

dϑ√
A1 + cosϑ

=
1

ψ0

∫ 2π

0

dϑ√
1− β2 sin2 ϑ/2

=
2

ψ0

∫ π

0

dφ√
1− β2 sin2 φ

.

Making the change of variable x = sinφ, we get

(1.6.59) Π(ψ0) =
2

ψ0

∫ 1

0

dx√
(1− x2)(1− β2x2)

.
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Remark. The integrals in (1.6.52) and (1.6.59) are called complete elliptic integrals.
One can expand these integrals in convergent power series in α2 and β2, respectively,
using the formula

(1.6.60)

1√
1− u

=

∞∑
k=0

aku
k, for |u| < 1, with

a0 = 1, ak =
(
1− 1

2

)(
2− 1

2

)
· · ·
(
k − 1

2

)
(see Apendix 1.C), with u = α2x2 in (1.6.52) and u = β2x2 in (1.6.59), and then
integrating term by term. The coefficients in the resulting power series involve

(1.6.61)

∫ 1

0

x2k√
1− x2

dx =

∫ π

0

sin2k φdφ

=
1

2

( 1

2i

)2k ∫ 2π

0

(
eiφ − e−iφ

)2k
dφ

= π2−2k

(
2k

k

)
.

One can also express these complete elliptic integrals in terms of a function known
as the Gauss arithmetic-geometric mean (cf. [47], Chapter 6, §4).

Exercises

1. Let E be given by (6.8). Show that if θ(t) solves (6.6) and |θ(t)| < π/2 for all t,
then E < 0.

2. Show that the level set in Figure 1.6.2 where E = 2g/ℓ (i.e., E = mgℓ) is given
by

ψ = ±2

√
g

ℓ
cos

θ

2
.

3. By (1.6.3), the component of acceleration parallel to eiθ is −ℓθ′(t)2eiθ(t). Com-
pute the component of the gravitational force parallel to eiθ(t), and deduce that the
force the rod exerts on the mass to keep it always at a distance ℓ from the origin is
Φeiθ(t), with

Φ = −mℓθ′(t)2 −mg cos θ.

Deduce that, with E as in (1.6.12),

Φ(t) =
E

ℓ
− 3mℓ

2
θ′(t)2.

4. Apply the change of variable s = sinφ to the last integral in (1.6.31), i.e., to∫
dφ√

1− β2 sin2 φ
.
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Show that the integral becomes∫
ds√

(1− s2)(1− β2s2)
.

Specialize to β = 1 and obtain an alternative derivation of the formula for
∫
secφdφ

given in Exercise 13 of §1.1.

5. Suppose the mass at the end of the pendulum has a charge q1 and there is a
charge q2 fixed at (x, y) = (2ℓ, 0). Then the force F (t) is modified to

F (t) = mg −Kq1q2
2ℓ− ℓeiθ(t)

|2ℓ− ℓeiθ(t)|3
+Φ(t)eiθ(t),

where K is a positive constant. Use this to produce a modification of the pendulum
equation.
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1.7. Motion with resistance

In many real cases, the force acting on a moving object is the sum of a force
associated with a potential and a resistance, typically depending on the velocity
and acting to slow the motion down. For example, the motion of a ball of mass
m falling through the air near the surface of the earth can be modeled by the
differential equation

(1.7.1) m
d2x

dt2
= mg − α

dx

dt
,

where the x-axis points down toward the earth. Here g = 32 ft/sec2 and α is an
experimentally determined constant, depending on the size of the ball, and measures
air resistance. We can rewrite (1.7.1) as an equation for v = dx/dt:

(1.7.2)
dv

dt
= g − α

m
v,

an equation that is both linear and separable. Unless v is small, the formula −αv
for the force of air resistance is not so accurate, and a more accurate equation might
be

(1.7.3)
dv

dt
= g − α

m
v − β

m
v3.

This is not linear, but it is separable. For v close to the speed of sound in air, even
this model loses validity.

If the ball is falling from the stratosphere toward the surface of the earth, the
variation in air density, hence in air resistance, must be taken into account. One
might replace the model (1.7.1) by

(1.7.4) m
d2x

dt2
= mg − α(x)

dx

dt
.

The method of (1.4.6)–(1.4.9) is applicable here, yielding for v = dx/dt the equation

(1.7.5)
dv

dx
=
mg

v
− α(x).

This, however, is not typically amenable to a solution in terms of elementary func-
tions.

Another example of motion with resistance arises in the pendulum. Between
air resistance and friction where the rod is attached, the pendulum equation (1.6.9)
might be modified to the following damped pendulum equation:

(1.7.6)
d2θ

dt2
+
α

m

dθ

dt
+
g

ℓ
sin θ = 0,

for some positive constant α. Again the method of (1.4.6)–(1.4.9) is applicable, to
yield for ψ = dθ/dt the equation

(1.7.7)
dψ

dθ
= − α

m
− g

ℓ

sin θ

ψ
.

However, this equation is not particularly tractable, and does not yield much insight
into the behavior of solutions to (1.7.6).



Exercises 39

Exercises

1. Suppose v(t) solves (1.7.2) and v(0) = 0. Show that

lim
t→+∞

v(t) =
mg

α
,

and
v(t) <

mg

α
, ∀ t ∈ [0,∞).

What does it mean to call mg/α the terminal velocity?

2. Do the analogue of Exercise 1 when v(t) solves (1.7.3) and v(0) = 0.

3. In the setting of Exercise 1, what happens if, instead of v(0) = 0, we have

v(0) = v0 >
mg

α
?

4. Apply the method of separation of variables to (1.7.3). Note that

g − α

m
v − β

m
v3 = p(v)

has three complex roots (at least one of which must be real). For what values of
α, β, and m does p(v) have one real root and for what values does it have three real
roots? How does this bear on the behavior of∫

dv

p(v)
?

5. More general models for motion with resistance involve the following modification
of (1.5.6):

m
d2x

dt2
= −V ′(x)− α

dx

dt
.

Parallel to (1.5.4), set

E(t) =
1

2
m
(dx
dt

)2
+ V (x(t)).

Show that
dE

dt
≤ 0.

One says energy is dissipated, due to the resistance.
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1.8. Linearization

As we have seen, some equations, such as the pendulum equation (1.6.9), which we
rewrite here as

(1.8.1)
d2x

dt2
+
g

ℓ
sinx = 0,

can be “solved” in terms of an integral, in this case (1.6.24), i.e.,

(1.8.2)

∫
dx√

A1 + cosx
= ±

√
2g

ℓ
t+ C.

However, the integral is a complicated special function. Meanwhile other equations,
such as the damped pendulum equation (1.7.6), which we rewrite

(1.8.3)
d2x

dt2
+
α

m

dx

dt
+
g

ℓ
sinx = 0,

are not even amenable to solutions as “explicit” as (1.8.2). In such cases one might
nevertheless gain valuable insight into solutions that are small perturbations of
some known particular solution to (1.8.1) or (1.8.3), or more generally

(1.8.4) x′′(t) = f(t, x(t), x′(t)).

In case (1.8.1) and (1.8.3), x(t) ≡ 0 is a solution. More generally, one might have
a known solution y(t) of (1.8.4); i.e., y(t) is known and satisfies

(1.8.5) y′′(t) = f(t, y(t), y′(t)).

Now take x(t) = y(t) + εu(t). We derive an equation for u(t) so that x(t) satisfies
(1.8.4), at least up to O(ε2), i.e.,

(1.8.6) y′′(t) + εu′′(t) = f
(
t, y(t) + εu(t), y′(t) + εu′(t)

)
+O(ε2).

To get this equation, write, with f = f(t, x, v),

(1.8.7) f(t, y+εu, y′+εu′) = f(t, y, y′)+ε
(∂f
∂x

(t, y, y′)u+
∂f

∂v
(t, y, y′)u′

)
+O(ε2),

the first order Taylor polynomial approximation. Plugging this into (1.8.6) and
using (1.8.5), we see that (1.8.6) holds provided u(t) satisfies the equation

(1.8.8) u′′(t) = A(t)u(t) +B(t)u′(t),

where

(1.8.9) A(t) =
∂f

∂x

(
t, y(t), y′(t)

)
, B(t) =

∂f

∂v

(
t, y(t), y′(t)

)
.

The equation (1.8.8) is a linear equation, called the linearization of (1.8.4) about
the solution y(t).

In case (1.8.1), f(t, x, v) = −(g/ℓ) sinx, and the linearization about y(t) = 0 of
this equation is

(1.8.10)
d2u

dt2
+
g

ℓ
u = 0.

In case (1.8.3), f(t, x, v) = (α/m)v+(g/ℓ) sinx, and the linearization about y(t) = 0
of this equation is

(1.8.11)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = 0.
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To take another example, consider

(1.8.12) x′′(t) = tx(t)− x(t)2.

One solution is

(1.8.13) y(t) = t.

In this case we have (1.8.4) with f(t, x, v) = tx− x2, hence fx(t, x, v) = t− 2x and
fv(t, x, v) = 0. Then fx(t, y, y

′) = fx(t, t, 1) = −t, and the linearization of (1.8.12)
about y(t) = t is

(1.8.14) u′′(t) + tu(t) = 0.

Exercises

Compute the linearizations of the following equations, about the given solution y(t).

1.
x′′ + coshx− cosh 1 = 0, y(t) = 1.

2.
x′′ + coshx− cosh t = 0, y(t) = t.

3.
x′′ + x′ sinx = 0, y(t) = 0.

4.
x′′ + x′ sinx = 0, y(t) =

π

2
.

5.
x′′ + sinx = 0, y(t) = π.
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1.9. Second order constant-coefficient linear equations – homogeneous

Here we look into solving differential equations of the form

(1.9.1) a
d2x

dt2
+ b

dx

dt
+ cx = 0,

with constants a, b, and c. We assume a ̸= 0. We impose an initial condition, such
as

(1.9.2) x(0) = α, x′(0) = β.

We look for solutions in the form

(1.9.3) x(t) = ert,

for some constant r, which worked so well for first order equations in §1.1. By results
derived there, if x(t) has the form (1.9.3), then x′(t) = rert and x′′(t) = r2ert, so
substitution into the left side of (1.9.1) gives

(1.9.4) (ar2 + br + c)ert,

which vanishes if and only if r satisfies the equation

(1.9.5) ar2 + br + c = 0.

The polynomial p(r) = ar2+br+c is called the characteristic polynomial associated
with the differential equation (1.9.1). Its roots are given by

(1.9.6) r± = − b

2a
± 1

2a

√
b2 − 4ac.

There are two cases to consider:

(I) b2 − 4ac ̸= 0,

(II) b2 − 4ac = 0.

In Case I, the equation (1.9.5) has two distinct roots, and we get two distinct
solutions to (1.9.1), er+t and er−t. It is easy to see that whenever x1(t) and x2(t)
solve (9.1), so does C1x1(t) + C2x2(t), for arbitrary constants C1 and C2. Hence

(1.9.7) x(t) = C+e
r+t + C−e

r−t

solves (1.9.1), for all constants C+ and C−.

Having this, we can find a solution to (1.9.1) with initial data (1.9.2) as follows.
Taking x(t) as in (9.7), so x′(t) = C+r+e

r+t + C−r−e
r−t, we set t = 0 to obtain

(1.9.8) x(0) = C+ + C−, x′(0) = r+C+ + r−C−,

so (1.9.2) holds if and only if C+ and C− satisfy

(1.9.9)
C+ + C− = α,

r+C+ + r−C− = β.

This set of two linear equations for C+ and C− has a unique solution if and only if
r+ ̸= r−. In fact, the first equation in (1.9.9) gives

(1.9.10) r−C+ + r−C− = r−α,
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and subtracting this from the second equation in (1.9.9) yields

(1.9.11) C+ =
β − αr−
r+ − r−

,

and then the first equation in (1.9.9) yields

(1.9.12) C− = α− C+ =
αr+ − β

r+ − r−
.

In Case II, r = −b/2a is a double root of the characteristic polynomial, and we
have the solution x(t) = ert to (1.9.1). We claim there is another solution to (1.9.1)
that is not simply a constant multiple of this one. We look for a second solution in
the form

(1.9.13) x(t) = u(t)ert,

hoping to get a simpler differential equation for u(t). Note that then x′ = (u′ +
ru)ert and x′′ = (u′′ + 2ru′ + r2u)ert, and hence

(1.9.14)

ax′′ + bx′ + cx =
{
a(u′′ + 2ru′ + r2u) + b(u′ + ru) + cu

}
ert

=
{
au′′ + (2ar + b)u′ + (ar2 + br + c)u

}
ert

= au′′ert,

given that (1.9.5) holds with r = −b/2a. Thus the vanishing of (1.9.14) is equivalent
to u′′(t) = 0, i.e., to u(t) = C1 +C2t. Hence another solution to (1.9.1) in this case
is tert, and, in place of (1.9.7), we have solutions

(1.9.15) x(t) = C1e
rt + C2te

rt,

for all constants C1 and C2.

We can then find a solution to (1.9.1) with initial data (1.9.2) as follows. Taking
x(t) as in (1.9.15), so x′(t) = C1re

rt + C2rte
rt + C2e

rt, we set t = 0 to obtain

(1.9.16) x(0) = C1, x′(0) = C1 + C2,

so (1.9.2) is satisfied if and only if C1 and C2 satisfy

(1.9.17) C1 = α, C1 + C2 = β,

i.e., if and only if

(1.9.18) C1 = α, C2 = β − α.

We claim the constructions given above provide all of the solutions to (1.9.1),
in the two respective cases. To see this, let x(t) be any solution to (1.9.1), let
r = r+ (which equals r− in Case II), and consider u(t) = e−rtx(t), as in (1.9.13).
The computation (1.9.14) holds if r+ = r−, and if r+ ̸= r− we get

(1.9.19) ax′′ + bx′ + cx =
{
au′′ + (2ar + b)u′

}
ert.

As we have seen, when r+ = r− this forces u′′(t) ≡ 0, which hence forces u(t) to
have the form C1 + C2t for some constants Cj , and hence x(t) = C1e

rt + C2te
rt.

When r+ ̸= r−, vanishing of (1.9.19) forces

(1.9.20) av′ + (2ar + b)v = 0, with v = u′,
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which, by results of §1.1, forces

(1.9.21)
v(t) = K0e

−(2r+b/a)t, hence

u(t) = K1 +K2e
−(2r+b/a)t,

for some constants K0, K1, and K2. This in turn implies

(1.9.22) x(t) = K1e
rt +K2e

−(r+b/a)t.

But (1.9.6) gives r+ + r− = −b/a, hence

(1.9.23) r = r+ =⇒ −
(
r +

b

a

)
= r−,

so (1.9.22) is indeed of the form (1.9.7), with C+ = K1 and C− = K2.

The arguments given above show that indeed all solutions to (1.9.1) have the
form (1.9.7) or (1.9.15), in Cases I and II, respectively. We say that (1.9.7) (in Case
I) and (1.9.15) (in Case II) provide the general solution to (1.9.1). This analysis of
the general solutions together with the computations giving (1.9.12) and (1.9.18),
establish the following.

Theorem 1.9.1. Given a, b, and c, with a ̸= 0, and given α and β, the initial
value problem (1.9.1)–(1.9.2) has a unique solution x(t). In Case I, x(t) has the
form (1.9.7), and in Case II, it has the form (1.9.15).

The results derived above apply whether a, b, and c are real or not. If we
assume they are real, then Case I naturally divides into two sub cases:

(IA) b2 − 4ac > 0,

(IB) b2 − 4ac < 0.

In Case IA, the roots of the characteristic equation (1.9.5) given by (1.9.6) are real.
In Case IB, we have complex roots, of the form

(1.9.24) r± = r ± iσ, r = − b

2a
, σ =

1

2a

√
4ac− b2.

Hence the solutions (1.9.7) have the form

(1.9.25) x(t) = C+x+(t) + C−x−(t), x±(t) = e(r±iσ)t.

From §1 we have e(r±iσ)t = erte±iσt, and also

(1.9.26) e±iσt = cosσt± i sinσt.

Hence

(1.9.27) x±(t) = ert(cosσt± i sinσt).

In particular, the following are also solutions to (1.9.1):

(1.9.28)
x1(t) =

1

2

(
x+(t) + x−(t)

)
= ert cosσt,

x2(t) =
1

2i

(
x+(t)− x−(t)

)
= ert sinσt.

We can hence rewrite (1.9.25) as x(t) = C1x1(t) + C2x2(t), or equivalently

(1.9.29) x(t) = C1e
rt cosσt+ C2e

rt sinσt,
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for some constants C1 and C2, related to C+ and C− by

(1.9.30) C1 = C+ + C−, C2 = i(C+ − C−).

We can combine these relations with (1.9.11)–(1.9.12) to solve the initial value
problem (1.9.1)–(1.9.2).

We now apply the methods just developed to the linearized pendulum and
damped pendulum equations (1.8.10) and (1.8.11), i.e.,

(1.9.31)
d2u

dt2
+
g

ℓ
u = 0,

and

(1.9.32)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = 0.

Here, g, ℓ, α, and m are all > 0. Let us set

(1.9.33) k =

√
g

ℓ
, b =

α

m
,

so b > 0, k > 0, and the equations (1.9.31)–(1.9.32) become

(1.9.34)
d2u

dt2
+ k2u = 0,

and

(1.9.35)
d2u

dt2
+ b

du

dt
+ k2u = 0.

The characteristic equation for (1.9.34) is r2+k2 = 0, with roots r = ±ik. The
general solution to (1.9.34) can hence be written either as u(t) = C+e

ikt+C−e
−ikt

or as

(1.9.36) u(t) = C1 cos kt+ C2 sin kt.

The resulting motion is oscillatory motion, with period 2π/k.

The characteristic equation for (1.9.35) is r2 + br + k2 = 0, with roots

(1.9.37) r± = − b
2
± 1

2

√
b2 − 4k2.

There are three cases to consider:

(IB) b2 − 4k2 < 0,

(II) b2 − 4k2 = 0,

(IA) b2 − 4k2 > 0.

In Case IB, say b2 − 4k2 = −4κ2. Then r± = −(b/2)± iκ, and the general solution
to (1.9.35) has the form

(1.9.38) u(t) = C1e
−bt/2 cosκt+ C2e

−bt/2 sinκt.

These decay exponentially as t ↗ +∞. This is damped oscillatory motion. The
oscillatory factors have period

(1.9.39)
2π

κ
=

2π√
k2 − (b/2)2

,

which approaches ∞ as b↗ 2k.
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In Case IA, say β =
√
b2 − 4k2, so r± = (−b ± β)/2. Note that 0 < β < b, so

both r+ and r− are negative. The general solution to (1.9.35) then has the form

(1.9.40) u(t) = C1e
(−b+β)t/2 + C2e

(−b−β)t/2, −b± β < 0.

These decay without oscillation as t ↗ +∞. One says this motion is overdamped.
In Case II, the characteristic equation for (1.9.35) has the double root −b/2, and
the general solution to (1.9.35) has the form

(1.9.41) u(t) = C1e
−bt/2 + C2te

−bt/2.

These also decay without oscillation as t↗ +∞. One says this motion is critically
damped.

The nonlinear damped pendulum equation (1.7.6) can also be shown to manifest
these damped oscillatory, critically damped, and overdamped behaviors.

Exercises

1. Find the general solution to each of the following equations for x = x(t).

(a)

x′′ + 25x = 0.

(b)

x′′ − 25x = 0.

(c)

x′′ − 2x′ + x = 0.

(d)

x′′ + 2x′ + x = 0.

(e)

x′′ + x′ + x = 0.

2. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial condiiton

x(0) = 1, x′(0) = 0.

3. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial condition

x(0) = 0, x′(0) = 1.

4. For ε ̸= 0, solve the initial value problem

x′′ε − 2x′ε + (1− ε2)xε = 0, xε(0) = 0, x′ε(0) = 1.

Compute the limit

x(t) = lim
ε→0

xε(t),
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and show that the limit solves

x′′ − 2x′ + x = 0, x(0) = 0, x′(0) = 1.
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1.10. Nonhomogeneous equations I – undetermined coefficients

We study nonhomogeneous, second order, constant coefficient linear +equations,
that is to say, equations of the form

(1.10.1) a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

with constants a, b, and c (a ̸= 0) and a given function f(t). The equation (1.10.1)
is called nonhomogeneous whenever f(t) is not identically 0. We might impose
initial conditions, like

(1.10.2) x(0) = α, x′(0) = β.

In this section we assume f(t) is a constant multiple of one of the following functions,
or perhaps a finite sum of such functions:

eκt,(1.10.3)

sinσt,(1.10.4)

cosσt,(1.10.5)

tk.(1.10.6)

We discuss a method, called the “method of undetermined coefficients,” to solve
(1.10.1) in such cases. In §1.14 we will discuss a method that applies to a broader
class of functions f .

We begin with the case (1.10.3). The first strategy is to seek a solution in the
form

(1.10.7) x(t) = Aeκt.

Here A is the “undetermined coefficient.” The goal will be to determine it. Plugging
(1.10.7) into the left side of (1.10.1) gives

(1.10.8) ax′′ + bx′ + cx = A(aκ2 + bκ+ c)eκt.

As long as κ is not a root of the characteristic polynomial p(r) = ar2 + br + c, we
get a solution to (1.10.1) in the form (1.10.7), with

(1.10.9) A =
1

aκ2 + bκ+ c
.

In such a case, the equation

(1.10.10) a
d2x

dt2
+ b

dx

dt
+ cx = Beκt

has a solution

(1.10.11) xp(t) = ABeκt,

with A given by (1.10.9). We say xp(t) is a particular solution to (1.10.10). If x(t)
is another solution, then, because the equation is linear, y(t) = x(t)− xp(t) solves
the homogeneous equation

(1.10.12) a
d2y

dt2
+ b

dy

dt
+ cy = 0,
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which was treated in §1.9. If, for example, p(r) has distinct roots r+ and r−, we
know the general solution of (1.10.11) is

(1.10.13) y(t) = C+e
r+t + C−e

r−t.

Then the general solution to (1.10.10) is

(1.10.14) x(t) =
B

aκ2 + bκ+ c
eκt + C+e

r+t + C−e
r−t.

In (1.10.14), a, b, c, B, and κ are given by (1.10.10), and C+ and C− are arbitrary
constants. If the initial conditions in (1.10.2) are imposed, they will determine C+

and C−. If r+ and r− are complex, we could rewrite (1.10.13)–(1.10.14), using
Euler’s formula, as in §1.9.

Formulas (1.10.11)–(1.10.14) hold under the hypothesis that r+, r−, and κ are
all distinct. If the characteristic polynomial has a double root r = r+ = r−, distinct
from κ, then we replace (1.10.13) by

(1.10.15) y(t) = C1e
rt + C2te

rt,

and the general solution to (10.10) has the form

(1.10.16) x(t) =
B

aκ2 + bκ+ c
eκt + C1e

rt + C2te
rt.

Again, the initial conditions (1.10.2) would determine C1 and C2.

We turn to the case that κ is a root of the characteristic polynomial p(r). In
such a case, (1.10.8) vanishes, and there is not a solution to (1.10.1) in the form
(1.10.7). This study splits into two cases. First assume p(r) has distinct roots. Say
κ = r+ ̸= r−. Then (1.10.1) (with f(t) = eκt) will have a solution of the form

(1.10.17) x(t) = Ateκt.

Indeed, a computation parallel to (1.9.14), with u(t) = At, r = κ, gives

(1.10.18) ax′′ + bx′ + cx = (2aκ+ b)Aeκt,

since in this case u′′ = 0 and aκ2+ bκ+ c = 0. Then (1.10.1) holds with f(t) = eκt,
provided

(1.10.19) A =
1

2aκ+ b
,

and more generally a particular solution to (1.10.10) is given by

(1.10.20) xp(t) = ABteκt,

with A given by (1.10.19). As above, the general solution to (1.10.10) then has the
form

(1.10.21) x(t) = xp(t) + y(t),

where y(t) solves (1.10.12), hence has the form (1.10.13). (Recall we are assuming
r+ ̸= r−.)

To finish the analysis of (1.10.10), it remains to consider the case κ = r+ = r−.
Then functions of the form (1.10.15) (with r = κ) solve (1.10.12), so there is not a
solution to (1.10.1) (with f(t) = eκt) of the form (1.10.17). Instead, we will find a
solution of the form

(1.10.22) x(t) = At2eκt.
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In this case, a computation parallel to (1.9.14), with u(t) = At2, r = κ, gives

(1.10.23) ax′′ + bx′ + cx = 2aAeκt,

since in this case u′′ = 2A, 2aκ+ b = 0, and aκ2 + bκ+ c = 0. Then (1.10.1) holds
with f(t) = eκt provided

(1.10.24) A =
1

2a
,

and more generally a particular solution to (1.10.10) is given by

(1.10.25) xp(t) = ABt2eκt,

with A given by (1.10.24). Then the general solution to (1.10.10) has the form
(1.10.21), where y(t) solves (1.10.12), hence has the form (1.10.15), with r = κ.
(Recall we are assuming r+ = r−.)

As a slight extension of (1.10.10), consider the equation

(1.10.26) a
d2x

dt2
+ b

dx

dt
+ cx = B1e

κ1t +B2e
κ2t.

This has a solution of the form

(1.10.27) xp(t) = xp1(t) + xp2(t),

where xpj(t) are particular solutions of (1.10.10), with B replaced by Bj and κ
replaced by κj . Then the general solution to (1.10.26) has the form (1.10.21), with
xp(t) given by (1.10.27) and y(t) solving (1.10.12).

We move on to cases of f(t) given by (1.10.4) and (1.10.5), which we combine
as follows:

(1.10.28) a
d2x

dt2
+ c

dx

dt
+ cx = b1 sinσt+ b2 cosσt.

Via Euler’s formula we can write

(1.10.29)
b1 sinσt+ b2 cosσt = B1e

iσt +B2e
−iσt,

B1 =
b1
2i

+
b2
2
, B2 = −b1

2i
+
b2
2
,

and we are back in the setting (1.10.26), with κ1 = iσ, κ2 = −iσ. Thus, for
example, if ±iσ are not roots of the characteristic polynomial p(r) = ar2 + br + c,
we have a particular solution of the form

(1.10.30) xp(t) = A1B1e
iσt +A2B2e

−iσt,

where B1 and B2 are as in (1.10.29) and the undetermined coefficients A1 and A2

can be obtained by plugging into (1.10.28). As an alternative presentation, we can
again use Euler’s formula to rewrite (1.10.30) as

(1.10.31) xp(t) = a1 sinσt+ a2 cosσt,

where the undetermined coefficients a1 and a2 are obtained by plugging into (1.10.28).

If a, b, and c in (1.10.1) are all real, then p(r) will not have purely imaginary

roots if b ̸= 0. If b = 0, the roots will be r± = ±
√

−c/a, which are real if c/a < 0
and purely imaginary if c/a > 0. In case r± = ±iσ, considerations parallel to
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(1.10.17)–(1.10.20) apply, with κ = ±iσ. Again a further application of Euler’s
formula gives

(1.10.32) xp(t) = a1t sinσt+ a2t cosσt,

where the coefficients a1 and a2 are obtained by plugging into (1.10.28).

We now move to cases of f(t) given by (1.10.6). Take k = 1, so we are looking
at

(1.10.33) ax′′ + bx′ + cx = t.

We try

(1.10.34) x(t) = At+B,

for which x′ = A, x′′ = 0, and the left side of (1.10.33) is cAt + (B + bA). The
condition that (1.10.33) hold is

(1.10.35) cA = 1, B + bA = 0,

solved by

(1.10.36) A =
1

c
, B = −b

c
,

assuming c ̸= 0. If c = 0, we want to solve (for v = dx/dt)

(1.10.37) av′ + bv = t.

We try

(1.10.38) v(t) = αt+ β,

for which v′ = α and the left side of (1.10.37) is aα+ b(αt+β). The condition that
(1.10.37) hold is

(1.10.39) bα = 1, aα+ bβ = 0,

solved by

(1.10.40) α =
1

b
, β = − a

b2
,

assuming b ̸= 0. In such a case, we can take

(1.10.41) x(t) =
α

2
t2 + βt.

In case c = b = 0, (1.10.32) becomes

(1.10.42) ax′′ = t,

with solution

(1.10.43) x(t) =
1

6a
t3.

Analogous considerations apply to (1.10.6) with k ≥ 2. The method can also
be extended to treat f(t) in the form

(1.10.44) tkeκt, tk sinσt, tk cosσt.

We omit details. In such cases, it is just as convenient to use the method developed
in §1.14.
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See §1.16 for further insight on why the method of undetermined coefficients
works for functions f(t) of the form (1.10.3)–(1.10.6), and more generally of the
form (1.10.44).

Exercises

1. Find the general solution to each of the following equations for x = x(t).

(a)
x′′ + 25x = e5t.

(b)
x′′ − 25x = e5t.

(c)
x′′ − 2x+ x = sin t.

(d)
x′′ + 2x′ + x = et.

(e)
x′′ + x′ + x = cos t.

2. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial conditions

x(0) = 1, x′(0) = 0.

3. In each case (a)–(e) of Exercises 1, find the solution satisfying the initial condi-
tions

x(0) = 0, x′(0) = 1.

4. For ε ̸= 0, solve the initial value problem

x′′ε − 25xε = e(5+ε)t, xε(0) = 1, x′ε(0) = 0.

Compute the limit
x(t) = lim

ε→0
xε(t),

and show that the limit solves

x′′ − 25x = e5t, x(0) = 1, x′(0) = 0.
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1.11. Forced pendulum – resonance

Here we study the following special cases of (1.10.28), modeling the linearized
pendulum and damped pendulum, respectively, subjected to an additional periodic
force of the form F0 sinσt. The equations we consider are, respectively,

(1.11.1)
d2u

dt2
+
g

ℓ
u = F0 sinσt,

and

(1.11.2)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = F0 sinσt.

The quantities α,m, g, and ℓ are all positive, and we take F0 and σ to be real. As
in (1.9.33), we set

(1.11.3) k =

√
g

ℓ
, b =

α

m
,

so b > 0, k > 0, and the equations (1.11.1)–(1.11.2) become

(1.11.4)
d2u

dt2
+ k2u = F0 sinσt,

and

(1.11.5)
d2u

dt2
+ b

du

dt
+ k2u = F0 sinσt.

As long as k ̸= ±σ, we can set u(t) = a1 sinσt and the left side of (1.11.4)
equals a1(k

2 − σ2) sinσt, so a solution to (1.11.4) is

(1.11.6) up(t) =
F0

k2 − σ2
sinσt,

in such a case. Note how the coefficient F0/(k
2−σ2) blows up as σ → ±k. If σ = k,

then, as in (1.10.32), we need to seek a solution to (1.11.4) of the form

(1.11.7) up(t) = a1t sinσt+ a2t cosσt.

In such a case,

(1.11.8) u′′p + k2up = 2a1σ cosσt− 2a2σ sinσt,

so (1.11.4) holds provided

(1.11.9) −2a2σ = F0, 2a1σ = 0,

i.e., we have

(1.11.10) up(t) = −F0

2σ
t cosσt.

Note that up(t) grows without bound as |t| → ∞ in this case, as opposed to the
bounded behavior in t given by (1.11.6) when σ2 ̸= k2. We say we have a resonance
at σ2 = k2.

Moving on to (1.11.5), as in (1.9.37) the characteristic polynomial p(r) = r2 +
br + k2 has roots

(1.11.11) r± = − b
2
± 1

2

√
b2 − 4k2,



54 1. Single differential equations

and as long as b > 0, ±iσ ̸= r±. Hence we can seek a solution to (1.11.5) in the
form

(1.11.12) up(t) = a1 sinσt+ a2 cosσt.

A computation gives

(1.11.13)
u′′p + bu′p + k2up = (−a1σ2 − a2bσ + a1k

2) sinσt

+ (−a2σ2 + a1bσ + a2k
2) cosσt,

so up is a solution to (1.11.5) if and only if

(1.11.14)
(k2 − σ2)a1 − (bσ)a2 = F0,

(bσ)a1 + (k2 − σ2)a2 = 0.

Solving for a1 and a2 gives

(1.11.15)

a1 =
k2 − σ2

(k2 − σ2)2 + (bσ)2
F0,

a2 = − bσ

(k2 − σ2)2 + (bσ)2
F0.

We can rewrite (1.11.12) as

(1.11.16) up(t) = A sin(σt+ θ),

for some constants A and θ, using the identity

(1.11.17) A sin(σt+ θ) = A(cos θ) sinσt+A(sin θ) cosσt.

It follows that (1.11.16) is equivalent to (1.11.12) provided

(1.11.18) A cos θ = a1, A sin θ = a2,

i.e., provided

(1.11.19) a1 + ia2 = Aeiθ.

We take A > 0 such that

(1.11.20) A2 = a21 + a22 =
F 2
0

(k2 − σ2)2 + (bσ)2
.

Thus

(1.11.21) A =
|F0|√

(k2 − σ2)2 + (bσ)2

is the amplitude of the solution (1.11.16).

If b, k, and F0 are fixed quantities in (1.11.5) and σ is allowed to vary, A in
(1.11.21) is maximized at the value of σ for which

(1.11.22) β(σ) = (k2 − σ2)2 + (bσ)2

is minimal. We have

(1.11.23)

β′(σ) = 4σ3 + 2(b2 − 2k2)σ

= 4σ
[
σ2 −

(
k2 − b2

2

)]
.
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Note that σ = 0 is a critical point, and β(0) = k4. There are two cases. First,

(1.11.24)
k2 − b2

2
> 0 =⇒ βmin = β

(
±
√
k2 − b2

2

)
= b2

(
k2 − b2

4

)
,

since k4 ≥ b2(k2 − b2/4). (Indeed, taking ξ = k2/b2, this inequality is equivalent to
ξ2 ≥ ξ − 1/4; but ξ2 − ξ + 1/4 = (ξ − 1/2)2.) In the second case,

(1.11.25) k2 − b2

2
≤ 0 =⇒ βmin = β(0) = k4.

In these respective cases, we get

(1.11.26) Amax =
|F0|
b

(
k2 − b2

4

)−1/2

,

and

(1.11.27) Amax =
|F0|
k2

.

In the first case, i.e., (1.11.24), we say resonance is achieved at σ2 = k2−b2/2. Recall
from §1.9 that critical damping occurs for k2 = b2/4, for the unforced pendulum,
so in case (1.11.24) the unforced pendulum has damped oscillatory motion.

Exercises

1. Find the general solution to

(1.11.28)
d2u

dt2
+
du

dt
+ u = 3 sinσt.

2. For the equation in Exercise 1, find the value of σ for which there is resonance.

3. Would the answer to Exercise 2 change if the right side of (1.11.28) were changed
to

10 sinσt?

Explain.

4. Do analogues of Exercises 1–2 with (1.11.28) replaced by each of the following:

d2u

dt2
+
du

dt
+ 3u = sinσt,

d2u

dt2
+ 2

du

dt
+ 3u = 2 sinσt.

5. Do analogues of Exercise 1 with (1.11.28) replaced by the following:

d2u

dt2
+ 2

du

dt
+ u = 3 sinσt.
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Discuss the issue of resonance in this case.
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Figure 1.12.1. Mass on a spring

1.12. Spring motion

We consider the motion of a body of mass m, attached to one end of a spring, as
depicted in Figure 1.12.1. The other end of the spring is attached to a rigid wall,
and the weight slides along the floor, pushed or pulled by the spring. We assume
that the force of the spring is a function of position:

(1.12.1) F1 = F1(x).

We pick the origin to be the position where the spring is relaxed, so F (0) = 0.
A good approximation, valid for small oscillations, is

(1.12.2) F1(x) = −Kx,
with a positive constant K (called the spring constant). This approximation loses
accuracy if |x| is large. Sliding along the floor typically produces a frictional force
that is a function of the velocity v = dx/dt. A good approximation for the frictional
force is

(1.12.3) F2 = F2(v) = −av,
where a is a positive constant, called the coefficient of friction. The total force on
the mass is F = F1+F2, and Newton’s law F = ma yields the differential equation

(1.12.4) m
d2x

dt2
+ a

dx

dt
+Kx = 0.
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This has the same form as (1.9.35), i.e.,

(1.12.5)
d2x

dt2
+ b

dx

dt
+ k2x = 0,

with

(1.12.6) b =
a

m
, k2 =

K

m
,

both positive, and the analysis of (1.9.35) applies here, including notions of oscil-
latory damped, critically damped, and overdamped motion.

One can consider systems of several masses, connected via springs. These
situations lead to systems of differential equations, studied in Chapter 3.

Exercises

1. Suppose one has a spring system as in Figure 1.12.1. Assume the mass m is 2
kg and the spring constant K is 6 kg/sec

2
. There is a frictional force of a kg/sec.

Find the values of a for which the spring motion is

(a) damped oscillatory,

(b) critically damped,

(c) overdamped.

2. In the context of Exercise 1, suppose there is also an external force of the form

10 sinσt kg-m/sec
2
.

(Assume x is given in meters.) Take

a = 2,

so (12.4) becomes

2
d2x

dt2
+ 2

dx

dt
+ 6x = 10 sinσt.

Find the value of σ for which there is resonance.
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1.13. RLC circuits

Here we derive a differential equation for the current flowing through the circuit
depicted in Figure 1.13.1, which consists of a resistor, with resistance R (in ohms),
a capacitor, with capacitance C (in farads), and an inductor, with inductance L (in
henrys). The circuit is plugged into a source of electricity, providing voltage E(t)
(in volts). As stated, we want to find a differential equation for the current I(t) (in
amps).

The equation is derived using two types of basic laws. The first type consists
of two rules, which are special cases of Kirchhoff’s laws:

(A) The sum of the voltage drops across the three circuit elements is E(t).
(B) For each t, the same current I(t) flows through each circuit element.

For more complicated circuits than the one depicted in Figure 1.13.1, these rules
take a more elaborate form. We return to this in Chapter 3.

The second type of law specifies the voltage drop across each circuit element:

(a) Resistor: V = IR,

(b) Inductor: V = L
dI

dt
,

(c) Capacitor: V =
Q

C
.

As stated above, V is measured in volts, I in amps, R in ohms, L in henrys, and
C in farads. In addition, Q is the charge on the capacitor, measured in coulombs.
The rule (c) is supplemented by the following formula for the current across the
capacitor:

(c2) I =
dQ

dt
.

In (b) and (c2), time is measured in seconds.

In Figure 1.13.1, the circuit elements are numbered. We let Vj = Vj(t) denote
the voltage drop across element j. Rules (A), (B), and (a) give

V1 + V2 + V3 = E(t),(1.13.1)

V1 = RI.(1.13.2)

Rules (B), (b), and (c)–(c2) give differential equations:

L
dI

dt
= V3,(1.13.3)

C
dV2
dt

= I.(1.13.4)

Plugging (1.13.2)–(1.13.3) into (1.13.1) gives

(1.13.5) RI + V2 + L
dI

dt
= E(t).
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Applying d/dt to (1.13.5) and using (1.13.4) gives

(1.13.6) L
d2I

dt2
+R

dI

dt
+

1

C
I = E′(t).

This is the equation for the RLC circuit in Figure 1.13.1. If we divide by L we get

(1.13.7)
d2I

dt2
+
R

L

dI

dt
+

1

LC
I =

E′(t)

L
,

which has the same form as the (linearized) damped driven pendulum (1.11.5), with

(1.13.8) b =
R

L
, k2 =

1

LC
,

except that at this point E′(t)/L is not specified to agree with the right side of
(1.11.5). However, indeed, if alternating current powers this circuit, it is reasonable
to take

(1.13.9) E(t) = E0 cosσt,

so

(1.13.10)
1

L
E′(t) = −σE0

L
sinσt = F0 sinσt.

Then analyses of solutions done in §1.11, including analyses of resonance phe-
nomena, apply in this setting.

Actually, in this setting a different perspective on resonance is in order. The
frequency σ/2π cycles/sec of the alternating current is typically fixed, while one
might be able to adjust the capacitance C. Let us assume R and L are also fixed,
so b in (1.13.8) is fixed but one might adjust k. Recalling the formulas (1.11.16)
and (1.11.21), which in this setting take the form

(1.13.11) Ip(t) = A sin(σt+ θ), A =
|F0|√

(k2 − σ2)2 + (bσ)2
,

we see that for fixed b and σ, this amplitude is maximized for k satisfying

(1.13.12) k2 = σ2,

i.e., for

(1.13.13) LC =
1

σ2
.

More elaborate circuits, containing a larger number of circuit elements, and
more loops, are naturally treated in the context of systems of differential equations.
See Chapter 3 for more on this.

Remark. Consistent with formulas (a)–(c) and (c2), the units mentioned above



Exercises 61

are related as follows:

(1.13.14)

1 amp = 1
coulomb

sec

1 farad = 1
coulomb

volt

1 henry = 1
volt-sec

amp

1 ohm = 1
volt

amp
.

To relate these to other physical units, we mention that

(1.13.15)

1 volt = 1 joule/coulomb

1 watt = 1 volt-amp = 1 joule/sec

1 joule = 1 Newton-meter

1 Newton = 1 kg-m/sec
2
.

The force of gravity at the surface of the earth on a 1 kg. object is 9.8 Newtons, or,
alternatively, 2.2 pounds. In other words, 1 Newton is about 0.224 pounds. Hence
one joule is about 0.735 foot-pounds.

The Coulomb is a unit of charge with the following property. If two particles,
of charge q1 and q2 Coulombs, are separated by r meters, the force between them
is given by Coulomb’s law:

(1.13.16) F = k
q1q2
r2

Newtons, k = 8.99× 109.

Investigations into the nature of electrons have shown that

(1.13.17) −1 Coulomb = charge of 6.24× 1018 electrons.

In connection with this, we mention that one gram of water contains 3.3 × 1023

electrons.

Exercises

1. Consider a circuit as in Figure 1.13.1. Assume the inductance is 4 henrys and
the applied current has the form (1.13.9) with a frequency of 60 hertz, i.e., 60
cycles/sec. Find the value of the capacitance C, in farads, to achieve resonance.

2. Redo Exercise 1, this time with inductance of 10−6 henry and applied current
of the form (1.13.9) with a frequency of 120 megahertz.
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Figure 1.13.1. RLC circuit

1.14. Nonhomogeneous equations II – variation of parameters

Here we present another approach to solving

(1.14.1)
d2x

dt2
+ b

dx

dt
+ cx = f(t),

(with constant b and c) called the method of variation of parameters. It works
as follows. Let y1(t) and y2(t) be a complete set of solutions of the homogeneous
equation

(1.14.2)
d2y

dt2
+ b

dy

dt
+ cy = 0.

The method consists of seeking a solution to (1.14.1) in the form

(1.14.3) x(t) = u1(t)y1(t) + u2(t)y2(t),

and finding equations for uj(t) that are simpler then the original equation (1.14.1).
We have

(1.14.4) x′ = u1y
′
1 + u2y

′
2 + u′1y1 + u′2y2.

It will be convenient to arrange that x′′ not involve second order derivatives of u1
and u2. To achieve this, we impose the condition

(1.14.5) u′1y1 + u′2y2 = 0.



1.14. Nonhomogeneous equations II – variation of parameters 63

Then x′′ = u′1y
′
1+u

′
2y

′
2+u1y

′′
1 +u2y

′′
2 , and using (1.14.2) to replace y′′j by −by′j−cyj ,

we get

(1.14.6) x′′ = u′1y
′
1 + u′2y

′
2 − (by′1 + cy1)u1 − (by′2 + cy2)u2,

hence

(1.14.7) x′′ + bx′ + cx = y′1u
′
1 + y′2u

′
2.

Thus we have a solution to (1.14.1) in the form (1.14.3) provided u′1 and u′2
solve

(1.14.8)
y1u

′
1 + y2u

′
2 = 0,

y′1u
′
1 + y′2u

′
2 = f.

This linear system for u′1 and u′2 has the explicit solution

(1.14.9) u′1 = − y2
W
f, u′2 =

y1
W
f,

where W (t) is the following determinant, called the Wronskian determinant:

(1.14.10) W = y1y
′
2 − y2y

′
1 = det

(
y1 y2
y′1 y′2

)
.

Determinants will be studied in the next chapter. The reader who has not seen
them can take the first identity in (1.14.10) as a definition and ignore the second
identity (for now).

Note that if the roots of the characteristic polynomial p(r) = r2 + br + c are
distinct, r+ ̸= r−, we can take

(1.14.11) y1 = er+t, y2 = er−t,

and then

(1.14.12)
W (t) = r−e

r+ter−t − r+e
r−ter+t

= (r− − r+)e
(r++r−)t,

which is nowhere vanishing. If there is a double root, r+ = r− = r, we can take

(1.14.13) y1 = ert, y2 = tert,

and then

(1.14.14) W (t) = ert(ert + trert)− tertrert = e2rt,

which is also nowhere vanishing.

Returning to (1.14.9), we can take

(1.14.15)

u1(t) = −
∫ t

0

y2(s)

W (s)
f(s) ds+ C1,

u2(t) =

∫ t

0

y1(s)

W (s)
f(s) ds+ C2,

so

(1.14.16) x(t) = C1y1(t) + C2y2(t) +

∫ t

0

[
y2(t)y1(s)− y1(t)y2(s)

] f(s)
W (s)

ds.

Denote the last term, i.e., the integral, by xp(t).
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Note that when the characteristic polynomial r2 + br + c has distinct roots
r+ ̸= r− and (1.14.11)–(1.14.12) hold, we get

(1.14.17)

xp(t) =
1

r− − r+

∫ t

0

[
er−ter+s − er+ter−s

] f(s)

e(r++r−)s
ds

=
1

r− − r+

∫ t

0

[
er−(t−s) − er+(t−s)]f(s) ds.

When the characteristic polynomial has double roots r+ = r− = r and (1.14.13)–
(1.14.14) hold, we get

(1.14.18)

xp(t) =

∫ t

0

[
terters − ertsers

]f(s)
e2rs

ds

=

∫ t

0

(t− s)er(t−s)f(s) ds.

The next section will continue the study of the Wronskian. Further material
on the Wronskian and the method of variation of parameters, in a more general
context, can be found in Chapter 3.

Exercises

Use the method of variation of parameters to solve each of the following for x = x(t).

1.
x′′ + x = et.

2.
x′′ + x = sin t.

3.
x′′ + x = t.

4.
x′′ + x = t2.

5.
x′′ + x = tan t.
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1.15. Variable coefficient second order equations

The general, possibly nonlinear, second order differential equation

(1.15.1)
d2x

dt2
= F

(
t, x,

dx

dt

)
,

has already been mentioned in §1.4. If F (t, x, v) is defined and smooth on a neigh-
borhood of t0, x0, v0, and one imposes an initial condition

(1.15.2) x(t0) = x0, x′(t0) = v0,

it is a fundamental result that (1.15.1)–(1.15.2) has a unique solution, at least for
t in some interval containing t0. A more general result of this sort will be proven
in Chapter 4.

Linear second order equations have the form

(1.15.3) a(t)
d2x

dt2
+ b(t)

dx

dt
+ c(t)x = f(t).

The existence and uniqueness results stated above apply. There are many specific
and much studied examples, such as Bessel’s equation

(1.15.4)
d2x

dt2
+

1

t

dx

dt
+
(
1− ν2

t2

)
x = 0,

whose solutions are called Bessel functions, and Airy’s equation,

(1.15.5)
d2x

dt2
− tx = 0,

whose solutions are Airy functions, just to mention two examples. Such functions
are important and show up in many contexts. We will take a closer look at Bessel’s
equation in the next section. Linear variable coefficient equations could arise from
RLC circuits in which one has variable capacitors, resistors, and inductors, turning
(1.13.6) into

(1.15.6) L(t)
d2I

dt2
+R(t)

dI

dt
+

1

C(t)
I = E′(t).

The most frequent source of such equations as (1.15.4)–(1.15.5) comes from the
theory of Partial Differential Equations. One such indication of how (1.15.4) arises
is given in Appendix 1.A, at the end of this Chapter. The reader can find out much
more about these equations in a text on Partial Differential Equations, such as
[45]. Solutions to these equations cannot generally be given in terms of elementary
functions, such as exponential functions, but are further special functions, for which
many analytical techniques have been developed.

As with the exponential function, analyzed in §1.1, power series techniques are
very useful. We illustrate this by producing a power series

(1.15.7) x(t) =

∞∑
k−0

akt
k

for the solution to the Airy equation (1.15.5), with initial data

(1.15.8) x(0) = 1, x′(0) = 0.
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If (1.15.7) is a convergent power series, then

(1.15.9)

x′′(t) =

∞∑
k=2

k(k − 1)akt
k−2

=

∞∑
k=0

(k + 2)(k + 1)ak+2t
k,

while

(1.15.10) tx(t) =

∞∑
k=1

ak−1t
k.

Comparison gives the recursive formula

(1.15.11) ak+3 =
ak

(k + 3)(k + 2)
.

To get started, we note that

(1.15.12) a0 = x(0) = 1, a1 = x′(0) = 0, a2 =
1

2
x′′(0) = 0.

Thus a3ℓ+j = 0 for j = 1, 2, and we get

(1.15.13) x(t) =

∞∑
ℓ=0

αℓt
3ℓ,

where αℓ = a3ℓ is given recursively by

(1.15.14) αℓ+1 =
αℓ

(3ℓ+ 3)(3ℓ+ 2)
, α0 = 1.

The ratio test applies to show that the power series (1.15.13) converges for all t ∈ R,
yielding a solution to Airy’s equation (1.15.5), with initial data (1.15.8).

A study of power series as a technique for solving ODE in a more general setting
is given in §3.10 of Chapter 3.

Another useful tool is the Wronskian determinant, defined on a pair of functions
y1 and y2 by

(1.15.15) W (y1, y2)(t) = y1y
′
2 − y2y

′
1 = det

(
y1 y2
y′1 y′2

)
.

If y1 and y2 both solve (1.15.3) with f ≡ 0, i.e.,

(1.15.16) a(t)y′′ + b(t)y′ + c(t)y = 0,

then substituting for y′′j in

(1.15.17)
dW

dt
= y1y

′′
2 − y2y

′′
1

yields

(1.15.18)
dW

dt
= − b(t)

a(t)
W,

a useful first order linear equation for W . Note that if we have such y1 and y2,
solving (15.16) with initial condition

(1.15.19) y(t0) = α, y′(t0) = β,
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in the form y(t) = C1y1(t) + C2y2(t) involves finding C1 and C2 such that

(1.15.20)
C1y1(t0) + C2y2(t0) = α,

C1y
′
1(t0) + C2y

′
2(t0) = β,

which uniquely determines C1 and C2 precisely when W (y1, y2)(t0) ̸= 0.

In light of the existence and uniqueness statement made above (to be proved
in Chapter 4), it follows that if y1 and y2 solve (1.15.16) and have nonvanishing
Wronskian, on an interval on which a, b, and c are smooth and a is nonvanishing,
then the general solution to (1.15.16) has the form C1y1 + C2y2.

Recall that the Wronskian arose in the previous section, in the treatment of
the method of variation of parameters. This treatment is extended to a much more
general setting in Chapter 3.

Exercises

Equations of the form

(1.15.21) at2
d2x

dt2
+ bt

dx

dt
+ cx = 0

are called Euler equations.

1. Show that x(t) = tr = er log t solves (1.15.21) for t > 0 provided r satisfies

(1.15.22) ar(r − 1) + br + c = 0.

2. Show that if (1.15.22) has two distinct solutions r1 and r2, then

C1t
r1 + C2t

r2

is the general solution to (1.15.21) on t ∈ (0,∞).

3. Show that if r is a double root of (1.15.22), then

C1t
r + C2(log t)t

r

is the general solution to (1.15.21) for t ∈ (0,∞).

4. Find the coefficients ak in the power series expansion

x(t) =

∞∑
k=0

akt
k

for the solution to the Airy equation

(1.15.23)
d2x

dt2
− tx = 0,

with initial data
x(0) = 0, x′(0) = 1.

Show that this power series converges for all t.
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5. Show that the Wronskian of two solutions to the Airy equation (1.15.23) solves
the equation

dW

dt
= 0.
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1.16. Bessel’s equation

Here we construct solutions to Bessel’s equation

(1.16.1)
d2x

dt2
+

1

t

dx

dt
+
(
1− ν2

t2

)
x = 0.

This is an important equation, whose roots in partial differential equations are
discussed in Appendix 1.A. Note that if the factor (1− ν2/t2) in front of x had the
term 1 dropped, one would have the Euler equation

(1.16.2) t2x′′ + tx′ − ν2x = 0,

with solutions

(1.16.3) x(t) = t±ν ,

as seen in (1.15.21)–(1.15.22). In light of this, we are motivated to set

(1.16.4) x(t) = tνy(t),

and study the resulting differential equation for y:

(1.16.5)
d2y

dt2
+

2ν + 1

t

dy

dt
+ y = 0.

This might seem only moderately less singular than (1.16.1) at t = 0, but in fact it
has a smooth solution. To obtain it, let us note that if y(t) solves (1.16.5), so does
y(−t), hence so does y(t) + y(−t), which is even in t. Thus, we look for a solution
to (1.16.5) in the form

(1.16.6) y(t) =

∞∑
k=0

akt
2k.

Substitution into (1.16.5) yields for the left side of (1.16.5) the power series

(1.16.7)

∞∑
k=0

{
(2k + 2)(2k + 2ν + 2)ak+1 + ak

}
t2k,

assuming convergence, which we will examine shortly. From this we see that, as
long as

(1.16.8) ν /∈ {−1,−2,−3, . . . },

we can fix a0 = a0(ν) and solve recursively for ak+1, for each k ≥ 0, obtaining

(1.16.9) ak+1 = −1

4

ak
(k + 1)(k + ν + 1)

.

Given (1.16.8), this recursion works, and one can readily apply the ratio test to
show that the power series (1.16.6) converges for all t ∈ R.

We will find it useful to produce an explicit solution to the recursive formula
(1.16.9). For this, it is convenient to write

(1.16.10) ak = αkβkγk,

with

(1.16.11) αk+1 = −1

4
αk, βk+1 =

βk
k + 1

, γk+1 =
γk

k + ν + 1
.
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Clearly the first two equations have the explicit solutions

(1.16.12) αk =
(
−1

4

)k
α0, βk =

β0
k!
.

We can solve the third if we have in hand a function Γ(z) satisfying

(1.16.13) Γ(z + 1) = zΓ(z).

Indeed, the Euler gamma function Γ(z), discussed in Appendix 1.B, is a smooth
function on R\{0,−1,−2, . . . } that satisfies (1.16.13). With this function in hand,
we can write

(1.16.14) γk =
γ̃0

Γ(k + ν + 1)
,

and putting together (1.16.10)–(1.16.14) yields

(1.16.15) ak =
(
−1

4

)k ã0
k!Γ(k + ν + 1)

.

We initialize this with ã0 = 2−ν . There results the solution y(t) = Jν(t) to (16.5),
and x(t) = Jν(t) = tνJν(t) to (1.16.1), given by

(1.16.16) Jν(t) =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

( t
2

)2k+ν
.

Supplementing the regularity of Γ(z) on R\{0,−1,−2, . . . }, we will see in Appendix
1.B that

(1.16.17)

1

Γ(z)
is well defined and smooth in z ∈ R

vanishing for z ∈ {0,−1,−2, . . . }.

Consequently (1.16.16) is a valid solution to (1.16.1) for t ∈ (0,∞), for each ν ∈ R.
In fact,

(1.16.18) Jν and J−ν solve (1.16.1), for ν ∈ R.

The function Jν is called a Bessel function.

Let us examine the behavior of Jν(t) as t↘ 0. We have

(1.16.19) Jν(t) =
1

Γ(ν + 1)

( t
2

)ν
+O(tν+1), as t↘ 0.

As long as ν satisfies (1.16.8), the coefficient 1/Γ(ν + 1) is nonzero. Furthermore,

(1.16.20) J−ν(t) =
1

Γ(1− ν)

( t
2

)−ν
+O(t−ν+1), as t↘ 0,

and as long as ν /∈ {1, 2, 3, . . . }, the coefficient 1/Γ(1− ν) is nonzero. In particular,
we see that

(1.16.21)
If ν /∈ Z, Jν and J−ν are linearly independent solutions

to (16.1) on (0,∞).

In contrast to this, we have the following:

(1.16.22) If n ∈ Z, Jn(t) = (−1)nJ−n(t).
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To see this, we assume n ∈ {1, 2, 3, . . . }, and note that

(1.16.23)
1

Γ(k − n+ 1)
= 0, for 0 ≤ k ≤ n− 1.

We use this, together with the restatement of (1.16.16) that

(1.16.24) Jν(t) =

∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

( t
2

)2k+ν
,

which follows from the identity Γ(k + 1) = k!, to deduce that, for n ∈ N,

(1.16.25)

J−n(t) =

∞∑
k=n

(−1)k

Γ(k + 1)Γ(k − n+ 1)

( t
2

)2k−n
=

∞∑
ℓ=0

(−1)ℓ+n

Γ(ℓ+ 1)Γ(ℓ+ n+ 1)

( t
2

)2ℓ+n
= (−1)nJn(t).

Consequently Jν(t) and J−ν(t) are linearly independent solutions to (1.16.1) as
long as ν /∈ Z, but this fails for ν ∈ Z. We now seek a family of solutions Yν(t) to
(1.16.1) with the property that Jν and Yν are linearly independent solutions, for
all ν ∈ R. The key to this construction lies in an analysis of the Wronskian

(1.16.26) Wν(t) =W (Jν , J−ν)(t) = Jν(t)J
′
−ν(t)− J ′

ν(t)J−ν(t).

By (1.15.10), we have

(1.16.27)
dWν

dt
= −1

t
Wν ,

hence

(1.16.28) Wν(t) =
K(ν)

t
.

To evaluate K(ν), we calculate

(1.16.29)
W (Jν , J−ν) =W (tνJν , t−νJ−ν)

=W (Jν ,J−ν)−
2ν

t
Jν(t)J−ν(t).

Since Jν(t) and J−ν(t) are smooth in t, so is W (Jν ,J−ν), and we deduce from
(1.16.28)–(1.16.29) that

(1.16.30) Wν(t) = −2ν

t
Jν(0)J−ν(0).

Now, since Jν(0) = 1/2νΓ(ν + 1), we have

(1.16.31)

νJν(0)J−ν(0) =
ν

Γ(ν + 1)Γ(1− ν)

=
1

Γ(ν)Γ(1− ν)
.

An important gamma function identity, stated in Appendix 1.B, is

(1.16.32) Γ(ν)Γ(1− ν) =
π

sinπν
.
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Hence (1.16.30)–(1.16.31) yields

(1.16.33) W (Jν , J−ν)(t) = − 2

π

sinπν

t
.

This motivates the following. For ν /∈ Z, set

(1.16.34) Yν(t) =
Jν(t) cosπν − J−ν(t)

sinπν
.

Note that, by (1.16.25), numerator and denominator both vanish for ν ∈ Z. Now,
for ν /∈ Z, we have

(1.16.35)
W (Jν , Yν)(t) = − 1

sinπν
W (Jν , J−ν)(t)

=
2

πt
.

Consequently, for n ∈ Z, we set

(1.16.36) Yn(t) = lim
ν→n

Yν(t) =
1

π

[∂Jν(t)
∂ν

− (−1)n
∂J−ν(t)

∂ν

]∣∣∣
ν=n

,

and we also have (1.16.35) for ν ∈ Z. The functions Yν are called Bessel functions
of the second kind.

Another construction of a solution to accompany Jn(t) is given in Chapter 3,
(3.11.65)–(3.11.79).

We end this section with the following integral formula for Jν(t), which plays
an important role in further investigations, such as the behavior of Jν(t) for large
t.

Proposition 1.16.1. If ν > −1/2,

(1.16.37) Jν(t) =
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− s2)ν−1/2eist ds.

Proof. To verify (1.16.37), we replace eist by its power series, integrate term by
term, and use some identities from Appendix 1.B. To begin, the integral on the
right side of (1.16.37) is equal to

(1.16.38)

∞∑
k=0

1

(2k)!

∫ 1

−1

(ist)2k(1− s2)ν−1/2 ds.

The identity (1.B.17) implies

(1.16.39)

∫ 1

−1

s2k(1− s2)ν−1/2 ds =
Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
,

so the right side of (1.16.37) equals

(1.16.40)
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∞∑
k=0

1

(2k)!
(it)2k

Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
.

As seen in (1.B.7), we have

(1.16.41) Γ
(1
2

)
(2k)! = 22kk! Γ

(
k +

1

2

)
,
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so (1.16.40) is equal to

(1.16.42)
( t
2

)ν ∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

( t
2

)2k
,

which agrees with our formula (1.16.16) for Jν(t). �

Exercises

1. Show that the Bessel functions Jν satisfy the following recursion relations:

d

dt

(
tνJν(t)

)
= tνJν−1(t),

d

dt

(
t−νJν(t)

)
= −t−νJν+1(t),

or equivalently

Jν+1(t) = −J ′
ν(t) +

ν

t
Jν(t),

Jν−1(t) = J ′
ν(t) +

ν

t
Jν(t).

2. Show that J−1/2(t) =
√
2/π cos t, and deduce that

J−1/2(t) =

√
2

πt
cos t, J1/2(t) =

√
2

πt
sin t.

Deduce from Exercise 1 that, for n ∈ Z+,

Jn+1/2(t) = (−1)n
{ n∏
j=1

( d
dt

− j − 1/2

t

)} sin t√
2πt

,

J−n−1/2(t) =
{ n∏
j=1

( d
dt

− j − 1/2

t

)} cos t√
2πt

.

Hint. The differential equation (1.16.5) for J−1/2 is y′′ + y = 0. Since J−1/2(t)
is even in t, J−1/2(t) = C cos t, and the evaluation of C comes from J−1/2(0) =√
2/Γ(1/2) =

√
2/π, thanks to (1.B.6).

3. Show that the functions Yν satisfy the same recursion relations as Jν , i.e.,

d

dt

(
tνYν(t)

)
= tνYν−1(t),

d

dt

(
t−νYν(t)

)
= −t−νYν+1(t).

4. The Hankel functions H
(1)
ν (t) and H

(2)
ν (t) are defined to be

H(1)
ν (t) = Jν(t) + iYν(t), H(2)

ν (t) = Jν(t)− iYν(t).

Show that they satisfy the same recursion relations as Jν , i.e.,

d

dt

(
tνH(j)

ν (t)
)
= tνH

(j)
ν−1(t),

d

dt

(
t−νH(j)

ν (t)
)
= −t−νH(j)

ν+1(t),

for j = 1, 2.
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5. Show that

H
(1)
−ν (t) = eπiνH(1)

ν (t), H
(2)
−ν (t) = e−πiνH(2)

ν (t).

6. Show that Y1/2(t) = −J−1/2(t), and deduce that

H
(1)
1/2(t) = −i

√
2

πt
eit, H

(2)
1/2(t) = i

√
2

πt
e−it.
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1.17. Higher order linear equations

A linear differential equation of order n has the form

(1.17.1) an(t)
dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(t)x = f(t).

If aj(t) are continuous for t in an interval I containing t0, and an(t) is nonvanishing
on this interval, one has a unique solution to (1.17.1) given an initial condition of
the form

(1.17.2) x(t0) = α0, x
′(t0) = α1, . . . , x

(n−1)(t0) = αn−1.

(As with (1.15.1)–(1.15.2), this also follows from a general result that will be es-
tablished in Chapter 4.) If aj(t) are all constant, the equation (1.17.1) has the
form

(1.17.3) an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a0x = f(t).

It is homogeneous if f ≡ 0, in which case one has

(1.17.4) an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a0x = 0.

We assume an ̸= 0.

Methods developed in §§1.9–1.10 have natural extensions to (1.17.4) and (1.17.3).
The function x(t) = ert solves (1.17.4) provided r satisfies the characteristic equa-
tion

(1.17.5) anr
n + an−1r

n−1 + · · ·+ a0 = 0.

The fundamental theorem of algebra guarantees that (1.17.5) has n roots, i.e., there
exist r1, . . . , rn ∈ C such that

(1.17.6) anr
n + an−1r

n−1 + · · ·+ a0 = an(r − r1) · · · (r − rn).

A proof of this theorem is given in §2.C of Chapter 2. These roots r1, . . . , rn may
or may not be distinct. If they are distinct, the general solution to (1.17.4) has the
form

(1.17.7) x(t) = C1e
r1t + · · ·+ Cne

rnt.

If rj is a root of multiplicity k, one has solutions to (1.17.4) of the form

(1.17.8) C1e
rjt + C2te

rjt + · · ·+ Ckt
k−1erjt.

This observation can be used to yield a fresh perspective on what makes the calcu-
lations in §1.10 work. Consider for example the equation

(1.17.9) ax′′ + bx′ + cx = eκt.

The right side solves the equation (d/dt−κ)eκt = 0, so any solution to (1.17.9) also
solves

(1.17.10)
( d
dt

− κ
)(
a
d2

dt2
+ b

d

dt
+ c
)
x = 0,

a homogeneous equation whose characteristic polynomial is

(1.17.11) q(r) = (r − κ)(ar2 + br + c) = (r − κ)p(r).



76 1. Single differential equations

If κ is not a root of p(r), then certainly (1.17.9) has a solution of the form Aeκt. If
κ is a root of p(r), then it is a double (or, perhaps, triple) root of q(r), and (1.16.8)
applies, leading one to (1.10.17) or (1.10.25).

One can also extend the method of variation of parameters to higher order
equations (1.17.3), though the details get grim.

The equations (1.17.1)–(1.17.4) can each be recast as n× n first order systems
of differential equations, and all the results on these equations are special cases of
results to be covered in Chapter 3, so we will say no more here, except to advertise
that this transformation leads to a much simplified approach to the method of
variation of parameters.

Exercises

1. Assume the existence and uniqueness results for the solution to (1.17.1) stated
in the first paragraph of this section. Show that there exist n solutions uj to

an(t)u
(n)
j (t) + an−1(t)u

(n−1)(t) + · · ·+ a0(t)uj(t) = 0

on I such that every solution to (1.17.1) with f ≡ 0 can be written uniquely in the
form

x(t) = C1u1(t) + · · ·+ Cnun(t).

For general continuous f , let xp be a particular solution to (1.17.1). Show that if
x(t) is an arbitrary solution to (1.17.1), then there exist unique constants Cj , 1 ≤
j ≤ n, such that

x(t) = xp(t) + C1u1(t) + · · ·+ Cnun(t).

This is called the general solution to (1.17.1).

Hint. Require u
(k−1)
j (t0) = δjk, 1 ≤ k ≤ n, where δjk = 1 for j = k, 0 for j ̸= k.

2. Find the general solution to each of the following equations for x = x(t).

(a)

d4x

dt4
− x = 0.

(b)

d3x

dt3
− x = 0.

(c)

x′′′ − 2x′′ − 4x′ + 8x = 0.

(d)

x′′′ − 2x′′ + 4x′ − 8x = 0.

(e)

x′′′ + x = et.
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3. For each of the cases (a)–(e) in Exercise 1 of §1.10, produce a third or fourth
order homogeneous differential equation solved by x(t).

Exercises 4–6 will exploit the fact that if the characteristic polynomial (1.17.6)
factors as stated there, then the left side of (1.17.4) is equal to

an

( d
dt

− r1

)
· · ·
( d
dt

− rn

)
x = an

n∏
j=1

( d
dt

− rj

)
x.

4. Show that ( d
dt

− rj

)
(ertu) = ert

( d
dt

− rj + r
)
u,

and more generally
n∏
j=1

( d
dt

− rj

)
(ertu) = ert

n∏
j=1

( d
dt

− rj + r
)
u.

5. Suppose rj is a root of multiplicity k of (1.17.6). Show that x(t) = erjtu solves
(1.17.4) if and only if ∏

{ℓ:rℓ ̸=rj}

( d
dt

− rℓ + rj

)( d
dt

)k
u = 0.

Use this to show that functions of the form (1.17.8) solve (1.17.4).

6. In light of Exercise 5, use an inductive argument to show the following. Assume
the roots {rj} of (1.17.6) are

rν , with multiplicity kν , 1 ≤ ν ≤ m, k1 + · · ·+ km = n.

Then the general solution to (1.17.4) is a linear combination of

tℓνerνt, 0 ≤ ℓν ≤ kν − 1, 1 ≤ ν ≤ m.
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1.18. The Laplace transform

The Laplace transform provides a tool to treat nonhomogeneous differential equa-
tions of the form

(1.18.1) cn
dnf

dtn
+ cn−1

dn−1f

dtn−1
+ · · ·+ c0f(t) = g(t),

for t ≥ 0, with initial data

(1.18.2) f(0) = a0, . . . , f
(n−1)(0) = an−1,

for certain classes of functions g. It is defined as follows. Assume f : R+ → C is
integrable on [0, R] for all R <∞, and satisfies

(1.18.3)

∫ ∞

0

|f(t)|e−at dt <∞, ∀ a > A,

for some A ∈ R. We define the Laplace transform of f by

(1.18.4) Lf(s) =
∫ ∞

0

f(t)e−st dt, Re s > A.

By our hypotheses, this integral is absolutely convergent for each s in the half-plane
HA = {s ∈ C : Re s > A}. For our current purposes, it will suffice to take s real,
in (A,∞). Note that, for such s,

(1.18.5)
d

ds
Lf(s) = Lg(s), g(t) = −tf(t).

If we assume that f ′ is continuous on [0,∞) and

(1.18.6) |f(t)|+ |f ′(t)| ≤ Cεe
(A+ε)t, for t ≥ 0,

for each ε > 0, we can integrate by parts and get

(1.18.7) Lf ′(s) = sLf(s)− f(0),

and similar hypotheses for higher derivatives of f gives

(1.18.8) Lf (k)(s) = skLf(s)− sk−1f(0)− · · · − f (k−1)(0).

Hence, if f satisfies an ODE of the form (1.18.1)–(1.18.2) and if f, f ′, . . . f (n−1) all
satisfy (1.18.6), and g satisfies (1.18.3), we have

(1.18.9) p(s)Lf(s) = Lg(s) + q(s),

with

(1.18.10)
p(s) = cns

n + cn−1s
n−1 + · · ·+ c0,

q(s) = cn(a0s
n−1 + · · ·+ an−1) + · · ·+ c1a0.

If all the roots of p(s) satisfy Re s < B, we have

(1.18.11) Lf(s) = Lg(s) + q(s)

p(s)
, Re s > C = max(A,B).

Making use of (1.18.11) to solve (1.18.1)–(1.18.2) brings in two problems, which we
now state.
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I. The recognition problem. Given the right side of (1.18.11), i.e., given

(1.18.12)
Lg(s) + q(s)

p(s)
= R(s),

find a function f1 : [0,∞) → C, such that

(1.18.13) Lf1(s) = R(s), for Re s > C.

II. The uniqueness problem. Given f and f1 : [0,∞) → C, both satisfying
(1.18.3), one wants to know that

(1.18.14) Lf(s) = Lf1(s), ∀ s > A =⇒ f = f1 on [0,∞).

The uniqueness problem has a satisfactory solution. As long as f and f1 satisfy
the hypotheses just stated, the result (1.18.14) is true. The proof of this can
be found in §3.3 of [47]. In addition there are inversion formulas. Here is one,
established in §3.3 of [47].

Proposition 1.18.1. Assume f and f ′ are continuous on [0,∞), and

(1.18.15) |f(t)|+ |f ′(t)| ≤ CeAt, t ≥ 0.

Then, for t > 0,

(1.18.16) tf(t) = − 1

2π

∫ ∞

−∞

d

ds
Lf(B + iξ)et(B+iξ) dξ,

as long as B > A, with an absolutely convergent integral on the right side.

In light of the uniqueness, if f satisfies (1.18.3), we say

(1.18.17) g = Lf =⇒ f = L−1g,

and call L−1 the inverse Laplace transform.

Generally speaking, for functions R(s) that arise in (1.18.12), calculation of the
integral

(1.18.18)

∫ ∞

−∞
R′(B + iξ)eitξ dξ

is not so easy, though methods of residue calculus, discussed in §4.1 of [47] can be
effective. For the purpose of using (1.18.11) to solve (1.18.1)–(1.18.2), by finding f
that satisfies

(1.18.19) Lf(s) = R(s),

with R(s) as in (1.18.12), it is useful to have a collection of functions that are known
Laplace transforms, in order to solve the recognition problem.

To start our collection, we consider the Laplace transform of eat:

(1.18.20)

∫ ∞

0

eate−st dt =

∫ ∞

0

e−(s−a)t dt =
1

s− a
.
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Table 1. Table of Laplace transforms

f(t) Lf(s)
(a) sin at a/(s2 + a2)
(b) cos at s/(s2 + a2)
(c) sinh at a/(s2 − a2)
(d) cosh at s/(s2 − a2)

If a is real, this is valid for Re s > a. However, using results from §1.1, we find it
useful to note that (1.18.20) holds for complex a, as long as Re s > Re a. We can
apply this to

(1.18.21) f(t) = cos at =
1

2
(eiat + e−iat),

for a ∈ R, to get

(1.18.22)
Lf(s) = 1

2

( 1

s− ia
+

1

s+ ia

)
=

s

s2 + a2
.

Similar techniques yield the table of Laplace transforms presented in Table 1.

If a ∈ R, the range of validity of (a)–(b) is Re s > 0, and that of (c)–(d) is
Re s > |a|.

Laplace transforms of other functions, such as e−bt cos at, etc., can be identified
via the identity

(1.18.23) L(e−btf)(s) = Lf(s+ b).

Also, one can turn (1.18.5) around, to write

(1.18.24) L(tf)(s) = − d

ds
Lf(s),

and, inductively,

(1.18.25) L(tnf)(s) = (−1)n
dn

dsn
Lf(s).

For example,

(1.18.26)

L(tneat)(s) = (−1)n
dn

dsn
(s− a)−1

=
n!

(s− a)n+1
,

for a ∈ C, Re s > Re a. In particular,

(1.18.27) f(t) = tn =⇒ Lf(s) = n! s−(n+1).

Of course, by (1.18.23), the result (1.18.26) follows from its special case (1.18.27).
A natural generalization of (1.18.16) arises from taking

(1.18.28) fz(t) = tz−1, z > 0.
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We get

(1.18.29)

Lfz(s) =
∫ ∞

0

e−sttz−1 dt

=
(∫ ∞

0

e−ttz−1 dt
)
s−z

= Γ(z)s−z,

where

(1.18.30) Γ(z) =

∫ ∞

0

e−ttz−1 dt, z > 1,

is the Gamma function, which plays a role in §1.16, via (1.16.13)–(1.16.16), and is
treated in Appendix 1.B. Let us note that (1.18.24) implies

(1.18.31) Lfz+1f(s) = − d

ds
Lfz(s),

which in view of (1.18.29) is equivalent to the identity

(1.18.32) Γ(z + 1) = zΓ(z).

Also comparison of (1.18.27) and (1.18.29), with z = n+ 1, yields

(1.18.33) Γ(n+ 1) = n!

We can obtain another Laplace transform identity by applying d/dz to (18.28),
noting that, since s−z = e−z log s,

(1.18.34)
d

dz
s−z = −(log s)s−z, s > 0,

with an analogous formula for (d/dz)tz−1:

(1.18.35)
d

dz
tz−1 = (log t)tz−1.

Hence (18.28) yields

(1.18.36) f(t) = (log t)tz−1 ⇒ Lf(s) =
(
Γ′(z)− Γ(z) log s

)
s−z.

In particular,

(1.18.37)

f(t) = log t⇒ Lf(s) = (Γ′(1)− log s)s−1

= −γ + log s

s
,

where γ = −Γ′(1) is known as Euler’s constant. Taking s = 1 in (1.18.37), we have
the formula

(1.18.38) γ = −
∫ ∞

0

(log t)e−t dt.

Collecting these results, we complement the table of Laplace transforms compiled
in Table 1 with that in Table 2. Note that (h) follows from (e), via (1.18.23). One
has similar variants of (f)–(g).

Another function to consider is the “impulse function”

(1.18.39)
χI(t) = 1, if t ∈ I,

0, if t /∈ I.
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Table 2. Further Laplace transforms

f(t) Lf(s)
(e) tz−1 Γ(z)s−z

(f) log t −(γ + log s)/s
(g) (log t)tz−1 (Γ′(z)− Γ(z) log s)/sz

(h) tz−1eat Γ(z)(s− a)−z

where I = [a, b] is an interval, with 0 ≤ a < b <∞. We have

(1.18.40) LχI(s) =
∫ b

a

e−st dt =
e−as − e−bs

s
.

Let us apply the Laplace transform method to the following initial value prob-
lem. Take k, a, α0, α1 ∈ R, and consider

(1.18.41) f ′′(t) + k2f(t) = cos at, f(0) = α0, f
′(0) = α1.

From (1.18.8),

(1.18.42) Lf ′′(s) = s2Lf(s)− α0s− α1,

and since L(cos at)(s) = s/(s2 + a2), (1.18.11) becomes

(1.18.43) Lf(s) = s

(s2 + k2)(s2 + a2)
+
α0s+ α1

s2 + k2
.

The last term on the right is the Laplace transform of

(1.18.44) α0 cos kt+
α1

k
sin kt.

It remains to write the first term on the right side of (1.18.43) as a Laplace trans-
form. For this, we apply the method of partial fractions. To start, we try

(1.18.45)
s

(s2 + k2)(s2 + a2)
=
αs+ β

s2 + a2
+

γs+ δ

s2 + k2
,

with unknowns α, β, γ, δ. Multiplying through by (s2 + k2)(s2 + a2) and equat-
ing coefficients of various powers of s leads to four linear equations in these four
unknowns. Two of them yield α = −γ and β = −δ, and then the other two become

(1.18.46) (k2 − a2)α = 1, (k2 − a2)β = 0.

If k2 ̸= a2, these are uniquely solvable, for α = (k2 − a2)−1, β = 0, and (1.18.49)
becomes

(1.18.47)
s

(s2 + k2)(s2 + a2)
=

1

k2 − a2

( s

s2 + a2
− s

s2 + k2

)
.

This is the Laplace transform of

(1.18.48) φa,k(t) =
1

k2 − a2
(cos at− cos kt).

Then the solution to the differential equation (1.18.41) is

(1.18.49) f(t) = φa,k(t) + α0 cos kt+
α1

k
sin kt.
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This approach fails for k2 = a2, paralleling the situation we encountered in
examining (1.11.4). One way to treat this exceptional case is to pass to the limit
in (1.18.48), obtaining

(1.18.50)

φk,k(t) = lim
a→k

φa,k(t)

= lim
a→k

1

k + a

cos at− cos kt

k − a

=
t

2k
sin kt.

Another approach is to refine the method of partial fractions. In lieu of (1.18.45),
we have

(1.18.51)

s

(s2 + k2)2
=

s

(s+ ik)2(s− ik)2

=
i

4k

( 1

(s+ ik)2
− 1

(s− ik)2

)
.

Using (1.18.26), with n = 1, we have

(1.18.52) L−1
( 1

(s± ik)2

)
(t) = te∓ikt.

Hence the right side of (1.18.51) is the Laplace transform of

(1.18.53)
i

4k
(te−ikt − teikt) =

t

2k
sin kt,

and again we obtain the conclusion of (1.18.50), from a different perspective.

In light of this analysis, and recalling (1.18.12), we are motivated to compute
the inverse Laplace transform of functions of the form q(s)/p(s), where p(s) is a
polynomial of degree n, say

(1.18.54) p(s) = sn + cn−1s
n−1 + · · ·+ c0,

and q(s) is a polynomial of degree ≤ n− 1. The polynomial p(s) has complex roots
r1, . . . , rm, of multiplicity k1, . . . , km, and we can write (1.18.54) as

(1.18.55) p(s) = (s− r1)
k1 · · · (s− rm)km , k1 + · · ·+ km = n.

This is a consequence of the fundamental theorem of algebra, which is proved in
Appendix 2.C of Chapter 2. The following is an incisive result on the method of
partial fractions.

Proposition 1.18.2. If p(s) is a polynomial of the form (1.18.55), with {r1, . . . , rm}
distinct, and if q(s) is a polynomial of degree ≤ n − 1, then there exist unique
ajℓ ∈ C, for 1 ≤ ℓ ≤ m, 1 ≤ j ≤ kℓ, such that

(1.18.56)
q(s)

p(s)
=

m∑
ℓ=1

kℓ∑
j=1

ajℓ
(s− rℓ)j

.

Proof. We use some concepts developed in Chapter 2. The set of collections (ajℓ)
of the form

{ajℓ ∈ C : 1 ≤ j ≤ kℓ, 1 ≤ ℓ ≤ m}
forms a vector space V0, of dimension k1 + · · · + km = n. Meanwhile, the space
Pn−1 of polynomials q(s) of degree ≤ n − 1 is also a vector space of dimension n.
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Now the correspondence in (1.18.56) yields a well defined linear map T from V0 to
Pn−1, given by T (ajℓ) = q(s), the numerator in the left side of (1.18.56), and one
can verify that this map is one-to-one. Hence (cf. Corollary 2.3.7 of Chapter 2),
this map is also onto, and this gives Proposition (1.18.2). �

Given the representation (1.18.56), we deduce from (1.18.26) that

(1.18.57) L−1
(q
p

)
(t) =

m∑
ℓ=1

kℓ∑
j=1

ajℓ
(j − 1)!

tj−1erℓt.

Taking q(s) = 1, we obtain a function φ(t), of the form (1.18.57), such that

(1.18.58) Lφ(s) = 1

p(s)
.

Then the solution f(t) to (1.18.1)–(1.18.2) is equal to L−1(q/p)(t) plus f0(t), sat-
isfying

(1.18.59) Lf0(s) =
Lg(s)
p(s)

= Lφ(s)Lg(s).

The following result provides a useful integral formula for f0.

Proposition 1.18.3. Let φ and g satisfy (1.18.3), and set

(1.18.60) φ ∗ g(t) =
∫ t

0

φ(t− τ)g(τ) dτ.

Then, for s > A,

(1.18.61) L(φ ∗ g)(s) = Lφ(s)Lg(s).

Proof. Given (1.18.60), we have

(1.18.62)

L(φ ∗ g)(s) =
∫ ∞

0

e−st
∫ t

0

φ(t− τ)g(τ) dτ dt

=

∫ ∞

0

∫ t

0

e−s(t−τ)e−sτφ(t− τ)g(τ) dτ dt

=

∫ ∞

0

∫ ∞

τ

e−s(t−τ)e−sτφ(t− τ)g(τ) dt dτ

= Lφ(s)
∫ ∞

0

e−sτg(τ) dτ

= Lφ(s)Lg(s),
as asserted. �

Recall that the method of variation of parameters, discussed in §1.14, also
leads to an integral formula involving an integral over [0, t]. In fact, the method of
variation of parameters and the use of the Laplace transform discussed here can both
be understood as special cases of a general method, involving Duhamel’s formula,
arising when the equations are recast as first-order systems. This is explained in
§3.9 of Chapter 3
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Exercises

1. Compute the inverse Laplace transform of the following functions.

(a)
1

s4 − 1
,

(b)
s+ 1

s3 + 3s2 + 2s
.

2. Use the Laplace transform to solve the following initial value problems.

(a) f ′′(t) + 3f ′(t) + 2f(t) = e−t sin t, f(0) = 0, f ′(0) = 1,

(b) f (4)(t)− f(t) = sin t, f (j)(0) = 0 for 0 ≤ j ≤ 3.

3. Show that

f(t) =
sin t

t
=⇒ Lf(s) = π

2
− tan−1 s.

Hint. By (1.18.5),
d

ds
Lf(s) = −L(tf)(s) = − 1

s2 + 1
.

