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Preface

This text developed from lectures I have given on Lie groups, in Math 773,
at UNC. Prerequisites include the basic first-year graduate courses in analy-
sis, algebra, geometry, and topology, and an introductory course in manifold
theory. Algebraic background can be found in [42], and basic analytic back-
ground can be found in [40].

The first chapter introduces the notion of a Lie group and provides a
number of classical examples. These examples are matrix groups, such as
groups of invertible matrices, orthogonal matrices, unitary matrices, and
others. We introduce the algebra H of quaternions and matrices of quater-
nions, and certain compact Lie groups of such matrices. We also discuss the
matrix exponential, which later will be extended in a fundamental way to
the abstract Lie group setting. We end this chapter with a presentation of
left and right invariant integrals on a Lie group.

Chapter 2 introduces the notion of a representation of a Lie group, and
develops some of the elementary machinery of the representation theory of
compact Lie groups. The invariant integral (which is bi-invariant for com-
pact groups), plays an important role. We establish the Weyl orthogonality
relations. We also prove the Peter-Weyl theorem, to the effect that ma-
trix entries of irreducible unitary representations of a compact Lie group
G, suitably normalized, yield an orthonormal basis of L2(G). We first get
this for compact matrix groups, and then after a bit more theory, regarding
L1(G) as a convolution algebra, for general compact Lie groups (which, as
a corollary, are seen always to be isomorphic to compact matrix groups).

Chapter 3 introduces the concept of a Lie algebra g, associated to a Lie
group G, and an exponential map Exp : g → G. In case G is a matrix group,
we compare the general notion with an alternative construction of the Lie

xiii
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algebra, as the tangent space to G at the identity element, and compare the
general exponential map to the matrix exponential. We show how Lie group
representations give rise to Lie algebra representations. We also introduce
the universal enveloping algebra of a Lie algebra.

Chapter 4 concentrates on the unitary groups U(n). Topics discussed
include the classification of irreducible unitary representations of U(n), in-
volving the notion of roots and weights, and some of their properties. We
also treat the decomposition of ⊗kCn into irreducible spaces for U(n), and
the duality with the symmetric group Sk that arises here, and also classical
character formulas and some of their implications for harmonic analysis on
U(n).

Chapter 5 discusses some further topics on analysis on U(n), involving
the Laplace operator, arising from a bi-invariant metric on G, which is in
the center of the universal enveloping algebra and hence acts as a scalar on
each irreducible representation.

Chapter 6 extends some of the results of §§4.2–4.4 to the setting of gen-
eral compact Lie groups, particularly discussing roots of their Lie algebras
and weights of their representations. We also have material on the structure
of simple Lie algebras, including a discussion of Cartan matrices and Dynkin
diagrams.

Chapter 7 specializes again, this time to the setting of the orthogonal
groups SO(n) and certain two-fold covers, denoted Spin(n), which are con-
structed in §7.4, via use of Clifford algebras, introduced in §7.3.

Chapter 8 takes a look at the representations πk of SO(n) on the eigenspaces
Vk of the Laplace-Beltrami operator on the sphere Sn−1. It is seen that these
representations are all irreducible. The analysis involves making contact
with the study of harmonic functions, and in particular the classical theory
of spherical harmonics, examined here through the lens of representation
theory.

Chapter 9 pursues more general studies of actions of isometry groups
of compact Riemannian manifolds, and the representations they induce on
eigenspaces of the Laplace-Beltrami operator. Particular attention is paid
to the class of compact, rank-one symmetric spaces, for which a number
of results on spherical harmonics derived in Chapter 8 are seen to have
extensions.

Chapter 10 studies the groups of quaternionic matrices Sp(n), which,
together with SU(n) and SO(n), constitute the classical compact Lie groups.
It investigates the maximal tori of Sp(n), the roots of its Lie algebra, and
the weights of its irreducible representations. One feature of this chapter is
a section devoted to quaternionic linear algebra, which differs enough from
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linear algebra over R and C to merit some discussion. We construct a family
of representations of Sp(n) that verifies the theorem of the highest weight for
this group, and hence produces a representation-theoretic proof that Sp(n)
is simply connected.

Chapter 11 introduces the algebra O of octonions, obtained from the
quaternions H by a process similar to that by which H is built from C. A
central object here is Aut(O), the group of automorphisms of O. This is seen
to be a 14-dimensional compact Lie group, isomorphic to a group denoted
G2, the first in a series of exceptional Lie groups.

This text ends with several appendices, presenting some background
material in advanced calculus and ODE theory, linear algebra, and basic
functional analysis, and also some further material, complementary to that
in the main body of the notes.