Integrate, and find the constant of integration using

lim
s→∞

Lf(s) = 0.

4. Compute the Laplace transform of

1− cos t

t2
.
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1.A. The genesis of Bessel’s equation: PDE in polar coordinates

Bessel functions, the subject of §1.16, arise in the natural generalization of the
equation

(1.A.1)
d2u

dx2
+ k2u = 0,

with solutions sin kx and cos kx, to partial differential equations

(1.A.2) ∆u+ k2u = 0,

where ∆ is the Laplace operator, acting on a function u on a domain Ω ⊂ Rn by

(1.A.3) ∆u =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

We can eliminate k2 from (1.A.2) by scaling. Set u(x) = v(kx). Then equation
(1.A.2) becomes

(1.A.4) (∆ + 1)v = 0.

We specialize to the case n = 2 and write

(1.A.5) ∆u =
∂2u

∂x2
+
∂2u

∂y2
.

For a number of special domains Ω ⊂ R2, such as circular domains, annular do-
mains, angular sectors, and pie-shaped domains, it is convenient to switch to polar
coordinates (r, θ), related to (x, y)-coordinates by

(1.A.6) x = r cos θ, y = r sin θ.

In such coordinates,

(1.A.7) ∆v =
( ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
v.

A special class of solutions to (1.A.4) has the form

(1.A.8) v = w(r)eiνθ.

By (1.A.7), for such v,

(1.A.9) (∆ + 1)v =
[d2w
dr2

+
1

r

dw

dr
+
(
1− ν2

r2

)
w
]
eiνθ,

so (1.A.4) holds if and only if

(1.A.10)
d2w

dr2
+

1

r

dw

dr
+
(
1− ν2

r2

)
w = 0.

This is Bessel’s equation (1.16.1) (with different variables).

Note that if v solves (1.A.4) on Ω ⊂ R2 and if Ω is a circular domain or an
annular domain, centered at the origin, then ν must be an integer. However, if Ω
is an angular sector or a pie-shaped domain, with vertex at the origin, ν need not
be an integer.

In n dimensions, the Laplace operator (1.A.3) can be written

(1.A.11) ∆v =
( ∂2
∂r2

+
n− 1

r

∂

∂r
+

1

r2
∆S

)
v,
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where ∆S is a second-order differential operator acting on functions on the unit
sphere Sn−1 ⊂ Rn, called the Laplace-Beltrami operator. Generalizing (1.A.8), one
looks for solutions to (1.A.4) of the form

(1.A.12) v(x) = w(r)ψ(ω),

where x = rω, r ∈ (0,∞), ω ∈ Sn−1. Parallel to (1.A.9), for such v,

(1.A.13) (∆ + 1)v =
[d2w
dr2

+
n− 1

r

dw

dr
+
(
1− ν2

r2

)
w
]
ψ(ω),

provided

(1.A.14) ∆Sψ = −ν2ψ.
The equation

(1.A.15)
d2w

dr2
+
n− 1

r

dw

dr
+
(
1− ν2

r2

)
w = 0

is a variant of Bessel’s equation. If we set

(1.A.16) φ(r) = rn/2−1w(r),

then (1.A.15) is converted into the Bessel equation

(1.A.17)
d2φ

dr2
+

1

r

dφ

dr
+
(
1− µ2

r2

)
φ = 0, µ2 = ν2 +

(n− 2

2

)2
.

The study of solutions to (1.A.14) gives rise to the study of spherical harmonics,
and from there to other special functions, such as Legendre functions.

The search for solutions of the form (1.A.12) is a key example of the method
of separation of variables for partial differential equations. It arises in numerous
other contexts. Here are a couple of other examples:

(1.A.18) (∆− |x|2 + k2)u = 0,

and

(1.A.19)
(
∆+

K

|x|
+ k2

)
u = 0.

The first describes the n-dimensional quantum harmonic oscillator. The second (for
n = 3) describes the quantum mechanical model of a hydrogen atom, according to
Schrödinger. Study of these equations leads to other special functions defined by
differential equations, such as Hermite functions and Whittaker functions.

Much further material on these topics can be found in books on partial differ-
ential equations, such as [45] (particularly Chapters 3 and 8).
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1.B. Euler’s gamma function

We saw in (1.16.13) the need for a function Γ(z) satisfying

(1.B.1) Γ(z + 1) = zΓ(z).

Here we produce a function that has this property, namely

(1.B.2) Γ(z) =

∫ ∞

0

e−ttz−1 dt, for z > 0.

To check (1.B.1) for z > 0, we apply integration by parts.

(1.B.3)

Γ(z + 1) =

∫ ∞

0

e−ttz dt

= −
∫ ∞

0

( d
dt
e−t
)
tz dt

=

∫ ∞

0

e−t
( d
dt
tz
)
dt

= zΓ(z),

since dtz/dt = ztz−1.

The integral (1.B.2) is readily evaluated for z = 1, yielding

(1.B.4) Γ(1) = 1.

Then repeated use of (1.B.3) gives

(1.B.5) Γ(k + 1) = k!, for k ∈ Z+.

There is also a useful formula for Γ(1/2), given by

(1.B.6)

Γ
(1
2

)
=

∫ ∞

0

e−tt−1/2 dt

= 2

∫ ∞

0

e−x
2

dx

=
√
π,

the last identity by (1.2.26). Then repeated use of (1.B.3) gives

(1.B.7)
Γ
(
k +

1

2

)
=

2k − 1

2

2k − 3

2
· · · 1

2
Γ
(1
2

)
= 2−2k (2k)!

k!

√
π.

Having (1.B.1), we can extend Γ(z) to be well defined and smooth on R \
{0,−1,−2, . . . }. To see this, rewrite (1.B.1) as

(1.B.8) Γ(z) =
1

z
Γ(z + 1).

Having Γ(z) defined and smooth on z ∈ (0,∞), by (1.B.2), we see that the right
side of (1.B.8) is defined and smooth for z ∈ (−1,∞), except for a pole at z = 0.
This extends Γ(z) to z ∈ (−1,∞) \ {0}. Then the right side of (1.B.8) is defined
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and smooth for z ∈ (−2,∞), except for poles at z = 0 and z = −1. This argument
can be continued. Let us further note that, by (1.B.2),

(1.B.9) Γ(z) > 0 for z > 0,

so 1/Γ(z) is defined and smooth for z ∈ (0,∞). Rewriting (1.B.8) as

(1.B.10)
1

Γ(z)
=

z

Γ(z + 1)

and arguing as above, we have 1/Γ(z) defined and smooth for all z ∈ R, vanishing
precisely for z ∈ {0,−1,−2, . . . }.

We derive another identity that is useful for the treatment of Bessel functions
in §1.16, involving the beta function B(x, y), defined for x, y > 0 by

(1.B.11)

B(x, y) =

∫ 1

0

sx−1(1− s)y−1 ds

=

∫ ∞

0

(1 + u)−x−yux−1 du,

the latter identity via the change of variable u = s/(1− s). Our asserted identity is

(1.B.12) B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

To prove this, note that since

(1.B.13) Γ(z)p−z =

∫ ∞

0

e−pttz−1 dt,

we have

(1.B.14) (1 + u)−x−y =
1

Γ(x+ y)

∫ ∞

0

e−(1+u)ttx+y−1 dt,

so

(1.B.15)

B(x, y) =
1

Γ(x+ y)

∫ ∞

0

e−ttx+y−1

∫ ∞

0

e−utux−1 du dt

=
Γ(x)

Γ(x+ y)

∫ ∞

0

e−tty−1 dt

=
Γ(x)Γ(y)

Γ(x+ y)
,

as asserted.

For closer contact with (1.16.38), note that setting s = t2 in (1.B.11) gives

(1.B.16) B(x, y) = 2

∫ 1

0

t2x−1(1− t2)y−1 dt,

so, if k ∈ Z+ and ν > −1/2,

(1.B.17) B
(
k +

1

2
, ν +

1

2

)
=

∫ 1

−1

t2k(1− t2)ν−1/2 dt.

There is much more that can be said about the gamma function, such as that
it extends to C \ {0,−1,−2, . . . }, with 1/Γ(z) defined and smooth for all z ∈ C
(which permits one to define Jν(z) for complex ν). We refer the reader to [28],
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[47], §4.3, or [45], Chapter 3, Appendix A for further material. We mention the
following identity, of use in (1.16.33), whose proof can be found in these references:

(1.B.18) Γ(ν)Γ(1− ν) =
π

sinπν
.

Note that both sides are defined and smooth for ν ∈ R \Z, with singularities on Z.
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1.C. Differentiating power series

Here we establish continuity and differentiability properties for a power series

(1.C.1) f(t) =

∞∑
k=0

akt
k.

We allow the coefficients ak to be complex numbers. To start, we assume this series
converges for some nonzero t = t0. This implies that the terms in this series are
uniformly bounded for t = t0:

(1.C.2) |aktk0 | ≤ B <∞, ∀k.

The following result establishes convergence for all smaller |t|.

Proposition 1.C.1. Given (1.C.2), the series (1.C.1) converges absolutely for
|t| < T = |t0|.

Proof. Pick S ∈ (0, T ), and assume |t| ≤ S. Then

(1.C.3) |aktk| ≤ |akT k|
(S
T

)k
≤ Brk,

where r = S/T ∈ (0, 1). Hence, for each n ∈ N, if |t| ≤ S,

(1.C.4)

n∑
k=0

|aktk| ≤ B

n∑
k=0

rk.

Now we can evaluate the geometrical series on the right:

(1.C.5)

Sn =

n∑
k=0

rk ⇒ rSn =

n+1∑
k=1

rk

⇒ (1− r)Sn = 1− rn+1

⇒ Sn =
1− rn+1

1− r
.

Consequently,

(1.C.6)

0 < r < 1 ⇒ rn+1 ↘ 0 as n→ ∞

⇒ Sn ↗ 1

1− r
as n→ ∞.

This establishes the asserted absolute convergence. �

Similar arguments also lead to the following.

Proposition 1.C.2. In the setting of Proposition 1.C.1, if 0 < S < T , the series
(1.C.1) converges uniformly on |t| ≤ S.

Proof. For each n ∈ N, write

(1.C.7)
f(t) =

n∑
k=0

akt
k +

∞∑
k=n+1

akt
k

= Sn(t) +Rn(t).
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The claim is that Sn(t) → f(t), uniformly on |t| ≤ S. Indeed, for |t| ≤ S,

(1.C.8)

|Rn(t)| ≤
∞∑

k=n+1

|aktk|

≤ B

∞∑
k=n+1

r ∗ k

= Brn+1
∞∑
ℓ=0

rℓ

= B
rn+1

1− r
,

yielding |Rn(t)| → 0 uniformly for |t| ≤ S. �

Before continuiug our study of the power series (1.C.1), we pause to note that
calculations above involving the geometric series (1.C.8) enable us to establish the
following result, known as the ratio test.

Proposition 1.C.3. Let ak ∈ C and assume there exist N < ∞ and r < 1 such
that

(1.C.9) k ≥ N =⇒
∣∣∣ak+1

ak

∣∣∣ ≤ r.

Then the series
∑
k≥0 ak is absolutely convergent.

Proof. From (1.C.9) we have, by induction,

(1.C.10) |aN+ℓ| ≤ rℓ|aN |.
Hence

(1.C.11)

∞∑
ℓ=0

|aN+ℓ| ≤ |aN |
∞∑
ℓ=0

rℓ

=
|aN |
1− r

.

This yields absolute convergence. �

We now state the main result of this appendix.

Proposition 1.C.4. If the power series (1.C.1) converges for |t| < R, then f is
differentiable in t ∈ (−R,R), and, for such t,

(1.C.12) f ′(t) =

∞∑
k=1

kakt
k−1.

Proof. It suffices to show that (1.C.12) holds for |t| ≤ S, for each S < R. Pick T ∈
(S,R), and note that the estimate (1.C.3) holds, when |t| ≤ S, with r = S/T < 1.
Hence, for |t| ≤ S,

(1.C.13)
|kaktk−1| ≤ k

T
|akT k|

(S
T

)k−1

≤ B

T
krk−1.
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Now the ratio test applies to
∑
k≥1 kr

k−1, given r < 1, so the series

(1.C.14) g(t) =

∞∑
k=1

kakt
k−1

is absolutely convergent, and also uniformly convergent, for |t| ≤ S. It remains to
show that g(t) = f ′(t) for |t| ≤ S, or equivalently that

(1.C.15)

∫ t

0

g(s) ds = f(t)− f(0).

This is a consequence of the following result. �

Proposition 1.C.5. Given bk ∈ C, assume

(1.C.16) g(t) =

∞∑
k=0

bkt
k

is absolutely convergent, for |t| < R. Then, for |t| < R,

(1.C.17)

∫ t

0

g(s) ds =

∞∑
k=0

bk
k + 1

tk+1.

Proof. It is elementary that the series on the right side of (1.C.17) converges for
|t| < R. Call the sum F (t). As before, pick S < T < R. For n ∈ N, write

(1.C.18)
g(t) =

n∑
k=0

bkt
k +

∞∑
k=n+1

bkt
k

= gn(t) +Rn(t).

As in Proposition 1.C.2, we have gn(t) → g(t) and Rn(t) → 0, uniformly for |t| ≤ S,
especially

(1.C.19) max
|t|≤S

|Rn(t)| ≤ εn → 0.

Clearly, for |t| < R,

(1.C.20)

∫ t

0

gn(s) ds =

n∑
k=0

bk
k + 1

tk+1 → F (t),

as n→ ∞. Meanwhile,

(1.C.21)
∣∣∣∫ t

0

Rn(s) ds
∣∣∣ ≤ Rεn.

Taking n→ ∞ in (1.C.18)–(1.C.21) yields

(1.C.22)

∫ t

0

g(s) ds = F (t),

as asserted. This proves Proposition 1.C.5, so we have Proposition 1.C.4. �
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Having (1.C.12), we can iterate, computing the derivative of f ′(t), as

(1.C.23) f ′′(t) =

∞∑
k=2

k(k − 1)ak t
k−2,

and so on,

(1.C.24) f (n)(t) =

∞∑
k=n

k(k − 1) · · · (k − n+ 1)ak t
k−n.

In particular,

(1.C.25) f (n)(0) = n! an, hence an =
f (n)(0)

n!
.

We have the following.

Proposition 1.C.6. If f(t) is given by a convergent power series (1.C.1) for |t| <
T , T > 0, then

(1.C.26) f(t) =

∞∑
k=0

f (k)(0)

k!
tk.

Frequently, one can turn this around, take a function f : (−T, T ) → R, compute
f (k)(0), and investigate whether (1.C.26) holds. Here is an important class of
functions for which this works. Take r ∈ R, and set

(1.C.27) f(t) = (1− t)−r.

We have

(1.C.28)

f ′(t) = r(1− t)−r−1,

f ′′(t) = r(r + 1)(1− t)−r−2,

...

f (n)(t) = r(r + 1) · · · (r + n− 1) (1− t)−r−n,

hence

(1.C.29) f (n)(0) = r(r + 1) · · · (r + n− 1).

Claim. For r ∈ R, we have

(1.C.30) (1− t)−r =

∞∑
k=0

r(r + 1) · · · (r + k − 1)

k!
tk, for |t| < 1.

In other words, (1.C.1) holds with

(1.C.31) ak =
r(r + 1) · · · (r + k − 1)

k!
.

Note that

(1.C.32) ak+1 =
r + k

k
ak,
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so the ratio test implies that the right side of (1.C.30) is absolutely convergent for
|t| < 1, i.e., we have a well defined continuous (and differentiable) function

(1.C.33) g(t) =

∞∑
k=0

r(r + 1) · · · (r + k − 1)

k!
tk.

Our claim is therefore that

(1.C.34) g(t) = (1− t)−r.

One approach to this is to estimate the ramainder Rn(t) in the expansion

(1.C.35) f(t) =

n∑
k=0

f (n)(0)

k!
tk +Rn(t).

A discussion of this appears in §4.3 of [49]. Here is another approach. We can
apply Proposition 1.C.4 to g(t) to obtain

(1.C.36) (1− t)g′(t) = rg(t),

and then calculate

(1.C.37)

d

dt
(1− t)rg(t) = (1− t)rg′(t)− r(1− t)r−1g(t)

= (1− t)r−1
{
(1− t)g′(t)− rg(t)

}
= 0,

and deduce (1.C.34), hence (1.C.30).

For an application of (1.C.30), with r = 1/2, see (1.6.60).

Remark. Note the parallel between the use of (1.C.37) to prove (1.C.30) and the
use of (1.1.10) to prove (1.1.13).





Chapter 2

Linear algebra

The purpose of this chapter is to provide sufficient background in linear algebra for
understanding the material of Chapter 3, on linear systems of differential equations.
Results here will also be useful for the development of nonlinear systems in Chapter
4.

In §2.1 we define the class of vector spaces (real and complex) and discuss some
basic examples, including Rn and Cn, or, as we denote them, Fn, with F = R or C.
In §2.2 we consider linear transformations between such vector spaces. In particular
we look at an m×n matrix A as defining a linear transformation A : Fn → Fm. We
define the range R(T ) and null space N (T ) of a linear transformation T : V →W .
In §2.3 we define the notion of basis of a vector space. Vector spaces with finite
bases are called finite dimensional. We establish the crucial property that any two
bases of such a vector space V have the same number of elements (denoted dim
V ). We apply this to other results on bases of vector spaces, culminating in the
“fundamental theorem of linear algebra,” that if T : V → W is linear and V is
finite dimensional, then dimN (T ) + dimR(T ) = dimV , and discuss some of its
important consequences.

A linear transformation T : V → V is said to be invertible provided it is one-
to-one and onto, i.e., provided N (T ) = 0 and R(T ) = V . In §2.5 we define the
determinant of such T , detT (when V is finite dimensional), and show that T is
invertible if and only if detT ̸= 0. In §2.6 we study eigenvalues λj and eigenvectors
vj of such a transformation, defined by Tvj = λjvj . Results of §2.5 imply λj is
a root of the “characteristic polynomial” det(λI − T ). Section 2.7 extends the
scope of §2.6 to a treatment of generalized eigenvectors. This topic is connected to
properties of nilpotent matrices and triangular matrices, studied in §2.8.

In §2.9 we treat inner products on vector spaces, which endow them with a
Euclidean geometry, in particular with a distance and a norm. In §2.10 we dis-
cuss two types of norms on linear transformations, the “operator norm” and the
“Hilbert-Schmidt norm.” Then, in §§2.11–2.12, we discuss some special classes of

97
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linear transformations on inner product spaces: self-adjoint, skew-adjoint, unitary,
and orthogonal transformations.

Some appendices supplement the material of this chapter, with a treatment of
the Jordan canonical form and Schur’s theorem on upper triangularization. This
material is not needed for Chapter 3, but for the interested reader it provides a
more complete introduction to linear algebra. (A great deal more on linear algebra
can be found in [48].) The third appendix gives a proof of the fundamental theorem
of algebra, that every nonconstant polynomial has complex roots. This result has
several applications in §§2.6–2.7.
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2.1. Vector spaces

The reader is most likely familiar with vectors in the plane R2 and 3-space R3. More
generally we have n-space Rn, whose elements consist of n-tuples of real numbers:

(2.1.1) v = (v1, . . . , vn).

There is vector addition; if also w = (w1, . . . , wn) ∈ Rn,

(2.1.2) v + w = (v1 + w1, . . . , vn + wn).

There is also multiplication by scalars; if a is a real number (a scalar),

(2.1.3) av = (av1, . . . , avn).

We could also use complex numbers, replacing Rn by Cn, and allowing a ∈ C in
(2.1.3). We will use F to denote R or C.

Many other vector spaces arise naturally. We define this general notion now.
A vector space over F is a set V , endowed with two operations, that of vector
addition and multiplication by scalars. That is, given v, w ∈ V and a ∈ F, then
v + w and av are defined in V . Furthermore, the following properties are to hold,
for all u, v, w ∈ V, a, b ∈ F. First there are laws for vector addition:

Commutative law : u+ v = v + u,(2.1.4)

Associative law : (u+ v) + w = u+ (v + w),(2.1.5)

Zero vector : ∃ 0 ∈ V, v + 0 = v,(2.1.6)

Negative : ∃ − v, v + (−v) = 0.(2.1.7)

Next there are laws for multiplication by scalars:

Associative law : a(bv) = (ab)v,(2.1.8)

Unit : 1 · v = v.(2.1.9)

Finally there are two distributive laws:

a(u+ v) = au+ av,(2.1.10)

(a+ b)u = au+ bu.(2.1.11)

It is easy to see that Rn and Cn satisfy all these rules. We will present a number
of other examples below. Let us also note that a number of other simple identities
are automatic consequences of the rules given above. Here are some, which the
reader is invited to verify:

(2.1.12)

v + w = v ⇒ w = 0,

v + 0 · v = (1 + 0)v = v,

0 · v = 0,

v + w = 0 ⇒ w = −v,
v + (−1)v = 0 · v = 0,

(−1)v = −v.
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Above we represented elements of Fn as row vectors. Often we represent ele-
ments of Fn as column vectors. We write

(2.1.13) v =

v1...
vn

 , av + w =

av1 + w1

...
avn + wn

 .

We give some other examples of vector spaces. Let I = [a, b] denote an interval
in R, and take a non-negative integer k. Then Ck(I) denotes the set of functions
f : I → F whose derivatives up to order k are continuous. We denote by P the set
of polynomials in x, with coefficients in F. We denote by Pk the set of polynomials
in x of degree ≤ k. In these various cases,

(2.1.14) (f + g)(x) = f(x) + g(x), (af)(x) = af(x).

Such vector spaces and certain of their linear subspaces play a major role in the
material developed in these notes.

Regarding the notion just mentioned, we say a subset W of a vector space V
is a linear subspace provided

(2.1.15) wj ∈W, aj ∈ F =⇒ a1w1 + a2w2 ∈W.

Then W inherits the structure of a vector space.

Exercises

1. Specify which of the following subsets of R3 are linear subspaces:

(a) {(x, y, z) : xy = 0},
(b) {(x, y, z) : x+ y = 0},
(c) {(x, y, z) : x ≥ 0, y = 0, z = 0},
(d) {(x, y, z) : x is an integer},
(d) {(x, y, z) : x = 2z, y = −z}.

2. Show that the results in (2.1.12) follow from the basic rules (2.1.4)–(2.1.11).
Hint. To start, add −v to both sides of the identity v + w = v, and take account
first of the associative law (2.1.5), and then of the rest of (2.1.4)–(2.1.7). For the
second line of (2.1.12), use the rules (2.1.9) and (2.1.11). Then use the first two
lines of (2.1.12) to justify the third line...

3. Demonstrate that the following results for any vector space. Take a ∈ F, v ∈ V .

a · 0 = 0 ∈ V,

a(−v) = −av.

Hint. Feel free to use the results of (2.1.12).
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Let V be a vector space (over F) and W,X ⊂ V linear subspaces. We say

(2.1.16) V =W +X

provided each v ∈ V can be written

(2.1.17) v = w + x, w ∈W, x ∈ X.

We say

(2.1.18) V =W ⊕X

provided each v ∈ V has a unique representation (2.1.17).

4. Show that

V =W ⊕X ⇐⇒ V =W +X and W ∩X = 0.

5. Take V = R3. Specify in each case (a)–(c) whether V = W + X and whether
V =W ⊕X.

(a) W = {(x, y, z) : z = 0}, X = {(x, y, z) : x = 0},
(b) W = {(x, y, z) : z = 0}, X = {(x, y, z) : x = y = 0},
(c) W = {(x, y, z) : z = 0}, X = {(x, y, z) : y = z = 0}.

6. If W1, . . . ,Wm are linear subspaces of V , extend (2.1.16) to the notion

(2.1.19) V =W1 + · · ·+Wm,

and extend (2.1.18) to the notion that

(2.1.20) V =W1 ⊕ · · · ⊕Wm.
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2.2. Linear transformations and matrices

If V and W are vector spaces over F (R or C), a map

(2.2.1) T : V −→W

is said to be a linear transformation provided

(2.2.2) T (a1v1 + a2v2) = a1Tv1 + a2Tv2, ∀ aj ∈ F, vj ∈ V.

We also write T ∈ L(V,W ). In case V = W , we also use the notation L(V ) =
L(V, V ).

Linear transformations arise in a number of ways. For example, an m × n
matrix A with entries in F defines a linear transformation

(2.2.3) A : Fn −→ Fm

by

(2.2.4)

a11 · · · a1n
...

...
am1 · · · amn


b1...
bn

 =

Σa1ℓbℓ
...

Σamℓbℓ

 .

We also have linear transformations on function spaces, such as multiplication
operators

(2.2.5) Mf : Ck(I) −→ Ck(I), Mfg(x) = f(x)g(x),

given f ∈ Ck(I), I = [a, b], and the operation of differentiation:

(2.2.6) D : Ck+1(I) −→ Ck(I), Df(x) = f ′(x).

We also have integration:

(2.2.7) I : Ck(I) −→ Ck+1(I), If(x) =
∫ x

a

f(y) dy.

Note also that

(2.2.8) D : Pk+1 −→ Pk, I : Pk −→ Pk+1,

where Pk denotes the space of polynomials in x of degree ≤ k.

Two linear transformations Tj ∈ L(V,W ) can be added:

(2.2.9) T1 + T2 : V −→W, (T1 + T2)v = T1v + T2v.

Also T ∈ L(V,W ) can be multiplied by a scalar:

(2.2.10) aT : V −→W, (aT )v = a(Tv).

This makes L(V,W ) a vector space.

We can also compose linear transformations S ∈ L(W,X), T ∈ L(V,W ):

(2.2.11) ST : V −→ X, (ST )v = S(Tv).

For example, we have

(2.2.12) MfD : Ck+1(I) −→ Ck(I), MfDg(x) = f(x)g′(x),

given f ∈ Ck(I). When two transformations

(2.2.13) A : Fn −→ Fm, B : Fk −→ Fn
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are represented by matrices, e.g., A as in (2.2.4) and

(2.2.14) B =

b11 · · · b1k
...

...
bn1 · · · bnk

 ,

then

(2.2.15) AB : Fk −→ Fm

is given by matrix multiplication:

(2.2.16) AB =

Σa1ℓbℓ1 · · · Σa1ℓbℓk
...

...
Σamℓbℓ1 · · · Σamℓbℓk

 .

For example,

(2.2.17)

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Another way of writing (2.2.16) is to represent A and B as

(2.2.18) A = (aij), B = (bij),

and then we have

(2.2.19) AB = (dij), dij =

n∑
ℓ=1

aiℓbℓj .

To establish the identity (2.2.16), we note that it suffices to show the two sides have
the same effect on each ej ∈ Fk, 1 ≤ j ≤ k, where ej is the column vector in Fk
whose jth entry is 1 and whose other entries are 0. First note that

(2.2.20) Bej =

b1j...
bnj

 ,

the jth column in B, as one can see via (2.2.4). Similarly, if D denotes the right
side of (2.2.16), Dej is the jth column of this matrix, i.e.,

(2.2.21) Dej =

Σa1ℓbℓj
...

Σamℓbℓj

 .

On the other hand, applying A to (2.2.20), via (2.2.4), gives the same result, so
(2.2.16) holds.

Associated with a linear transformation as in (2.2.1) there are two special linear
spaces, the null space of T and the range of T . The null space of T is

(2.2.22) N (T ) = {v ∈ V : Tv = 0},

and the range of T is

(2.2.23) R(T ) = {Tv : v ∈ V }.
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Note that N (T ) is a linear subspace of V and R(T ) is a linear subspace of W . If
N (T ) = 0 we say T is injective; if R(T ) = W we say T is surjective. Note that T
is injective if and only if T is one-to-one, i.e.,

(2.2.24) Tv1 = Tv2 =⇒ v1 = v2.

If T is surjective, we also say T is onto. If T is one-to-one and onto, we say it is an
isomorphism. In such a case the inverse

(2.2.25) T−1 :W −→ V

is well defined, and it is a linear transformation. We also say T is invertible, in such
a case.

Exercises

1. With D and I given by (2.2.6)–(2.2.7), compute DI and ID.

2. In the context of Exercise 1, specify N (D), N (I), R(D), and R(I).

3. Consider A,B : R3 → R3, given by

A =

0 1 0
0 0 1
0 0 0

 , B =

0 0 0
1 0 0
0 1 0

 .

Compute AB and BA.

4. In the context of Exercise 3, specify

N (A), N (B), R(A), R(B).

5. We say two n × n matrices A and B commute provided AB = BA. Note that
AB ̸= BA in Exercise 3. Pick out the pair of commuting matrices from this list:(

0 −1
1 0

)
,

(
1 0
0 −1

)
,

(
1 −1
1 1

)
.

6. Show that (2.2.4) is a special case of matrix multiplication, as defined by the
right side of (2.2.16).

7. Show, without using the formula (2.2.16) identifying compositions of linear trans-
formations and matrix multiplication, that matrix multiplication is associative, i.e.,

(2.2.26) A(BC) = (AB)C,

where C : Fℓ → Fk is given by a k × ℓ matrix and the products in (2.2.26) are
defined as matrix products, as in (2.2.19).
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8. Show that the asserted identity (2.2.16) identifying compositions of linear trans-
formations with matrix products follows from the result of Exercise 7.
Hint. (2.2.4), defining the action of A on Fn, is a matrix product.

9. Let A : Fn → Fm be defined by an m× n matrix, as in (2.2.3)–(2.2.4).
(a) Show that R(A) is the span of the columns of A.
Hint. See (2.2.20).
(b) Show that N (A) = 0 if and only if the columns of A are linearly independent.

10. Define the transpose of an m × n matrix A = (ajk) to be the n × m matrix
At = (akj). Thus, if A is as in (2.2.3)–(2.2.4),

(2.2.27) At =

a11 · · · am1

...
...

a1n · · · amn

 .

For example,

A =

1 2
3 4
5 6

 =⇒ At =

(
1 3 5
2 4 6

)
.

Suppose also B is an n× k matrix, as in (2.2.14), so AB is defined, as in (2.2.15).
Show that

(2.2.28) (AB)t = BtAt.

11. Let

A =
(
1 2 3

)
, B =

2
0
2

 .

Compute AB and BA. Then compute AtBt and BtAt.
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2.3. Basis and dimension

Given a finite set S = {v1, . . . , vk} in a vector space V , the span of S is the set of
vectors in V of the form

(2.3.1) c1v1 + · · ·+ ckvk,

with cj arbitrary scalars, ranging over F = R or C. This set, denoted Span(S) is a
linear subspace of V . The set S is said to be linearly dependent if and only if there
exist scalars c1, . . . , ck, not all zero, such that (2.3.1) vanishes. Otherwise we say S
is linearly independent.

If {v1, . . . , vk} is linearly independent, we say S is a basis of Span(S), and that
k is the dimension of Span(S). In particular, if this holds and Span(S) = V , we
say k = dimV . We also say V has a finite basis, and that V is finite dimensional.

By convention, if V has only one element, the zero element, we say V = 0 and
dimV = 0.

It is easy to see that any finite set S = {v1, . . . , vk} ⊂ V has a maximal subset
that is linearly independent, and such a subset has the same span as S, so Span(S)
has a basis. To take a complementary perspective, S will have a minimal subset
S0 with the same span, and any such minimal subset will be a basis of Span(S).
Soon we will show that any two bases of a finite-dimensional vector space V have
the same number of elements (so dimV is well defined). First, let us relate V to
Fk.

So say V has a basis S = {v1, . . . , vk}. We define a linear transformation

(2.3.2) JS : Fk −→ V

by

(2.3.3) JS(c1e1 + · · ·+ ckek) = c1v1 + · · ·+ ckvk,

where

(2.3.4) e1 =


1
0
...
0

 , . . . . . . , ek =


0
...
0
1

 .

We say {e1, . . . , ek} is the standard basis of Fk. The linear independence of S is
equivalent to the injectivity of JS and the statement that S spans V is equivalent
to the surjectivity of JS . Hence the statement that S is a basis of V is equivalent
to the statement that JS is an isomorphism, with inverse uniquely specified by

(2.3.5) J−1
S (c1v1 + · · ·+ ckvk) = c1e1 + · · ·+ ckek.

We begin our demonstration that dimV is well defined, with the following
concrete result.

Lemma 2.3.1. If v1, . . . , vk+1 are vectors in Fk, then they are linearly dependent.

Proof. We use induction on k. The result is obvious if k = 1. We can suppose the
last component of some vj is nonzero, since otherwise we can regard these vectors
as elements of Fk−1 and use the inductive hypothesis. Reordering these vectors, we
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can assume the last component of vk+1 is nonzero, and it can be assumed to be 1.
Form

wj = vj − vkjvk+1, 1 ≤ j ≤ k,

where vj = (v1j , . . . , vkj)
t. Then the last component of each of the vectors w1, . . . , wk

is 0, so we can regard these as k vectors in Fk−1. By induction, there exist scalars
a1, . . . , ak, not all zero, such that

a1w1 + · · ·+ akwk = 0,

so we have

a1v1 + · · ·+ akvk = (a1vk1 + · · ·+ akvkk)vk+1,

the desired linear dependence relation on {v1, . . . , vk+1}. �

With this result in hand, we proceed.

Proposition 2.3.2. If V has a basis {v1, . . . , vk} with k elements and {w1, . . . , wℓ} ⊂
V is linearly independent, then ℓ ≤ k.

Proof. Take the isomorphism JS : Fk → V described in (2.3.2)–(2.3.3). The hy-
potheses imply that {J−1

S w1, . . . ,J−1
S wℓ} is linearly independent in Fk, so Lemma

2.3.1 implies ℓ ≤ k. �

Corollary 2.3.3. If V is finite-dimensional, any two bases of V have the same
number of elements. If V is isomorphic to W , these spaces have the same dimen-
sion.

Proof. If S (with #S elements) and T are bases of V , we have #S ≤ #T and
#T ≤ #S, hence #S = #T . For the latter part, an isomorphism of V onto W
takes a basis of V to a basis of W . �

The following is an easy but useful consequence.

Proposition 2.3.4. If V is finite dimensional and W ⊂ V a linear subspace, then
W has a finite basis, and dimW ≤ dimV .

Proof. Suppose {w1, . . . , wℓ} is a linearly independent subset of W . Proposition
2.3.2 implies ℓ ≤ dimV . If this set spansW , we are done. If not, there is an element
wℓ+1 ∈W not in this span, and {w1, . . . , wℓ+1} is a linearly independent subset of
W . Again ℓ + 1 ≤ dimV . Continuing this process a finite number of times must
produce a basis of W . �

A similar argument establishes:

Proposition 2.3.5. Suppose V is finite dimensional,W ⊂ V a linear subspace, and
{w1, . . . , wℓ} a basis ofW . Then V has a basis of the form {w1, . . . , wℓ, u1, . . . , um},
and ℓ+m = dimV .

Having this, we can establish the following result, sometimes called the funda-
mental theorem of linear algebra.
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Proposition 2.3.6. Assume V and W are vector spaces, V finite dimensional,
and

(2.3.6) A : V −→W

a linear map. Then

(2.3.7) dimN (A) + dimR(A) = dimV.

Proof. Let {w1, . . . , wℓ} be a basis of N (A) ⊂ V , and complete it to a basis

{w1, . . . , wℓ, u1, . . . , um}
of V . Set L = Span{u1, . . . , um}, and consider

(2.3.8) A0 : L −→W, A0 = A
∣∣
L
.

Clearly w ∈ R(A) ⇒ w = A(a1w1 + · · ·+ aℓwℓ + b1u1 + · · ·+ bmum) = A0(b1u1 +
· · ·+ bmum), so

(2.3.9) R(A0) = R(A).

Furthermore,

(2.3.10) N (A0) = N (A) ∩ L = 0.

Hence A0 : L → R(A0) is an isomorphism. Thus dimR(A) = dimR(A0) =
dimL = m, and we have (2.3.7). �

The following is a significant special case.

Corollary 2.3.7. Let V be finite dimensional, and let A : V → V be linear. Then

(2.3.11) A injective ⇐⇒ A surjective ⇐⇒ A isomorphism.

We mention that these equivalences can fail for infinite dimensional spaces. For
example, if P denotes the space of polynomials in x, then Mx : P → P (Mxf(x) =
xf(x)) is injective but not surjective, whileD : P → P (Df(x) = f ′(x)) is surjective
but not injective.

Next we have the following important characterization of injectivity and sur-
jectivity.

Proposition 2.3.8. Assume V and W are finite dimensional and A : V → W is
linear. Then

(2.3.12) A surjective ⇐⇒ AB = IW , for some B ∈ L(W,V ),

and

(2.3.13) A injective ⇐⇒ CA = IV , for some C ∈ L(W,V ).

Proof. Clearly AB = I ⇒ A surjective and CA = I ⇒ A injective. We establish
the converses.

First assume A : V →W is surjective. Let {w1, . . . , wℓ} be a basis of W . Pick
vj ∈ V such that Avj = wj . Set

(2.3.14) B(a1w1 + · · ·+ aℓwℓ) = a1v1 + · · ·+ aℓvℓ.

This works in (2.3.12).
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Next assume A : V → W is injective. Let {v1, . . . , vk} be a basis of V . Set
wj = Avj . Then {w1, . . . , wk} is linearly independent, hence a basis of R(A), and
we then can produce a basis {w1, . . . , wk, u1, . . . , um} of W . Set

(2.3.15) C(a1w1 + · · ·+ akwk + b1u1 + · · ·+ bmum) = a1v1 + · · ·+ akvk.

This works in (2.3.13). �

An m×n matrix A defines a linear transformation A : Fn → Fm, as in (2.2.3)–
(2.2.4). The columns of A are

(2.3.16) aj =

a1j
...

amj

 .

As seen in §2.2,
(2.3.17) Aej = aj ,

where e1, . . . , en is the standard basis of Fn. Hence
(2.3.18) R(A) = linear span of the columns of A,

so

(2.3.19) R(A) = Fm ⇐⇒ a1, . . . , an span Fm.
Furthermore,

(2.3.20) A
( n∑
j=1

cjej

)
= 0 ⇐⇒

n∑
j=1

cjaj = 0,

so

(2.3.21) N (A) = 0 ⇐⇒ {a1, . . . , an} is linearly independent.

We have the following conclusion, in case m = n.

Proposition 2.3.9. Let A be an n × n matrix, defining A : Fn → Fn. Then the
following are equivalent:

(2.3.22)

A is invertible,

The columns of A are linearly independent,

The columns of A span Fn.

Exercises

1. Suppose {v1, . . . , vk} is a basis of V . Show that

w1 = v1, w2 = v1 + v2, . . . , wj = v1 + · · ·+ vj , . . . , wk = v1 + · · ·+ vk

is also a basis of V .

2. Let V be the space of polynomials in x and y of degree ≤ 10. Specify a basis of
V and compute dimV .
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3. Let V be the space of polynomials in x of degree ≤ 5, satisfying p(−1) = p(0) =
p(1) = 0. Find a basis of V and give its dimension.

4. Assume the existence and uniqueness result stated at the beginning of §1.17
in Chapter 1. Let aj be continuous functions on an interval I, with an nowhere

vanishing. Show that the space of functions x ∈ C(n)(I) solving

an(t)x
(n)(t) + · · ·+ a1(t)x

′(t) + a0(t)x(t) = 0

is a vector space of dimension n.

5. Denote the space of m× n matrices with entries in F (as in (2.2.4)) by

(2.3.23) M(m× n,F).
If m = n, denote it by

(2.3.24) M(n,F).
Show that

dimM(m× n,F) = mn,

especially
dimM(n,F) = n2.

6. If V and W are finite dimensional vector spaces, n = dimV , m = dimW , what
is dimL(V,W )?

Let V be a finite dimensional vector space, with linear subspaces W and X. Recall
the conditions under which V =W+X or V =W⊕X, from §2.1. Let {w1, . . . , wk}
be a basis of W and {x1, . . . , xℓ} a basis of X.

7. Show that

V =W +X ⇐⇒ {w1, . . . , wk, x1, . . . , xℓ} spans V

V =W ⊕X ⇐⇒ {w1, . . . , wk, x1, . . . , xℓ} is a basis of V.

8. Show that
V =W +X =⇒ dimW + dimX ≥ dimV,

V =W ⊕X ⇐⇒W ∩X = 0 and dimW + dimX = dimV.

9. Produce variants of Exercises 7–8 involving V = W1 + · · · + Wm and V =
W1 ⊕ · · · ⊕Wm, as in (2.1.19)–(2.1.20).
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2.4. Matrix representation of a linear transformation

We show how a linear transformation

(2.4.1) T : V −→W

has a representation as an m× n matrix, with respect to a basis S = {v1, . . . , vn}
of V and a basis Σ = {w1, . . . , wm} of W . Namely, define aij by

(2.4.2) Tvj =

m∑
i=1

aijwi, 1 ≤ j ≤ n.

The matrix representation of T with respect to these bases is then

(2.4.3) A =

a11 · · · a1n
...

...
am1 · · · amn

 .

Note that the jth column of A consists of the coefficients of Tvj , when this is
written as a linear combination of w1, . . . , wm. Compare (2.2.20).

If we want to record the dependence on the bases S and Σ, we can write

(2.4.4) A = MΣ
S (T ) = J−1

Σ TJS : Fn −→ Fm,

given the isomorphism JS : Fn → V as in (2.3.2)–(2.3.3) (with n instead of k) and
its counterpart JΣ : Fm →W , and with the identification of A with a matrix as in
(2.2.3)–(2.2.4).

The definition of matrix multiplication is set up precisely so that, ifX is a vector
space with basis Γ = {x1, . . . xk} and U : X → V is linear, then TU : X → W has
matrix representation

(2.4.5) MΣ
Γ (TU) = AB, B = MS

Γ(U).

Indeed, if we complement (2.4.4) with

(2.4.6) B = J−1
S UJΓ = MS

Γ(U),

we have

(2.4.7) AB = J−1
Σ (TU)JΓ.

As for the representation of AB as a matrix product, see the discussion around
(2.2.15)–(2.2.21).

For example, if

(2.4.8) T : V −→ V,

and we use the basis S of V as above, we have an n× n matrix MS
S(T ). If we pick

another basis S̃ = {ṽ1, . . . , ṽn} of V , it follows from (2.4.5) that

(2.4.9) MS̃
S̃
(T ) = MS̃

S(I)MS
S(T )MS

S̃
(I).

Here

(2.4.10) MS
S̃
(I) = J−1

S JS̃ = C = (cij),
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where

(2.4.11) ṽj =

n∑
i=1

cijvi, 1 ≤ j ≤ n,

and we see (via (2.4.5)) that

(2.4.12) MS̃
S(I) = C−1.

To rewrite (2.4.9), we can say that if A is the matrix representation of T with

respect to the basis S and Ã the matrix representation of T with respect to the

basis S̃, then

(2.4.13) Ã = C−1AC.

Remark. We say that n× n matrices A and Ã, related as in (2.4.13), are similar.

Example. Consider the linear transformation

(2.4.14) D : P2 −→ P2, Df(x) = f ′(x).

With respect to the basis

(2.4.15) v1 = 1, v2 = x, v3 = x2,

D has the matrix representation

(2.4.16) A =

0 1 0
0 0 2
0 0 0

 ,

since Dv1 = 0, Dv2 = v1, and Dv3 = 2v2. With respect to the basis

(2.4.17) ṽ1 = 1, ṽ2 = 1 + x, ṽ3 = 1 + x+ x2,

D has the matrix representation

(2.4.18) Ã =

0 1 −1
0 0 2
0 0 0

 ,

since Dṽ1 = 0, Dṽ2 = ṽ1, and Dṽ3 = 1 + 2x = 2ṽ2 − ṽ1. The reader is invited to
verify (2.4.13) for this example.
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Exercises

1. Consider T : P2 → P2, given by T p(x) = x−1
∫ x
0
p(y) dy. Compute the matrix

representation B of T with respect to the basis (2.4.15). Compute AB and BA,
with A given by (2.4.16).

2. In the setting of Exercise 1, compute DT and T D on P2 and compare their
matrix representations, with respect to the basis (2.4.15), with AB and BA.

3. In the setting of Exercise 1, take a ∈ R and define

(2.4.19) Tap(x) =
1

x− a

∫ x

a

p(y) dy, Ta : P2 −→ P2.

Compute the matrix representation of Ta with respect to the basis (2.4.15).

4. Compute the matrix representation of Ta, given by (2.4.19), with respect to the
basis of P2 given in (2.4.17).

5. Let A : C2 → C2 be given by

A =

(
1 1
−1 −1

)
(with respect to the standard basis). Find a basis of C2 with respect to which the
matrix representation of A is

Ã =

(
0 1
0 0

)
.

6. Let V = {a cos t+ b sin t : a, b ∈ C}, and consider

D =
d

dt
: V −→ V.

Compute the matrix representation of D with respect to the basis {cos t, sin t}.

7. In the setting of Exercise 6, compute the matrix representation of D with respect
to the basis {eit, e−it}.
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2.5. Determinants and invertibility

Determinants arise in the study of inverting a matrix. To take the 2×2 case, solving
for x and y the system

(2.5.1)
ax+ by = u,

cx+ dy = v

can be done by multiplying these equations by d and b, respectively, and subtracting,
and by multiplying them by c and a, respectively, and subtracting, yielding

(2.5.2)
(ad− bc)x = du− bv,

(ad− bc)y = av − cu.

The factor on the left is

(2.5.3) det

(
a b
c d

)
= ad− bc,

and solving (2.5.2) for x and y leads to

(2.5.4) A =

(
a b
c d

)
=⇒ A−1 =

1

detA

(
d −b
−c a

)
,

provided detA ̸= 0.

We now consider determinants of n × n matrices. Let M(n,F) denote the set
of n× n matrices with entries in F = R or C. We write

(2.5.5) A =

a11 · · · a1n
...

...
an1 · · · ann

 = (a1, . . . , an),

where

(2.5.6) aj =

a1j...
anj


is the jth column of A. The determinant is defined as follows.

Proposition 2.5.1. There is a unique function

(2.5.7) ϑ :M(n,F) −→ F,
satisfying the following three properties:

(a) ϑ is linear in each column aj of A,

(b) ϑ(Ã) = −ϑ(A) if Ã is obtained from A by interchanging two columns,
(c) ϑ(I) = 1.

This defines the determinant:

(2.5.8) ϑ(A) = detA.

If (c) is replaced by

(c′) ϑ(I) = r,
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then

(2.5.9) ϑ(A) = r detA.

The proof will involve constructing an explicit formula for detA by following
the rules (a)–(c). We start with the case n = 3. We have

(2.5.10) detA =

3∑
j=1

aj1 det(ej , a2, a3),

by applying (a) to the first column of A, a1 =
∑
j aj1ej . Here and below, {ej :

1 ≤ j ≤ n} denotes the standard basis of Fn, so ej has a 1 in the jth slot and 0s
elsewhere. Applying (a) to the second and third columns gives

(2.5.11)

detA =

3∑
j,k=1

aj1ak2 det(ej , ek, a3)

=

3∑
j,k,ℓ=1

aj1ak2aℓ3 det(ej , ek, eℓ).

This is a sum of 27 terms, but most of them are 0. Note that rule (b) implies

(2.5.12) detB = 0 whenever B has two identical columns.

Hence det(ej , ek, eℓ) = 0 unless j, k, and ℓ are distinct, that is, unless (j, k, ℓ) is a
permutation of (1, 2, 3). Now rule (c) says

(2.5.13) det(e1, e2, e3) = 1,

and we see from rule (b) that det(ej , ek, eℓ) = 1 if one can convert (ej , ek, eℓ) to
(e1, e2, e3) by an even number of column interchanges, and det(ej , ek, eℓ) = −1 if it
takes an odd number of interchanges. Explicitly,

(2.5.14)

det(e1, e2, e3) = 1, det(e1, e3, e2) = −1,

det(e2, e3, e1) = 1, det(e2, e1, e3) = −1,

det(e3, e1, e2) = 1, det(e3, e2, e1) = −1.

Consequently (2.5.11) yields

(2.5.15)

detA = a11a22a33 − a11a32a23

+ a21a32a13 − a21a12a33

+ a31a12a23 − a31a22a13.

Note that the second indices occur in (1, 2, 3) order in each product. We can
rearrange these products so that the first indices occur in (1, 2, 3) order:

(2.5.16)

detA = a11a22a33 − a11a23a32

+ a13a21a32 − a12a21a33

+ a12a23a31 − a13a22a31.
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Now we tackle the case of general n. Parallel to (2.5.10)–(2.5.11), we have

(2.5.17)

detA =
∑
j

aj1 det(ej , a2, . . . , an) = · · ·

=
∑

j1,...,jn

aj11 · · · ajnn det(ej1 , . . . ejn),

by applying rule (a) to each of the n columns of A. As before, (2.5.12) implies
det(ej1 , . . . , ejn) = 0 unless (j1, . . . , jn) are all distinct, that is, unless (j1, . . . , jn)
is a permutation of the set (1, 2, . . . , n). We set

(2.5.18) Sn = set of permutations of (1, 2, . . . , n).

That is, Sn consists of elements σ, mapping the set {1, . . . , n} to itself,

(2.5.19) σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},
that are one-to-one and onto. We can compose two such permutations, obtaining
the product στ ∈ Sn, given σ and τ in Sn. A permutation that interchanges just
two elements of {1, . . . , n}, say j and k (j ̸= k), is called a transposition, and
labeled (jk). It is easy to see that each permutation of {1, . . . , n} can be achieved
by successively transposing pairs of elements of this set. That is, each element
σ ∈ Sn is a product of transpositions. We claim that

(2.5.20) det(eσ(1)1, . . . , eσ(n)n) = (sgnσ) det(e1, . . . , en) = sgnσ,

where

(2.5.21)
sgnσ = 1 if σ is a product of an even number of transpositions,

− 1 if σ is a product of an odd number of transpositions.

In fact, the first identity in (2.5.20) follows from rule (b) and the second identity
from rule (c).

There is one point to be checked here. Namely, we claim that a given σ ∈ Sn
cannot simultaneously be written as a product of an even number of transpositions
and an odd number of transpositions. If σ could be so written, sgnσ would not
be well defined, and it would be impossible to satisfy condition (b), so Proposition
2.5.1 would fail. One neat way to see that sgnσ is well defined is the following. Let
σ ∈ Sn act on functions of n variables by

(2.5.22) (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

It is readily verified that if also τ ∈ Sn,

(2.5.23) g = σf =⇒ τg = (τσ)f.

Now, let P be the polynomial

(2.5.24) P (x1, . . . , xn) =
∏

1≤j<k≤n

(xj − xk).

One readily has

(2.5.25) (σP )(x) = −P (x), whenever σ is a transposition,

and hence, by (2.5.23),

(2.5.26) (σP )(x) = (sgnσ)P (x), ∀σ ∈ Sn,

and sgnσ is well defined.
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The proof of (2.5.20) is complete, and substitution into (2.5.17) yields the
formula

(2.5.27) detA =
∑
σ∈Sn

(sgnσ)aσ(1)1 · · · aσ(n)n.

It is routine to check that this satisfies the properties (a)–(c). Regarding (b), note

that if ϑ(A) denotes the right side of (2.5.27) and Ã is obtained from A by applying

a permutation τ to the columns of A, so Ã = (aτ(1), . . . , aτ(n)), then

(2.5.28)

ϑ(Ã) =
∑
σ∈Sn

(sgnσ)aσ(1)τ(1) · · · aσ(n)τ(n)

=
∑
σ∈Sn

(sgnσ)aστ−1(1)1 · · · aστ−1(n)n

=
∑
ω∈Sn

(sgnωτ)aω(1)1 · · · aω(n)n

= (sgn τ)ϑ(A),

the last identity because

(2.5.29) sgnωτ = (sgnω)(sgn τ), ∀ω, τ ∈ Sn.

As for the final part of Proposition 2.5.1, if (c) is replaced by (c′), then (2.5.20)
is replaced by

(2.5.30) ϑ(eσ(1), . . . , eσ(n)) = r(sgnσ),

and (2.5.9) follows.

Remark. The formula (2.5.27) is taken as a definition of the determinant by some
authors. While it is a useful formula for the determinant, it is a bad definition,
which has perhaps led to a bit of fear and loathing among math students.

Remark. Here is another formula for sgnσ, which the reader is invited to verify.
If σ ∈ Sn,

(2.5.31) sgnσ = (−1)κ(σ),

where

(2.5.32)
κ(σ) = number of pairs (j, k) such that 1 ≤ j < k ≤ n,

but σ(j) > σ(k).

Note that

(2.5.33) aσ(1)1 · · · aσ(n)n = a1τ(1) · · · anτ(n), with τ = σ−1,

and sgnσ = sgnσ−1, so, parallel to (2.5.16), we also have

(2.5.34) detA =
∑
σ∈Sn

(sgnσ)a1σ(1) · · · anσ(n).

Comparison with (2.5.27) gives

(2.5.35) detA = detAt,
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where A = (ajk) ⇒ At = (akj). Note that the jth column of At has the same
entries as the jth row of A. In light of this, we have:

Corollary 2.5.2. In Proposition 2.5.1, one can replace “columns” by “rows.”

The following is a key property of the determinant.

Proposition 2.5.3. Given A and B in M(n,F),
(2.5.36) det(AB) = (detA)(detB).

Proof. For fixed A, apply Proposition 2.5.1 to

(2.5.37) ϑ1(B) = det(AB).

If B = (b1, . . . , bn), with jth column bj , then

(2.5.38) AB = (Ab1, . . . , Abn).

Clearly rule (a) holds for ϑ1. Also, if B̃ = (bσ(1), . . . , bσ(n)) is obtained from B

by permuting its columns, then AB̃ has columns (Abσ(1), . . . , Abσ(n)), obtained by
permuting the columns of AB in the same fashion. Hence rule (b) holds for ϑ1.
Finally, rule (c′) holds for ϑ1, with r = detA, and (2.5.36) follows, �
Corollary 2.5.4. If A ∈M(n,F) is invertible, then detA ̸= 0.

Proof. If A is invertible, there exists B ∈ M(n,F) such that AB = I. Then, by
(2.5.36), (detA)(detB) = 1, so detA ̸= 0. �

The converse of Corollary 2.5.4 also holds. Before proving it, it is convenient to
show that the determinant is invariant under a certain class of column operations,
given as follows.

Proposition 2.5.5. If Ã is obtained from A = (a1, . . . , an) ∈ M(n,F) by adding
caℓ to ak for some c ∈ F, ℓ ̸= k, then

(2.5.39) det Ã = detA.

Proof. By rule (a), det Ã = detA + cdetAb, where Ab is obtained from A by
replacing the column ak by aℓ. Hence A

b has two identical columns, so detAb = 0,
and (2.5.39) holds. �

We now extend Corollary 2.5.4.

Proposition 2.5.6. If A ∈M(n,F), then A is invertible if and only if detA ̸= 0.

Proof. We have half of this from Corollary 2.5.4. To finish, assume A is not
invertible. As seen in §3, this implies the columns a1, . . . , an of A are linearly
dependent. Hence, for some k,

(2.5.40) ak +
∑
ℓ ̸=k

cℓaℓ = 0,

with cℓ ∈ F. Now we can apply Proposition 2.5.5 to obtain detA = det Ã, where

Ã is obtained by adding
∑
cℓaℓ to ak. But then the kth column of Ã is 0, so

detA = det Ã = 0. This finishes the proof of Proposition 2.5.6. �
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Further useful facts about determinants arise in the following exercises.

Exercises

1. Show that

(2.5.41) det


1 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = det


1 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = detA11

where A11 = (ajk)2≤j,k≤n.

Hint. Do the first identity using Proposition 2.5.5. Then exploit uniqueness for
det on M(n− 1,F).

2. Deduce that det(ej , a2, . . . , an) = (−1)j−1 detA1j where Akj is formed by delet-
ing the kth column and the jth row from A.

3. Deduce from the first sum in (2.5.17) that

(2.5.42) detA =

n∑
j=1

(−1)j−1aj1 detA1j .

More generally, for any k ∈ {1, . . . , n},

(2.5.43) detA =

n∑
j=1

(−1)j−kajk detAkj .

This is called an expansion of detA by minors, down the kth column.

4. Let ckj = (−1)j−k detAkj . Show that

(2.5.44)

n∑
j=1

ajℓckj = 0, if ℓ ̸= k.

Deduce from this and (2.5.43) that C = (cjk) satisfies

(2.5.45) CA = (detA)I.

Hint. Reason as in Exercises 1–3 that the left side of (2.5.44) is equal to

det (a1, . . . , aℓ, . . . , aℓ, . . . , an),

with aℓ in the kth column as well as in the ℓth column. The identity (2.5.45) is
known as Cramer’s formula. Note how this generalizes (2.5.4).
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5. Show that

(2.5.46) det


a11 a12 · · · a1n

a22 · · · a2n
. . .

...
ann

 = a11a22 · · · ann.

Hint. Use (2.5.41) and induction. Alternative: Use (2.5.27). Show that σ ∈
Sn, σ(k) ≤ k ∀ k ⇒ σ(k) ≡ k.

The next two exercises deal with the determinant of a linear transformation. Let
V be an n-dimensional vector space, and

(2.5.47) T : V −→ V

a linear transformation. We would like to define

(2.5.48) detT = detA,

where A = MS
S(T ) for some basis S = {v1, . . . , vn} of V .

6. Suppose S̃ = {ṽ1, . . . , ṽn} is another basis of V . Show that

detA = det Ã,

where Ã = MS̃
S̃
(T ). Hence (2.5.48) defines detT , independently of the choice of

basis of V .
Hint. Use (2.4.13) and (2.5.36).

7. If also U ∈ L(V ), show that

det(UT ) = (detU)(detT ).

Row reduction, matrix products, and Gaussian elimination

In Exercises 8–13, we consider the following three types of row operations on
an n× n matrix A = (ajk). If σ is a permutation of {1, . . . , n}, let
(2.5.49) ρσ(A) = (aσ(j)k).

If c = (c1, . . . , cn), and all cj are nonzero, set

(2.5.50) µc(A) = (c−1
j ajk).

Finally, if c ∈ F and µ ̸= ν, define

(2.5.51) εµνc(A) = (bjk), bνk = aνk − caµk, bjk = ajk for j ̸= ν.

Note that a major part of this section dealt with the effect of such row operations
on the determinant of a matrix. More precisely, they directly dealt with column
operations, but as remarked after (2.5.35), one has analogues for row operations.
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We want to relate these operations to left multiplication by matrices Pσ,Mc,
and Eµνc, defined by the following actions on the standard basis {e1, . . . , en} of Fn:

(2.5.52) Pσej = eσ(j), Mcej = cjej ,

and

(2.5.53) Eµνceµ = eµ + ceν , Eµνcej = ej for j ̸= µ.

These relations are established in the following exercises.

8. Show that

(2.5.54) A = Pσρσ(A), A =Mcµc(A), A = Eµνcεµνc(A).

9. Show that P−1
σ = Pσ−1 .

10. Show that, if µ ̸= ν, then Eµνc = P−1
σ E21cPσ, for some permutation σ.

11. If B = ρσ(A) and C = µc(B), show that A = PσMcC. Generalize this to
other cases where a matrix C is obtained from a matrix A via a sequence of row
operations.

12. If A is an invertible n × n matrix, with entries in F = R or C (we write
A ∈ Gl(n,F)), then the rows of A form a basis of Fn. Use this to show that A can
be transformed to the identity matrix via a sequence of row operations. Deduce
that any A ∈ Gl(n,F) can be written as a finite product of matrices of the form
Pσ,Mc and Eµνc.

13. Suppose A is an invertible n × n matrix, and a sequence of row operations is
applied to A, transforming it to the identity matrix I. Show that the same sequence
of row operations, applied to I, transforms it to A−1. This method of constructing
A−1 is called the method of Gaussian elimination.

Example. We take a 2× 2 matrix A, write A and I side by side, and perform the
same sequence of row operations on each of these two matrices, obtaining finally I
and A−1 side by side.

A =

(
1 2
1 3

) (
1 0
0 1

)
(
1 2
0 1

) (
1 0
−1 1

)
(
1 0
0 1

) (
3 −2
−1 1

)
= A−1.

Hint. Turning around (2.5.54), we have

(2.5.55) ρσ(A) = P−1
σ A, µc(A) =M−1

c A, εµνc(A) = E−1
µνcA.
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Thus applying a sequence of row operations to A yields

(2.5.56) S−1
k · · ·S−1

1 A,

where each Sj is of the form (2.5.52) or (2.5.53). If (2.5.56) is the identity matrix,
then

(2.5.57) A−1 = S−1
k · · ·S−1

1 .

Remark. The method of Gaussian elimination is computationally superior to the
use of Cramer’s formula (2.5.45) for computing matrix inverses, though Cramer’s
formula has theoretical interest.

A related issue is that, for computing determinants of n×n matrices, for n ≥ 3,
it is computationally superior to utilize a sequence of column operations, applying
rules (a) and (b) and Proposition 2.5.5 (and/or the corresponding row operations),
rather than directly using the formula (2.5.27), which contains n! terms. This
“Gaussian elimination” method of calculating detA gives, from (2.5.55)–(2.5.56),

(2.5.58) detA = (detS1) · · · (detSk),
with

(2.5.59) detPσ = sgnσ, detMc = c1 · · · cn, detEµνc = 1.
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2.6. Eigenvalues and eigenvectors

Let T : V → V be linear. If there is a nonzero v ∈ V such that

(2.6.1) Tv = λjv,

for some λj ∈ F, we say λj is an eigenvalue of T , and v is an eigenvector. Let
E(T, λj) denote the set of vectors v ∈ V such that (2.6.1) holds. It is clear that
E(T, λj) is a linear subspace of V and

(2.6.2) T : E(T, λj) −→ E(T, λj).

The set of λj ∈ F such that E(T, λj) ̸= 0 is denoted Spec(T ). Clearly λj ∈ Spec(T )
if and only if T − λjI is not injective, so, if V is finite dimensional,

(2.6.3) λj ∈ Spec(T ) ⇐⇒ det(λjI − T ) = 0.

We call KT (λ) = det(λI − T ) the characteristic polynomial of T .

If F = C, we can use the fundamental theorem of algebra, which says every
non-constant polynomial with complex coefficients has at least one complex root.
(See Appendix 2.C for a proof of this result.) This proves the following.

Proposition 2.6.1. If V is a finite-dimensional complex vector space and T ∈
L(V ), then T has at least one eigenvector in V .

Remark. If V is real and KT (λ) does have a real root λj , then there is a real
λj-eigenvector.

Sometimes a linear transformation has only one eigenvector, up to a scalar
multiple. Consider the transformation A : C3 → C3 given by

(2.6.4) A =

2 1 0
0 2 1
0 0 2

 .

We see that det(λI −A) = (λ− 2)3, so λ = 2 is a triple root. It is clear that

(2.6.5) E(A, 2) = Span{e1},

where e1 = (1, 0, 0)t is the first standard basis vector of C3.

If one is given T ∈ L(V ), it is of interest to know whether V has a basis of
eigenvectors of T . The following result is useful.

Proposition 2.6.2. Assume that the characteristic polynomial of T ∈ L(V ) has
k distinct roots, λ1, . . . , λk, with eigenvectors vj ∈ E(T, λj), 1 ≤ j ≤ k. Then
{v1, . . . , vk} is linearly independent. In particular, if k = dimV , these vectors form
a basis of V .

Proof. We argue by contradiction. If {v1, . . . , vk} is linearly dependent, take a
minimal subset that is linearly dependent and (reordering if necessary) say this set
is {v1, . . . , vm}, with Tvj = λjvj , and

(2.6.6) c1v1 + · · ·+ cmvm = 0,
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with cj ̸= 0 for each j ∈ {1, . . . ,m}. Applying T − λmI to (2.6.6) gives

(2.6.7) c1(λ1 − λm)v1 + · · ·+ cm−1(λm−1 − λm)vm−1 = 0,

a linear dependence relation on the smaller set {v1, . . . , vm−1}. This contradiction
proves the proposition. �

Further information on when T ∈ L(V ) yields a basis of eigenvectors, and on
what one can say when it does not, will be given in the following sections.

Exercises

1. Compute the eigenvalues and eigenvectors of each of the following matrices.(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1
0 0

)
,(

1 1
0 0

)
,

(
1 i
i 1

)
,

(
i i
0 1

)
.

In which cases does C2 have a basis of eigenvectors?

2. Compute the eigenvalues and eigenvectors of each of the following matrices. 0 −1 1
1 0 −2
−1 2 0

 ,

1 0 1
0 −1 0
1 0 1

 .

3. Let A ∈ M(n,C). We say A is diagonalizable if and only if there exists an
invertible B ∈M(n,C) such that B−1AB is diagonal:

B−1AB =

λ1 . . .

λn

 .

Show that A is diagonalizable if and only if Cn has a basis of eigenvectors of A.
Recall from (2.4.13) that the matrices A and B−1AB are said to be similar.

4. More generally, if V is an n-dimensional complex vector space, we say T ∈ L(V )
is diagonalisable if and only if there exists invertible B : Cn → V such that B−1TB
is diagonal, with respect to the standard basis of Cn. Formulate and establish the
natural analogue of Exercise 3.

5. In the setting of (2.6.1)–(2.6.2), given S ∈ L(V, V ), show that

ST = TS =⇒ S : E(T, λj) → E(T, λj).
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2.7. Generalized eigenvectors and the minimal polynomial

As we have seen, the matrix

(2.7.1) A =

2 1 0
0 2 1
0 0 2


has only one eigenvalue, 2, and, up to a scalar multiple, just one eigenvector, e1.
However, we have

(2.7.2) (A− 2I)2e2 = 0, (A− 2I)3e3 = 0.

Generally, if T ∈ L(V ), we say a nonzero v ∈ V is a generalized λj-eigenvector if
there exists k ∈ N such that

(2.7.3) (T − λjI)
kv = 0.

We denote by GE(T, λj) the set of vectors v ∈ V such that (2.7.3) holds, for some
k. It is clear that GE(T, λj) is a linear subspace of V and

(2.7.4) T : GE(T, λj) −→ GE(T, λj).

The following is a useful comment.

Lemma 2.7.1. For each λj ∈ F such that GE(T, λj) ̸= 0,

(2.7.5) T − µI : GE(T, λj) −→ GE(T, λj) is an isomorphism, ∀µ ̸= λj .

Proof. If T −µI is not an isomorphism in (2.7.5), then Tv = µv for some nonzero
v ∈ GE(T, λj). But then (T − λjI)

kv = (µ − λj)
kv for all k ∈ N, and hence this

cannot ever be zero, unless µ = λj . �

Note that if V is a finite-dimensional complex vector space, then each nonzero
space appearing in (2.7.4) contains an eigenvector, by Proposition 2.6.1. Clearly
the corresponding eigenvalue must be λj . In particular, the set of λj for which
GE(T, λj) is nonzero coincides with Spec(T ), as given in (2.6.3).

We intend to show that if V is a finite-dimensional complex vector space and
T ∈ L(V ), then V is spanned by generalized eigenvectors of T . One tool in this
demonstration will be the construction of polynomials p(λ) such that p(T ) = 0.
Here, if

(2.7.6) p(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0,

then

(2.7.7) p(T ) = anT
n + an−1T

n−1 + · · ·+ a1T + a0I.

Let us denote by P the space of polynomials in λ.

Lemma 2.7.2. If V is finite dimensional and T ∈ L(V ), then there exists a nonzero
p ∈ P such that p(T ) = 0.

Proof. If dimV = n, then dimL(V ) = n2, so {I, T, . . . , Tn2} is linearly dependent.
�
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Let us set

(2.7.8) IT = {p ∈ P : p(T ) = 0}.

We see that I = IT has the following properties:

(2.7.9)
p, q ∈ I =⇒ p+ q ∈ I,

p ∈ I, q ∈ P =⇒ pq ∈ I.

A set I ⊂ P satisfying (2.7.9) is called an ideal. Here is another construction of a
class of ideals in P. Given {p1, . . . , pk} ⊂ P, set

(2.7.10) I(p1, . . . , pk) = {p1q1 + · · ·+ pkqk : qj ∈ P}.

We will find it very useful to know that all nonzero ideals in P, including IT , have
the following property.

Lemma 2.7.3. Let I ⊂ P be a nonzero ideal, and let p1 ∈ I have minimal degree
amongst all nonzero elements of I. Then

(2.7.11) I = I(p1).

Proof. Take any p ∈ I. We divide p1(λ) into p(λ) and take the remainder, obtain-
ing

(2.7.12) p(λ) = q(λ)p1(λ) + r(λ).

Here q, r ∈ P, hence r ∈ I. Also r(λ) has degree less than the degree of p1(λ), so
by minimality we have r ≡ 0. This shows p ∈ I(p1), and we have (2.7.11). �

Applying this to IT , we denote by mT (λ) the polynomial of smallest degree in
IT (having leading coefficient 1), and say

(2.7.13) mT (λ) is the minimal polynomial of T.

Thus every p ∈ P such that p(T ) = 0 is a multiple of mT (λ).

Assuming V is a complex vector space of dimension n, we can apply the fun-
damental theorem of algebra to write

(2.7.14) mT (λ) =

K∏
j=1

(λ− λj)
kj ,

with distinct roots λ1, . . . , λK . The following polynomials will also play a role in
our study of the generalized eigenspaces of T . For each ℓ ∈ {1, . . . ,K}, set

(2.7.15) pℓ(λ) =
∏
j ̸=ℓ

(λ− λj)
kj =

mT (λ)

(λ− λℓ)kℓ
.

We have the following useful result.

Proposition 2.7.4. If V is an n-dimensional complex vector space and T ∈ L(V ),
then, for each ℓ ∈ {1, . . . ,K},

(2.7.16) GE(T, λℓ) = R(pℓ(T )).
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Proof. Given v ∈ V ,

(2.7.17) (T − λℓ)
kℓpℓ(T )v = mT (T )v = 0,

so pℓ(T ) : V → GE(T, λℓ). Furthermore, each factor

(2.7.18) (T − λj)
kj : GE(T, λℓ) −→ GE(T, λℓ), j ̸= ℓ,

in pℓ(T ) is an isomorphism, by Lemma 2.7.1, so pℓ(T ) : GE(T, λℓ) → GE(T, λℓ) is
an isomorphism. �

Remark. We hence see that each λj appearing in (2.7.14) is an element of SpecT .

We now establish the following spanning property.

Proposition 2.7.5. If V is an n-dimensional complex vector space and T ∈ L(V ),
then

(2.7.19) V = GE(T, λ1) + · · ·+ GE(T, λK).

That is, each v ∈ V can be written as v = v1 + · · ·+ vK , with vj ∈ GE(T, λj).

Proof. Let mT (λ) be the minimal polynomial of T , with the factorization (2.7.14),
and define pℓ(λ) as in (2.7.15), for ℓ = 1, . . . ,K. We claim that

(2.7.20) I(p1, . . . , pK) = P.
In fact we know from Lemma 2.7.3 that I(p1, . . . , pK) = I(p0) for some p0 ∈ P.
Then any root of p0(λ) must be a root of each pℓ(λ), 1 ≤ ℓ ≤ K. But these
polynomials are constructed so that no µ ∈ C is a root of all K of them. Hence
p0(λ) has no root so (again by the fundamental theorem of algebra) it must be
constant, i.e., 1 ∈ I(p1, . . . , pK), which gives (2.7.20), and in particular we have
that there exist qℓ ∈ P such that

(2.7.21) p1(λ)q1(λ) + · · ·+ pK(λ)qK(λ) = 1.

We use this as follows to write an arbitrary v ∈ V as a linear combination of
generalized eigenvectors. Replacing λ by T in (2.7.21) gives

(2.7.22) p1(T )q1(T ) + · · ·+ pK(T )qK(T ) = I.

Hence, for any given v ∈ V ,

(2.7.23) v = p1(T )q1(T )v + · · ·+ pK(T )qK(T )v = v1 + · · ·+ vK ,

with vℓ = pℓ(T )qℓ(T )v ∈ GE(T, λℓ), by Proposition 2.7.4. �

We next produce a basis consisting of generalized eigenvectors.

Proposition 2.7.6. Under the hypotheses of Proposition 2.7.5, let GE(T, λℓ), 1 ≤
ℓ ≤ K, denote the generalized eigenspaces of T (with λℓ mutually distinct), and let

(2.7.24) Sℓ = {vℓ1, . . . , vℓ,dℓ}, dℓ = dimGE(T, λℓ),
be a basis of GE(T, λℓ). Then

(2.7.25) S = S1 ∪ · · · ∪ SK
is a basis of V .
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Proof. It follows from Proposition 2.7.5 that S spans V . We need to show that S is
linearly independent. To show this it suffices to show that if wℓ are nonzero elements
of GE(T, λℓ), then no nontrivial linear combination can vanish. The demonstration
of this is just slightly more elaborate than the corresponding argument in Propo-
sition 2.6.2. If there exist such linearly dependent sets, take one with a minimal
number of elements, and rearrange {λℓ}, to write it as {w1, . . . , wm}, so we have

(2.7.26) c1w1 + · · ·+ cmwm = 0,

and cj ̸= 0 for each j ∈ {1, . . . ,m}. As seen in Lemma 2.7.1,

(2.7.27) T − µI : GE(T, λℓ) −→ GE(T, λℓ) is an isomorphism, ∀ µ ̸= λℓ.

Take k ∈ N so large that (T − λmI)
k annihilates each element of the basis Sm

of GE(T, λm), and apply (T − λmI)
k to (2.7.26). Given (2.7.27), we will obtain a

non-trivial linear dependence relation involving m − 1 terms, a contradiction, so
the purported linear dependence relation cannot exist. This proves Proposition
2.7.6. �

Example. Let us consider A : C3 → C3, given by

(2.7.28) A =

2 3 3
0 2 3
0 0 1

 .

Then Spec(A) = {2, 1}, so mA(λ) = (λ − 2)a(λ − 1)b for some positive integers a
and b. Computations give

(2.7.29) (A− 2I)(A− I) =

0 3 9
0 0 0
0 0 0

 , (A− 2I)2(A− I) = 0,

hence mA(λ) = (λ− 2)2(λ− 1). Thus we have

(2.7.30) p1(λ) = λ− 1, p2(λ) = (λ− 2)2,

using the ordering λ1 = 2, λ2 = 1. As for qℓ(λ) such that (2.7.21) holds, a little
trial and error gives q1(λ) = −(λ− 3), q2(λ) = 1, i.e.,

(2.7.31) −(λ− 1)(λ− 3) + (λ− 2)2 = 1.

Note that

(2.7.32) A− I =

1 3 3
0 1 3
0 0 0

 , (A− 2I)2 =

0 0 6
0 0 −3
0 0 1

 .

Hence, by (2.7.16),

(2.7.33) GE(A, 2) = Span


1
0
0

 ,

0
1
0

 , GE(A, 1) = Span


 6
−3
1

 .

Remark. In general, for A ∈M(3,C), there are the following three possibilities.
(I) A has 3 distinct eigenvalues, λ1, λ2, λ3. Then λj-eigenvectors vj , 1 ≤ j ≤ 3,
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span C3.
(II) A has 2 distinct eigenvalues, say λ1 (single) and λ2 (double). Then

mA(λ) = (λ− λ1)(λ− λ2)
k, k = 1 or 2.

Whatever the value of k, p2(λ) = λ− λ1, and hence

GE(A, λ2) = R(A− λ1I),

which in turn is the span of the columns of A− λ1I. We have

GE(A, λ2) = E(A, λ2) ⇐⇒ k = 1.

In any case, C3 = E(A, λ1)⊕ GE(A, λ2).
(III) A has a triple eigenvalue, λ1. Then Spec(A− λ1I) = {0}, and

GE(A, λ1) = C3.

Compare results of the next section.

Exercises

1. Consider the matrices

A1 =

 1 0 1
0 2 0
−1 0 −1

 , A2 =

1 0 1
0 2 0
0 0 1

 , A3 =

1 2 0
3 1 3
0 −2 1

 .

Compute the eigenvalues and eigenvectors of each Aj .

2. Find the minimal polynomial of Aj and find a basis of generalized eigenvectors
of Aj .

3. Consider the transformationD : P2 → P2 given by (2.4.14). Find the eigenvalues
and eigenvectors of D. Find the minimal polynomial of D and find a basis of P2

consisting of generalized eigenvectors of D.

4. Suppose V is a finite dimensional complex vector space and T : V → V . Show
that V has a basis of eigenvectors of T if and only if all the roots of the minimal
polynomial mT (λ) are simple.

5. In the setting of (2.7.3)–(2.7.4), given S ∈ L(V ), show that

ST = TS =⇒ S : GE(T, λj) → GE(T, λj).

6. Show that if V is an n-dimensional complex vector space, S, T ∈ L(V ), and ST =
TS, then V has a basis consisting of vectors that are simultaneously generalized
eigenvectors of T and of S.
Hint. Apply Proposition 2.7.6 to S : GE(T, λj) → GE(T, λj).
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7. Let V be a complex n-dimensional vector space, and take T ∈ L(V ), with
minimal polynomial mT (λ), as in (2.7.13). For ℓ ∈ {1, . . . ,K}, set

Pℓ(λ) =
mT (λ)

λ− λℓ
.

Show that, for each ℓ ∈ {1, . . . ,K}, there exists wℓ ∈ V such that vℓ = Pℓ(T )wℓ ̸= 0.
Then show that (T − λℓI)vℓ = 0, so one has a proof of Proposition 2.6.1 that does
not use determinants.

8. Show that Proposition 2.7.6 refines Proposition 2.7.5 to

V = GE(T, λ1)⊕ · · · ⊕ GE(T, λK).

9. Given A,B ∈M(n,C), define LA, RB :M(n,C) →M(n,C) by
LAX = AX, RBX = XB.

Show that if SpecA = {λj}, SpecB = {µk} (= SpecBt), then

GE(LA, λj) = Span{vwt : v ∈ GE(A, λj), w ∈ Cn},
GE(RB , µk) = Span{vwt : v ∈ Cn, w ∈ GE(Bt, µk)}.

Show that

GE(LA −RB , σ) = Span{vwt : v ∈ GE(A, λj), w ∈ GE(Bt, µk), σ = λj − µk}.

10. In the setting of Exercise 9, show that if A is diagonalizable, then GE(LA, λj) =
E(LA, λj). Draw analogous conclusions if also B is diagonalizable.

11. In the setting of Exercise 9, show that if SpecA = {λj} and SpecB = {µk},
then

Spec(LA −RB) = {λj − µk}.
Deduce that if CA :M(n,C) →M(n,C) is defined by

CAX = AX −XA,

then
SpecCA = {λj − λk}.
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2.8. Triangular matrices

We say an n × n matrix A = (ajk) is upper triangular if ajk = 0 for j > k, and
strictly upper triangular if ajk = 0 for j ≥ k. Similarly we have the notion of lower
triangular and strictly lower triangular matrices. Here are two examples:

(2.8.1) A =

1 1 2
0 1 3
0 0 2

 , B =

0 1 2
0 0 3
0 0 0

 ;

A is upper triangular and B is strictly upper triangular; At is lower triangular and
Bt strictly lower triangular. Note that B3 = 0.

We say T ∈ L(V ) is nilpotent provided T k = 0 for some k ∈ N. The following
is a useful characterization of nilpotent transformations.

Proposition 2.8.1. Let V be a finite-dimensional complex vector space, N ∈ L(V ).
The following are equivalent:

N is nilpotent,(2.8.2)

Spec(N) = {0},(2.8.3)

There is a basis of V for which N is strictly upper triangular,(2.8.4)

There is a basis of V for which N is strictly lower triangular.(2.8.5)

Proof. The implications (2.8.4) ⇒ (2.8.2) and (2.8.5) ⇒ (2.8.2) are easy. Also
(2.8.4) implies the characteristic polynomial of N is λn (if n = dimV ), which is
equivalent to (2.8.3), and similarly (2.8.5) ⇒ (2.8.3). We need to establish a couple
more implications.

To see that (2.8.2) ⇒ (2.8.3), note that if Nk = 0 we can write

(2.8.6) (N − µI)−1 = − 1

µ

(
I − 1

µ
N
)−1

= − 1

µ

k−1∑
ℓ=0

1

µℓ
N ℓ,

whenever µ ̸= 0.

Next, given (2.8.3), N : V → V is not an isomorphism, so V1 = N(V ) has
dimension ≤ n − 1. Now N1 = N |V1

∈ L(V1) also has only 0 as an eigenvalue, so
N1(V1) = V2 has dimension ≤ n− 2, and so on. Thus Nk = 0 for sufficiently large
k. We have (2.8.3) ⇒ (2.8.2). Now list these spaces as V = V0 ⊃ V1 ⊃ · · · ⊃ Vk−1,
with Vk−1 ̸= 0 but N(Vk−1) = 0. Pick a basis for Vk−1, augment it as in Proposition
2.3.5 to produce a basis for Vk−2, and continue, obtaining in this fashion a basis
of V , with respect to which N is strictly upper triangular. Thus (2.8.3) ⇒ (2.8.4).
On the other hand, if we reverse the order of this basis we have a basis with respect
to which N is strictly lower triangular, so also (2.8.3) ⇒ (2.8.5). The proof of
Proposition 2.8.1 is complete. �

Remark. Having proven Proposition 2.8.1, we see another condition equivalent to
(2.8.2)–(2.8.5):

(2.8.7) Nk = 0, ∀ k ≥ dimV.
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Example. Consider

(2.8.8) N =

0 2 0
3 0 3
0 −2 0

 .

We have

(2.8.9) N2 =

 6 0 6
0 0 0
−6 0 −6

 , N3 = 0.

Hence we have a chain V = V0 ⊃ V1 ⊃ V2 as in the proof of Proposition 2.8.1, with

(2.8.10)

V2 = Span

 1
0
−1

 , V1 = Span


 1

0
−1

 ,

0
1
0

 ,

V0 = Span


 1

0
−1

 ,

0
1
0

 ,

1
0
0

 = Span{v1, v2, v3},

and we have

(2.8.11) Nv1 = 0, Nv2 = −v1, Nv3 = 3v2,

so the matrix representation of N with respect to the basis {v1, v2, v3} is

(2.8.12)

0 −1 0
0 0 3
0 0 0

 .

Generally, if A is an upper triangular n × n matrix with diagonal entries
d1, . . . , dn, the characteristic polynomial of A is

(2.8.13) det(λI −A) = (λ− d1) · · · (λ− dn),

by (2.5.46), so Spec(A) = {dj}. If d1, . . . , dn are all distinct it follows that Fn has
a basis of eigenvectors of A.

We can show that whenever V is a finite-dimensional complex vector space and
T ∈ L(V ), then V has a basis with respect to which T is upper triangular. In
fact, we can say a bit more. Recall what was established in Proposition 2.7.6. If
Spec(T ) = {λℓ : 1 ≤ ℓ ≤ K} and Sℓ = {vℓ1, . . . , vℓ,dℓ} is a basis of GE(T, λℓ), then
S = S1 ∪ · · · ∪ SK is a basis of V . Now look more closely at

(2.8.14) Tℓ : Vℓ −→ Vℓ, Vℓ = GE(T, λℓ), Tℓ = T
∣∣
Vℓ
.

The result (2.7.5) says Spec(Tℓ) = {λℓ}, i.e., Spec(Tℓ−λℓI) = {0}, so we can apply
Proposition 2.8.1. Thus we can pick a basis Sℓ of Vℓ with respect to which Tℓ−λℓI
is strictly upper triangular, hence in which Tℓ takes the form

(2.8.15) Aℓ =

λℓ ∗
. . .