After reading this text, the reader should be prepared to tackle more
advanced treatments of Lie groups and their representation theory, such
as mentioned in the references. In particular, this text should serve as
preparation for study of the monograph [38].





Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

Z+ is the set of integers ≥ 0.

N is the set of integers ≥ 1 (the “natural numbers”).

x ∈ R means x is an element of R, i.e., x is a real number.

(a, b) denotes the set of x ∈ R such that a < x < b.

[a, b] denotes the set of x ∈ R such that a ≤ x ≤ b.

{x ∈ R : a ≤ x ≤ b} denotes the set of x in R such that a ≤ x ≤ b.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.

z = x− iy if z = x+ iy ∈ C, x, y ∈ R.

xvii



xviii Some basic notation

Ω denotes the closure of the set Ω.

f : A→ B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.



Chapter 1

First look at Lie groups

In this chapter we define the concept of a Lie group, as a smooth mani-
fold with a group structure whose operations are smooth. For examples, we
describe a number of matrix groups, such as the group of invertible linear
transformations on Rn or Cn, the group of orthogonal transformations on
Rn or of unitary transformations on Cn, and various other groups. Comple-
menting R and C, we introduce the algebra H of quaternions and describe
some groups of n× n matrices of quaternions.

In §1.3, we define the matrix exponential Exp and establish several key
properties, such as the fact that if A is a skew-symmetric n×n real matrix,
then ExpA is an orthogonal matrix.

In the last section of this chapter, we define left and right invariant
metric tensors on a Lie group G, and associated volume elements (Haar
measures) and invariant integrals. If these two Haar measures coincide, we
say G is unimodular. We note that if G is compact, then it is unimodular.
Further characterization will be done in Chapter 3. The invariant integral
will play an important role in representation theory.

1



2 1. First look at Lie groups

1.1. Definition and first examples

A Lie group G is a group that is also a smooth manifold, such that the group
operations G × G → G and G → G given by (g, h) 7→ gh and g 7→ g−1 are
smooth maps.

We consider some examples, starting with

(1.1.1) Gl(n,R) = {A ∈ M(n,R) : A−1 exists},

where M(n,R) consists of n× n real matrices.

Proposition 1.1.1. The set Gl(n,R) is open in M(n,R).

Proof. One way to see this is to note that Gl(n,R) = {A ∈ M(n,R) :
detA 6= 0}, and det : M(n,R) → R is continuous. Here is another.

Given A ∈ Gl(n,R), we have A+B = A(I +A−1B), which is invertible
provided I + A−1B is invertible. Now if C ∈ M(n,R) we have the operator
norm

(1.1.2) ‖C‖ = sup {‖Cv‖ : v ∈ Rn, ‖v‖ ≤ 1},

and we see that ‖Ck‖ ≤ ‖C‖k, and hence

(1.1.3) ‖C‖ < 1 =⇒ (I + C)−1 =
∑
k≥0

(−C)k,

with absolute convergence, so ‖A−1B‖ < 1 implies A+B is invertible. □

The group Gl(n,R) inherits a manifold structure from the vector space
M(n,R). Since (A,B) 7→ AB is bilinear, it is clearly smooth. Furthermore,
κ(A) = A−1 gives a smooth map on Gl(n,R), with

(1.1.4) Dκ(A)X = −A−1XA−1.

In fact, for ‖X‖ small,

(1.1.5)

(A+X)−1 = (A(I +A−1X))−1 = (I +A−1X)−1A−1

= A−1 +
∑
k≥1

(−1)k(A−1X)kA−1,

which yields (1.1.4).

Similar considerations apply to

(1.1.6) Gl(n,C) = {A ∈ M(n,C) : A−1 exists},

where M(n,C) consists of n× n complex matrices.

Many other basic examples of Lie groups arise as subgroups of Gl(n,R)
and Gl(n,C). For example, we have

(1.1.7) Sl(n,F) = {A ∈ M(n,F) : detA = 1} ⊂ Gl(n,F), F = R or C.
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Other examples are

(1.1.8)
O(n) = {A ∈ M(n,R) : A∗A = I},
U(n) = {A ∈ M(n,C) : A∗A = I},

where

(1.1.9) A = (ajk) =⇒ A∗ = (akj).

Also we have

(1.1.10)
SO(n) = {A ∈ O(n) : detA = 1},
SU(n) = {A ∈ U(n) : detA = 1}.

The proof that (1.1.7)–(1.1.10) define Lie groups follows from the fact these
groups are all smooth submanifolds of M(n,F). This fact in turn can be
deduced from the following result, which is a consequence of the inverse
function theorem.