0 λℓ

 .
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Then, with respect to the basis S = S1 ∪ · · · ∪ SK , T has a matrix representation
A consisting of blocks Aℓ, given by (2.8.15). It follows that

(2.8.16) KT (λ) = det(λI − T ) =

K∏
ℓ=1

(λ− λℓ)
dℓ , dℓ = dimVℓ.

This matrix representation also makes it clear that KT (T )|Vℓ
= 0 for each ℓ ∈

{1, . . . ,K} (cf. (2.8.7)), hence

(2.8.17) KT (T ) = 0 on V.

This result is known as the Cayley-Hamilton theorem. Recalling the characteriza-
tion of the minimal polynomial mT (λ) given in (2.7.11)–(2.7.13), we see that

(2.8.18) KT (λ) is a polynomial multiple of mT (λ).

Exercises

1. Consider

A1 =

(
1 2
2 1

)
, A2 =

0 0 −1
0 1 0
1 0 0

 , A3 =

1 2 3
2 1 2
3 2 1

 .

Compute the characteristic polynomial of each Aj and verify that these matrices
satisfy the Cayley-Hamilton theorem, stated in (2.8.17).

2. Let Pk denote the space of polynomials of degree ≤ k in x, and consider

D : Pk −→ Pk, Dp(x) = p′(x).

Show that Dk+1 = 0 on Pk and that {1, x, . . . , xk} is a basis of Pk with respect to
which D is strictly upper triangular.

3. Use the identity

(I −D)−1 =

k+1∑
ℓ=0

Dℓ, on Pk,

to obtain a solution u ∈ Pk to

(2.8.19) u′ − u = xk.

4. Use the equivalence of (2.8.19) with

d

dx
(e−xu) = xke−x

to obtain a formula for ∫
xke−x dx.

For an alternative approach, see (1.1.45)–(1.1.52) of Chapter 1; see also exercises
at the end of §3.4 of Chapter 3.
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5. The proof of Proposition 2.8.1 given above includes the chain of implications

(2.8.4) ⇒ (2.8.2) ⇒ (2.8.3) ⇒ (2.8.4).

Use Proposition 2.7.4 to show directly that

(2.8.3) ⇒ (2.8.2).

6. Establish the following variant of Proposition 2.7.4. Let KT (λ) be the charac-
teristic polynomial of T , as in (2.8.16), and set

Pℓ(λ) =
∏
j ̸=ℓ

(λ− λj)
dj =

KT (λ)

(λ− λℓ)dℓ
.

Show that
GE(T, λℓ) = R(Pℓ(T )).
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2.9. Inner products and norms

Vectors in Rn have a dot product, given by

(2.9.1) v · w = v1w1 + · · ·+ vnwn,

where v = (v1, . . . , vn), w = (w1, . . . , wn). Then the norm of v, denoted ∥v∥, is
given by

(2.9.2) ∥v∥2 = v · v = v21 + · · ·+ v2n.

The geometrical significance of ∥v∥ as the distance of v from the origin is a version
of the Pythagorean theorem. If v, w ∈ Cn, we use

(2.9.3) (v, w) = v · w = v1w1 + · · ·+ vnwn,

and then

(2.9.4) ∥v∥2 = (v, v) = |v1|2 + · · ·+ |vn|2;
here, if vj = xj + iyj , with xj , yj ∈ R, we have vj = xj − iyj , and |vj |2 = x2j + y2j .

The objects (2.9.1) and (2.9.3) are special cases of inner products. Generally,
an inner product on a vector space (over F = R or C) assigns to vectors v, w ∈ V
the quantity (v, w) ∈ F, in a fashion that obeys the following three rules:

(a1v1 + a2v2, w) = a1(v1, w) + a2(v2, w),(2.9.5)

(v, w) = (w, v),(2.9.6)

(v, v) > 0, unless v = 0.(2.9.7)

If F = R, then (2.9.6) just means (v, w) = (w, v). Note that (2.9.5)–(2.9.6) together
imply

(2.9.8) (v, b1w1 + b2w2) = b1(v, w1) + b2(v, w2).

A vector space equipped with an inner product is called an inner product space.
Inner products arise naturally in various contexts. For example,

(2.9.9) (f, g) =

∫ b

a

f(x)g(x) dx

defines an inner product on C([a, b]). It also defines an inner product on P, the
space of polynomials in x. Different choices of a and b yield different inner products
on P. More generally, one considers inner products of the form

(2.9.10) (f, g) =

∫ b

a

f(x)g(x)w(x) dx,

on various function spaces, where w is a positive, integrable “weight” function.

Given an inner product on V , one says the object ∥v∥ defined by

(2.9.11) ∥v∥ =
√
(v, v)

is the norm on V associated with the inner product. Generally, a norm on V is a
function v 7→ ∥v∥ satisfying

∥av∥ = |a| · ∥v∥, ∀a ∈ F, v ∈ V,(2.9.12)

∥v∥ > 0, unless v = 0,(2.9.13)

∥v + w∥ ≤ ∥v∥+ ∥w∥.(2.9.14)
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Here |a| denotes the absolute value of a ∈ F. The property (9.14) is called the
triangle inequality. A vector space equipped with a norm is called a normed vector
space.

If ∥v∥ is given by (2.9.11), from an inner product satisfying (2.9.5)–(2.9.7), it is
clear that (2.9.12)–(2.9.13) hold, but (2.9.14) requires a demonstration. Note that

(2.9.15)

∥v + w∥2 = (v + w, v + w)

= ∥v∥2 + (v, w) + (w, v) + ∥w∥2

= ∥v∥2 + 2Re (v, w) + ∥w∥2,

while

(2.9.16) (∥v∥+ ∥w∥)2 = ∥v∥2 + 2∥v∥ · ∥w∥+ ∥w∥2.

Thus to establish (2.9.14) it suffices to prove the following, known as Cauchy’s
inequality:

Proposition 2.9.1. For any inner product on a vector space V , with ∥v∥ defined
by (2.9.11),

(2.9.17) |(v, w)| ≤ ∥v∥ ∥w∥, ∀ v, w ∈ V.

Proof. We start with

(2.9.18) 0 ≤ ∥v − w∥2 = ∥v∥2 − 2Re (v, w) + ∥w∥2,

which implies

2Re (v, w) ≤ ∥v∥2 + ∥w∥2, ∀ v, w ∈ V.

Replacing v by αv for arbitrary α ∈ F of absolute value 1 yields 2Reα(v, w) ≤
∥v∥2 + ∥w∥2. This implies

(2.9.19) 2|(v, w)| ≤ ∥v∥2 + ∥w∥2, ∀ v, w ∈ V.

Replacing v by tv and w by t−1w for arbitrary t ∈ (0,∞), we have

(2.9.20) 2|(v, w)| ≤ t2∥v∥2 + t−2∥w∥2, ∀ v, w ∈ V, t ∈ (0,∞).

If we take t2 = ∥w∥/∥v∥, we obtain the desired inequality (2.9.17). (This assumes
v and w are both nonzero, but (2.9.17) is trivial if v or w is 0.) �

There are other norms on vector spaces besides those that are associated with
inner products. For example, on Fn, we have

(2.9.21) ∥v∥1 = |v1|+ · · ·+ |vn|, ∥v∥∞ = max
1≤k≤n

|vk|,

and many others, but we will not dwell on this here.

If V is a finite-dimensional inner product space, a basis {u1, . . . , un} of V is
called an orthonormal basis of V provided

(2.9.22) (uj , uk) = δjk, 1 ≤ j, k ≤ n,

i.e.,

(2.9.23) ∥uj∥ = 1, j ̸= k ⇒ (uj , uk) = 0.
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(When (uj , , uk) = 0, we say uj and uk are orthogonal.) When (2.9.22) holds, we
have

(2.9.24) v = a1u1+· · ·+anun, w = b1u1+· · ·+bnun ⇒ (v, w) = a1b1+· · ·+anbn.
It is often useful to construct orthonormal bases. The construction we now describe
is called the Gramm-Schmidt construction.

Proposition 2.9.2. Let {v1, . . . , vn} be a basis of V , an inner product space. Then
there is an orthonormal basis {u1, . . . , un} of V such that

(2.9.25) Span{uj : j ≤ ℓ} = Span{vj : j ≤ ℓ}, 1 ≤ ℓ ≤ n.

Proof. To begin, take

(2.9.26) u1 =
1

∥v1∥
v1.

Now define the linear transformation P1 : V → V by P1v = (v, u1)u1 and set

ṽ2 = v2 − P1v2 = v2 − (v2, u1)u1.

We see that (ṽ2, u1) = (v2, u1) − (v2, u1) = 0. Also ṽ2 ̸= 0 since u1 and v2 are
linearly independent. Hence we set

(2.9.27) u2 =
1

∥ṽ2∥
ṽ2.

Inductively, suppose we have an orthonormal set {u1, . . . , um} with m < n and
(2.9.25) holding for 1 ≤ ℓ ≤ m. Then define Pm : V → V (the orthogonal projection
of V onto Span(u1, . . . , um)) by

(2.9.28) Pmv = (v, u1)u1 + · · ·+ (v, um)um,

and set

(2.9.29) ṽm+1 = vm+1 − Pmvm+1 = vm+1 − (vm+1, u1)u1 − · · · − (vm+1, um)um.

We see that

(2.9.30) j ≤ m⇒ (ṽm+1, uj) = (vm+1, uj)− (vm+1, uj) = 0.

Also, since vm+1 /∈ Span{v1, . . . , vm} = Span{u1, . . . , um}, it follows that ṽm+1 ̸= 0.
Hence we set

(2.9.31) um+1 =
1

∥ṽm+1∥
ṽm+1.

This completes the construction. �

Example. Take V = P2, with basis {1, x, x2}, and inner product given by

(2.9.32) (p, q) =

∫ 1

−1

p(x)q(x) dx.

The Gramm-Schmidt construction gives first

(2.9.33) u1(x) =
1√
2
.

Then
ṽ2(x) = x,
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since by symmetry (x, u1) = 0. Now
∫ 1

−1
x2 dx = 2/3, so we take

(2.9.34) u2(x) =

√
3

2
x.

Next

ṽ3(x) = x2 − (x2, u1)u1 = x2 − 1

3
,

since by symmetry (x2, u2) = 0. Now
∫ 1

−1
(x2 − 1/3)2 dx = 8/45, so we take

(2.9.35) u3(x) =

√
45

8

(
x2 − 1

3

)
.

Exercises

1. Let V be a finite dimensional inner product space, and letW be a linear subspace
of V . Show that any orthonormal basis {w1, . . . , wk} of W can be enlarged to an
orthonormal basis {w1, . . . , wk, u1, . . . , uℓ} of V , with k + ℓ = dimV .

2. As in Exercise 1, let V be a finite dimensional inner product space, and let W
be a linear subspace of V . Define the orthogonal complement

(2.9.36) W⊥ = {v ∈ V : (v, w) = 0, ∀w ∈W}.

Show that

W⊥ = Span{u1, . . . , uℓ},
in the context of Exercise 1. Deduce that

(2.9.37) (W⊥)⊥ =W.

3. In the context of Exercise 2, show that

dimV = n, dimW = k =⇒ dimW⊥ = n− k.

4. Construct an orthonormal basis of the (n− 1)-dimensional vector space

V =
{v1...

vn

 ∈ Rn : v1 + · · ·+ vn = 0
}
.

5. Take V = P2, with basis {1, x, x2}, and inner product

(p, q) =

∫ 1

0

p(x)q(x) dx,

in contrast to (2.9.32). Construct an orthonormal basis of this inner product space.
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6. Take V , with basis {1, cosx, sinx}, and inner product

(f, g) =

∫ π

0

f(x)g(x) dx.

Construct an orthonormal basis of this inner product space.
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2.10. Norm, trace, and adjoint of a linear transformation

If V and W are normed linear spaces and T ∈ L(V,W ), we define

(2.10.1) ∥T∥ = sup {∥Tv∥ : ∥v∥ ≤ 1}.
Equivalently, ∥T∥ is the smallest quantity K such that

(2.10.2) ∥Tv∥ ≤ K∥v∥, ∀ v ∈ V.

We call ∥T∥ the operator norm of T . If V and W are finite dimensional, it can be
shown that ∥T∥ < ∞ for all T ∈ L(V,W ). We omit the general argument, but we
will make some estimates below when V and W are inner product spaces.

Note that if also S :W → X, another normed vector space, then

(2.10.3) ∥STv∥ ≤ ∥S∥ ∥Tv∥ ≤ ∥S∥ ∥T∥ ∥v∥, ∀ v ∈ V,

and hence

(2.10.4) ∥ST∥ ≤ ∥S∥ ∥T∥.
In particular, we have by induction that

(2.10.5) T : V → V =⇒ ∥Tn∥ ≤ ∥T∥n.
This will be useful when we discuss the exponential of a linear transformation, in
Chapter 3.

We turn to the notion of the trace of a transformation T ∈ L(V ), given dimV <
∞. We start with the trace of an n × n matrix, which is simply the sum of the
diagonal elements:

(2.10.6) A = (ajk) ∈M(n,F) =⇒ TrA =

n∑
j=1

ajj .

Note that if also B = (bjk) ∈M(n,F), then

(2.10.7)

AB = C = (cjk), cjk =
∑
ℓ

ajℓbℓk,

BA = D = (djk), djk =
∑
ℓ

bjℓaℓk,

and hence

(2.10.8) TrAB =
∑
j,ℓ

ajℓbℓj = TrBA.

Hence, if B is invertible,

(2.10.9) TrB−1AB = TrABB−1 = TrA.

Thus if T ∈ L(V ), we can choose a basis S = {v1, . . . , vn} of V , if dimV = n, and
define

(2.10.10) TrT = TrA, A = MS
S(T ),

and (2.10.9) implies this is independent of the choice of basis.

Next we define the adjoint of T ∈ L(V,W ), when V andW are finite-dimensional
inner product spaces, as the transformation T ∗ ∈ L(W,V ) with the property

(2.10.11) (Tv,w) = (v, T ∗w), ∀ v ∈ V, w ∈W.
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If {v1, . . . , vn} is an orthonormal basis of V and {w1, . . . , wm} an orthonormal basis
of W , then

(2.10.12) A = (aij), aij = (Tvj , wi),

is the matrix representation of T , as in (2.4.2), and the matrix representation of
T ∗ is

(2.10.13) A∗ = (aji).

Now we define the Hilbert-Schmidt norm of T ∈ L(V,W ) when V and W are
finite-dimensional inner product spaces. Namely, we set

(2.10.14) ∥T∥2HS = TrT ∗T.

In terms of the matrix representation (2.10.12) of T , we have

(2.10.15) T ∗T = (bjk), bjk =
∑
ℓ

aℓjaℓk,

hence

(2.10.16) ∥T∥2HS =
∑
j

bjj =
∑
j,k

|ajk|2.

Equivalently, using an arbitrary orthonormal basis {v1, . . . , vn} of V , we have

(2.10.17) ∥T∥2HS =

n∑
j=1

∥Tvj∥2.

Using (2.10.17), we can show that the operator norm of T is dominated by the
Hilbert-Schmidt norm:

(2.10.18) ∥T∥ ≤ ∥T∥HS .

In fact, pick a unit v1 ∈ V such that ∥Tv1∥ is maximized on {v : ∥v∥ ≤ 1}, extend
this to an orthonormal basis {v1, . . . , vn}, and use

∥T∥2 = ∥Tv1∥2 ≤
n∑
j=1

∥Tvj∥2 = ∥T∥2HS .

Also we can dominate each term on the right side of (2.10.17) by ∥T∥2, so

(2.10.19) ∥T∥HS ≤
√
n∥T∥, n = dimV.

Another consequence of (2.10.17)–(2.10.18) is

(2.10.20) ∥ST∥HS ≤ ∥S∥ ∥T∥HS ≤ ∥S∥HS∥T∥HS ,

for S as in (2.10.3). In particular, parallel to (2.10.5), we have

(2.10.21) T : V → V =⇒ ∥Tn∥HS ≤ ∥T∥nHS .
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Exercises

1. Suppose V and W are finite dimensional inner product spaces and T ∈ L(V,W ).
Show that

T ∗∗ = T.

2. In the context of Exercise 1, show that

T injective ⇐⇒ T ∗ surjective.

More generally, show that

N (T ) = R(T ∗)⊥.

(See Exercise 2 of §2.9 for a discussion of the orthogonal complement W⊥.)

3. Say A is a k × n real matrix and the k columns are linearly independent. Show
that A has k linearly independent rows. (Similarly treat complex matrices.)
Hint. The hypothesis is equivalent to A : Rk → Rn being injective. What does
that say about A∗ : Rn → Rk?

4. If A is a k × n real (or complex) matrix, we define the column rank of A to be
the dimension of the span of the columns of A. We similarly define the row rank of
A. Show that the row rank of A is equal to its column rank.
Hint. Reduce this to showing dimR(A) = dimR(A∗). Apply Exercise 2 (and
Exercise 3 of §2.9).

5. Suppose A is an n× n matrix and ∥A∥ < 1. Show that

(I −A)−1 = I +A+A2 + · · ·+Ak + · · · ,
a convergent infinite series.

6. If A is an n× n complex matrix, show that

λ ∈ Spec(A) =⇒ |λ| ≤ ∥A∥.

7. Show that, for any real θ, the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
has operator norm 1. Compute its Hilbert-Schmidt norm.

8. Given a > b > 0, show that the matrix

B =

(
a 0
0 b

)
has operator norm a. Compute its Hilbert-Schmidt norm.
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9. Show that if V is an n-dimensional complex inner product space, then, for
T ∈ L(V ),

detT ∗ = detT .

10. If V is an n-dimensional inner product space, show that, for T ∈ L(V ),

∥T∥ = sup{|(Tu, v)| : ∥u∥, ∥v∥ ≤ 1}.
Show that

∥T ∗∥ = ∥T∥.
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2.11. Self-adjoint and skew-adjoint transformations

If V is a finite-dimensional inner product space, T ∈ L(V ) is said to be self-adjoint
if T = T ∗ and skew-adjoint if T = −T ∗. If {u1, . . . , un} is an orthonormal basis of
V and A the matrix representation of T with respect to this basis, given by

(2.11.1) A = (aij), aij = (Tuj , ui),

then T ∗ is represented by A∗ = (aji), so T is self-adjoint if and only if aij = aji
and T is skew-adjoint if and only if aij = −aji.

The eigenvalues and eigenvectors of these two classes of operators have special
properties, as we proceed to show.

Lemma 2.11.1. If λj is an eigenvalue of a self-adjoint T ∈ L(V ), then λj is real.

Proof. Say Tvj = λjvj , vj ̸= 0. Then

(2.11.2) λj∥vj∥2 = (Tvj , vj) = (vj , T vj) = λj∥vj∥2,

so λj = λj . �

This allows us to prove the following result for both real and complex vector
spaces.

Proposition 2.11.2. If V is a finite-dimensional inner product space and T ∈
L(V ) is self-adjoint, then V has an orthonormal basis of eigenvectors of T .

Proof. Proposition 2.6.1 (and the comment following it in case F = R) implies
there is a unit v1 ∈ V such that Tv1 = λ1v1, and we know λ1 ∈ R. Say dimV = n.
Let

(2.11.3) W = {w ∈ V : (v1, w) = 0}.

Then dimW = n− 1, as we can see by completing {v1} to an orthonormal basis of
V . We claim

(2.11.4) T = T ∗ =⇒ T :W →W.

Indeed,

(2.11.5) w ∈W ⇒ (v1, Tw) = (Tv1, w) = λ1(v1, w) = 0 ⇒ Tw ∈W.

An inductive argument gives an orthonormal basis of W consisting of eigenvalues
of T , so Proposition 2.11.2 is proven. �

The following could be deduced from Proposition 2.11.2, but we prove it di-
rectly.

Proposition 2.11.3. Assume T ∈ L(V ) is self-adjoint. If Tvj = λjvj , T vk =
λkvk, and λj ̸= λk, then (vj , vk) = 0.

Proof. Then we have

λj(vj , vk) = (Tvj , vk) = (vj , T vk) = λk(vj , vk).

�
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If F = C, we have

(2.11.6) T skew-adjoint ⇐⇒ iT self-adjoint,

so Proposition 2.11.2 has an extension to skew-adjoint transformations if F = C.
The case F = R requires further study.

For concreteness, take V = Rn, with its standard inner product, and consider
a skew-adjoint transformation A : Rn → Rn. In this case, skew-adjointness is
equivalent to skew-symmetry:

(2.11.7) A = (aij), aij = −aji. (We say A ∈ Skew(n).)

Now we can consider

(2.11.8) A : Cn −→ Cn,
given by the same matrix as in (2.11.7), which is a matrix with real entries. Thus
the characteristic polynomial KA(λ) = det(λI − A) is a polynomial of degree n
with real coefficients, so its non-real roots occur in complex conjugate pairs. Thus
the nonzero elements of Spec(A) are

(2.11.9) Spec′(A) = {iλ1, . . . , iλm,−iλ1, . . . ,−iλm},
with λj ̸= λk if j ̸= k; for the sake of concreteness, say each λj > 0. By Proposition
2.11.2, Cn has an orthonormal basis of eigenvalues of A, and of course each such
basis element belongs to E(A, iλj) or to E(A,−iλj), for some j ∈ {1, . . . ,m}, or to
E(A, 0) = N (A). For each j ∈ {1, . . . ,m}, let
(2.11.10) {vj1, . . . , vj,dj}
be an orthonormal basis of E(A, iλj). Say
(2.11.11) vjk = ξjk + iηjk, ξjk, ηjk ∈ Rn.
Then we can take

(2.11.12) vjk = ξjk − iηjk ∈ Cn,
and

(2.11.13) {vj1, . . . , vj,dj}
is an orthonormal basis of E(A,−iλj). Note that

(2.11.14) Aξjk = −λjηjk, Aηjk = λjξjk, 1 ≤ k ≤ dj .

Note also that

(2.11.15) SpanC{ξjk, ηjk : 1 ≤ k ≤ dj} = E(A, iλj) + E(A,−iλj),
while we can also take

(2.11.16) SpanR{ξjk, ηjk : 1 ≤ k ≤ dj} = H(A, λj) ⊂ Rn,
a linear subspace of Rn, of dimension 2dj . Furthermore, applying Proposition 2.11.3
to iA, we see that

(2.11.17) (vjk, vjk) = 0 =⇒ ∥ξjk∥2 = ∥ηjk∥2, and (ξjk, ηjk) = 0,

hence

(2.11.18) ∥ξjk∥ = ∥ηjk∥ =
1√
2
.
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Making further use of

(2.11.19) (vij , vkℓ) = 0, (vij , vkℓ) = δikδjℓ,

we see that

(2.11.20)
{√

2ξjk,
√
2ηjk : 1 ≤ k ≤ dj , 1 ≤ j ≤ m

}
is an orthonormal set in Rn, whose linear span over C coincides with the span of
all the nonzero eigenspaces of A in Cn.

Next we compare NC(A) ⊂ Cn with NR(A) ⊂ Rn. It is clear that, if vj =
ξj + iηj , ξj , ηj ∈ Rn,
(2.11.21) vj ∈ NC(A) ⇐⇒ ξj , ηj ∈ NR(A),

since A is a real matrix. Thus, if {ξ1, . . . , ξµ} is an orthonormal basis for NR(A), it
is also an orthonormal basis for NC(A). Therefore we have the following conclusion:

Proposition 2.11.4. If A : Rn → Rn is skew-adjoint, then Rn has an orthonormal
basis in which the matrix representation of A consists of blocks

(2.11.22)

(
0 λj

−λj 0

)
,

plus perhaps a zero matrix, when N (A) ̸= 0.

Exercises

1. Verify Proposition 2.11.2 for V = R3 and

T =

1 0 1
0 1 0
1 0 1

 .

2. Verify Proposition 2.11.4 for

A =

 0 −1 2
1 0 −3
−2 3 0

 .

3. In the setting of Proposition 2.11.2, suppose S, T ∈ L(V ) are both self-adjoint
and suppose they commute, i.e., ST = TS. Show that V has an orthonormal basis
of vectors that are simultaneously eigenvectors of S and of T .

4. If V is a finite dimensional inner product space, we say T ∈ L(V ) is positive
definite if and only if T = T ∗ and

(2.11.23) (Tv, v) > 0 for all nonzero v ∈ V.

Show that T ∈ L(V ) is positive definite if and only if T = T ∗ and all its eigenvalues
are > 0. We say T is positive semidefinite if and only if T = T ∗ and

(Tv, v) ≥ 0, ∀ v ∈ V.
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Show that T ∈ L(V ) is positive semidefinite if and only if T = T ∗ and all its
eigenvalues are ≥ 0.

5. If T ∈ L(V ) is positive semidefinite, show that

∥T∥ = max{λ : λ ∈ SpecT}.

6. If S ∈ L(V ), show that S∗S is positive semidefinite, and

∥S∥2 = ∥S∗S∥.
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2.12. Unitary and orthogonal transformations

Let V be a finite-dimensional inner product space (over F) and T ∈ L(V ). Suppose

(2.12.1) T−1 = T ∗.

If F = C we say T is unitary, and if F = R we say T is orthogonal. We denote by
U(n) the set of unitary transformations on Cn and by O(n) the set of orthogonal
transformations on Rn. Note that (2.12.1) implies

(2.12.2) |detT |2 = (detT )(detT ∗) = 1,

i.e., detT ∈ F has absolute value 1. In particular,

(2.12.3) T ∈ O(n) =⇒ detT = ±1.

We set

(2.12.4)
SO(n) = {T ∈ O(n) : detT = 1},
SU(n) = {T ∈ U(n) : detT = 1}.

As with self-adjoint and skew-adjoint transformations, the eigenvalues and
eigenvectors of unitary transformations have special properties, as we now demon-
strate.

Lemma 2.12.1. If λj is an eigenvalue of a unitary T ∈ L(V ), then |λj | = 1.

Proof. Say Tvj = λjvj , vj ̸= 0. Then

(2.12.5) ∥vj∥2 = (T ∗Tvj , vj) = (Tvj , T vj) = |λj |2∥vj∥2.
�

Next, parallel to Proposition 2.11.2, we show unitary transformations have
eigenvectors forming a basis.

Proposition 2.12.2. If V is a finite-dimensional complex inner product space and
T ∈ L(V ) is unitary, then V has an orthonormal basis of eigenvectors of T .

Proof. Proposition 6.1 implies there is a unit v1 ∈ V such that Tv1 = λ1v1. Say
dimV = n. Let

(2.12.6) W = {w ∈ V : (v1, w) = 0}.
As in the analysis of (2.11.3) we have dimW = n− 1. We claim

(2.12.7) T unitary =⇒ T :W →W.

Indeed,

(2.12.8) w ∈W ⇒ (v1, Tw) = (T−1v1, w) = λ−1
1 (v1, w) = 0 ⇒ Tw ∈W.

Now, as in Proposition 2.11.2, an inductive argument gives an orthonormal basis
of W consisting of eigenvectors of T , so Proposition 2.12.2 is proven. �

Next we have a result parallel to Proposition 2.11.3:

Proposition 2.12.3. Assume T ∈ L(V ) is unitary. If Tvj = λjvj and Tvk =
λkvk, and λj ̸= λk, then (vj , vk) = 0.
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Proof. Then we have

λj(vj , vk) = (Tvj , vk) = (vj , T
−1vk) = λk(vj , vk),

since λ
−1

k = λk. �

We next examine the structure of orthogonal transformations, in a fashion
parallel to our study in §2.11 of skew-adjoint transformations on Rn. Thus let
(2.12.9) A : Rn −→ Rn

be orthogonal, so

(2.12.10) AA∗ = I,

which for real matrices is equivalent to AAt = I. Now we can consider

A : Cn −→ Cn,
given by the same matrix as in (2.12.9), a matrix with real entries. Thus the
characteristic polynomial KA(λ) = det(λI − A) is a polynomial of degree n with
real coefficients, so its non-real roots occur in complex conjugate pairs. Thus the
elements of Spec(A) other than ±1 are given by

(2.12.11) Spec#(A) = {ω1, . . . , ωm, ω1, . . . , ωm}, ωj = ω−1
j ,

with the various listed eigenvalues mutually distinct. For the sake of concreteness,
say Imωj > 0 for each j ∈ {1, . . . ,m}. By Proposition 2.12.2, Cn has an orthonor-
mal basis of eigenvectors of A, and of course each such basis element belongs to
E(A,ωj), or to E(A,ωj), for some j ∈ {1, . . . ,m}, or to E(A, 1) or E(A,−1). For
each j ∈ {1, . . . ,m}, let
(2.12.12) {vj1, . . . , vj,dj}
be an orthonormal basis of E(A,ωj). Say
(2.12.13) vjk = ξjk + iηjk, ξjk, ηjk ∈ Rn.
Then we can take

(2.12.14) vjk = ξjk − iηjk ∈ Cn,
and

(2.12.15) {vj1, . . . , vj,dj}
is an orthonormal basis of E(A,ωj). Writing

(2.12.16) ωj = cj + isj , cj , sj ∈ R,
we have

(2.12.17)
Aξjk = cjξjk − sjηjk,

Aηjk = sjξjk + cjηjk,

for 1 ≤ k ≤ dj . Note that

(2.12.18) SpanC{ξjk, ηjk : 1 ≤ k ≤ dj} = E(A,ωj) + E(A,ωj),
while we can also take

(2.12.19) SpanR{ξjk, ηjk : 1 ≤ k ≤ dj} = H(A,ωj) ⊂ Rn,
a linear subspace of Rn, of dimension 2dj .
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Parallel to the arguments involving (2.11.17)–(2.11.20), we have that

(2.12.20)
{ 1√

2
ξjk,

1√
2
ηjk : 1 ≤ k ≤ dj , 1 ≤ j ≤ m

}
is an orthonormal set in Rn, whose linear span over C coincides with the span of
all the eigenspaces of A with eigenvalues ̸= ±1, in Cn.

We have the following conclusion:

Proposition 2.12.4. If A : Rn → Rn is orthogonal, then Rn has an orthonormal
basis in which the matrix representation of A consists of blocks

(2.12.21)

(
cj sj
−sj cj

)
, c2j + s2j = 1,

plus perhaps an identity matrix block, if E(A, 1) ̸= 0, and a block that is −I, if
E(A,−1) ̸= 0.

Example 1. Picking c, s ∈ R such that c2 + s2 = 1, we see that

B =

(
c s
s −c

)
is orthogonal, with detB = −1. Note that Spec(B) = {1,−1}. Thus there is an
orthonormal basis of R2 in which the matrix representation of B is(

1 0
0 −1

)
.

Example 2. If A : R3 → R3 is orthogonal, then there is an orthonormal basis
{u1, u2, u3} of R3 in which

(2.12.22) A =

c −s
s c

1

 or

c −s
s c

−1

 ,

depending on whether detA = 1 or detA = −1. (Note we have switched signs on
s, which is harmless. This lines our notation up with that used in §3.2 of Chapter
3.) Since c2 + s2 = 1, it follows that there is an angle θ, uniquely determined up to
an additive multiple of 2π, such that

(2.12.23) c = cos θ, s = sin θ.

(See §1.1 of Chapter 1, and also §3.2 of Chapter 3.) If detA = 1 in (2.12.22) we
say A is a rotation about the axis u3, through an angle θ.
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Exercises

1. Let V be a real inner product space. Consider nonzero vectors u, v ∈ V . Show
that the angle θ between these vectors is uniquely defined by the formula

(u, v) = ∥u∥ · ∥v∥ cos θ, 0 ≤ θ ≤ π.

Show that 0 < θ < π if and only if u and v are linearly independent. Show that

∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2∥u∥ · ∥v∥ cos θ.

This identity is known as the Law of Cosines.

For V as above, u, v, w ∈ V , we define the angle between the line segment from w
to u and the line segment from w to v to be the angle between u − w and v − w.
(We assume w ̸= u and w ̸= v.)

2. Take V = R2, with its standard orthonormal basis i = (1, 0), j = (0, 1). Let

u = (1, 0), v = (cosφ, sinφ), 0 ≤ φ < 2π.

Show that, according to the definition of Exercise 1, the angle θ between u and v
is given by

θ = φ if 0 ≤ φ ≤ π,

2π − φ if π ≤ φ < 2π.

3. Let V be a real inner product space and let R ∈ L(V ) be orthogonal. Show that
if u, v ∈ V are nonzero and ũ = Ru, ṽ = Rv, then the angle between u and v is
equal to the angle between ũ and ṽ. Show that if {ej} is an orthonormal basis of
V , there exists an orthogonal transformation R on V such that Ru = ∥u∥e1 and
Rv is in the linear span of e1 and e2.

4. Consider a triangle as in Figure 2.12.1. Show that

h = c sinA,

and also

h = a sinC.

Use these calculations to show that

sinA

a
=

sinC

c
=

sinB

b
.

This identity is known as the Law of Sines.

Exercises on cross products

Exercises 5–8 deal with cross products of vectors in R3.
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Figure 2.12.1. Law of sines

5. If u, v ∈ R3, show that the formula

(2.12.24) w · (u× v) = det

w1 u1 v1
w2 u2 v2
w3 u3 v3


for u × v = Π(u, v) defines uniquely a bilinear map Π : R3 × R3 → R3. Show that
it satisfies

i× j = k, j × k = i, k × i = j,

where {i, j, k} is the standard basis of R3.
Note. To say Π is bilinear is to say Π(u, v) is linear in both u and v.

6. Recall that T ∈ SO(3) provided that T is a real 3× 3 matrix satisfying T tT = I
and det T > 0, (hence det T = 1). Show that

(2.12.25) T ∈ SO(3) =⇒ Tu× Tv = T (u× v).

Hint. Multiply the 3× 3 matrix in Exercise 5 on the left by T.

7. Show that, if θ is the angle between u and v in R3, then

(2.12.26) ∥u× v∥ = ∥u∥ · ∥v∥ · | sin θ|.
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Hint. Check (2.12.26) for u = i, v = ai + bj, and use Exercise 6 to show this
suffices.

8. More generally, show that for all u, v, w, x ∈ R3,

(2.12.27) (u× v) · (w × x) = det

(
u · w v · w
u · x v · x

)
.

Hint. Using Exercise 6, show that it suffices to check this for

w = i, x = ai+ bj, so w × x = bk.

Then the left side of (2.12.27) is equal to

(u× v) · bk = det

0 u · i v · i
0 u · j v · j
b u · k v · k


= b det

(
u · i v · i
u · j v · j

)
= det

(
u · i v · i

u · (ai+ bj) v · (ai+ bj)

)
,

which is equal to the right side of (2.12.27).

9. Show that κ : R3 → Skew(3), the set of antisymmetric real 3×3 matrices, given
by

(2.12.28) κ(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 , y =

y1y2
y3

 ,

satisfies

(2.12.29) κ(y)x = y × x.

Show that, with [A,B] = AB −BA,

(2.12.30)
κ(x× y) =

[
κ(x), κ(y)

]
,

Tr
(
κ(x)κ(y)t

)
= 2x · y.

10. Demonstrate the following result, which contains both Proposition 2.11.2 and
Proposition 2.12.2. Let V be a finite dimensional inner product space. We say
T : V → V is normal provided T and T ∗ commute, i.e.,

(2.12.31) TT ∗ = T ∗T.

Proposition. If V is a finite dimensional complex inner product space and T ∈
L(V ) is normal, then V has an orthonormal basis of eigenvectors of T .

Hint. Write T = A + iB, A and B self adjoint. Then (2.12.31) ⇒ AB = BA.
Apply Exercise 3 of §2.11.
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2.A. The Jordan canonical form

Let V be an n-dimensional complex vector space, and suppose T : V → V . The
following result gives the Jordan canonical form for T .

Proposition 2.A.1. There is a basis of V with respect to which T is represented
as a direct sum of blocks of the form

(2.A.1)


λj 1

λj
. . .

. . . 1
λj

 .

In light of Proposition 2.7.6 on generalized eigenspaces, together with Proposi-
tion 2.8.1 characterizing nilpotent operators and the discussion around (2.8.14), to
prove Proposition 2.A.1 it suffices to establish such a Jordan canonical form for a
nilpotent transformation N : V → V . (Then λj = 0.) We turn to this task.

Given v0 ∈ V , let m be the smallest integer such that Nmv0 = 0; m ≤ n.
If m = n, then {v0, Nv0, . . . , Nm−1v0} gives a basis of V putting N in Jordan
canonical form, with one block of the form (2.A.1) (with λj = 0). In any case, we
call {v0, . . . , Nm−1v0} a string. To obtain a Jordan canonical form for N , it will
suffice to find a basis of V consisting of a family of strings. We will establish that
this can be done by induction on dim V . It is clear for dim V ≤ 1.

So, given a nilpotent N : V → V , we can assume inductively that V1 = N(V )
has a basis that is a union of strings:

(2.A.2) {vj , Nvj , . . . , N ℓjvj}, 1 ≤ j ≤ d.

Furthermore, each vj has the form vj = Nwj for some wj ∈ V . Hence we have the
following strings in V :

(2.A.3) {wj , vj = Nwj , Nvj , . . . , N
ℓjvj}, 1 ≤ j ≤ d.

Note that the vectors in (2.A.3) are linearly independent. To see this, apply N to
a linear combination and invoke the independence of the vectors in (2.A.2).

Now, pick a set {ζ1, . . . , ζν} ⊂ V which, together with the vectors in (2.A.3)
form a basis of V . Then each Nζj can be written Nζj = Nζ ′j for some ζ ′j in the
linear span of the vectors in (2.A.3), so

(2.A.4) z1 = ζ1 − ζ ′1, . . . , zν = ζν − ζ ′ν

also together with (2.A.3) forms a basis of V , and furthermore zj ∈ N (N). Hence
the strings

(2.A.5) {wj , vj , . . . , N ℓjvj}, 1 ≤ j ≤ d, {z1}, . . . , {zν}
provide a basis of V , giving N its Jordan canonical form.

There is some choice in producing bases putting T ∈ L(V ) in block form. So
we ask, in what sense is the Jordan form canonical? The answer is that the sizes
of the various blocks is independent of the choices made. To show this, again it
suffices to consider the case of a nilpotent N : V → V . Let β(k) denote the number
of blocks of size k×k in a Jordan decomposition of N , and let β =

∑
k β(k) denote
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the total number of blocks. Note that dim N (N) = β. Also dim N (N2) exceeds
dim N (N) by β − β(1). In fact, generally,

(2.A.6)

dimN (N) = β,

dimN (N2) = dimN (N) + β − β(1),

...

dimN (Nk+1) = dimN (Nk) + β − β(1)− · · · − β(k).

These identities specify β and then inductively each β(k) in terms of dimN (N j), 1 ≤
j ≤ k + 1.
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2.B. Schur’s upper triangular representation

Let V be an n-dimensional complex vector space, equipped with an inner product,
and let T ∈ L(V ). The following is an important alternative to Proposition 2.A.1.

Proposition 2.B.1. There is an orthonormal basis of V with respect to which T
has an upper triangular form.

Note that an upper triangular form with respect to some basis was achieved in
(2.8.15), but there the basis was not guaranteed to be orthonormal. We will obtain
Proposition 2.B.1 as a consequence of

Proposition 2.B.2. There is a sequence of vector spaces Vj of dimension j such
that

(2.B.1) V = Vn ⊃ Vn−1 ⊃ · · · ⊃ V1

and

(2.B.2) T : Vj → Vj .

We show how Proposition 2.B.2 implies Proposition 2.B.1. In fact, given
(2.B.1)–(2.B.2), pick un ⊥ Vn−1, a unit vector, then pick a unit un−1 ∈ Vn−1

such that un−1 ⊥ Vn−2, and so forth, to achieve the conclusion of Proposition
2.B.1.

Meanwhile, Proposition 2.B.2 is a simple inductive consequence of the following
result.

Lemma 2.B.3. Given T ∈ L(V ) as above, there is a linear subspace Vn−1, of
dimension n− 1, such that T : Vn−1 → Vn−1.

Proof. We apply Proposition 2.6.1 to T ∗ to obtain a nonzero v1 ∈ V such that
T ∗v1 = λv1, for some λ ∈ C. Then the conclusion of Lemma 2.B.3 holds with
Vn−1 = (v1)

⊥. �
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2.C. The fundamental theorem of algebra

The following result is known as the fundamental theorem of algebra. It played a
crucial role in §2.6, to guarantee the existence of eigenvalues of a complex n × n
matrix.

Theorem 2.C.1. If p(z) is a nonconstant polynomial (with complex coefficients),
then p(z) must have a complex root.

Proof. We have, for some n ≥ 1, an ̸= 0,

(2.C.1)
p(z) = anz

n + · · ·+ a1z + a0

= anz
n
(
1 +R(z)

)
, |z| → ∞,

where

|R(z)| ≤ C

|z|
, for |z| large.

This implies

(2.C.2) lim
|z|→∞

|p(z)| = ∞.

Picking R ∈ (0,∞) such that

(2.C.3) inf
|z|≥R

|p(z)| > |p(0)|,

we deduce that

(2.C.4) inf
|z|≤R

|p(z)| = inf
z∈C

|p(z)|.

Since DR = {z : |z| ≤ R} is closed and bounded and p is continuous, there exists
z0 ∈ DR such that

(2.C.5) |p(z0)| = inf
z∈C

|p(z)|.

(For further discussion of this point, see Appendix 4.B of Chapter 4.) The theorem
hence follows from: �

Lemma 2.C.2. If p(z) is a nonconstant polynomial and (2.C.5) holds, then p(z0) =
0.

Proof. Suppose to the contrary that

(2.C.6) p(z0) = a ̸= 0.

We can write

(2.C.7) p(z0 + ζ) = a+ q(ζ),

where q(ζ) is a (nonconstant) polynomial in ζ, satisfying q(0) = 0. Hence, for some
k ≥ 1 and b ̸= 0, we have q(ζ) = bζk + · · ·+ bnζ

n, i.e.,

(2.C.8) q(ζ) = bζk + ζk+1r(ζ), |r(ζ)| ≤ C, ζ → 0,

so, with ζ = εω, ω ∈ S1 = {ω : |ω| = 1},

(2.C.9) p(z0 + εω) = a+ bωkεk + (εω)k+1r(εω), ε↘ 0.
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Pick ω ∈ S1 such that

(2.C.10)
b

|b|
ωk = − a

|a|
,

which is possible since a ≠ 0 and b ̸= 0. Then

(2.C.11) p(z0 + εω) = a
(
1−

∣∣∣ b
a

∣∣∣εk)+ (εω)k+1r(εω),

with r(ζ) as in (2.C.8), which contradicts (2.C.5) for ε > 0 small enough. Thus
(2.C.6) is impossible. This proves Lemma 2.C.2, hence Theorem 2.C.1. �

Now that we have shown that p(z) in (2.C.1) must have one root, we can show
it has n roots (counting multiplicity).

Proposition 2.C.3. For a polynomial p(z) of degree n, as in (2.C.1), there exist
r1, . . . , rn ∈ C such that

(2.C.12) p(z) = an(z − r1) · · · (z − rn).

Proof. We have shown that p(z) has one root; call it r1. Dividing p(z) by z − r1,
we have

(2.C.13) p(z) = (z − r1)p̃(z) + q,

where p̃(z) = anz
n−1+ · · ·+ ã0 and q is a polynomial of degree < 1, i.e., a constant.

Setting z = r1 in (2.C.13) yields q = 0, i.e.,

(2.C.14) p(z) = (z − r1)p̃(z).

Since p̃(z) is a polynomial of degree n− 1, the result (2.C.12) follows by induction
on n. �

Remark 1. The numbers rj , 1 ≤ j ≤ n, in (2.C.12) are the roots of p(z). If k of
them coincide (say with rℓ), we say rℓ is a root of multiplicity k. If rℓ is distinct
from rj for all j ̸= ℓ, we say rℓ is a simple root.

Remark 2. In complex analysis texts, like [4] and [47], one can find proofs of the
fundamental theorem of algebra that use more advanced techniques than the proof
given above, and are shorter.



Chapter 3

Linear systems of differential
equations

This chapter connects the linear algebra developed in Chapter 2 with Differential
Equations. We define the matrix exponential in §3.1 and show how it produces the
solution to first order systems of differential equations with constant coefficients.
We show how the use of eigenvectors and generalized eigenvectors helps to compute
matrix exponentials. In §3.2 we look again at connections between exponential and
trigonometric functions, complementing results of Chapter 1, §1.1.

In §3.3 we discuss how to reduce a higher order differential equation to a first
order system, and show how the “companion matrix” of a polynomial arises in
doing this. We show in §3.4 how the matrix exponential allows us to write down
an integral formula (Duhamel’s formula) for the solution to a non-homogeneous
first order system, and illustrate how this in concert with the reduction process
just mentioned, allows us to write down the solution to a non-homogeneous second
order differential equation.

Section 3.5 discusses how to derive first order systems describing the behavior
of simple circuits, consisting of resistors, inductors, and capacitors. Here we treat
a more general class of circuits than done in Chapter 1, §1.13.

Section 3.6 deals with second order systems. While it is the case that second
order n × n systems can always be converted into first order (2n) × (2n) systems,
many such systems have special structure, worthy of separate study. Material on
self adjoint transformations from Chapter 2 plays an important role in this section.

In §3.7 we discuss the Frenet-Serret equations, for a curve in three-dimensional
Euclidean space. These equations involve the curvature and torsion of a curve,
and also a frame field along the curve, called the Frenet frame, which forms an
orthonormal basis of R3 at each point on the curve. Regarding these equations as
a system of differential equations, we discuss the problem of finding a curve with
given curvature and torsion. Doing this brings in a number of topics from the

159
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previous sections, and from Chapter 2, such as the use of properties of orthogonal
matrices.

Having introduced equations with variable coefficients in §3.7, we concentrate
on their treatment in subsequent sections. In §3.8 we study the solution operator
S(t, s) to a homogeneous system, show how it extends the notion of matrix expo-
nential, and extend Duhamel’s formula to the variable coefficient setting. In §3.9
we show how the method of variation of parameters, introduced in Chapter 1, ties
in with and becomes a special case of Duhamel’s formula.

Section 3.10 treats power series expansions for a first order linear system with
analytic coefficients, and §3.11 extends the study to equations with regular singular
points. These sections provide a systematic treatment of material touched on in
Chapter 1, §1.15. In these sections we use elementary power series techniques.
Additional insight can be gleaned from the theory of functions of a complex variable.
Readers who have seen some complex variable theory can consult [4], pp. 299–312,
[19], pp. 70–83, or [47], Chapter 7, for material on this.

Appendix 3.A treats logarithms of matrices, a construction inverse to the ma-
trix exponential introduced in §3.1, establishing results that are of use in §§3.8
and 3.11. Building on material from §1.18 of Chapter 1, Appendix 3.B develops
the Laplace transform in the matrix setting, as a tool for solving nonhomogeneous
linear systems. It also draws a connection between this method and Duhamel’s for-
mula. Appendix 3.C provides a brief introduction to the class of complex analytic
functions, whose relevance for power series techniques in ODE was touched on in
§3.10.
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3.1. The matrix exponential

Here we discuss a key concept in matrix analysis, the matrix exponential. Given
A ∈ M(n,F), F = R or C, we define eA by the same power series used in Chapter
1 to define eA for A ∈ R:

(3.1.1) eA =

∞∑
k=1

1

k!
Ak.

Note that A can be a real or complex n×n matrix. In either case, recall from §2.10
of Chapter 2 that ∥Ak∥ ≤ ∥A∥k. Hence the standard ratio test implies (3.1.1) is
absolutely convergent for each A ∈M(n,F). Hence

(3.1.2) etA =

∞∑
k=0

tk

k!
Ak

is a convergent power series in t, for all t ∈ R (indeed for t ∈ C). As for all such
convergent power series, we can differentiate term by term. We have

(3.1.3)

d

dt
etA =

∞∑
k=1

k
tk−1

k!
Ak

=

∞∑
k=1

tk−1

(k − 1)!
Ak−1A.

We can factor A out on either the left or the right, obtaining

(3.1.4)
d

dt
etA = etAA = AetA.

Hence x(t) = etAx0 solves the first-order system

(3.1.5)
dx

dt
= Ax, x(0) = x0.

This is the unique solution to (3.1.5). To see this, let x(t) be any solution to (3.1.5),
and consider

(3.1.6) u(t) = e−tAx(t).

Then u(0) = x(0) = x0 and

(3.1.7)
d

dt
u(t) = −e−tAAx(t) + e−tAx′(t) = 0,

so u(t) ≡ u(0) = x0. The same argument yields

(3.1.8)
d

dt

(
etAe−tA

)
= 0, hence etAe−tA ≡ I.

Hence x(t) = etAx0, as asserted.

Using a variant of the computation (3.1.7), we show that the matrix exponential
has the following property, which generalizes the identity es+t = eset for real s, t,
established in Chapter 1.

Proposition 3.1.1. Given A ∈M(n,C), s, t ∈ R,

(3.1.9) e(s+t)A = esAetA.
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Proof. Using the Leibniz formula for the derivative of a product, plus (3.1.4), we
have

(3.1.10)
d

dt

(
e(s+t)Ae−tA

)
= e(s+t)AAe−tA − e(s+t)AAe−tA = 0.

Hence e(s+t)Ae−tA is independent of t, so

(3.1.11) e(s+t)Ae−tA = esA, ∀ s, t ∈ R.

Taking s = 0 yields etAe−tA = I (as we have already seen in (3.1.8)) or e−tA =
(etA)−1, so we can multiply both sides of (3.1.11) on the right by etA and obtain
(3.1.9). �

Now, generally, for A,B ∈M(n,F),

(3.1.12) eAeB ̸= eA+B .

However, we do have the following.

Proposition 3.1.2. Given A,B ∈M(n,C),

(3.1.13) AB = BA =⇒ eA+B = eAeB .

Proof. We compute
(3.1.14)

d

dt

(
et(A+B)e−tBe−tA

)
= et(A+B)(A+B)e−tBe−tA − et(A+B)Be−tBe−tA − et(A+B)e−tBAe−tA.

Now AB = BA⇒ ABk = BkA, hence

(3.1.15) e−tBA =

∞∑
k=0

(−t)k

k!
BkA = Ae−tB ,

so (3.1.14) vanishes. Hence et(A+B)e−tBe−tA is independent of t, so

(3.1.16) et(A+B)e−tBe−tA = I,

the value at t = 0. Multiplying through on the right by etA and then by etB gives

(3.1.17) et(A+B) = etAetB .

Setting t = 1 gives (3.1.13). �

We now look at examples of matrix exponentials. We start with some compu-
tations via the infinite series (3.1.2). Take

(3.1.18) A =

(
1 0
0 2

)
, B =

(
0 1
0 0

)
.

Then

(3.1.19) Ak =

(
1 0
0 2k

)
, B2 = B3 = · · · = 0,

so

(3.1.20) etA =

(
et 0
0 e2t

)
, etB =

(
1 t
0 1

)
.
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Note that A and B do not commute, and neither do etA and etB , for general t ̸= 0.
On the other hand, if we take

(3.1.21) C =

(
1 1
0 1

)
= I +B,

since I and B commute, we have without further effort that

(3.1.22) etC = etIetB =

(
et tet

0 et

)
.

We turn to constructions of matrix exponentials via use of eigenvalues and
eigenvectors. Suppose vj is an eigenvector of A with eigenvalue λj ,

(3.1.23) Avj = λjvj .

Then Akvj = λkj vj , and hence

(3.1.24) etAvj =

∞∑
k=0

tk

k!
Akvj =

∞∑
k=0

tk

k!
λkj vj = etλjvj .

This enables us to construct etAv for each v ∈ Cn if A ∈M(n,C) and Cn has a basis
of eigenvectors, {vj : 1 ≤ j ≤ n}. In such a case, write v as a linear combination of
the eigenvectors,

(3.1.25) v = c1v1 + · · ·+ cnvn,

and then

(3.1.26)
etAv = c1e

tAv1 + · · ·+ cne
tAvn

= c1e
tλ1v1 + · · ·+ cne

tλnvn.

We illustrate this process with some examples.

Example 1. Take

(3.1.27) A =

(
0 1
1 0

)
.

One has det(λI −A) = λ2 − 1, hence eigenvalues

(3.1.28) λ1 = 1, λ2 = −1,

with corresponding eigenvectors

(3.1.29) v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

Hence

(3.1.30) etAv1 = etv1, etAv2 = e−tv2.

To write out etA as a 2 × 2 matrix, note that the first and second columns of this
matrix are given respectively by

(3.1.31) etA
(
1

0

)
and etA

(
0

1

)
.
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To compute this, we write (1, 0)t and (0, 1)t as linear combinations of the eigenvec-
tors. We have

(3.1.32)

(
1

0

)
=

1

2

(
1

1

)
+

1

2

(
1

−1

)
,

(
0

1

)
=

1

2

(
1

1

)
− 1

2

(
1

−1

)
.

Hence

(3.1.33)

etA
(
1

0

)
=

1

2
etA
(
1

1

)
+

1

2
etA
(

1

−1

)
=
et

2

(
1

1

)
+
e−t

2

(
1

−1

)
=

( 1
2 (e

t + e−t)
1
2 (e

t − e−t)

)
,

and similarly

(3.1.34) etA
(
0

1

)
=

( 1
2 (e

t − e−t)
1
2 (e

t + e−t)

)
.

Recalling that

(3.1.35) cosh t =
et + e−t

2
, sinh t =

et − e−t

2
,

we have

(3.1.36) etA =

(
cosh t sinh t
sinh t cosh t

)
.

Example 2. Take

(3.1.37) A =

(
0 −2
1 2

)
.

One has det(λI −A) = λ2 − 2λ+ 2, hence eigenvalues

(3.1.38) λ1 = 1 + i, λ2 = 1− i,

with corresponding eigenvectors

(3.1.39) v1 =

(
−2

1 + i

)
, v2 =

(
−2

1− i

)
.

We have

(3.1.40) etAv1 = e(1+i)tv1, etAv2 = e(1−i)tv2.

We can write

(3.1.41)

(
1

0

)
= − i+ 1

4

(
−2

1 + i

)
+
i− 1

4

(
−2

1− i

)
,(

0

1

)
= − i

2

(
−2

1 + i

)
+
i

2

(
−2

1− i

)
,
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to obtain

(3.1.42)

etA
(
1

0

)
= − i+ 1

4
e(1+i)t

(
−2

1 + i

)
+
i− 1

4
e(1−i)t

(
−2

1− i

)
=
et

4

(
(2i+ 2)eit + (2− 2i)e−it

−2ieit + 2ie−it

)
,

and

(3.1.43)

etA
(
0

1

)
= − i

2
e(1+i)t

(
−2

1 + i

)
+
i

2
e(1−i)t

(
−2

1− i

)
=
et

2

(
2ieit − 2ie−it

(1− i)eit + (1 + i)e−it

)
.

We can write these in terms of trigonometric functions, using the fundamental Euler
identities

(3.1.44) eit = cot t+ i sin t, e−it = cos t− i sin t,

established in §1.1 of Chapter 1. (See §3.2 of this chapter for more on this.) These
yield

(3.1.45) cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
,

and an inspection of the formulas above gives

(3.1.46) etA
(
1

0

)
= et

(
cos t− sin t

sin t

)
, etA

(
0

1

)
= et

(
−2 sin t

cos t+ sin t

)
,

hence

(3.1.47) etA = et
(
cos t− sin t −2 sin t

sin t cos t+ sin t

)
.

As was shown in Chapter 2, §2.6, if A ∈ M(n,C) has n distinct eigenvalues,
then Cn has a basis of eigenvectors. If A has multiple eigenvalues, Cn might or
might not have a basis of eigenvectors, though as shown in §2.7 of Chapter 2, there
will be a basis of generalized eigenvectors. If v is a generalized eienvector of A, say

(3.1.48) (A− λI)mv = 0,

then

(3.1.49) et(A−λI)v =
∑
k<m

tk

k!
(A− λI)kv,

so

(3.1.50) etAv = etλ
∑
k<m

tk

k!
(A− λI)kv.

Example 3. Consider the 3× 3 matrix A used in (2.7.28) of Chapter 2:

(3.1.51) A =

2 3 3
0 2 3
0 0 1

 .
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Here 2 is a double eigenvalue and 1 a simple eigenvalue. Calculations done in
Chapter 2, §2.7, yield

(3.1.52) (A− 2I)

1
0
0

 = 0, (A− 2I)

0
1
0

 = 3

1
0
0

 , (A− I)

 6
−3
1

 = 0.

Hence

etA

1
0
0

 =

e2t0
0

 ,(3.1.53)

etA

0
1
0

 = e2t
1∑
k=0

tk

k!
(A− 2I)k

0
1
0

(3.1.54)

= e2t

0
1
0

+

3t
0
0

 ,(3.1.55)

and

(3.1.56) etA

 6
−3
1

 = et

 6
−3
1

 .

Note that

(3.1.57) etA

0
0
1

 = etA

 6
−3
1

− 6etA

1
0
0

+ 3etA

0
1
0

 .

Putting these calculations together yields

(3.1.58) etA =

e2t 3te2t 6et − 6e2t + 9te2t

0 e2t −3et + 3e2t

0 0 et

 .

Example 4. Consider the 3× 3 matrix

(3.1.59) A =

1 2 0
3 1 3
0 −2 1

 .

A computation gives det(λI − A) = (λ − 1)3. Hence for N = A − I we have
Spec(N) = {0}, so we know N is nilpotent (by Proposition 2.8.1 of Chapter 2). In
fact, a calculation gives

(3.1.60) N =

0 2 0
3 0 3
0 −2 0

 , N2 =

 6 0 6
0 0 0
−6 0 −6

 , N3 = 0.
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Hence

(3.1.61)

etA = et
[
I + tN +

t2

2
N2
]

= et

1 + 3t2 2t +3t2

3t 1 3t
−3t2 −2t 1− 3t2

 .

Exercises

1. Use the method of eigenvalues and eigenvectors given in (3.1.23)–(3.1.26) to
compute etA for each of the following:

A =

(
1 1
0 2

)
, A =

(
1 −1
1 1

)
, A =

(
1 i
i 1

)
.A =

(
1 1
1 0

)
,

2. Use the method given in (3.1.48)–(3.1.50) and illustrated in (3.1.51)–(3.1.61) to
compute etA for each of the following:

A =

(
1 2
0 1

)
, A =

1 2 4
0 1 3
0 0 1

 , A =

 1 0 1
0 2 0
−1 0 −1

 .

3. Show that

et(A+B) = etAetB , ∀t =⇒ AB = BA.

Hint. Set X(t) = et(A+B), Y (t) = etAetB . Show that

X ≡ Y =⇒ X ′(t)− Y ′(t) = Bet(A+B) − etABetB ≡ 0,

and hence that

X ≡ Y =⇒ BetA = etAB, ∀ t.

4. Given A ∈M(n,C), suppose Φ(t) is an n× n matrix valued solution to

d

dt
Φ(t) = AΦ(t).

Show that

Φ(t) = etAB,

where B = Φ(0). Deduce that Φ(t) is invertible for all t ∈ R if and only if Φ(0) is
invertible, and that in such a case

e(t−s)A = Φ(t)Φ(s)−1.

(For a generalization, see (3.8.13).)

5. Let A,B ∈M(n,C) and assume B is invertible. Show that

(B−1AB)k = B−1AkB,
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and use this to show that

etB
−1AB = B−1etAB.

6. Show that if A is diagonal, i.e.,

A =

a11 . . .

ann

 ,

then

etA =

e
ta11

. . .

etann

 .

Exercises 7–10 bear on the identity

(3.1.62) det etA = etTrA,

given A ∈M(n,C).

7. Show that if (3.1.62) holds for A = A1 and if A2 = B−1A1B, then (3.1.62) holds
for A = A2.

8. Show that (3.1.62) holds whenever A is diagonalizable.
Hint. Use Exercises 5–6.

9. Assume A ∈M(n,C) is upper triangular:

(3.1.63) A =

a11 · · · a1n
. . .

...
ann

 .

Show that etA is upper triangular, of the form

etA =

e11(t) · · · e1n(t)
. . .

...
enn(t)

 , ejj(t) = etajj .

10. Deduce that (3.1.62) holds when A has the form (3.1.63). Then deduce that
(3.1.62) holds for all A ∈M(n,C).

11. Let A(t) be a smooth function of t with values in M(n,C). Show that

(3.1.64) A(0) = 0 =⇒ d

dt
eA(t)

∣∣∣
t=0

= A′(0).

Hint. Take the power series expansion of eA(t), in powers of A(t).
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12. Let A(t) be a smooth M(n,C)-valued function of t ∈ I and assume

(3.1.65) A(s)A(t) = A(t)A(s), ∀ s, t ∈ I.

Show that

(3.1.66)
d

dt
eA(t) = A′(t)eA(t) = eA(t)A′(t).

Hint. Show that if (3.1.65) holds,

d

dt
eA(t) =

d

ds
eA(s)−A(t)eA(t)

∣∣∣
s=t

,

and apply Exercise 11.

13. Here is an alternative approach to Proposition 3.1.2. Assume

(3.1.67) A,B ∈M(n,C), AB = BA.

Show that

(3.1.68) (A+B)m =

m∑
j=0

(
m

j

)
AjBm−j ,

(
m

j

)
=

m!

j!(m− j)!
.

From here, show that

(3.1.69)

eA+B =

∞∑
m=0

1

m!
(A+B)m

=

∞∑
m=0

m∑
j=0

1

j!(m− j)!
AjBm−j .

Then take n = m− j and show this is

(3.1.70)

=

∞∑
j=0

∞∑
n=0

1

j!n!
AjBn

=

∞∑
j=0

1

j!
Aj

∞∑
n=0

1

n!
Bn

= eAeB ,

so

(3.1.71) eA+B = eAeB .

14. As an alternative to the proof of (3.1.4), given in (3.1.3), which depends on
term by term differentiation of power series, verify that, for A ∈M(n,C),

(3.1.72)

d

dt
etA = lim

h→0

1

h

(
e(t+h)A − etA

)
= etA lim

h→0

1

h

(
ehA − I

)
= etAA

= AetA,
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the second identity in (3.1.72) by (3.1.71), the third by the definition (3.1.2), and
the fourth by commutativity.
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3.2. Exponentials and trigonometric functions

In Chapter 1 we have seen how to use complex exponentials to give a self-contained
treatment of basic results on the trigonometric functions cos t and sin t. Here we
present a variant, using matrix exponentials. We begin by looking at

(3.2.1) x(t) = etJx0, J =

(
0 −1
1 0

)
,

which solves

(3.2.2) x′(t) = Jx(t), x(0) = x0 ∈ R2.

We first note that the planar curve x(t) moves about on a circle centered about the
origin. Indeed,

(3.2.3)

d

dt
∥x(t)∥2 =

d

dt

(
x(t) · x(t)

)
= x′(t) · x(t) + x(t) · x′(t)

= Jx(t) · x(t) + x(t) · Jx(t)
= 0,

since J t = −J . Thus ∥x(t)∥ = ∥x0∥ is constant. Furthermore the velocity v(t) =
x′(t) has constant magnitude; in fact

(3.2.4) ∥v(t)∥2 = v(t) · v(t) = Jx(t) · Jx(t) = ∥x(t)∥2,
since J tJ = −J2 = I.

For example,

(3.2.5)

(
c(t)
s(t)

)
= etJ

(
1
0

)
is a curve, moving on the unit circle x21+x

2
2 = 1, at unit speed, with initial position

x(0) = (1, 0)t and initial velocity v(0) = (0, 1)t. Now in trigonometry the functions
cos t and sin t are defined to be the x1 and x2 coordinates of such a parametrization
of the unit circle, so we have

(3.2.6)

(
cos t
sin t

)
= etJ

(
1
0

)
.

The differential equation (3.2.2) then gives

(3.2.7)
d

dt
cos t = − sin t,

d

dt
sin t = cos t.

Using

etJ
(
0
1

)
= etJJ

(
1
0

)
= JetJ

(
1
0

)
,

we have a formula for etJ
(
0
1

)
, which together with (3.2.6) yields

(3.2.8) etJ =

(
cos t − sin t
sin t cos t

)
= (cos t)I + (sin t)J.

Then the identity e(s+t)J = esJetJ yields the following identities, when matrix
multiplication is carried out:

(3.2.9)
cos(s+ t) = (cos s)(cos t)− (sin s)(sin t),

sin(s+ t) = (cos s)(sin t) + (sin s)(cos t).
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We now show how the treatment of sin t and cos t presented above is really
quite close to that given in Chapter 1, §1.1. To start, we note that if C is regarded
as a real vector space, with basis e1 = 1, e2 = i, and hence identified with R2, via

(3.2.10) z = x+ iy ↔
(
x
y

)
,

then the matrix representation for the linear transformation z 7→ iz is given by J :

(3.2.11) iz = −y + ix, J

(
x
y

)
=

(
−y
x

)
.

More generally, the linear transformation z 7→ (c+ is)z has matrix representation

(3.2.12)

(
c −s
s c

)
.

Taking this into account, we see that the identity (3.2.8) is equivalent to

(3.2.13) eit = cos t+ i sin t,

which is Euler’s formula, as in (1.1.39) of Chapter 1.

Here is another approach to the evaluation of etJ . We compute the eigenvalues
and eigenvectors of J :

(3.2.14) λ1 = i, λ2 = −i; v1 =

(
1
−i

)
, v2 =

(
1
i

)
.

Then, using the fact that etJvk = etλkvk, we have

(3.2.15) etJ
(
1
0

)
=

1

2
eit
(

1
−i

)
+

1

2
e−it

(
1
i

)
.

Comparison with (3.2.6) gives

(3.2.16) cos t =
1

2
(eit + e−it), sin t =

1

2i
(eit − e−it),

again leading to (3.2.13).

Exercises

1. Recall Skew(n) and SO(n), defined by (2.11.7) and (2.12.4) of Chapter 2. Show
that

(3.2.17) A ∈ Skew(n) =⇒ etA ∈ SO(n), ∀ t ∈ R.
Note how this generalizes (3.2.3).

2. Given an n× n matrix A, let us set

(3.2.18) cos tA =
1

2
(eitA + e−itA), sin tA =

1

2i
(eitA − e−itA).

Show that

(3.2.19)
d

dt
cos tA = −A sin tA,

d

dt
sin tA = A cos tA.
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3. In the context of Exercise 2, show that

(3.2.20) cos tA =

∞∑
k=0

(−1)k

(2k)!
(tA)2k, sin tA =

∞∑
k=0

(−1)k

(2k + 1)!
(tA)2k+1.

4. Show that
Av = λv =⇒ (cos tA)v = (cos tλ)v,

(sin tA)v = (sin tλ)v.

5. Compute cos tA and sin tA in each of the following cases:

A =

(
0 1
1 0

)
, A =

(
0 −1
1 0

)
, A =

(
1 1
0 1

)
, A =

(
0 i
i 0

)
.

6. Suppose A ∈M(n,C) and

B =

(
0 −A
A 0

)
∈M(2n,C).

Show that

etB =

(
cos tA − sin tA
sin tA cos tA

)
.
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3.3. First-order systems derived from higher-order equations

There is a standard process to convert an nth order differential equation

(3.3.1)
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = 0

to a first-order system. Set

(3.3.2) x0(t) = y(t), x1(t) = y′(t), . . . , xn−1(t) = y(n−1)(t).

Then x = (x0, . . . , xn−1)
t satisfies

(3.3.3)

x′0 = x1

...

x′n−2 = xn−1

x′n−1 = −an−1xn−1 − · · · − a0x0,

or equivalently

(3.3.4)
dx

dt
= Ax,

with

(3.3.5) A =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1

 .

The matrix A given by (3.3.5) is called the companion matrix of the polynomial

(3.3.6) p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0.

Note that a direct search of solutions to (3.3.1) of the form eλt leads one to
solve p(λ) = 0. Thus the following result is naturally suggested.

Proposition 3.3.1. If p(λ) is a polynomial of the form (3.3.6), with companion
matrix A, given by (3.3.5), then

(3.3.7) p(λ) = det(λI −A).

Proof. We look at

(3.3.8) λI −A =


λ −1 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ −1
a0 a1 · · · an−2 λ+ an−1

 ,

and compute its determinant by expanding by minors down the first column. We
see that

(3.3.9) det(λI −A) = λ det(λI − Ã) + (−1)n−1a0 detB,
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where

(3.3.10)
Ã is the companion matrix of λn−1 + an−1λ

n−2 + · · ·+ a1,

B is lower triangular, with − 1’s on the diagonal.

By induction on n, we have det(λI − Ã) = λn−1 + an−1λ
n−2 + · · · + a1, while

detB = (−1)n−1. Substituting this into (3.3.9) gives (3.3.7). �

Converse construction

We next show that each solution to a first order n×n system of the form (3.3.4)
(for general A ∈M(n,F)) also satisfies an nth order scalar ODE. Indeed, if (3.3.4)
holds, then

(3.3.11) x(k) = Ax(k−1) = · · · = Akx.

Now if p(λ) is given by (3.3.7), and say

(3.3.12) p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

then, by the Cayley-Hamilton theorem (cf. (2.8.17) of Chapter 2),

(3.3.13) p(A) = An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

Hence

(3.3.14)

x(n) = Anx

= −an−1A
n−1x− · · · − a1Ax− a0x

= −an−1x
(n−1) − · · · − a1x

′ − a0x,

so we have the asserted nth order scalar equation:

(3.3.15) x(n) + an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0.

Remark. If the minimal polynomial q(λ) of A has degree m, less than n, we can
replace p by q and derive analogues of (3.3.14)–(3.3.15), giving a single differential
equation of degree m for x.

Exercises

1. Using the method (3.3.12)–(3.3.15), convert

dx

dt
=

(
1 1
0 2

)
x

into a second order scalar equation.
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2. Using the method (3.3.2)–(3.3.3), convert

y′′ − 3y′ + 2y = 0

into a 2× 2 first order system.

In Exercises 3–4, assume that λ1 is a root of multiplicity k ≥ 2 for the polynomial
p(λ) given by (3.3.6).

3. Verify that eλ1t, teλ1t, . . . , tk−1eλ1t are solutions to (3.3.1).

4. Deduce that, for each j = 0, . . . , k − 1, the system (3.3.3) has a solution of the
form

(3.3.16) x(t) = (tj + αtj−1 + · · ·+ β)etλ1v,

(with v depending on j).

5. For given A ∈ M(n,C), suppose x′ = Ax has a solution of the form (3.3.16).
Show that λ1 must be a root of multiplicity ≥ j + 1 of the minimal polynomial of
A.
Hint. Take into account the remark below (3.3.15).

6. Using Exercises 3–5, show that the minimal polynomial of the companion matrix
A in (3.3.5) must be the characteristic polynomial p(λ).
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3.4. Non-homogeneous equations and Duhamel’s formula

In §§3.1–3.3 we have focused on homogeneous equations, x′ − Ax = 0. Here we
consider the non-homogeneous equation

(3.4.1)
dx

dt
−Ax = f(t), x(0) = x0 ∈ Cn.

Here A ∈ M(n,C) and f(t) takes values in Cn. The key to solving this is to
recognize that the left side of (3.4.1) is equal to

(3.4.2) etA
d

dt

(
e−tAx(t)

)
,

as follows from the product formula for the derivative and the defining property of
etA, given in (3.1.4). Thus (3.4.1) is equivalent to

(3.4.3)
d

dt

(
e−tAx(t)

)
= e−tAf(t), x(0) = x0,

and integration yields

(3.4.4) e−tAx(t) = x0 +

∫ t

0

e−sAf(s) ds.

Applying etA to both sides then gives the solution:

(3.4.5) x(t) = etAx0 +

∫ t

0

e(t−s)Af(s) ds.

This is called Duhamel’s formula.

Example. We combine methods of this section and §3.3 (and also §3.2) to solve

(3.4.6) y′′ + y = f(t), y(0) = y0, y
′(0) = y1.

As in §3.3, set x = (x0, x1) = (y, y′), to obtain the system

(4.7)
d

dt

(
x0
x1

)
=

(
0 1
−1 0

)(
x0
x1

)
+

(
0
f(t)

)
.

Recognizing the 2× 2 matrix above as −J , and recalling from §3.2 that

(3.4.7) e(s−t)J =

(
cos(s− t) − sin(s− t)
sin(s− t) cos(s− t)

)
,

we obtain
(3.4.8)(

x0(t)
x1(t)

)
=

(
cos t sin t
− sin t cos t

)(
y0
y1

)
+

∫ t

0

(
cos(s− t) − sin(s− t)
sin(s− t) cos(s− t)

)(
0

f(s)

)
ds,

and hence

(3.4.9) y(t) = (cos t)y0 + (sin t)y1 +

∫ t

0

sin(t− s) f(s) ds.

Use of Duhamel’s formula is a good replacement for the method of variation of
parameters, discussed in §1.14 of Chapter 1. See §3.9 of this chapter for more on
this. See also §3.B for connections with the Laplace transform.
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Next, we briefly discuss a variant of the method of undetermined coefficients,
introduced for single second-order equations in §1.10 of Chapter 1. We consider the
following special case, the first-order n× n system

(3.4.10)
dx

dt
−Ax = (cosσt)v,

given σ ∈ R, v ∈ Rn, and A ∈M(n,R) (or we could use complex coefficients). We
assume

(3.4.11) iσ, −iσ /∈ SpecA,

and look for a solution to (3.4.10) of the form

(3.4.12) xp(t) = (cosσt)a+ (sinσt)b, a, b ∈ Rn.
Substitution into (3.4.10) leads to success with

(3.4.13)
a = −A(A2 + σI)−1v,

b = −σ(A2 + σI)−1v.

If (3.4.11) does not hold, (3.4.13) fails, and (3.4.10) might not have a solution of
the form (3.4.12). Of course, (3.4.5) will work; (3.4.10) will have a solution of the
form

(3.4.14) x(t) =

∫ t

0

(cosσs)e(t−s)Av ds.

When (3.4.11) holds and (3.4.12) works, the general solution to (3.4.10) is

(3.4.15) x(t) = etAu0 + (cosσt)a+ (sinσt)b, u0 ∈ Rn,
u0 related to x(0) by

(3.4.16) x(0) = u0 + a.

If all the eigenvalues of A have negative real part, etAu0 will decay to 0 as t →
+∞. Then etAu0 is called the transient part of the solution. The other part,
(cosσt)A+ (sinσt)b, is called the steady state solution.

Exercises

1. Given A ∈M(n,C), set

Ek(t) =

k∑
j=0

tj

j!
Aj .

Verify that E′
k(t) = AEk−1(t) and that

d

dt

(
Ek(t)e

−tA) = − t
k

k!
Ak+1 e−tA.

2. Verify that, if A is invertible,∫ t

0

ske−sA ds = −k!A−(k+1)
[
Ek(t)e

−tA − I
]
.



Exercises 179

3. Solve the initial value problem

dx

dt
=

(
0 1
1 0

)
x+

(
et

e−t

)
, x(0) =

(
0
0

)
.

4. Solve the initial value problem

dx

dt
=

(
0 −1
1 0

)
x+

(
et

e−t

)
, x(0) =

(
0
0

)
.

5. Solve the initial value problem

dx

dt
=

(
1 1
−1 −1

)
x+

(
et

e−t

)
, x(0) =

(
0
0

)
.

6. Produce analogues of (3.4.7)–(3.4.9) for

y′′ − 3y′ + 2y = f(t), y(0) = y0, y′(0) = y1.

In Exercises 7–8, take X,Y ∈M(n,C) and

(3.4.17) U(t, s) = et(X+sY ), Us(t, s) =
∂

∂s
U(t, s).

7. Show that Us satisfies

∂Us
∂t

= (X + sY )Us + Y U, Us(0, s) = 0.

8. Use Duhamel’s formula to show that

Us(t, s) =

∫ t

0

e(t−τ)(X+sY )Y eτ(X+sY ) dτ.

Deduce that

(3.4.18)
d

ds
eX+sY

∣∣∣
s=0

= eX
∫ 1

0

e−τXY eτX dτ.

9. Assume X(t) is a smooth function of t ∈ I with values in M(n,C). Show that,
for t ∈ I,

(3.4.19)
d

dt
eX(t) = eX(t)

∫ 1

0

e−τX(t)X ′(t)eτX(t) dτ.

10. In the context of Exercise 9, assume

t, t′ ∈ I =⇒ X(t)X(t′) = X(t′)X(t).

In such a case, simplify (3.4.19), and compare the result with that of Exercise 12
in §3.1.
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3.5. Simple electrical circuits

Here we extend the scope of the treatment of electrical circuits in §1.13 of Chapter
1. Rules worked out by Kirchhoff and others in the 1800s allow one to write down a
system of linear differential equations describing the voltages and currents running
along a variety of electrical circuits, containing resistors, capacitors, and inductors.

There are two types of basic laws. The first type consists of two rules known
as Kirchhoff’s laws:

(A) The sum of the voltage drops around any closed loop is zero.
(B) The sum of the currents at any node is zero.

The second type of law specifies the voltage drop across each circuit element:

(a) Resistor: V = IR,

(b) Inductor: V = L
dI

dt
,

(c) Capacitor: V =
Q

C
.

In each case, V is the voltage drop (in volts), I is the current (in amps), R is
the resistance (in ohms), L is the inductance (in henrys), C is the capacitance (in
farads), and Q is the charge (in coulombs). We refer to §1.13 of Chapter 1 for
basic information about these units. The rule (c) is supplemented by the following
formula for the current across a capacitor:

(c2) I =
dQ

dt
.

In (b) and (c2), time is measured in seconds.

Rules (A), (B), and (a) give algebraic relations among the various voltages and
currents, while rules (b) and (c)–(c2) give differential equations, namely

L
dI

dt
= V (Inductor),(3.5.1)

C
dV

dt
= I (Capacitor).(3.5.2)

Note that (3.5.2) results from applying d/dt to (c) and then using (c2). If a circuit
has k capacitors and ℓ inductors, we get an m×m system of first order differential
equations, with m = k + ℓ.

We illustrate the formulation of such differential equations for circuits presented
in Figure 3.5.1 and Figure 3.5.2. In each case, the circuit elements are numbered.
We denote by Vj the voltage drop across element j and by Ij the current across
element j.
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Figure 3.5.1. RLC circuit

Figure 3.5.1 depicts a classical RLC circuit, such as treated in §1.13 of Chapter
1. Rules (A), (B), and (a) give

(3.5.3)

V1 + V2 + V3 = E(t),

I1 = I2 = I3,

V1 = RI1.

Equations (3.5.1)–(3.5.3) yield a system of two ODEs, for I3 and V2:

(3.5.4) L
dI3
dt

= V3, C
dV2
dt

= I2.

We need to express V3 and I2 in terms of I3, V2, and E(t), using (3.5.3). In fact,
we have

(3.5.5)
V3 = E(t)− V1 − V2 = E(t)−RI1 − V2 = E(t)−RI3 − V2,

I2 = I3,

so we get the system

(3.5.6)
L
dI3
dt

= −RI3 − V2 + E(t),

C
dV2
dt

= I3,
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Figure 3.5.2. Another circuit

or, in matrix form,

(3.5.7)
d

dt

(
I3
V2

)
=

(
−R/L −1/L
1/C 0

)(
I3
V2

)
+

1

L

(
E(t)
0

)
.

Note that the characteristic polynomial of the matrix

(3.5.8) A =

(
−R/L −1/L
1/C 0

)
is

(3.5.9) λ2 +
R

L
λ+

1

LC
,

with roots

(3.5.10) λ = − R

2L
± 1

2L

√
R2 − 4

L

C
.

Let us now look at the slightly more complicated circuit depicted in Figure
3.5.2. Again we get a 2 × 2 system of differential equations. Rules (A), (B), and
(a) give

(3.5.11)

V1 + V2 + V4 = E(t), V2 = V3,

I1 = I2 + I3 = I4,

V3 = R3I3, V4 = R4I4.
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Equations (3.5.1)–(3.5.2) yield differential equations for I1 and V2:

(3.5.12) C
dV2
dt

= I2, L
dI1
dt

= V1.

We need to express I2 and V1 in terms of V2, I1, and E(t), using (3.5.11). In fact,
we have

(3.5.13)
I2 = I1 − I3 = I1 −

1

R3
V3 = I1 −

1

R3
V2,

V1 = E(t)− V2 − V4 = E(t)− V2 −R4I4 = E(t)− V2 −R4I1,

so we get the system

(3.5.14)
C
dV2
dt

= − 1

R3
V2 + I1,

L
dI1
dt

= −V2 −R4I1 + E(t),

or, in matrix form,

(3.5.15)
d

dt

(
V2
I1

)
=

(
−1/R3C 1/C
−1/L −R4/L

)(
V2
I1

)
+

1

L

(
0

E(t)

)
.

Exercises

1. Work out the 3 × 3 system of differential equations describing the behavior of
the circuit depicted in Figure 3.5.3. Assume

E(t) = 5 sin 12t volts.

2. Using methods developed in §3.4, solve the 2× 2 system (3.5.7) when

R = 5 ohms, L = 4 henrys, C = 1 farad,

and
E(t) = 5 cos 2t volts,

with initial data
I3(0) = 0 amps, V2(0) = 5 volts.

3. Solve the 2× 2 system (3.5.15) when

R3 = 1 ohm, R4 = 4 ohms, L = 4 henrys, C = 2 farads,

and
E(t) = 2 cos 2t volts.

4. Use the method of (3.4.10)–(3.4.13) to find the steady state solution to (3.5.7),
when

E(t) = A cosσt.
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Figure 3.5.3. Circuit with two capacitors

Take A, σ, R and L fixed and allow C to vary. Show that the amplitude of the
steady state solution is maximal (we say resonance is achieved) when

LC =
1

σ2
,

recovering calculations of (1.13.7)–(1.13.13) in Chapter 1.

5. Work out the analogue of Exercise 4 with the system (3.5.7) replaced by (3.5.15).
Is the condition for resonance the same as in Exercise 4?

6. Draw an electrical circuit that leads to a 4× 4 system of differential equations,
and write down said system.
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Figure 3.6.1. Spring system

3.6. Second-order systems

Interacting physical systems often give rise to second-order systems of differen-
tial equations. Consider for example a system of n objects, of mass m1, . . . ,mn,
connected to each other and to two walls by n + 1 springs, with spring constants
k1, . . . , kn+1, as in Figure 3.6.1. We assume the masses slide without friction. De-
note by xj the position of the jth mass and by yj the degree to which the jth spring
is stretched. The equations of motion are

(3.6.1) mjx
′′
j = −kjyj + kj+1yj+1, 1 ≤ j ≤ n,

and for certain constants aj ,

(3.6.2)
yj = xj − xj+1 + aj , 2 ≤ j ≤ n,

y1 = x1 + a1, yn+1 = −xn + an+1.

Substituting (3.6.2) into (3.6.1) yields an n×n system, which we can write in matrix
form as

(3.6.3) Mx′′ = −Kx+ b,
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where x = (x1, . . . , xn)
t, b = (−k1a1 + k2a2, . . . ,−knan + kn+1an+1)

t,

(3.6.4) M =

m1

. . .

mn

 ,

and

(3.6.5) K =



k1 + k2 −k2

−k2 k2 + k3
. . .

. . .

. . . kn−1 + kn −kn
−kn kn + kn+1


.

We assume mj > 0 and kj > 0 for each j. Then clearly M is a positive definite
matrix and K is a real symmetric matrix.

Proposition 3.6.1. If each kj > 0, then K, given by (3.6.5), is positive definite.

Proof. We have

(3.6.6) x ·Kx =

n∑
j=1

(kj + kj+1)x
2
j − 2

n∑
j=2

kjxj−1xj .