Theorem 1.1.2. (Submersion mapping theorem.) Let V and W be
finite-dimensional vector spaces, and F : V →W a smooth map. Fix p ∈W ,
and consider

(1.1.11) S = {x ∈ V : F (x) = p}.

Assume that, for each x ∈ S, DF (x) : V → W is surjective. Then S is a
smooth submanifold of V . Furthermore, for each x ∈ S,

(1.1.12) TxS = kerDF (x).

For a proof of this result, see §A.1. The proof takes the following ap-
proach. Given q ∈ S, define

Gq : V −→W ⊕ kerDF (q), Gq(x) = (F (x), Pq(x− q)),

where Pq : V → kerDF (q) is a projection. Then the inverse function
theorem can be applied to Gq.

We show how Theorem 1.1.2 can be applied to show that the groups
described in (1.1.7)–(1.1.10) are smooth submanifolds of M(n,F). We start
with (1.1.7). Here we take

(1.1.13) V = M(n,F), W = F, F : V →W, F (A) = detA.

Now given A invertible,

(1.1.14) F (A+B) = det(A+B) = (detA) det(I +A−1B),

and inspection shows that, for X ∈ M(n,F),

(1.1.15) det(I +X) = 1 + TrX +O(‖X‖2),
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so

(1.1.16) DF (A)B = (detA)Tr(A−1B).

Now, given A ∈ Sl(n,F), or even A ∈ Gl(n,F), it is readily verified that

(1.1.17) τA : M(n,F) −→ F, τA(B) = Tr(A−1B),

is nonzero, hence surjective, and Theorem 1.1.2 applies.

We turn to O(n), defined in (1.1.8). In this case,

(1.1.18)
V = M(n,R), W = {X ∈ M(n,R) : X = X∗},

F : V −→W, F (A) = A∗A.

Now, given A ∈ V ,

(1.1.19) F (A+B) = A∗A+A∗B +B∗A+O(‖B‖2),
so

(1.1.20) DF (A)B = A∗B +B∗A = A∗B + (A∗B)∗.

We claim that

(1.1.21) A ∈ O(n) =⇒ DF (A) : M(n,R) →W is surjective.

Indeed, given X ∈W , i.e., X ∈ M(n,R), X = X∗, we have

(1.1.22) B =
1

2
AX =⇒ DF (A)B = X.

Again, Theorem 1.1.2 applies.

Similar arguments apply to U(n) in (1.1.8) and to the groups in (1.1.10).
For SU(n) we take

V =M(n,C), W = {X ∈M(n,C) : X = X∗} ⊕ R,
F : V −→W, F (A) = (A∗A, ImdetA).

Note that A ∈ U(n) implies | detA| = 1, so ImdetA = 0 ⇔ detA = ±1.

As a further comment on O(n), we note that, given A ∈ M(n,R), defining
A : Rn → Rn,

(1.1.23) A ∈ O(n) ⇐⇒ (Au,Av) = (u, v), ∀ u, v ∈ Rn,

where (u, v) is the Euclidean inner product on Rn:

(1.1.24) (u, v) =
∑
j

ujvj ,

where u = (u1, . . . , un), v = (v1, . . . , vn). Similarly, given A ∈ M(n,C),
defining A : Cn → Cn,

(1.1.25) A ∈ U(n) ⇐⇒ (Au,Av) = (u, v), ∀ u, v ∈ Cn,
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where (u, v) denotes the Hermitian inner product on Cn:

(1.1.26) (u, v) =
∑
j

ujvj .

Note that

(1.1.27) 〈u, v〉 = Re(u, v)

defines the Euclidean inner product on Cn ≈ R2n, and we have

(1.1.28) U(n) ↪→ O(2n).

Analogues of O(n) and U(n), with R and C replaced by the ring H of quater-
nions, will be discussed in §1.2.

Having defined several matrix groups, we now define a family of Lie
groups that are not a priori subgroups of Gl(N,F). Namely we define the
Euclidean group E(n) as a group of isometries of Rn. As a set, E(n) =
O(n)× Rn, and the action of (A, v) on Rn is given by

(1.1.29) (A, v)x = Ax+ v, A ∈ O(n), v, x ∈ Rn.
The group law is seen to be

(1.1.30) (A, v) · (B,w) = (AB,Aw + v).

Actually, E(n) is isomorphic to a matrix group, via

(1.1.31) (A, v) 7→
(
A v
0 1

)
,

as one verifies that

(1.1.32)

(
A v
0 1

)(
B w
0 1

)
=

(
AB Aw + v
0 1

)
.