Now

(3.6.7) 2xj−1xj ≤ x2j−1 + x2j ,

so

(3.6.8)

x ·Kx ≥
n∑
j=1

kjx
2
j +

n+1∑
j=2

kjx
2
j−1

−
n∑
j=2

kjx
2
j −

n∑
j=2

kjx
2
j−1

≥ k1x
2
1 + kn+1x

2
n.

Furthermore note that the inequality in (3.6.7) is strict unless xj−1 = xj so the
inequality in (3.6.8) is strict unless xj−1 = xj for each j ∈ {2, . . . , n}, i.e., unless
x1 = · · · = xn. This proves that x ·Kx > 0 whenever x ∈ Rn, x ̸= 0. �

To be more precise, we can sharpen (3.6.7) to

(3.6.9) 2xj−1xj = x2j−1 + x2j − (xj − xj−1)
2,

and then (3.6.8) is sharpened to

(3.6.10) x ·Kx = k1x
2
1 + kn+1x

2
n +

n∑
j=2

kj(xj − xj−1)
2.

If we set

(3.6.11) κ = min{kj : 1 ≤ j ≤ n+ 1},
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then (6.10) implies

(3.6.12) x ·Kx ≥ κ
(
x21 + x2n +

n∑
j=2

(xj − xj−1)
2
)
.

The system (3.6.3) is inhomogeneous, but it is readily converted into the ho-
mogeneous system

(3.6.13) Mz′′ = −Kz, z = x−K−1b.

This in turn can be rewritten

(3.6.14) z′′ = −M−1Kz.

Note that

(3.6.15) L =M−1/2KM−1/2 =⇒M−1K =M−1/2LM1/2,

where

(3.6.16) M1/2 =


m

1/2
1

. . .

m
1/2
n

 .

Proposition 3.6.2. The matrix L is positive definite.

Proof. x · Lx = (M−1/2x) ·K(M−1/2x) > 0 whenever x ̸= 0. �

According to (3.6.15), M−1K and L are similar, so we have:

Corollary 3.6.3. For M and K of the form (3.6.4)–(3.6.5), with mj , kj > 0, the
matrix M−1K is diagonalizable, and all its eigenvalues are positive.

It follows that Rn has a basis {v1, . . . , vn} satisfying

(3.6.17) M−1Kvj = λ2jvj , λj > 0.

Then the initial value problem

(3.6.18) Mz′′ = −Kz, z(0) = z0, z′(0) = z1

has the solution

(3.6.19) z(t) =

n∑
j=1

(
αj cosλjt+

βj
λj

sinλjt
)
vj ,

where the coefficients αj and βj are given by

(3.6.20) z0 =
∑

αjvj , z1 =
∑

βjvj .

An alternative approach to the system (3.6.14) is to set

(3.6.21) u =M1/2z,

for which (3.6.14) becomes

(3.6.22) u′′ = −Lu,
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with L given by (3.6.15). Then Rn has an orthonormal basis {wj : 1 ≤ j ≤ n},
satisfying

(3.6.23) Lwj = λ2jwj , namely wj =M1/2vj ,

with vj as in (3.6.17). Note that we can set

(3.6.24) L = A2, Awj = λjwj ,

and (3.6.22) becomes

(3.6.25) u′′ +A2u = 0.

One way to convert (3.6.25) to a first order (2n)× (2n) system is to set

(3.6.26) v = Au, w = u′.

Then (3.6.25) becomes

(3.6.27)
d

dt

(
v

w

)
= X

(
v

w

)
, X =

(
0 A

−A 0

)
.

It is useful to note that when X is given by (3.6.27), then

(3.6.28) etX =

(
cos tA sin tA
− sin tA cos tA

)
,

where cos tA and sin tA are given in Exercises 6–7 in §3.2. One way to see this is
to let Φ(t) denote the right side of (3.6.28) and use (3.2.19) to see that

(3.6.29)
d

dt
Φ(t) = XΦ(t), Φ(0) =

(
I 0
0 I

)
.

Then Exercise 4 of §3.1 implies etX ≡ Φ(t). These calculations imply that the
solution to (3.6.25), with initial data u(0) = u0, u

′(0) = u1, is given by

(3.6.30) u(t) = (cos tA)u0 +A−1(sin tA)u1.

Compare (3.6.18)–(3.6.20). This works for each invertible A ∈M(n,C).
We move to the inhomogeneous variant of (3.6.14), which as above we can

transform to the following inhomogeneous variant of (3.6.25):

(3.6.31) u′′ +A2u = f(t), u(0) = u0, u
′(0) = u1.

Using the substitution (3.6.26), we get

(3.6.32)
d

dt

(
v

w

)
= X

(
v

w

)
+

(
0

f(t)

)
,

(
v(0)

w(0)

)
=

(
Au0
u1

)
.

Duhamel’s formula applies to give

(3.6.33)

(
v(t)

w(y)

)
= etX

(
Au0
u1

)
+

∫ t

0

e(t−s)X
(

0

f(s)

)
ds.

Using the formula (3.6.28) for etX , we see that the resulting formula for v(t) in
(3.6.33) is equivalent to

(3.6.34) u(t) = (cos tA)u0 +A−1(sin tA)u1 +

∫ t

0

A−1 sin(t− s)Af(s) ds.

This is the analogue of Duhamel’s formula for the solution to (3.6.31).
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We now return to the coupled spring problem and modify (3.6.1)–(3.6.2) to
allow for friction. Thus we replace (3.6.1) by

(3.6.35) mjx
′′
j = −kjyj + kj+1yj − djx

′
j ,

where yj are as in (3.6.2) and dj > 0 are friction coefficients, Then (3.6.3) is replaced
by

(3.6.36) Mx′′ = −Kx−Dx′ + b,

with b as in (3.6.3), M and K as in (3.6.4)–(3.6.5), and

(3.6.37) D =

d1 . . .

dn

 , dj > 0.

As in (3.6.13), we can convert (3.6.36) to the homogeneous system

(3.6.38) Mz′′ = −Kz −Dz′, z = x−K−1b.

If we set u =M1/2z, as in (3.6.21), then, parallel to (3.6.22)–(3.6.24), we get

(3.6.39) u′′ +Bu′ +A2u = 0,

where A2 is as in (3.6.24), with L =M−1/2KM−1/2, as in (3.6.22), and

(3.6.40) B =M−1/2DM−1/2 =

d1/m1

. . .

dn/mn

 .

The substitution (3.6.26) converts the n × n second order system (3.6.39) to the
(2n)× (2n) first order system

(3.6.41)
d

dt

(
v

w

)
=

(
0 A

−A −B

)(
v

w

)
.

We can write (3.6.41) as

(3.6.42)
d

dt

(
v

w

)
= (X + Y )

(
v

w

)
,

with X as in (3.6.27) and

(3.6.43) Y =

(
0 0
0 −B

)
.

Note that

(3.6.44) XY =

(
0 −AB
0 0

)
, Y X =

(
0 0
BA 0

)
,

so these matrices do not commute. Thus et(X+Y ) might be difficult to calculate
even when A and B commute. Such commutativity would hold, for example, if
m1 = · · · = mn and d1 = · · · = dn, in which case B is a scalar multiple of the
identity matrix.
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When the positive, self adjoint operators A and B do commute, we can make
the following direct attack on the system (3.6.39). We know (cf. Exercise 3 in §2.11,
Chapter 2) that Rn has an orthonormal basis {w1, . . . , wn} for which

(3.6.45) Awj = λjwj , Bwj = 2µjwj , λj , µj > 0.

Then we can write a solution to (3.6.39) as

(3.6.46) u(t) =
∑

uj(t)wj ,

where the real-valued coefficients uj(t) satisfy the equations

(3.6.47) u′′j + 2µju
′
j + λ2juj = 0,

with solutions that are linear combinations:

(3.6.48)

e−µjt
(
αj cos

√
λ2 − µ2

j t+ βj sin
√
λ2j − µ2t

)
, λj > µj ,

e−µjt
(
αje

√
µ2
j−λ2

j t + βje
−
√
µ2
j−λ2

j t
)
, λj < µj ,

e−µjt(αj + βjt), λj = µj .

These three cases correspond to modes that are said to be underdamped, over-
damped, and critically damped, respectively.

In cases where A and B do not commute, analysis of (3.6.39) is less explicit,
but we can establish the following decay result.

Proposition 3.6.4. If A,B ∈ M(n,C) are positive definite, then all of the eigen-

values of Z =

(
0 A

−A −B

)
have negative real part.

Proof. Let’s say (v, w)t ̸= 0 and Z(v, w)t = λ(v, w)t. Then

(3.6.49) Aw = λv, Av +Bw = −λw,

and

(3.6.50) (Z(v, w)t, (v, w)t) = −(Bw,w) + [(Aw, v)− (Av,w)],

while also

(3.6.51) (Z(v, w)t, (v, w)t) = λ(∥v∥2 + ∥w∥2).

The two terms on the right side of (3.6.50) are real and purely imaginary, respec-
tively, so we obtain

(3.6.52) (Reλ)(∥v∥2 + ∥w∥2) = −(Bw,w).

If (v, w)t ̸= 0, we deduce that either Reλ < 0 or w = 0. If w = 0, then (3.6.49)
gives Av = 0, hence v = 0. Hence w ̸= 0, and Reλ < 0, as asserted. �
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Exercises

1. Find the eigenvalues and eigenvectors of0 1 0
1 0 1
0 1 0

 .

2. Use the results of Exercise 1 to find the eigenvalues and eigenvectors of K, given
by (3.6.5), in case n = 3 and

k1 = k2 = k3 = k4 = k.

3. Find the general solution to

u′′ +Bu′ +A2u = 0,

in case A2 = K, with K as in Exercise 2, and B = I.

4. Find the general solution to

u′′ +

(
0 1
1 0

)
u′ +

(
1 0
0 1

)
u = 0.

5. Generalizing the treatment of (3.6.25), consider

(3.6.53) u′′ + Lu = 0, L ∈M(N,C).
Assume CN has a basis of eigenvectors vj , such that Lvj = λ2jvj , λj ∈ C, λj ̸= 0.
Show that the general solution to (3.6.53) has the form

(3.6.54) u(t) =

N∑
j=1

(αje
λjt + βje

−λjt)vj , αj , βj ∈ C.

How is this modified if some λj = 0?

6. Find the general solution to

u′′ +

(
2 1
0 −1

)
u = 0,

and to

u′′ +


−1

1
1

1

u = 0.
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3.7. Curves in R3 and the Frenet-Serret equations

Given a curve c(t) = (x(t), y(t), z(t)) in 3-space, we define its velocity and acceler-
ation by

(3.7.1) v(t) = c′(t), a(t) = v′(t) = c′′(t).

We also define its speed s′(t) and arclength by

(3.7.2) s′(t) = ∥v(t)∥, s(t) =

∫ t

t0

s′(τ) dτ,

assuming we start at t = t0. We define the unit tangent vector to the curve as

(3.7.3) T (t) =
v(t)

∥v(t)∥
.

Henceforth we assume the curve is parametrized by arclength.

We define the curvature κ(s) of the curve and the normal N(s) by

(3.7.4) κ(s) =
∥∥∥dT
ds

∥∥∥, dT

ds
= κ(s)N(s).

Note that

(3.7.5) T (s) · T (s) = 1 =⇒ T ′(s) · T (s) = 0,

so indeed N(s) is orthogonal to T (s). We then define the binormal B(s) by

(3.7.6) B(s) = T (s)×N(s).

For each s, the vectors T (s), N(s) and B(s) are mutually orthogonal unit vectors,
known as the Frenet frame for the curve c(s). See Figure 3.7.1 for an illustration.
Rules governing the cross product yield

(3.7.7) T (s) = N(s)×B(s), N(s) = B(s)× T (s).

(For material on the cross product, see the exercises at the end of §2.12 of Chapter
2.)

The torsion of a curve measures the change in the plane generated by T (s) and
N(s), or equivalently it measures the rate of change of B(s). Note that, parallel to
(3.7.5),

B(s) ·B(s) = 1 =⇒ B′(s) ·B(s) = 0.

Also, differentiating (3.7.6) and using (3.7.4), we have

(3.7.8) B′(s) = T ′(s)×N(s) + T (s)×N ′(s) = T (s)×N ′(s) =⇒ B′(s) · T (s) = 0.

We deduce that B′(s) is parallel to N(s). We define the torsion by

(3.7.9)
dB

ds
= −τ(s)N(s).

We complement the formulas (3.7.4) and (3.7.9) for dT/ds and dB/ds with one
for dN/ds. Since N(s) = B(s)× T (s), we have

(3.7.10)
dN

ds
=
dB

ds
× T +B × dT

ds
= τN × T + κB ×N,

or

(3.7.11)
dN

ds
= −κ(s)T (s) + τ(s)B(s).
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Figure 3.7.1. Frenet frame at a point on a 3D curve

Together, (3.7.4), (3.7.9) and (3.7.11) are known as the Frenet-Serret formulas.

Example. Pick a, b > 0 and consider the helix

(3.7.12) c(t) = (a cos t, a sin t, bt).

Then v(t) = (−a sin t, a cos t, b) and ∥v(t)∥ =
√
a2 + b2, so we can pick s = t

√
a2 + b2

to parametrize by arc length. We have

(3.7.13) T (s) =
1√

a2 + b2
(−a sin t, a cos t, b),

hence

(3.7.14)
dT

ds
=

1

a2 + b2
(−a cos t,−a sin t, 0).

By (3.7.4), this gives

(3.7.15) κ(s) =
a

a2 + b2
, N(s) = (− cos t,− sin t, 0).

Hence

(3.7.16) B(s) = T (s)×N(s) =
1√

a2 + b2
(b sin t,−b cos t, a).
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Then

(3.7.17)
dB

ds
=

1

a2 + b2
(b cos t, b sin t, 0),

so, by (3.7.9),

(3.7.18) τ(s) =
b

a2 + b2
.

In particular, for the helix (3.7.12), we see that the curvature and torsion are
constant.

Let us collect the Frenet-Serret equations

(3.7.19)

dT

ds
= κN

dN

ds
= −κT + τB

dB

ds
= − τN

for a smooth curve c(s) in R3, parametrized by arclength, with unit tangent T (s),
normal N(s), and binormal B(s), given by

(3.7.20) N(s) =
1

κ(s)
T ′(s), B(s) = T (s)×N(s),

assuming κ(s) = ∥T ′(s)∥ > 0.

The basic existence and uniqueness theory, which will be presented in Chapter
4, applies to (3.7.19). If κ(s) and τ(s) are given smooth functions on an interval
I = (a, b) and s0 ∈ I, then, given T0, N0, B0 ∈ R3, (7.19) has a unique solution on
s ∈ I satisfying

(3.7.21) T (s0) = T0, N(s0) = N0, B(s0) = B0.

In fact, the case when κ(s) and τ(s) are analytic will be subsumed in the material
of §3.10 of this chapter. We now establish the following.

Proposition 3.7.1. Assume κ and τ are given smooth functions on I, with κ > 0
on I. Assume {T0, N0, B0} is an orthonormal basis of R3, such that B0 = T0×N0.
Then there exists a smooth, unit-speed curve c(s), s ∈ I, for which the solution to
(3.7.19) and (3.7.21) is the Frenet frame.

To construct the curve, take T (s), N(s), and B(s) to solve (3.7.19) and (3.7.21),
pick p ∈ R3 and set

(3.7.22) c(s) = p+

∫ s

s0

T (σ) dσ,

so T (s) = c′(s) is the velocity of this curve. To deduce that {T (s), N(s), B(s)} is
the Frenet frame for c(s), for all s ∈ I, we need to know:

(3.7.23) {T (s), N(s), B(s)} orthonormal, with B(s) = T (s)×N(s), ∀ s ∈ I.

In order to pursue the analysis further, it is convenient to form the 3 × 3
matrix-valued function

(3.7.24) F (s) = (T (s), N(s), B(s)),
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whose columns consist respectively of T (s), N(s), and B(s). Then (3.7.23) is
equivalent to

(3.7.25) F (s) ∈ SO(3), ∀ s ∈ I,

with SO(3) defined as in (2.12.4) of Chapter 2. The hypothesis on {T0, N0, B0}
stated in Proposition 3.7.1 is equivalent to F0 = (T0, N0, B0) ∈ SO(3). Now F (s)
satisfies the differential equation

(3.7.26) F ′(s) = F (s)A(s), F (s0) = F0,

where

(3.7.27) A(s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

 .

Note that

(3.7.28)
dF ∗

ds
= A(s)∗F (s)∗ = −A(s)F (s)∗,

since A(s) in (3.7.27) is skew-adjoint. Hence

(3.7.29)

d

ds
F (s)F (s)∗ =

dF

ds
F (s)∗ + F (s)

dF ∗

ds
= F (s)A(s)F (s)∗ − F (s)A(s)F (s)∗

= 0.

Thus, whenever (3.7.26)–(3.7.27) hold,

(3.7.30) F0F
∗
0 = I =⇒ F (s)F (s)∗ ≡ I,

and we have (3.7.23).

Let us specialize the system (3.7.19), or equivalently (3.7.26), to the case where
κ and τ are constant, i.e.,

(3.7.31) F ′(s) = F (s)A, A =

0 −κ 0
κ 0 −τ
0 τ 0

 ,

with solution

(3.7.32) F (s) = F0 e
(s−s0)A.

We have already seen in that a helix of the form (3.7.12) has curvature κ and torsion
τ , with

(3.7.33) κ =
a

a2 + b2
, τ =

b

a2 + b2
,

and hence

(3.7.34) a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.

In (3.7.12), s and t are related by t = s
√
κ2 + τ2.

We can also see such a helix arise via a direct calculation of esA, which we now
produce. First, a straightforward calculation gives, for A as in (3.7.31),

(3.7.35) det(λI −A) = λ(λ2 + κ2 + τ2),
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hence

(3.7.36) Spec(A) = {0,±i
√
κ2 + τ2}.

An inspection shows that we can take

(3.7.37) v1 =
1√

κ2 + τ2

τ0
κ

 , v2 =

0
1
0

 , v3 =
1√

κ2 + τ2

−κ
0
τ

 ,

and then

(3.7.38) Av1 = 0, Av2 =
√
κ2 + τ2 v3, Av3 = −

√
κ2 + τ2 v2.

In particular, with respect to the basis {v2, v3} of V = Span{v2, v3}, A|V has the
matrix representation

(3.7.39) B =
√
κ2 + τ2

(
0 −1
1 0

)
.

We see that

(3.7.40) esAv1 = v1,

while, in light of the calculations giving (3.2.8),

(3.7.41)
esAv2 = (cos s

√
κ2 + τ2)v2 +(sin s

√
κ2 + τ2)v3,

esAv3 = −(sin s
√
κ2 + τ2)v2+(cos s

√
κ2 + τ2)v3.

Exercises

1. Consider a curve c(t) in R3, not necessarily parametrized by arclength. Show
that the acceleration a(t) is given by

(3.7.42) a(t) =
d2s

dt2
T + κ

(ds
dt

)2
N.

Hint. Differentiate v(t) = (ds/dt)T (t) and use the chain rule dT/dt = (ds/dt)(dT/ds),
plus (3.7.4).

2. Show that

(3.7.43) κB =
v × a

∥v∥3
.

Hint. Take the cross product of both sides of (3.7.42) with T , and use (3.7.6).

3. In the setting of Exercises 1–2, show that

(3.7.44) κ2τ∥v∥6 = −a · (v × a′).

Deduce from (3.7.43)–(3.7.44) that

(3.7.45) τ =
(v × a) · a′

∥v × a∥2
.
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Hint. Proceed from (3.7.43) to

d

dt
(κ∥v∥3)B + κ∥v∥3 dB

dt
=

d

dt
(v × a) = v × a′,

and use dB/dt = −τ(ds/dt)N , as a consequence of (3.7.9). Then dot with a, and
use a ·N = κ∥v∥2, from (3.7.42), to get (3.7.44).

4. Consider the curve c(t) in R3 given by

c(t) = (a cos t, b sin t, t),

where a and b are given positive constants. Compute the curvature, torsion, and
Frenet frame.
Hint. Use (3.7.43) to compute κ and B. Then use N = B × T . Use (3.7.45) to
compute τ .

5. Suppose c and c̃ are two curves, both parametrized by arc length over 0 ≤ s ≤ L,
and both having the same curvature κ(s) > 0 and the same torsion τ(s). Show
that there exit x0 ∈ R3 and A ∈ O(3) such that

c̃(s) = Ac(s) + x0, ∀ s ∈ [0, L].

Hint. To begin, show that if their Frenet frames coincide at s = 0, i.e., T̃ (0) =

T (0), Ñ(0) = N(0), B̃(0) = B(0), then T̃ ≡ T, Ñ ≡ N, B̃ ≡ B.

6. Suppose c is a curve in R3 with curvature κ > 0. Show that there exists a plane
in which c(t) lies for all t if and only if τ ≡ 0.
Hint. When τ ≡ 0, the plane should be parallel to the orthogonal complement of
B.
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3.8. Variable coefficient systems

Here we consider a variable coefficient n× n first order system

(3.8.1)
dx

dt
= A(t)x, x(t0) = x0 ∈ Cn,

and its inhomogeneous analogue. The general theory, which will be presented in
Chapter 4, implies that if A(t) is a continuous function of t ∈ I = (a, b) and t0 ∈ I,
then (3.8.1) has a unique solution x(t) for t ∈ I, depending linearly on x0, so

(3.8.2) x(t) = S(t, t0)x0, S(t, t0) ∈ L(Cn).

See §3.10 of this chapter for power series methods of constructing S(t, t0), when
A(t) is analytic. As we have seen,

(3.8.3) A(t) ≡ A =⇒ S(t, t0) = e(t−t0)A.

However, for variable coefficient equations there is not such a simple formula, and
the matrix entries of S(t, s) can involve a multiplicity of new special functions, such
as Bessel functions, Airy functions, Legendre functions, and many more. We will
not dwell on this here, but we will note how S(t, t0) is related to a “complete set”
of solutions to (3.8.1).

Suppose x1(t), . . . , xn(t) are n solutions to (3.8.1) (but with different initial
conditions). Fix t0 ∈ I, and assume

(3.8.4) x1(t0), . . . , xn(t0) are linearly independent in Cn,

or equivalently these vectors form a basis of Cn. Given such solutions xj(t), we
form the n× n matrix

(3.8.5) M(t) =
(
x1(t), . . . , xn(t)

)
,

whose jth column is xj(t). This matrix function solves

(3.8.6)
dM

dt
= A(t)M(t).

The condition (3.8.4) is equivalent to the statement that M(t0) is invertible. We
claim that if M solves (3.8.6) and M(t0) is invertible then M(t) is invertible for all
t ∈ I. To see this, we use the fact that the invertibility of M(t) is equivalent to the
non-vanishing of the quantity

(3.8.7) W (t) = detM(t),

called the Wronskian of {x1(t), . . . , xn(t)}. It is also notable that W (t) solves a
differential equation. In general we have

(3.8.8)
d

dt
detM(t) =

(
detM(t)

)
Tr
(
M(t)−1M ′(t)

)
.

(See Exercises 1–3 below.) Let Ĩ ⊂ I be the maximal interval containing t0 on

which M(t) is invertible. Then (3.8.8) holds for t ∈ Ĩ. When (3.8.6) holds, we have
Tr(M(t)−1M ′(t)) = Tr(M(t)−1A(t)M(t)) = TrA(t), so the Wronskian solves the
differential equation

(3.8.9)
dW

dt
=
(
TrA(t)

)
W (t).
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Hence

(3.8.10) W (t) = eb(t,s)W (s), b(t, s) =

∫ t

s

TrA(τ) dτ.

This implies Ĩ = I and hence gives the asserted invertibility. From here we obtain
the following.

Proposition 3.8.1. If M(t) solves (3.8.6) for t ∈ I and M(t0) is invertible, then

(3.8.11) S(t, t0) =M(t)M(t0)
−1, ∀ t ∈ I.

Proof. We have seen that M(t) is invertible for all t ∈ I. If x(t) solves (3.8.1), set

(3.8.12) y(t) =M(t)−1x(t),

and apply d/dt to x(t) =M(t)y(t), obtaining

(3.8.13)

dx

dt
=M ′(t)y(t) +M(t)y′(t)

= A(t)M(t)y(t) +M(t)y′(t)

= A(t)x+M(t)y′(t).

If x(t) solves (3.8.1), this yields

(3.8.14)
dy

dt
= 0,

hence y(t) = y(t0) for all t ∈ I, i.e.,

(3.8.15) M(t)−1x(t) ≡M(t0)
−1x(t0).

Applying M(t) to both sides gives (3.8.11). �

Note also that, for s, t ∈ I,

(3.8.16) S(t, s) =M(t)M(s)−1

gives S(t, s)x(s) = x(t) for each solution x(t) to (3.8.1). We also have

(3.8.17) S(t, t0) = S(t, s)S(s, t0), S(t, s) = S(s, t)−1.

There is a more general version of the Duhamel formula (3.4.5) for the solution
to an inhomogeneous differential equation

(3.8.18)
dx

dt
= A(t)x+ f(t), x(t0) = x0.

To solve (3.8.18), set x(t) = M(t)y(t), as in (3.8.12). This time, (3.8.13) yields
M(t)y′(t) = f(t), or

dy

dt
=M(t)−1f(t), y(t0) =M(t0)

−1x0,

so

(3.8.19) x(t) =M(t)M(t0)
−1x0 +M(t)

∫ t

t0

M(s)−1f(s) ds,

for invertible M(t) as in (3.8.5)–(3.8.6). Equivalently,

(3.8.20) x(t) = S(t, t0)x0 +

∫ t

t0

S(t, s)f(s) ds.
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We note that there is a simple formula for the solution operator S(t, s) to (3.8.1)
in case the following commutativity hypothesis holds:

(3.8.21) A(t)A(t′) = A(t′)A(t), ∀ t, t′ ∈ I.

We claim that if

(3.8.22) B(t, s) = −
∫ t

s

A(τ) dτ,

then

(3.8.23) (3.8.21) =⇒ d

dt

(
eB(t,s)x(t)

)
= eB(t,s)

(
x′(t)−A(t)x(t)

)
,

from which it follows that

(3.8.24) (3.8.21) =⇒ S(t, s) = e
∫ t
s
A(τ) dτ .

(This identity fails in the absence of the hypothesis (3.8.21).)

To establish (3.8.23), we note that (3.8.21) implies

(3.8.25) B(t, s)B(t′, s) = B(t′, s)B(t, s), ∀ s, t, t′ ∈ I.

Next,

(3.8.26)

(3.8.25) =⇒ lim
h→0

1

h

(
eB(t+h,s) − eB(t,s)

)
= lim
h→0

1

h
eB(t,s)

(
eB(t+h,s)−B(t,s) − I

)
= −eB(t,s)A(t)

=⇒ d

dt
eB(t,s) = −eB(t,s)A(t),

from which (3.8.23) follows.

Here is an application of (3.8.24). Let x(s) be a planar curve, on an interval
about s = 0, parametrized by arc-length, with unit tangent T (s) = x′(s). Then the
Frenet-Serret equations (3.7.1) simplify to T ′ = κN , with N = JT , i.e., to

(3.8.27) T ′(s) = κ(s)JT (s),

with J as in (3.2.1). Clearly the commutativity hypothesis (3.8.21) holds for A(s) =
κ(s)J , so we deduce that

(3.8.28) T (s) = eλ(s)JT (0), λ(s) =

∫ s

0

κ(τ) dτ.

Recall that etJ is given by (3.2.8), i.e.,

(3.8.29) etJ =

(
cos t − sin t
sin t cos t

)
.
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We return to the general (noncommutative) case, and record the following
estimate on the operator norm of S(t, s).

Proposition 3.8.2. Assume that for t ∈ I = (a, b),

(3.8.30) Re(A(t)v, v) ≤ K∥v∥2, ∀ v ∈ Cn.

Then

(3.8.31) a < s < t < b =⇒ ∥S(t, s)∥ ≤ eK(t−s).

Proof. If v(t) = S(t, s)v(s), then w(t) = e−K(t−s)v(t) solves

(3.8.32)
dw

dt
= C(t)w(t), C(t) = A(t)−K.

It suffices to show that ∥w(t)∥ is monotonically decreasing. Indeed,

(3.8.33)

d

dt
∥w(t)∥2 = 2Re(w′(t), w(t))

= 2Re(C(t)w(t), w(t))

≤ 0,

and we have the result. �

We now combine Proposition 3.8.2 and Duhamel’s formula to estimate the
difference between solutions x(t) and y(t) to

(3.8.34)

dx

dt
= A(t)x, x(t0) = v,

dy

dt
= B(t)y, y(t0) = v.

Let us asume that

(3.8.35)
Re(A(t)w,w) ≤ K∥w∥2,
Re(B(t)w,w) ≤ K∥w∥2,

for all w ∈ Cn. Now, given (3.8.34), our goal is to estimate z(t) = x(t) − y(t), for
t ≥ t0. We have

(3.8.36)

dz

dt
= A(t)x−B(t)y

= A(t)z + [A(t)−B(t)]y, z(t0) = 0,

so, with S(t, s) denoting the solution operator to (3.8.1), we have

(3.8.37) z(t) =

∫ t

t0

S(t, s)[A(s)−B(s)]y(s) ds.

Proposition 3.8.2 gives

(3.8.38)
∥y(s)∥ ≤ eK(s−t0)∥v∥,

∥S(t, s)∥ ≤ eK(t−s), for t0 ≤ s ≤ t,

so we have the following conclusion.
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Proposition 3.8.3. Assume that x and y solve (3.8.34) and that (3.8.35) holds.
Then

(3.8.39) ∥x(t)− y(t)∥ ≤ eK(t−t0)
(∫ t

t0

∥A(s)−B(s)∥ ds
)
∥v∥,

for t ≥ t0.
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Exercises

Exercises 1–3 lead to a proof of the formula (3.8.8) for the derivative of detM(t).

1. Let A ∈M(n,C). Show that, as s→ 0,

det(I + sA) = (1 + sa11) · · · (1 + sann) +O(s2)

= 1 + s TrA+O(s2),

hence
d

ds
det(I + sA)

∣∣
s=0

= TrA.

2. Let B(s) be a smooth matrix valued function of s, with B(0) = I. Use Exercise
1 to show that

d

ds
detB(s)

∣∣
s=0

= TrB′(0).

Hint. Write B(s) = I + sB′(0) +O(s2).

3. Let C(s) be a smooth matrix valued function, and assume C(0) is invertible.
Use Exercise 2 plus

detC(s) =
(
detC(0)

)
detB(s), B(s) = C(0)−1C(s)

to show that
d

ds
detC(s)

∣∣
s=0

=
(
detC(0)

)
TrC(0)−1C ′(0).

Use this to prove (3.8.8).
Hint. Fix t and set C(s) =M(t+ s), so

d

dt
detM(t) =

d

ds
detC(s)

∣∣
s=0

.

4. Show that, if M(t) is smooth and invertible on an interval I, then

d

dt
M(t)−1 = −M(t)−1M ′(t)M(t)−1.

Then apply d/dt to (3.8.12), to obtain an alternative derivation of Proposition 3.8.1.
Hint. Set U(t) =M(t)−1 and differentiate the identity U(t)M(t) = I.

5. Set up and solve the Wronskian equation (3.8.9) in the following cases:

A(t) =

(
1 t
t 1

)
,

(
t 1
1 1

)
,

(
0 1
t 0

)
.

Exercises 6–7 generalize (3.8.27)–(3.8.29) from the case of zero torsion (cf. Exercise
6 of §3.7) to the case

(3.8.40) τ(t) = βκ(t), β constant.
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6. Assume x(t) is a curve in R3 for which (3.8.40) holds. Show that x(t) =

x(0) +
∫ t
0
T (s) ds, with

(3.8.41)
(
T (t), N(t), B(t)

)
=
(
T (0), N(0), B(0)

)
eσ(t)K ,

where

(3.8.42) K =

0 −1 0
1 0 −β
0 β 0

 , σ(t) =

∫ t

0

κ(s) ds.

Hint. Use (3.7.26)–(3.7.27) and (3.8.21) ⇒ (3.8.22)–(3.8.24).

7. Let e1, e2, e3 denote the standard basis of R3, and let

v1 = (1 + β2)−1/2(βe1 + e3), v2 = e2, v3 = (1 + β2)−1/2(e1 − βe3).

Show that v1, v2, v3 form an orthonormal basis of R3 and, with K as in (3.8.42),

Kv1 = 0, Kv2 = −(1 + β2)1/2v3, Kv3 = (1 + β2)1/2v2.

Deduce that
eσKv1 = v1,

eσKv2 = (cos η)v2 − (sin η)v3,

eσKv3 = (sin η)v2 + (cos η)v3,

where η = (1 + β2)1/2σ.

8. Given B ∈M(n,C), write down the solution to

dx

dt
= etBx, x(0) = x0.

Hint. Use (3.8.24).

Exercises 9–10 deal with a linear equation with periodic coefficients:

(3.8.43)
dx

dt
= A(t)x, A(t+ 1) = A(t).

Say A(t) ∈M(n,C).

9. Assume M(t) solves (3.8.6), with A(t) as in (3.8.43), and M(0) = I. Show that

(3.8.44) M(1) = C =⇒M(t+ 1) =M(t)C.

10. In the setting of Exercise 9, we know M(t) is invertible for all t, so C is
invertible. Results of Appendix 3.A yield X ∈M(n,C) such that

(3.8.45) eX = C.

Show that

(3.8.46) P (t) =M(t)e−tX =⇒ P (t+ 1) = P (t).
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The representation

(3.8.47) M(t) = P (t)etX

is called the Floquet representation of M(t).
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3.9. Variation of parameters and Duhamel’s formula

An inhomogeneous equation

(3.9.1) y′′ + a(t)y′ + b(t)y = f(t)

can be solved via the method of variation of parameters, if one is given a complete
set u1(t), u2(t) of solutions to the homogeneous equation

(3.9.2) u′′j + a(t)u′j + b(t)uj = 0.

The method (derived already in §1.12 of Chapter 1 when a(t) and b(t) are constant)
consists of seeking a solution to (3.9.1) in the form

(3.9.3) y(t) = v1(t)u1(t) + v2(t)u2(t),

and finding equations for vj(t) which can be solved and which work to yield a
solution to (3.9.1). We have

(3.9.4) y′ = v1u
′
1 + v2u

′
2 + v′1u1 + v′2u2.

We impose the condition

(3.9.5) v′1u1 + v′2u2 = 0.

Then y′′ = v′1u
′
1 + v′2u

′
2 + v1u

′′
1 + v2u

′′
2 , and plugging in (3.9.2) gives

(3.9.6) y′′ = v′1u
′
1 + v′2u

′
2 − (au′1 + bu1)v1 − (au′2 + bu2)v2,

hence

(3.9.7) y′′ + ay′ + by = v′1u
′
1 + v′2u

′
2.

Thus we have a solution to (3.9.1) in the form (3.9.3) provided v′1 and v′2 solve

(3.9.8)
v′1u1 + v′2u2 = 0,

v′1u
′
1 + v′2u

′
2 = f.

This linear system for v′1, v
′
2 has the explicit solution

(3.9.9) v′1 = −u2
W
f, v′2 =

u1
W
f,

where W (t) is the Wronskian:

(3.9.10) W = u1u
′
2 − u2u

′
1 = det

(
u1 u2
u′1 u′2

)
.

Then

(3.9.11)

v1(t) = −
∫ t

t0

u2(s)

W (s)
f(s) ds+ C1,

v2(t) =

∫ t

t0

u1(s)

W (s)
f(s) ds+ C2.

So

(3.9.12) y(t) = C1u1(t) + C2u2(t) +

∫ t

t0

[
u2(t)u1(s)− u1(t)u2(s)

] f(s)
W (s)

ds.

Note that

u2(t)u1(s)− u1(t)u2(s) = det

(
u1(s) u2(s)
u1(t) u2(t)

)
.
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We can connect the formula (3.9.12) with that produced in §3.8 as follows. If
y(t) solves (3.9.1), then x(t) = (y(t), y′(t))t solves the first order system

(3.9.13)
dx

dt
= A(t)x+

(
0
f(t)

)
,

where

(3.9.14) A(t) =

(
0 1

−b(t) −a(t)

)
,

and a complete set of solutions to the homogeneous version of (3.9.13) is given by

(3.9.15) xj(t) =

(
uj(t)
u′j(t)

)
, j = 1, 2.

Thus we can set

(3.9.16) M(t) =

(
u1(t) u2(t)
u′1(t) u′2(t)

)
,

and as in (3.8.19) we have

(3.9.17)

(
y(t)
y′(t)

)
=M(t)M(t0)

−1

(
y0
y1

)
+M(t)

∫ t

t0

M(s)−1

(
0

f(s)

)
ds,

solving (3.9.13) with y(t0) = y0, y
′(t0) = y1. Note that

(3.9.18) M(s)−1 =
1

W (s)

(
u′2(s) −u2(s)
−u′1(s) u1(s)

)
,

with W (s), the Wronskian, as in (3.9.10). Thus the last term on the right side of
(3.9.17) is equal to

(3.9.19)

(
u1(t) u2(t)
u′1(t) u′2(t)

)∫ t

t0

1

W (s)

(
−u2(s)f(s)
u1(s)f(s)

)
ds,

and performing this matrix multiplication yields the integrand in (3.9.12). Thus
we see that Duhamel’s formula provides an alternative approach to the method of
variation of parameters.

Exercises

1. Use the method of variation of parameters to solve

(3.9.20) y′′ + y = tan t.

2. Convert (3.9.20) to a 2 × 2 first order system and use Duhamel’s formula to
solve it. Compare the result with your work on Exercise 1. Compare also with
(3.4.6)–(3.4.9).
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3. Do analogues of Exercises 1–2 for each of the following equations.

(a) y′′ + y = et,

(b) y′′ + y = sin t,

(c) y′′ + y = t,

(d) y′′ + y = t2.

4. Show that the Wronskian, defined by (3.9.10), satisfies the equation

(3.9.21)
dW

dt
= −a(t)W,

if u1 and u2 solve (3.9.2). Relate this to (3.8.9).

5. Show that one solution to

(3.9.22) u′′ + 2tu′ + 2u = 0

is

(3.9.23) u1(t) = e−t
2

.

Set up and solve the differential equation for W (t) = u1u
′
2 − u2u

′
1. Then solve the

associated first order equation for u2, to produce a linearly independent solution
u2 to (3.9.22), in terms of an integral.

6. Do Exercise 5 with (3.9.22) replaced by

u′′ + 2u′ + u = 0,

one of whose solutions is
u1(t) = e−t.
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3.10. Power series expansions

Here we produce solutions to initial value problems

(3.10.1)
dx

dt
= A(t)x+ f(t), x(0) = x0,

in terms of a power series expansion,

(3.10.2) x(t) = x0 + x1t+ x2t
2 + · · · =

∞∑
k=0

xkt
k,

under the hypothesis that the n×n matrix-valued function A(t) and vector-valued
function f(t) are given by power series,

(3.10.3) A(t) =

∞∑
k=0

Akt
k, f(t) =

∞∑
k=0

fkt
k,

convergent for |t| < R0. The coefficients xk in (3.10.2) will be obtained recursively,
as follows. Given x(t) of the form (3.10.2), we have

(3.10.4)
dx

dt
=

∞∑
k=1

kxkt
k−1 =

∞∑
k=0

(k + 1)xk+1t
k,

and

(3.10.5)

A(t)x =

∞∑
j=0

Ajt
j

∞∑
ℓ=0

xℓt
ℓ

=

∞∑
k=0

( k∑
j=0

Ak−jxj

)
tk,

so the power series on the left and right sides of (3.10.1) agree if and only if, for
each k ≥ 0,

(3.10.6) (k + 1)xk+1 =

k∑
j=0

Ak−jxj + fk.

In particular, the first three recursions are

(3.10.7)

x1 = A0x0 + f0,

2x2 = A1x0 +A0x1 + f1,

3x3 = A2x0 +A1x1 +A0x2 + f2.

To start the recursion, the initial condition in (3.10.1) specifies x0.

We next address the issue of convergence of the power series thus produced for
x(t). We will establish the following

Proposition 3.10.1. Under the hypotheses given above, the power series (3.10.2)
converges to the solution x(t) to (3.10.1), for |t| < R0.

Proof. The hypotheses on (3.10.3) imply that for each R < R0, there exist a, b ∈
(0,∞) such that

(3.10.8) ∥Ak∥ ≤ aR−k, ∥fk∥ ≤ bR−k, ∀ k ∈ Z+.
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We will show that, given r ∈ (0, R), there exists C ∈ (0,∞) such that

(3.10.9) ∥xj∥ ≤ Cr−j , ∀ j ∈ Z+.

Such estimates imply that the power series (3.10.2) converges for |t| < r, for each
r < R0, hence for |t| < R0.

We will prove (3.10.9) by induction. The inductive step is to assume it holds
for all j ≤ k and to deduce that it holds for j = k + 1. This deduction proceeds as
follows. We have, by (3.10.6), (3.10.8), and (3.10.9) for j ≤ k,

(3.10.10)

(k + 1)∥xk+1∥ ≤
k∑
j=0

∥Ak−j∥ · ∥xj∥+ ∥fk∥

≤ aC

k∑
j=0

Rj−kr−j + bR−k

= aCr−k
k∑
j=0

( r
R

)k−j
+ bR−k.

Now, given 0 < r < R,

(3.10.11)

k∑
j=0

( r
R

)k−j
<

∞∑
j=0

( r
R

)j
=

1

1− r
R

=M(R, r) <∞.

Hence

(3.10.12) (k + 1)∥xk+1∥ ≤ aCM(R, r)r−k + br−k.

We place on C the constraint that

(3.10.13) C ≥ b,

and obtain

(3.10.14) ∥xk+1∥ ≤ aM(R, r) + 1

k + 1
r · Cr−k−1.

This gives the desired result

(3.10.15) ∥xk+1∥ ≤ Cr−k−1,

as long as

(3.10.16)
aM(R, r) + 1

k + 1
r ≤ 1.

Thus, to finish the argument, we pick K ∈ N such that

(3.10.17) K + 1 ≥
[
aM(R, r) + 1

]
r.

(Recall that we have a,R, r, and M(R, r).) Then we pick C ∈ (0,∞) large enough
that (3.10.9) holds for all j ∈ {0, 1, . . . ,K}, i.e., we take (in addition to (3.10.13))

(3.10.18) C ≥ max
0≤j≤K

rj∥xj∥.

Then for all k ≥ K, the inductive step yielding (3.10.15) from the validity of (3.10.9)
for all j ≤ k holds, and the inductive proof of (3.10.9) is complete. �
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For notational simplicity, we have discussed power series expansions about t = 0
so far, but the same considerations apply to power series about a more general point
t0. Thus we could replace (3.10.1) by

(3.10.19)
dx

dt
= A(t)x+ f(t), x(t0) = x0,

with A(t) and f(t) given by power series

(3.10.20) A(t) =

∞∑
k=0

Ak(t− t0)
k, f(t) =

∞∑
k=0

fk(t− t0)
k,

for |t− t0| < R0, and find x(t) in the form

(3.10.21) x(t) =

∞∑
k=0

xk(t− t0)
k.

The recursive formula for the coefficients xk is again given by (3.10.6), and (3.10.8)–
(3.10.18) apply without further change.

It is worth noting that, in (3.10.20)–(3.10.21),

(3.10.22) Ak =
1

k!
A(k)(t0), fk =

1

k!
f (k)(t0), xk =

1

k!
x(k)(t0).

These formulas, say for fk, arise as follows. Setting t = t0 in (3.10.20) gives
f0 = f(t0). Generally, if the power series for f(t) converges for |t − t0| < R0, so
does the power series

(3.10.23) f ′(t) =

∞∑
k=1

kfk(t− t0)
k−1,

and more generally,

(3.10.24) f (n)(t) =

∞∑
k=n

k(k − 1) · · · (k − n+ 1)fk(t− t0)
k−n,

and setting t = t0 in (3.10.24) gives f (n)(t0) = n!fn.

As an aside, we mention that a convenient way to prove (3.10.23) is to define
g(t) to be the power series on the right side of (3.10.23) and show that

(3.10.25)

∫ t

t0

g(s) ds =

∞∑
k=1

fk(t− t0)
k = f(t)− f(t0).

Compare the proof of Proposition 1.C.4 in Chapter 1.

We next establish the following important fact about functions given by con-
vergent power series.

Proposition 3.10.2. If f(t) is given by a power series as in (3.10.20), convergent
for |t− t0| < R0, then f can also be expanded in a power series in t− t1, for each
t1 ∈ (t0 −R0, t0 +R0), with radius of convergence R0 − |t0 − t1|.
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Proof. For notational simplicity, we take t0 = 0. Thus we assume |t1| < R0. For
|s| < R0 − |t1|, we have

(3.10.26)

f(t1 + s) =

∞∑
k=0

fk(t1 + s)k

=

∞∑
k=0

k∑
j=0

fk

(
k

j

)
sjtk−j1 ,

the second identity by the binomial formula. Call the last double series
∑
k

∑
j αjk.

Note that

(3.10.27)

∑
j,k

∥αjk∥ =

∞∑
k=0

k∑
j=0

∥fk∥
(
k

j

)
|s|j |t1|k−j

=

∞∑
k=0

∥fk∥(|s|+ |t1|)k

<∞,

given |s| + |t1| < R0. In such a case, we can reverse the order of summation, and
write

(3.10.28)

∞∑
k=0

k∑
j=0

αjk =

∞∑
j=0

∞∑
k=j

αjk,

all series being absolutely convergent. Hence

(3.10.29) f(t1 + s) =

∞∑
j=0

( ∞∑
k=j

fk

(
k

j

)
tk−j1

)
sj

is an absolutely convergent series, as long as |s| < R0 − |t1|. �

A (vector-valued) function f defined on an interval I = (a, b) is said to be an
analytic function on I if and only if for each t1 ∈ I, there is an r1 > 0 such that
for |t − t1| < r1, f(t) is given by a convergent power series in t − t1. Parallel to
(3.10.22), such a power series is necessarily of the form

(3.10.30) f(t) =

∞∑
n=0

f (n)(t1)

n!
(t− t1)

n.

It follows from Proposition 3.10.2 that if f(t) is given by a convergent power series
in t− t0 for |t− t0| < R0, then f is analytic in the interval (t0 −R0, t0 +R0).

The following is a useful fact about analytic functions.

Lemma 3.10.3. If f is analytic on (a, b) and a < α < β < b, then there exists
δ > 0 such that, for each t1 ∈ [α, β], the power series (3.10.30) converges whenever
|t− t1| < δ.

Proof. By hypothesis, each p ∈ [α, β] is the center of an open interval Ip on which f
is given by a convergent power series about p. Let (1/2)Ip denote the open interval
centered at p whose length is half that of Ip. Since [α, β] is a closed, bounded
interval, results of Appendix 4.B in Chapter 4 (see Proposition 4.B.9) imply that
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there exists a finite set {p1, . . . , pK} ⊂ [α, β] such that the intervals (1/2)Ipj cover
[α, β]. Take

(3.10.31) δ =
1

4
min

1≤j≤K
ℓ(Ipj ).

Then each t1 ∈ [α, β] is contained in some (1/2)Ipj , and hence |t1−pj | ≤ (1/4)ℓ(Ipj ),
so

(3.10.32) (t1 − δ, t1 + δ) ⊂ Ipj .

Hence the convergence of the power series for f about t1 on (t1 − δ, t1 + δ) follows
from Proposition 3.10.2. �

With these tools in hand, we have the following result.

Proposition 3.10.4. Assume A(t) and f(t) are analytic on an interval (a, b) and
t0 ∈ (a, b). Then the initial value problem (3.10.19) has a unique solution x(t),
analytic on (a, b).

Proof. Let Ĩ ⊂ (a, b) be the maximal interval on which the solution x(t) exists

and is analytic, say Ĩ = (α, β). If β < b, take δ as in Lemma 10.3 for [t0, β]. Take
t1 = β − δ/2. (If necessary, shrink δ to arrange that t1 > t0.) Then A(t) and f(t)
have convergent power series about t1, with radius of convergence ≥ δ, so

(3.10.33) x(t) extends analytically to [t1, t1 + δ), and t1 + δ > β.

This contradiction proves that β = b, and a similar argument gives α = a, so in

fact Ĩ = (a, b). �

To conclude this section, we mention a connection with the study of functions
of a complex variable, which the reader could pursue further, consulting texts on
complex analysis, such as [4], or Chapter 7 of [47]. Here is the general set-up. Let
Ω ⊂ C be an open set, and f : Ω → C. We say f is complex differentiable at z0 ∈ Ω
provided

(3.10.34) lim
w→0

f(z0 + w)− f(z0)

w

exists. Here, w → 0 in C. If this limit exists, we call it

(3.10.35) f ′(z0).

We say f is complex differentiable on Ω if is complex differentiable at each z0 ∈ Ω.

The relevance of this concept to the material of this section is the following.
If f(t) is given by the power series (3.10.20), absolutely convergent for real t ∈
(t0 −R0, t0 +R0), then

(3.10.36) f(z) =

∞∑
k=0

fk(z − t0)
k

is absolutely convergent for z ∈ C satisfying |z − t0| < R0, i.e., on the disk

(3.10.37) DR0
(t0) = {z ∈ C : |z − t0| < R0},
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and it is complex differentiable on this disk. Furthermore, f ′ is complex differen-
tiable on this disk, etc., including the kth order derivative f (k), and

(3.10.38) fk =
f (k)(t0)

k!
.

More is true, namely the following converse.

Theorem 3.10.5. Assume f is complex differentiable on the open set Ω ⊂ C. Let
t0 ∈ Ω and assume DR0

(t0) ⊂ Ω. Then f is given by a power series, of the form
(3.10.36), absolutely convergent on DR0

(t0).

This is one of the central basic results of complex analysis. A proof can be
found in Chapter 5 of [4], and in Chapter 2 of [47]. In view of Theorem 3.10.5,
complex differentiable functions are also called “complex analytic.”

Example. Consider

(3.10.39) f(z) =
1

z2 + 1
.

This is well defined except at ±i, where the denominator vanishes, and one can
readily verify that f is complex differentiable on C\{i,−i}. It follows from Theorem
3.10.5 that if t0 ∈ C \ {i,−i}, this function is given by a power series expansion
about t0, absolutely convergent on DR(t0), where

(3.10.40) R = min {|t0 − i|, |t0 + i|}.

In particular,

(3.10.41) t0 ∈ R =⇒ R =
√
t20 + 1

gives the radius of convergence of the power series expansion of 1/(z2 + 1) about
t0. This is easy to see directly for t0 = 0:

(3.10.42)
1

z2 + 1
=

∞∑
k=0

(−1)kz2k.

However, for other t0 ∈ R, it is not so easy to see directly that this function has a
power series expansion about t0 with radius of convergence given by (3.10.41). The
reader might give this a try.

To interface this example with Proposition 3.10.4, we note that, by this propo-
sition, plus the results just derived on 1/(z2 + 1), the equation

(3.10.43)
dx

dt
=

(
1 (t2 + 1)−1

0 −1

)
x+

(
et

e−t

)
, x(0) =

(
1

−1

)
has a solution that is analytic on (−∞,∞). The power series expansion for the
solution x(t) about t0 converges for |t| < 1 if t0 = 0 (this is an easy consequence of
Proposition 3.10.4 and (3.10.42)), and for other t0 ∈ R, it converges for |t − t0| <√
t20 + 1 (as a consequence of Proposition 3.10.4 and Theorem 3.10.5).

See Appendix 3.C for a further discussion of complex analytic functions.
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Exercises

1. Consider the function g : C \ {0} → C given by

(3.10.44) g(z) = e−1/z2 .

Show that g is complex differentiable on C \ {0}. Use Theorem 3.10.5 to deduce
that h : R → R, given by

(3.10.45)
h(t) = e−1/t2 , t ̸= 0,

0, t = 0,

is analytic on R \ {0}. Show that h is not analytic on any interval containing 0.
Compute

h(k)(0).

2. Consider the Airy equation

(3.10.46) y′′ = ty, y(0) = y0, y
′(0) = y1,

Introduced in (1.15.9) of Chapter 1. Show that this yields the first order system

(3.10.47)
dx

dt
= (A0 +A1t)x, x(0) = x0,

with

(3.10.48) A0 =

(
0 1
0 0

)
, A1 =

(
0 0
1 0

)
, x0 =

(
y0
y1

)
.

Note that

(3.10.49) A2
0 = A2

1 = 0,

and

(3.10.50) A0A1 =

(
1 0
0 0

)
, A1A0 =

(
0 0
0 1

)
.

3. For a system of the form (3.10.47), whose solution has a power series of the form
(3.10.2), the recursion (3.10.6) becomes

(3.10.51) (k + 1)xk+1 = A0xk +A1xk−1,

with the convention that x−1 = 0. Assume (3.10.49) holds. Show that

(3.10.52) xk+3 =
1

k + 3

( 1

k + 2
A0A1 +

1

k + 1
A1A0

)
xk.

Note that when A0 and A1 are given by (3.10.48), this becomes

(3.10.53) xk+3 =
1

k + 3

( 1
k+2

1
k+1

)
xk.
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Establish directly from (3.10.52) that the series
∑
xkt

k is absolutely convergent for
all t. Hint. Separately tackle the three series

(3.10.54)

∞∑
ℓ=0

x3ℓ+jt
3ℓ+j , j = 0, 1, 2.

Use (3.10.52) and the ratio test to show that each one converges for all t.
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3.11. Regular singular points

Here we consider equations of the form

(3.11.1) t
dx

dt
= A(t)x,

where x takes values in Cn, and A(t), with values in M(n,C), has a power series
convergent for t in some interval (−T0, T0),

(3.11.2) A(t) = A0 +A1t+A2t
2 + · · · .

The system (3.11.1) is said to have a regular singular point at t = 0. One source of
such systems is the following class of second order equations:

(3.11.3) t2u′′(t) + tb(t)u′(t) + c(t)u(t) = 0,

where b(t) and c(t) have convergent power series for |t| < T0. In such a case, one
can set

(3.11.4) x(t) =

(
u(t)

v(t)

)
, v(t) = tu′(t),

obtaining (3.11.1) with

(3.11.5) A(t) =

(
0 1

−c(t) 1− b(t)

)
.

A paradigm example, studied in Section 1.16 of Chapter 1, is the Bessel equation

(3.11.6)
d2u

dt2
+

1

t

du

dt
+
(
1− ν2

t2

)
u = 0,

which via (3.11.4) takes the form (3.11.1), with

(3.11.7) A(t) = A0 +A2t
2, A0 =

(
0 1
ν2 0

)
, A1 =

(
0 0
1 0

)
.

It follows from Proposition 3.10.4 that, given t0 ∈ (0, T0), the equation (3.11.1),
with initial condition x(t0) = x0, has a unique solution analytic on (0, T0). Our
goal here is to analyze the behavior of x(t) as t↘ 0.

A starting point for the analysis of (3.11.1) is the case A(t) ≡ A0, i.e.,

(3.11.8) t
dx

dt
= A0x.

The change of variable z(s) = x(es) yields

(3.11.9)
dz

ds
= A0z(s),

with solution

(3.11.10) z(s) = esA0v, v = z(0),

hence

(3.11.11) x(t) = e(log t)A0v = tA0v, t > 0,

the latter identity defining tA0 , for t > 0. Compare results on the “Euler equations”
in Exercises 1–3, §1.15, Chapter 1.
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Note that if v ∈ E(A0, λ), then t
A0v = tλv, which either blows up or vanishes

as t↘ 0, if Reλ < 0 or Reλ > 0, respectively, or oscillates rapidly as t↘ 0, if λ is
purely imaginary but not zero. On the other hand,

(3.11.12) v ∈ N (A0) =⇒ tA0v ≡ v.

It is useful to have the following extension of this result to the setting of (3.11.1).

Lemma 3.11.1. If v ∈ N (A0), then (3.11.1) has a solution given by a convergent
power series on some interval about the origin,

(3.11.13) x(t) = x0 + x1t+ x2t
2 + · · · , x0 = v,

as long as the eigenvalues of A0 satisfy a mild condition, given in (3.11.18) below.

Proof. We produce a recursive formula for the coefficients xk in (3.11.13), in the
spirit of the calculations of §3.10. We have

(3.11.14) t
dx

dt
=
∑
k≥1

kxkt
k,

and

(3.11.15)

A(t)x =
∑
j≥0

Ajt
j
∑
ℓ≥0

xℓt
ℓ

= A0x0 +
∑
k≥1

k∑
ℓ=0

Ak−ℓxℓt
k.

Equating the power series in (3.11.14) and (3.11.15) would be impossible without
our hypothesis that A0x0 = 0, but having that, we obtain the recursive formulas,
for k ≥ 1,

(3.11.16) kxk = A0xk +

k−1∑
ℓ=0

Ak−ℓxℓ,

i.e.,

(3.11.17) (kI −A0)xk =

k−1∑
ℓ=0

Ak−ℓxℓ.

Clearly we can solve uniquely for xk provided

(3.11.18) ∀ k ∈ N = {1, 2, 3, . . . }, k /∈ SpecA0.

This is the condition on SpecA0 mentioned in the lemma. As long as this holds,
we can solve for the coefficients xk for all k ∈ N, obtaining (3.11.13). Estimates on
these coefficients implying that (3.11.13) has a positive radius of convergence are
quite similar to those made in §3.10, and will not be repeated here. �

Our next goal is to extend this analysis to solutions to (3.11.1), for general
A(t), of the form (3.11.2), without such an hypothesis of membership in N (A0) as
in Lemma 3.11.1. We will seek a matrix-valued power series

(3.11.19) U(t) = I + U1t+ U2t
2 + · · ·
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such that under the change of variable

(3.11.20) x(t) = U(t)y(t),

(11.1) becomes

(3.11.21) t
dy

dt
= A0y.

This will work as long as A0 does not have two eigenvalues that differ by a nonzero
integer, in which case a more elaborate construction will be needed.

To implement (3.11.20) and achieve (3.11.21), we have from (3.11.20) and
(3.11.1) that

(3.11.22) A(t)U(t)y = t
dx

dt
= tU(t)

dy

dt
+ tU ′(t)y,

which gives (3.11.21) provided U(t) satisfies

(3.11.23) t
dU

dt
= A(t)U(t)− U(t)A0.

Now (3.11.23) has the same form as (3.11.1), i.e.,

(3.11.24) t
dU

dt
= A(t)U(t),

where U takes values in M(n,C) and A(t) takes values in L(M(n,C));

(3.11.25)
A(t)U = A(t)U(t)− U(t)A0

= (A0 +A1t+A2t
2 + · · · )U.

In particular,

(3.11.26) A0U = A0U − UA0 = [A0, U ] = CA0
U,

the last identity defining CA0
∈ L(M(n,C)). Note that

(3.11.27) U(0) = I ∈ N (CA0
),

so Lemma 3.11.1 applies to (3.11.24), i.e., to (3.11.23). In this setting, the recursion
for Uk, k ≥ 1, analogous to (3.11.16)–(3.11.17), takes the form

(3.11.28) kUk = [A0, Uk] +

k−1∑
j=0

Ak−jUj ,

i.e.,

(3.11.29) (kI − CA0
)Uk =

k−1∑
j=0

Ak−jUj .

Recall U0 = I. The condition for solvability of (3.11.29) for all k ∈ N = {1, 2, 3, . . . }
is that no positive integer belong to SpecCA0

. Results of Chapter 2, §2.7 (cf. Ex-
ercise 9) yield the following:

(3.11.30) SpecA0 = {λj} =⇒ SpecCA0
= {λj − λk}.

Thus the condition that SpecCA0
contain no positive integer is equivalent to the

condition that A0 have no two eigenvalues that differ by a nonzero integer. We
thus have the following result.
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Proposition 3.11.2. Assume A0 has no two eigenvalues that differ by a nonzero
integer. Then there exists T0 > 0 and U(t) as in (3.11.19) with power series
convergent for |t| < T0, such that the general solution to (3.11.1) for t ∈ (0, T0) has
the form

(3.11.31) x(t) = U(t)tA0v, v ∈ Cn.

Let us see how Proposition 3.11.2 applies to the Bessel equation (3.11.6), which
we have recast in the form (3.11.1) with A(t) = A0 + A2t

2, as in (3.11.7). Note
that

(3.11.32) A0 =

(
0 1
ν2 0

)
=⇒ SpecA0 = {ν,−ν}.

Thus SpecCA0 = {2ν, 0,−2ν}, and Proposition 3.11.2 applies whenever ν is not
an integer or half-integer. Now as shown in §1.16 of Chapter 1, there is not an
obstruction to series expansions consistent with (3.11.31) when ν is a half-integer.
This is due to the special structure of (3.11.7), and suggests a more general result,
of the following sort. Suppose only even powers of t appear in the series for A(t):

(3.11.33) A(t) = A0 +A2t
2 +A4t

4 + · · · .
Then we look for U(t), solving (3.11.23), in the form

(3.11.34) U(t) = I + U2t
2 + U4t

4 + · · · .
In such a case, only even powers of t occur in the power series for (3.11.23), and in
place of (3.11.28)–(3.11.29), one gets the following recursion formulas for U2k, k ≥
1:

(3.11.35) 2kU2k = [A0, U2k] +

k−1∑
j=0

A2k−2jU2j ,

i.e.,

(3.11.36) (2kI − CA0)U2k =

k−1∑
j=0

A2k−2jU2j .

This is solvable for U2k as long as 2k /∈ SpecCA0
, and we have the following.

Proposition 3.11.3. Assume A(t) satisfies (3.11.33), and A0 has no two eigenval-
ues that differ by a nonzero even integer. Then there exists T0 > 0 and U(t) as in
(3.11.34), with power series convergent for |t| < T0, such that the general solution
to (3.11.1) for t ∈ (0, T0) has the form (3.11.31).

We return to the Bessel equation (3.11.6) and consider the case ν = 0. That
is, we consider (3.11.1) with A(t) as in (3.11.7), and

(3.11.37) A0 =

(
0 1
0 0

)
.

Proposition 3.11.3 applies to this case (so does Proposition 3.11.2), and the general
solution to (3.11.6) is the first entry in (3.11.31), where U(t) has the form (3.11.34).
Note that in case (3.11.37), A2

0 = 0, so for t > 0,

(3.11.38) tA0 =

(
1 log t
0 1

)
.
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Thus there are two linearly independent solutions to

(3.11.39)
d2u

dt2
+

1

t

du

dt
+ u = 0,

for t > 0, one having the form

(3.11.40)
∑
k≥0

akt
2k,

with coefficients ak given recursively, and another having the form

(3.11.41)
∑
k≥0

(bk + ck log t)t
2k,

again with coefficients bk and ck given recursively. The solution of the form (3.11.40)
is as in (1.16.16) of Chapter 1 (with ν = 0), while the solution of the form (3.11.41)
can be shown to be consistent with Y0(t) in (1.16.34)–(1.16.36) of Chapter 1.

Proceeding beyond the purview of Propositions 3.11.2 and 3.11.3, we now treat
the case when A0 satisfies the following conditions. First,

(3.11.42) SpecCA0 contains exactly one positive integer, ℓ,

and second

(3.11.43) A0 is diagonalizable,

which implies

(3.11.44) CA0 is diagonalizable;

cf. Chapter 2, §2.7, Exercise 8. Later we discuss weakening these conditions.

As in Proposition 3.11.2, we use a transformation of the form (3.11.20), i.e.,
x(t) = U(t)y(t), with U(t) as in (3.11.19), but this time our goal is to obtain for y,
not the equation (3.11.21), but rather one of the form

(3.11.45) t
dy

dt
= (A0 +Bℓt

ℓ)y,

with the additional property of a special structure on the commutator [A0, Bℓ],
given in (3.11.55) below. To get (3.11.45), we use (3.11.22) to obtain for U(t) the
equation

(3.11.46) t
dU

dt
= A(t)U(t)− U(t)(A0 +Bℓt

ℓ),

in place of (3.11.23). Taking A(t) as in (3.11.2) and U(t) as in (3.11.19), we have

(3.11.47) t
dU

dt
=
∑
k≥1

kUkt
k,

(3.11.48) A(t)U(t)− U(t)A0 =
∑
k≥1

[A0, Uk]t
k +

∑
k≥1

(k−1∑
j=0

Ak−jUj

)
tk,

and hence solving (3.11.46) requires for Uk, k ≥ 1, that

(3.11.49) kUk = [A0, Uk] +

k−1∑
j=0

Ak−jUj − Γk,
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where

(3.11.50)

Γk = 0, k < ℓ,

Bℓ, k = ℓ,

Uk−ℓBℓ, k > ℓ.

Equivalently,

(3.11.51) (kI − CA0
)Uk =

k−1∑
j=0

Ak−jUj − Γk.

As before, (3.11.51) has a unique solution for each k < ℓ, since CA0
−kI is invertible

on M(n,C). For k = ℓ, the equation is

(3.11.52) (ℓI − CA0
)Uℓ =

ℓ−1∑
j=0

Aℓ−jUj −Bℓ.

This time CA0
− ℓI is not invertible. However, if (3.11.44) holds,

(3.11.53) M(n,C) = N (CA0
− ℓI)⊕R(CA0

− ℓI).

Consequently, given
∑ℓ−1
j=0Aℓ−jUj ∈M(n,C), we can take

(3.11.54) Bℓ ∈ N (CA0
− ℓI)

so that the right side of (3.11.52) belongs to R(CA0
− ℓI), and then we can find a

solution Uℓ. We can uniquely specify Uℓ by requiring Uℓ ∈ R(CA0
− ℓI), though

that is of no great consequence. Having such Bℓ and Uℓ, we can proceed to solve
(3.11.51) for each k > ℓ. Estimates on the coefficients Uk guaranteeing a positive
radius of convergence for the power series (3.11.19) again follow by techniques
of §3.10. We have reduced the problem of representing the general solution to
(3.11.1) for t ∈ (0, T0) to that of representing the general solution to (3.11.45),
given that (3.11.54) holds. The following result accomplishes this latter task. Note
that (3.11.54) is equivalent to

(3.11.55) [A0, Bℓ] = ℓBℓ, i.e., A0Bℓ = Bℓ(A0 + ℓI).

Lemma 3.11.4. Given A0, Bℓ ∈M(n,C) satisfying (3.11.55), the general solution
to (3.11.45) on t > 0 is given by

(3.11.56) y(t) = tA0tBℓv, v ∈ Cn.

Proof. As mentioned earlier in this section, results of §3.10 imply that for each
v ∈ Cn, there is a unique solution to (3.11.45) on t > 0 satisfying y(1) = v. It
remains to show that the right side of (3.11.56) satisfies (3.11.45). Indeed, if y(t)
is given by (3.11.56), then, for t > 0,

(3.11.57) t
dy

dt
= A0t

A0tBℓv + tA0Bℓt
Bℓv.

Now (3.11.55) implies, for each m ∈ N,

(3.11.58)
Am0 Bℓ = Am−1

0 Bℓ(A0 + ℓI) = · · ·
= Bℓ(A0 + ℓI)m,
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which in turn implies

(3.11.59) esA0Bℓ = Bℓe
s(A0+ℓI) = Bℓe

sℓesA0 ,

hence

(3.11.60) tA0Bℓ = Bℓt
ℓtA0 ,

so (3.11.57) gives

(3.11.61) t
dy

dt
= (A0 +Bℓt

ℓ)tA0tBℓv,

as desired. �

The construction involving (3.11.45)–(3.11.55) plus Lemma 3.11.4 yields the
following.

Proposition 3.11.5. Assume A0 ∈ M(n,C) has the property (3.11.42) and is
diagonalizable. Then there exist T0 > 0, U(t) as in (3.11.19), and Bℓ ∈ M(n,C),
satisfying (3.11.55), such that the general solution to (3.11.1) on t ∈ (0, T0) is

(3.11.62) x(t) = U(t)tA0tBℓv, v ∈ Cn.

The following is an important property of Bℓ.

Proposition 3.11.6. In the setting of Proposition 3.11.5, Bℓ is nilpotent.

Proof. This follows readily from (3.11.55), which implies that for each λj ∈ SpecA0,

(3.11.63) Bℓ : GE(A0, λj) −→ GE(A0, λj + ℓ).

�

Remark. Note that if Bm+1
ℓ = 0, then, for t > 0,

(3.11.64) tBℓ =

m∑
k=0

1

k!
(log t)kBkℓ .

Let us apply these results to the Bessel equation (3.11.6) in case ν = n is a
positive integer. We are hence looking at (3.11.1) when

(3.11.65) A(t) = A0 +A2t
2, A0 =

(
0 1
n2 0

)
, A2 =

(
0 0
1 0

)
.

We have

(3.11.66) SpecA0 = {n,−n}, SpecCA0 = {2n, 0,−2n}.
Clearly A0 is diagonalizable. The recursion (3.11.51) for Uk takes the form

(3.11.67) (kI − CA0)Uk = Σk + Γk,

where

(3.11.68)

Σk = 0, k < 2,

A2, k = 2,

A2Uk−2, k > 2,
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and

(3.11.69)

Γk = 0, k < 2n,

B2n, k = 2n,

Uk−2nB2n, k > 2n.

In particular, the critical equation (3.11.52) is

(3.11.70) (2nI − CA0)U2n = A2U2n−2 +B2n,

and we solve this after picking

(3.11.71) B2n ∈ N (CA0 − 2nI),

such that the right side of (3.11.70) belongs to R(CA0 − 2nI). We have from
Chapter 2, §2.7, Exercise 9, that (since A0 is diagonalizable)

(3.11.72) N (CA0 − 2nI) = Span{vwt : v ∈ E(A0, n), w ∈ E(At0,−n)}.

For A0 in (3.11.64), v is a multiple of (1, n)t and wt is a multiple of (−n, 1), so

(3.11.73) B2n = βnB
#
2n, βn ∈ C, B#

2n =

(
−n 1
−n2 n

)
.

Note that B2
2n = 0. Consequently the general solution to (3.11.1) in this case takes

the form

(3.11.74) x(t) = U(t)tA0tB2nv,

with

(3.11.75) tB2n = I + (log t)B2n.

Note that

(3.11.76) N (B2n) = Span

(
1

n

)
= E(A0, n),

so

(3.11.77) U(t)tA0tB2n

(
1

n

)
= U(t)tA0

(
1

n

)
= U(t)tn

(
1

n

)
is a regular solution to (3.11.1). Its first component is, up to a constant multiple,
the solution Jn(t) (in case ν = n) given in (1.16.16) of Chapter 1. The recursion
gives results similar to (1.16.7)–(1.16.9) of Chapter 1, and U(t) has infinite radius
of convergence. Note also that

(3.11.78) A0

(
1

−n

)
= −n

(
1

−n

)
, B2n

(
1

−n

)
= −2nβn

(
1

n

)
,

which in concert with (3.11.75)–(3.11.76) gives

(3.11.79)

U(t)tA0tB2n

(
1

−n

)
= U(t)tA0

(
1

−n

)
− 2nβn(log t)U(t)tA0

(
1

n

)
= U(t)t−n

(
1

−n

)
− 2nβn(log t)U(t)tn

(
1

n

)
.

The first component gives a solution to (3.11.6), with ν = n, complementary to
Jn(t), for t > 0. Compare the formula for Yn(t) in (1.16.36) of Chapter 1.
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Remark. When (3.11.1) is a 2×2 system, either Proposition 3.11.2 or Proposition
3.11.5 will be applicable. Indeed, if A0 ∈M(2,C) and its two eigenvalues differ by
a nonzero integer ℓ, then A0 is diagonalizable, and

SpecCA0
= {ℓ, 0,−ℓ},

so (3.11.42) holds.

To extend the scope of Proposition 3.11.5, let us first note that the hypothesis
(3.11.43) that A0 is diagonalizable was used only to pass to (3.11.53), so we can
replace this hypothesis by

(3.11.80) ℓ ∈ N ∩ SpecCA0
=⇒M(n,C) = N (CA0

− ℓI)⊕R(CA0
− ℓI).

We now show that we can drop hypothesis (3.11.42). In general, if SpecCA0
∩N ̸= ∅,

we have a finite set

(3.11.81) SpecCA0
∩ N = {ℓj : 1 ≤ j ≤ m};

say ℓ1 < · · · < ℓm. In this more general setting, we use a transformation of the
form (3.11.20), i.e., x(t) = U(t)y(t), with U(t) as in (3.11.19), to obtain for y an
equation of the form

(3.11.82) t
dy

dt
= (A0 +Bℓ1t

ℓ1 + · · ·+Bℓmt
ℓm)y,

with commutator properties on [A0, Bℓj ] analogous to (3.11.55) (see (3.11.85) be-
low). In this setting, in place of (3.11.46), we aim for

(3.11.83) t
dU

dt
= A(t)U(t)− U(t)(A0 +Bℓ1t

ℓ1 + · · ·+Bℓmt
ℓm).

We continue to have (3.11.47)–(3.11.51), with a natural replacement for Γk, which
the reader can supply. The equation (3.11.51) for k /∈ {ℓ1, . . . , ℓm} is uniquely
solvable for Uk because kI−CA0 is invertible. For k = ℓj , 1 ≤ j ≤ m, one can pick

(3.11.84) Bℓj ∈ N (CA0 − ℓjI),

and solve the appropriate variant of (3.11.52), using (3.11.80). Note that (3.11.84)
is equivalent to

(3.11.85) [A0, Bℓj ] = ℓjBℓj , i.e., A0Bℓj = Bℓj (A0 + ℓjI).

Proposition 3.11.7. Assume A0 ∈ M(n,C) has the property (3.11.80). For each
ℓj as in (3.11.81), take Bℓj as indicated above, and set

(3.11.86) B = Bℓ1 + · · ·+Bℓm .

Then there exist T0 > 0 and U(t) as in (3.11.19) such that the general solution to
(3.11.1) on t ∈ (0, T0) is

(3.11.87) x(t) = U(t)tA0tBv, v ∈ Cn.

Proof. It suffices to show that the general solution to (3.11.82) is

(3.11.88) y(t) = tA0tBv, v ∈ Cn,
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given that Bℓj satisfy (3.11.85). In turn, it suffices to show that if y(t) is given by
(3.11.88), then (3.11.82) holds. To verify this, write

(3.11.89) t
dy

dt
= A0t

A0tBv + tA0(Bℓ1 + · · ·+Bℓm)tBv.

Now (11.85) yields

(3.11.90) Ak0Bℓj = Bℓj (A0 + ℓjI)
k, hence tA0Bℓj = Bℓj t

ℓj tA0 ,

which together with (3.11.89) yields (3.11.82), as needed. �

Parallel to Proposition 3.11.6, we have the following.

Proposition 3.11.8. In the setting of Proposition 3.11.7, B is nilpotent.

Proof. By (3.11.85), we have, for each λj ∈ SpecA0,

(3.11.91) B : GE(A0, λj) −→ GE(A0, λj + ℓ1)⊕ · · · ⊕ GE(A0, λj + ℓm),

which readily implies nilpotence. �

Exercises

1. In place of (3.11.3), consider second order equations of the form

(3.11.92) tu′′(t) + b(t)u′(t) + c(t)u(t) = 0,

where b(t) and c(t) have convergent power series in t for |t| < T0. In such a case,
show that setting

(3.11.93) x(t) =

(
u(t)

u′(t)

)
yields a system of the form (3.11.1) with

(3.11.94) A(t) =

(
0 t

−c(t) −b(t)

)
.

Contrast this with what you would get by multiplying (3.11.92) by t and using the
formula (3.11.4) for x(t).

2. Make note of how to extend the study of (3.11.1) to

(3.11.95) (t− t0)
dx

dt
= A(t)x,

when A(t) =
∑
k≥0Ak(t − t0)

k for |t − t0| < T0. We say t0 is a regular singular

point for (3.11.95).

3. The following is known as the hypergeometric equation:

(3.11.96) t(1− t)u′′(t) + [γ − (α+ β + 1)t]u′(t)− αβu(t) = 0.

Show that t0 = 0 and t0 = 1 are regular singular points and construct solutions
near these points, given α, β, and γ.



Exercises 227

4. The following is known as the confluent hypergeometric equation:

(3.11.97) tu′′(t) + (γ − t)u′(t)− αu(t) = 0.

Show that t0 = 0 is a regular singular point and construct solutions near this point,
given α and γ.

5. Let B(t) be analytic in t for |t| > a. We say that the equation

(3.11.98)
dy

dt
= B(t)y

has a regular singular point at infinity provided that the change of variable

(3.11.99) x(t) = y
(1
t

)
transforms (3.11.98) to an equation with a regular singular point at t = 0. Specify
for which B(t) this happens.

6. Show that the hypergeometric equation (3.11.96) has a regular singular point at
infinity.

7. What can you say about the behavior as t↘ 0 of solutions to (3.11.1) when

A(t) = A0 +A1t, A0 =

2 1
1

0

 , A1 =

0 0 0
1
0

?

8. What can you say about the behavior as t↘ 0 of solutions to (11.1) when

A(t) = A0 +A1t, A0 =

1 1
1

0

 , A1 =

0 0 0
1
0

?

9. In the context of Lemma 3.11.4, i.e., with A0 and Bℓ satisfying (3.11.55), show
that

Bℓ and e2πiA0 commute.

More generally, in the context of Proposition 3.11.7, with A0 and B satisfying
(3.11.85)–(3.11.86), show that

B and e2πiA0 commute.

Deduce that for all t > 0

(3.11.100) tA0e2πiA0tBe2πiB = tA0tBC, C = e2πiA0e2πiB .

10. In the setting of Exercise 9, pick E ∈M(n,C) such that

(3.11.101) e2πiE = C.

(Cf. Appendix 3.A.) Set

(3.11.102) Q(t) = tA0tBt−E , t > 0.
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Show that there exists m ∈ Z+ such that tmQ(t) is a polynomial in t, with coef-
ficients in M(n,C). Deduce that, in the setting of Proposition 3.11.7, the general
solution to (3.11.1) on t ∈ (0, T0) is

(3.11.103) x(t) = U(t)Q(t)tEv, c ∈ Cn,
with U(t) as in (3.11.19), E as in (3.11.101), and Q(t) as in (3.11.102), so that
tmQ(t) is a polynomial in t.
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3.A. Logarithms of matrices

Given C ∈M(n,C), we say X ∈M(n,C) is a logarithm of C provided

(3.A.1) eX = C.

In this appendix, we aim to prove the following:

Proposition 3.A.1. If C ∈M(n,C) is invertible, there exists X ∈M(n,C) satis-
fying (3.A.1).

Let us start with the case n = 1, i.e., C ∈ C. In case C is a positive real
number, we can take X = logC, defined as in Chapter 1, §1.1; cf. (1.1.21)–(1.1.27).
More generally, for C ∈ C \ 0, we can write

(3.A.2) C = |C|eiθ, X = log |C|+ iθ.

Note that the logarithm X of C is not uniquely defined. If X ∈ C solves (3.A.1),
so does X + 2πik for each k ∈ Z. As is customary, for C ∈ C \ 0, we will denote
any such solution by logC.

Let us now take an invertible C ∈M(n,C) with n > 1, and look for a logarithm,
i.e., a solution to (3.A.1). Such a logarithm is easy to produce if C is diagonalizable,
i.e., if for some invertible B ∈M(n,C),

(3.A.3) B−1CB = D =

λ1 . . .

λn

 .

Then

(3.A.4) Y =

µ1

. . .

µn

 , µk = log λk =⇒ eY = D,

and so

(3.A.5) eBY B
−1

= BDB−1 = C.

Similar arguments, in concert with results of Chapter 2, §§2.7–2.8, show that
to prove Proposition 3.A.1 it suffices to construct a logarithm of

(3.A.6) C = λ(I +N), λ ∈ C \ 0, Nn = 0.

In turn, if we can solve for Y the equation

(3.A.7) eY = I +N,

given N nilpotent, then

(3.A.8) µ = log λ =⇒ eµI+Y = λ(I +N),

so it suffices to solve (3.A.7) for Y ∈M(n,C).
We will produce a solution Y in the form of a power series in N . To prepare

for this, we first strike off on a slight tangent and produce a series solution to

(3.A.9) eX(t) = I + tA, A ∈M(n,C), ∥tA∥ < 1.

Taking a cue from the power series for log(1 + t) given in Chapter 1, (1.1.56), we
establish the following.
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Proposition 3.A.2. In case ∥tA∥ < 1, (3.A.9) is solved by

(3.A.10)

X(t) =

∞∑
k=1

(−1)k−1

k
tkAk

= tA− t2

2
A2 +

t3

3
A3 − · · · .

Proof. If X(t) is given by (3.A.10), we have

(3.A.11)

dX

dt
= A− tA2 + t2A3 − · · ·

= A(I − tA+ t2A2 − · · · )
= A(I + tA)−1.

Hence

(3.A.12)
d

dt
e−X(t) = −e−X(t)A(I + tA)−1,

for |t| < 1/∥A∥; cf. §3.1, Exercise 12. It follows that

(3.A.13)
d

dt

(
e−X(t)(I + tA)

)
= e−X(t)

(
−A(I + tA)−1(I + tA) +A

)
= 0,

so

(3.A.14) e−X(t)(I + tA) ≡ e−X(0) = I,

which implies (3.A.9). �

The task of solving (3.A.7) and hence completing the proof of Proposition 3.A.1
is accomplished by the following result.

Proposition 3.A.3. If N ∈M(n,C) is nilpotent, then for all t ∈ R,

(3.A.15) eY (t) = I + tN

is solved by

(3.A.16) Y (t) =

n−1∑
k=1

(−1)k−1

k
tkNk.

Proof. If Y (t) is given by (3.A.16), we see that Y (t) is nilpotent and that eY (t) is a
polynomial in t. Thus both sides of (3.A.15) are polynomials in t, and Proposition
3.A.2 implies they are equal for |t| < 1/∥N∥, so (3.A.15) holds for all t ∈ R. �
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3.B. The matrix Laplace transform

In §1.18 of Chapter 1 we defined the Laplace transform

(3.B.1) Lf(s) =
∫ ∞

0

f(t)e−st dt, Re s > α,

for a function f : [0,∞) → C, integrable on [0, R] for each R <∞, and satisfying

(3.B.2)

∫ ∞

0

∥f(t)∥e−βt dt <∞, ∀β > α.

Such a transform is also well defined for

(3.B.3) f : [0,∞) −→ V,

when V is a finite-dimensional normed vector space, such as Cn, or M(n,C), and
basic results developed in Chapter 1 continue to apply.

Such a Laplace transform provides a tool to treat n × n first-order systems of
differential equations, of the form

(3.B.4) f ′(t) = Af(t) + g(t), f(0) = v,

given

(3.B.5) A ∈M(n,C), v ∈ Cn, g : [0,∞) → Cn,

with g piecewise continuous and satisfying

(3.B.6) ∥g(t)∥ ≤ Ceαt, for t ≥ 0.

We seek a solution f : [0,∞) → Cn that is piecewise continuous and satisfies a
similar bound. If (3.B.4) holds, f ′(t) also has this property, and integration by
parts in (3.B.1) yields

(3.B.7) Lf ′(s) = sLf(s)− f(0),

so applying L to (3.B.4) yields

(3.B.8) sLf(s)− v = ALf(s) + Lg(s),

or

(3.B.9) (sI −A)Lf(s) = v + Lg(s).

Hence, for Re s sufficiently large,

(3.B.10) Lf(s) = (sI −A)−1(v + Lg(s)).

In this way, solving (3.B.4) is translated to solving the recognition problem, enun-
ciated in §1.18 of Chapter 1, i.e., finding the function f that satisfies (3.B.10).

The approach to this introduced in §1.18 of Chapter 1 was to build up a col-
lection of known Laplace transforms. Here, building on (1.18.20) of Chapter 1, we
start with the matrix exponential function,

(3.B.11) EA(t) = etA, A ∈M(n,C).

We claim that

(3.B.12) LEA(s) = (sI −A)−1, for Re s > α,
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provided

(3.B.13) ∥etA∥ ≤ ceαt, t ≥ 0.

To see this, let L ∈ M(n,C) and note that the identity (d/dt)e−tL = −Le−tL
implies

(3.B.14) L

∫ T

0

e−tL dt = I − e−TL,

for each T <∞. If L satisfies

(3.B.15) ∥e−tL∥ ≤ Ce−δt, ∀ t > 0,

for some δ > 0, then we can take T → ∞ in (3.B.14), and deduce that

(3.B.16) L

∫ ∞

0

e−tL dt = I, i.e.,

∫ ∞

0

e−tL dt = L−1.

This applies to L = sI −A as long as (3.B.13) holds and Re s > α, since

(3.B.17) ∥et(A−sI)∥ = e−tRe s∥etA∥,

so we have (3.B.12).

The result (3.B.12) gives

(3.B.18) (sI −A)−1v = L(EAv)(s),

which treats part of the right side of (3.B.10). It remains to identify the inverse
Laplace transform of

(3.B.19) (sI −A)−1Lg(s) = LEA(s)Lg(s).

One approach to this applies the following result, established in Proposition 1.18.2
of Chapter 1, in the scalar case. The extension to the matrix case is straightforward.

Proposition 3.B.1. Let g : [0,∞) → Cn and B : [0,∞) → M(n,C) be piecewise
continuous and satisfy exponential bounds of the form (3.B.6). Take the convolu-
tion,

(3.B.20) B ∗ g(t) =
∫ t

0

B(t− τ)g(τ) dτ.

Then, for Re s > α,

(3.B.21) L(B ∗ g)(s) = LB(s)Lg(s).

Applying Proposition 3.B.1 to (3.B.19), we have

(3.B.22) (sI −A)−1Lg(s) = L(EA ∗ g)(s),

with

(3.B.23) EA ∗ g(t) =
∫ t

0

e(t−τ)Ag(τ) dτ.

Combining this with (3.B.18) and (3.B.10), we derive for the solution to (3.B.4)
the formula

(3.B.24) f(t) = etAv +

∫ t

0

e(t−τ)Ag(τ) dτ.



3.B. The matrix Laplace transform 233

This is of course the Duhamel formula (3.4.5), derived in §3.4 by different (and
arguably more elementary) means. One advantage of the derivation in §3.4 is that
it does not require a global bound on the function g, of the form (3.B.6). Indeed,
g can blow up in finite time, T , and (3.B.24) will still work for t ∈ [0, T ). Another
advantage is that the method of §3.4 generalizes to variable coefficient systems, as
seen in §3.9.

On the other hand, having a collection of Laplace transforms and inverse
Laplace transforms can be useful for computing the convolution product. Hence
the connection between the two given by Proposition 3.B.1 is a double-edged tool.
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3.C. Complex analytic functions

As stated in (3.10.34), if Ω ⊂ C is open and f : Ω → C, then f is said to be complex
differentiable at z0 ∈ Ω, with derivative f ′(z0), provided

(3.C.1) lim
w→0

f(z0 + w)− f(z0)

w
= f ′(z0).

One also denotes the limit by df/dz. Other terms used for such functions are
“complex analytic” and “holomorphic.” Here we sketch some results that lead to
lots of examples of holomorphic functions.

First, clearly f1(z) = z is holomorphic, with f ′1(z) = 1. To go from here, we
have the following:

(3.C.2) f, g : Ω → holomorphic C =⇒ fg holomorphic.,

where fg(z) = f(z)g(z). In fact, one can write

(3.C.3)

f(z0 + w)g(z0 + w)− f(z0)g(z0)

w

=
f(z0 + w)− f(z0)

w
g(z0 + w) + f(z0)

g(z0 + w)− g(z0)

w
,

and take w → 0 to deduce that

(3.C.4)
d

dz
(fg)(z) = f ′(z)g(z) + f(z)g′(z).

We can apply this to f2(z) = z2 = z · z to get f ′2(z) = 2z, and, inductively,

(3.C.5)
d

dz
zn = nzn−1, z ∈ C, n ∈ N.

Next, we claim that 1/z is holomorphic on C \ 0. Indeed, for z0 ̸= 0, |w| < |z0|,

(3.C.6)
1

w

( 1

z0 + w
− 1

z0

)
= − 1

z0(z0 + w)
,

and taking w → 0 yields

(3.C.7)
d

dz

1

z
= − 1

z2
, z ∈ C \ 0.

Again an inductive application of (3.C.4) yields that 1/zn is holomorphic on C \ 0,
and

(3.C.8)
d

dz

1

zn
= − n

zn+1
, z ∈ C \ 0, n ∈ N.

We turn to the exponential function Exp(z) = ez, introduced in Chapter 1. We
claim that this is holomorphic in C, and

(3.C.9)
d

dz
ez = ez, z ∈ C,
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extending from R to C the formula for the derivative established there. To see this,
use the identity ez0+w = ez0ew, established in Chapter 1, to write

(3.C.10)

1

w
(ez0+w − ez0) = ez0

ew − 1

w

= ez0
∞∑
k=1

1

k!
wk−1,

and note that the last sum is equal to

(3.C.11)

∞∑
ℓ=0

1

(ℓ+ 1)!
wℓ = 1 +

w

2
+ · · · −→ 1, as w → 0,

yielding (3.C.9).

We can get lots more holomorphic functions by combining the examples above
with the following general result, known as the chain rule for holomorphic functions.

Proposition 3.C.1. Assume Ω,O ⊂ C are open and

(3.C.12) f : Ω −→ O, g : O −→ C
are holomorphic. Then f = g ◦ f : Ω → C, defined by

(3.C.13) h(z) = g(f(z)),

is holomorphic, and

(3.C.14)
d

dz
g ◦ f(z) = g′(f(z))f ′(z), z ∈ Ω.

Proof. We can write the definition (3.C.1) as

(3.C.15) f(z0) = f(z0) + f ′(z0)w + r(z0, w), z0 ∈ Ω,

where r(z0, w)/w → 0 as w → 0 (we say r(z0, w) = o(w)). Similarly for g. Then,
for z0 ∈ Ω,

(3.C.16)

h(z0 + w) = g(f(z0 + w))

= g(f(z0) + f ′(z0)w + r)

= g(f(z0)) + g′(f(z0))(f
′(z0)w + r) + r1(z0, w),

with also r1(z0, w) = o(w). Hence

(3.C.17) h(z0 + w) = h(z0) + g′(f(z0))f
′(z0) + r2(z0, w),

with r2(z0, w) = o(w), and we have (3.C.14). �

Putting together these results yields such holomorphic functions as

(3.C.18)
1

z2 + 1
, ez/(z

2+1), z ̸= ±i,

and a host of others, which the reader can play around with.





Chapter 4

Nonlinear systems of
differential equations

This final chapter brings to bear all the material presented before and pushes on
to the heart of the subject, nonlinear systems of differential equations. Section
4.1 begins with a demonstration of existence and uniqueness (for t close to t0) of
solutions to

(4.0.1)
dx

dt
= F (t, x), x(t0) = x0.

Here x(t) is a path in Ω ⊂ Rn and F is bounded and continuous on I × Ω (with
t0 ∈ I), and satisfies a Lipschitz condition in x. (See (4.1.2) for a definition.) We
study the issue of global existence, including positive results when F (t, x) is linear
in x. Section 4.2 studies the smoothness of the solution to (4.0.1) as a function of
x0, given various additional hypotheses on F , and related issues.

Section 4.3 reveals a geometric flavor to (4.0.1), described in the language of
vector fields and the flows they generate. A vector field on Ω ⊂ Rn is a map
F : Ω → Rn. This is a special case of (4.0.1), where F is independent of t. The
path x(t) in Ω satisfying (4.0.1) for such F is called the orbit of F through x0;
denote it Φt(x0). This gives rise to the family of maps Φt, called the flow generated
by F . The phase portrait is introduced as a tool to understand the orbits and
flow, from a visual perspective. We pay particular attention to how phase portraits
look near critical points of a vector field F (which are points where F vanishes),
including special types known as sources, sinks, saddles, and centers.

Section 4.4 discusses a particular class of vector fields, gradient vector fields,
on a domain Ω ⊂ Rn. In case n = 2, this relates to the topic of exact equations,
discussed in many texts early on. We have broken with tradition and moved the
discussion of exactness to here, to see it in a broader context.

We move from generalities about nonlinear systems to settings in which they
arise. Section 4.5 introduces a class of differential equations arising from Newton’s

237
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law F = ma. This resumes the study introduced in §1.5 of Chapter 1. This time we
are studying the interaction of several bodies, each moving in n-dimensional space.
We concentrate on central force problems. We show how a two-body central force
problem (for motion in Rn) gives rise to a second order n× n system, in “center of
mass coordinates.” We look at this two-body problem in more detail in §4.6, and
derive Newton’s epoch-making analysis of the planetary motion problem.

In §4.7 we introduce another (though ultimately related) class of problems that
lead to differential equations, namely variational problems. The general setup is to
consider

(4.0.2) I(u) =

∫ b

a

L(u(t), u′(t)) dt,

for paths u : [a, b] → Ω ⊂ Rn, given smooth L on Ω × Rn, and find conditions
under which I has a minimum, or maximum, or more generally a stationary point
u. We produce a differential equation known as the Lagrange equation for u.
This method has many important ramifications. One of the most important is to
produce differential equations for physical problems, providing an alternative to
the method discussed in §4.5. We illustrate this in §4.7 by obtaining a derivation
of the pendulum equation, alternative to that given in §1.6 of Chapter 1. We
proceed to more sophisticated uses of the variational method. In §4.8 we discuss the
“brachistochrone problem,” tossed about by the early leading lights of calculus, one
of the foundational variational problems. In §4.9 we discuss the double pendulum,
a physical problem that is confounding when one uses the F = ma approach, and
which well illustrates the “Lagrangian” approach. An alternative to Lagrangian
differential equations is the class of Hamiltonian differential equations. The passage
from Lagrangian to Hamiltonian equations is previewed (in special cases) in §§4.7
and 4.9, and developed further in §4.10.

The majority of the systems studied in this chapter are not amenable to solution
in terms of explicit formulas. In §4.11 we introduce a tool that has revolutionized the
study of these equations, namely numerical approximation. Behind this revolution
is the availability of personal computers. In §4.11 we present several techniques
that allow for accurate approximation of solutions to (4.0.1), the most important
being Runge-Kutta difference schemes.

In §4.12 we return to the study of qualitative features of phase portraits, ini-
tiated in §4.3. We define limit sets of orbits, and establish a result known as the
Poincaré-Bendixson theorem, which provides a condition under which a limit set
for an orbit of a planar vector field can be shown to be a closed curve, called a limit
cycle.

Sections 4.13–4.14 are devoted to some systems of differential equations arising
to model the populations of interacting species. In §4.13 we study “predator-prey”
equations. We study several models. In some, all the orbits are periodic, except
for one critical point. In others, there is a limit cycle, arising via the mechanism
examined in §4.12. In §4.14 we look at other interacting species equations, namely
equations modeling competing species.

One phenomenon behind the Poincaré-Bendixson theorem is that an orbit of
a vector field F in the plane locally divides the plane into two parts, one to the
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left of the orbit and one to the right. Since another orbit of F cannot cross it,
this tends to separate the plane into pieces, in each of which the phase portrait
has a fairly simple appearance. In dimension three and higher, this mechanism to
enforce simplicity does not work, and far more complicated scenarios are possible.
This leads to the occurrence of “chaos” for n× n systems of differential equations
when n ≥ 3. We explore some aspects of this in the last section of this chapter,
§4.15.

This chapter ends with a number of appendices, some providing useful back-
ground in calculus, and others taking up further topics in nonlinear systems of
ODE. In Appendix 4.A we give basic information on the derivative of functions
of several variables, reviewing material typically covered in third semester calculus
and setting up notation that is used in the chapter. Appendix 4.B discusses some
basic results about convergence, including the notion of compactness.

In Appendix 4.C we show that if the linearization of a vector field F at a critical
point behaves like a saddle, so does F . Appendix 4.D takes a further look at the
behavior of a flow near a critical point of a vector field. It produces a blown up
phase portrait of such a flow, by taking spherical polar coordinates centered at the
critical point.

Appendix 4.E discusses an approximation procedure for computing the periods
of orbits, for a certain family of planar vector fields, with reference to how Einstein’s
correction of Newton’s equations for planetary motion yields a calculation of the
precession of the planet’s perihelion. In Appendix 4.F we show that a spherically
symmetric planet produces the same gravitational field as if all its mass were con-
centrated at its center. In Appendix 4.G we prove the Brouwer fixed-point theorem
(in dimension 2), a use of which arises in §4.15. The proof we give makes use of
material developed in §4.4.

In Appendix 4.H we discuss geodesic equations on surfaces. This discussion
continues results on minima and other critical paths for the energy functional intro-
duced in §4.7, making contact with the length functional here, which is of interest for
the differential geometry of surfaces. Appendix 4.I deals with rigid body motion in
Rn. We set up a Lagrangian and treat this as a variational problem. This approach
leads to a geodesic equation on the rotation group SO(n), endowed with a certain
left-invariant metric. We reduce this to a system of ODE for Z : I → Skew(n), with
a quadratic nonlinearity. We specialize to n = 3 and produce Euler’s equation for
the free motion of a rigid body in R3, and show this is solvable in terms of elliptic
integrals.
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4.1. Existence and uniqueness of solutions

We investigate existence and uniqueness of solutions to a first order nonlinear n×n
system of differential equations,

(4.1.1)
dx

dt
= F (t, x), x(t0) = x0.

We assume F is bounded and continuous on I × Ω, where I is an open interval
about t0 and Ω is an open subset of Rn, containing x0. We also assume F satisfies
a Lipschitz condition in x:

(4.1.2) ∥F (t, x)− F (t, y)∥ ≤ L∥x− y∥,
for all t ∈ I, x, y ∈ Ω, with L ∈ (0,∞). Such an estimate holds if Ω is convex and
F is C1 in x and satisfies

(4.1.3) ∥DxF (t, x)∥ ≤ L,

for all t ∈ I, x ∈ Ω. At this point, the reader might want to review the concept
of the derivative of a function of n variables, by looking in Appendix 4.A. The
implication (4.1.3) ⇒ (4.1.2) follows readily from (4.A.9). Our first goal is to prove
the following.

Proposition 4.1.1. Assume F : I × Ω → Rn is bounded and continuous and
satisfies the Lipschitz condition (4.1.2), and let x0 ∈ Ω. Then there exists T0 > 0
and a unique C1 solution to (4.1.1) for |t− t0| < T0.

The first step in proving this is to rewrite (4.1.1) as an integal equation:

(4.1.4) x(t) = x0 +

∫ t

t0

F (s, x(s)) ds.

The equivalence of (4.1.1) and (4.1.4) follows from the Fundamental Theorem of
Calculus. It suffices to find a continuous solution x to (4.1.4) on [t0 − T0, t0 + T0],
since then the right side of (4.1.4) will be C1 in t.

We will apply a technique known as Picard iteration to construct a solution to
(4.1.4). We set x0(t) ≡ x0 and then define xn(t) inductively by

(4.1.5) xn+1(t) = x0 +

∫ t

t0

F (s, xn(s)) ds.

We show that this converges uniformly to a solution to (4.1.4), for |t− t0| ≤ T0, if
T0 is taken small enough. To get this, we quantify some hypotheses made above.
We assume

(4.1.6) BR(x0) = {x ∈ Rn : ∥x− x0∥ ≤ R} ⊂ Ω

and

(4.1.7) ∥F (s, x)∥ ≤M, ∀ s ∈ I, x ∈ BR(x0).

Clearly x0(t) ≡ x0 takes values in BR(x0) for all t. Suppose that xn(t) has been

constructed, taking values in BR(x0), and xn+1(t) is defined by (4.1.5). We have

(4.1.8) ∥xn+1(t)− x0∥ ≤
∫ t

t0

∥F (s, xn(s))∥ ds ≤M |t− t0|,
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so xn+1(t) also takes values in BR(x0) provided |t− t0| ≤ T0 and

(4.1.9) T0 ≤ R

M
.

As long as (4.1.9) holds and [t0 −T0, t0 +T0] ⊂ I, we get an infinite sequence xn(t)
of functions, related by (4.1.5).

We produce one more constraint on T0, which will guarantee convergence. Note
that, for n ≥ 1,

(4.1.10)

∥xn+1(t)− xn(t)∥ =
∥∥∥∫ t

t0

[
F (s, xn(s))− F (s, xn−1(s))

]
ds
∥∥∥

≤
∫ t

t0

∥F (s, xn(s))− F (x, xn−1(s))∥ ds

≤ L

∫ t

t0

∥xn(s)− xn−1(s)∥ ds,

the last inequality by (4.1.2). Hence

(4.1.11) max
|t−t0|≤T0

∥xn+1(t)− xn(t)∥ ≤ LT0 max
|s−t0|≤T0

∥xn(s)− xn−1(s)∥.

The additional constraint we impose on T0 is

(4.1.12) T0 ≤ α

L
, α ∈ (0, 1).

Noting that

(4.1.13) max
|t−t0|≤T0

∥x1(t)− x0∥ ≤ R,

we see that

(4.1.14) max
|t−t0|≤T0

∥xn+1(t)− xn(t)∥ ≤ αnR.

Consequently, the infinite series

(4.1.15) x(t) = x0 +

∞∑
n=0

(
xn+1(t)− xn(t)

)
is absolutely and uniformly convergent for |t − t0| ≤ T0, with a continuous sum,
satisfying

(4.1.16) max
|t−t0|≤T0

∥x(t)− xn(t)∥ ≤ αn−1R.

It readily follows that

(4.1.17)

∫ t

t0

F (s, xn(s)) ds −→
∫ t

t0

F (s, x(s)) ds,

so (4.1.4) follows from (4.1.5) in the limit n→ ∞.
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To finish the proof of Proposition 4.1.1, we establish uniqueness. Suppose y(t)
also satisfies (4.1.4) for |t− t0| ≤ T0. Then

(4.1.18)

∥x(t)− y(t)∥ =
∥∥∥∫ t

t0

[
F (s, x(s))− F (s, y(s))

]
ds
∥∥∥

≤
∫ t

t0

∥F (s, x(s))− F (s, y(s))∥ ds

≤ L

∫ t

t0

∥x(s)− y(s)∥ ds,

and hence

(4.1.19) max
|t−t0|≤T0

∥x(t)− y(t)∥ ≤ T0L max
|s−t0|≤T0

∥x(s)− y(s)∥.

As long as (4.1.12) holds, T0L ≤ α < 1, so (4.1.19) clearly implies max|t−t0|≤T0
∥x(t)−

y(t)∥ = 0, which gives the asserted uniqueness.

Note that the Lipschitz hypothesis (4.1.2) was needed only for x, y ∈ BR(x0).
Thus we can extend Proposition 4.1.1 to the following setting:

(4.1.20)
For each closed, bounded K ⊂ Ω, there exists LK <∞ such that

∥F (t, x)− F (t, y)∥ ≤ LK∥x− y∥, ∀x, y ∈ K, t ∈ I.

We can also replace the bound on F by

(4.1.21)
For each K as above, there exists MK <∞ such that

∥F (t, x)∥ ≤MK , ∀x ∈ K, t ∈ I.

Results of Appendix 4.B imply that there exists RK > 0 such that

(4.1.22) K̃ =
∪
x∈K

BRK
(x) is a compact subset of Ω.

It follows that for each x0 ∈ K, the solution to (4.1.1) exists on the interval

(4.1.23) {t ∈ I : |t− t0| ≤ min(RK/MK̃ , α/LK̃)}.

Now that we have local solutions to (4.1.1), it is of interest to investigate when
global solutions exist. Here is an example of breakdown:

(4.1.24)
dx

dt
= x2, x(0) = 1.

Here I = R, n = 1, Ω = R, and F (x) = x2 is smooth, satisfying the local bounds
(4.1.21)–(4.1.23). The equation (4.1.24) has the unique solution

(4.1.25) x(t) =
1

1− t
, t ∈ (−∞, 1),

which blows up as t↗ 1. It is useful to know that “blowing up” is the only way a
solution can fail to exist globally. We have the following result.

Proposition 4.1.2. Let F be as in Proposition 4.1.1, but with the Lipschitz and
boundedness hypotheses relaxed to (4.1.20)–(4.1.21). Assume [a, b] is contained in
the open interval I and assume x(t) solves (4.1.1) for t ∈ (a, b). Assume there
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exists a closed, bounded set K ⊂ Ω such that x(t) ∈ K for all t ∈ (a, b). Then there
exist a1 < a and b1 > b such that x(t) solves (4.1.1) for t ∈ (a1, b1).

Proof. We deduce from (4.1.23) that there exists δ > 0 such that for each x1 ∈
K, t1 ∈ [a, b], the solution to

(4.1.26)
dx

dt
= F (t, x), x(t1) = x1

exists on the interval [t1 − δ, t1 + δ]. Now, under the current hypotheses, take
t1 ∈ (b − δ/2, b), x1 = x(t1), with x(t) solving (4.1.1). Then solving (4.1.26)
continues x(t) past t = b. Similarly one can continue x(t) past t = a. �

Here is an example of a global existence result that can be deduced from Propo-
sition 4.1.2. Consider the 2× 2 system for x = (y, v):

(4.1.27)

dy

dt
= v,

dv

dt
= −y3.

Here we have Ω = R2, F (t, x) = F (t, y, v) = (v,−y3). If (4.1.27) holds for t ∈ (a, b),
we have

(4.1.28)
d

dt

(v2
2

+
y4

4

)
= v

dv

dt
+ y3

dy

dt
= 0,

so each x(t) = (y(t), v(t)) solving (4.1.27) lies in a level curve y4/4 + v2/2 = C,
hence is confined to a closed, bounded subset of R2, yielding global existence of
solutions to (4.1.27).

We can also apply Proposition 4.1.2 to establish global existence of solutions
to linear systems,

(4.1.29)
dx

dt
= A(t)x, x(0) = x0,

given A(t) continuous in t ∈ I (an interval about 0), with values in M(n,C). It
suffices to establish the following.

Proposition 4.1.3. If ∥A(t)∥ ≤ K for t ∈ I, then the solution to (4.1.29) satisfies

(4.1.30) ∥x(t)∥ ≤ eK|t|∥x0∥.

Proof. It suffices to prove (4.1.30) for t ≥ 0. Then y(t) = e−Ktx(t) satisfies

(4.1.31)
dy

dt
= C(t)y, y(0) = x0,

with C(t) = A(t)−K. Hence C(t) satisfies

(4.1.32) Re (C(t)u, u) ≤ 0, ∀u ∈ Cn.

Then (4.1.30) is a consequence of the following estimate, of interest in its own
right. �

Lemma 4.1.4. If y(t) solves (4.1.31) and (4.1.32) holds for C(t), then

(4.1.33) ∥y(t)∥ ≤ ∥y(0)∥ for t ≥ 0.
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Proof. We have

(4.1.34)

d

dt
∥y(t)∥2 = (y′(t), y(t)) + (y(t), y′(t))

= 2Re (C(t)y(t), y(t))

≤ 0.

�

Thanks to Proposition 4.1.3, we have for s, t ∈ I, the solution operator for
(4.1.29),

(4.1.35) S(t, s) ∈M(n,C), S(t, s)x(s) = x(t),

introduced in §3.8 of Chapter 3. As noted there, we have the Duhamel formula

(4.1.36) x(t) = S(t, t0) +

∫ t

t0

S(t, s)f(s) ds,

for the solution to

(4.1.37)
dx

dt
= A(t)x+ f(t), x(t0) = x0.

If F (t, x) depends explicitly on t, we call (4.1.1) a non-autonomous system. If
F does not depend explicitly on t, we say (4.1.1) is autonomous. The following
device converts a non-autonomous system to an autonomous one. Take the n × n
system (4.1.1). Then the (n+ 1)× (n+ 1) system

(4.1.38)
dx

dt
= F (y, x),

dy

dt
= 1, x(t0) = x0, y(t0) = t0

has the autonomous form

(4.1.39)
dz

dt
= G(z), z(t0) = (x0, t0),

for z = (x, y), with G(z) = (F (y, x), 1), and the solution to (4.1.38) is (x(t), t),
where x(t) solves (4.1.1). Thus for many purposes it suffices to consider autonomous
sytems.

To close this section, we note how a higher order n× n system, such as

(4.1.40)
dkx

dtk
= F (t, x, . . . , x(k−1)), x(t0) = x0, . . . , x

(k−1)(t0) = xk−1,

can be converted to a first order nk × nk system, for

(4.1.41) y =

 y0
...

yk−1

 , yj(t) ∈ Rn, 0 ≤ j ≤ k − 1.
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The system is

(4.1.42)

dy0
dt

= y1,

...

dyk−2

dt
= yk−1,

dyk−1

dt
= F (t, y0, . . . , yk−1),

with initial data

(4.1.43) yj(t0) = xj , 0 ≤ j ≤ k − 1.

If y(t) solves (4.1.42)–(4.1.43), then x(t) = y0(t) solves (4.1.40), and we have

(4.1.44) x(j)(t) = yj(t), 0 ≤ j ≤ k − 1.

Note how this construction is parallel to that done in the linear case in Chapter 3,
§3.

Exercises

1. Apply the Picard iteration method to

dx

dt
= ax, x(0) = 1,

given a ∈ C. Taking x0(t) ≡ 1, show that

xn(t) =

n∑
k=0

ak

k!
tk.

2. Discuss the matrix analogue of Exercise 1.

3. Consider the initial value problem

dx

dt
= x2, x(0) = 1.

Take x0 ≡ 1 and use the Picard iteration method (4.1.5) to write out

xn(t), n = 1, 2, 3.

Compare the results with the formula (4.1.25).

4. Given A0, A1 ∈M(n,C), consider the initial value problem

dx

dt
= (A0 +A1t)x, x(0) = x0.

Take x0(t) ≡ x0 and use the Picard iteration (4.1.5) to write out

xn(t), n = 1, 2, 3.
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Compare and contrast the results with calculations from §3.10 of Chapter 3.

5. Let xn(t) be an approximate solution to (4.1.1), and assume that

∥x(t)− xn(t)∥ ≤ δn|t− t0|n, for t ∈ I.

Let xn+1(t) be defined by (4.1.5), and assume the Lipschitz condition (4.1.2) holds.
Show that

∥x(t)− xn+1(t)∥ ≤ Lδn
n+ 1

|t− t0|n+1, t ∈ I.

6. Modify the system (4.1.27) to

dy

dt
= v,

dv

dt
= −y3 − v.

Show that solutions satisfy
d

dt

(v2
2

+
y4

4

)
≤ 0,

and use this to establish global existence for t ≥ 0.

7. Consider the initial value problem

dx

dt
= |x|1/2, x(0) = 0.

Note that x(t) ≡ 0 is a solution, and

x(t) =
1

4
t2, t ≥ 0,

0, t ≤ 0

is another solution, on t ∈ (−∞,∞). Why does this not contradict the uniqueness
part of Proposition 4.1.1? Can you produce other solutions to this initial value
problem?

8. Take β ∈ (0,∞) and consider the initial value problem

dx

dt
= xβ , x(0) = 1.

Show that this has a solution for all t ≥ 0 if and only if β ≤ 1.

9. Let F : Rn → Rn be C1 and suppose x(t) solves

(4.1.45)
dx

dt
= F (x), x(t0) = x0,

for t ∈ I, an open interval containing t0. Show that, for t ∈ I,

(4.1.46)
d

dt
∥x(t)∥2 = 2x(t) · F (x(t)).

Show that, if α > 0 and x(t) ̸= 0,

(4.1.47)
d

dt
∥x(t)∥α = α∥x(t)∥α−2x(t) · F (x(t)).
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10. In the setting of Exercise 9, suppose F satisfies an estimate

(4.1.48) ∥F (x)∥ ≤ C(1 + ∥x∥)β , ∀x ∈ Rn, C <∞, β < 1.

Show that there exists α > 0 and K <∞ such that, if ∥x(t)∥ ≥ 1 for t ∈ I,

d

dt
∥x(t)∥α ≤ K, ∀ t ∈ I.

Use this to establish that the solution to (4.1.45) exists for all t ∈ R.

Gronwall’s inequality and consequences

Exercises 11–13 below will extend the conclusion of Exercise 10 to the case β = 1 in
(4.1.48). One approach is via the following result, known as Gronwall’s inequality.

Proposition 4.1.5. Assume

(4.1.49) g ∈ C1(R), g′ ≥ 0.

Let u and v be real valued, continuous functions on I satisfying

(4.1.50)

u(t) ≤ A+

∫ t

t0

g(u(s)) ds,

v(t) ≥ A+

∫ t

t0

g(v(s)) ds.

Then

(4.1.51) u(t) ≤ v(t), for t ∈ I, t ≥ t0.

Proof. Set w(t) = u(t)− v(t). Then

(4.1.52)

w(t) ≤
∫ t

t0

[
g(u(s))− g(v(s))

]
ds

=

∫ t

t0

M(s)w(s) ds,

where

(4.1.53) M(s) =

∫ 1

0

g′(τu(s) + (1− τ)v(s)) dτ.

Hence we have

(4.1.54) w(t) ≤
∫ t

t0

M(s)w(s) ds, M(s) ≥ 0, M ∈ C(I),

and we claim this implies

(4.1.55) w(t) ≤ 0, ∀ t ∈ I, t ≥ t0.

In other words, we claim that w(t) ≤ 0 on [t0, b] whenever [t0, b] ⊂ I. To see this,
let t1 be the largest number in [t0, b] with the property that w ≤ 0 on [t0, t1]. We
claim that t1 = b.
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Assume to the contrary that t1 < b. Noting that
∫ t1
t0
M(s)w(s) ds ≤ 0, we

deduce from (4.1.54) that

(4.1.56) w(t) ≤
∫ t

t1

M(s)w(s) ds, ∀ t ∈ [t1, b].

Hence, with

(4.1.57) K = max
[t1,b]

M(s) <∞,

we have, for a ∈ (t1, b),

(4.1.58) max
[t1,a]

w(t) ≤ (a− t1)K max
[t1,a]

w(s).

If we pick a ∈ (t1, b) such that (a− t1)K < 1, this implies

(4.1.59) w(t) ≤ 0, ∀ t ∈ [t1, a],

contradicting the maximality of t1. Hence actually t1 = b, and we have the impli-
cation (4.1.54) ⇒ (1.53), completing the proof of Proposition 4.1.5. �

11. Assume v ≥ 0 is a C1 function on I = (a, b), satisfying

(4.1.60)
dv

dt
≤ Cv, v(t0) = v0,

where C ∈ (0,∞) and t0 ∈ I. Using Proposition 4.1.5, show that

(4.1.61) v(t) ≤ eC(t−t0)v0, ∀ t ∈ [t0, b).

12. In the setting of Exercise 11, avoid use of Proposition 4.1.5 as follows. Write
(4.1.60) as

(4.1.62)
dv

dt
= Cv − g(t), v(t0) = v0, g ≥ 0,

with solution

(4.1.63) v(t) = eC(t−t0)v0 −
∫ t

t0

eC(t−s)g(s) ds.

Deduce (4.1.61) from this.

13. Return to the setting of Exercise 9, and replace the hypothesis (4.1.48) by

(4.1.64) ∥F (x)∥ ≤ C(1 + ∥x∥), ∀x ∈ Rn.
Show that the solution to (4.1.45) exists for all t ∈ R.
Hint. Take v(t) = 1 + ∥x(t)∥2 and use (4.1.46). Show that Exercise 11 (or 12)
applies.
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4.2. Dependence of solutions on initial data and other parameters

We study how the solution to a system of differential equations

(4.2.1)
dx

dt
= F (x), x(0) = y

depends on the initial condition y. As shown in §4.1, there is no loss of generality in
considering the autonomous system (4.2.1). We will assume F : Ω → Rn is smooth,
Ω ⊂ Rn open and convex, and denote the solution to (4.2.1) by x = x(t, y). We want
to examine smoothness in y. Let DF (x) denote the n × n matrix valued function
of partial derivatives of F . (See Appendix 4.A for more on this derivative.)

To start, we assume F is of class C1, i.e., DF is continuous on Ω, and we want
to show x(t, y) is differentiable in y. Let us recall what this means. Take y ∈ Ω

and pick R > 0 such that BR(y), defined as in (4.1.6), is contained in Ω. We seek
an n× n matrix W (t, y) such that, for w0 ∈ Rn, ∥w0∥ ≤ R,

(4.2.2) x(t, y + w0) = x(t, y) +W (t, y)w0 + r(t, y, w0),

where

(4.2.3) r(t, y, w0) = o(∥w0∥),

which means

(4.2.4) lim
w0→0

r(t, y, w0)

∥w0∥
= 0.

When this holds, x(t, y) is differentiable in y, and

(4.2.5) Dyx(t, y) =W (t, y).

In other words,

(4.2.6) x(t, y + w0) = x(t, y) +Dyx(t, y)w0 + o(∥w0∥).

In the course of proving this differentiability, we also want to produce an equa-
tion for W (t, y) = Dyx(t, y). This can be done as follows. Suppose x(t, y) were
differentiable in y. (We do not yet know that it is, but that is okay.) Then F (x(t, y))
is differentiable in y, so we can apply Dy to (4.2.1). Using the chain rule, we get
the following equation,

(4.2.7)
dW

dt
= DF (x)W, W (0, y) = I,

called the linearization of (4.2.1). Here, I is the n×n identity matrix. Equivalently,
given w0 ∈ Rn,

(4.2.8) w(t, y) =W (t, y)w0

is expected to solve

(4.2.9)
dw

dt
= DF (x)w, w(0) = w0.

Now, we do not yet know that x(t, y) is differentiable, but we do know from results
of §4.1 that (4.2.7) and (4.2.9) are uniquely solvable. It remains to show that, with
such a choice of W (t, y), (4.2.2)–(4.2.3) hold.
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To rephrase the task, set

(4.2.10) x(t) = x(t, y), x1(t) = x(t, y + w0), z(t) = x1(t)− x(t),

and let w(t) solve (4.2.9). The task of verifying (4.2.2)–(4.2.3) is equivalent to the
task of verifying

(4.2.11) ∥z(t)− w(t)∥ = o(∥w0∥).

To show this, we will obtain for z(t) an equation similar to (4.2.9). To begin,
(4.2.10) implies

(4.2.12)
dz

dt
= F (x1)− F (x), z(0) = w0.

Now the fundamental theorem of calculus gives

(4.2.13) F (x1)− F (x) = G(x1, x)(x1 − x),

with

(4.2.14) G(x1, x) =

∫ 1

0

DF
(
τx1 + (1− τ)x

)
dτ.

If F is C1, then G is continuous. Then (4.2.12)–(4.2.13) yield

(4.2.15)
dz

dt
= G(x1, x)z, z(0) = w0.

Given that

(4.2.16) ∥DF (u)∥ ≤ L, ∀u ∈ Ω,

which we have by continuity of DF , after possibly shrinking Ω slightly, we deduce
from Proposition 4.1.3 that

(4.2.17) ∥z(t)∥ ≤ e|t|L∥w0∥,

that is,

(4.2.18) ∥x(t, y)− x(t, y + w0)∥ ≤ e|t|L∥w0∥.

This establishes that x(t, y) is Lipschitz in y.

To proceed, since G is continuous and G(x, x) = DF (x), we can rewrite (4.2.15)
as

(4.2.19)
dz

dt
= G(x+ z, x)z = DF (x)z +R(x, z), z(0) = w0,

where

(4.2.20) F ∈ C1(Ω) =⇒ ∥R(x, z)∥ = o(∥z∥) = o(∥w0∥).

Now comparing (4.2.19) with (4.2.9), we have

(4.2.21)
d

dt
(z − w) = DF (x)(z − w) +R(x, z), (z − w)(0) = 0.

Then Duhamel’s formula gives

(4.2.22) z(t)− w(t) =

∫ t

0

S(t, s)R(x(s), z(s)) ds,
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where S(t, s) is the solution operator for d/dt−B(t), with B(t) = DF (x(t)), which
as in (4.2.17), satisfies

(4.2.23) ∥S(t, s)∥ ≤ e|t−s|L.

We hence have (4.2.11), i.e.,

(4.2.24) ∥z(t)− w(t)∥ = o(∥w0∥).

This is precisely what is required to show that x(t, y) is differentiable with respect
to y, with derivative W = Dyx(t, y) satisfying (4.2.7). Hence we have:

Proposition 4.2.1. If F ∈ C1(Ω) and if solutions to (4.2.1) exist for t ∈ (−T0, T1),
then, for each such t, x(t, y) is C1 in y, with derivative Dyx(t, y) satisfying (4.2.7).

We have shown that x(t, y) is both Lipschitz and differentiable in y. The
continuity of W (t, y) in y follows easily by comparing the differential equations of
the form (4.2.7) for W (t, y) and W (t, y + w0), in the spirit of the analysis of z(t)
done above.

If F possesses further smoothness, we can establish higher differentiability of
x(t, y) in y by the following trick. Couple (4.2.1) and (4.2.7), to get a system of
differential equations for (x,W ):

(4.2.25)

dx

dt
= F (x),

dW

dt
= DF (x)W,

with initial conditions

(4.2.26) x(0) = y, W (0) = I.

We can reiterate the preceding argument, getting results on Dy(x,W ), hence on
D2
yx(t, y), and continue, proving:

Proposition 4.2.2. If F ∈ Ck(Ω), then x(t, y) is Ck in y.

Similarly, we can consider dependence of the solution to

(4.2.27)
dx

dt
= F (τ, x), x(0) = y

on a parameter τ , assuming F smooth jointly in (τ, x). This result can be deduced
from the previous one by the following trick. Consider the system

(4.2.28)
dx

dt
= F (z, x),

dz

dt
= 0, x(0) = y, z(0) = τ.

Then we get smoothness of x(t, τ, y) jointly in (τ, y). As a special case, let F (τ, x) =
τF (x). In this case x(t0, τ, y) = x(τt0, y), so we can improve the conclusion in
Proposition 4.2.2 to the following:

(4.2.29) F ∈ Ck(Ω) =⇒ x ∈ Ck jointly in (t, y).
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Exercises

1. Suppose τ ∈ R in (4.2.27). Show that ξ = ∂x/∂τ satisfies

dξ

dt
= DxF (τ, x)ξ +

∂

∂τ
F (τ, x), ξ(0) = 0.

2. Consider the family of differential equations for xτ (t),

dx

dt
= x+ τx2, x(0) = 1.

Write down the differential equations satisfied by ξ = ∂x/∂τ and by η = ∂2x/∂τ2.

3. Let x = xτ (t), y = yτ (t) solve

(4.2.30)
dx

dt
= −y + τ(x2 + y2),

dy

dt
= x, x(0) = 1, y(0) = 0.

Knowing smooth dependence on τ , find differential equations for the coefficients
Xj(t), Yj(t) in power series expansions

(4.2.31)
xτ (t) = X0(t) + τX1(t) + τ2X2(t) + · · · ,
yτ (t) = Y0(t) + τY1(t) + τ2Y2(t) + · · · .

Note that X0(t) = cos t, Y0(t) = sin t.

4. Using the substitution ξ(t) = −x(−t), η(t) = y(−t), show that, for τ sufficiently
small, solutions to (4.2.30) are periodic in t.

5. Let p(τ) denote the period of the solution to (4.2.30). Using (4.2.31), show that
p(τ) is smooth in τ for |τ | small. Note that p(0) = 2π. Compute p′(0). Compare
results in Appendix 4.E.

6. Suppose y in (4.2.1) is a critical point of F , i.e., F (y) = 0. Show that (4.2.7)
becomes

dW

dt
= LW, W (0) = I, where L = DF (y),

hence
F (y) = 0 =⇒ Dyx(t, y) = etL.
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4.3. Vector fields, orbits, and flows

Let Ω ⊂ Rn be an open set. A vector field on Ω is simply a map

(4.3.1) F : Ω −→ Rn,

such as encountered in (4.2.1). We say F is a Ck vector field if F is a Ck map. A
C∞ vector field is said to be smooth. By convention, if we simply call F a vector
field, we mean it is a smooth vector field. In this section we always assume F is at
least C1.

One can also look at time-dependent vector fields (cf. (4.1.1)), but in this section
we restrict attention to the autonomous case.

The solution to (4.2.1), i.e., to

(4.3.2)
dx

dt
= F (x), x(0) = y,

will be denoted

(4.3.3) x(t) = ΦtF (y).

Results of §§4.1–4.2 imply that for each closed bounded K ⊂ Ω there exists an
interval I = (−T0, T1) about 0 such that, for each t ∈ I,

(4.3.4) ΦtF : K −→ Ω,

and this is a Ck map if F is a Ck vector field. The family of maps ΦtF from K to
Ω is called the flow generated by F . We have

(4.3.5) Φ0
F (y) ≡ y,

i.e., Φ0
F is the identity map. We also have

(4.3.6) Φs+tF (y) = ΦtF ◦ ΦsF (y),

provided all these maps are well defined. Given y ∈ Ω, the path

(4.3.7) t 7→ ΦtF (y)

is called the orbit through y.

Another way to state the defining property of ΦtF is that (4.3.5) holds and

(4.3.8)
d

dt
ΦtF (x) = F (ΦtF (x)).

We next obtain interesting information on the t-derivative of

(4.3.9) vt(x) = v(ΦtF (x)),

given v ∈ C1
0 (Ω), i.e., v is of class C1 and vanishes outside some closed bounded

K ⊂ Ω. The chain rule (cf. Appendix 4.A, especially (4.A.8)) plus (4.3.8) yields

(4.3.10)
d

dt
vt(x) = F (ΦtF (x)) · ∇v(ΦtF (x)).

In particular,

(4.3.11)
d

ds
v(ΦsF (x))

∣∣∣
s=0

= F (x) · ∇v(x).
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Here ∇v is the gradient of v, given by ∇v = (∂v/∂x1, . . . , ∂v/∂xn)
t. A useful

alternative formula to (4.3.10) is

(4.3.12)

d

dt
vt(x) =

d

ds
vt(ΦsF (x))

∣∣∣
s=0

= F (x) · ∇vt(x),

the first equality following from (4.3.6) and the second from (4.3.11), with v replaced
by vt.

One significant consequence of (4.3.12), which will lead to the important result
(4.3.24) below, is that, for v ∈ C1

0 (Ω),

(4.3.13)

d

dt

∫
Ω

v(ΦtF (x)) dx =

∫
Ω

F (x) · ∇vt(x) dx

= −
∫
Ω

divF (x) v(ΦtF (x)) dx.

Here divF (x) is the divergence of the vector field F (x) = (F1(x), . . . , Fn(x))
t,

defined by

(4.3.14) divF (x) =
∂F1

∂x1
(x) + · · ·+ ∂Fn

∂xn
(x).

The last equality in (4.3.13) follows by integration by parts,

(4.3.15)

∫
Ω

Fk(x)
∂vt

∂xk
dx = −

∫
Ω

∂Fk
∂xk

vt(x) dx,

followed by summation over k. We reiterate the content of (4.3.13):

(4.3.16)
d

dt

∫
Ω

v(ΦtF (x)) dx = −
∫
Ω

divF (x) v(ΦtF (x)) dx.

So far, we have (4.3.16) for v ∈ C1
0 (Ω). We can extend this by noting that (4.3.16)

implies

(4.3.17)

∫
Ω

v(ΦtF (x)) dx−
∫
Ω

v(x) dx

= −
∫ t

0

∫
Ω

divF (x)v(ΦsF (x)) dx ds.

Basic results on the integral allow one to pass from v ∈ C1
0 (Ω) in (4.3.17) to more

general v, including v = χB (the characteristic function of B, defined to be equal
to 1 on B and 0 on Ω \ B), for smoothly bounded closed B ⊂ Ω, amongst other
functions.

In more detail, if B ⊂ Ω is a smoothly bounded, closed set, let Bδ = {x ∈ Rn :
dist(x,B) ≤ δ}. There exists δ0 > 0 such that Bδ ⊂ Ω for δ ∈ (0, δ0]. For such δ,
one can produce vδ ∈ C1

0 (Ω) such that

(4.3.18) vδ = 1 on B, 0 ≤ vδ ≤ 1, vδ = 0 on Rn \Bδ.
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Then

(4.3.19)
∣∣∣∫ χB(x) dx−

∫
vδ(x) dx

∣∣∣ ≤ vol(Bδ \B) → 0, as δ → 0,

so, as δ → 0,

(4.3.20)

∫
Ω

vδ(x) dx −→
∫
Ω

χB(x) dx.

Similar arguments give

(4.3.21)

∫
Ω

vδ(Φ
t
F (x)) dx −→

∫
Ω

χB(Φ
t
F (x)) dx,

and

(4.3.22)

∫ t

0

∫
Ω

divF (x) vδ(Φ
s
F (x)) dx ds −→

∫ t

0

∫
Ω

divF (x)χB(Φ
s
F (x)) dx ds.

These results allow one to take v = χB in (4.3.17).

Now one can pass from (4.3.17) back to (4.3.16), via the fundamental theorem
of calculus. Note that

(4.3.23) VolΦtF (B) =

∫
χB(Φ

−t
F (x)) dx.

We can apply (4.3.16) with t replaced by −t, and v by χB , and deduce the following.

Proposition 4.3.1. If F is a C1 vector field, generating the flow ΦtF , well defined
on Ω for t ∈ I, and B ⊂ Ω is smoothly bounded, then, for t ∈ I,

(4.3.24)
d

dt
VolΦtF (B) =

∫
Φt

F (B)

divF (x) dx.

This result is behind the notation div F , i.e., the divergence of F . Vector fields
F with positive divergence generate flows ΦtF that magnify volumes as t increases,
while vector fields with negative divergence generate flows that shrink volumes as
t increases.

We say the flow generated by a vector field F is complete provided ΦtF (y) is
defined for all t ∈ R, y ∈ Ω. We say it is forward complete if ΦtF (y) is defined
for all t ∈ [0,∞), y ∈ Ω. The flow is backward complete if ΦtF (y) is defined
for all t ∈ (−∞, 0], y ∈ Ω. Here is an occasionally useful criterion for forward
completeness.

Proposition 4.3.2. Let F be a C1 vector field on Ω = Rn. Assume there exists
R <∞ and a function V ∈ C1(Rn) such that

(4.3.25) V (x) → +∞ as ∥x∥ → ∞

and

(4.3.26) ∥x∥ ≥ R =⇒ ∇V (x) · F (x) ≤ 0.

Then the flow ΦtF is forward complete.
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Proof. Let x(t) = ΦtF (x0) be an orbit, defined for t ∈ I, some interval about 0.
Then

(4.3.27) ∥x(t)∥ ≥ R =⇒ d

dt
V (x(t)) = ∇V (x(t)) · F (x(t)) ≤ 0.

Hence, for t ∈ I, t ≥ 0, x(t) is confined to the closed bounded set

(4.3.28)
{
x ∈ Rn : V (x) ≤ maxV (y), y ∈ BR(0) ∪ {x0}

}
.

From here, Proposition 4.1.2 yields forward completeness. �

One way to display the behavior of the flow generated by a vector field F on a
domain Ω is to draw a “phase portrait.” This consists of graphs of selected integral
curves of F , with arrows indicating the direction of F along each integral curve.
Such portraits are particularly revealing when dimΩ = 2, and also of considerable
use when dimΩ = 3. As an example, consider Figure 4.3.1, the phase portrait of
the flow associated to the 2× 2 system

(4.3.29)

dθ

dt
= ψ,

dψ

dt
= −g

ℓ
sin θ,

which arises from the pendulum equation (cf. Chapter 1, (1.6.9))

(4.3.30)
d2θ

dt2
+
g

ℓ
sin θ = 0,

by adding the variable ψ = dθ/dt. Here g, ℓ > 0. The system (4.3.29) has the form
(4.3.2) with x = (θ, ψ) and

(4.3.31) F (θ, ψ) =

(
ψ

− g
ℓ sin θ

)
.

Note that Figure 4.3.1 looks like Figure 1.6.2 of Chapter 1, except that here we
have added arrows, to indicate the direction of the flow. As noted in Chapter 1,
the orbits of this flow are level curves of the function

(4.3.32) E(θ, ψ) = ψ2

2
− g

ℓ
cos θ,

since if (θ(t), ψ(t)) solves (4.3.29),

(4.3.33)
d

dt
E(θ, ψ) = ψψ′ +

g

ℓ
(sin θ)θ′ = 0.

It is instructive to expand on this last calculation. In general, if (θ′, ψ′) = F (θ, ψ),

(4.3.34)
d

dt
E(θ, ψ) = ∇E(θ, ψ) · F (θ, ψ), where ∇E(θ, ψ) =

(
∂E/∂θ
∂E/∂ψ

)
.

Now the formula (4.3.31) gives

(4.3.35) F (θ, ψ) = −J ∇E(θ, ψ),
where

(4.3.36) J =

(
0 −1
1 0

)
,
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Figure 4.3.1. Pendulum phase plane

so the vanishing of dE(θ, ψ)/dt follows from (4.3.34)–(4.3.35) and the skew-symmetry
of J , which implies

(4.3.37) v · Jv = 0, ∀ v ∈ R2.

A vector field of the form (4.3.35) is a special case of a Hamiltonian vector field, a
class of vector fields that will be discussed further in §§4.5, 4.7, and 4.10.

We mention some noteworthy features of the phase portrait in Figure 4.3.1,
features to look for in other such portraits. First, there are the critical points of F ,
i.e., the points where F vanishes. In case (4.3.31), the set of critical points is

{(kπ, 0) : k ∈ Z}.

Figure 4.3.1 indicates different natures of the orbits near these critical points, de-
pending on whether k is even or odd. For k even, the orbits near (kπ, 0) consist of
closed curves. We say these critical points are centers; cf. Figure 4.3.2.

For k odd, the orbits near p = (kπ, 0) consist of curves of the following nature:

(4.3.38)

(a) two orbits that approach p as t→ +∞,

(b) two orbits that approach p as t→ −∞,

(c) orbits that miss p, looking like saddles.
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Figure 4.3.2. Center

We say these critical points are saddles. Cf. Figure 4.3.3. Sometimes one calls them
hyperbolic critical points.

Considerable insight is obtained from the study of the linearization of F at
each critical point. Generally, if F is a C1 vector field on Ω ⊂ Rn, x0 ∈ Ω, and
F (x0) = 0, the linearization of F at x0 is given by

(4.3.39) L = DF (x0) ∈ L(Rn).
This construction extends the notion of linearization given in §1.8 of Chapter 1.
We expect that

(4.3.40) ΦtF (x0 + y) ≈ x0 + etLy,

for ∥y∥ small. Cf. Exercise 6 of §4.2 (but mind the change in notation). Going
further, we expect some important qualitative features of the flow ΦtF near x0 to
be captured by the behavior of etL, and this is born out, with some exceptions.
If DF (x0) has zero as an eigenvalue (we say x0 is a degenerate critical point) this
approximation is not typically useful. It has a better chance if detDF (x0) ̸= 0.
We then say x0 is a nondegenerate critical point for F .

In case F is given by (4.3.31), with critical points at pk = (kπ, 0), we have

(4.3.41) L0 = DF (0, 0) =

(
0 1
− g
ℓ 0

)
.
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Figure 4.3.3. Saddle

The eigenvalues of this matrix are ±i
√
g/ℓ, and the orbits of etL0 are ellipses, with

qualitative features like Figure 4.3.2, a center. Meanwhile,

(4.3.42) L1 = DF (±π, 0) =
(
0 1
g
ℓ 0

)
.

The eigenvalues of this matrix are±
√
g/ℓ, with corresponding eigenvectors (1,±

√
g/ℓ)t,

and the orbit structure for etL1 has qualitative features like Figure 4.3.3, a saddle.

In general, if F is a planar vector field with a nondegenerate critical point at x0,
and if all the eigenvalues of DF (x0) are purely imaginary, F itself might not have
a center at x0, i.e., the orbits of F near x0 might not be closed orbits surrounding
x0. Here is an example. Take

(4.3.43) F (x) = Jx− ∥x∥2x, x ∈ R2,

with J as in (4.3.36). Then x0 = 0 is a critical point, and DF (0) = J . Thus the
linearization has a center. However, if x(t) is an orbit for this vector field, then

(4.3.44)

d

dt
∥x(t)∥2 = 2x · x′

= 2x · (Jx− ∥x∥2x)
= −2∥x∥4,
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i.e., ρ(t) = ∥x(t)∥2 satisfies

(4.3.45)
dρ

dt
= −2ρ2.

This is separable and we have

(4.3.46) ρ(0) = ρ0 =⇒ ρ(t) =
ρ0

1 + 2tρ0
→ 0 as t↗ +∞,

so the orbits of this vector field spiral into the origin as t ↗ +∞, though much
more slowly than they do in the case of spiral sinks, a type of critical point that we
will encounter shortly.

Despite the existence of such examples as (4.3.43), the fact that (0, 0) is a center
for F , given by (4.3.31), is no accident, but rather a consequence of the fact that
F has the form (4.3.35),

(4.3.47) F (x) = −J∇E(x),
so that, as derived in (4.3.34)–(4.3.37), orbits of F lie on level curves of E . Generally,
if E is a smooth real-valued function on a planar domain Ω ⊂ R2 and the vector field
F is given by (4.3.47), (nondegenerate) critical points of F and (nondegenerate)
critical points of E coincide. If x0 ∈ Ω is such a point

(4.3.48) DF (x0) = −JD2E(x0),
where D2E(x0) is the matrix of second-order partial derivatives of E at x0, i.e.,

(4.3.49) D2E =

(
∂2E/∂θ2 ∂2E/∂ψ∂θ
∂2E/∂θ∂ψ ∂2E/∂ψ2

)
.

We recall the following result, established in basic multivariable calculus. Let x0
be a nondegenerate critical point of E , so D2E(x0) is an invertible, real symmetric
matrix. Then

(4.3.50)

D2E(x0) positive definite ⇔ E has a local minimum at x0,

D2E(x0) negative definite ⇔ E has a local maximum at x0,

D2E(x0) indefinite ⇔ E has a saddle at x0,

We also note that, whenever A ∈M(2,R) is symmetric and invertible,

(4.3.51)

A positive definite ⇔ detA > 0 and TrA > 0,

A negative definite ⇔ detA > 0 and TrA < 0,

A indefinite ⇔ detA < 0.

Furthermore, if A is such a matrix and

(4.3.52) B = −JA,
then

(4.3.53) detB = detA,

and, for such B ∈M(2,R),

(4.3.54)
B has 2 real eigenvalues of opposite signs ⇔ detB < 0,

B has 2 purely imaginary eigenvalues ⇔ detB > 0 and TrB = 0,

Putting these observations together (cf. also Exercise 8 below), we have:
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Proposition 4.3.3. Let E be a smooth function on Ω ⊂ R2, with a nondegenerate
critical point at x0. Let F be given by (4.3.47). Then

(4.3.55)
DF (x0) has 2 purely imaginary eigenvalues

⇔ E has a local max or local min at x0,

and

(4.3.56)
DF (x0) has 2 real eigenvalues of opposite sign

⇔ E has a saddle at x0.

We move on to the 2× 2 system

(4.3.57)

dθ

dt
= ψ,

dψ

dt
= − α

m
ψ − g

ℓ
sin θ,

which arises from the damped pendulum equation (cf. Chapter 1, (1.7.6)),

(4.3.58)
d2θ

dt2
+
α

m

dθ

dt
+
g

ℓ
sin θ = 0,

by adding the variable ψ = dθ/dt. Here g, ℓ, α,m > 0. The system (4.3.57) has the
form (4.3.2) with x = (θ, ψ) and

(4.3.59) F (θ, ψ) =

(
ψ

− α
mψ − g

ℓ sin θ

)
.

The phase portrait for this system is illustrated in Figure 4.3.4. We compare and
contrast this portrait with that depicted in Figure 4.3.1.

To start, the vector field (4.3.59) has the same critical points as the field given
by (4.3.31), namely {(kπ, 0) : k ∈ Z}. The first striking difference is in the behavior
near the critical points (kπ, 0) with k even. Figure 4.3.4 depicts orbits spiraling
into these critical points, as opposed to the picture in Figure 4.3.1 of closed orbits
circling these critical points. Let us consider the linearizations about these critical
points. For F as in (4.3.59), we have

(4.3.60) L = DF (0, 0) =

(
0 1
− g
ℓ − α

m

)
,

with characteristic polynomial λ(λ+ α/m) + g/ℓ, hence with eigenvalues

(4.3.61) λ± = − α

2m
±
√
α2

m2
− 4g

ℓ
.

There are three cases:

Case I. α2/m2 < 4g/ℓ. Then λ± are complex conjugates, each with real part
−α/2m.

Case II. α2/m2 = 4g/ℓ. Then λ+ = λ− = −α/2m.

Case III. α2/m2 > 4g/ℓ. Then λ+ and λ− are distinct real numbers, each negative.
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Figure 4.3.4. Damped pendulum phase plane

In all three cases, we have etLv → 0 as t ↗ +∞, for each v ∈ R2. In Case I,
there is also spiraling, and the orbits look like those in Figure 4.3.5(a). Figure 4.3.4
depicts such behavior. In Case III, the orbits look like those in Figure 4.3.5(c). In
Case II, the orbits look like a cross between Figure 4.3.5(b) and Figure 4.3.5(c).
These critical points are all called sinks. (Reverse the sign on F , and the associ-
ated orbits are called sources; cf. Figure 4.3.6.) The three cases described above
correspond to damped oscillatory, critically damped, and overdamped motion, as
discussed in §1.9 of Chapter 1.

Further information on the nature of these orbits spiraling in toward these
sinks can be obtained from a computation of the rate of change along the orbits of
E(θ, ψ), given by (4.3.32), i.e.,

(4.3.62) E(θ, ψ) = ψ2

2
− g

ℓ
cos θ.

This time, instead of (4.3.33), we have

(4.3.63)

d

dt
E(θ, ψ) = ψψ′ +

g

ℓ
(sin θ)θ′

= −ψ
( α
m
ψ +

g

ℓ
sin θ

)
+
g

ℓ
(sin θ)ψ

= − α

m
ψ2.
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Figure 4.3.5. Sinks

While this calculation applies nicely to the problem at hand, it is useful to note the
following general phenomenon.

Proposition 4.3.4. Let F be a smooth vector field on Ω ⊂ Rn, with a critical point
at x0 ∈ Ω. Assume

(4.3.64) all the eigenvalues of DF (x0) have negative real part.

Then there exists δ > 0 such that

(4.3.65) ∥x− x0∥ ≤ δ =⇒ lim
t→+∞

ΦtFx = x0.

To prove this, we bring in the following linear algebra result.

Lemma 4.3.5. Let L ∈ M(n,R) and assume all the eigenvalues of L have real
part < 0. Then there exists a (symmetric, positive definite) inner product ⟨ , ⟩ on
Rn and a positive constant K such that

(4.3.66) ⟨Lv, v⟩ ≤ −K⟨v, v⟩, ∀ v ∈ Rn.

We show how Lemma 4.3.5 allows us to prove Proposition 4.3.4. Apply the
lemma to L = DF (x0). Note that there exist a, b ∈ (0,∞) such that

(4.3.67) a∥v∥2 ≤ ⟨v, v⟩ ≤ b∥v∥2, ∀ v ∈ Rn,
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Figure 4.3.6. Sources

where ⟨v, v⟩ is as in (4.3.66) and, as usual, ∥v∥2 = v · v. Since F is smooth,

(4.3.68) F (x0 + y) = Ly +R(y),

with R smooth on a ball about 0 and DR(0) = 0. Hence

(4.3.69) ∥R(y)∥ ≤ C∥y∥2 ≤ C ′⟨y, y⟩.

For y(t) = ΦtF (x0 + y0)− x0, we have

(4.3.70)

d

dt
⟨y(t), y(t)⟩ = 2⟨y′(t), y(t)⟩

= 2⟨F (x0 + y), y⟩
= 2⟨Ly, y⟩+ 2⟨R(y), y⟩.

Now (4.3.66) applies to the first term in the last line of (4.3.70), while Cauchy’s
inequality plus (4.3.69) yields

(4.3.71)
|⟨R(y), y⟩| ≤ ⟨R(y), R(y)⟩1/2⟨y, y⟩1/2

≤ C⟨y, y⟩3/2.

Hence

(4.3.72)

d

dt
⟨y, y⟩ ≤ −2K⟨y, y⟩+ C⟨y, y⟩3/2

≤ −K⟨y, y⟩,
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the last inequality holding provided ⟨y, y⟩1/2 ≤ K/C. As long as δ in (4.3.65) is
small enough that {x ∈ Rn : ∥x − x0∥ ≤ δ} is contained in Ω and ∥v∥ ≤ δ ⇒
⟨v, v⟩1/2 ≤ K/C, if x = x0 + y0 and ∥y0∥ ≤ δ, then (4.3.72) holds for y(t) =
ΦtF (x0 + y0)− x0 for all t ≥ 0, and yields

(4.3.73) ⟨y(t), y(t)⟩ ≤ e−Kt⟨y0, y0⟩,
which in turn gives (4.3.65).

We now prove Lemma 4.3.5. As shown in §2.8 of Chapter 2, Cn has a basis
{v1, . . . , vn} with respect to which L is upper triangular, i.e.,

(4.3.74) Lvj = λjvj +
∑
k<j

ajkvk.

Alternatively, Appendix 2.B of Chapter 2 shows that Cn has an orthonormal basis
{vj} for which (4.3.74) holds. The eigenvalues of L are λj , so by hypothesis there
exists K1 ∈ (0,∞) such that Reλj ≤ −K1 for all j. Now if we take ε > 0 and set
wj = εjvj , we get

(4.3.75) Lwj = λjwj +
∑
k<j

εj−kajkwk.

Then setting

(4.3.76)
⟨∑

ajwj ,
∑

bkwk

⟩
= Re

∑
ajbj

defines a positive definite inner product (depending on ε > 0) on Cn, hence by
restriction on Rn, and if ε > 0 is taken sufficiently small, the desired conclusion
(4.3.66) follows, with K = K1/2, from (4.3.75).

See the exercises for another proof of Lemma 4.3.5.

Having discussed the critical points of the vector field (4.3.59) at (0, 0) and
related issues, we now consider the critical points at (±π, 0). We have

(4.3.77) DF (±π, 0) =
(
0 1
g
ℓ − α

m

)
.

This matrix has eigenvalues

(4.3.78) λ± = − α

2m
±
√
α2

m2
+

4g

ℓ
,

one positive and one negative. These critical points are saddles. The orbits near
these critical points have a behavior such as described in (4.3.38). Unlike the case
of F given by (4.3.31), where the orbits are level curves of E , the proof of this is
more subtle in the present situation. See Appendix 4.C for a proof.

Having studied the various critical points depicted in Figures 4.3.1 and 4.3.4,
we point out some special orbits that appear in these phase portraits, namely orbits
connecting two critical points. Generally, if F is a C1 vector field on Ω ⊂ Rn with
critical points p1, p2 ∈ Ω, an orbit x(t) of ΦtF satisfying

(4.3.79) lim
t→−∞

x(t) = p1, lim
t→+∞

x(t) = p2
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is called a heteroclinic orbit, from p1 to p2, if p1 ̸= p2. If p1 = p2, such an orbit
is called a homoclinic orbit. In Figure 4.3.1, we see heteroclinic orbits connecting
p1 = (−π, 0) and p2 = (π, 0), one from p1 to p2 and one from p2 to p1. These lie
on level curves where E(θ, ψ) = g/ℓ.

Such a heteroclinic orbit describes the motion of a pendulum that is heading
towards pointing vertically upward. As time goes on, the pendulum ascends more
and more slowly, never quite reaching the vertical position. With a little less energy,
the pendulum would stop a bit short of vertical and fall back, swinging back and
forth. With a little more energy, the pendulum would swing past the vertical
position. Recall that Figure 4.3.1 portrays the motion of an idealized pendulum,
without friction. The motion of a pendulum with friction is portrayed in Figure
4.3.4.

In Figure 4.3.4, we see a heteroclinic orbit from (−π, 0) to (0, 0), another from
(−π, 0) to (−2π, 0), another from (π, 0) to (0, 0), another from (π, 0) to (2π, 0),
etc. Given that there is an orbit x(t) = (θ(t), ψ(t)) here such that limt→−∞ x(t) =
(−π, 0) and ψ(t) > 0 for large negative t, the fact that limt→+∞ x(t) = (0, 0) can
be deduced from (4.3.63), i.e.,

(4.3.80)
d

dt
E(θ, ψ) = − α

m
ψ2.

We end this section with a look at the phase portrait for one more vector field,
namely

(4.3.81) F (θ, ψ) =

(
g
ℓ sin θ
ψ

)
.

See Figure 4.3.7. In this case,

(4.3.82) F = ∇E =

(
∂E/∂θ
∂E/∂ψ

)
,

with E given by (4.3.32), i.e.,

(4.3.83) E(θ, ψ) = ψ2

2
− g

ℓ
cos θ.

Such a vector field is called a gradient vector field, and its flow ΦtF is called a
gradient flow. Note that if F (x) = ∇E(x) and x(t) is an orbit of ΦtF , then

(4.3.84)
d

dt
E(x(t)) = ∇E(x(t)) · ∇E(x(t)) = ∥∇E(x(t))∥2.

The critical points of F again consist of {(kπ, 0) : k ∈ Z}, and again they behave
differently for even k than for odd k. This time

(4.3.85) DF (0, 0) =

(
g
ℓ 0
0 1

)
,

which is positive definite. The origin is a (non-spiraling) source; cf. Figure 4.3.6.
In particular, if x(t) = (θ(t), ψ(t)) is an orbit and x(0) is close to (0, 0), then

(4.3.86) lim
t→−∞

x(t) = (0, 0).
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Figure 4.3.7. Gradient vector field, ∇E(θ, ψ)

This can be deduced from Proposition 4.3.4 by reversing time. It also follows
directly from (4.3.84). For k odd, we have saddles:

(4.3.87) DF (±π, 0) =
(
− g
ℓ 0
0 1

)
.

In this case, segments of the real axis provide heteroclinic orbits, from (0, 0) to
(−π, 0), from (0, 0) to (π, 0), etc.

Note that an orbit for F = ∇E satisfies

(4.3.88) θ′ =
g

ℓ
sin θ, ψ′ = ψ,

so ψ(t) = Aet, and, for θ away from {kπ : k ∈ Z},

(4.3.89)
g

ℓ
t+B =

∫
dθ

sin θ
=

∫
dθ

cos(θ − π/2)
,

an integral that can be evaluated via results of Exercise 14 in §1.1.
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Exercises

1. If F generates the flow ΦtF and vt(x) = v(ΦtF (x)), show that

(4.3.90) DΦtF (x)F (x) = F (ΦtF (x))

and

(4.3.91) Dvt(x) = Dv(ΦtF (x))DΦtF (x).

Relate these identities to the simultaneous validity of (4.3.10) and (4.3.12).
Hint. To get (4.3.90), use

(4.3.92)
d

dt
ΦtF (x) =

d

ds
ΦtF ◦ ΦsF (x)

∣∣∣
s=0

= DΦtF (x)F (x),

and compare (4.3.8).

2. Extend Proposition 4.3.2 as follows. Replace hypothesis (4.3.26) by

∇V (x) · F (x) ≤ K, ∀x ∈ Rn,

for some K <∞. Show that the flow ΦtF is forward complete.

3. Let Ω = Rn and assume F is a C1 vector field on Ω. Show that if

∥F (x)∥ ≤ C(1 + ∥x∥),
then the flow generated by F is complete.
(Hint. Recall Exercise 12 of §4.1.)
Show that the flow is forward complete if

F (x) · x ≤ C(1 + ∥x∥2).

4. Let Ω ⊂ Rn be open and F be a C1 vector field on Ω. Let U ⊂ Ω be an open
set whose closure U is a compact subset of Ω, and whose boundary ∂U is smooth.
Let n : ∂U → Rn denote the outward pointing unit normal to ∂U . Assume

(4.3.93) n(x) · F (x) < 0, ∀x ∈ ∂U.

Show that ΦtF (x) ∈ U if x ∈ U and t ≥ 0, and deduce that ΦtF is forward complete

on U , and also on U .

5. In the setting of Exercise 4, relax the hypothesis (4.3.93) to

(4.3.94) n(x) · F (x) ≤ 0, ∀x ∈ ∂U.

Show that ΦtF (x) ∈ U if x ∈ U and t ≥ 0, and deduce that ΦtF is forward complete

on U .
Hint. Take a C1 vector field X on Ω such that X · n < 0 on ∂U . Set Fτ = F + τX
to produce a smooth family Fτ of C1 vector fields on Ω such that F0 = F and, for
0 < τ < 1, Fτ has the property given in (4.3.93). Then make use of Exercise 4 and
of results of §4.2.
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6. In the setting of Exercise 5, replace the hypothesis (4.3.94) by

(4.3.95) n(x) · F (x) = 0, ∀x ∈ ∂U.

Show that ΦtF is complete on U , and that ΦtF (x) ∈ ∂U whenever x ∈ ∂U and t ∈ R.

7. Show that if F is given by (4.3.31), then

divF = 0,

while if F is given by (4.3.59), then

divF = − α

m
,

and if F is given by (4.3.81), then

divF =
g

ℓ
cos θ + 1.

8. Let A ∈ M(2,R), and take J as in (4.3.36). Show that if A is positive definite
then A = P 2 with P positive definite. Show that

−JA and − PJP are similar,

and deduce that

A ∈M(2,R) positive definite =⇒ B = −JA has 2 purely imaginary eigenvalues.

Relate this to Proposition 4.3.3.

9. Consider the system

(4.3.96)
dx

dt
= y,

dy

dt
= 1− x2.

Take E(x, y) = y2/2 + x3/3 − x. Show that if (x(t), y(t)) solves (4.3.96), then
dE(x(t), y(t)) = 0. Show that the associated vector field has two critical points,
one a center and the other a saddle. Sketch level curves of E and put in arrows
to show the phase space portrait of F . Show that there is a homoclinic orbit
connecting the saddle to itself.

10. Find all the critical points of each of the following vector fields, and specify
whether each one is a source, sink, saddle, or center.

F (x, y) =

(
sinx cos y

cosx sin y

)
, G(x, y) =

(
sinx cos y

− cosx sin y

)
.

11. Returning to the context of Exercise 1, show that (4.2.2) gives

(4.3.97)
d

dt
DΦtF (x) = DF (ΦtF (x))DΦtF (x), DΦ0

F (x) = I.

Recall from (3.8.6)–(3.8.10) of Chapter 3 that, for an n× n matrix function M(t),

d

dt
M(t) = A(t)M(t) =⇒ d

dt
detM(t) = (TrA(t)) detM(t).
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Deduce that

(4.3.98)

d

dt
detDΦtF (x) = TrDF (ΦtF (x)) detDΦtF (x)

= divF (ΦtF (x)) detDΦtF (x)).

Relate this to (4.3.13), using the change of variable formula

(4.3.99)

∫
u(x) dx =

∫
u(ΦtF (x)) detDΦtF (x) dx.

12. Use (3.8.10) of Chapter 3 to conclude from (4.3.98) that

(4.3.100) detDΦtF (x) = exp
{∫ t

0

divF (ΦsF (x)) ds
}
.

13. Let U ⊂ Ω ⊂ Rn be a smoothly bounded domain. The divergence theorem says
that if F is a C1 vector field on Ω,

(4.3.101)

∫
U

divF (x) dx =

∫
∂U

n(x) · F (x) dS(x),

where n(x) is the outward pointing unit normal to ∂U and dS(x) is (n − 1)-
dimensional surface area on ∂U (arc length if n = 2). Given this identity, we
see that, in the setting of Proposition 4.3.1, (4.3.24) is equivalent to

(4.3.102)
d

dt
VolΦtF (B) =

∫
∂Φt

F (B)

n(x) · F (x) dS(x).

Show that this holds if and only if for each smoothly bounded U ⊂ Ω,

(4.3.103)
d

dt
VolΦtF (U)

∣∣
t=0

=

∫
∂U

n(x) · F (x) dS(x).

Try to provide a direct demonstration of (4.3.103) (at least for n = 2).

Exercises 14–16 lead to another proof of Lemma 4.3.5.

14. Take L ∈ M(n,R). Recall from §2.7 of Chapter 2 that Cn has a basis of
generalized eigenvectors for L and if v ∈ GE(L, λ), then etLv has the form

etLv = etλ
ℓ∑

k=0

tkvk, vk ∈ Cn.

Use these facts to show that if Reλ < 0 for each eigenvalue λ of L, then there exist
C,K ∈ (0,∞) such that

(4.3.104) ∥etL∥ ≤ Ce−Kt, ∀ t ≥ 0.

15. Assume L ∈M(n,R) and Reλ < 0 for each eigenvalue λ of L. Let (v, w) = v ·w
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denote the standard Euclidean inner product on Rn. Show that ⟨v, w⟩, given by

⟨v, w⟩ =
∫ ∞

0

(etLv, etLw) dt

is a well-defined, symmetric, positive-definite inner product on Rn.
Hint. Use (4.3.104) to show that the integral is absolutely convergent.

16. In the setting of Exercise 15, show that, for v ∈ Rn,

⟨esLv, esLv⟩ =
∫ ∞

s

(etLv, etLv) dt,

and deduce that
d

dt
⟨esLv, esLv⟩

∣∣
s=0

= −(v, v).

On the other hand, show that also

d

ds
⟨esLv, esLv⟩

∣∣
s=0

= ⟨Lv, v⟩+ ⟨v, Lv⟩ = 2⟨Lv, v⟩,

and obtain another proof of Lemma 4.3.5.
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4.4. Gradient vector fields

As mentioned in §4.3, a vector field F on an open subset Ω ⊂ Rn is a gradient
vector field provided there exists u ∈ C1(Ω) such that

(4.4.1) F = ∇u,
i.e., F = (F1, . . . , Fn)

t with Fk = ∂u/∂xk. It is of interest to characterize which
vector fields are gradient fields. Here is one necessary condition. Suppose u ∈ C2(Ω)
and (4.4.1) holds. Then

(4.4.2)
∂Fk
∂xj

=
∂

∂xj

∂u

∂xk
,

and

(4.4.3)
∂

∂xj

∂u

∂xk
=

∂

∂xk

∂u

∂xj
,

so if (4.4.1) holds then

(4.4.4)
∂Fk
∂xj

=
∂Fj
∂xk

, ∀ j, k ∈ {1, . . . , n}.

We will establish the following converse.

Proposition 4.4.1. Assume Ω ⊂ Rn is a connected open set satisfying the condi-
tion (4.4.13) given below. Let F be a C1 vector field on Ω. If (4.4.4) holds on Ω,
then there exists u ∈ C2(Ω) such that (4.4.1) holds.

We will construct u as a line integral. Namely, fix p ∈ Ω, and for each x ∈ Ω
let γ be a smooth path from p to x:

(4.4.5) γ : [0, 1] −→ Ω, γ(0) = p, γ(1) = x.

We propose that, under the hypotheses of Proposition 4.4.1, we can take

(4.4.6) u(x) =

∫
γ

F (y) · dy.

Here the line integral is defined by

(4.4.7)

∫
γ

F (y) · dy =

∫ t

0

F (γ(t)) · γ′(t) dt.

For this to work, we need to know that (4.4.6) is independent of the choice of such
a path. A key step to getting this is to consider a smooth 1-parameter family of
paths γs from p to x:

(4.4.8)
γs(t) = γ(s, t), γ : [0, 1]× [0, 1] −→ Ω,

γ(s, 0) = p, γ(s, 1) = x.

Lemma 4.4.2. If F is a C1 vector field satisfying (4.4.4) and γs is a smooth family
satisfying (4.4.8), then

(4.4.9)

∫
γs

F (y) · dy is independent of s ∈ [0, 1].
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Proof. We compute the s-derivative of this family of line integrals, i.e., of

(4.4.10)

∫ 1

0

F (γ(s, t)) · ∂γ
∂t

(s, t) dt

=

∫ 1

0

∑
j

Fj(γ(s, t))
∂γj
∂t

(s, t) dt.

The s-derivative of the integrand is obtained via the product rule and the chain
rule. We obtain

(4.4.11)

d

ds

∫
γs

F (y) · dy =

∫ 1

0

∑
j,k

∂Fj
∂xk

(γ(s, t))
∂

∂s
γk(s, t)

∂

∂t
γj(s, t) dt

+

∫ 1

0

∑
j

Fj(γ(s, t))
∂

∂s

∂

∂t
γj(s, t) dt.

We can apply the identity

∂

∂s

∂

∂t
γj(s, t) =

∂

∂t

∂

∂s
γj(s, t)

to the second integrand on the right side of (4.4.11) and then integrate by parts.
This involves applying ∂/∂t to Fj(γ(s, t)), and hence another application of the
chain rule. When this is done, the second integral on the right side of (4.4.11)
becomes

(4.4.12) −
∫ 1

0

∑
j,k

∂Fj
∂xk

(γ(s, t))
∂

∂t
γk(s, t)

∂

∂s
γj(s, t) dt.

Now if we interchange the roles of j and k in (4.4.12), we cancel the first integral
on the right side of (4.4.11), provided (4.4.4) holds. This proves the lemma. �

Given Ω ⊂ Rn open and connected, we say Ω is simply connected provided it
has the following property:

(4.4.13)
Given p, x ∈ Ω, if γ0 and γ1 are smooth paths from p to x,

they are connected by a smooth family γs of paths from p to x.

Here is a class of such domains.

Lemma 4.4.3. If Ω ⊂ Rn is an open convex domain, then Ω is simply connected.

Proof. If Ω is convex, two paths γ0 and γ1 from p ∈ Ω to x ∈ Ω are connected by

(4.4.14) γs(t) = (1− s)γ0(t) + sγ1(t), 0 ≤ s ≤ 1.

�

Of course there are many other simply connected domains, as the reader is
invited to explore.

Now that we have Lemma 4.4.2, under the hypotheses of Proposition 4.4.1 we
simply write

(4.4.15) u(x) =

∫ x

p

F (y) · dy.



274 4. Nonlinear systems of differential equations

Note that if q is another point in Ω, we can take a smooth path from p to x, passing
through q, and write

(4.4.16) u(x) =

∫ q

p

F (y) · dy +
∫ x

q

F (y) · dy.

Again using the path independence, we see we can independently choose paths from
p to q and from q to x in (4.4.16); these paths need not match up smoothly at q.

We are now in a position to complete the proof of Proposition 4.4.1. Take
δ > 0 so that {y ∈ Rn : ∥x − y∥ ≤ δ} ⊂ Ω. Take k ∈ {1, . . . , n}, fix qk such that
|qk − xk| < δ, and write

(4.4.17) u(x) =

∫ (x1,...,qk,...,xn)

p

F (y) · dy +
∫ x

(x1,...,qk,...,xn)

F (y) · dy.

Here the intermediate point is obtained by replacing xk in x = (x1, . . . , xn) by qk.
The first term on the right side of (4.4.17) is independent of xk, so

(4.4.18)

∂u

∂xk
(x) =

∂

∂xk

∫ x

(x1,...,qk,...,xn)

F (y) · dy

=
∂

∂xk

∫ xk

qk

Fk(x1, . . . , xk−1, s, xk+1, . . . , xn) ds

= Fk(x),

the last identity by the fundamental theorem of calculus. This proves Proposition
4.4.1.

An example of a domain that is not simply connected is the punctured plane
R2 \ 0. Consider on this domain the vector field

(4.4.19) F (x) =
Jx

∥x∥2
, J =

(
0 −1
1 0

)
,

with components

(4.4.20) F1(x) =
−x2

x21 + x22
, F2(x) =

x1
x21 + x22

.

We have

(4.4.21)
∂F1

∂x2
=
x22 − x21
∥x∥4

=
∂F2

∂x1
, on R2 \ 0.

However, F is not a gradient vector field on R2 \ 0. Up to an additive constant, the
only candidate for u in (4.4.1) is the angular coordinate θ:

(4.4.22) F (x) = ∇θ(x),
and this identity is true on any region Ω formed by removing from R2 a ray starting
from the origin. However, θ cannot be defined as a smooth, single valued function
on R2 \ 0.

Let us linger on the case n = 2 and make contact with the concept of “exact
equations.” Consider a 2× 2 system

(4.4.23)
dx

dt
= f1(x, y),

dy

dt
= f2(x, y).
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We take (x, y) ∈ Ω ⊂ R2 and assume fj ∈ C1(Ω). This system turns into a single
differential equation for y as a function of x:

(4.4.24)
dy

dx
=
f2(x, y)

f1(x, y)
,

which we rewrite as

(4.4.25)
g1(x, y) dx+ g2(x, y) dy = 0,

g1(x, y) = f2(x, y), g2(x, y) = −f1(x, y).

The equation (4.4.25) is called exact if there exists u ∈ C2(Ω) such that

(4.4.26) g1 =
∂u

∂x
, g2 =

∂u

∂y
.

If there is such a u, solutions to (4.4.24) or (4.4.25) are given by

(4.4.27) u(x, y) = C.

Now (4.4.26) is the condition that G = (g1, g2)
t be a gradient vector field on Ω.

Note that the relation between F = (f1, f2)
t and G = (g1, g2)

t, with components
given by (4.4.25), is

(4.4.28) G = −JF,

where

(4.4.29) J =

(
0 −1
1 0

)
.

As we have seen, when Ω is simply connected, (4.4.26) holds for some u if and only
if

(4.4.30)
∂g1
∂y

=
∂g2
∂x

.

Note that this is equivalent to

(4.4.31) divF = 0.

Remark. If F = (F1, F2, F3)
t is a vector field on Ω ⊂ R3, its curl is defined as

(4.4.32)

curlF = ∇× F

= det

 i j k
∂/∂x ∂/∂y ∂/∂z
F1 F2 F3


=
(∂F3

∂y
− ∂F2

∂z

)
i+
(∂F1

∂z
− ∂F3

∂x

)
j +

(∂F2

∂x
− ∂F1

∂y

)
k.

We see that

(4.4.33) (4.4.4) holds ⇐⇒ curlF = 0.

We conclude with some remarks on how to construct u(x), satisfying

(4.4.34)
∂u

∂xj
(x) = Fj(x), 1 ≤ j ≤ n,
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given the compatibility conditions (4.4.4), without evaluating line integrals. We
start with

(4.4.35) un(x) =

∫
Fn(x) dxn, so

∂un
∂xn

= Fn(x).

Then ∂(u− un)/∂xn = 0, so

(4.4.36) u(x) = un(x) + v(x′), x′ = (x1, . . . , xn−1).

It remains to find v, a function of fewer variables. It must solve

(4.4.37)
∂v

∂xj
= Fj(x)−

∂un
∂xj

, 1 ≤ j ≤ n− 1.

Note that the left side is independent of xn, which requires that the right side have
this property. To check this, we calculate

(4.4.38)

∂

∂xn

(
Fj(x)−

∂un
∂xj

)
=
∂Fj
∂xn

− ∂

∂xn

∂un
∂xj

=
∂Fn
∂xj

− ∂

∂xj

∂un
∂xn

= 0,

the second identity by (4.4.4) (and (4.4.3)). Thus (4.4.37) takes the form

(4.4.39)
∂v

∂xj
= Gj(x

′), 1 ≤ j ≤ n− 1,

with Gj(x
′) = Fj(x)− ∂un/∂xj . Note that, for 1 ≤ j, k ≤ n− 1,

(4.4.40)

∂Gj
∂xk

=
∂Fj
∂xk

− ∂

∂xk

∂un
∂xj

=
∂Fk
∂xj

− ∂

∂xj

∂un
∂xk

=
∂Gk
∂xj

,

so the task of solving (4.4.39) is just like that in (4.4.34), but with one fewer variable.
An iteration yields the solution to (4.4.34).