There are Lie groups that are not isomorphic to matrix groups, but it
is a fact (not established here) that every connected Lie group is locally
isomorphic to a matrix group. This is a consequence of a result known as
Ado’s theorem.
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Exercises

1. Making use of (1.1.12), show that

TIO(n) = {A ∈M(n,R) : A∗ = −A},
TIU(n) = {A ∈M(n,C) : A∗ = −A},

TISU(n) = {A ∈M(n,C) : A∗ = −A, TrA = 0}.
We denote these spaces by o(n), u(n), and su(n), respectively.

2. Show that, for each of the groups G listed above,

g ∈ G, X ∈ TIG =⇒ gXg−1 ∈ TIG.

We write Ad(g)X = gXg−1. Show that

g, h ∈ G =⇒ Ad(gh) = Ad(g)Ad(h).

3. In the setting of Exercise 2, show that the action of Ad(g) on TIG
preserves the Hilbert-Schmidt norm, defined by ‖A‖2HS = Tr(A∗A).

4. Show that a basis of su(2) is given by(
0 −1
1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)
.

In particular, su(2) is a vector space of dimension 3, su(2) ≈ R3.

5. Deduce that, for G = SU(2),

Ad : G −→ L(TIG)
gives rise to a group homomorphism

p : SU(2) −→ SO(3), ker p = {±I}.
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1.2. Quaternions and the groups Sp(n)

The space H of quaternions is a four-dimensional real vector space, identified
with R4, with basis elements 1, i, j, k, the element 1 identified with the real
number 1. Elements of H are represented as follows:

(1.2.1) ξ = a+ bi+ cj + dk,

with a, b, c, d ∈ R. We call a the real part of ξ (a = Re ξ) and bi + cj + dk
the vector part. We also have a multiplication on H, an R-bilinear map
H × H → H coinciding with the standard product on the real part, and
otherwise governed by the rules

(1.2.2) ij = k = −ji, jk = i = −kj, ki = j = −ik,

and

(1.2.3) i2 = j2 = k2 = −1.

Otherwise stated, if we write

(1.2.4) ξ = a+ u, a ∈ R, u ∈ R3,

and similarly write η = b+ v, b ∈ R, v ∈ R3, the product is given by

(1.2.5) ξη = (a+ u)(b+ v) = (ab− u · v) + av + bu+ u× v.

Here u · v is the dot product in R3 and u× v is the cross product of vectors
in R3. The quantity ab − u · v is the real part of ξη and av + bu + u × v is
the vector part. Multiplication on H has the following important property.

Proposition 1.2.1. The product on H is associative, i.e., (ξη)ζ = ξ(ηζ),
for ξ, η, ζ ∈ H.

We present an approach to the proof in the exercises. Another proof will
be given in §10.1.

We also have a conjugation operation on H:

(1.2.6) ξ = a− bi− cj − dk = a− u.

A calculation gives

(1.2.7) ξη = (ab+ u · v)− av + bu− u× v.

In particular,

(1.2.8) Re(ξη) = Re(ηξ) = (ξ, η),

the right side denoting the Euclidean inner product on R4. Setting η = ξ in
(1.2.7) gives

(1.2.9) ξξ = |ξ|2,
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the Euclidean square-norm of ξ. In particular, whenever ξ ∈ H is nonzero,
it has a multiplicative inverse:

(1.2.10) ξ−1 = |ξ|−2ξ.

A routine calculation gives

(1.2.11) ξη = η ξ.

Hence (via associativity of the product on H)

(1.2.12) |ξη|2 = (ξη)(ξη) = ξηηξ = |η|2ξξ = |ξ|2|η|2,

or

(1.2.13) |ξη| = |ξ| |η|.

Note that C = {a + bi : a, b ∈ R} sits in H as a commutative subring,
for which the properties (1.2.9) and (1.2.13) are familiar.

We consider the set of unit quaternions:

(1.2.14) Sp(1) = {ξ ∈ H : |ξ| = 1}.

Using (1.2.10) and (1.2.13) it is clear that Sp(1) is a group under multiplica-
tion. It sits in R4 as the unit sphere S3. We compare Sp(1) with the group
SU(2), consisting of 2× 2 complex matrices of the form

(1.2.15) U =

(
ξ −η
η ξ

)
, ξ, η ∈ C, |ξ|2 + |η|2 = 1.x

The group SU(2) is also diffeomorphic to S3. Furthermore we have:

Proposition 1.2.2. The groups SU(2) and Sp(1) are isomorphic under the
correspondence

(1.2.16) U 7→ ξ + jη,

for U as in (1.2.15).