Example. Take

(4.4.41) F (x, y, z) = (y, x+ z2, 2yz)t.

One readily verifies (4.4.4), or equivalently that curl F = 0. Here (4.4.35) gives

(4.4.42) u3(x, y, z) =

∫
2yz dz = yz2,

so

(4.4.43) u(x, y, z) = yz2 + v(x, y).

Next, requiring ∂u/∂y = x+ z2 means

(4.4.44)
∂v

∂y
= x,
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so

(4.4.45) v(x, y) = xy + w(x).

Then, requiring ∂u/∂x = y means ∂w/∂x = 0, so we get

(4.4.46) u(x, y, z) = yz2 + xy,

as the unique function on R3 such that ∇u = F , up to an additive constant.

One can turn the method given by (4.4.35)–(4.4.40) into an alternative proof
of Proposition 4.4.1, at least if Ω is an n-dimensional box. The reader is invited
to look into what happens when this method is applied to F given on R2 \ 0 by
(4.4.19).

Exercises

For (1)–(4), identify which vector fields are gradient fields. If the field is a gradient
field ∇u, find u.

(1) (yz, xz, xy),

(2) (xy, yz, xz),

(3) (2x, z, y),

(4) (2x, y, z).

For (5)–(8), identify which equations are exact. If the equation is exact, write down
the solution, in implicit form (4.4.27).

(5) (2x+ y) dx+ x dy = 0,

(6) x dx+ (2x+ y) dy = 0,

(7) dx+ x dy = 0,

(8) ey dx+ xey dy = 0.

Given f(x, y) dx + g(x, y) dy, a function u(x, y) is called an integrating factor if
uf dx+ ug dy is exact. For example, ey is an integrating factor for dx+ x dy. Find
integrating factors for the left sides of (9)–(12), and use them to find solutions, in
implicit form.

(9) (x2 + y2 − 1) dx− 2xy dy = 0,

(10) x2y3 dx+ x(1 + y2) dy = 0,

(11) y dx+ (2x− yey) dy = 0,

(12) dx+ 2xy dy = 0.

13. Establish the following variant of Lemma 4.4.2:

Lemma 4.4.2A. If F is a C1 vector field on Ω satisfying (4.4.4) and γs is a smooth
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family satisfying

γs(t) = γ(s, t), γ : [0, 1]× [0, 1] → Ω, γ(s, 0) ≡ γ(s, 1),

then ∫
γs

F (y) · dy is independent of s ∈ [0, 1].
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4.5. Newtonian equations

In Chapter 1 we saw how Newton’s law F = ma leads to a second order differential
equation for the motion on a line of a single particle, acted on by a force. Newton’s
laws also apply to a system of m interacting particles, moving in n-dimensional
space, to give a second order system of the form

(4.5.1) mk
d2xk
dt2

=
∑

{j:j ̸=k}

Fjk(xk − xj), 1 ≤ k ≤ m.

Each xk takes values in Rn, so x = (x1, . . . , xm) takes values in Rmn. Here xk is
the location of a particle of mass mk. The law that each action produces an equal
and opposite reaction translates to

(4.5.2) Fjk(xk − xj) = −Fkj(xj − xk).

A particularly important class of forces Fjk(xk − xj) are those parallel (or antipar-
allel) to the line from xj to xk:

(4.5.3) Fjk(xk − xj) = fjk(∥xk − xj∥)(xk − xj).

In such a case, (4.5.2) is equivalent to

(4.5.4) fjk(r) = fkj(r).

A force field of the form (4.5.3) is a gradient vector field:

(4.5.5)
fjk(∥u∥)u = −∇Vjk(u),

Vjk(u) = vjk(∥u∥), v′jk(r) = −rfjk(r).

If (4.5.4) holds,

(4.5.6) Vjk(u) = Vkj(u).

The total energy of this system of interacting particles is

(4.5.7) E =
1

2

∑
k

mk

∥∥∥dxk
dt

∥∥∥2 + 1

2

∑
j ̸=k

Vjk(xk − xj).

The first sum is the total kinetic energy and the second sum is the total potential
energy. The following calculations yield conservation of energy. First,

(4.5.8)
dE

dt
=
∑
k

mk
d2xk
dt2

· dxk
dt

+
1

2

∑
j ̸=k

∇Vjk(xk − xj) ·
(dxk
dt

− dxj
dt

)
.

Next, (4.5.1) implies that the first sum on the right side of (4.5.8) is equal to

(4.5.9)
∑
j ̸=k

Fjk(xk − xj) ·
dxk
dt

,

and (4.5.3)–(4.5.5) imply that the second sum on the right side of (4.5.8) is equal
to

(4.5.10) −1

2

∑
j ̸=k

Fjk(xk − xj) ·
(dxk
dt

− dxj
dt

)
= −

∑
j ̸=k

Fjk(xk − xj) ·
dxk
dt

.
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Comparing (4.5.9) and (4.5.10), we have energy conservation:

(4.5.11)
dE

dt
= 0.

We can convert the second order system (4.5.1) for mn variables into a first
order system for 2mn variables. One way would be to introduce the velocities
vk = x′k, but we get a better mathematical structure by instead using the momenta:

(4.5.12) pk = mk
dxk
dt

, 1 ≤ k ≤ m.

We can express the energy E in (4.5.7) as a function of position x = (x1, . . . , xm)
and momentum p = (p1, . . . , pm):

(4.5.13) E(x, p) =
∑
k

1

2mk
∥pk∥2 +

1

2

∑
j ̸=k

Vjk(xk − xj).

Recall that xk = (xk1, . . . , xkn) ∈ Rn and pk = (pk1, . . . , pkn) ∈ Rn. We have

(4.5.14)
∂E

∂pkℓ
=

1

mk
pkℓ,

and

(4.5.15)
∂E

∂xkℓ
=

∑
{j:j ̸=k}

∂Vjk
∂uℓ

(xk − xj),

invoking (4.5.6). Let us write (4.5.14)–(4.5.15) in vector form,

(4.5.16)
∂E

∂pk
=

1

mk
pk,

∂E

∂xk
=

∑
{j:j ̸=k}

∇Vjk(xk − xj),

where ∂E/∂pk = (∂E/∂pk1, . . . , ∂E/∂pkn)
t, etc. Now the system (4.5.1) yields the

first order system

(4.5.17)
dxk
dt

=
1

mk
pk,

dpk
dt

=
∑

{j:j ̸=k}

Fjk(xk − xj),

which in turn, given (4.5.3)–(4.5.5), gives

(4.5.18)
dxk
dt

=
∂E

∂pk
,

dpk
dt

= − ∂E

∂xk
.

The system (4.5.18) is said to be in Hamiltonian form.

We can place the study of Hamiltonian equations in a more general framework,
as follows. Let R2K have points (x, p), x = (x1, . . . , xK), p = (p1, . . . , pK). Let
Ω ⊂ R2K be open and E ∈ C1(Ω). Consider the system

(4.5.19)

dxk
dt

=
∂E

∂pk
,

dpk
dt

= − ∂E

∂xk
,

for 1 ≤ k ≤ K. This is called a Hamiltonian system. It is of the form

(4.5.20)
d

dt

(
x

p

)
= XE(x, p),
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where XE is a vector field on Ω, called the Hamiltonian vector field associated to E.
In this general setting, E is constant on each solution curve (x(t), p(t)) of (4.5.19).
Indeed, in such a case,

(4.5.21)

d

dt
E(x(t), p(t)) =

∑
k

∂E

∂xk
· dxk
dt

+
∑
k

∂E

∂pk
· dpk
dt

=
∑
k

∂E

∂xk
· ∂E
∂pk

−
∑
k

∂E

∂pk
· ∂E
∂xk

= 0.

Returning to the setting (4.5.1)–(4.5.2), we next discuss the conservation of the
total momentum

(4.5.22) P =
∑
k

pk =
∑
k

mk
dxk
dt

.

Indeed,

(4.5.23)

dP

dt
=
∑
k

mk
d2xk
dt2

=
∑
j ̸=k

Fjk(xk − xj)

= 0,

the last identity by (4.5.2). Thus, for each solution x(t) to (4.5.1), there exist
a, b ∈ Rn such that

(4.5.24)
1

M

∑
k

mkxk(t) = a+ bt, M =
∑
k

mk.

The left side is the center of mass of the system of interacting particles. The vectors
a, b ∈ Rn are given by the initial data for (4.5.1):

(4.5.25) a =
1

M

∑
k

mkxk(0), b =
1

M

∑
k

mkx
′
k(0).

Given this, we can obtain a system similar to (4.5.1) for the variables

(4.5.26) yk(t) = xk(t)− (a+ bt).

We have y′′k = x′′k and yk − yj = xk − xj , so (4.5.1) gives

(4.5.27) mk
d2yk
dt2

=
∑

{j:j ̸=k}

Fjk(yk − yj), 1 ≤ k ≤ m.

In this case we have the identity

(4.5.28)
∑
k

mkyk(t) ≡ 0,

as a consequence of (4.5.24). We can use this to reduce the size of (4.5.27), from a
system of mn equations to a system of (m− 1)n equations, by substituting

(4.5.29) ym = − 1

mm

m−1∑
ℓ=1

mℓyℓ
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into (4.5.27), for 1 ≤ k ≤ m− 1. One calls (y1, . . . , ym) center of mass coordinates.

In case m = 2, this substitution works out quite nicely. We have

(4.5.30) y2 = −m1

m2
y1,

and the system (4.5.27) reduces to

(4.5.31) m1
d2y1
dt2

= F21

((
1 +

m1

m2

)
y1

)
,

the equation of motion of a single particle in an external force field. Alternatively,
for x = x1 − x2 = y1 − y2 = (1 +m1/m2)y1,

(4.5.32)
m1m2

m1 +m2

d2x

dt2
= F21(x).

For m > 2, the resulting equations are not so neat. For example, for m = 3,
we have

(4.5.33) y3 = −m1

m3
y1 −

m2

m3
y2,

and the system (4.5.27) reduces to

(4.5.34)

m1y
′′
1 = F21(y1 − y2) + F31

((
1 +

m1

m2

)
y1 +

m2

m1
y2

)
,

m2y
′′
2 = F12(y2 − y1) + F32

(m1

m3
y1 +

(
1 +

m2

m3

)
y2

)
.

Exercises

1. In (a)–(e), take n = 1, m = 3, and m1 = m2 = m3 = 1. Set up the equations of
motion in center of mass coordinates and analyze the solution.

(a) Fjk(x) = x

(b) Fjk(x) = −x
(c) F12(x) = F13(x) = x, F23(x) = −x
(d) F12(x) = F13(x) = −x, F23(x) = x.

(e) F12(x) = F23(x) = −x, F23(x) = 1.

In all cases, (4.5.2) must be enforced.

2. For an alternative derivation of (4.5.32), when m = 2, write (4.5.1) as

d2x1
dt2

=
1

m1
F21(x1 − x2),

d2x2
dt2

=
1

m2
F12(x2 − x1),

and subtract, using (4.5.2).
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4.6. Central force problems and two-body planetary motion

As seen in §4.5, one can transform the m-body problem (4.5.1) to center of mass
coordinates, under the hypothesis (4.5.2), and obtain a smaller system, which for
m = 2 is given by (4.5.32). Changing notation, we rewrite (4.5.32) as

(4.6.1) m
d2x

dt2
= F (x).

Here x ∈ Rn. We assume F ∈ C1(Rn \ 0) but allow blowup at x = 0. Under
hypotheses (4.5.3)–(4.5.4) for the two body problem, we have

(4.6.2) F (x) = f(∥x∥)x.

In such a case, (4.6.1) is called a central force problem. Parallel to (4.5.5), we have

(4.6.3)
F (x) = −∇V (x),

V (x) = v(∥x∥), v′(r) = −rf(r).

The total energy is given by

(4.6.4) E =
1

2
m
∥∥∥dx
dt

∥∥∥2 + V (x),

and if x(t) solves (4.6.1), then

(4.6.5)
dE

dt
= m

d2x

dt
· dx
dt

+∇V (x) · dx
dt

= 0,

yielding conservation of energy.

There are further conservation laws, starting with the following.

Proposition 4.6.1. Assume x(0) ̸= 0 and let W ⊂ Rn be the linear span of x(0)
and x′(0). If x(t) solves (4.6.1) for t ∈ I and (4.6.2) holds, we have

(4.6.6) x(t) ∈W, ∀ t ∈ I.

Proof. One way to see this is to note that (4.6.1) is a well posed system for x(t)
taking values in W . Then uniqueness of solutions yields (4.6.6). Here is another
demonstration.

Define A ∈ L(Rn) by

(4.6.7)
Av = v, ∀ v ∈W,

Av = −v, ∀v ∈W⊥.

Note that A is an orthogonal transformation. Let y(t) = Ax(t). The hypothesis on
the initial data gives

(4.6.8) y(0) = x(0), y′(0) = x′(0).

Also, given F (x) of the form (4.6.2), we have AF (x) = F (y), so y(t) solves (4.6.1).
The basic uniqueness result proven in §4.1 implies y ≡ x on I, which in turn gives
(4.6.6). �

A third proof of Proposition 4.6.1, valid for n = 3, can be obtained from
conservation of angular momentum, established in (4.6.11) below.
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Proposition 4.6.1 guarantees that each path x(t) solving (4.6.1) lies in a plane,
and we can take n = 2. For the next step, it is actually convenient to take n = 3.
Thus x(t) solves (4.6.1) and x(t) is a path in R3. We define the angular momentum

(4.6.9) α(t) = mx(t)× x′(t).

We then have, under hypothesis (4.6.2),

(4.6.10)

α′(t) = mx(t)× x′′(t)

= x(t)× F (x)

= f(∥x∥)x(t)× x(t)

= 0.

This yields conservation of angular momentum:

(4.6.11) x(t)× x′(t) ≡ L,

where L = x(0)× x′(0) ∈ R3. In case x(t) = (x1(t), x2(t), 0), we have

(4.6.12) x(t)× x′(t) = (0, 0, x1(t)x
′
2(t)− x′1(t)x2(t)),

so the conservation law (4.6.11) gives

(4.6.13) x1(t)x
′
2(t)− x′1(t)x2(t) ≡ L3.

Let’s return to the planar setting, and also use complex notation:

(4.6.14) x(t) = x1(t) + ix2(t) = r(t)eiθ(t).

A computation gives

(4.6.15)
x′ = (r′ + irθ′)eiθ,

x′′ = [r′′ − r(θ′)2 + i(2r′θ′ + rθ′′)]eiθ,

so (4.6.1)–(4.6.2) becomes

(4.6.16) m
[
r′′ − r(θ′)2 + i(2r′θ′ + rθ′′)

]
= f(r)r.

Equating real and imaginary parts separately, we get

(4.6.17)
r′′ − r(θ′)2 =

f(r)r

m
,

2r′θ′ + rθ′′ = 0.

Note that

(4.6.18)
d

dt
(r2θ′) = r(2r′θ′ + rθ′′),

so the second equation in (4.6.17) says r2θ′ is independent of t. This is actually
equivalent to the conservation of angular momentum, (4.6.13). In fact, we have
x1 = r cos θ, x2 = r sin θ, hence

(4.6.19) x′1 = r′ cos θ − rθ′ sin θ, x′2 = r′ sin θ + rθ′ cos θ,

and hence

(4.6.20) x1x
′
2 − x′1x2 = r2θ′.

Thus we have in two ways derived the identity

(4.6.21) r2θ′ = L.
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(For notational simplicity, we drop the subscript 3 from (4.6.13).)

There is the following geometrical interpretation of (4.6.21). The (signed) area
A(t) swept out by the ray from 0 to x(s), as s runs from t0 to t, is given by

(4.6.22) A(t) =
1

2

∫ θ(t)

θ(t0)

r2 dθ =
1

2

∫ t

t0

r(s)2θ′(s) ds,

so

(4.6.23) A′(t) =
1

2
r2θ′ =

L

2
.

This says

(4.6.24) Equal areas are swept out in equal times,

which, as we will discuss below, is Kepler’s second law.

Next, we can plug θ′ = L/r2 into the first equation of (4.6.17), obtaining

(4.6.25)
d2r

dt2
=
f(r)r

m
+
L2

r3
.

This has the form

(4.6.26)
d2r

dt2
= g(r),

treated in Chapter 1, §1.5. We recall that treatment. Take w(r) such that g(r) =
−w′(r), so (4.6.26) becomes

(4.6.27)
d2r

dt2
= −w′(r).

Then form the “energy”

(4.6.28) E =
1

2

(dr
dt

)2
+ w(r),

and compute that if r(t) solves (4.6.27) then

(4.6.29)
dE

dt
=
d2r

dt2
dr

dt
+ w′(r)

dr

dt
= 0,

so for each solution to (4.6.27), there is a constant E such that

(4.6.30)
dr

dt
= ±

√
2E − 2w(r).

Separation of variables gives

(4.6.31)

∫
dr√

2E − 2w(r)
= ±t+ C.

This integral can be quite messy.

Note that dividing (4.6.30) by (4.6.21) yields a differential equation for r as a
function of θ:

(4.6.32)
dr

dθ
= ±r

2

L

√
2E − 2w(r),

which separates to

(4.6.33) L

∫
dr

r2
√

2E − 2w(r)
= ±θ + C.
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Let us recall that

(4.6.34) w′(r) = −f(r)r
m

− L2

r3
.

Typically the integral in (4.6.33) is as messy as the one in (4.6.31). These integrals
do turn out to be tractable in one very important case, the Kepler problem, to
which we now turn.

This problem is named after the astronomer Johannes Kepler, who from obser-
vations formulated the following three laws for planetary motion.

1. The planets move on ellipses with the sun at one focus.

2. The line segment from the sun to a planet sweeps out equal areas in equal time
intervals.

3. The period of revolution of a planet is proportional to a3/2, where a is the
semi-major axis of its ellipse.

The Kepler problem is to provide a theoretical framework in which to derive these
three laws. This was solved by Isaac Newton, who formulated his universal law of
gravitation, used it to derive a differential equation for the position of a planet, and
solved the differential equation.

Newton’s law of gravitation specifies the force between two objects, of mass m1

and m2, located at points x1 and x2 in R3. Let us say the center of the planet is
at x1 and the center of the sun is at x2. In the framework of (4.5.1), this means
specifying the vector field F21 on R3. The formula is

(4.6.35) F21(x) = −Gm1m2
x

∥x∥3
.

Here G is the universal gravitational constant. If we go to center of mass coordi-
nates, the motion of the planet is governed by (4.5.32), yielding (4.6.1) with

(4.6.36) F (x) = −Km x

∥x∥3
, K = G(m+m2).

Herem = m1 is the mass of the planet and m2 is the mass of the sun. Consequently
we have (4.6.17) with

(4.6.37)
f(r)r

m
= −K

r2
,

and (4.6.25) becomes

(4.6.38)
d2r

dt2
= −K

r2
+
L2

r3
.

Thus w(r) in (4.6.27)–(4.6.34) is given by

(4.6.39) w(r) = −K
r

+
L2

2r2
.
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Thus the integral in (4.6.31) is

(4.6.40)

∫
r dr√

2Er2 + 2Kr − L2
,

and the integral in (4.6.33) is

(4.6.41)

∫
dr

r
√
2Er2 + 2Kr − L2

.

The integral (4.6.40) can be evaluated by completing the square for 2Er2+2Kr−L2.
The integral (4.6.41) can also be evaluated, but rather than tackling this directly,
we instead produce a differential equation for u, defined by

(4.6.42) u =
1

r
.

By the chain rule,

(4.6.43)
dr

dt
= −r2 du

dt
= −r2 du

dθ

dθ

dt
= −Ldu

dθ
,

the last identity by (4.6.21). Taking another t-derivative gives

(4.6.44)
d2r

dt2
= −L d

dt

du

dθ
= −Ld

2u

dθ2
dθ

dt
= −L2u2

d2u

dθ2
,

again using (4.6.21). Comparing this with (4.6.38), we get

(4.6.45) −L2u2
d2u

dθ2
= L2u3 −Ku2,

or equivalently

(4.6.46)
d2u

dθ2
+ u =

K

L2
.

Miraculously, we have obtained a linear equation! The general solution to (4.6.46)
is

(4.6.47) u(θ) = A cos(θ − θ0) +
K

L2
,

which by (4.6.42) gives

(4.6.48) r
[
A cos(θ − θ0) +

K

L2

]
= 1.

This is equivalent to

(4.6.49) r
[
1 + e cos(θ − θ0)

]
= p, p =

L2

K
, e = A

L2

K
.

If e = 0, this is the equation of a circle. If 0 < e < 1, it is the equation of an
ellipse. If e = 1, it is the equation of a parabola, and if e > 1, it is the equation
of one branch of a hyperbola. Among these curves, those that are bounded are the
ellipses, and the circle, which we regard as a special case of an ellipse.

Since planets move in bounded orbits, this establishes Kepler’s first law (with
caveats, which we discuss below). Kepler’s second law holds for general central
force problems, as noted already in (4.6.24). To establish the third law, recall from
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(4.6.23) that L/2 is the rate at which such area is swept out, so the period T of the
orbit satisfies

(4.6.50)

L

2
T = area enclosed by the ellipse

= πab,

where a is the semi-major axis and b the semi-minor axis. For an ellipse given by
(4.6.49), we have

(4.6.51) a =
p

1− e2
, b =

p√
1− e2

= p1/2a1/2

(cf. (4.6.58)–(4.6.59) below), which yields

(4.6.52) T =
2πab

L
= 2π

√
p

L
a3/2 =

2π√
K
a3/2.

This establishes Kepler’s third law.

We now discuss some caveats. Our solar system has nine planets, plus numerous
other satellites. In the calculations above, all but one planet was ignored. One can
expect this approximation to work best for Jupiter. Jupiter has about 10−3 the
sun’s mass, and its distance from the sun is about 400 times the sun’s radius.
Hence the center of mass of Jupiter and the sun is located about 0.4 times the sun’s
radius from the center of the sun. The sun and Jupiter engage in a close to circular
elliptical orbit with a focus at this center of mass. Clearly this motion is going
to influence the orbits of the other planets. In fact, each planet influences all the
others, including Jupiter, in ways not captured by the calculations of this section.
Realization of this situation led to a vigorous development of the subject known as
celestial mechanics, from Newton’s time on. Material on this can be found in [1]
and [15], and references given there.

Advances in celestial mechanics led to the discovery of the planet Neptune. By
the early 1900s, this subject was sufficiently well developed that astronomers were
certain that an observed anomaly in the motion of Mercury could not be explained
by the Newtonian theory. This discrepancy was accounted for by Einstein’s theory
of general relativity, which provided a new foundation for the theory of gravity.
This is discussed in [3] and also in Chapter 18 of [45]. While a derivation is well
outside the scope of this book, we mention that the relativistic treatment leads to
the following variant of (4.6.46):

(4.6.53)
d2u

dθ2
+ u = A+ εu2,

where A ≈ K/L2 and ε is a certain (small) positive constant, determined by the
mass of the sun. This can be converted into the first order system

(4.6.54)
du

dθ
= v,

dv

dθ
= −u+A+ εu2.

In analogy with (4.6.26)–(4.6.29), we can form

(4.6.55) F (u, v) =
1

2
v2 +

1

2
u2 −Au− ε

3
u3,
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and check that if (u(θ), v(θ)) solves (4.6.54), then

(4.6.56)
d

dθ
F (u, v) = 0,

so the orbits for (4.6.54) lie on level curves of F . As long as Aε ∈ (0, 1/4), F has
two critical points, a minimum and a saddle. Thus (4.6.54) has some solutions
periodic in θ. However, the period is generally not equal to 2π. (See Appendix
4.E for results related to computing this period.) This fact leads to the precession
of the perihelion of the planet orbiting the sun, where the perihelion is the place
where u is maximal, so r is minimal. In the non-relativistic situation covered by
(4.6.46), all the solutions in (4.6.47) are periodic in θ of period 2π.

Exercises

1. Solve explicitly

w′′(t) = −w(t),
for w taking values in R2 = C. Show that

|w(t)|2 + |w′(t)|2 = 2E

is constant on each orbit.

2. For w(t) taking values in C, define a new curve by

z(s) = w(t)2,
ds

dt
= |w(t)|2.

Show that if w′′(t) = −w(t), then

z′′(s) = −4E
z(s)

|z(s)|3
,

so z(s) solves the Kepler problem.

3. Take u = 1/r as in (4.6.42), and generalize the calculations (4.6.43)–(4.6.46)
to obtain a differential equation for u as a function of θ, for more general central
forces. Consider particularly f(x) = −∇V (x) in the cases

V (x) = −K∥x∥2, V (x) = −K∥x∥.

4. Take the following steps to show that if p > 0 and 0 < e < 1, then

(4.6.57) r(1 + e cos θ) = p

is the equation in polar coordinates of an ellipse.

(a) Show that (4.6.57) describes a closed, bounded curve, since 1 + e cos θ > 0 for
all θ if 0 < θ < 1, and cos θ is periodic in θ of period 2π. Denote the curve by
γ(θ) = (x(θ), y(θ)), in Cartesian coordinates.
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(b) Show that this curve is symmetric about the x-axis and cuts the axis at two
points, whose distance apart is

2a = r(0) + r(π),

so

(4.6.58) a =
p

1− e2
.

(c) Show that the midpoint between γ(0) and γ(π) is given by

x0 = −ea, y0 = 0.

(d) For γ(θ) = (x(θ), y(θ)), as in part (a), show that

(4.6.59)
(x+ ea)2

a2
+
y2

b2
= 1, b2 = (1− e2)a2.

Hint. Use (4.6.57) and its square to write

(4.6.60)
r + ex = p, so r = p− ex,

x2 + y2 + 2erx+ e2x2 = p2,

hence x2 + y2 + 2e(p− ex)x+ e2x2 = p2, or equivalently

(4.6.61) (1− e2)x2 + 2epx+ y2 = p2,

and proceed to derive (4.6.59), taking into account (4.6.58).

5. As an approximation, assume that the earth has a circular orbit about the sun
with a radius

(4.6.62) a = 1.496× 1011 m,

and its period is one year, i.e.,

(4.6.63) T = 31.536× 106 sec.

The gravitational constant G has been measured as

(4.6.64) G = 6.674× 10−11 m3/(kg sec
2
).

With this information, use (4.6.36) and (4.6.52) to calculate the mass m2 of the
sun. Assume the mass of the earth is negligible compared to m2. You should get

(4.6.65) m2 = α× 1030 kg,

with α between 1 and 10.

Remark. Historically, T was measured by the position of the “fixed stars.” Modern
methods to measure a involve bouncing a radar signal off Venus to measure its
distance, given that we have an accurate measurement of the speed of light. Then
trigonometry is used to determine a. See [17] for a discussion of how G has been
measured; this is the most difficult issue.
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6. The force of gravity the earth exerts on a body of mass m at the earth’s surface
is

(4.6.66) −Gmmer
−2,

where G is given in Exercise 5,

(4.6.67) r = 6.38× 106 m

is the radius of the earth, and me is the mass of the earth. It is observed that
the earth’s gravity accelerates objects at its surface downward at 9.8 m/sec

2
, so we

have

(4.6.68) 9.8 m/sec
2
= Gmer

−2.

Use this to compute me. You should get

(4.6.69) me = β × 1024 kg,

with β between 1 and 10.
Remark. See Appendix 4.F for more on (4.6.66).

7. As an approximation, assume that the moon has a circular orbit about the earth,
of radius

a = 3.8× 108 m,

and its period is 27.3 days, i.e.,

T = 2.359× 106 sec.

Assume the mass of the moon is negligible compared to the mass of the earth. Use
the method of Exercise 5 to calculate the mass of the earth. Compare your result
with that of Exercise 6.

8. Use the data presented in Exercises 5 and 7 to calculate the ratio of the masses
of the earth and the sun, irrespective of the knowledge of G.

9. Jupiter has a moon, Ganymede, which orbits the planet at a distance 1.07× 109

m, with a period of 7.15 earth days. Using the method of Exercise 5 (or 8), compute
the mass mJ of Jupiter. You should get

mJ ≈ 318 me.
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4.7. Variational problems and the stationary action principle

A rich source of second order systems of differential equations is provided by vari-
ational problems, which we will consider here. Let Ω ⊂ Rn be open, and let
L ∈ C2(Ω× Rn), say L = L(x, v). For a path u : [a, b] → Ω, consider

(4.7.1) I(u) =

∫ b

a

L(u(t), u′(t)) dt.

We desire to find equations for a path that minimizes I(u), among all such paths
for which the endpoints u(a) = p and u(b) = q are fixed. More generally, we desire
to specify when u is a stationary path, meaning that

(4.7.2)
d

ds
I(us)

∣∣∣
s=0

= 0,

for all smooth families of paths us such that u0 = u, us(a) = p, and us(b) = q. Let
us write

(4.7.3)
∂

∂s
us(t)

∣∣∣
s=0

= w(t),

so w : [a, b] → Rn is an arbitrary smooth function such that w(a) = w(b) = 0. To
compute (d/ds)I(us), let us denote

(4.7.4) Lxk
=

∂L

∂xk
, Lvk =

∂L

∂vk
.

Then

(4.7.5)

d

ds
I(us)

∣∣∣
s=0

=

∫ b

a

∑
k

Lxk
(u(t), u′(t))wk(t) dt

+

∫ b

a

∑
k

Lvk(u(t), u
′(t))w′

k(t) dt.

We can apply integration by parts to the last integral. The condition that wk(a) =
wk(b) = 0 implies that there are no endpoint contributions, so

(4.7.6)
d

dt
I(us)

∣∣∣
s=0

=

∫ b

a

∑
k

[
Lxk

(u(t), u′(t))− d

dt
Lvk(u(t), u

′(t))
]
wk(t) dt.

For this to vanish for all smooth wk that vanish at t = a and b, it is necessary and
sufficient that

(4.7.7)
d

dt
Lvk(u(t), u

′(t))− Lxk
(u(t), u′(t)) = 0, ∀ k.

This system is called the Lagrange equation for stationarity of (4.7.1). Applying
the chain rule to the first sum, we can expand this out as

(4.7.8)

∑
ℓ

Lvkvℓ(u(t), u
′(t))u′′ℓ (t) +

∑
ℓ

Lvkxℓ
(u(t), u′(t))u′ℓ(t)

−Lxk
(u(t), u′(t)) = 0, ∀ k.

This can be converted to a first order system for (u(t), u′(t)), to which the results
of §4.1 apply, provided the n× n matrix

(4.7.9)
(
Lvkvℓ(x, v)

)
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of second order partial derivatives of L(x, v) with respect to v is invertible.

The Newtonian equations of motion can be put into this Lagrangian framework,
as follows. A particle of mass m, position x, and velocity v, moving in a force field
F (x) = −∇V (x), has kinetic energy and potential energy

(4.7.10) T =
1

2
m∥v∥2, and V = V (x),

respectively. The Lagrangian L(x, v) is given by the difference:

(4.7.11) L(x, v) = T − V =
1

2
m∥v∥2 − V (x).

In such a case,

(4.7.12) Lvk(x, v) = mvk, Lxk
(x, v) = − ∂V

∂xk
,

and the Lagrange system (4.7.7) becomes the standard Newtonian system

(4.7.13) m
d2u

dt2
= −∇V (u).

In this setting, the integral (4.7.1) is called the action. The assertion that the laws
of motion are given by the stationary condition for (4.7.1) where L is the Lagrangian
(4.7.11) is the stationary action principle.

The Lagrangian approach can be particularly convenient in situations where
coordinates other than Cartesian coordinates are used. As an example, we consider
the simple pendulum problem, and give a treatment that can be compared and
contrasted with that given in §1.6 of Chapter 1. As there, we have a rigid rod, of
length ℓ, suspended at one end. We assume the rod has negligible mass, except for
an object of mass m at the other end. See Figure 4.7.1. The rod makes an angle θ
with the downward vertical. We seek a differential equation for θ as a function of
t.

The end with the mass m traces out a path in a plane, which, as in Chapter 1,
we identify with the complex plane, with the origin at the point where the pendulum
is suspended and the real axis pointing vertically down. We can write the path as

(4.7.14) z(t) = ℓeiθ(t).

The velocity is

(4.7.15) v(t) = z′(t) = iℓθ′(t)eiθ(t),

so the kinetic energy is

(4.7.16) T =
1

2
m∥v(t)∥2 =

mℓ2

2
θ′(t)2.

Meanwhile the potential energy, due to the force of gravity, is

(4.7.17) V = −mgℓ cos θ.
Taking ψ = θ′, we have the Lagrangian

(4.7.18)
L(θ, ψ) =

mℓ2

2
ψ2 +mgℓ cos θ,

Lψ(θ, ψ) = mℓ2ψ, Lθ(θ, ψ) = −mgℓ sin θ,



294 4. Nonlinear systems of differential equations

Figure 4.7.1. Pendulum

and Lagrange’s equation

(4.7.19)
d

dt
Lψ(θ(t), θ

′(t))− Lθ(θ(t), θ
′(t)) = 0

yields the pendulum equation

(4.7.20)
d2θ

dt2
+
g

ℓ
sin θ = 0,

in agreement with (4.6.6) of Chapter 1.

The approach above avoided a computation of the force acting on the pendulum
(cf. (1.6.6) of Chapter 1), and is arguably a bit simpler than the approach given in
Chapter 1. The Lagrangian approach can be very much simpler in more complex
situations, such as the double pendulum, which we will discuss in §4.9.

An important variant of these variational problems is the class of constrained
variational problems, which we now discuss. For the sake of definiteness, let M be
either a smooth curve in Ω ⊂ R2 or a smooth surface in Ω ⊂ R3, and let n(x) be a
smooth unit normal to M , for x ∈M . Again, let L ∈ C2(Ω×Rn), n = 2 or 3, and
define I(u) by (4.7.1). We look for equations for

(4.7.21) u : [a, b] −→M,

satisfying the stationary condition (4.7.2), not for all smooth families of paths us
such that u0 = u and us(0) = p, us(b) = q, but rather for all such paths satisfying
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the constraint

(4.7.22) us : [a, b] −→M.

Again we take w(t) as in (4.7.3), and this time we obtain an arbitrary smooth
function w : [a, b] → Rn, satisfying w(a) = w(b) = 0, and the additional constraint

(4.7.23) w(t) · n(u(t)) ≡ 0.

The calculations (4.7.4)–(4.7.6) still apply, but from here we get a conclusion dif-
ferent from (4.7.7). Since (4.7.6) holds for all w(t) described as just above, the
conclusion is

(4.7.24)
d

dt
Lv(u(t), u

′(t))− Lx(u(t), u
′(t)) is parallel to n(u(t)),

where Lv = (Lv1 , . . . , Lvn)
t and Lx = (Lx1 , . . . , Lxn)

t. In case n = 3, an equivalent
formulation of (4.7.24) is

(4.7.25)
[ d
dt
Lv(u(t), u

′(t))− Lx(u(t), u
′(t))

]
× n(u(t)) = 0.

Let’s specialize this constrained variational problem to the case

(4.7.26) L(x, v) =
1

2
∥v∥2.

The associated integral

(4.7.27) E(u) =
1

2

∫ b

a

∥u′(t)∥2 dt

is called the energy of u : [a, b] → M . In this case, Lv = v and Lx = 0, so (4.7.24)
becomes

(4.7.28) u′′(t) is parallel to n(u(t)).

That is, u′′(t) = a(t)n(u(t)). Taking the inner product with n(t) gives a(t) =
n(u(t)) · u′′(t), so (4.7.28) yields

(4.7.29) u′′(t) = n(u(t)) · u′′(t)n(u(t)).

An equation with a better form can be obtained by differentiating

(4.7.30) u′(t) · n(u(t)) ≡ 0,

to get

(4.7.31) u′′ · n(u(t)) = −u′(t) · d
dt
n(u(t)).

Plugging this into the right side of (4.7.29) gives the differential equation

(4.7.32) u′′(t) + u′(t) ·
( d
dt
n(u(t))

)
n(u(t)) = 0.

Note by (4.7.28) that u′′ is orthogonal to u′(t), so

(4.7.33)
d

dt
∥u′(t)∥2 = 2u′(t) · u′′(t) ≡ 0.

Thus stationary paths u : [a, b] →M for the energy have constant speed.
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Such curves on M are geodesics. These curves are also constant speed curves
on M that are stationary curves for the arclength:

(4.7.34) ℓ(u) =

∫ b

a

∥u′(t)∥ dt.

We will say a bit more about geodesics in Appendix 4.H. Further material can be
found in Chapter 6 of [50], and also in texts on elementary differential geometry,
such as [11].

We next present another approach to finding equations for stationary paths of
(4.7.27). Suppose Ω = O × R and M is the graph of a function z = φ(x1, x2), for
x = (x1, x2) ∈ O. Then a curve u : [a, b] →M has the form

(4.7.35) u(t) =
(
x(t), φ(x(t))

)
,

and

(4.7.36) u′(t) = (x′(y),∇φ(x(t)) · x′(t)),
so

(4.7.37)
∥u′(t)∥2 = ∥x′(t)∥2 + (∇φ(x(t)) · x′(t))2

= x′(t) ·G(x(t))x′(t),
where

(4.7.38) G(x) =

(
1 + φ1(x)

2 φ1(x)φ2(x)
φ1(x)φ2(x) 1 + φ2(x)

2

)
, φj(x) =

∂φ

∂xj
.

Thus the problem of finding a constrained stationary path u(t) for the energy
(4.7.27) is equivalent to the problem of finding an unconstrained stationary path
x(t) for

(4.7.39) E(x) = 1

2

∫ b

a

x′(t) ·G(x(t))x(t) dt.

In this case,

(4.7.40)

L(x, v) =
1

2
v ·G(x)v,

Lv(x, v) = G(x)v, and,

Lx(x, v) =
1

2
v · ∇G(x)v,

where the last identity means

(4.7.41) Lxk
(x, v) =

1

2
v · ∂G

∂xk
v.

In this setting, the Lagrange equation (4.7.7) becomes

(4.7.42)
d

dt

[
G(x(t))x′(t)

]
− 1

2
x′(t) · ∇G(x(t))x′(t) = 0,

i.e.,

(4.7.43)
d

dt

∑
j

Gkj(x(t))x
′
j(t)−

1

2

∑
i,j

x′i(t)
∂Gij
∂xk

x′j(t) = 0, ∀ k.
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Exercises

1. Given a Lagrangian L(x, v), we define the “energy”

(4.7.44)

E(x, v) = Lv(x, v) · v − L(x, v)

=
∑
k

Lvk(x, v)vk − L(x, v).

Show that if u(t) solves the Lagrange equation (4.7.7), then

(4.7.45)
d

dt
E(u(t), u′(t)) ≡ 0.

This is energy conservation, in this setting.

2. Suppose

(4.7.46) L(x, v) =
m

2
v ·G(x)v − V (x),

Assume G(x) ∈ M(n,R) is symmetric and invertible, and define E(x, v) as in
(4.7.44). Show that

(4.7.47) E(x, v) =
m

2
v ·G(x)v + V (x).

3. Let L(x, v) be given by (4.7.46). Show that the Lagrange equation (4.7.7) is

(4.7.48) m
d

dt

[
G(u(t))u′(t)

]
− m

2
u′(t) · ∇G(u(t))u′(t) = −∇V (u(t)),

where the second term is evaluated as in (4.7.42)–(4.7.43). Show in turn that this
yields the first order system

duk
dt

= vk

m
∑
j

Gkj(u(t))
dvj
dt

+m
∑
i,j

vi(t)
[∂Gkj
∂xi

− 1

2

∂Gij
∂xk

]
vj(t) = − ∂V

∂xk
(u(t)).

Produce a variant by symmetrizing the term in brackets in the second sum, with
respect to i and j.

4. Consider the setting of constrained motion on M ⊂ Ω, as in (4.7.21)–(4.7.24),
and consider the following generalization of (4.7.26):

(4.7.49) L(x, v) =
m

2
∥v∥2 − V (x).

Establish the following replacement for (4.7.32):

(4.7.50) mu′′(t) +mu′(t) ·
( d
dt
n(u(t))

)
n(u(t)) = −PM (u(t))∇V (u(t)),

where, for x ∈M, w ∈ Rn,

(4.7.51) PM (x)w = w −
(
n(x) · w

)
n(x).
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This describes motion of a particle in a force field F (x) = −∇V (x), constrained to
move on M .

5. Motion of a spherical pendulum in R3, in the presence of Earth’s gravitational
field, is described as in Exercise 4 with

(4.7.52) M = {x ∈ R3 : ∥x∥ = ℓ},

and L(x, v) as in (7.49), with V (x) = mg(x · k), where k = (0, 0, 1)t. Show that in
this case, (4.7.50) produces, for

(4.7.53) u(t) = ℓω(t),

the system

(4.7.54) ω′′(t) + ∥ω′(t)∥2ω(t) = −g
ℓ
k +

g

ℓ
(ω(t) · k)ω(t).

6. Results of Exercise 5 are also valid in the setting where R3 is replaced by R2.
Show that, in this setting, with

(4.7.55) ω(t) = (sin θ(t),− cos θ(t))t, k = (0, 1)t,

the equation (4.7.54) leads to the (planar) pendulum equation

(4.7.56) θ′′(t) +
g

ℓ
sin θ(t) = 0.

7. Let us return to the setting of Exercise 2, and set

(4.7.57) p = Lv(x, v) = mG(x)v.

Also set

(4.7.58) E(x, p) = E(x, v) = E(x,G(x)−1p/m).

Show that

(4.7.59) E(x, p) = 1

2m
p ·G(x)−1p+ V (x).

Show that the Lagrange equation (4.7.48) for u(t) = x(t) is equivalent to the
following Hamiltonian system:

(4.7.60)
dxk
dt

=
∂E
∂pk

,
dpk
dt

= − ∂E
∂xk

.

Hint. To get started on (4.7.60), note that if (4.7.59) holds, then

(4.7.61)
∂E
∂p

=
1

m
G(x)−1p = v,

and that the Lagrange equation implies

(4.7.62)
dpk
dt

= Lxk
(x, v) =

m

2
v · ∂G

∂xk
(x)v − ∂V

∂xk
(x).

Furthermore, as in (3.8.13) of Chapter 3,

(4.7.63)
∂

∂xk
G(x)−1 = −G(x)−1 ∂G

∂xk
(x)G(x)−1.
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Remark. More general cases in which the change of variable p = Lv(x, v) converts
Lagrange’s equation to Hamiltonian form are discussed in [1], [5], and Chapter 1
of [45].

Exercises 8–11 study surfaces of revolution that are surfaces of “least area.” To set
this up, let u : [0, 1] → (0,∞) be smooth, and rotate the graph of y = u(x) about
the x-axis in (x, y, z)-space. Elementary calculus gives the formula

(4.7.64) A(u) = 2π

∫ 1

0

u(t)
√
1 + u′(t)2 dt

for the area of the resulting surface of revolution. The problem is to find u for
which the area is minimal, given constraints

(4.7.65) u(0) = α, u(1) = β, α, β > 0.

8. In (4.7.64), L(x, v) = x
√
1 + v2. Show that the “energy” E(x, v) in (4.7.44) is

given by

(4.7.66) E(x, v) = − x√
1 + v2

.

9. Using (4.7.45), show that if u(t) solves the Lagrange equation (4.7.7) in this
setting, then there is a constant a such that

(4.7.67)
u(t)√

1 + u′(t)2
= a,

hence

(4.7.68)
du

dt
= ±

√
b2u2 − 1, b =

1

a
.

10. Separate variables in (4.7.68) and use the substitution bu = cosh v to evaluate
the u-integral and conclude that

(4.7.69) u(t) =
1

b
cosh(bt+ c),

for some constant c. Equation (4.7.69) is the equation of a catenary, seen before in
(1.3.24) of Chapter 1, for the hanging cable.

11. Consider the problem of finding b and c in (4.7.69) such that the constraints
(4.7.65) are satisfied. Show that sometimes no solutions exist, and sometimes two
solutions exist, but one gives a smaller area than the other.

Exercises 12–15 take another look at the hanging cable problem mentioned in Ex-
ercise 10. Here we state it as the problem of minimizing the potential energy, which
is mg times

(4.7.70) V (u) =

∫ A

−A
u(t)

√
1 + u′(t)2 dt,
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subject to the boundary conditions

(4.7.71) u(−A) = u(A) = 0,

and the constraint that the curve y = u(x), −A ≤ x ≤ A, have length L,

(4.7.72) ℓ(u) =

∫ A

−A

√
1 + u′(t)2 dt = L.

Such a curve describes a cable, of length L, hanging from the two points (−A, 0)
and (A, 0), under the force of gravity. To deal with the constraint (4.7.72), we bring
in the Lagrange multiplier method. That is, we set

(4.7.73) Iλ(u) = V (u) + λℓ(u),

find the stationary path for (4.7.73) (subject to (4.7.71)) as a function of λ, and
then find for which λ the constraint (4.7.72) holds. Note that Iλ(u) has the form
(4.7.1) with

(4.7.74) Lλ(x, v) = (x+ λ)
√
1 + v2.

12. Show that the “energy” Eλ(x, v) in (4.7.44) is given by

(4.7.75) Eλ(x, v) =
x+ λ√
1 + v2

.

13. Using (4.7.45), show that if u(t) solves the Lagrange equation (4.7.7) in this
setting, then there exists a constant a (maybe depending on λ) such that

(4.7.76)
u(t) + λ√
1 + u′(t)2

= a,

hence

(4.7.77)
du

dt
= ±

√
b2(u+ λ)2 − 1, b =

1

a
.

14. Separate variables in (4.7.77) and use the substitution b(u + λ) = cosh v to
evaluate the u-integral and obtain

u(t) = −λ+
1

b
cosh(bt+ c),

for some constant c. Show that (4.7.71) forces c = 0, so

(4.7.78) u(t) = −λ+
1

b
cosh bt.

15. Calculate the length of the curve y = u(x), −A ≤ x ≤ A, when u is given by
(4.7.78), and show that the constraints (4.7.71)–(4.7.72) yield the equations

(4.7.79) sinh bA =
bL

2
, λ =

1

b
cosh bA.

Note that the first equation has a unique solution b ∈ (0,∞) if and only if L > 2A.

16. Recall the planar pendulum problem illustrated in Figure 4.7.1. Instead of
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assuming all the mass is at the end of the rod, assume the rod has a mass distri-

bution m(s) ds, 0 ≤ s ≤ ℓ, so the total mass is m =
∫ ℓ
0
m(s) ds. Show that for the

potential energy V you replace (4.7.17) by

(4.7.80) V = −magℓ cos θ, ma =

∫ ℓ

0

m(s)
s

ℓ
ds,

and for the kinetic energy T , you replace (4.7.16) by

(4.7.81) T =
mbℓ

2

2
θ′(t)2, mb =

∫ ℓ

0

m(s)
(s
ℓ

)2
ds.

Write down the replacement for the pendulum equation (4.7.20) in this setting.
Specialize the calculation to the case

(4.7.82) m(s) =
m

ℓ
, 0 ≤ s ≤ ℓ,

which represents a rod with uniform mass distribution.
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Figure 4.8.1. Brachistrochrone problem

4.8. The brachistochrone problem

The early masters of calculus enjoyed posing challenging problems to each other.
The most famous of these is called the brachistrochrone problem. It was posed by
Johann Bernoulli in 1696, and solved by him, by his brother Jakob, and also by
Newton and by Leibniz. The problem is to find the curve along which a particle
will slide without friction in the minimum time, from one given point p in the
(x, y)-plane to another, q, starting at rest at p. Say p = (0, 0) and q = (a, b). We
assume a > 0 and b < 0; see Figure 4.8.1. The force of gravity acts in the direction
of the negative y-axis, with acceleration g.

Our approach to this problem will involve two applications of the variational
method developed in §4.7. (In fact, this problem helped spark the creation of the
variational method.) First, let φ : [0, a] → R with φ(0) = 0, φ(a) = b, and consider
the constrained motion of a particle,

(4.8.1) u : [0, t0] −→M = {(x, φ(x)) : 0 ≤ x ≤ a},

under the force of gravity. Thus, in place of (4.7.27), we look for stationary paths
for

(4.8.2) I(u) =

∫ a

0

[m
2
∥u′(t)∥2 − V (u(t))

]
dt,
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subject to the constraint (4.8.1), and with

(4.8.3) V (x, y) = mgy.

We can convert this to an unconstrained variational problem as was done in (4.7.35)–
(4.7.42), now with a nonzero V , and with lower dimension. We have

(4.8.4) u(t) =
(
x(t), φ(x(t))

)
,

and

(4.8.5) ∥u′(t)∥2 =
(
1 + φ′(x(t))2

)
x′(t)2,

so the problem of finding a constrained stationary path u(t) for (4.8.2) is equivalent
to the problem of finding an unconstrained stationary path x(t) for

(4.8.6) J(x) =

∫ a

0

L(x(t), x′(t)) dt,

with

(4.8.7) L(x, v) =
m

2

(
1 + φ′(x)2

)
v2 −mgφ(x).

The path x(t) is governed by the differential equation

(4.8.8)
d

dt
Lv(x(t), x

′(t))− Lx(x(t), x
′(t)) = 0.

We need not write this more explicitly, since by now our experience tells us that to
describe solutions to such a single equation, all we need is conservation of energy:

(4.8.9) E(x, v) =
m

2

(
1 + φ′(x)2

)
v2 +mgφ(x),

that is, for a solution to (4.8.8),

(4.8.10)
m

2

(
1 + φ′(x(t))2

)
x′(t)2 +mgφ(x(t)) = E

is constant. In the current set-up, x(0) = 0 and x′(0) = 0, so E = 0. We get

(4.8.11)
dx

dt
= ±

√
−2gφ(x)

1 + φ′(x)2
,

which separates to

(4.8.12)
1√
2g

∫ a

0

√
1 + φ′(x)2

−φ(x)
dx =

∫ t0

0

dt.

In other words, the elapsed time for the particle to move from p = (0, 0) to q = (a, b)
along the path y = φ(x) is given by the left side of (4.8.12).

Hence the brachistochrone problem is reduced to the problem of finding φ :
[0, a] −→ R, minimizing

(4.8.13) K(φ) =

∫ a

0

L(φ(x), φ′(x)) dx,

subject to the condition

(4.8.14) φ(0) = 0, φ(a) = b,



304 4. Nonlinear systems of differential equations

where

(4.8.15) L(φ,ψ) =

√
1 + ψ2

−φ
.

Stationary paths for (4.8.13) satisfy the Lagrange equation

(4.8.16)
d

dt
Lψ(φ(x), φ′(x))− Lφ(φ(x), φ′(x)) = 0.

Note that

(4.8.17) Lψ(φ,ψ) =
ψ√

−φ(1 + ψ2)
, Lφ(φ,ψ) = −1

2

√
−φ(1 + ψ2)

φ2
.

Solutions to (4.8.16) have the property that

(4.8.18) E(φ(t), φ′(t)) = E

is constant, where (parallel to (4.7.44))

(4.8.19) E(φ,ψ) = Lψ(φ,ψ)− L(φ,ψ).

Using (4.8.15) and (4.8.17), we have

(4.8.20)

E(φ,ψ) = ψ2√
−φ(1 + ψ2)

−

√
1 + ψ2

−φ

= − 1√
−φ(1 + ψ2)

.

Thus, if φ(x) satisfies (4.8.16), then

(4.8.21) φ(x)
(
1 + φ′(x)2

)
= −k2, const.,

where we have written the constant as −k2 to enforce the condition that φ(x) < 0
for 0 < x ≤ a. For notational convenience, we make the change of variable

(4.8.22) y(x) = −φ(x),

so (4.8.21) becomes

(4.8.23) y(x)
(
1 + y′(x)2

)
= k2,

giving

(4.8.24)
dy

dx
=

√
k2

y
− 1.

The equation (4.8.24) separates to

(4.8.25)

∫
dy√
k2

y − 1
=

∫
dx.

The left integral has the form of (1.5.15) in Chapter 1, with E0 = −1, Km = k2.
Rather then recall the formulas (1.5.16)–(1.5.22) of Chapter 1, we implement the
method previewed in Exercise 3 of that section. We use the change of variable

(4.8.26) y = k2 sin2 τ, 2τ = θ.
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Then

(4.8.27) dy = 2k2 sin τ cos τ dτ,

√
k2

y
− 1 =

cos τ

sin τ
,

so

(4.8.28)

∫
dy√
k2

y − 1
= 2k2

∫
sin2 τ dτ

=
k2

2

∫
(1− cos θ) dθ

=
k2

2
(θ − sin θ),

the second identity because sin2 τ = (1− cos 2τ)/2. Thus the curve (x, y(x)), x ∈
[0, a], is parametrized by

(4.8.29)
x = x(θ) =

k2

2
(θ − sin θ),

y = y(θ) =
k2

2
(1− cos θ).

The choice of k2 > 0 is dictated by the implication

(4.8.30) 0 < θ < πk2,
k2

2
(θ − sin θ) = a =⇒ k2

2
(1− cos θ) = |b|.

This solves the brachistochrone problem. The curve defined by (4.8.29) is
known as a cycloid. See Figure 4.8.2. Here ρ = k2/2.

Remark. Note that y′(0) = +∞, so the optimal path starts directly down.

Exercises

1. Show that for each a, |b| ∈ (0,∞), there is a unique k2 > 0 such that (a, |b|) ∈ R2
+

lies on the curve (4.8.29), for some θ ∈ (0, πk2).
Hint. Consult Figure 4.8.2.

2. In the setting of Exercise 1, show that if |b|/a < 2/π, then θ > πk2/2, and the
optimal path dips below b before reaching the endpoint q = (a, b).

3. With x(θ) and y(θ) as in (4.8.29), set φ(θ) = −y(θ). Let

(4.8.31) θ1 =
k2

2
π, θ0 ∈ [0, θ1).

Show that the time it takes a particle starting at rest at (x(θ0), φ(θ0)) to slide
down the curve (x(θ), φ(θ)), θ0 ≤ θ ≤ θ1, to the point (x(θ1), φ(θ1)) (the bottom of
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Figure 4.8.2. Cycloid

the cycloid) is independent of θ0. One says the cycloid also solves the tautochrone
problem.
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Figure 4.9.1. Double pendulum

4.9. The double pendulum

Here we study the motion of a double pendulum, such as illustrated in Figure
4.9.1. We have a pair of rigid rods, of lengths ℓ1 and ℓ2, of negligible mass except
for objects of mass m1 and m2 attached to one end of each rod. The other end of
rod 1 is attached to a fixed point, and the end of rod 2 not containing mass 2 is
attached to rod 1 at mass 1. The rods are assumed free to swing back and forth
in a plane. Thus the configuration at time t is described by the angles θ1(t) and
θ2(t), that the rods make with the vertical. Gravity acts on the masses mj , with a
downward force of mjg.

We identify the plane mentioned above with the complex plane, with rod 1
attached to the origin and the real axis pointing down. Thus the position of mass
1 is

(4.9.1) z1(t) = ℓ1e
iθ1(t),

and the position of mass 2 is

(4.9.2) z2(t) = z1(t) + ℓ2e
iθ2(t).

Their velocities are

(4.9.3)
z′1 = iℓ1θ

′
1e
iθ1 ,

z′2 = iℓ1θ
′
1e
iθ1 + iℓ2θ

′
2e
iθ2 ,
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with square norms

(4.9.4)

|z′1|2 = ℓ21(θ
′
1)

2,

|z′2|2 = (ℓ1θ
′
1e
iθ1 + ℓ2θ

′
2e
iθ2)(ℓ1θ

′
1e

−iθ1 + ℓ2θ
′
2e

−iθ2)

= ℓ21(θ
′
1)

2 + ℓ22(θ
′
2)

2 + 2ℓ1ℓ2θ
′
1θ

′
2 cos(θ1 − θ2).

The potential energy of this system is given by

(4.9.5)
V = −m1gRe z1(t)−m2gRe z2(t)

= −m1gℓ1 cos θ1 −m2g(ℓ1 cos θ1 + ℓ2 cos θ2),

and the kinetic energy by

(4.9.6) T =
m1

2
|z′1(t)|2 +

m2

2
|z′2(t)|2.

If we write

(4.9.7) θ =

(
θ1
θ2

)
, ψ =

(
ψ1

ψ2

)
=

(
θ′1
θ′2

)
,

then (4.9.4) gives

(4.9.8) T =
1

2
ψ ·G(θ)ψ,

with

(4.9.9) G(θ) =

(
(m1 +m2)ℓ

2
1 m2ℓ1ℓ2 cos(θ1 − θ2)

m2ℓ1ℓ2 cos(θ1 − θ2) m2ℓ
2
2

)
.

Thus the Lagrangian L = T − V is given by

(4.9.10) L(θ, ψ) =
1

2
ψ ·G(θ)ψ − V (θ),

with V (θ) as in (4.9.5), and the equation of motion for the double pendulum is

(4.9.11)
d

dt
Lψ(θ, θ

′)− Lθ(θ, θ
′) = 0.

As in (4.7.48), this expands out to the 2 by 2 system

(4.9.12)
d

dt

∑
j

Gkj(θ(t))θ
′
j(t)−

1

2

∑
i,j

θ′i(t)
∂Gij
∂θk

θ′j(t) = − ∂V

∂θk
(θ(t)),

for k = 1, 2. Making explicit use of (4.9.5) and (4.9.9), we have

(4.9.13)
Lψ1

(θ, ψ) = (m1 +m2)ℓ
2
1ψ1 +m2ℓ1ℓ2ψ2 cos(θ1 − θ2),

Lψ2(θ, ψ) = m2ℓ
2
2ψ2 +m2ℓ1ℓ2ψ1 cos(θ1 − θ2),

and

(4.9.14)
Lθ1(θ, ψ) = −m2ℓ1ℓ2ψ1ψ2 sin(θ1 − θ2)− (m1 +m2)gℓ1 sin θ1,

Lθ2(θ, ψ) = m2ℓ1ℓ2ψ1ψ2 sin(θ1 − θ2)−m2gℓ2 sin θ2.

Thus the explicit version of (4.9.11)–(4.9.12) is the pair of equations

(4.9.15)
(m1 +m2)ℓ

2
1θ

′′
1 +m2ℓ1ℓ2

d

dt

[
θ′2 cos(θ1 − θ2)

]
= −m2ℓ1ℓ2θ

′
1θ

′
2 sin(θ1 − θ2)− (m1 +m2)gℓ1 sin θ1,
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and

(4.9.16)
ℓ22θ

′′
2+ ℓ1ℓ2

d

dt

[
θ′1 cos(θ1 − θ2)

]
= ℓ1ℓ2θ

′
1θ

′
2 sin(θ1 − θ2)− gℓ2 sin θ2.

Note that the masses m1 and m2 do not appear in (4.9.16); m1 does not appear in
either term of (d/dt)Lψ2 − Lθ2 , and m2 factors out.

As in (4.7.44)–(4.7.47), we have the energy

(4.9.17) E(θ, ψ) =
1

2
ψ ·G(θ)ψ + V (θ),

and if θ(t) solves (4.9.11), or equivalently (4.9.15)–(4.9.16), then

(4.9.18)
d

dt
E(θ(t), θ′(t)) = 0.

By (4.9.5) and (4.9.9), the explicit form of the energy is

(4.9.19)
E(θ, ψ) =

1

2
(m1 +m2)ℓ

2
1ψ

2
1 +m2ℓ1ℓ2ψ1ψ2 cos(θ1 − θ2)

+
1

2
m2ℓ

2
2ψ

2
2 −m1gℓ1 cos θ1 −m2g(ℓ1 cos θ1 + ℓ2 cos θ2).

As in (4.7.57)–(4.7.60), we can convert the equations of motion to Hamiltonian
form, by setting

(4.9.20) p = G(θ)ψ.

The energy (4.9.17) becomes

(4.9.21)
E(θ, p) = E(θ,G(θ)−1p)

=
1

2
p ·G(θ)−1p+ V (θ),

and (4.9.11) is equivalent to

(4.9.22)
dθk
dt

=
∂E
∂pk

,
dpk
dt

= − ∂E
∂θk

.

Note that, for G(θ) given by (4.9.9),

(4.9.23) G(θ)−1 =
1

detG(θ)

(
m2ℓ

2
2 −m2ℓ1ℓ2 cos(θ1 − θ2)

−m2ℓ1ℓ2 cos(θ1 − θ2) (m1 +m2)ℓ
2
1

)
,

and

(4.9.24) detG(θ) = m1m2ℓ
2
1ℓ

2
2 +m2

2ℓ
2
1ℓ

2
2 sin

2(θ1 − θ2).

For notational simplicity we write

(4.9.25) E(θ, p) = 1

2
p ·H(θ)p+ V (θ), H(θ) = G(θ)−1.



310 4. Nonlinear systems of differential equations

Solutions to (4.9.22) are orbits of the flow generated by the Hamiltonian vector
field

(4.9.26)

XE(θ, p) = −J∇θ,pE(θ, p)

=

(
0 I
−I 0

)(
∇θE
∇pE

)
=

(
∇pE
−∇θE

)
.

Here I ∈ M(2,R) is the identity matrix and J ∈ M(4,R) is defined by the second
identity in (4.9.26). From this formula we see that the critical points of XE coincide
with the critical points of E . Note that

(4.9.27) ∇pE(θ, p) = H(θ)p,

and H(θ) is invertible for all θ, so if E has a critical point at (θ, p), p = 0. Now

(4.9.28) ∇θE(θ, 0) = ∇V (θ),

so we deduce that (θ, p) is a critical point of XE if and only if p = 0 and ∇V (θ) = 0.
Rewriting (4.9.5) as

(4.9.29) V (θ) = −(m1 +m2)gℓ1 cos θ1 −m2gℓ2 cos θ2,

we see that

(4.9.30) ∇V (θ) =

(
(m1 +m2)gℓ1 sin θ1

m2gℓ2 sin θ2

)
,

so the critical points of V consist of θ1 = jπ, θ2 = kπ, j, k ∈ Z. In summary, the
critical points of XE consist of

(4.9.31) (θ1, θ2, p1, p2) = (jπ, kπ, 0, 0), j, k ∈ Z.

Towards the goal of understanding the behavior ofXE near these critical points,
we examine its derivative. We have

(4.9.32) DXE(θ, 0) =

(
0 H(θ)

−D2V (θ) 0

)
.

The matrix H(θ) is positive definite for all θ, and in particular, since sin jπ = 0
and cos jπ = (−1)j ,

(4.9.33) H(jπ, kπ) =
1

m1m2ℓ21ℓ
2
2

(
m2ℓ

2
2 (−1)j−k+1m2ℓ1ℓ2

(−1)j−k+1m2ℓ1ℓ2 (m1 +m2)ℓ
2
1

)
.

Also,

(4.9.34) D2V (jπ, kπ) =

(
(−1)j(m1 +m2)gℓ1 0

0 (−1)km2gℓ2

)
.

We are set up to examine the linearization of the flow generated by XE at the
critical points. This will be pursued, in a more general setting, in the next section.
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Exercises

1. Pass to the limit m2 → 0 in the double pendulum system (4.9.15)–(4.9.16) and
derive the limiting system

(4.9.35)

θ′′1 +
g

ℓ1
sin θ1 = 0,

θ′′2 +
ℓ1
ℓ2

d

dt

[
θ′1 cos(θ1 − θ2)

]
=
ℓ1
ℓ2
θ′1θ

′
2 sin(θ1 − θ2)−

g

ℓ2
sin θ2.

2. Recall the spherical pendulum, introduced in Exercise 5 of §4.7. Derive equations
of motion for a double spherical pendulum.

3. Instead of assuming all the mass of rods 1 and 2 is concentrated at an end,
assume that rod j has mass distribution mj(s) ds, 0 ≤ s ≤ ℓj , so the total mass

of rod j is mj =
∫ ℓj
0
mj(s) ds, j = 1, 2. Obtain formulas for the potential and

kinetic energy, replacing (4.9.5) and (4.9.6), and then obtain equations of motion,
replacing (4.9.15)–(4.9.16).
Note. See Exercise 16 in §4.7 to get started.
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4.10. Momentum-quadratic Hamiltonian systems

Most of the Lagrangians arising in the last three sections have been of the form

(4.10.1) L(x, v) =
1

2
v ·G(x)v − V (x),

for x ∈ Ω ⊂ Rn, v ∈ Rn, where G(x) ∈ M(n,R) is symmetric and invertible,
in fact positive definite, but for awhile we will work in this more general setting.
As exercises in §4.7 have revealed, making the change of variables (x, v) 7→ (x, p)
with p = G(x)v, one can convert the Lagrange system of differential equations to
Hamiltonian form,

(4.10.2)
dxk
dt

=
∂E
∂pk

,
dpk
dt

= − ∂E
∂xk

,

where

(4.10.3) E(x, p) = 1

2
p ·H(x)p+ V (x), H(x) = G(x)−1.

We call such systems momentum-quadratic Hamiltonian systems. Note thatH(x) is
also symmetric and invertible, and furthermore positive definite ifG(x) is. Solutions
of (4.10.2) are orbits of the flow generated by the Hamiltonian vector field

(4.10.4)

XE(x, p) = −J∇x,pE(x, p)

=

(
0 I
−I 0

)(
∇xE
∇pE

)
=

(
∇pE
−∇xE

)
.

Here, I ∈ M(n,R) is the identity matrix, and J ∈ M(2n,R) is defined by the
second identity in (4.10.4).

We record some general results about the critical points of such fields, and their
linearizations. To begin, the critical points of XE coincide with the critical points
of E . Note that

(4.10.5) ∇pE(x, p) = H(x)p,

so, since H(x) is invertible, we see that if E has a critical point at (x, p), then p = 0.
Now

(4.10.6) ∇xE(x, 0) = ∇V (x),

so we deduce that the critical points of XE consist of

(4.10.7) {(x, 0) : ∇V (x) = 0}.

We next look at the linearization (cf. (4.3.39)) of XE at a critical point (x0, 0),
given by

(4.10.8) DXE(x0, 0) =

(
0 H(x0)

−D2V (x0) 0

)
.

From here on, we assume H(x0) is positive definite. For notational simplicity, we
set

(4.10.9) H = H(x0), W = D2V (x0), L =

(
0 H

−W 0

)
.
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Then the linearization of (4.10.2) at (x0, 0) is

(4.10.10)
dx

dt
= Hp,

dp

dt
= −Wx.

To analyze the structure of solutions to (4.10.10), it is convenient to directly
tackle the second order system

(4.10.11)
d2x

dt2
= −HWx,

and to do this we bring in the following.

Lemma 4.10.1. Given that H ∈M(n,R) is positive definite, there exists a positive
definite A ∈M(n,R) such that

(4.10.12) H = A2.

Proof. From Chapter 2 we know that Rn has an orthonormal basis {vj} of eigen-
vectors of H, so Hvj = λjvj , 1 ≤ j ≤ n. Each λj is positive, so we can define A

by Avj =
√
λjvj , 1 ≤ j ≤ n. �

If we make the change of variable

(4.10.13) x = Ay,

then (4.10.11) is converted to

(4.10.14) y′′ +AWAy = 0.

Note that W ∈ M(n,R) is symmetric and so is AWA. Also AWA is invertible
if and only if W is. This invertibility is equivalent to the assertion that (x0, 0)
is a nondegenerate critical point of XE . We restrict attention to such cases. The
following result will be useful.

Lemma 4.10.2. Let W ∈M(n,R) be a symmetric matrix, and assume

(4.10.15) W has k positive and n− k negative eigenvalues.

Then so does AWA, when A ∈M(n,R) is positive definite.

Proof. Write Rn = W+ ⊕ W−, where W+ is the linear span of the eigenvectors
of W with positive eigenvalue, W− the linear span of the eigenvectors of W with

negative eigenvalue. Similarly, write Rn = W̃+ ⊕ W̃−, with W replaced by AWA.

The image AW̃+ of W̃+ under A is a linear subspace of Rn, and

(4.10.16) v = Aw ∈ AW̃+ =⇒ v ·Wv = w ·AWAw ≥ 0 =⇒ v ∈ W+.

Thus

(4.10.17) A : W̃+ −→ W+, injectively,

so

(4.10.18) dim W̃+ ≤ dimW+.

A similar argument gives

(4.10.19) dim W̃− ≤ dimW−,

and finishes the proof. �
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To continue, under the hypotheses of Lemma 4.10.2, we have an orthonormal
basis {u1, . . . , un} of Rn such that, with µj ∈ (0,∞),

(4.10.20)
AWAuj = µ2

juj , j ≤ k,

AWAuj = −µ2
juj , j > k.

in such a case, the general solution to (4.10.14) is

(4.10.21)

y(t) =
∑
j≤k

(aj sinµjt+ bj cosµjt)uj

+
∑
j>k

(aje
µjt + bje

−µjt)uj .

Such y(t) leads to

(4.10.22)

(
Ay(t)

A−1y′(t)

)
=

(
x(t)

p(t)

)
= etL

(
v0
v1

)
,

for general v0, v1 ∈ Rn. As a result, we have the following.

Proposition 4.10.3. Under the hypotheses of Lemma 10.2, L, given by (10.9), is
diagonalizable, and its eigenvalues are

(4.10.23)
±iµj for j ≤ k,

±µj for j > k.

Proof. The eigenvalues of L are what appear in the exponents in the matrix co-
efficients of etL. If L were not diagonalizable, some matrix coefficients would also
contain terms of the form tℓetλ, ℓ ≥ 1, where µ = ±iµj or ±µj in (4.10.23),
depending on j. �

A critical point of XE is said to be hyperbolic if all of the eigenvalues of DXE
have nonzero real part. From the analysis above, we have the following.

Proposition 4.10.4. A critical point (x0, 0) of XE is hyperbolic if and only if

(4.10.24) D2V (x0) is negative definite.

If (4.10.24) holds, DXE(x0, 0) has n positive eigenvalues and n negative eigenval-
ues.

Whenever a vector field X (Hamiltonian or not) has a hyperbolic critical point,
say at z0, the phase portrait near z0 for the flow generated by X has a similar
appearance to that for the flow generated by its linearization at z0. This is a gen-
eralization of the two dimensional result mentioned below (4.3.78). See Appendix
4.C for further discussion.

The opposite extreme can also be read off from (4.10.23).

Proposition 4.10.5. At a critical point (x0, 0) of XE , all the eigenvalues of DXE
are purely imaginary if and only if

(4.10.25) D2V (x0) is positive definite.
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Recalling that E(x, p) is given by (4.10.3), we see that (4.10.25) is equivalent
to

(4.10.26) D2E(x0, 0) ∈M(2n,R) is positive definite,

in which case E has a local minimum at (x0, 0).

In case (4.10.25) holds, we can deduce from (4.10.21)–(4.10.22), with k = n,
that the orbits of etL all lie in n-dimensional tori. As for the flow generated by XE
itself, we know that its orbits all lie on level surfaces of E . Near (x, p) = (x0, 0),
these level sets look like (2n − 1)-dimensional spheres in Rn. In case n = 1, these
are closed curves in R2, and indeed the phase portrait for the flow generated by
XE near (x0, 0) looks like that for the flow generated by its linearization. In such
a case, (x0, 0) is a center, discussed in §3. In case n > 1, the orbits of the flow
generated by XE near (x0, 0) do not necessarily lie on n-dimensional tori. The
analysis of this behavior is much more subtle than in the case of hyperbolic critical
points. There will be n-dimensional invariant tori that are invariant under the flow,
arising rather densely near (x0, 0), but the flow generated by XE often has chaotic
behavior on the complement of these tori. Study of this situation is part of the
deep Kolmogorov-Arnold-Moser (KAM) theory. Discussion of this, and references
to further work, can be found in [1], Chapter 8, and [5], Appendices 7–8.

For n ≥ 2, there can be cases intermediate between those covered by Proposi-
tion 4.10.4 and those covered by Proposition 4.10.5.

Proposition 4.10.6. If (x0, 0) is a critical point for XE and

(4.10.27) D2V (x0) has k positive eigenvalues and n− k negative eigenvalues,

then

(4.10.28)
DXE(x0, 0) has 2k imaginary eigenvalues, and

n− k positive, and n− k negative eigenvalues.

In such cases, with k ≥ 1 and n ≥ 2, the phase portrait for the flow generated
by XE near (x0, 0) will generally differ from that of its linearization in important
details, with some exceptions, arising when XE is “integrable.” We refer to the
sources cited above for more on this.

Let us specialize these results to the case of the double pendulum, discussed
in §4.9. There V was given by (4.9.29), and the critical points by (4.9.31), i.e.,
(jπ, kπ, 0, 0), and D2V (jπ, kπ) by (4.9.34). We have

(4.10.29)

j and k even =⇒ D2V (jπ, kπ) positive definite,

j and k odd =⇒ D2V (jπ, kπ) negative definite,

j and k of opposite parity =⇒ D2V (jπ, kπ) indefinite.

In the first case Proposition 4.10.5 applies, in the second case Proposition 4.10.4
applies, and in the third case Proposition 4.10.6 applies, with k = 1 and n− k = 1.
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Exercises

1. Establish analogues of Propositions 4.10.3, 4.10.5, and 4.10.6 in case H is allowed
to be indefinite (nondegenerate), and we assume

(4.10.30) D2V (x0) is either positive definite or negative definite.

Exercises 2–6 deal with the 2× 2 system

(4.10.31)
d2

dt2

(
x

y

)
= −∇x,yV (x, y),

for various functions V . The associated energy function, as in (4.10.3), is

(4.10.32) E(x, y, p, q) = 1

2
(p2 + q2) + V (x, y).

In each case, do the following.
(a) Find all the critical points of E .
(b) Determine the type of each critical point of E .
(c) Determine the behavior of the eigenvalues of DXE at each such critical point
(via Proposition 4.10.6).

2. Take
V (x, y) = (cosx)(cos y).

3. Take
V (x, y) = x2 + xy + y4.

4. Take
V (x, y) = x4 + xy + y4.

5. Take
V (x, y) = x4 − xy + y4.

6. Take
V (x, y) = x4 − x2y + y4.

7. Do analogues of Exercises 2–6 with (4.10.32) replaced by

(4.10.33) E(x, y, p, q) = 1

2
(p2 − q2) + V (x, y).

Now Proposition 4.10.6 will not apply, but Exercise 1 might (or might not).
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4.11. Numerical study – difference schemes

We describe some ways of numerically approximating the solution to a system of
differential equations

(4.11.1)
dx

dt
= F (x), x(t0) = x0.

Higher order systems can be transformed to first order systems and treated by these
methods, which are known as difference schemes.

To start, we pick a time step h and attempt an approximation to the solution
to (4.11.1) at times t0 + nh:

(4.11.2) xn ≈ x(t0 + nh).

Noting that a smooth solution to (4.11.1) satisfies

(4.11.3)
x(t+ h) = x(t) + hx′(t) +O(h2)

= x(t) + hF (x(t)) +O(h2),

we have the following crude difference scheme:

(4.11.4) xn+1 = xn + hF (xn).

This is said to be first order accurate, meaning that over an interval of unit length
one carries out 1/h such operations, each with error O(h2), giving an accumulated
error O(h), i.e., on the order of h to the first power. This method of approximating
the solution x(t) is often called the Euler method, though considering what a great
master of computation Euler was, it is hard to believe he actually took it seri-
ously. Shortly we will present a fourth order accurate method, which is generally
satisfactory, after describing some second order accurate methods.

These better difference schemes will be suggested by higher order accurate
methods of numerical integration. The connection between the two comes from
rewriting (4.11.1) as

(4.11.5) x(t+ h) = x(t) +

∫ h

0

F (x(t+ s)) ds.

Consider methods of approximating

(4.11.6)

∫ h

0

g(s) ds

better than hg(0) +O(h2), for smooth g. Two simple improvements are

(4.11.7)
h

2

[
g(0) + g(h)

]
+O(h3),

the trapezoidal method, and

(4.11.8) hg
(h
2

)
+O(h3),

the midpoint method. These lead respectively to

(4.11.9) x(t+ h) = x(t) +
h

2

[
F (x(t)) + F (x(t+ h))

]
+O(h3)
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and

(4.11.10) x(t+ h) = x(t) + hF
(
x
(
t+

h

2

))
+O(h3).

Neither of them immediately converts to an explicit difference scheme, but in
(4.11.9) we can substitute F (X(t + h)) = F

(
X(t) + hF (X(t))

)
+ O(h2) and in

(4.11.10) we can substitute F
(
X(t+ h/2)

)
= F

(
X(t) + (h/2)F (X(t))

)
+O(h2), to

obtain the second order accurate difference schemes

(4.11.11) xn+1 = xn +
h

2

[
F (xn) + F

(
xn + hF (xn)

)]
and

(4.11.12) xn+1 = xn + hF
(
xn +

h

2
F (xn)

)
.

Often (4.11.11) is called Heun’s method and (4.11.12) a modified Euler method.

We now come to the heart of the matter for this section. The Runge-Kutta
scheme for (4.11.1) is specified as follows. The approximation xn to x(t0 + nh) is
given recursively by

(4.11.13) xn+1 = xn +
h

6

(
Kn1 + 2Kn2 + 2Kn3 +Kn4

)
,

where

(4.11.14)

Kn1 = F (xn),

Kn2 = F
(
xn +

1

2
hKn1

)
,

Kn3 = F
(
xn +

1

2
hKn2

)
,

Kn4 = F (xn + hKn3).

This scheme is 4th order accurate. It is one of the most popular and important
difference schemes used for numerical studies of systems of differential equations.
We make some comments about its derivation.

We will consider a method of deriving 4th order accurate difference schemes,
based on Simpson’s formula

(4.11.15)

∫ h

0

g(s) ds =
h

6

(
g
(
0
)
+ 4g

(h
2

)
+ g
(
h
))

+O(h5).

This formula is derived by producing a quadratic polynomial p(s) such that p(s) =
g(s) at s = 0, h/2, and h, and then exactly integrating p(s). The formula can be
verified by rewriting it as

(4.11.16)

∫ h

−h
G(s) ds =

h

3

[
G(−h) + 4G(0) +G(h)

]
+O(h5).

The main part on the right is exact for all odd G(s), and it is also exact for G(s) = 1
and G(s) = s2, so it is exact when G(s) is a polynomial of degree ≤ 3. Making a

power series expansion G(s) =
∑3
j=0 ajs

j +O(s4) then yields (4.11.16).

Now, write the equation (4.11.1) as the integral equation (4.11.5). By (4.11.15),

(4.11.17)

∫ h

0

F (X(t+s)) ds =
h

6

[
F (X(t))+4F

(
X
(
t+
h

2

))
+F (X(t+h))

]
+O(h5).
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We then have as an immediate consequence the following result on producing ac-
curate difference schemes.

Proposition 4.11.1. Suppose the approximation

(4.11.18) x(t+ h) ≈ x(t) + Φ(x(t), h) = X (x(t), h)

produces a jth order accurate difference scheme for the solution to (4.11.1). If
j ≤ 3, then a difference scheme accurate of order j + 1 is given by

(4.11.19) xn+1 = xn +
h

6

[
F (xn) + 4F

(
X
(
xn,

h

2

))
+ F (X (xn, h))

]
.

Furthermore, if x(t+h) ≈ Xℓ(x(t), h) both work in (4.11.18), ℓ = 0, 1, then you can
use

(4.11.20) xn+1 = xn +
h

6

[
F (xn) + 4F

(
X0

(
xn,

h

2

))
+ F (X1(xn, h))

]
.

We apply this to two second order methods derived before:

(4.11.21) X0(xn, h) = xn +
h

2

[
F (xn) + F (xn + hF (xn))

]
, Heun,

and

(4.11.22) X1(xn, h) = xn + hF
(
xn +

h

2
F (xn)

)
, modified Euler.

Thus a third order accurate scheme is produced. The last term in (4.11.19) becomes
(4.11.23)
h

6

[
F (xn) + 4F

(
xn +

h

4

[
F (xn) + F

(
xn +

h

2
F
)])

+ F
(
xn + hF

(
xn +

h

2
F
))]

,

where F = F (xn). In terms of Kn1, Kn2 as defined in (4.11.14), we have

(4.11.24)
h

6

[
Kn1 + 4F

(
xn +

h

4
[Kn1 +Kn2]

)
+ F (xn + hKn2)

]
.

This could be used in a 3rd order accurate scheme, but some simplification of the
middle term is desirable. Note that, for smooth H,

(4.11.25) H
(
x+

1

2
η
)
=

1

2
H(x) +

1

2
H(x+ η) +O(|η|2).

Consequently, as |Kn1 −Kn2| = O(h), by (11.14),

(4.11.26) F
(
xn+

h

4
[Kn1+Kn2]

)
=

1

2
F
(
xn+

h

2
Kn1

)
+

1

2
F
(
xn+

h

2
Kn2

)
+O(h4).

Therefore we have the following.

Proposition 4.11.2. A third order accurate difference scheme for (4.11.1) is given
by

(4.11.27) xn+1 = xn +
h

6
[Kn1 + 2Kn2 + 2Kn3 + Ln4]

where Kn1, Kn2, Kn3 are given by (4.11.14) and

(4.11.28) Ln4 = F (xn + hKn2).
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We can now produce a 4th order accurate difference scheme by applying Propo-
sition 4.11.1 with X (xn, h) defined by (4.11.27). Thus we obtain the difference
scheme.

(4.11.29)
xn+1 = xn +

h

6

{
Kn1 + 4F

(
xn +

h

12
[Kn1 + 2kn2 + 2kn3 + ℓn4]

)
+ F

(
xn +

h

6
[Kn1 + 2Kn2 + 2Kn3 + Ln4]

)}
,

where Knj , Ln4 are as above and

(4.11.30)

kn2 = F
(
xn +

h

4
Kn1

)
,

kn3 = F
(
xn +

h

4
kn2

)
,

ℓn4 = F
(
xn +

h

2
kn2

)
.

This formula is more complicated than the Runge-Kutta formula (4.11.13).
We say no more about how to obtain (4.11.13), which represents a masterpiece of
insight.

We have dealt specifically with autonomous systems in (4.11.1), but a non-
autonomous system

(4.11.31)
dx

dt
= G(t, x), x(t0) = x0,

can be treated similarly, as one can see by writing its autonomous analogue

(4.11.32)
d

dt

(
x

y

)
=

(
G(y, x)

1

)
,

(
x(t0)

y(t0)

)
=

(
x0
t0

)
,

and applying the formulas just derived to (4.11.32).

We move briefly to another class of difference schemes, based on power series.
It derives from the expansion

(4.11.33) x(t+ h) = x(t) + hx′(t) +
h2

2
x′′(t) + · · ·+ hk

k!
x(k)(t) +O(hk+1).

To begin, differentiate (4.11.1), producing

(4.11.34) x′′(t) = F2(x, x
′), F2(x, x

′) = DF (x)x′.

Continue differentiating, getting

(4.11.35) x(j)(t) = Fj(x, x
′, . . . , x(j−1)), j ≤ k.

Then one obtains a difference scheme for an approximation xn to x(t0+nh), of the
form

(4.11.36) xn+1 = xn + hx′n +
h2

2
x′′n + · · ·+ hk

k!
x(k)n ,

where

(4.11.37) x′n = F (xn), x′′n = F2(xn, x
′
n),

and, inductively,

(4.11.38) x(j)n = Fj(xn, x
′
n, . . . , x

(j−1)
n ).
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This difference scheme is kth order accurate. In practice, this is not usually a
good method, because the formulas for Fj tend to become rapidly more complex.
However, in some cases the functions Fj happen not to become very complex, and
then this is a good method.

To mention a couple of examples, first consider the central force problem

(4.11.39)

x′ = v,

y′ = w,

v′ = −x(x2 + y2)−3/2,

w′ = −y(x2 + y2)−3/2.

Here, the power series method is not nearly as convenient as the Runge-Kutta
method. On the other hand, for the pendulum problem, which for g/ℓ = 1 we can
write as

(4.11.40) θ′ = ψ, ψ′ = − sin θ,

we have

(4.11.41)

θ′′ = ψ′, ψ′′ = −ψ cos θ,

θ(3) = ψ′′, ψ(3) = −ψ′ cos θ + ψ2 sin θ,

θ(4) = ψ(3), ψ(4) = −ψ′′ cos θ + 3ψ′ψ sin θ + ψ3 cos θ,

from which one can get a workable fourth order difference scheme of the form
(4.11.36)–(4.11.38).

There are other classes of difference schemes, such as “predictor-corrector”
methods, which we will not discuss here. More about this can be found in numerical
analysis texts, such as [7] and [39].

Readers with a working knowledge of a general purpose computer program-
ming language, such as FORTRAN or C, will find it interesting to implement the
Runge-Kutta method on a variety of systems of differential equations, including
(4.11.39) and (4.11.40). Be sure to use double precision arithmetic, which makes
computations to 16 digits of accuracy. Alternatively, specialized programming tools
such as MATLAB and Mathematica can be used. These tools have built-in graphics
capability, with which one can produce phase portraits, and they also have built-
in differential equation solvers, whose output one can compare with the output
from one’s own program. Useful literature on these latter tools for the study of
differential equations can be found in [37] and [13].

When running such programs, pay attention to the way solutions behave when
the step size h is changed. As a rule of thumb, if the solution does not change
appreciably when the step size is halved, the solution is accurate. To be sure, there
is frequently more to obtaining accurate solutions than just choosing a small step
size. In many cases, various stability issues arise. One such case is discussed in
Appendix 4.H, concerning an instability for geodesic equations, arising in §4.7, and
how to handle it.

For more on such matters, we recommend numerical analysis texts, such as
cited above, and of course we also recommend lots of practice on various systems
of differential equations.
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Exercises

The following exercises are for readers who can use a programming language.

1. Write a program to apply the Runge-Kutta method to the pendulum problem
(4.11.40).

2. Write a program to apply the power series method described in (4.11.33)–
(4.11.38) to (4.11.40). Produce a fourth order accurate method.

3. Consider applying the Runge-Kutta scheme to the problem of motion in a planar
force field,

(4.11.42) x′′ = f(x, y), y′′ = g(x, y),

which can be written as the first order system

(4.11.43)
x′ = v, v′ = f(x, y),

y′ = w, w′ = g(x, y).

Show that (4.11.13)–(4.11.14) in this context become

(4.11.44)

x 7→ x+
h

6
(v + 2v2 + 2v3 + v4),

y 7→ y +
h

6
(w + 2w2 + 2w3 + w4),

v 7→ v +
h

6
(a1 + 2a2 + 2a3 + a4),

w 7→ w +
h

6
(b1 + 2b2 + 2b3 + b4),

where aj , bj , vj , and wj are computed as follows. First,

(4.11.45) a1 = f(x, y), b1 = g(x, y);

then

(4.11.46)
x2 = x+

h

2
v, y2 = y +

h

2
w,

v2 = v +
h

2
a1, w2 = w +

h

2
b1,

and

(4.11.47) a2 = f(x2, y2), b2 = g(x2, y2);

then

(4.11.48)
x3 = x+

h

2
v2, y3 = y +

h

2
w2,

v3 = v +
h

2
a2, w3 = w +

h

2
b2,
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and

(4.11.49) a3 = f(x3, y3), b3 = g(x3, y3);

then

(4.11.50)
x4 = x+ hv3, y4 = y + hw3,

v4 = v + ha3, w4 = w + hb3,

and finally,

(4.11.51) a4 = f(x4, y4), b4 = g(x4, y4).

Write a program to implement this difference scheme. Test it for various functions
f(x, y) and g(x, y). Consider particularly

(4.11.52) f(x, y) = − x

(x2 + y2)3/2
, g(x, y) = − y

(x2 + y2)3/2
,

arising in the Kepler problem, (4.11.39).

4. Extend the scope of Exercise 3 to treat

x′′ = f(x, y, x′, y′), y′′ = g(x, y, x′, y′).

5. Write a program to apply the Runge-Kutta method to the double pendulum
problem (4.9.15)–(4.9.16).
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Figure 4.12.1. Limit cycle

4.12. Limit sets and periodic orbits

Let F be a C1 vector field on an open set O ⊂ Rn, generating the flow Φt. Take
x ∈ O. If Φt(x) is well defined for all t ≥ 0, we define the ω-limit set Lω(x) to
consist of all points

(4.12.1) y ∈ O such that there exist tk ↗ +∞ with Φtk(x) → y.

Similarly, if Φt(x) is well defined for all t ≤ 0, we define the α-limit set Lα(x) to
consist of all points y ∈ O such that there exist tk ↘ −∞ with Φtk(x) → y. Sinks
are ω-limit sets for all nearby points. Other examples of ω-limit sets are pictured
in Figures 4.12.1–4.12.2. In Figure 4.12.1, Lω(x) is a periodic orbit, i.e., for some
T ∈ (0,∞), ΦT (y) = y. In Figure 4.12.2, Lω(x) is a figure eight, containing a
hyperbolic critical point of the vector field. The reader might think up examples
in which Lω(x) contains several hyperbolic critical points.

The next proposition records some general observations about limit sets that
hold in any dimension. Take O ⊂ Rn, F , and Φt as above.

Proposition 4.12.1. Assume that K ⊂ O is a closed, bounded (hence compact)
set in Rn and that Φt(K) ⊂ K for each t > 0. Take x ∈ K. Then

(4.12.2) Lω(x) is a nonempty, compact subset of K,
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Figure 4.12.2. Another limit set

given by

(4.12.3)

Lω(x) =
∩
s∈R+

{Φt(x) : t ≥ s}

=
∩
k∈N

{Φt(x) : t ≥ k}.

We have

(4.12.4) Φt(Lω(x)) = Lω(x), ∀ t ≥ 0,

and hence

(4.12.5) Φt : Lω(x) −→ Lω(x), ∀ t ∈ R.

Furthermore,

(4.12.6) y ∈ Lω(x) =⇒ Lω(y) ⊂ Lω(x).

Proof. The result (4.12.3) is a straightforward consequence of the definition of
Lω(x). The fact that this set is nonempty follows from Proposition 4.B.6, in Ap-
pendix 4.B. The results (4.12.4)–(4.12.6) are left as exercises. �

We now specialize to planar vector fields, where ω-limit sets tend to have rather
special properties. The following result, characterizing ω-limit sets without critical
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points in planar regions (under a few additional hypotheses), is called the Poincaré-
Bendixson theorem.

Theorem 4.12.2. Let O be a planar domain, and let F generate a flow Φt on O.
Assume there is a compact set K ⊂ O that satisfies Φt(K) ⊂ K for all t > 0. Take
x ∈ K. If Lω(x) contains no critical point of F , then it is a periodic orbit of Φ.

An important ingredient in the proof of the Poincaré-Bendixson theorem is the
following classical result about closed curves in the plane.

Jordan Curve Theorem. Let C be a simple closed curve in R2, i.e., a continuous,
one-to-one image of the unit circle. Then R2 \ C consists of two connected pieces.
Any curve from a point in one of these pieces to a point in the other must cross C.

We will not present a proof of the Jordan curve theorem. Proofs can be found
in [14], §18, and in [32]. We do mention that actually we will need this result
only for piecewise smooth simple closed curves, where a simpler proof exists; see
[42], pp. 34–40, [45], Chapter 1, §19, or [50], §5.3. The ability of a simple closed
curve to separate Rn fails for n ≥ 3, which makes the Poincaré-Bendixson theorem
an essentially two-dimensional result. Examples discussed in §4.15 illustrate how
much more complex matters can be in higher dimension.

To tackle Theorem 4.12.2, first note that the hypotheses imply Lω(x) is a
nonempty subset of K. Let y ∈ Lω(x), and say

(4.12.7) yk = Φtk(x), tk ↗ +∞, yk → y.

We have F (y) ̸= 0. Let Γ be a smooth curve segment in O, containing y, such that
the tangent to Γ at y is linearly independent of F (y). Shrinking Γ if necessary, we
can assume that for each z ∈ Γ, the tangent to Γ at z is linearly independent of
F (z). We say F is transverse to Γ; cf. Figure 4.12.3.

With yk as in (4.12.7), we can assume all yk are sufficiently close to y to lie in orbits
through Γ, and adjusting each tk as needed, we can take

(4.12.8) yk ∈ Γ, ∀ k.
At this point, is is useful to revise the list {tk} slightly. Let t1 ∈ R+, y1 = Φt1(x) be
as above. Now let tk ↗ +∞ denote all the successive times when Φt(x) intersects
Γ, so we may be adding times to the set denoted tk in (4.12.7). Shortly we will
show that (4.12.7) continues to hold for this expanded set of points yk = Φtk(x).
First, we make the following useful observation.

Lemma 4.12.3. With tj < tj+1 < tj+2 as above,

(4.12.9) yj+1 lies between yj and yj+2 on Γ.

Proof. Consider the curve Cj starting at yj , running to yj+1 along Φt(x), tj ≤
t ≤ tj+1, and returning to yj along Γ. Cf. Figure 4.12.4. This is a simple closed
curve, and the Jordan curve theorem applies.

Now for s and σ small and positive, and z ∈ Γ, not on the opposite side of yj+1

from yj , we have Φs(yj+1) = Φtj+s(x) and Φ−σ(z) in the two different connected
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Figure 4.12.3. Curve transverse to orbits of Φt

components of R2 \ Cj . Since {Φs(yj+1) : s ≥ 0} cannot cross Cj at any point but
a point in Γ, we must have

Φ−σ(yj+2) = Φtj+2−σ(x)

in the opposite component of R2 \ Cj from that containing such Φ−σ(z), so yj+2

must be on the opposite side of yj+1 from yj in Γ. �

Having Lemma 4.12.3, we see that the expanded set of points {yk} ⊂ Γ inter-
laces the original set, so (4.12.7) continues to hold. We see that the convergence
of yk to y is monotone on Γ. If by chance some yj = y, then yk = y for all k ≥ j.
Otherwise, all the points yk lie on the same side of y, i.e., on the same connected
component of Γ \ {y}.

The main thing we need to establish to prove Theorem 4.12.2 is that the orbit
through y is periodic. The next result takes us closer to that goal.

Lemma 4.12.4. Suppose s > 0 and Φs(y) ∈ Γ. Then Φs(y) = y.

Proof. We have

(4.12.10) sup
0≤t≤s+1

∥Φt(yk)− Φt(y)∥ = εk → 0, as k → ∞.

It follows that there exist δk → 0 such that Φs+δk(yk) ∈ Γ, and hence

(4.12.11) Φs+δk(yk) = yk+ℓ(k), for some ℓ(k) ∈ {1, 2, 3, . . . }.
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Figure 4.12.4. Orbit of Φt

Thus

(4.12.12) Φs(y) = lim
k→∞

Φs+δk(yk) = lim
k→∞

yk+ℓ(k) = y,

as asserted. �

We are ready for the endgame in the proof of Theorem 4.12.2. Let sj ↗ +∞
and consider zj = Φsj (y). We have each zj ∈ K, and passing to a subsequence, we
can assume

(4.12.13) zj = Φsj (y) −→ z ∈ K.

We have F (z) ̸= 0, so there is a curve segment Γ̃ through z, transverse to F .
Adjusting sj , we can arrange

(4.12.14) zj ∈ Γ̃j .

We need only two such points in such a curve Γ̃; say, upon relabeling,

(4.12.15) z1 = Φs1(y), z2 = Φs2(y) = Φs2−s1(z1) ∈ Γ̃.

See Figure 4.12.5.

Note that

(4.12.16) Φtk+s1(x) −→ z1,
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Figure 4.12.5. March of zj = Φsj (y) → z

so we can use the previous results, with tk replaced by tk + s1 and y by z1, and Γ

by Γ̃. In this case, the analogue of the hypothesis in Lemma 4.12.4 applies:

(4.12.17) s2 − s1 > 0, Φs2−s1(z1) ∈ Γ̃.

The conclusion of Lemma 4.12.4 is

(4.12.18) Φs2−s1(z1) = z1,

i.e., actually z2 = z1. (The same argument gives zj+1 = zj for all j, so actually
z1 = z.)

Thus the orbit of Φ through y is periodic, of period s = s2−s1. Since y ∈ Lω(x),
it follows that this periodic orbit is contained in Lω(x).

Note that if Φs(y) = y, then we can apply (4.12.11) to deduce that the times
tk arising in Φtk(x) = yk satisfy

(4.12.19) lim sup
k→∞

(tk+1 − tk) ≤ s.

The last point to cover in the proof of Theorem 4.12.2 is that the periodic orbit
through y contains all of Lω(x). Indeed, let ỹ be another point in Lω(x). We have

(4.12.20) Φτj (x) −→ ỹ, τj ↗ +∞.
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Using (4.12.19), we can write τj = tk + σk, 0 ≤ σk ≤ s + 1, and passing to a
subsequence obtain

(4.12.21) Φτj (x) = Φσk(yk) −→ Φσ(y),

hence ỹ = Φσ(y). This completes the proof of Theorem 4.12.2. �

The following equation, known as the van der Pol equation, illustrates the
workings of Theorem 4.12.2. The equation is

(4.12.22) x′′ − µ(1− x2)x′ + x = 0.

Here µ is a positive parameter. This models the current in a nonlinear circuit that
amplifies a weak current (|x| < 1) and damps a strong current (|x| > 1). See the
exercises for more on this. The equation (4.12.22) converts to the first order system

(4.12.23) x′ = y, y′ = −x+ µ(1− x2)y.

Figure 4.12.6 is a phase portrait for the case µ = 1. The vector field F associated
with (4.12.23) has one critical point, at the origin. The linearization of (4.12.23)
at the origin is

(4.12.24)
d

dt

(
ξ

η

)
=

(
0 1
−1 µ

)(
ξ

η

)
,

and the eigenvalues of this matrix are

(4.12.25)
µ

2
± 1

2

√
µ2 − 4.

Thus the origin is a source whenever µ > 0. It is a spiral source provided also
µ < 2. Note that when (x(t), y(t)) solves (4.12.23),

(4.12.26)
d

dt
(x2 + y2) = 2µ(1− x2)y2,

which is ≥ 0 for |x| ≤ 1, and in particular is ≥ 0 near the origin.

An examination of Figure 4.12.6 indicates the presence of a periodic orbit,
attracting all the other orbits. Let us see how this fits into the set-up of Theorem
4.12.2. To do this, we need to describe a closed bounded set K ⊂ R2 such that
Φt(K) ⊂ K for all t > 0, where Φt is the flow generated by F , and such that F has
no critical points in K. We construct K as follows. Look at the orbit of F starting
at the point A on the positive y-axis, shown in Figure 4.12.6 and again in Figure
4.12.7.

A numerical integration of (4.12.23) (using the Runge-Kutta scheme) shows that

(4.12.27)

Φt(A) winds clockwise about the origin,

and again hits the positive y-axis

at the point B, lying below A.

To this path from A to B, one adds the line segment (on the y-axis) from B to A,
producing a simple closed curve C. It follows readily from (4.12.23) that on this line
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Figure 4.12.6. Van der Pol limit cycle

segment the vector field F points to the right. Thus the closed region K̃ bounded
by this curve has the invariance property

(4.12.28) Φt(K̃) ⊂ K̃, ∀ t ≥ 0.

We then pick ε > 0 small enough (in particular < 1), and set

(4.12.29) K = K̃ \ {(x, y) : x2 + y2 < ε2}.

The fact that

(4.12.30) Φt(K) ⊂ K, ∀ t ≥ 0

follows from (4.12.28) and (4.12.26). We have removed the only critical point of F ,
so K contains no critical points, and Theorem 4.12.2 applies.

It must be said that the validity of the argument just given relies on the accuracy
of the statement (4.12.27) about the orbit through A. Here we have relied on
a numerical approximation to that orbit. We applied the Runge-Kutta scheme,
described in §4.11, with step sizes h = 10−2, 10−3, and 10−4, using double precision
(16 digit) variables, and got consistent results in all three cases. The last case
involves quite a small step size, and if one were to use 8 digit arithmetic, there
could be a danger of accumulating truncation errors. In any case, with today’s
computers there is no point in using 8 digit arithmetic.

Theorem 4.12.2 is a special case of the following result.
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Figure 4.12.7. Van der Pol orbit

Bendixson’s Theorem. Let F be a C1 vector field on O ⊂ R2, generating a
flow Φt. Assume there is a set K ⊂ O that is a closed, bounded subset of R2 and
satisfies Φt(K) ⊂ K for all t > 0. Assume F has at most finitely many critical
points in K. Then if x ∈ K, Lω(x) is one of the following:
(a) a critical point,
(b) a periodic orbit,
(c) a cyclic graph consisting of critical points joined by orbits.

A proof can be found in [10], Chapter 16, or in [29], Chapter 10. Note that
alternative (c) is illustrated in Figure 4.12.2. We emphasize that both this result
and Theorem 4.12.2 are results for planar vetor fields. In higher dimension, matters
are completely different, as we will discuss in §4.15.

We recall a device already used to deal with alternative (a), and develop it a
little further. Suppose F is a C1 vector field on O ⊂ Rn, and there is a function
V ∈ C1(O). Assume V has a unique minimum, at p ∈ K. If x(t) = Φt(x0), then,
by the chain rule,

(4.12.31)
d

dt
V (x(t)) = ∇V (x(t)) · F (x(t)).
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If also V has the property

(4.12.32) ∇V (y) · F (y) < 0, ∀ y ∈ O \ p,
we say V is a strong Lyapunov function for F . In such a case,

(4.12.33)
d

dt
V (x(t)) < 0, whenever x(t) ̸= p.

If we replace (4.12.32) by the weaker property

(4.12.34) ∇V (y) · F (y) ≤ 0, ∀ y ∈ O,
we say V is a Lyapunov function for F . In such a case,

(4.12.35)
d

dt
V (x(t)) ≤ 0, ∀ t ≥ 0.

Thus, as t ↗ +∞, V (x(t)) monotonically approaches a limit, V0, which must be
≥ V (p), and furthermore,

(4.12.36) lim
t→+∞

d

dt
V (x(t)) = 0.

This has the following immediate consequence.

Proposition 4.12.5. Let F be a C1 vector field on O ⊂ Rn, generating a flow Φt.
Assume there is a set K ⊂ O that is a closed, bounded subset of Rn and satisfies
Φt(K) ⊂ K for all t > 0. Take x0 ∈ K. Assume V ∈ C1(O) is a Lyapunov
function for F . Then

(4.12.37) Lω(x0) ⊂ {y ∈ O : ∇V (y) · F (y) = 0}.
If V is a strong Lyapunov function, then

(4.12.38) Lω(x0) = {p}.

Exercises

1. Let O ⊂ Rn be open and Ω ⊂ O a closed bounded set with smooth boundary
∂Ω, with outward pointing normal n. Let F be a C1 vector field on O, generating
the flow Φt. Assume

(4.12.39) F · n ≤ 0 on ∂Ω.

Show that

(4.12.40) Φt(Ω) ⊂ Ω, ∀ t ≥ 0.

Compare Exercises 4–5 of §4.3.

2. In the setting of Exercise 1, show that

(4.12.41) Φt(Ω) ⊂ Φs(Ω) for 0 < s < t.

Set

(4.12.42) B =
∩
t∈R+

Φt(Ω) =
∩
k∈Z+

Φk(Ω).
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Show that

(4.12.43) Φt(B) = B, ∀ t ≥ 0.

Remark. It can be shown from material in Appendix 4.B that B is nonempty,
closed, and bounded.

3. In the setting of Exercise 2, show that

(4.12.44) ∀x ∈ Ω, Lω(x) ⊂ B.

4. In the setting of Exercise 2, show that

(4.12.45) divF < 0 on Ω =⇒ Vol(B) = 0.

5. In the setting of Exercise 4, assume that n = 2, that Ω ⊂ R2 is an annulus, and
that F has no critical points in Ω, so by Theorem 4.12.2 there is a periodic orbit
of Φ in Ω. Show that, due to (4.12.45), there can be only one periodic orbit of Φ
in Ω.
Hint. Feel free to use the Jordan Curve Theorem.

Exercises 6–8 deal with a nonlinear RLC circuit, as pictured in Figure 4.12.8. The
setup is as in §1.13 of Chapter 1 (see also Chapter 3, §3.5), except that Ohm’s law
is modified. The voltage drop across the “resistor” is given by

(4.12.46) V = f(I),

where f can be nonlinear, and not necessarily monotonic. As an example, one could
have

(4.12.47) f(I) = µ
(1
3
I3 − I

)
.

Vacuum tubes and transistors can behave as such circuit elements. The voltage
drop across the capacitor and the inductor are, as before, given respectively by

(4.12.48) V = L
dI

dt
, V =

Q

C
.

Units of current, etc., are as in §1.13 of Chapter 1.

6. Modify the computations done in (1.14.1)–(1.14.7) of Chapter 1 and show that
the current I(t) satisfies the differential equation

(4.12.49)
d2I

dt2
+
f ′(I)

L

dI

dt
+

1

LC
I =

E′(t)

L
.

Show that rescaling I and t leads to (4.12.23), when f(I) is given by (4.12.47) and
E ≡ 0. More generally, rescale (4.12.49) to

(4.12.50)
d2x

dt2
+ f ′(x)

dx

dt
+ x = g(t).
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Figure 4.12.8. RLC circuit with nonlinear resistance

7. Assume g ≡ 0 in (4.12.50). Parallel to (4.12.23), one can convert this equation
to the first order system

x′ = y, y′ = −x− f ′(x)y.

Show that you can also convert it to the first order system

(4.12.51)

dx

dt
= y − f(x),

dy

dt
= −x.

This is called a Lienard equation.

8. Show that if (x(t), y(t)) solves (4.12.51), then

(4.12.52)
d

dt
(x2 + y2) = −2xf(x).
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4.13. Predator-prey equations

Here and in the following section we consider differential equations that model pop-
ulation densities. We start with one species. The simplest model is the exponential
growth model:

(4.13.1)
dx

dt
= ax.

Here x(t) denotes the population of the species (or rather, an approximation to
what would be an integer valued function). The model simply states that the rate
of growth of the population is proportional to the population itself. The solution
to (4.13.1) is our old friend x(t) = eatx(0). This unbounded increase in population
is predicated on the existence of limitless resources to nourish the species. An
alternative to (4.13.1) posits that the resources can support a population no greater
than K. The following is called the logistic equation:

(4.13.2)
dx

dt
= ax(1− bx),

where b = 1/K. In this model, (4.13.1) is a good approximation for small x, but
the rate of growth slows down to 0 as x approaches its upper limit K. The equation
(4.13.2) can be solved by separation of variables:

(4.13.3)
dx

x(1− bx)
= a dt.

The reader can perform the integration as an exercise.

The function F (x) = ax(1−bx) on the right side of (4.13.2) is a one-dimensional
vector field, with critical points at x = 0 and x = 1/b. The intervals (−∞, 0), (0, 1/b),
and (1/b,∞) are all invariant under the flow generated by F , although only the
interval (0, 1/b) has biological relevance. See Figure 4.13.1 for the “phase portrait.”

We turn to a class of 2× 2 systems called “predator-prey” equations. For this,
we set

(4.13.4)

x(t) = population of predators,

y(t) = population of prey,

ζ(y) = rate at which each predator consumes prey.

Depending on the choice of the exponential growth model or the logistic model for
the species of prey in the absence of predators, the following systems arise to model
these populations:

(4.13.5)

dx

dt
= −ax+ bζx,

dy

dt
= ry − ζx,

or

(4.13.6)

dx

dt
= −ax+ bζx,

dy

dt
= ry(1− cy)− ζx.
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Figure 4.13.1. Phase portrait for logistic equation

Here, a, b, c, and r are positive constants. As for the rate of feeding z, we assume

(4.13.7) ζ = ζ(y).

Clearly if y = 0 then ζ = 0. One possibility that is used is

(4.13.8) ζ(y) = κy,

for some positive constant κ. This posits that the rate of feeding of a predator
is proportional to the rate of close encounters of that predator with members of
the other species, which in turn is proportional to the population y. This seems
intuitively reasonable if y is not large, but most creatures stop eating once they are
full, so a more reasonable candidate for ζ(y) might be as pictured in Figure 4.13.2,
representing a feeding rate bounded by β.

A class of functions of this sort is given by

(4.13.9) ζ(y) =
κy

1 + γy
,

κ

γ
= β.

Another class is

(4.13.10) ζ(y) = β(1− e−γy), βγ = κ.

Let us examine various cases in more detail.
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Figure 4.13.2. Rate of feeding curve for predator-prey system

Volterra-Lotka equations

The case (4.13.5) with ζ given by (4.13.8) produces systems called Volterra-
Lotka equations:

(4.13.11)

dx

dt
= −ax+ σxy, σ = bκ,

dy

dt
= ry − κxy.

Note that the x-axis and y-axis are invariant under the flow defined by this system.
We have x′ = −ax on the x-axis and y′ = ry on the y-axis. It follows that the
first quadrant, where x ≥ 0 and y ≥ 0, is invariant under the flow. This is the
region in the (x, y)-plane of biological significance. The vector field V (x, y) =
(−ax+ σxy, ry − κxy)t has two critical points. One is the origin. Note that

(4.13.12) DV (0, 0) =

(
−a 0
0 r

)
,

so the origin is a saddle. The other critical point is

(4.13.13) (x0, y0) =
( r
κ
,
a

σ

)
.
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Note that

(4.13.14) DV (x0, y0) =

(
0 σx0

−κy0 0

)
,

with purely imaginary eigenvalues, so we have a center for the linearization of V at
(x0, y0). In fact, (x0, y0) is a center for V , as we now show.

From (4.13.11) we get

(4.13.15)
dy

dx
=
y(r − κx)

x(σy − a)
,

which separates to

(4.13.16)
(
σ − a

y

)
dy =

( r
x
− κ
)
dx.

Integrating yields

(4.13.17) σy − a log y = r log x− κx+ C.

We deduce that the following smooth function on the region x, y > 0,

(4.13.18) H(x, y) = σy − a log y + κx− r log x,

is constant on orbits of (4.13.11), i.e., these orbits lie on level curves of H. Note
that

(4.13.19) ∇H(x, y) =

(
κ− r

x

σ − a
y

)
, D2H(x, y) =

( r
x2 0
0 a

y2

)
,

hence, with (x0, y0) as in (4.13.13),

(4.13.20) ∇H(x0, y0) = 0, D2H(x0, y0) =

(
r
x2
0

0

0 a
y20

)
,

the latter matrix being positive definite, so H has a minimum at (x0, y0), which
implies that (x0, y0) is a center for V . The phase portrait for orbits of (4.13.11) is
pictured in Figure 4.13.3.

The system (4.13.11) was studied independently by Lotka and Volterra around
1925, by Lotka as a model of some chemical reactions and by Volterra as a predator-
prey model, specifically for sharks preying on another species of fish. Volterra made
the following further observation. Bring in another type of predator, fishermen.
Assume the fishermen keep everything they catch and that the probability of getting
caught in their nets is the same for sharks and their prey. Then the system (4.13.11)
gets revised to

(4.13.21)

dx

dt
= −ax+ σxy − ex,

dy

dt
= ry − κxy − ey.

Now (4.13.21) has the same form as (4.13.11), with a replaced by a+ e and with r
replaced by r − e, all these constants remaining positive as long as

(4.13.22) 0 < e < r.
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Figure 4.13.3. Phase portrait for Volterra-Lotka system

Then the previous analysis applies. The system (4.13.21) has a stable critical point
at

(4.13.23) (x1, y1) =
(r − e

κ
,
a+ e

σ

)
.

Note that at this critical point there are fewer sharks and more prey, compared to
(4.13.13). Of course, this depends on the hypothesis (4.13.22). If e > r, things are
catastrophically different.

First modification

We turn from Volterra-Lotka equations to predator-prey models given by (4.13.6),
still keeping (4.13.8). Then we have the following system:

(4.13.24)

dx

dt
= −ax+ σxy, σ = bκ,

dy

dt
= ry(1− cy)− κxy.

As with (4.13.11), the x-axis and y-axis are invariant under the flow defined by this
system. We have x′ = −ax on the x-axis and y′ = ry(1− cy) on the y-axis. Again,
the first quadrant (x ≥ 0, y ≥ 0) is invariant under the flow. Note furthermore
that, for

(4.13.25) V (x, y) = (−ax+ σxy, ry(1− cy)− κxy)t,
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we have

(4.13.26) V
(
x,

1

c

)
=
((σ

c
− a
)
x,−κ

c
x
)t
,

which points downward for x > 0. It follows that

(4.13.27) R =
{
(x, y) : x ≥ 0, 0 ≤ y ≤ 1

c

}
is invariant under this flow. It is this region in the (x, y)-plane that is of biological
significance.

To proceed, we find the critical points of V (x, y), given by (4.13.25). Two of
these are

(4.13.28) (0, 0) and
(
0,

1

c

)
.

DV (0, 0) is again given by (4.13.12), so (0, 0) is a saddle. Also,

(4.13.29) DV
(
0,

1

c

)
=

(
−a+ σ

c 0
−κ
c −r

)
.

V has a third critical point, at

(4.13.30) y0 =
a

σ
, x0 =

r

κ

(
1− ca

σ

)
=

rc

κσ

(σ
c
− a
)
.

Note how this point is shifted to the left from the point (4.13.13). There are three
cases to consider.

Case I. σ/c− a < 0.
In this case, the critical point (4.13.30) is not in the first quadrant, so V has only the
critical points (4.13.28) in R. In this case (4.13.29) has two negative eigenvalues,
so the critical point (0, 1/c) is a sink. Note that the x-component of V (x, y) is

(4.13.31) x(σy − a) ≤ x
(σ
c
− a
)
, for x ≥ 0, y ≤ 1

c
,

so V points to the left everywhere in R except the left edge. Consequently, the
population of predators is driven to extinction as t → +∞, whatever the initial
condition.

Case II. σ/c− a > 0.
In this case the third critical point (x0, y0) is in the first quadrant. In fact, y0 =
a/σ < 1/c, so (x0, y0) ∈ R. Now (4.13.29) has one positive and one negative
eigenvalue, so the critical point (0, 1/c) is a saddle. As for the nature of (x0, y0),
we have

(4.13.32)

DV (x0, y0) =

(
−a+ σy0 σx0
−κy0 r(1− 2cy0)− κx0

)
=

(
0 rc

κ (
σ
c − a)

−κa
σ − rca

σ

)
.
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Note that

(4.13.33)
detDV (x0, y0) =

rca

σ

(σ
c
− a
)
> 0,

TrDV (x0, y0) = −rca
σ

< 0.

It follows that the eigenvalues of DV (x0, y0) are either both negative or have neg-
ative real part. Hence (x0, y0) is a sink.

We claim that the orbit through each point in R not on the x or y-axis ap-
proaches (x0, y0) as t→ +∞. To see this, we construct a Liapunov function. We do
this by modifying H(x, y) in (4.13.18), which has a minimum at the point (4.13.13),
to one that has a minimum at the point (4.13.30). We take

(4.13.34) H̃(x, y) = σy − a log y + κx− r
(
1− ca

σ

)
log x.

If (x(t), y(t)) solves (4.13.24), a computation gives

(4.13.35)
d

dt
H̃(x, y) = −rc

σ
(σy − a)2.

By Proposition 4.12.5, if we take any point p ∈ R, with positive x and y-coordinates

(so it is in the domain of H̃), the ω-limit set of p satisfies

(4.13.36) Lω(p) ⊂
{
(x, y) ∈ R : y =

a

σ

}
.

The right side is a horizontal line to which V is clearly transverse except at the
critical point (x0, y0), so indeed Lω(p) = (x0, y0).

See Figure 4.13.4 for a phase portrait treating Case II.

Case III. σ/c− a = 0.
In this case (x0, y0) = (0, 1/c). In (4.13.29) the eigenvalues are 0 and −r, so (0, 1/c)
is a degenerate critical point. In place of (4.13.31) we have that the x-component
of V (x, y) is

(4.13.37) x(σy − a) ≤ 0, for x ≥ 0, y ≤ 1

c
,

and it is strictly negative for x > 0, y < 1/c. Hence, as in Case I, the population
of predators is driven to extinction as t→ +∞.

Second modification

We now move to the next level of sophistication, using the system (4.13.6) with
ζ = ζ(y), described as in Figure 4.13.2. Thus, we look at systems of the form

(4.13.38)

dx

dt
= −ax+ bxζ(y),

dy

dt
= ry(1− cy)− xζ(y).
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Figure 4.13.4. First modification of Volterra-Lotka system (Case II)

As before, a, b, c, and r are all positive constants. To be precise about what we mean
when we say ζ(y) behaves as in Figure 4.13.2, we make the following hypotheses:

(4.13.39)

(a) ζ : [0,∞) → [0,∞) is smooth,

(b) ζ(0) = 0,

(c) ζ ′(y) > 0, ∀ y ≥ 0,

(d) sup ζ(y) = β <∞,

(e) ζ ′′(y) ≤ 0.

All these conditions are satisfied by the examples (4.13.9) and (4.13.10). Hypothesis
(c) implies ζ is strictly monotone increasing, and hypothesis (e) implies ζ is concave.

In this case, the vector field is

(4.13.40) V (x, y) = (x(bζ(y)− a), ry(1− cy)− xζ(y))t.

Parallel to (4.13.26),

(4.13.41) V
(
x,

1

c

)
=
((
bζ
(1
c

)
− a
)
x,−ζ

(1
c

)
x
)t
,

which points downward for x > 0, and again it follows that the region R, given by
(4.13.27), is invariant under the flow Φt generated by V , for t ≥ 0, and this is the
region in the (x, y)-plane that is of biological significance.
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Next, we find the critical points of V (x, y). Again, two of them are

(0, 0) and
(
0,

1

c

)
,

and again DV (0, 0) is given by (4.13.12), so (0, 0) is a saddle. This time,

(4.13.42) DV
(
0,

1

c

)
=

(
bζ( 1c )− a 0
−ζ( 1c ) −r

)
.

Also, a critical point would occur at (x0, y0) if these coordinates satisfy

(4.13.43) ζ(y0) =
a

b
, x0 =

b

a
ry0(1− cy0).

Under the hypotheses (4.13.39), the first equation in (4.13.43) has a (unique) solu-
tion if and only if

(4.13.44)
a

b
< β.

From here on we will assume (4.13.44) holds, and leave it to the reader to consider
the behavior of the flow when (4.13.44) fails. Given (4.13.44), x0 and y0 are well
defined by (4.13.43). Parallel to the study of (4.13.30), again we have three cases.

Case I. 1− cy0 < 0,
Case II. 1− cy0 > 0,
Case III. 1− cy0 = 0.

In Case I, (x0, y0) is not in the first quadrant, and in Case III, (x0, y0) = (0, 1/c).
Again we leave these cases to the reader to think about. We concentrate on Case
II.

In Case II, x0 > 0 and 0 < y0 < 1/c, so

(4.13.45) (x0, y0) ∈ R.

Given ζ(y0) = a/b and the hypotheses (4.13.39) on ζ, we have

(4.13.46) ζ
(1
c

)
>
a

b
⇐⇒ 1

c
> y0 ⇐⇒ 1− cy0 > 0,

and hence in Case II, DV (0, 1/c) has one positive eigenvalue and one negative
eigenvalue, so

(4.13.47)
(
0,

1

c

)
is a saddle.

(In Case I, the eigenvalues of DV (0, 1/c) are both negative, so (0, 1/c) is a sink,
and in Case III these eigenvalues are 0 and −r.) Next, a computation gives the
following analogue of (4.13.32):

(4.13.48)

DV (x0, y0) =

(
bζ(y0)− a bζ ′(y0)x0
−ζ(y0) r(1− 2cy0)− x0ζ

′(y0)

)
=

(
0 bζ ′(y0)x0
−a
b r(1− 2cy0)− x0ζ

′(y0)

)
,
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and parallel to (4.13.33) we have

(4.13.49)

detDV (x0, y0) = ax0ζ
′(y0) > 0,

TrDV (x0, y0) = r(1− 2cy0)− x0ζ
′(y0)

= r
[
−cy0 + (1− cy0)

{
1− ζ ′(y0)y0

ζ(y0)

}]
.

Let us set

(4.13.50) Z0 = 1− ζ ′(y0)y0
ζ(y0)

.

Given ζ, this is a function of a/b, but it is independent of c and r. Note that, since
ζ(0) = 0,

(4.13.51)
ζ(y0)

y0
= ζ ′(ỹ), for some ỹ ∈ (0, y0),

by the mean value theorem, so the hypotheses on ζ in (4.13.39) imply

(4.13.52) 0 < Z0 < 1.

(Note that in the context of the previous model, with ζ(y) given by (13.8), Z0 = 0.)
We have

(4.13.53) TrDV (x0, y0) = r
[
Z0(1− cy0)− cy0

]
.

This gives rise to three cases.

Case IIA. Z0 < cy0/(1− cy0).
Then TrDV (x0, y0) < 0, so, by (4.13.49),

(4.13.54) (x0, y0) is a sink.

Case IIB. Z0 > cy0/(1− cy0).
Then TrDV (x0, y0) > 0, so, by (4.13.49),

(4.13.55) (x0, y0) is a source.

Case IIC. Z0 = cy0/(1− cy0).
Then TrDV (x0, y0) = 0, so, by (4.13.49), the eigenvalues ofDV (x0, y0) are (nonzero)
purely imaginary numbers. In this case, (x0, y0) is a center for the linearization of
V .

We will concentrate on Cases IIA and IIB. Before pursuing these cases further,
we want to describe a family of bounded domains in R that are invariant under the
flow Φt for t ≥ 0. Namely, consider the triangle Tµ with vertices at (0, 1/c), (0, 0),
and (µ, 0), as pictured in Figure 4.13.5.

Claim. If µ > 0 is large enough, the triangle Tµ is invariant under Φt, for t ≥ 0.

Proof. Note that V is vertical on the left edge of Tµ, with critical points at the
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Figure 4.13.5. Invariant domain

endpoints of this line segment. Also V points horizontally to the left on the bottom
edge of Tµ. It remains to show that V points into Tµ along the line segment from
(0, 1/c) to (µ, 0), provided µ is sufficiently large. This line segment is given by

(4.13.56) x = µ(1− cy), 0 ≤ y ≤ 1

c
,

and the vector

(4.13.57) Nµ =

(
1

µc

)
is normal to this segment, and points away from Tµ. We want to show that V ·Nµ ≤
0 along this line segment, for µ large. Indeed, from (4.13.40),

(4.13.58)
V (µ(1− cy), y) ·Nµ = (1− cy)

[
µ(bζ(y)− a) + µcry − µ2cζ(y)

]
= µ(1− cy)

[
−a+ cry − (µc− b)ζ(y)

]
,

and under the hypotheses (4.13.39) on ζ, this is

(4.13.59) ≤ 0, ∀ y ∈
[
0,

1

c

]
,

if µ is sufficiently large, say µ ≥ µ0. �
A similar computation shows that, if µ1 > µ0, then, for each p ∈ R, Φt(p) ∈ Tµ1

for all sufficiently large t.
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Figure 4.13.6. Second modification of the Volterra-Lotka system (Case IIB)

Back to Cases IIA and IIB, as we have seen, in Case IIA (x0, y0) is a sink. It
is possible to show that

(4.13.60) in Case IIA, Φt(p) −→ (x0, y0), as t→ +∞,

for all p in the interior of R, so the phase portrait has qualitative features similar
to Figure 4.13.4. On the other hand, in Case IIB, (x0, y0) is a source. Hence there
is an open set U containing (x0, y0) such that

(4.13.61) Tµ0
\ U is invariant under Φt, for t ≥ 0.

This region does contain the two critical points (0, 0) and (0, 1/c), on its boundary,
but since they are saddles, the argument used to establish the Poincaré-Bendixson
theorem, Theorem 4.12.2, shows that

(4.13.62) in Case IIB, Lω(p) is a periodic orbit,

for all p ̸= (x0, y0) in the interior of R. The phase portrait is depicted in Figure
4.13.6.
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Exercises

Exercises 1–5 deal with the system (4.13.37), i.e.,

(4.13.63)
x′ = −ax+ bxζ(y),

y′ = ry(1− cy)− xζ(y),

where ζ(y) is given by (4.13.9), i.e.,

(4.13.64) ζ(y) =
κy

1 + γy
,

κ

γ
= β.

As usual, a, b, c, κ, γ, r ∈ (0,∞). The exercises deal with when Cases I–III, specified
below (4.13.44), hold. Recall these cases apply if and only if there is a critical point
(x0, y0) given by (4.13.43), i.e., of and only if

(4.13.65)
a

b
< β =

κ

γ
.

We will assume this holds.

1. Show that the critical point (x0, y0) is given by

(4.13.66) y0 =
a

bκ− aγ
, x0 =

b

a
ry0(1− cy0).

2. Show that
Case I ⇐⇒ ac > bκ− aγ,

Case II ⇐⇒ ac < bκ− aγ,

Case III ⇐⇒ ac = bκ− aγ.

3. Let Z0 be given by (4.13.50), i.e.,

(4.13.67) Z0 = 1− ζ ′(y0)y0
ζ(y0)

.

Show that

(4.13.68) Z0 =
aγ

bκ
.

4. In Case II, recall Cases IIA–IIC, specified below (4.13.53). Show that

Case IIA ⇐⇒ γ

κ
<

c

bκ− aγ − ac
,

Case IIB ⇐⇒ γ

κ
>

c

bκ− aγ − ac
,

Case IIC ⇐⇒ γ

κ
=

c

bκ− aγ − ac
,

5. Let us take

(4.13.69) a = 1, b = 2, κ = 1, γ = 1.
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Note that (4.13.65) holds. Show that

Case I ⇐⇒ c > 1,

Case II ⇐⇒ c < 1,

Case III ⇐⇒ c = 1.

In Case II, show that

Case IIA ⇐⇒ c >
1

3
,

Case IIB ⇐⇒ c <
1

3
,

Case IIC ⇐⇒ c =
1

3
.

Figure 4.13.6 was produced using the parameters in (4.13.69), together with c =
1/4, r = 1.

Exercises 6–10 deal with the system (4.13.63), where ζ(y) is given by (4.13.10), i.e.,

(4.13.70) ζ(y) = β(1− e−γy), βγ = κ.

Again there is a critical point (x0, y0), given by (4.13.43), if and only if (4.13.65)
holds. We assume this holds, so bβ > a.

6. Show that the critical point (x0, y0) is given by

(4.13.71) y0 =
1

γ
log

bβ

bβ − a
, x0 =

b

a
ry0(1− cy0).

7. For Z0, defined by (4.13.67), show that

(4.13.72) Z0 = 1− bβ − a

a
log

bβ

bβ − a
.

8. Parallel to Exercise 2, study when Cases I–III hold.

9. Parallel to Exercise 4, study when Cases IIA–IIC hold.

10. Take a, b, κ,, and γ as in (4.13.69). Work out a parallel to Exercise 5.

For Exercises 11–12, consider the following system, for x predators and y prey,
presented in [44], p. 376:

(4.13.73)
x′ = ax

(
b− x

y

)
,

y′ = ry(1− cy)− xζ(y).

Here the equation for y is as in (4.13.63), modeling the population of prey in terms
of the logistic equation, modified by how fast the prey is eaten. The equation for x
has a different basis, a sort of logistic equation in which the population y determines
the population limit of x, at any given time.
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11. Work out an analysis of the system (4.13.73) as parallel as possible to the
analysis done in this section for (4.13.63).

12. Take ζ(y) as in (4.13.64) and work out results parallel to those of Exercises
1–5.

Exercises 13–15 are for readers who can use numerical software, with graphics
capabilities.

13. The following system is known as the basic model of virus dynamics (cf. [34],
p. 100, [52], p. 26):

(4.13.74)

dx

dt
= λ− dx− βxv,

dy

dt
= βxv − ay,

dv

dt
= ky − uv.

Here, x represents the uninfected cell population, y the infected cell population,
and v the virus population. The positive parameters λ, d, β, a, k, and u are taken
to be constant. The ratio

(4.13.75) R0 =
λβk

adu

is called the basic reproductive ratio. Graph solution curves for (4.13.74), with
various choices of parameters. Account for the assertion that if R0 < 1 the virus
cannot maintain an infection, but if R0 > 1 the system converges to an equilibrium,
in which v > 0.

14. The simplifying assumption that the virus population is proportional to the
infected cell population (say βv = by) leads to the system

(4.13.76)

dx

dt
= λ− dx− bxy,

dy

dt
= −ay + bxy.

Study this system, with an eye to comparison with the Volterra-Lotka system
(4.13.11). Here, replace (4.13.75) by

(4.13.77) R0 =
bλ

ad
.

15. The following system modifies (4.13.76) by introducing z(t), the population of
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“killer T cells,” which kill off infected cells, thereby negatively affecting y:

(4.13.78)

dx

dt
= λ− dx− bxy,

dy

dt
= bxy − ay − pyz,

dz

dt
= cyz − bz,

now with positive parameters λ, d, b, a, p, and c. Continue to define R0 by (4.13.77).
Consider particularly cases where

(4.13.79) R0 > 1, c
(λ
a
− d

b

)
> b.

Account for the assertion that in this case the virus population first grows, stimu-
lating the production of killer T cells, which in turn fight the infection and lead to
an equilibrium.

For more on these models, see [34] and [52], and references therein.
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4.14. Competing species equations

The following system models the populations x(t) and y(t) of two competing species:

(4.14.1)

dx

dt
= ax(1− bx)− cxy,

dy

dt
= αy(1− βy)− γxy.

In this model, each population is governed by a logistic equation in the absence of
the other species. The presence of the other species reduces the population of its
opponent, at a rate proportional to xy. Setting X = bx and Y = βy produces an
equation like (4.14.1), but with X(1−X) and Y (1− Y ) in place of x(1− bx) and
y(1− βy), and with different factors. A change of notation gives the system

(4.14.2)

dx

dt
= ax(1− x)− cxy,

dy

dt
= αy(1− y)− γxy.

which we will consider henceforth. We call this system CSE. We take a, c, α, γ ∈
(0,∞). Associated to this system is the vector field

(4.14.3) V =

(
ax(1− x)− cxy

αy(1− y)− γxy

)
.

Note that V (x, 0) = (ax(1 − x), 0)t and V (0, y) = (0, αy(1 − y))t, so the x-axis
and y-axis are invariant under the flow Φt generated by V . Hence the quadrant
{x ≥ 0, y ≥ 0}, which is the region of biological significance, is invariant under Φt.
Note also that

(4.14.4) V (x, 1) =

(
ax(1− x)− cx

−γx

)
, V (1, y) =

(
−cy

αy(1− y)− γy

)
,

so Φt leaves invariant the region

(4.14.5) B = {(x, y) : 0 ≤ x, y ≤ 1},

for t ≥ 0.

The vector field V has the following critical points,

(4.14.6) (0, 0), (0, 1), (1, 0),

and a fourth critical point (x0, y0), satisfying

(4.14.7) cy0 = a(1− x0), γx0 = α(1− y0).

A calculation gives

(4.14.8) x0 = α
a− c

aα− cγ
, y0 = a

α− γ

aα− cγ
.

The point (x0, y0) may or may not lie in the first quadrant. We investigate this
further below.

We have

(4.14.9) DV (0, 0) =

(
a 0
0 α

)
,
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so (0, 0) is a source. Also,

(4.14.10) DV (0, 1) =

(
a− c 0
−γ −α

)
, DV (1, 0) =

(
−a −c
0 α− γ

)
,

and each of these might be a saddle or a sink, depending on the signs of a− c and
α− γ. Next,

(4.14.11)

DV (x0, y0) =

(
a(1− 2x0)− cy0 −cx0

−γy0 α(1− 2y0)− γx0

)
=

(
−ax0 −cx0
−γy0 −αy0

)
,

the second identity by (4.14.7). Hence

(4.14.12)
detDV (x0, y0) = (aα− cγ)x0y0,

TrDV (x0, y0) = −ax0 − αy0.

At this point, it is natural to consider the following cases of CSE:

Case I. a > c and α > γ.
Case II. a < c and α < γ.
Case III. a > c and α < γ.
Case IV. a < c and α > γ.

In Case I, we see from (4.14.10) that

(4.14.13) (0, 1) and (1, 0) are saddles.

In this case, aα > cγ, so, by (4.14.8),

(4.14.14) x0 > 0, y0 > 0,

and the critical point (x0, y0) is in the first quadrant. Then we see from (4.14.12)
that

(4.14.15) detDV (x0, y0) > 0, TrDV (x0, y0) < 0,

so

(4.14.16) (x0, y0) is a sink.

We have

(4.14.17) Φt(x, y) −→ (x0, y0) as t→ +∞,

whenever x > 0 and y > 0. The two competing species tend to an equilibrium of
coexistence. The phase portrait for this case, with a = 2, α = 2, c = 1, γ = 1, is
illustrated in Figure 4.14.1.

In Case II, we see from (4.14.10) that

(4.14.18) (0, 1) and (1, 0) are sinks.

In this case, aα < cγ, so, by (4.14.8), again (4.14.14) holds, and the critical point
(x0, y0) is in the first quadrant. We see from (4.14.12) that

(4.14.19) detDV (x0, y0) < 0,
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Figure 4.14.1. Case I of CSE

so

(4.14.20) (x0, y0) is a saddle.

The phase portrait for this case, with a = 1, α = 1, c = 2, γ = 2, is illustrated
in Figure 4.14.2. For almost all initial data (x, y) in the first quadrant, Φt(x, y)
tends to either (0, 1) or (1, 0) as t → +∞. One species or the other tends toward
extinction, depending on the initial conditions.

In Case III, we see from (4.14.10) that

(4.14.21) (0, 1) is a saddle and (1, 0) is a sink.

From here two sub-cases arise, depending on the relative size of aα and cγ.

Case IIIA. aα > cγ.
This time, by (4.14.8),

(4.14.22) x0 > 0, y0 < 0,

so the critical point (x0, y0) is not in the first quadrant. We see from (4.14.12) that

(4.14.23) detDV (x0, y0) < 0,

so

(4.14.24) (x0, y0) is a saddle.
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Figure 4.14.2. Case II of CSE

The phase portrait for this case, with a = 2, α = 1, c = 1/4, γ = 2, is illustrated in
Figure 4.14.3. We have

(4.14.25) Φt(x, y) −→ (1, 0) as t→ +∞,

whenever x > 0 and y > 0. Species y tends to extinction.

Case IIIB. aα < cγ.
This time, by (4.14.8),

(4.14.26) x0 < 0, y0 > 0,

and again the critical point (x0, y0) is not in the first quadrant. We see from
(4.14.22) that

(4.14.27) detDV (x0, y0) > 0.

Thus

(4.14.28) (x0, y0) is a source or a sink,

depending on the sign of TrDV (x0, y0). The phase portrait for this case, with
a = 2, α = 1/2, c = 1, γ = 2, is illustrated in Figure 4.14.4. (In this example,
(x0, y0) is a sink.) Again (4.14.25) holds whenever x > 0 and y > 0.
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Figure 4.14.3. Case IIIA of CSE

To summarize Case III, the flows in the first quadrant have the same qualitative
features in the two sub-cases; (4.14.25) holds. The features differ outside the first
quadrant.

As for Case IV, this reduces to Case III by switching the roles of x and y.

Exercises

1. Note that if x and y solve (4.14.2), then

d

dt
(x+ y) = −ax2 − αy2 − (c+ γ)xy + ax+ αy.

Show that there exists R ∈ (0,∞) such that

x, y ≥ 0, x2 + y2 ≥ R2 =⇒ d

dt
(x+ y) ≤ 0.

Deduce global existence of solutions to (4.14.2), for t ≥ 0, given (x(0), y(0)) in the
first quadrant.
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Figure 4.14.4. Case IIIB of CSE

2. In the setting of Exercise 1, show that whenever x(0) > 0 and y(0) > 0, we have
(x(t), y(t)) ∈ B, given by (4.14.5), for t > 0 sufficiently large.

3. Consider the system

dx

dt
= x(1− x)− xy,

dy

dt
= y(1− y)− γxy,

with γ ∈ (0,∞). Specify when Cases I–IV hold. Record the possible outcomes, as
regards coexistence/extinction.

4. Consider the system

dx

dt
=

1

2
x(1− x)− cxy,

dy

dt
= y(1− y)− 2xy,

with c ∈ (0,∞). Specify when Cases I–IV hold. Record the possible outcomes, as
regards coexistence/extinction.



358 4. Nonlinear systems of differential equations

5. Consider the system
dx

dt
= ax(1− x)− xy,

dy

dt
= 2y(1− y)− xy,

with a ∈ (0,∞). Specify when Cases I–IV hold. Record the possible outcomes, as
regards coexistence/extinction.
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4.15. Chaos in multidimensional systems

As previewed in the introduction to this chapter, two phenomena conspire to limit
the complexity of flows generated by autonomous planar vector fields. One is that
orbits cannot cross each other, due to uniqueness (this holds in any number of
dimensions). The other is that a directed curve (with nonzero velocity) in the
plane divides a neighborhood of each of its points into two parts, the left and the
right. This latter fact played an important role in §4.12. In dimension 3 and higher,
this breaks down completely, and allows for far more complex flows.

Newtonian motion in a force field in the plane is described by a second order
2×2 system of differential equations, which is converted to a 4×4 first order system.
Energy conservation confines the motion to a 3-dimensional constant energy surface.
If the force is a central force, there is also conservation of angular momentum.
These two conservation laws make for regular motion, as seen in §§4.5–4.6. These
are “integrable” systems. Such integrability is special. Most systems from physics
and other sources do not possess it. For example, the double pendulum equation,
derived in §4.9, does not have this property. (We do not prove this here.)

Flows generated by vector fields on n-dimensional domains with n ≥ 3 are thus
sometimes regular, but often they lack regularity to such a degree that they are
deemed “chaotic.” Signatures of chaos include the inability to predict the long time
behavior of orbits. This inability arises not only from the lack of a formula for the
solution in terms of elementary functions. In addition, numerical approximations
to the orbits of these flows reveal a “sensitive dependence” on initial conditions and
other parameters. Furthermore, phase portraits of these orbits look complex.

Research into these chaotic flows takes the study of differential equations to the
next level, beyond this introduction. We devote this section to a discussion of two
special cases of 3× 3 systems, to give a flavor of the complexities that lie beyond,
and we provide pointers to literature that addresses the deep questions raised by
efforts to understand such systems.

Lorenz equations

The first example is the following system, produced by E. Lorenz in 1963 to
model some aspects of fluid turbulence:

(4.15.1)

x′ = σ(y − x),

y′ = rx− y − xz,

z′ = xy − bz.

An alternative presentation is

(4.15.2)
d

dt

xy
z

 =

−σ σ 0
r −1 0
0 0 −b

xy
z

+

0 0 0
0 0 −x
0 x 0

xy
z

 .

Denoting the right side of (4.15.2) by V (x, y, z), we see that the first matrix on the
right side is DV (0, 0, 0). One assumes the parameters σ, b, and r are all positive.
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Lorenz took

(4.15.3) σ = 10, b =
8

3
,

and considered various values of r, with emphasis on

(4.15.4) r = 28.

Phase portraits of some orbits for (4.15.1), with σ and b given by (4.15.3) and with
various values of r are given in Figure 4.15.1. Each of the four portraits depicts the
forward orbits through the point

(4.15.5) x =
1

100
, y = 0, z = 5.

The portraits start out simple, execute a sequence of changes, as r increases, reach-
ing substantial apparent complexity at r = 28. We discuss some aspects of this.

First, some global results. Global forward solvability of (4.15.1) can be estab-
lished with the help of the remarkable function

(4.15.6) f(x, y, z) = rx2 + σy2 + σ(z − 2r)2.

A calculation shows that if (x(t), y(t), z(t)) solves (4.15.1), then

(4.15.7)
d

dt
f(x, y, z) = −2σ(rx2 + y2 + bz2 − 2brz).

Clearly there exists K ∈ (0,∞) such that

(4.15.8) B = {(x, y, z) ∈ R3 : f(x, y, z) ≤ K}
is a closed, bounded subset of R3 and the right side of (4.15.7) is < 0 on the
complement of B. Hence

(4.15.9) Φt(B) ⊂ B, ∀ t > 0,

where Φt is the flow generated by V (x, y, z). Moreover, for each (x, y, z) ∈ R3,

(4.15.10) Φt(x, y, z) ∈ B, for all sufficiently large t > 0.

Note that (4.15.9) plus the identity Φt = Φs ◦ Φt−s implies

(4.15.11) Φt(B) ⊂ Φs(B) for 0 < s < t,

so B(t) = Φt(B) is a family of closed, bounded sets that is decreasing as t↗ +∞.
Now set

(4.15.12) B =
∩
t∈R+

B(t) =
∩
k∈Z+

B(k).

The set B is called the attractor for (4.15.1). We have

(4.15.13) Φt(B) = B, ∀ t ≥ 0.

Note that

(4.15.14) div V = −σ − 1− b < 0,

so results of §3 imply

(4.15.15) VolB = 0.
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Figure 4.15.1. Lorenz system, r = 10, 14, 18, 28

This attractor has a simple description for small r, but becomes very complex for
larger r.

To proceed with the analysis, consider the critical points. The origin is a critical
point of V for all σ, b, r ∈ (0,∞). Since DV (0) is the first matrix on the right side
of (4.15.2), we see its eigenvalues are

(4.15.16) λ± = −σ + 1

2
± 1

2

√
(σ + 1)2 + 4σ(r − 1), λ3 = −b,

with eigenvectors

(4.15.17) v± =

 σ
λ± + σ

0

 , v3 =

0
0
1

 .

It follows from (4.15.16) that

(4.15.18)
0 < r < 1 =⇒ DV (0) has 3 negative eigenvalues,

r > 1 =⇒ DV (0) has 2 negative and one positive eigenvalue.

For r > 1, the positive eigenvalue is λ+ and its associated eigenvector is v+. There
is a parallel to the results in (4.3.38) describing saddles. It is shown in [19] that
there is a smooth 2-dimensional surface through the origin consisting of points p
such that Φt(p) → 0 as t → +∞ and a smooth 1-dimensional curve through the
origin consisting of points p such that Φt(p) → 0 as t→ −∞. In general, a smooth



362 4. Nonlinear systems of differential equations

k-dimensional surface in Rn is called a k-dimensional manifold. The sets described
above are called a “stable manifold” and an “unstable manifold,” respectively. See
also Appendix 4.C for further discussion.

For r > 1, V has two additional critical points, satisfying

(4.15.19) x = y, (r − 1− z)x = 0, bz = x2,

i.e.,

(4.15.20) C± = (±
√
b(r − 1),±

√
b(r − 1), r − 1).

We have

(4.15.21) DV (C±) =

−σ σ 0
1 −1 ±ξ
±ξ ±ξ −b

 , ξ =
√
b(r − 1).

Note that DV (C+) and DV (C−) are conjugate by the action of

(4.15.22)

−1
−1

1

 ,

so they have the same eigenvalues. This mirrors the fact that (4.15.1) is invariant
under the transformation (x, y, z) 7→ (−x,−y, z). Further calculations give the
following results, when σ and b are given by (4.15.3):

(4.15.23)

DV (C±) has

3 negative eigenvalues for 1 < r < 1.346 · · ·
1 negative and 2 with negative real part for 1.346 · · · < r < 24.74 · · ·
1 negative and 2 with positive real part for r > 24.74 · · · .

In the first two cases in (4.15.23), Proposition 4.3.4 applies, and for all points p
sufficiently close to C+, Φ

t(p) → C+ as t → +∞, and similarly for C−. The third
case in (4.15.23) is like the second case in (4.15.18), except the numbers are reversed.
In such a case, there are a 2-dimensional unstable manifold and a 1-dimensional
stable manifold through C+, and similarly for C−, in the language introduced below
(4.15.18).

With these calculations in hand, let’s take a closer look at the four phase
portraits depicted in Figure 4.15.1, orbits with initial data given by (4.15.5). We
see from (4.15.1) that the z-axis is invariant under the flow for all values of the
parameters. Furthermore, on the z-axis, z′ = −bz. Now the initial point (0.01, 0, 5)
is close by, but for all r-values depicted, DV (0) has one positive eigenvalue, and the
orbits push away from the origin, in a direction close to v+, where v+ is given by
(4.15.17). The orbit from (+0.01, 0, 5) spirals into the critical point C+, in the first
two portraits, where r = 10 and 14. Similarly, the orbit from (−0.01, 0, 5) spirals
into C−,

Around r ≈ 14, something new happens. These orbits pass close to the origin.
At a certain critical value rh ≈ 14, the unstable manifold is actually a pair of
homoclinic orbits, approaching the origin both as t → −∞ and as t → +∞. For
larger values of r, the orbit from (+0.01, 0, 5) crosses over and spirals into C−, as
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Figure 4.15.2. Lorenz system, r = 28, for two ranges of t

depicted in the third portrait in Figure 4.15.1, for r = 18. Similarly, the orbit from
(−0.01, 0, 5) spirals into C+.

This spiraling into C± does not endure as r increases. As stated in (4.15.23),
there is a critical rc ≈ 24.74 past which DV (C±) has two eigenvalues with positive
rather than negative real part. In the fourth phase portrait of Figure 4.15.1, we
have r = 28 > rc. The orbit starting from (0.01, 0, 5) approaches the unstable
manifold of C− and then spirals out from this critical point. After some spiraling
out from C−, this orbit makes a jump to the vicinity of C+, approaches its unstable
manifold, and starts spiraling out from C+. After a while, the orbit jumps back to
the vicinity of C−, and this spiraling and jumping is endlessly repeated.

The two phase portraits in Figure 4.15.2 show

(4.15.24) Φt(0.08, 0, 5), 40j < t < 40(j + 1), j = 0, 1.

The portraits differ in fine detail from each other, but they are fairly similar, and
seem to reveal what is called a strange attractor.

We make one further comment about Figures 4.15.1–4.15.2. Of course, the
orbits depicted are curves (x(t), y(t), z(t)) in R3. What is shown in these figures
are 2-dimensional projections, namely (u(t), v(t)), with u(t) = x(t)+y(t)/2, v(t) =
z(t)− y(t)/2.
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Periodically forced Duffing equation

Our second example arises from motion in 1 dimension, in a nonlinear back-
ground field, with a periodic forcing term added:

(4.15.25)
d2x

dt2
= f(x) + r cos t.

Here r is a parameter. When converted to a first order system and put in au-
tonomous form, this becomes

(4.15.26)

dx

dt
= y,

dy

dt
= f(x) + r cos z,

dz

dt
= 1.

We take

(4.15.27) f(x) = x− x3.

The equation (4.15.25) is called a periodically forced Duffing equation if r ̸= 0.

For r = 0, (4.15.25) is called Duffing’s equation, and it reduces to a 2 × 2
system, whose phase portrait is given in Figure 4.15.3. We take orbits through the
points

(4.15.28) x =
√
2 +

3k

10
, k = −3,−2, 0, 1, y = 0,

and their mirror images about the y-axis. There are two homoclinic orbits, each
tending to the origin as t → ±∞. All the other orbits are closed, and lie on level
curves of

(4.15.29) E(x, y) =
y2

2
− x2

2
+
x4

4
.

For r ̸= 0, matters are more complicated, since z is coupled to (x, y) in (4.15.26).
We need a different way to portray the orbits (x(t), y(t), z(t)). In this case, unlike
for the Lorenz system, a linear projection of (x, y, z) space onto (u, v) space is not
the best way to proceed. Taking into account the periodicity of the right side of
(4.15.26) in z, we treat z = t as an angular variable, and transfer (x, y, z) space to
(x̃, ỹ, z̃) space, with

x̃ = (x+ 2) cos t, ỹ = y, z̃ = (x+ 2) sin t.

This corresponds to taking the (x, y) plane and rotating it about the vertical axis
x = −2. We follow this with the linear map to the (u, v) plane, u = z̃ − x̃/2,
v = ỹ − x̃/2. Consequently, to produce Figures 4.15.4–4.15.6, we draw curves
(u(t), v(t)), with

(4.15.30) u(t) = (x(t) + 2)
(
sin t− cos t

2

)
, v(t) = y(t)− (x(t) + 2)

cos t

2
.

For initial data, we take x and y as in (4.15.28) and z = 0. We use a fourth order
Runge-Kutta scheme.
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Figure 4.15.3. Phase portrait for Duffing’s equation

Figure 4.15.4 draws such curves when (x, y, z) solve (4.15.26) with r = 0. In all
but the third portrait, the orbits lie on smooth donut-shaped surfaces (called tori).
The third portrait depicts the homoclinic orbit, which spends most of its time near
the origin in (x, y)-space. It lies on a surface that is smooth except along a curve,
where it has a corner.

Figure 4.15.5 gives this representation of orbits of (4.15.26), with

(4.15.31) r = 0.1.

One of the four orbits seems to lie on a smooth torus (somewhat deformed). The
other three are all apparently a mess, and also, apparently, about the same mess.
In Figure 4.15.6 we present an enlarged version of one such orbit, with initial data

(4.15.32) x =
√
2, y = 0,

An alternative to depicting orbits of the system (4.15.26)–(4.15.27) is to depict
orbits of the associated Poincaré map, characterized as follows. Take an initial
point p = (x0, y0, 0). Solve (4.15.26) with this initial data, and then set q =
(x(2π), y(2π), 2π). The nature of the mapping on the third coordinate is trivial in
this case, so we just consider

(4.15.33) (x(0), y(0)) 7→ (x(2π), y(2π)).

This is the Poincaré map associated to the system (4.15.26).



366 4. Nonlinear systems of differential equations

Figure 4.15.4. 3D orbits for unforced Duffing’s equation, x =
√
2 + 3k/10

The Poincaré map is defined in a more general context. Let X be a smooth
vector field on Ω ⊂ Rn and let S be an (n−1)-dimensional surface transversal to X,
i.e., X is nowhere tangent to S. Under certain circumstances, one has a Poincaré
map

(4.15.34) P : O −→ S,

defined on an open subset O ⊂ S, where p ∈ O and P (p) = q is the point ΦtX(p)
with smallest t > 0 such that ΦtX(p) ∈ S. See Figure 4.15.7.

In the setting of (4.15.26), (4.15.33), the orbits for Poincaré map (x(0), y(0)) =
(x, 0), with

(4.15.35) x = −1.1, 1.3,
√
2, 1.85, and 2.1,

are presented in Figure 4.15.8. These five initial data give rise to five orbits for the
Poincaré map. Of these, four seem to lie along smooth curves. The orbit through
(x, y) = (

√
2, 0) populates the fuzzy grey area, formed from 20,000 points in the

orbit of the Poincaré map (or rather an approximation via a Runge-Kutta difference

scheme). Note that (x, y) = (
√
2, 0) is the initial datum leading to Figure 4.15.6.

The appearance of smooth closed curves γj , invariant under the Poincaré map,
suggests the following.
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Figure 4.15.5. Orbits for forced Duffing’s equation, x =
√
2 + 3k/10

Assertion. Each γj bounds a region Ωj ⊂ R2, smoothly equivalent to the disk

(4.15.36) D = {x ∈ R2 : ∥x∥ ≤ 1},

that is to say, there are smooth one-to-one maps φj : Ωj → D with smooth inverses

φ−1
j : D → Ωj , and the Poincaré map takes Ωj into itself, i.e.,

(4.15.37) P : Ωj −→ Ωj .

Granted this, we can make use of the following result, known as Brouwer’s
fixed-point theorem.

Theorem. Each smooth map

(4.15.38) ψ : D −→ D

has a fixed point, i.e., there exists p ∈ D such that ψ(p) = p.

See Appendix 4.G for a proof of this result. Given the assertion above, we can
take ψ = φj ◦ P ◦ φ−1

j and conclude that

(4.15.39) P (q) = q, q = φ−1
j (p).
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Figure 4.15.6. Orbit for forced Duffing’s equation, x =
√
2

Such fixed points of the Poincaré map give rise to periodic solutions to the associated
systems of differential equations (in this case, (4.15.25)). Establishing the existence
of periodic solutions is one of many uses for Poincaré maps. We refer to references
cited in the next paragraph for discussions of other uses.

Understanding how the chaotic looking orbits for the Lorenz and Duffing sys-
tems and other systems are chaotic has engendered a lot of work. For more material
on this, we particularly recommend the Introduction to Chaos in Chapter 2 of [16],
which treats four examples, including the Lorenz system and the forced Duffing
system. Other material on chaotic systems can be found in [2], [6], [18], [23], [25],
and [30]. A detailed study of the Lorenz system is given in [41].
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Figure 4.15.7. Poincaré map

Exercises

1. Consider the double pendulum system, in the limit m2 = 0, given by (4.9.35).
Substitute

(4.15.40) θ1(t) ≈ r cosωt, ω =

√
g

ℓ1

into the second equation in (4.9.35), expand in powers of r, and throw away terms
containing second and higher powers of r. Show that you get

(4.15.41) θ′′2 (t) +
g

ℓ2
sin θ2(t) = rω2 ℓ1

ℓ2
cos θ2(t) cosωt.

Exercises 2–10 are for readers who can use numerical software, with graphics capa-
bilities.

2. Write a program to exhibit solution curves of (4.15.41), in a fashion analogous to
the treatment of (4.15.25), involving an analogue of (4.15.26). Try various values
of r, g/ℓ2, etc., and see when the behavior is more chaotic or less chaotic.
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Figure 4.15.8. Poincaré map for forced Duffing, x = −1.1, 1.3,
√
2, 1.85, 2.1

3. In place of (4.15.41), consider the periodically forced pendulum equation

(4.15.42) θ′′(t) +
g

ℓ
sin θ(t) = ρ cosωt,

and write a program to exhibit solution curves of this equation, in the spirit of
Exercise 2.

4. Write a program to exhibit solutions to the full double pendulum system (4.9.15)–
(4.9.16). Take, e.g., m1 = m2 = 1, ℓ1 = ℓ2 = 1, and variants.

5. Examine orbits and Poincaré maps for the periodically forced Duffing equation
for other values of r, such as r = 0.2, 0.05, 10−2, 10−3, etc. Also consider other
forcing periods, i.e., replace cos t by cosωt.

Exercises 6–9 deal with systems of the form

(4.15.43)
d2

dt2

(
x

y

)
= −∇V (x, y).

These are 2 × 2 second order systems, which convert to 4 × 4 first order systems.
Energy conservation leads to flows on 3-dimensional constant energy surfaces. In
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each case, write a program to exhibit solution curves (x(t), y(t)). See whether the
displayed solutions seem to be regular or chaotic.

6. Take
V (x, y) = x2 + axy + y4.

Try various a ∈ [0, 10].

7. Take
V (x, y) = x4 + axy + y4, a ∈ [−2, 2].

8. Take
V (x, y) = x4 + ax2y + y4, a ∈ [−1, 1].

9. Take

V (x, y) =
1

2
(x2 + y2) + a(x4 − x2y + y4), a ∈ [0, 1].

10. Taking off from models in §§4.13–4.14, see if you can construct models of
interactions of 3 species that exhibit chaotic behavior.
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4.A. The derivative in several variables

Here we present basic definitions and results on multivariable differential calculus,
useful for the material in Chapter 4. To start this section off, we define the derivative
and discuss some of its basic properties. Let O be an open subset of Rn, and
F : O → Rm a continuous function. We say F is differentiable at a point x ∈ O,
with derivative L, if L : Rn → Rm is a linear transformation such that, for y ∈ Rn,
small,

(4.A.1) F (x+ y) = F (x) + Ly +R(x, y)

with ∥R(x, y)∥ = o(∥y∥), i.e.,

(4.A.2)
∥R(x, y)∥

∥y∥
→ 0 as y → 0.

We denote the derivative at x by DF (x) = L. With respect to the standard bases
of Rn and Rm, DF (x) is simply the matrix of partial derivatives,

(4.A.3) DF (x) =

(
∂Fj
∂xk

)
,

so that, if v = (v1, . . . , vn)
t, (regarded as a column vector) then

(4.A.4) DF (x)v =
(∑

k

∂F1

∂xk
vk, . . . ,

∑
k

∂Fm
∂xk

vk

)t
.

It will be shown below that F is differentiable whenever all the partial derivatives
exist and are continuous on O. In such a case we say F is a C1 function on O. More
generally, F is said to be Ck if all its partial derivatives of order ≤ k exist and are
continuous. If F is Ck for all k, we say F is C∞.

Sometimes one might want to differentiate an Rm-valued function F (x, t) only
with respect to x. In that case, if

F (x+ y, t) = F (x, t) + Ly +R(x, y, t),

with ∥R(x, y, t)∥ = o(∥y∥), we write DxF (x, t) = L.

We now derive the chain rule for the derivative. Let F : O → Rm be differ-
entiable at x ∈ O, as above, let U be a neighborhood of z = F (x) in Rm, and let
G : U → Rk be differentiable at z. Consider H = G ◦ F. We have

(4.A.5)

H(x+ y) = G(F (x+ y))

= G
(
F (x) +DF (x)y +R(x, y)

)
= G(z) +DG(z)

(
DF (x)y +R(x, y)

)
+R1(x, y)

= G(z) +DG(z)DF (x)y +R2(x, y)

with
∥R2(x, y)∥

∥y∥
→ 0 as y → 0.

Thus G ◦ F is differentiable at x, and

(4.A.6) D(G ◦ F )(x) = DG(F (x)) ·DF (x).
In case k = 1, so G : U → R, we can rewrite (4.A.6) as

(4.A.7) D(G ◦ F )(x) = ∇G(F (x))tDF (x),
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where ∇G(y)t = (∂G/∂y1, . . . , ∂G/∂ym). If in addition n = 1, so F is a function
of one variable x ∈ O ⊂ R, with values in Rm, this in turn leads to

(4.A.8)
d

dx
G(F (x)) = ∇G(F (x)) · F ′(x).

This leads to such formulas as (4.3.10).

Another useful remark is that, by the Fundamental Theorem of Calculus, ap-
plied to φ(t) = F (x+ ty),

(4.A.9) F (x+ y) = F (x) +

∫ 1

0

DF (x+ ty)y dt,

provided DF is continuous. A closely related application of the Fundamental The-
orem of Calculus is that, if we assume F : O → Rm is differentiable in each variable
separately, and that each ∂F/∂xj is continuous on O, then
(4.A.10)

F (x+ y) = F (x) +

n∑
j=1

[
F (x+ zj)− F (x+ zj−1)

]
= F (x) +

n∑
j=1

Aj(x, y)yj ,

Aj(x, y) =

∫ 1

0

∂F

∂xj

(
x+ zj−1 + tyjej

)
dt,

where z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0), and {ej} is the standard basis of Rn. Now
(A.10) implies F is differentiable on O, as we stated below (4.A.4). Thus we have
established the following.

Proposition 4.A.1. If O is an open subset of Rn and F : O → Rm is of class C1,
then F is differentiable at each point x ∈ O.

For the study of higher order derivatives of a function, the following result is
fundamental.

Proposition 4.A.2. Assume F : O → Rm is of class C2, with O open in Rn.
Then, for each x ∈ O, 1 ≤ j, k ≤ n,

(4.A.11)
∂

∂xj

∂F

∂xk
(x) =

∂

∂xk

∂F

∂xj
(x).

To prove Proposition 4.A.2, it suffices to treat real valued functions, so consider
f : O → R. For 1 ≤ j ≤ n, we set

(4.A.12) ∆j,hf(x) =
1

h

(
f(x+ hej)− f(x)

)
,

where {e1, . . . , en} is the standard basis of Rn. The mean value theorem (for func-
tions of xj alone) implies that if ∂jf = ∂f/∂xj exists on O, then, for x ∈ O, h > 0
sufficiently small,

(4.A.13) ∆j,hf(x) = ∂jf(x+ αjhej),

for some αj ∈ (0, 1), depending on x and h. Iterating this, if ∂j(∂kf) exists on O,
then, for x ∈ O, h > 0 sufficiently small,

(4.A.14)

∆k,h∆j,hf(x) = ∂k(∆j,hf)(x+ αkhek)

= ∆j,h(∂kf)(x+ αkhek)

= ∂j∂kf(x+ αkhek + αjhej),
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with αj , αk ∈ (0, 1). Here we have used the elementary result

(4.A.15) ∂k∆j,hf = ∆j,h(∂kf).

We deduce the following.

Proposition 4.A.3. If ∂kf and ∂j∂kf exist on O and ∂j∂kf is continuous at
x0 ∈ O, then

(4.A.16) ∂j∂kf(x0) = lim
h→0

∆k,h∆j,hf(x0).

Clearly

(4.A.17) ∆k,h∆j,hf = ∆j,h∆k,hf,

so we have the following, which easily implies Proposition 4.A.2.

Corollary 4.A.4. In the setting of Proposition 4.A.3, if also ∂jf and ∂k∂jf exist
on O and ∂k∂jf is continuous at x0, then

(4.A.18) ∂j∂kf(x0) = ∂k∂jf(x0).

If U and V are open subsets of Rn and F : U → V is a C1 map, we say F is
a diffeomorphism of U onto V provided F maps U one-to-one and onto V , and its
inverse G = F−1 is a C1 map. If F is a diffeomorphism, it follows from the chain
rule that DF (x) is invertible for each x ∈ U . We now state a partial converse of
this, the Inverse Function Theorem, which is a fundamental result in multivariable
calculus.

Theorem 4.A.5. Let F be a Ck map from an open neighborhood Ω of p0 ∈ Rn to
Rn, with q0 = F (p0). Assume k ≥ 1. Suppose the derivative DF (p0) is invertible.
Then there is a neighborhood U of p0 and a neighborhood V of q0 such that F :
U → V is one-to-one and onto, and F−1 : V → U is a Ck map. (So F : U → V is
a diffeomorphism.)

Proofs of Theorem 4.A.5 can be found in a number of texts, including [31],
Chapter 2 of [50], and Chapter 1 of [45].



4.B. Convergence, compactness, and continuity 375

4.B. Convergence, compactness, and continuity

We discuss a number of notions and results related to convergence in Rn, of use in
this chapter. First, a sequence of points (pj) in Rn converges to a limit p ∈ Rn (we
write pj → p) if and only if

(4.B.1) ∥pj − p∥ −→ 0.

Here ∥ · ∥ is the norm on Rn arising in §2.10 of Chapter 2, and the meaning of
(4.B.1) is that for every ε > 0 there exists N such that

(4.B.2) j ≥ N =⇒ ∥pj − p∥ < ε.

A set S ⊂ Rn is said to be closed if and only if

(4.B.3) pj ∈ S, pj → p =⇒ p ∈ S.

The complement Rn \ S of a closed set S is open. Alternatively, Ω ⊂ Rn is open if
and only if, given q ∈ Ω, there exists ε > 0 such that Bε(q) ⊂ Ω, where

(4.B.4) Bε(q) = {p ∈ Rn : ∥p− q∥ < ε},

so q cannot be a limit of a sequence of points in Rn \ Ω.
An important property of Rn is completeness, a property defined as follows. A

sequence (pj) of points in Rn is called a Cauchy sequence if and only if

(4.B.5) ∥pj − pk∥ −→ 0, as j, k → ∞.

It is easy to see that if pj → p for some p ∈ Rn, then (4.B.5) holds. The completeness
property is the converse.

Theorem 4.B.1. If (pj) is a Cauchy sequence in Rn, then it has a limit, i.e.,
(B.1) holds for some p ∈ Rn.

Since convergence pj → p in Rn is equivalent to convergence in R of each
component, it is the fundamental property of completeness of R that is the issue.
This is discussed in [8], from an axiomatic viewpoint, and in [27] and [49], from a
more constructive viewpoint.

Completeness provides a path to the following key notion of compactness. A
set K ⊂ Rn is compact if and only if the following property holds.

(4.B.6)
Each infinite sequence (pj) in K has a subsequence

that converges to a point in K.

It is clear that ifK is compact, then it must be closed. It must also be bounded, i.e.,
there exists R <∞ such that K ⊂ BR(0). Indeed, if K is not bounded, there exist
pj ∈ K such that ∥pj+1∥ ≥ ∥pj∥+1. In such a case, ∥pj − pk∥ ≥ 1 whenever j ̸= k,
so (pj) cannot have a convergent subsequence. The following converse statement is
a key result.

Theorem 4.B.2. If K ⊂ Rn is closed and bounded, then it is compact.

We start with a special case.

Proposition 4.B.3. Each closed bounded interval I = [a, b] ⊂ R is compact.
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Proof. Let (pj) be an infinite sequence in [a, b], j ∈ Z+. Divide I into two halves,
I0 = [a, (a + b)/2], I1 = [(a + b)/2, b]. If pj ∈ I0 for infinitely many j, pick some
pj0 ∈ I0, and set a1 = 0. Otherwise, pick some pj0 ∈ I1, and set a1 = 1. Set
q0 = pj0 .

Now divide Ia1 into two equal intervals, Ia10 and Ia11. If pj ∈ Ia10 for infinitely
many j, pick pj1 ∈ Ia10, j1 > j0. Otherwise, pick pj1 ∈ Ia11, j1 > j0. Set q1 = pj1 .
Continue.

One gets (qj), a subsequence of (pj), with the property that

(4.B.7) |qj − qj+k| ≤ 2−j |b− a|, ∀ k ≥ 0.

Thus (qj) is a Cauchy sequence, so by the completeness of R, it converges, to the
desired limit p ∈ [a, b]. �

From Proposition 4.B.3 it is easy enough to show that any closed, bounded box

(4.B.8) B = {(x1, . . . , xn) ∈ Rn : aj ≤ xj ≤ bj , ∀ j}
is compact. If K ⊂ Rn is closed and bounded, it is a subset of such a box, and
clearly every closed subset of a compact set is compact, so we have Theorem 4.B.2.

We next discuss continuity. If S ⊂ Rn, a function

(4.B.9) f : S −→ Rm

is said to be continuous at p ∈ S provided

(4.B.10) pj ∈ S, pj → p =⇒ f(pj) → f(p).

If f is continuous at each p ∈ S, we say f is continuous on S.

The following two results give important connections between continuity and
compactness.

Proposition 4.B.4. If K ⊂ Rn is compact and f : K → Rm is continuous, then
f(K) is compact.

Proof. If (qk) is an infinite sequence of points in f(K), pick pk ∈ K such that
f(pk) = qk. If K is compact, we have a subsequence pkν → p in K, and then
qkν → f(p) in Rm. �

This leads to the second connection.

Proposition 4.B.5. If K ⊂ Rn is compact and f : K → Rm is continuous, then
there exists p ∈ K such that

(4.B.11) ∥f(p)∥ = max
x∈K

∥f(x)∥,

and there exists q ∈ K such that

(4.B.12) ∥f(q)∥ = min
x∈K

∥f(x)∥.

The meaning of (4.B.11) is that ∥f(p)∥ ≥ ∥f(x)∥ for all x ∈ K, and the meaning
of (4.B.12) is similar.

For the proof, consider

(4.B.13) g : K −→ R, g(p) = ∥f(p)∥.
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This is continuous, so g(K) is compact. Hence g(K) is bounded; say g(K) ⊂ I =
[a, b]. Repeatedly subdividing I into equal halves, as in the proof of Proposition
4.B.3, at each stage throwing out subintervals that do not intersect g(K) and keep-
ing only the leftmost and rightmost amongst those remaining, we obtain α ∈ g(K)
and β ∈ g(K) such that g(K) ⊂ [α, β]. Then α = f(q) and β = f(p) for some p
and q ∈ K satisfying (4.B.11)–(4.B.12).

A variant of Proposition 4.B.5, with a very similar proof, is that if K ⊂ Rn is
compact and f : K → R is continuous, then there exist p, q ∈ K such that

(4.B.14) f(p) = max
x∈K

f(x), f(q) = min
x∈K

f(x).

We next define the closure S of a set S ⊂ Rn, to consist of all points p ∈ Rn
such that Bε(p)∩S ̸= ∅ for all ε > 0. Equivalently, p ∈ S if and only if there exists
an infinite sequence (pj) of points in S such that pj → p.

Now we define supS and inf S. First, let S ⊂ R be nonempty and bounded
from above, i.e., there exists R < ∞ such that x ≤ R for all x ∈ S. Hence x ≤ R
for all x ∈ S. In such a case, there exists an interval [R − k,R] whose intersection
with S is nonempty, hence compact. We set

(4.B.15) sup S = max
S∩[R−k,R]

x,

the right side well defined by (4.B.14), with f(x) = x. There is a similar definition
of

(4.B.16) inf S,

when S is bounded from below.

We establish some further properties of compact sets K ⊂ Rn, leading to the
important result, Proposition 4.B.9 below.

Proposition 4.B.6. Let K ⊂ Rn be compact. Assume X1 ⊃ X2 ⊃ X3 ⊃ · · · form
a decreasing sequence of closed subsets of K. If each Xm ̸= ∅, then ∩mXm ̸= ∅.

Proof. Pick xm ∈ Xm. If K is compact, (xm) has a convergent subsequence,
xmk

→ y. Since {xmk
: k ≥ ℓ} ⊂ Xmℓ

, which is closed, we have y ∈ ∩mXm. �
Corollary 4.B.7. Let K ⊂ Rn be compact. Assume U1 ⊂ U2 ⊂ U3 ⊂ · · · form an
increasing sequence of open sets in Rn. If ∪mUm ⊃ K, then UM ⊃ K for some M .

Proof. Consider Xm = K \ Um. �

Before getting to Proposition 4.B.9, we bring in the following. Let Q denote
the set of rational numbers, and let Qn denote the set of points in Rn all of whose
components are rational. The set Qn ⊂ Rn has the following “denseness” property:
given p ∈ Rn and ε > 0, there exists q ∈ Qn such that ∥p− q∥ < ε. Let

(4.B.17) R = {Brj (qj) : qj ∈ Qn, rj ∈ Q ∩ (0,∞)}.
Note thatQ andQn are countable, i.e., they can be put in one-to-one correspondence
with N. Hence R is a countable collection of balls. The following lemma is left as
an exercise for the reader.
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Lemma 4.B.8. Let Ω ⊂ Rn be a nonempty open set. Then

(4.B.18) Ω =
∪

{B : B ∈ R, B ⊂ Ω}.

To state the next result, we say that a collection {Uα : α ∈ A} covers K if
K ⊂ ∪α∈AUα. If each Uα ⊂ Rn is open, it is called an open cover of K. If B ⊂ A
and K ⊂ ∪β∈BUβ , we say {Uβ : β ∈ B} is a subcover.

Proposition 4.B.9. If K ⊂ Rn is compact, then it has the following property.

(4.B.19) Every open cover {Uα : α ∈ A} of K has a finite subcover.

Proof. By Lemma 4.B.8, it suffices to prove the following.

(4.B.20)
Every countable cover {Bj : j ∈ N} of K by open balls

has a finite subcover.

For this, we set

(4.B.21) Um = B1 ∪ · · · ∪Bm
and apply Corollary 4.B.7. �



4.C. Critical points that are saddles 379

4.C. Critical points that are saddles

Let F be a C3 vector field on Ω ⊂ Rn, with a critical point at p ∈ Ω. We say p is
a simple critical point if L = DF (p) has no eigenvalues that are purely imaginary
(or zero). From here on we assume this condition holds. As seen in Chapter 2, we
can write

(4.C.1) Cn =W+ ⊕W−,

where W+ is the direct sum of the generalized eigenspaces of L associated to
eigenvalues with positive real part and W− is the direct sum of the generalized
eigenspaces associated to eigenvalues with negative real part. Since L ∈ M(n,R),
non-real eigenvalues of L must occur in complex conjugate pairs, and

(4.C.2) Rn = V+ ⊕ V−, V± =W± ∩ Rn.
We have

(4.C.3) v ∈W± =⇒ etLv → 0 as t→ ∓∞,

and a fortiori

(4.C.4) v ∈ V± =⇒ etLv → 0 as t→ ∓∞.

We say the critical point at p is a source if V− = 0, a sink if V+ = 0, and a
saddle if V− ̸= 0 and V+ ̸= 0. The fact that

(4.C.5) V− = Rn =⇒ ΦtF (x) → p as t→ +∞,

for x sufficiently close to p, where ΦtF is the flow generated by F , was proven in
§4.3 (cf. Proposition 4.3.4), and similarly we have

(4.C.6) V+ = Rn =⇒ ΦtF (x) → p as t→ −∞,

for x sufficiently close to p. The purpose of this appendix is to discuss the saddle
case, where n+ = dimV+ > 0 and n− = dimV− > 0. In such a case, as advertised
in §3, there is a neighborhood U of p and there are C1 surfaces S±, of dimension
n±, such that

(4.C.7) {p} = S+ ∩ S−,

and

(4.C.8) x ∈ S± =⇒ ΦtF (x) → p as t→ ∓∞.

The surfaces S− and S+ are called, respectively, the stable and unstable manifolds
of F at p. They have the further property that if γ is a C1 curve in S+ (respectively,
S−), and γ(0) = p, then γ′(0) ∈ V+ (respectively, V−). In addition, given ε > 0,
there exists δ > 0 such that if x ∈ U \ S− but dist(x, S−) < δ, then for some
t1 > 0, ∥Φt1F (x) − p∥ < ε, and for all t ≥ t1, dist(ΦtF (x), S+) < ε, at least until
ΦtF (x) exits U . We want to demonstrate this result. For simplicity of presentation,
we concentrate on the case n = 2 (and n+ = n− = 1). However, the argument we
present can be modified to treat saddles in higher dimension.

We make some preliminary constructions. Relabeling the coordinates, we can
assume p = 0. Altering F outside some neighborhood of p = 0 if necessary, we can
assume F is a C3 vector field on Rn and there exists C <∞ such that

(4.C.9) ∥F (x)∥ ≤ C∥x∥, ∀x ∈ Rn.
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Hence, as seen in §4.3 (Exercise 3), ΦtF (x) is well defined for all x ∈ Rn, t ∈ R.
Applying the fundamental theorem of calculus twice gives

(4.C.10) F (x) = Lx+
∑
j,k

xjxkGjk(x),

where

(4.C.11) L = DF (0),

and Gjk are C1 vector fields, given by

(4.C.12) Gjk(x) =

∫ 1

0

∫ 1

0

∂2

∂xk∂xj
F (stx) ds dt.

We define the family of vector fields Fε by

(4.C.13) Fε(x) =
1

ε
F (εx),

for ε > 0. By (4.C.10),

(4.C.14) Fε(x) = Lx+ εGε(x),

where

(4.C.15) Gε(x) =
∑
j,k

xjxkGjk(εx).

Passing to the limit ε→ 0 gives F0(x) = Lx. Results of §4.2 yield the following.

Lemma 4.C.1. Given δ > 0, T < ∞, there exists ε0 = ε0(δ, T, F ) > 0 such that
for all ε ∈ (0, ε0],

(4.C.16)
∥x∥ ≤ 2, |t| ≤ T, ∥ΦsFε

(x)∥ ≤ 2 ∀ s ∈ [0, t]

=⇒ ∥ΦtFε
(x)− etLx∥ ≤ δ.

Specializing to n = 2, we can assume that

(4.C.17) L =

(
a

−b

)
, a, b > 0.

We take the box

(4.C.18) O = {(x1, x2) : |x1|, |x2| ≤ 1},
and set

(4.C.19) Ok = 2−kO.
We define four families of maps

(4.C.20) φεj , ψεj :
[
−1

2
,
1

2

]
−→ [−1, 1], j = 1, 2, 0 ≤ ε ≤ 1,

as follows. For j = 1, define tε(s) as the smallest positive number such that

Φ
−tε(s)
Fε

(
s,

1

2

)
∈ {(σ, 1) : −1 ≤ σ ≤ 1},

and then set φε1(s) to be the x1-coordinate of Φ
−tε(s)
Fε

(s, 1/2). To give an alternative
description, we are mapping the top edge of O1 (identified with [−1/2, 1/2]) to the
top edge of O (identified with [−1, 1]) by the backward flow generated by Fε.
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Figure 4.C.1. The maps φεj and ψεj

Similarly define φε2 via the backward flow map of the bottom edge of O1 to the
bottom edge of O, and define ψε1 and ψε2 via the forward flow maps of the right
and left edges of O1 to the corresponding edges of O. See Figure 4.C.1. It is readily
verified that these maps are contractions for ε = 0, where F0(x) = Lx, i.e., there
exists A = A(a, b) < 1 such that

(4.C.21)
|φεj(s)− φεj(t)| ≤ A|s− t|,
|ψεj(s)− ψεj(t)| ≤ A|s− t|,

for all s, t ∈ [−1/2, 1/2].

Results of §4.2 then establish the following.

Lemma 4.C.2. There exists ε1 = ε1(F ) > 0 and A = A(F ) < 1 such that whenever
0 ≤ ε ≤ ε1, the maps φεj and ψεj in (4.C.20) are well defined on [−1/2, 1/2] and
(4.C.21) holds for all s, t ∈ [−1/2, 1/2].

We make a further adjustment. Take ε2 ≤ min(ε1(F ), ε0(1/10, 10, F )). Further
shrinking ε2 is necessary, arrange that, whenever ε ∈ (0, ε2],

(4.C.22) ∥x∥ ≤ 2 =⇒ ∥Fε(x)− Lx∥ ≤ 1

2
∥Lx∥,

so that, if (x1, x2) ∈ O, Fε(x1, x2) points down if x2 ∈ [1/2, 1], up if x2 ∈ [−1,−1/2],
left if x1 ∈ [1/2, 1], and right if x1 ∈ [−1,−1/2]. Now replace F by Fε2 , denoting
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Figure 4.C.2. Step 0

this scaled vector field by F . Then (4.C.16) holds with T = 10 and δ = 1/10 for all
ε ∈ (0, 1] and (4.C.21) holds for all s, t ∈ [−1/2, 1/2], with A < 1, for all ε ∈ (0, 1].
For notational simplicity, set

(4.C.23) Φtk = ΦtFε
, ε = 2−k.

Note that dilation by the factor 2k takes the flow ΦtF on Ok to the flow Φtk on O.

With these preliminaries done, we start in earnest our demonstration that the
flow generated by F has saddle-like behavior near the critical point p = 0. Denote
by T ,B,L, and R the top, bottom, left, and right edges of O, and similarly denote
by Tk,Bk,Lk, and Rk the top, bottom, left, and right sides of Ok. Then the maps
(4.C.20) can by slight abuse of terminology be labeled

(4.C.24)
φε1 : T1 → T , φε2 : B1 → B,
ψε1 : R1 → R, ψε2 : L1 → L.

Pick two points p0ℓ, p0r ∈ T such that for some t0ℓ, t0r ∈ (0, 1),

(4.C.25) p∗0ℓ = Φt0ℓF (p0ℓ) ∈ L, p∗0r = Φt0rF (p0r) ∈ R,

and pick two points q0ℓ, q0r ∈ B such that for some s0ℓ, s0r ∈ (0, 1),

(4.C.26) q∗0ℓ = Φs0ℓF (q0ℓ) ∈ L, q∗0r = Φs0rF (q0r) ∈ R.
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Figure 4.C.3. Beginning of Step 1

See Figure 4.C.2. The possibility to do this is guaranteed by Lemma 4.C.1. Denote
the orbits of Φt0 = ΦtF through p0ℓ, p0r by γ0ℓ, γ0r and those through q0ℓ, q0r by
σ0ℓ, σ0r.

Let us call the construction just described Step 0. To continue, at Step 1,
pick p̃1ℓ, p̃1r ∈ T1 and q̃1ℓ, q̃1r ∈ B1 such that the following holds. Note that
2p̃1ℓ, 2p̃1r ∈ T and 2q̃1ℓ, 2q̃1r ∈ B. We require that, for some t1ℓ, t1r ∈ (0, T1),

(4.C.27) Φt1ℓ1 (2p̃1ℓ) ∈ L, Φt1r1 (2p̃1r) ∈ R,

and for some s1ℓ, s1r ∈ (0, T1),

(4.C.28) Φs1ℓ1 (2q̃1ℓ) ∈ L, Φs1r1 (2q̃1r) ∈ R.

The conditions (4.C.27) and (4.C.28) are equivalent to

(4.C.29) p̃∗1ℓ = Φt1ℓF (p̃1ℓ) ∈ L1, p̃∗1r = Φt1rF (p̃1r) ∈ R1,

and

(4.C.30) q̃∗1ℓ = Φs1ℓF (q̃1ℓ) ∈ L1, q̃∗1r = Φs1rF (q̃1r) ∈ R1.

See Figure 4.C.3. Denote the orbits of F through p̃1ℓ, p̃1r by γ1ℓ, γ1r and those
through q̃1ℓ, q̃1r by σ1ℓ, σ1r. When picking p̃1ℓ, p̃1r, q̃1ℓ, and q̃1r, one can and should
enforce the following condition. If γ0ℓ intersects T1, p̃1ℓ should be to the right
of such an intersection, if γ0r intersects T1, p̃1r should be to the left of such an
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Figure 4.C.4. Completion of Step 1

intersection, and similarly for cases when σ0ℓ or σ0r intersect B1. Also, we can take
T1 > 1. (More on this below.)

Now we continue the orbits γ1ℓ, γ1r, σ1ℓ, and σ1r forward and backward, until
they intersect the boundary of O, at points p1ℓ, p1r, q1ℓ, q1r and p∗1ℓ, p

∗
1r, q

∗
1ℓ, q

∗
1r, as

illustrated in Figure 4.C.4. That such an intersection must occur is guaranteed by
(4.C.22). This, together with the fact that orbits of F cannot intersect, guarantees
that

(4.C.31) p0ℓ < p1ℓ < p1r < p0r,

in the sense that p < p′ means p is to the left of p′. In a similar sense, made clear
in Figure 4.C.4, we have

(4.C.32)

q0ℓ < q1ℓ < q1r < q0r,

p∗0r < p∗1r < q∗1r < q∗0r,

p∗0ℓ < p∗1ℓ < q∗1ℓ < q∗0ℓ.

Furthermore, as a consequence of (4.C.21), we have

(4.C.33)

|p1ℓ − p1r| ≤ A|p̃1ℓ − p̃1r| ≤ A,

|q1ℓ − q1r| ≤ A|q̃1ℓ − q̃1r| ≤ A,

|p∗1r − q∗1r| ≤ A|p̃∗1r − q̃∗1r| ≤ A,

|p∗1ℓ − q∗1ℓ| ≤ A|p̃∗1ℓ − q̃∗1r| ≤ A.
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We proceed iteratively. At step k, pick p̃kℓ, p̃kr ∈ Tk and q̃kℓ, q̃kr ∈ Bk such that
the following holds. Note that 2kp̃kℓ, 2

kp̃kr ∈ T and 2kq̃kℓ, 2
kq̃kr ∈ B. We require

that, for some tkℓ, tkr ∈ (0, Tk),

(4.C.34) Φtkℓ

k (2kp̃kℓ) ∈ L, Φtkr

k (2kp̃kr) ∈ R,

and for some skℓ, skr ∈ (0, Tk),

(4.C.35) Φskℓ

k (2kq̃kℓ) ∈ L, Φskr

k (2kq̃kr) ∈ R.

The conditions (4.C.34) and (4.C.35) are equivalent to

(4.C.36) p̃∗kℓ = Φtkℓ

F (p̃kℓ) ∈ Lk, p̃∗kr = Φtkr

F (p̃kr) ∈ Rk,

and

(4.C.37) q̃∗kℓ = Φskℓ

F (q̃kℓ) ∈ Lk, q̃∗kr = Φskr

F (q̃kr) ∈ Rk.

Denote the orbits of F through p̃kℓ, p̃kr by γkℓ, γkr, and those through q̃kℓ, q̃kr
by σkℓ, σkr. When picking p̃kℓ, p̃kr, q̃kℓ, and q̃kr, one can and should enforce the
following condition. If γk−1,ℓ intersects Tk, p̃kℓ should lie to the right of such a
point of intersection, if γk−1,r intersects Tk, p̃kr should lie to the left of such a point
of intersection, and similarly for cases where σk−1,ℓ or σk−1,r intersect Bk. At this
point it is useful to note that, by Lemma 4.C.1, we can take

(4.C.38) Tk → ∞ as k → ∞,

and hence take (with z = ℓ or r)

(4.C.39) ∥2kp̃kz − (0, 1)∥ ≤ ηk, ∥2kq̃kz − (0, 1)∥ ≤ ηk, ηk → 0 as k → ∞.

It then follows that (again with z = ℓ or r)
(4.C.40)

∥p̃∗kz − (2−k, 0)∥ ≤ 2−kη̃k, ∥q̃∗kz − (2−k, 0)∥ ≤ 2−kη̃k, η̃k → 0 as k → ∞.

Now we continue the orbits γkℓ, γkr, σkℓ, and σkr forward and backward, until
they intersect the boundary of O, at points pkℓ, pkr, qkℓ, qkr, and p∗kℓ, p

∗
kr, q

∗
kℓ, q

∗
kr,

as illustrated in Figure 4.C.5. That such intersections must occur is guaranteed by
(4.C.22). As before, the fact that orbits of ΦtF cannot intersect guarantees that

(4.C.41) p0ℓ < · · · < pkℓ < pkr < · · · < p0r,

in the sense specified in (4.C.31), and, as in (4.C.32),

(4.C.42)

q0ℓ < · · · < qkℓ < qkr < · · · < q0r,

p∗0r < · · · < p∗kr < q∗kr < · · · < q∗0r,

p∗0ℓ < · · · < p∗kℓ < q∗kℓ < · · · < q∗0ℓ.

Furthermore, as a consequence of (4.C.21), we have

(4.C.43)

|pkℓ − pkr| ≤ Ak|p̃kℓ − p̃kr| ≤ Ak2−kηk,

|qkℓ − qkr| ≤ Ak|q̃kℓ − q̃kr| ≤ Ak2−kηk,

|p∗kℓ − p∗kr| ≤ Ak|p̃∗kℓ − p̃∗kr| ≤ Ak2−kη̃k,

|q∗kℓ − q∗kr| ≤ Ak|q̃∗kℓ − q̃∗kr| ≤ Ak2−kη̃k.
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Figure 4.C.5. Step k

In particular, these distances are converging to 0 quite rapidly. We obtain limits

(4.C.44)
pkℓ, pkr → pt ∈ T , qkℓ, qkr → pb ∈ B,
p∗kℓ, q

∗
kr → p∗r ∈ R, p∗kℓ, q

∗
kℓ → p∗ℓ ∈ L.

See Figure 4.C.6. We have

(4.C.45) ΦtF (pt), Φ
t
F (pb) → 0 as t→ +∞,

and

(4.C.46) ΦtF (p
∗
ℓ ), Φ

t
F (p

∗
r) → 0 as t→ −∞,

since the paths in (4.C.45) meet each Ok for large positive t and those in (4.C.46)
meet each Ok for large negative t. Furthermore, by (4.C.39)–(4.C.40), plus the fact
that all these paths solve dx/dt = F (x), the curves in (4.C.45) fit together to form
a C1 curve tangent to the x2-axis at p = 0, and those in (4.C.46) fit together to
form a C1 curve tangent to the x1-axis at p = 0.

We sketch how to treat the case n = 3, n+ = 2, n− = 1. In place of (4.C.17),
we can take

(4.C.47) L =

(
A

−b

)
, A ∈M(2,R), b > 0,

and, via Lemma 4.3.5, arrange that

(4.C.48) Av · v ≥ a∥v∥2, a > 0, ∀ v ∈ R2.
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Figure 4.C.6. Limiting configuration as k → ∞

In place of (4.C.18), we use the cylinder

(4.C.49) O = {(x1, x2, x3) : x21 + x22 ≤ 1, |x3| ≤ 1}.
with boundary

(4.C.50) ∂O = T ∪ B ∪ L,
where T and B (the top and bottom) are disks and L (the side) is S1× [−1, 1]. We
then take Ok = 2−kO, with boundary Tk ∪ Bk ∪ Lk. Parallel to (4.C.24), we have
(at least for small ε) maps

(4.C.51)
φε1 : T1 → T , φε2 : B1 → B,

ψε : L1 → L,

with φεj defined by backward flow of ΦtFε
and ψε defined by forward flow. Again

the maps φεj are contractions for small ε. The maps ψε are not contractions, but
composing them on the left with the projection S1 × [−1, 1] → [−1, 1] produces a
contraction, for small ε, and this is what one needs. In place of a pair of initial data
on T and a pair on B, one takes a circle of initial data on T and one on B. Applying
ΦtF yields a pair of flared tubes, as pictured in Figure 4.C.7. From here, an iteration
produces nested families of such flared tubes, converging in on the one-dimensional
stable manifold S− and the two-dimensional unstable manifold S+. The interested
reader is invited to fill in the details, and work out the higher dimensional cases.
See also [10] and [19] for other approaches to this result.
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Figure 4.C.7. Set-up for a saddle in 3D

4.D. Blown up phase portrait at a critical point

Let Ω ⊂ Rn be open, 0 ∈ Ω, and F : Ω → Rn a smooth vector field. Assume
F (0) = 0, and that 0 is a non-degenerate critical point, i.e.,

(4.D.1) A = DF (0) ∈M(n,R) is invertible.

We want to “blow up” the portrait of solutions to

(4.D.2) x′ = F (x),

by using spherical polar coordinates,

(4.D.3) x = rω, r = r(t) ∈ [0,∞), ω = ω(t) ∈ Sn−1,

where Sn−1 is the unit sphere in Rn. Note that

(4.D.4) x′ = r′ω + rω′,

and ω(t) · ω(t) ≡ 1 ⇒ ω′ ⊥ ω, so the two vectors on the right side of (4.D.4) are
mutually orthogonal. We obtain

(4.D.5)
r′ = x′ · ω = ω · F (rω),
ω′ = r−1Pωx

′ = r−1PωF (rω),
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where Pω is the orthogonal projection of Rn onto the orthogonal complement of
Spanω, i.e.,

(4.D.6) Pωv = v − (v · ω)ω.

To proceed, write

(4.D.7) F (x) = Ax+R(x),

where

(4.D.8)

R(x) =
∑
j,k

(∫ 1

0

(1− s)∂j∂kF (sx) ds
)
xjxk

= r2
∑
j,k

(∫ 1

0

(1− s)∂j∂kF (srω) ds
)
ωjωk

= r2G(r, ω).

Here, if BR(0) ⊂ Ω, we have

(4.D.9) G : (−R,R)× Sn−1 −→ Rn, smooth.

Thus we can rewrite the system (4.D.5) as

(4.D.10)
r′ = (ω ·Aω)r + ω ·G(r, ω)r2,
ω′ = PωAω + rPωG(r, ω).

This is a smooth system of ODE on (−R,R)× Sn−1.

Now the null space N (Pω) is Spanω, and

(4.D.11) PωAω = Aω − (ω ·Aω)ω,
so

(4.D.12)
PωAω = 0 ⇐⇒ Aω ∥ω

⇐⇒ ω is an eigenvector of A,

in which case the associated eigenvalue λ is necessarily equal to ω · Aω (and this
eigenvalue is nonzero if A is invertible). Consequently, the right side of (4.D.10)
vanishes on

(4.D.13) {(r, ω) : r = 0, ω ∈ Sn−1, Aω = (ω ·Aω)ω},
and we have the following.

Proposition 4.D.1. If (4.D.1) holds, there exists a > 0 such that, on

(4.D.14) Oa = (−a, a)× Sn−1,

the right side of (4.D.10) vanishes only on the set (4.D.13). If each real eigenspace
of A is one dimensional, then each critical point of (4.D.10) is isolated.

Solutions to (4.D.10) define a flow on Oa, and {(r, ω) ∈ Oa : r = 0} is invariant
under this flow. The flow restricted to this set is the flow on Sn−1 defined by

(4.D.15) ω′ = PωAω,

which is

(4.D.16) ω(t) = ∥etAω0∥−1etAω0, ω0 = ω(0).
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Figure 4.D.1. Saddle critical point and its blowup

One convenient way to visualize the flow on Oa is to use the diffeomorphism

(4.D.17) Φ : Oa −→ Ua ⊂ Rn,

given by

(4.D.18) Φ(r, ω) = erω = y,

where

(4.D.19) Ua = {y ∈ Rn : e−a < |y| < ea}.

The resulting flow on Ua, acting on y = erω, is defined by

(4.D.20)

y′ = err′ω + erω′

= er
{[

(ω ·Aω)r + ω ·G(r, ω)r2
]
ω

+ Pω
[
Aω + rG(r, ω)

]}
= X(y),

where G(r, ω) is given by (4.D.8). Note that

(4.D.21) G(0, ω) =
1

2

∑
j,k

∂j∂kF (0)ωjωk.
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Figure 4.D.2. A generic sink and its blowup

We see that X is a smooth vector field on Ua whose critical points lie on S
n−1 ⊂ Ua,

and ω0 ∈ Sn−1 is a critical point of X if and only if

(4.D.22) Aω0 = λω0,

for some λ ∈ R, necessarily

(4.D.23) λ = ω0 ·Aω0,

and λ ̸= 0, given (4.D.1).

It is of interst to specify when such a critical point ω0 of X is nondegenerate,
i.e., when DX(ω0) ∈ M(n,R) is invertible. To begin this analysis, we see from
(4.D.20) that

(4.D.24) DX(ω0)ω0 = λω0.

We next evaluate DX(ω0)ξ when ω0 is a critical point and ξ ⊥ ω0. We have from
(4.D.20) that

(4.D.25) DX(ω0)ξ =
d

ds
Pω(s)Aω(s)

∣∣
s=0

,

where

(4.D.26) ω : (−ε, ε) → Sn−1, ω(0) = ω0, ω
′(0) = ξ.
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Figure 4.D.3. A non-generic sink and its blowup

A computation gives

(4.D.27)
d

ds
Pω(s)Aω(s)

∣∣
s=0

= Pω0Aξ − λξ,

provided (4.D.22) holds, and ξ ⊥ ω0. Hence

(4.D.28) DX(ω0)ξ = Pω0Aξ − λξ,

provided ω0 is a critical point of X and ξ ⊥ ω0. It follows that, if ξ ⊥ ω0,

(4.D.29) DX(ω0)(αω0 + ξ) = αλω0 + Pω0
Aξ − λξ,

so ω0 ∈ Sn−1 is a nondegenerate critical point of X if and only if

(4.D.30)
αλω0 + Pω0

Aξ − λξ = 0, ξ ⊥ ω0

=⇒ α = 0 and ξ = 0.

Since λ ̸= 0, we have the conclusion α = 0, so the criterion boils down to

(4.D.31) ξ ⊥ ω0, Pω0Aξ − λξ = 0 =⇒ ξ = 0.

Now, for ξ ⊥ ω0,

(4.D.32) Pω0
Aξ − λξ = 0 ⇐⇒ (A− λI)ξ ∈ Spanω0.

If dim E(A, λ) ≥ 2, one has nonzero ξ ∈ E(A, λ) orthogonal to ω0, so nondegeneracy
requires

(4.D.33) dim E(A, λ) = 1.
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Figure 4.D.4. A spiral sink and its blowup

Furthermore, if dimN ((A − λI)2) ≥ 2, this space contains a nonzero element ξ
orthogonal to ω0, and, by (4.D.33), (A−λI)ξ ∈ Spanω0, so nondegeneracy requires

(4.D.34) dimN
(
(A− λI)2

)
= 1, hence N

(
(A− λI)2

)
= E(A, λ).

We have the following:

Proposition 4.D.2. Maintain the hypothesis (4.D.1). Let ω0 ∈ Sn−1 be a critical
point of X, so (4.D.22) holds, with λ ∈ R, λ ̸= 0. Then ω0 is a nondegenerate
critical point of X if and only if

(4.D.35) GE(A, λ) = E(A, λ), and dim E(A, λ) = 1.

Figures 4.D.1–4.D.4 depict the blowups of critical points of four planar vector
fields. These have the form (4.D.7) with A ∈M(2,R) given, respectively, by

(4.D.36)

(
1

−1

)
,

(
−2

−1

)
,

(
−1 −1
0 −1

)
,

(
−1 −1
1 −1

)
.

The critical points are, respectively, a

(4.D.37) saddle, generic sink, nongeneric sink, spiral sink.

We provide a rather sketchy depiction of the phase portraits of the blow ups. We
sketch orbits on S1 = {|y| = 1}. Other orbits sketched are confined to {|y| > 1},
corresponding to {r > 0}, and we only sketch orbits that lead to (or from) critical
points of X on S1, except for the spiral sink, where X has no critical points.



394 4. Nonlinear systems of differential equations

Figure 4.D.5. Blowup of a 3D saddle

Figure 4.D.1, depicting the blowup of a saddle, has ±e1 and ±e2 as critical
points of X, each one in turn being a saddle. Figure 4.D.2, depicting the blowup
of a generic sink, also has ±e1 and ±e2 as critical points of X. In this case, ±e1
are saddles and ±e2 are sinks. In Figure 4.D.3, depicting a non-generic sink, the
only eigenvectors of A in S1 are ±e1, and these are the only critical points of X.
Consistent with Proposition 4.D.2, these critical points are degenerate, and the
orbits pictured here illustrate this. Figure 4.D.4 deals with a spiral sink. In this
case, A has no real eigenvectors, so, as noted above, X has no critical points on S1.
This figure illustrates how orbits of X spiral into S1.

In Figure 4.D.5 we depict the blowup of a 3D saddle. In this case, F (x) has
the form (4.D.7), with

(4.D.38) A =

λ1 λ2
λ3

 , λ3 < 0 < λ2 < λ1.

In this situation, the critical points of X on S2 = {|y| = 1} are ej , 1 ≤ j ≤ 3,
each of which is a saddle, though the saddles are of three different types. When
one restricts the flow generated by X to S2, one sees that ±e1 are sinks, ±e2 are
saddles, and ±e3 are sources. Note the heteroclinic orbits connecting these various
critical points.
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Figure 4.D.6. Blowup of a 3D spiral sink

In Figure 4.D.6 we depict the behavior of the blowup of a 3D spiral sink. In
this case, F (x) has the form (4.D.7), with

(4.D.39) A =

(
B

λ3

)
, B =

(
−1 −µ
µ −1

)
, µ, λ3 ∈ (−∞, 0).

The eigenvalues of B are −1 ± µi. There are two critical points of X on S2, at
±e3. Figure 4.D.6 depicts the case λ3 = −2. In this case, ±e3 are spiral saddles
for X. When one restricts the flow generated by X to S2, the points ±e3 are spiral
sources. This is somewhat analogous to the saddle behavior of ±e1 in Figure 4.D.2.
In addition, the equator of S2 (in the (e1e2)-plane) is an attracting cycle for the
flow generated by X.

The reader is invited to consider the behavior of blowups in case (4.D.39) when
one takes λ3 = −1/2, or −1.
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4.E. Periodic solutions of x′′ + x = εψ(x)

Equations of the form

(4.E.1) x′′ + x = εψ(x)

with “small” ε arise in a number of cases, and it is of interest to analyze various
features of these solutions. For example, as mentioned in §4.6, the relativistic
correction for planetary motion gives rise to the equation (4.6.53), which takes the
form (4.E.1) for x = u−A, with

(4.E.2) ψ(x) = (x+A)2.

Another example,

(4.E.3) ψ(x) = −x3,

yields a special case of Duffing’s equation. As we mentioned in §4.6, solutions to
(4.6.53) tend not to be periodic of period 2π, and this leads to the phenomenon of
precession of perihelia. It is of general interest to compute the period of a solution
to (4.E.1), and we discuss this problem here. We assume ψ is smooth.

We rewrite (4.E.1) as a first order system and also explicitly record the depen-
dence on ε:

(4.E.4)
x′ε(t) = yε(t),

y′ε(t) = −xε(t) + εψ(xε(t)).

We pick a ∈ (0,∞) and impose the initial conditions

(4.E.5) xε(0) = a, yε(0) = 0.

Note that if we take

(4.E.6) Fε(x, y) =
y2

2
+
x2

2
− εΨ(x),

where Ψ′(x) = ψ(x), then (d/dt)Fε(xε(t), yε(t)) = 0 for solutions to (4.E.4), so
orbits of (4.E.4) lie on level curves of Fε. For ε sufficiently small with respect to
a, the level curves of Fε on {(x, y) : x2 + y2 ≤ 2a2} will be close to those of F0,
that is to say, such level curves of Fε will be closed curves, close to circles, and the
associated solutions to (4.E.4)–(4.E.5) will be periodic. The period T (ε) will have
the following two properties, at least for small ε:

(4.E.7) T (ε) = 2π +O(ε), yε(T (ε)) = 0.

We will calculate a more precise approximation to T (ε), accurate for small ε.

The first order of business is to calculate accurate approximations to xε(t) and
yε(t), valid uniformly for t in an interval containing [0, 2π]. It follows from §4.2 that
xε(t) and yε(t) are smooth functions of ε. Hence, for each N ∈ N, we can write

(4.E.8)

xε(t) = a cos t+

N∑
k=1

Xk(t)ε
k +R1N (t, ε),

yε(t) = −a sin t+
N∑
k=1

Yk(t)ε
k +R2N (t, ε),
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where

(4.E.9) |RjN (t, ε)| ≤ CKNε
N+1, ∀ |t| ≤ K.

We write RjN (t, ε) = O(εN+1). The coefficients Xk(t) and Yk(t) satisfy differential
equations, obtained as follows. We have from (4.E.8)

(4.E.10) x′′ε (t) + xε(t) =

N∑
k=1

[
X ′′
k (t) +Xk(t)

]
εk +O(εN+1),

while
(4.E.11)

εψ(xε(t)) = εψ
(
a cos t+

N∑
k=1

Xk(t)ε
k
)
+O(εN+1)

= ε
[
ψ(a cos t) +

N∑
j=1

1

j!
ψ(j)(a cos t)

( N∑
k=1

Xk(t)ε
k
)j]

+O(εN+1).

We match up the coefficients of εk in (4.E.10) and (4.E.11) to obtain equations for
Xk(t). The case k = 1 gives

(4.E.12) X ′′
1 (t) +X1(t) = ψ(a cos t),

and from (4.E.5) the initial conditions are seen to be

(4.E.13) X1(0) = 0, X ′
1(0) = 0.

The solution to (4.E.12)–(4.E.13) is given by Duhamel’s formula, cf. (3.4.9) of
Chapter 3:

(4.E.14) X1(t) =

∫ t

0

sin(t− s)ψ(a cos s) ds.

It is convenient to expand sin(t− s) and rewrite (4.E.14) as

(4.E.15) X1(t) = (sin t)

∫ t

0

cos sψ(a cos s) ds− (cos t)

∫ t

0

sin sψ(a cos s) ds.

Regarding Yk(t), we have

(4.E.16) Yk(t) = X ′
k(t),

for all k, and in particular

(4.E.17) Y1(t) = (cos t)

∫ t

0

cos sψ(a cos s) ds+ (sin t)

∫ t

0

sin sψ(a cos s) ds.

In case ψ(x) is given by (4.E.2), we have

(4.E.18) ψ(a cos s) =
a2

2
cos 2s+ 2aA cos s+

(
A2 +

a2

2

)
,

hence

(4.E.19)

∫ t

0

cos sψ(a cos s) ds

=
(
A2 +

3a2

4

)
sin t+

aA

2
sin 2t+

a2

12
sin 3t+ aAt,
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and

(4.E.20)

∫ t

0

sin sψ(a cos s) ds

=
(
A2 +

aA

2
+
a2

2

)
−
(
A2 +

5a2

12

)
cos t− aA

2
cos 2t− a2

12
cos 3t.

One can compute higher terms in (4.E.8). For example, matching up coefficients
of ε2 in (4.E.10) and (4.E.11) yields

(4.E.21) X ′′
2 (t) +X2(t) = ψ′(a cos t)X1(t).

Again X2(0) = X ′
2(0) = 0, and, parallel to (4.E.14), we have

(4.E.22) X2(t) =

∫ t

0

sin(t− s)ψ′(a cos s)X1(s) ds.

Y2(t) is given by (4.E.16). One can continue this, but we will leave off at this point.

We return to the problem of approximating the period T (ε), making use of
(4.E.7). A very effective method for solving yε(T ) = 0 with T ≈ 2π is Newton’s
method, which gives T (ε) as the limit of Tn(ε), defined recursively by

(4.E.23) T0(ε) = 2π, Tn+1(ε) = Tn(ε)−
yε(Tn(ε))

y′ε(Tn(ε))
.

(A general treatment of Newton’s method is given in Chapter 5 of [49].) This
sequence converges fast:

(4.E.24) T (ε) = Tn(ε) +O(ε2
n

),

provided one has yε(t) evaluated exactly. Given an approximation to yε(t),

(4.E.25) yε(t) = ỹε(t) +O(εN ), y′ε(t) = ỹ′ε(t) +O(εN ),

we can work with T̃n(ε), given by

(4.E.26) T̃0(ε) = 2π, T̃n+1(ε) = T̃n(ε)−
ỹε(T̃n(ε))

ỹ′(T̃n(ε))
,

and we get

(4.E.27) T (ε) = T̃n(ε) +O(εN ), provided 2n ≥ N.

In particular, taking

(4.E.28) yε(t) = a sin t+ Y1(t)ε+O(ε2),

we have

(4.E.29) T (ε) = T̃1(ε) +O(ε2),

with

(4.E.30)
T̃1(ε) = 2π − ỹε(2π)

ỹ′ε(2π)

= 2π +
1

a
Y1(2π)ε,
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hence, by (4.E.17),

(4.E.31) T (ε) = 2π +
ε

a

∫ 2π

0

cos sψ(a cos s) ds+O(ε2).

In case ψ(x) is given by (4.E.2), we have from (4.E.19) that

(4.E.32)

∫ 2π

0

cos sψ(a cos s) ds = 2πaA,

so in this case

(4.E.33) T (ε) = 2π(1 +Aε) +O(ε2).

Given an approximation ỹε(t) satisfying (4.E.25) with N = 3 or 4, we can
iterate (4.E.26) once more, obtaining T2(ε) = T (ε) + O(εN ), and so on. We will
not pursue the details.

We now return to the problem of approximating the solution (xε(t), yε(t)) of
(4.E.4), and address a limitation of the approximations of the form (4.E.8). As
follows from (4.E.15)–(4.E.20), the first order approximation has the form

(4.E.34)
xε(t) = a cos t+X1(t)ε+O(ε2),

yε(t) = −a sin t+ Y1(t)ε+O(ε2),

and, in the case that ψ(x) is given by (4.E.2),

(4.E.35)
X1(t) = Xb

1(t) + aAt sin t,

Y1(t) = Y b1 (t)− aAt cos t,

where Xb
1(t) and Y b1 (t) are periodic in t, of period 2π, being sums of products

of sin kt and cos kt (0 ≤ k ≤ 3). In (4.E.34), the notation O(ε2) means that,
for any given bounded interval [−K,K], the remainder is bounded by CKε

2, for
t ∈ [−K,K]. However, it is apparent from (4.E.35) that the accuracy of this
approximation breaks down severely on intervals of length ≈ 1/ε. In fact, both
xε(t) and yε(t) are uniformly bounded, being periodic of period T (ε). As far as the
terms on the right side of (4.E.34) are concerned,

(4.E.36)
a cos t+Xb

1(t)ε and

−a sin t+ Y b1 (t)ε

are uniformly bounded, of period 2π, but

(4.E.37) aAεt sin t and − aAεt cos t

are unbounded as |t| → ∞. These terms are called secular terms, and it is desirable
to have a replacement for (4.E.8), in which such secular terms do not appear. To
get this, we proceed as follows.

The functions

(4.E.38) x#ε (t) = xε

(T (ε)t
2π

)
, y#ε (t) = yε

(T (ε)t
2π

)
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are periodic of period 2π in t and smooth in ε. Hence we have expansions

(4.E.39)

x#ε (t) = a cos t+

N∑
k=1

X#
k (t)εk +O(εN+1),

y#ε (t) = −a sin t+
N∑
k=1

Y #
k (t)εk +O(εN+1).

Note that

(4.E.40)
d

dt
x#ε (t) =

T (ε)

2π
y#ε (t),

which leads to a variant of (4.E.16). We have the following.

Proposition 4.E.1. The solution to (4.E.4)–(4.E.5) has the expansion

(4.E.41)

xε(t) = a cos
2πt

T (ε)
+

N∑
k=1

X#
k

( 2πt

T (ε)

)
εk +O(εN+1),

yε(t) = −a sin 2πt

T (ε)
+

N∑
k=1

Y #
k

( 2πt

T (ε)

)
εk +O(εN+1).

Each term in this series is periodic in t of period T (ε), and the remainders are
O(εN+1) uniformly for all t ∈ R.

It is natural and convenient to set

(4.E.42) X0(t) = X#
0 (t) = a cos t, Y0(t) = Y #

0 (t) = −a sin t.

It remains to compute X#
k (t) and Y #

k (t) for k ≥ 1. To this end, set

(4.E.43)
T (ε)

2π
= 1 + γ(ε), γ(ε) = ε

∑
ℓ≥0

γℓε
ℓ.

If we compare the expressions for xε(t) in (4.E.8) and (4.E.41) and make the sub-
stitution s = 2πt/T (ε), we obtain

(4.E.44)

∑
k≥0

X#
k (s)εk =

∑
i≥0

Xi(s+ γ(ε)s)εi

=
∑
i≥0

∑
j≥0

1

j!
X

(j)
i (s)sjγ(ε)jεi

=
∑
i≥0

∑
j≥0

1

j!
X

(j)
i (s)sj

(∑
ℓ≥0

γℓε
ℓ
)j
εi+j .

We conclude that X#
k (s) is equal to the coefficient of εk in the last power series.

For k = 0, we get

(4.E.45) X#
0 (s) = X0(s) = a cos s,

as already noted in (4.E.42). For k = 1, we get

(4.E.46)
X#

1 (s) = X1(s) + γ0sX
′
0(s)

= X1(s)− γ0as sin s.
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When ψ(x) is given by (4.E.2), we have from (4.E.35) that this is

(4.E.47)
= Xb

1(s) + aAs sin s− γ0as sin s

= Xb
1(s),

the last identity by (4.E.43) and (4.E.33), which gives γ0 = A in this case. Alter-

natively, since X#
1 (s) and Xb

1(s) are periodic in s and the other terms are secular,

these secular terms have to cancel. This holds for general ψ(x); X#
1 (s) is obtained

from X1(s) by striking out the secular terms. One can similarly characterize the

higher order terms X#
k (t) in (4.E.39). We forego the details.

We end this appendix with an indication of how to extend the scope of (4.E.1).
We treat the pendulum equation

(4.E.48) u′′ + sinu = 0,

and seek information on small oscillations, solving (4.E.48) with initial data

(4.E.49) u(0) = a
√
ε, u′(0) = 0.

Thus we set

(4.E.50) x(t) =
1√
ε
u(t),

which solves

(4.E.51) x′′ +
sin

√
εx√
ε

= 0, x(0) = a, x′(0) = 0.

If we set

(4.E.52)
sin τ

τ
= 1− τ2F (τ), F (τ) =

1

3!
− τ2

5!
+ · · · ,

we get

(4.E.53)

x′′ + x = εx3F (
√
εx)

= ε
x3

3!
− ε2

x5

5!
+ · · · .

This has a form similar to (4.E.1), but generalized to

(4.E.54) x′′ + x = εψ(ε, x),

with ψ smooth in (ε, x). Treatments of the solutions to (4.E.1) and their periods
T (ε) extend to the case (4.E.54). The reader is invited to work out details.



402 4. Nonlinear systems of differential equations

4.F. A dram of potential theory

Newton’s law of gravitation states that the force a particle of mass m1 located at
p ∈ R3 exerts on a particle of mass m2 located at x ∈ R3 is

(4.F.1) F (x) = Gm1m2
p− x

∥p− x∥3
.

Here G is the gravitational constant, given by (4.6.64). As indicated in Exercise
6 of §4.6, the force that a planet exerts on an external body is the same as what
would be exerted if all the mass of the planet were concentrated at its center, in
the Newtonian theory. In this appendix we explain why this is true, and in the
course of doing so introduce an area of mathematical analysis known as potential
theory. We establish this identity of force fields under the hypothesis that the mass
distribution of the planet is spherically symmetric about its center. That is to say,
we assume the planet, centered at p, has mass density ρ, and

(4.F.2) ρ(p+Ry) = ρ(p+ y), ∀R ∈ O(3), y ∈ R3,

where we recall from Chapter 2 that O(3) is the set of orthogonal transformations
of R3. Say the planet has radius a, so

(4.F.3) ∥y∥ > a =⇒ ρ(p+ y) = 0.

The planet’s mass is

(4.F.4) m1 =

∫
ρ(y) dy.

If a particle of mass m2 is located at x ∈ R3 and ∥p − x∥ > a, then the force the
planet exerts on this particle is given by

(4.F.5) G(x) = Gm2

∫
y − x

∥y − x∥3
ρ(y) dy.

We will show that if (4.F.2)–(4.F.4) hold and ∥p− x∥ > a, then F (x) = G(x).

For notational simplicity, we may as well take

(4.F.6) p = 0,

so

(4.F.7) F (x) = −Gm1m2
x

∥x∥3
.

Note that

(4.F.8) F (x) = −∇V (x), G(x) = −∇W (x),

with

(4.F.9) V (x) = −Gm1m2

∥x∥
, W (x) = −Gm2

∫
∥y∥≤a

1

∥x− y∥
ρ(y) dy,

so it suffices to prove that these potential energies coincide for ∥x∥ > a, i.e.,

(4.F.10) ∥x∥ > a =⇒ V (x) =W (x).

As a first step toward proving (4.F.10), note that clearly, for all R ∈ O(3),

(4.F.11) V (Rx) = V (x),
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and furthermore

(4.F.12)

W (Rx) = −Gm1

∫
1

∥Rx− y∥
ρ(y) dy

= −Gm1

∫
1

∥Rx−Rz∥
ρ(Rz) dz

= −Gm1

∫
1

∥x− z∥
ρ(z) dz

=W (x),

the second identity by change of variable and the third by (4.F.2). Consequently,
we have

(4.F.13) V (x) = v(r), W (x) = w(r), r = ∥x∥,

and it remains to show that

(4.F.14) r > a =⇒ v(r) = w(r).

As another step toward showing this, we note that, given a ∈ (0,∞), there exists
C <∞ such that

(4.F.15) ∥y∥ ≤ a, ∥x∥ ≥ a+ 1 =⇒
∣∣∣ 1

∥x∥
− 1

∥x− y∥

∣∣∣ ≤ C

∥x∥2
,

and hence, by (4.F.4), (4.F.9), and (4.F.13), there exists C2 <∞ such that

(4.F.16)

r = ∥x∥ ≥ a+ 1 =⇒ |V (x)−W (x)| ≤ C2

∥x∥2

=⇒ |v(r)− w(r)| ≤ C2

r2
.

The next step toward establishing (4.F.14) involves the following harmonicity,

(4.F.17) ∆V (x) = 0, ∀x ∈ R3 \ 0,

where ∆ is the Laplace operator,

(4.F.18) ∆f(x) =
∂2f

∂x21
+
∂2f

∂x22
+
∂2f

∂x23
.

To see this, recall from (1.A.11) of Chapter 1 that (on R3)

(4.F.19) f(x) = g(r) =⇒ ∆f(x) = g′′(r) +
2

r
g′(r),

and by results on Euler equations from §1.15 of Chapter 1,

(4.F.20) g′′(r) +
2

r
g′(r) = 0 ⇐⇒ g(r) =

c1
r

+ c2,

Since

(4.F.21) V (x) = v(r) = −Gm1m2

r
,

we have (4.F.17), and hence we also have

(4.F.22) ∆
( 1

∥x− y∥

)
= 0 for x ̸= y,
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so a direct consequence of the integral formula (4.F.9) for W (x) is

(4.F.23) ∆W (x) = 0 for ∥x∥ > a.

Hence, by (4.F.13), (4.F.19), and (4.F.20),

(4.F.24)
r > a =⇒ w′′(r) +

2

r
w′(r) = 0

=⇒ w(r) =
c1
r

+ c2,

for some constants c1 and c2. This identity together with (4.F.21) and (4.F.16)
proves (4.F.14). Hence we have (4.F.10), so indeed, under the hypotheses (4.F.2)–
(4.F.4) (and with p = 0),

(4.F.25) ∥x∥ > a =⇒ F (x) = G(x).

We mention the following refinement of (4.F.23),

(4.F.26) ∆W = 4πGm2ρ.

This is not needed to establish (4.F.14), so we will not prove it here. A proof can
be found in [45], Chapter 3, §4. Further exploration of the relation between the
Laplace operator and the “potential” function W , through (4.F.9), leads to the
subject of potential theory, addressed in Chapters 3–5 of [45] and in other books
on partial differential equations.

The earth, the sun, and other planets and stars are approximately spherically
symmetric, but not exactly so. This leads to further corrections in calculations in
celestial mechanics. In addition, measurements of the strength of the earth’s grav-
itational field give information on the inhomogeneities of the earth’s composition,
leading to the field of physical geodesy; cf. [20].
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4.G. Brouwer’s fixed-point theorem

Here we prove the following fixed-point theorem of L. Brouwer, which arose in §4.15.
Take

(4.G.1) D = {x ∈ R2 : ∥x∥ ≤ 1}.

Theorem 4.G.1. Each smooth map F : D → D has a fixed point.

The proof proceeds by contradiction. We are claiming that F (x) = x for some
x ∈ D. If not, then for each x ∈ D define φ(x) to be the endpoint of the ray from
F (x) to x, continued until it hits

(4.G.2) ∂D = {x ∈ R2 : ∥x∥ = 1}.

An explicit formula is

(4.G.3)
φ(x) = x+ t(x− F (x)), t =

√
b2 + 4ac− b

2a
,

a = ∥x− F (x)∥2, b = 2x · (x− F (x)), c = 1− ∥x∥2.

Here t is picked to solve the equation ∥x+ t(x−F (x))∥2 = 1. Note that ac ≥ 0, so
t ≥ 0. It is clear that φ would have the following properties:

(4.G.4) φ : D → ∂D smoothly, x ∈ ∂D ⇒ φ(x) = x.

Such a map is called a smooth retraction. The contradiction that proves Theorem
4.G.1 is provided by the following result, called Brouwer’s no-retraction theorem.

Theorem 4.G.2. There is no smooth retraction φ : D → ∂D of D onto its bound-
ary.

Proof. This proof, also by contradiction, brings in material developed in §4. Sup-
pose we had such a retraction φ. Consider the closed curve

(4.G.5) γ : [0, 2π] −→ ∂D, γ(t) = (cos t, sin t),

and form

(4.G.6) γs(t) = φ(sγ(t)), 0 ≤ s ≤ 1.

This would be a smooth family of maps

(4.G.7) γs : [0, 2π] −→ ∂D, γs(0) = γs(2π),

such that γ1 = γ and γ0(t) = φ(0) for all t. The variant of Lemma 4.4.2 given in
Exercise 13 of §4.4 implies

(4.G.8)

∫
γs

F (y) · dy is independent of s ∈ [0, 1],

for each C1 vector field F defined on a neighborhood of ∂D and satisfying (4.4.4).
Clearly the line integral (4.G.7) is 0 for s = 0, so we deduce that

(4.G.9)

∫
γ

F (y) · dy = 0
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for each such vector field. In particular, this would apply to the vector field given
by (4.4.19)–(4.4.20), i.e.,

(4.G.10) F (x) =
1

∥x∥2

(
−x2
x1

)
,

which is smooth on R2 \ 0 and satisfies (4.4.4) (cf. (4.4.21)). On the other hand,
we compute

(4.G.11)

∫
γ

F (y) · dy =

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt

= 2π,

contradicting (4.G.9) and hence contradicting the existence of such a retraction. �

The fixed-point theorem is valid for all continuous F : D → D. In fact, an
approximation argument, which we omit here, can be used to show that if such

continuous F has no fixed point, there is a smooth approximation F̃ : D → D that
would also have no fixed point.

Furthermore, Theorem 4.G.1 holds in n dimensions, i.e., when

(4.G.12) D = {x ∈ Rn : ∥x∥ ≤ 1}.
The reduction to Theorem 4.G.2, in the setting of (4.G.12), is the same as above,
but the proof of Theorem 4.G.2 in the n-dimensional setting requires a further
argument. Proofs using topology can be found in [14] and [32]. Proofs using
differential forms can be found in [26], [50], Chapter 5, [45], Chapter 1, and [46],
Appendix G. We have no space to introduce differential forms here, but as shown in
[45], and also in [1] and [5], they give rise to many important results in the study
of differential equations, at the next level.
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4.H. Geodesic equations on surfaces

The notion of a geodesic on a surface in Euclidean space was introduced in §4.7.
Here we say a bit more about this. Let M ⊂ Rk be a smooth, m-dimensional
surface (classically, k = 3,m = 2), and let u : [a, b] → M be a smooth curve. The
length of this curve is

(4.H.1) L(u) =

∫ b

a

∥u′(t)∥ dt,

where ∥u′(t)∥2 = u′(t) · u′(t), the dot product taken in Rk. We consider smooth
curves that are length minimizing, among curves with the same endpoints. Such
curves are called geodesics. They have the following property. Let us be a smooth
family of curves satisfying

(4.H.2) us : [a, b] −→M, us(a) ≡ p, us(b) ≡ q,

with u0 = u. Then L(us) ≥ L(u0) for all s, so

(4.H.3)
d

ds
L(us)

∣∣
s=0

= 0.

In other words, u0 is a critical point of the length functional. We define the term
“geodesics” to include all such critical paths.

The quantity L(u) is unchanged under reparametrization. We will reparametrize
u0 so that ∥u′0(t)∥ ≡ c0 is constant. Then

(4.H.4)

d

ds
L(us)

∣∣
s=0

=
d

ds

∫ b

s

(
u′s(t) · u′s(t)

)1/2
dt
∣∣
s=0

=
1

2c0

∫ b

a

∂

∂s
u′s(t) · u′s(t) dt

∣∣
s=0

.

Equivalently,

(4.H.5)
d

ds
L(us)

∣∣
s=0

=
1

c0

d

ds
E(us)

∣∣
s=0

,

where

(4.H.6) E(us) =
1

2

∫ b

a

∥u′s(t)∥2 dt

is the energy of the curve us : [a, b] → M . This is exactly the energy functional
introduced in (4.7.27), and the analysis in (4.7.28)–(4.7.33) applies.

In particular, if k = m + 1 and n(x) is the unit normal to M at x, then the
condition that u = u0 is a critical path for E is given by (4.7.32), i.e.,

(4.H.7) u′′(t) = −u′(t) · d
dt
n(u(t))n(u(t)).

Now suppose that M is a level set of a smooth function f : O → R, defined on an
open set O ⊂ Rk, i.e., for some c ∈ R,
(4.H.8) M = {x ∈ O : f(x) = c}, ∇f ̸= 0 on M.

Then, for x ∈M ,

(4.H.9) n(x) =
∇f(x)
∥∇f(x)∥

,
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and the ODE (4.H.7) can be written

(4.H.10) u′′(t) = −u
′(t) ·D2f(u(t))u′(t)

∥∇f(u(t))∥2
∇f(u(t)),

where D2f(x) is the k × k matrix of second order partial derivatives of f at x.
Passing from (4.H.9) to (4.H.10) uses the fact that a path u(t) on M satisfies
u′(t) · n(u(t)) = 0. The equation (4.H.10) can be written as a first order system:

(4.H.11)

u′ = v,

v′ = −v ·D
2f(u)v

∥∇f(u)∥2
∇f(u).

Solutions to the system (4.H.11) define a flow

(4.H.12) F t : TO −→ TO, TO = O × Rk.

We have

(4.H.13) F t : TM −→ TM, F t
∣∣
TM

= Gt,
where

(4.H.14) TM = {(x, v) ∈ O × Rk : x ∈M, v ∈ TxM},
where TxM denotes the set of vectors v ∈ Rk tangent to M at x, i.e.,

v · ∇f(x) = 0,

and

(4.H.15) Gt : TM −→ TM

is the geodesic flow, i.e., for v ∈ TxM ,

(4.H.16) Gt(x, v) = (γ(t), γ′(t)),

where γ(t) is the constant speed geodesic on M satisfying

(4.H.17) γ(0) = x, γ′(0) = v.

However, as we illustrate below, it is often the case that

(4.H.18) TM is an unstable invariant surface for the flow F t.

This has consequences for the numerical treatment of geodesic curves onM . Indeed,
one has the important task of stabilizing a numerical approximation to the flow F t,
so it reliably acts on TM .

Numerical considerations

To be specific, suppose we apply a 4th order Runge-Kutta scheme to the first-
order system (4.H.11), with step size h. We start at a point (x, v) ∈ TM . At time
h we obtain an approximation

(4.H.19) (x̃(h), ỹ(h)) to Fh(x, v).

In fact,

(4.H.20) (x̃(h), ỹ(h)) = Fh(x, v) +O(h5).
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In particular,

(4.H.21) dist
(
(x̃(h), ṽ(h)), TM

)
= O(h5).

We can construct a retraction of a neighborhood of TM in TRk onto TM , and
apply this to get an approximation

(4.H.22)
(x̂(h), v̂(h)) = Gh(x, v) +O(h5),

(x̂(h), v̂(h)) ∈ TM.

This provides a useful modified Runge-Kutta approximation to the geodesic flow
Gt on TM . It remains 4th order accurate.

We next examine how the instability advertised in (4.H.18) arises in case M is
a (k − 1)-dimensional ellipsoid in Rk.

Geodesic equations on ellipsoids

Here we look at the ellipsoid Mc ⊂ Rk, given by

(4.H.23) Mc = {x ∈ Rk : f(x) = c},
where

(4.H.24) f(x) = x ·Ax, A = At ∈M(k,R), positive definite.

We pick c ∈ (0,∞). In such a case, we have

(4.H.25) ∇f(x) = 2Ax, D2f(x) = 2A,

and the geodesic equation (4.H.10) becomes (with slightly different notation)

(4.H.26) x′′(t) = − x′(t) ·Ax′(t)
Ax(t) ·Ax(t)

Ax(t).

We write this as a first-order system:

(4.H.27)
x′ = v,

v′ = −φ(x, v)Ax,
with

(4.H.28) φ(x, v) =
v ·Av
∥Ax∥2

.

Note that, for x ∈Mc,

(4.H.29) v ∈ TxMc ⇐⇒ v ·Ax = 0.

The system (4.H.27) generates a flow F t on TRk = R2k, specializing to the
geodesic flow Gt on TMc ⊂ R2k. Under Gt, acting on (x, v) ∈ TMc, the quantity
∥v∥ is constant on each orbit. This need not be the case on other orbits of F t, as
we will soon see.

In fact, we have the following computations for solutions (x, v) to (4.H.27):

(4.H.30)
d

dt
x ·Ax = 2v ·Ax,

(4.H.31)
d

dt
∥v∥2 = 2v · v′ = −2φ(x, v)v ·Ax,
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and

(4.H.32)

d

dt
v ·Ax = v ·Ax′ + v′ ·Ax

= v ·Av − φ(x, v)∥Ax∥2

= 0.

In particular, on each orbit γ of F t, the quantity v ·Ax is constant, say

(4.H.33) v ·Ax = κ on γ,

and then (4.H.30)–(4.H.31) yield

(4.H.34)

d

dt
x ·Ax = 2κ,

d

dt
∥v∥2 = −2φ(x, v)κ.

We see that, on such an orbit,

(4.H.35) x(t) ·Ax(t) = c+ 2κt.

If κ ̸= 0, then, as c + 2κt ↘ 0, one has x(t) → 0 and, by (4.H.34), ∥v(t)∥ ↗ ∞.
Hence the solution to (4.H.27) ceases to exist at c + 2κt = 0, and we avoid the
absurd conclusion that x(t) ·Ax(t) < 0 for c+ 2κt < 0.
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4.I. Rigid body motion in Rn and geodesics on SO(n)

Suppose there is a rigid body in Rn, with a mass distribution at t = 0 given by
a function ρ(x), which we will assume is piecewise continuous and has compact
support. We also assume ρ ≥ 0 and it is not identically zero. Suppose the body
moves, subject to no external forces, only the constraint of being rigid. We want
to describe the motion of such a body. According to the Lagrangian approach to
mechanics, we seek a critical path of the integrated kinetic energy, subject to this
constraint.

If ξ(t, x) is the position at time t of the point on the body whose position at
time 0 is x, then we can write the Lagrangian as

(4.I.1) I(ξ) =
1

2

∫ t1

t0

∫
Rn

ρ(x)|ξ̇(t, x)|2 dx dt.

Here ξ̇(t, x) = ∂ξ/∂t.

Using center of mass coordinates, we will assume that the center of mass of the
body is at the origin, and its total linear momentum is zero, so

(4.I.2) ξ(t, x) =W (t)x, W (t) ∈ SO(n),

where SO(n) is the set of rotations of Rn, introduced in §2.12. Thus, describing the
motion of the body becomes the problem of specifying the curve W (t) in SO(n).
We can write (4.I.1) as

(4.I.3) I(ξ) = J(W ) =
1

2

∫ t1

t0

∫
Rn

ρ(x)|W ′(t)x|2 dx dt.

We look for an extremum, or other critical point, where we vary the family of paths
W : [t0, t1] → SO(n) (keeping the endpoints fixed).

We want to reduce the formula (4.I.3) for J(W ) to a single integral, over t. To
do this, we bring in the following.

Lemma 4.I.1. If A,B ∈M(n,R), then

(4.I.4)

∫
Rn

ρ(x) (Ax,Bx) dx = Tr(AIρBt),

where Iρ ∈M(n,R) is defined by

(4.I.5) Iρ =
∫
Rn

ρ(x)xxt dx.

Proof. It suffices to note that

(4.I.6) (Ax,Bx) = Tr(AxxtBt),

as a consequence of the identity (x, y) = Trxyt, for x, y ∈ Rn, regarded as column
vectors. �
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Note that Iρ is a symmetric, positive-definite n×n matrix. Now, using (4.I.4),
we can write the Lagrangian (4.I.3) as

(4.I.7)

J(W ) =
1

2

∫ t1

t0

Tr(W ′(t)IρW ′(t)t) dt

=
1

2

∫ t1

t0

Qρ(W
′(t),W ′(t)) dt,

where Qρ is the inner product on M(n,R) defined by

(4.I.8) Qρ(A,B) = Tr(AIρBt).

Note that this inner product is invariant under left multiplication by elements of
SO(n), i.e.,

(4.I.9)
W ∈ SO(n) ⇒ Qρ(WA,WB) = Tr(WAIρBtW−1)

= Qρ(A,B).

On the other hand, for W ∈ SO(n),

(4.I.10) Qρ(AW,BW ) = Tr(AWIρW−1Bt),

which is equal to Qρ(A,B) for all A,B ∈ M(n,R) if and only if WIρ = IρW . In
turn, this holds for all W ∈ SO(n) if and only if Iρ is a scalar multiple of the
identity matrix I.

Finding a critical path W : I → SO(n) for (4.I.7) is a constrained variational
problem, similar to those described in (4.7.21)–(4.7.27). Parallel to (4.7.28), the
condition for a path W to be critical is

(4.I.11) W ′′(t) ⊥ TW (t)SO(n), ∀ t ∈ I,

orthogonality being with respect to the inner product Qρ, i.e.,

(4.I.12) A ∈ TW (t)SO(n) =⇒ Qρ(W
′′(t), A) = 0.

Given V ∈ SO(n), we can define the vector space TV SO(n) as the space of all
matrices W ′(0), for smooth curves W : (−ε, ε) → SO(n) satisfying W (0) = V . For
example,

(4.I.13) TISO(n) = Skew(n) = {X ∈M(n,R) : Xt = −X},

and, for V ∈ SO(n),

(4.I.14)
TV SO(n) = {V X : X ∈ Skew(n)}

= {Y V : Y ∈ Skew(n)}.

Comparison with (4.H.1)–(4.H.6) shows that these critical paths are geodesics on
SO(n), where the length of a curve W : [t0, t1] → SO(n) is given by

(4.I.15) Lρ(W ) =

∫ t1

t0

Qρ(W
′(t),W ′(t))1/2 dt.

To proceed, we see from (4.I.12)–(4.I.14) that the condition forW : I → SO(n)
to be a critical path for (4.I.7) is

(4.I.16) Tr
(
W (t)−1W ′′(t)IρX

)
= 0, ∀X ∈ Skew(n),
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upon setting A =W (t)X in (4.I.12). It is convenient to bring in

(4.I.17) Z(t) =W (t)−1W ′(t),

and derive an equation for Z(t) from (4.I.16). First, note the following (which
echoes part of (4.I.14)).

Lemma 4.I.2. If W : I → SO(n) is a smooth curve, then

(4.I.18) Z(t) ∈ Skew(n), ∀ t ∈ I.

Proof. Differentiating W (t)tW (t) = I gives

W ′(t)tW (t) = −W (t)tW ′(t),

hence

Z(t)t =W ′(t)tW (t) = −Z(t).
�

To recast (4.I.16) in terms of Z(t), note that (4.I.17) yields

(4.I.19)
Z ′(t) =W (t)−1W ′′(t)−W (t)−1W ′(t)W (t)−1W ′(t)

=W (t)−1W ′′(t)− Z(t)2.

Now, given B ∈M(n,R),

(4.I.20) Tr(BX) = 0 ∀X ∈ Skew(n) ⇐⇒ B = Bt.

Hence the condition (4.I.16) is equivalent to the statement that

(4.I.21) [Z ′(t) + Z(t)2]Iρ is symmetric.

If we denote the matrix in (4.I.21) by B and compute B − Bt, we arrive at the
following result.

Proposition 4.I.3. If we define Z(t) by (4.I.17), the condition thatW : I → SO(n)
be a critical path for (4.I.7) is equivalent to

(4.I.22) Z ′(t)Iρ + IρZ ′(t) + Z(t)2Iρ − IρZ(t)2 = 0.

To work on (4.I.22), let us define

(4.I.23) Lρ : Skew(n) → Skew(n), LρX =
1

2
(XIρ + IρX).

Then (4.I.22) can be written

(4.I.24) 2LρZ ′(t)− [Iρ, Z(t)2] = 0,

where, generally, [A,B] = AB −BA. In turn, if we set

(4.I.25) M(t) = LρZ(t) =
1

2
(Z(t)Iρ + IρZ(t)),

and note that

(4.I.26) [Iρ, Z2] = 2[M,Z],

we can recast (4.I.24) as

(4.I.27) M ′(t) = [M(t), Z(t)],
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or equivalently

(4.I.28) M ′(t) = [M(t),L−1
ρ M(t)],

a system of ODE with a quadratic nonlinearity. The following result leads to
valuable information about M(t).

Proposition 4.I.4. Suppose (4.I.27) holds for t ∈ I, that t0 ∈ I, and M0 =M(t0).
Then there exists U : I → SO(n) such that

(4.I.29) M(t) = U(t)M0U(t)−1, t ∈ I.

Proof. We produce a linear ODE for U(t). Differentiating (4.I.29) gives

(4.I.30)

M ′(t) = U ′(t)M0U(t)−1 − U(t)M0U(t)−1U ′(t)U(t)−1

= U ′(t)U(t)−1M(t)−M(t)U ′(t)U(t)−1

= [M(t), Z(t)],

provided Z = −U ′U−1, i.e.,

(4.I.31) U ′(t) = U(t)Z(t).

To obtain (4.I.29), take U to solve (4.I.31), with U(t0) = I, and verify that Z(t) ∈
Skew(n) ⇒ U(t) ∈ SO(n). �

Note that (4.I.29) implies

(4.I.32) ∥M(t)∥ = ∥M0∥, ∀ t ∈ I.

Hence, by Proposition 4.1.2, we have:

Proposition 4.I.5. Given t0 ∈ R and initial data M(t0) = M0 ∈ Skew(n), the
system (4.I.28) has a unique solution for all t ∈ R, M : R → Skew(n).

Having a solution to (4.I.28), we can retrace our steps, obtaining Z(t) =
L−1
ρ M(t), satisfying (4.I.22), and then solve the linear system

(4.I.33) W ′(t) =W (t)Z(t), W (t0) =W0 ∈ SO(n),

to obtain a critical path for (4.I.7).

The identity (4.I.32) says the operator norm ∥M(t)∥ is a conserved quantity
for solutions to (4.I.28). We record some other conserved quantities.

Proposition 4.I.6. For each solution M : R → Skew(n) to (4.I.28) and each
k ∈ N, the quantities

(4.I.34) TrM(t)2k

are independent of t. So is

(4.I.35) Qρ(Z(t), Z(t)),

with Z(t) = L−1
ρ M(t).
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Proof. From (4.I.29) we have

(4.I.36) M(t)2k = U(t)M2k
0 U(t)−1,

and taking traces yields (4.I.34). To get (4.I.35), note that, when W : R → SO(n)
is a critical path for (4.I.7), then

(4.I.37)
d

dt
Qρ(W

′(t),W ′(t)) = 2Qρ(W
′′(t),W ′(t)) = 0,

the last identity by (4.I.11)–(4.I.12). Since Z(t) =W (t)−1W ′(t), (4.I.9) gives

(4.I.38) Qρ(Z(t), Z(t)) = Qρ(W
′(t),W ′(t)),

and we have (4.I.35). �

Note. The conserved quantities listed in Proposition 4.I.6 include two quadratic
forms in Z, namely

(4.I.39)

Qρ(Z,Z) = −TrZIρZ,

Qm(Z,Z) =
1

4
Tr(ZIρ + IρZ)2.

Let us specialize to n = 3. Assume the standard basis {e1, e2, e3} of R3 diago-
nalizes Iρ, and set

(4.I.40) Z = κ(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , Iρ =

a1 a2
a3

 .

Here the isomorphism κ : R3 → Skew(3) is chosen to satisfy

(4.I.41) x× y = κ(x)y, x, y ∈ R3,

where x× y is the cross product on R3. Compare §2.12, Exercise 9. A calculation
gives

(4.I.42)
−TrZIρZ = (a2 + a3)x

2
1 + (a1 + a3)x

2
2 + (a1 + a2)x

2
3

= x · Jρx,
where

(4.I.43)

Jρ = (Tr Iρ)I − Iρ

=

a2 + a3
a1 + a3

a1 + a2


=

α1

α2

α3

 .

Next, we have

(4.I.44)

M = ZIρ + IρZ

=
1

2

 0 −α3x3 α2x2
α3x3 0 −α1x1
−α2x2 α1x1 0

 ,
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hence

(4.I.45)
−TrM2 = ∥M∥2HS =

1

2
(α2

1x
2
1 + α2

2x
2
2 + α2

3x
2
3)

=
1

2
x · J 2

ρ x.

Note also that

(4.I.46) M = κ(Jρx).

We want to rewrite the equations (4.I.27)–(4.I.28) as equations for

(4.I.47) x(t) = κ−1Z(t), y(t) = κ−1M(t) = Jρx(t),
using the corss product. Complementing (4.I.41), we have

(4.I.48) κ(x× y) = [κ(x), κ(y)];

see again §2.12, Exercise 9. Given this, we read off from (4.I.27) that, if x and y
are given by (4.I.47), then

(4.I.49)
dy

dt
= −x× y.

In this setting, x(t) is called the angular velocity of the rotating body, y(t) its angular
momentum, and Jρ the inertia tensor. The equation (4.I.49) is the standard form
of Euler’s equation for the free motion of a rigid body in R3.

We can rederive the conservation laws for x · Jρx and x · J 2
ρ x directly from

(4.I.49), upon noting that x× y is orthogonal to x and to y = Jρx, hence

(4.I.50)
0 = x · Jρx′ =

1

2

d

dt
x · Jρx,

0 = Jρx · Jρx′ =
1

2

d

dt
x · J 2

ρ x.

Explicitly, the conservation laws we get are

(4.I.51)
α1x

2
1 + α2x

2
2 + α3x

2
3 = C1,

α2
1x

2
1 + α2

2x
2
2 + α2

3x
2
3 = C2,

since we have chosen coordinates on R3 so that Jρ is given by (4.I.43), and Iρ by
(4.I.40). Note also that

(4.I.52) a1 > a2 > a3 > 0 =⇒ 0 < α1 < α2 < α3,

and more generally a1 ≥ a2 ≥ a3 > 0 ⇒ 0 < α1 ≤ α2 ≤ α3.

Given that y = Jρx, we have

(4.I.53) x× y =

(α3 − α2)x2x3
(α1 − α3)x1x3
(α2 − α1)x1x2

 ,

and (4.I.49) becomes

(4.I.54)

α1x
′
1 + (α3 − α2)x2x3 = 0,

α2x
′
2 + (α1 − α3)x1x3 = 0,

α3x
′
3 + (α2 − α1)x1x2 = 0.
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If any of the quantities αℓ coincide, the system (4.I.54) simplifies. For example, if
α1 = α2, we get x′3 = 0, hence x3 = ξ3 = const., and

(4.I.55)
x′1 = −γξ3x2,
x′2 = γξ3x1

(with γ = (α3 − α1)/α1), a constant coefficient linear system. If α1, α2, α3 are all
distinct, as in (4.I.52), then we can deduce from (4.I.51) identities of the form

(4.I.56)

x21 + γ3x
2
2 = c3,

x21 + γ2x
2
3 = c2,

x22 + γ1x
2
3 = c1,

and then (4.I.54) transforms into equations such as

(4.I.57) x′1 = A1(c3 − x21)
1/2(c2 − x21)

1/2,

etc. The equation (4.I.57) and its analogues for x2 and x3 are separable. One gets

(4.I.58)

∫
dx1√

(c3 − x21)(c2 − x21)
= A1

∫
dt,

the left side being an elliptic integral, which one can read about in Chapter 6 of
[47].

An alternative presentation of (4.I.51) is

(4.I.59)
y21 + y22 + y23 = C2,

β1y
2
1 + β2y

2
2 + β3y

2
3 = C1,

with yj = αjxj , βj = 1/αj . One obtains variants of (4.I.54)–(4.I.58), with yj in
place of xj . Note that

(4.I.60) 0 < α1 < α2 < α3 =⇒ 0 < β3 < β2 < β1.

One variant of (4.I.56), following from (4.I.59), is

(4.I.61) (β1 − β2)y
2
1 − (β2 − β3)y

2
3 = C1 − β2C2.

Orbits y(t), solving (4.I.49) with x = J−1
ρ y, lie on curves in the intersection of a

sphere |y|2 = C2 with a surface given by (4.I.61). See Figure 4.I.1 for an illustration.
(In this illustration, the observer is looking down the y2-axis, and β1−β2 = β2−β3.)

Let us write the system (4.I.49) as

(4.I.62)
dy

dt
= F (y), F (y) = y × J−1

ρ y.

Then F is a vector field on R3 that is tangent to each sphere SC = {|y|2 = C}, and
we can regard the solution to (4.I.62) as defining a flow on each such sphere, and
F |SC

as a vector field on SC . It has six critical points. In case C = 1, the critical
points are

(4.I.63)
e1, −e1, e3, −e3, centers,

e2, −e2, saddles.

The result (4.I.63) has the following significance. Suppose B ⊂ R3 is a rigid
body with inertia tensor Jρ given by (4.I.43), whose diagonal entries satisfy the
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Figure 4.I.1. Orbits of y′ = y × x on |y|2 = 1

hypotheses in (4.I.60). Suppose B is set rotating, with angular momentum y0 = y(0)
at time t = 0. If y0 is parallel to any of the six vectors in (4.I.63), then B will rotate
steadily, with constant angular momentum y0 (hence constant angular velocity
x0 = J−1

ρ y0). Furthermore, if y0/|y0| is close to one of the four centers ±e1,±e3,
then y(t)/|y(t)| remains close to such a center for all t. On the other hand, suppose
y0/|y0| is close to but not exactly equal to ±e2. Then y(t)/|y(t)| travels along a path
taking it close to −y0/|y0|, then back to y0/|y0|, infinitely often. Thus rotation of
B about the e1 and e3-axes is stable, but rotation about the e2-axis is unstable. (In
this connection, note from (4.I.40) that κ(ej) ∈ Skew(3) generates rotation about
the ej-axis.)
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acceleration, 25, 192
action, 293
adjoint, 140
Airy’s equation, 65
amp, 59
angular momentum, 284, 416
angular velocity, 416
arclength, 192
attractor, 360
autonomous system, 244
autonomous systems, 253

basis, 106
Bendixson’s theorem, 331
Bernoulli equation, 17
Bessel function, 70
Bessel function of the second kind, 72
Bessel functions, 86
Bessel’s equation, 65, 69, 217
binormal, 192
blowup of a critical point, 388
brachistochrone problem, 302
Brouwer’s fixed-point theorem, 367, 405
Brouwer’s no-retraction theorem, 405

capacitor, 59
catenary, 21, 299
Cauchy’s inequality, 136
Cayley-Hamilton theorem, 133, 175
celestial mechanics, 288
center, 257
central force problem, 283
chain rule, 15, 372
chaos, 359

characteristic equation, 75

characteristic polynomial, 42, 123

circuit, 59, 180

column vectors, 100

commute, 104

compact, 375

companion matrix, 174

competing species equations, 352

complete, 255

complete elliptic integral, 36

confluent hypergeometric equation, 227

conservation laws, 283, 416

conservation of energy, 279, 283, 297

conservation of momentum, 281

constrained variational problem, 294

cos, 8

cosh, 11

coulomb, 60

Cramer’s formula, 119

critical point, 252, 257, 379

critically damped, 46, 262

cross product, 151, 192

curl, 275

current, 59

curvature, 192

curve, 192

cycloid, 305

damped oscillatory, 45, 262

damped pendulum, 38, 261

derivative, 372

determinant, 114

diagonal, 124
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diagonalizable, 124
difference schemes, 317
dimension, 106
divergence, 254
dot product, 135
double pendulum, 307, 370
Duffing equation, 364
Duhamel formula, 199
Duhamel’s formula, 177, 188, 207, 244,

397

eigenvalue, 123, 163
eigenvector, 123, 163
electrical circuit, 59, 180
elliptic integral, 33, 417
energy conservation, 25
Euler equations, 67, 217, 403
Euler’s constant, 81
Euler’s formula, 1, 8
exact equation, 274
existence of solutions, 240
exponential function, 1, 3

farad, 59
first-order system, 161, 174
Floquet representation, 205
flow, 253, 379
force, 25
force of gravity, 29
forced pendulum, 53
Frenet frame, 192
Frenet-Serret equations, 193, 194
fundamental theorem of algebra, 75,

123, 157
fundamental theorem of calculus, 9,

240, 274, 373
fundamental theorem of linear algebra,
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gamma function, 70, 81, 88
Gaussian elimination, 121
general relativity, 288
general solution, 44
generalized eigenvector, 125, 165
geodesic, 296, 321, 407, 412
gradient vector field, 266, 272
Gramm-Schmidt construction, 137
Gronwall’s inequality, 247

Hamiltonian system, 280
Hamiltonian vector field, 257, 281
hanging cable, 19, 299
Hankel function, 73

harmonicity, 403
henry, 59
heteroclinic orbit, 266
Hilbert-Schmidt norm, 141
hyperbolic critical point, 258
hypergeometric equation, 226

inductor, 59
inertia tensor, 416
initial condition, 42
initial value problem, 45
injective, 104
inner product, 135
instability, 321
integrating factor, 277
inverse, 104
inverse function theorem, 374
isomorphism, 104

Jordan canonical form, 154
Jordan curve theorem, 326
joule, 60

Kepler problem, 286
Kepler’s laws, 286
Kepler’s second law, 285
kinetic energy, 25, 279, 308
Kirchhoff’s laws, 59, 180

Lagrange equation, 292
Lagrange multiplier, 300
Lagrangian, 293, 308, 411
Laplace operator, 86, 403
Laplace transform, 78, 231
law of cosines, 151
law of gravitation, 286
law of gravity, 26
law of sines, 151
Lienard equation, 335
limit set, 324
line integral, 272
linear subspace, 100
linear transformation, 102
linearization, 40, 258
linearly dependent, 106
linearly independent, 106
Lipschitz, 240
logarithm, 5, 229
logarithm of a matrix, 229
logistic equation, 336
Lorenz equations, 359
lower triangular, 131
Lyapunov function, 333
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mass, 25
matrix, 102
matrix exponential, 161
matrix multiplication, 103
matrix representation, 111
minimal polynomial, 126
minor, 119
momentum, 280

Newton, 60
Newton’s law, 25, 279
Newton’s method, 398
nilpotent, 131
nonhomogeneous equation, 48
nonlinear circuit, 334
normal, 192
null space, 103

ohm, 59
operator norm, 140
orbit, 237, 253
orthogonal, 137, 148
orthogonal complement, 138
orthonormal basis, 136
overdamped, 46, 262

pendulum, 29, 256, 293, 294, 401
pendulum, periodically forced, 370
period, 396
periodic orbit, 324
permutation, 116
phase portrait, 237, 256
Picard iteration, 240
Poincaré map, 365
Poincaré-Bendixson theorem, 326, 347
positive definite, 146
positive semidefinite, 146
potential energy, 25, 279, 308
potential theory, 402
power series, 3, 65, 91, 209, 218
predator-prey equations, 336
product formula, 14
Pythagorean theorem, 135

range, 103
ratio test, 92
regular singular point, 217
resistance, 38
resistor, 59
resonance, 55
rigid body, 411
RLC circuit, 59
row operation, 120

row vectors, 100
Runge-Kutta scheme, 318, 408

saddle, 258, 379
sec, 10
second order equations, 23
second-order systems, 185
secular terms, 399
self-adjoint, 144
separation of variables, 18, 87
separitrices, 34
simply connected, 273
sin, 8
sinh, 11
sink, 262, 379
Skew(n), 412
skew-adjoint, 144
SO(n), 148, 411
source, 262, 379
span, 106
speed, 192
spring, 57
standard basis, 106
stationary action principle, 293
SU(n), 148
surjective, 104

tan, 10
tangent vector, 192
tautochrone problem, 306
torsion, 192
total energy, 25, 279
trace, 140
transposition, 116
triangle inequality, 136
trigonometric functions, 8, 171
trigonometry, 7

undetermined coefficients, 48
uniqueness of solutions, 240
unitary, 148
upper triangular, 131

van der Pol equation, 330
variable coefficient systems, 198
variation of parameters, 62, 206
variational method, 302
variational problems, 292
vector, 99
vector addition, 99
vector field, 237, 253
vector space, 99
velocity, 192
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volt, 59
voltage, 59
Volterra-Lotka equations, 338

watt, 60
Wronskian, 63, 66, 71, 198, 206