Proof. The correspondence (1.2.16) is clearly bijective. To see that it is a
homomorphism of groups, we calculate:

(1.2.17)

(
ξ −η
η ξ

)(
ξ′ −η′

η′ ξ
′

)
=

(
ξξ′ − ηη′ −ξη′ − ηξ

′

ηξ′ + ξη′ −ηη′ + ξξ
′

)
,

given ξ, η ∈ C. Noting that, for a, b ∈ R, j(a+ bi) = (a− bi)j, we have

(1.2.18)
(ξ + jη)(ξ′ + jη′) = ξξ′ + ξjη′ + jηξ′ + jηjη′

= ξξ′ − ηη′ + j(ηξ′ + ξη′).

Comparison of (1.2.17) and (1.2.18) verifies that (1.2.16) yields a homomor-
phism of groups. □
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To proceed, we consider n× n matrices of quaternions:

(1.2.19) A = (ajk) ∈ M(n,H), ajk ∈ H.

If Hn denotes the space of column vectors of length n, whose entries are
quaternions, then A ∈ M(n,H) acts on Hn by the usual formula. If ξ =
(ξj), ξj ∈ H, we have

(1.2.20) (Aξ)j =
∑
k

ajkξk.

Note that

(1.2.21) A : Hn −→ Hn

is R-linear, and commutes with the right action of H on Hn, defined by

(1.2.22) (ξb)j = ξjb, ξ ∈ Hn, b ∈ H.

Composition of such matrix operations on Hn is given by the usual matrix
product. If B = (bjk), then

(1.2.23) (AB)jk =
∑
ℓ

ajℓbℓk.

We define a conjugation on M(n,H); with A given by (1.2.19),

(1.2.24) A∗ = (akj).

A calculation using (1.2.11) gives

(1.2.25) (AB)∗ = B∗A∗.

We are ready to define the groups Sp(n) for n > 1:

(1.2.26) Sp(n) = {A ∈ M(n,H) : A∗A = I}.
Note that A∗ is a left inverse of the R-linear map A : Hn → Hn if and
only if it is a right inverse (by real linear algebra). In other words, given
A ∈ M(n,H),

(1.2.27) A∗A = I ⇐⇒ AA∗ = I.

In particular,

(1.2.28) A ∈ Sp(n) ⇐⇒ A∗ ∈ Sp(n) ⇐⇒ A−1 ∈ Sp(n).

Also, given A,B ∈ Sp(n),

(1.2.29) (AB)∗AB = B∗A∗AB = B∗B = I.

Hence Sp(n), defined by (1.2.26), is a group. We claim that (1.2.26) defines a
smooth, compact submanifold of M(n,H), so Sp(n) is a compact Lie group.
We omit the check of smoothness, which goes along the lines of (1.1.18)–
(1.1.22), but we will establish compactness, using a construction of separate
interest.
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We define a quaternionic inner product on Hn as follows. If ξ = (ξj), η =
(ηj) ∈ Hn, set

(1.2.30) 〈ξ, η〉 =
∑
j

ηjξj .

From (1.2.8) we have

(1.2.31) Re〈ξ, η〉 = (ξ, η),

where the right side denotes the Euclidean inner product on Hn = R4n.
Now, if A ∈ M(n,H), A = (ajk), then

(1.2.32)

〈Aξ, η〉 =
∑
j,k

ηjajkξk

=
∑
j,k

ajkηj ξk

= 〈ξ,A∗η〉.
Hence

(1.2.33) 〈Aξ,Aη〉 = 〈ξ, A∗Aη〉.
In particular, given A ∈ M(n,H), we have A ∈ Sp(n) if and only if A :
Hn → Hn preserves the quaternionic inner product (1.2.30). Given (1.2.31),
we have

(1.2.34) Sp(n) ↪→ O(4n).

From here it is easy to show that Sp(n) is closed in O(4n), and hence com-
pact.

Remark. A refinement of (1.2.34) is given in the exercises below. Fur-
ther results on quaternions are given in §10.1, where there is an additional
refinement of (1.2.34).
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Exercises

1. Define the R-linear map τ : H →M(2,C) by

τ(a+ bi+ cj + dk) =

(
a+ ib −c− id
c− id a− ib

)
=

(
α −β
β α

)
.

Note the resemblance to (1.2.16). In particular, a+ bi+ cj + dk = α+ jβ.
Show that, for ξ, η ∈ H,

τ(ξη) = τ(ξ)τ(η).

Deduce that the product on H is associative, from the associativity of
M(2,C). Furthermore, show that

τ(ξ) = τ(ξ)∗.

2. The proof of Proposition 1.2.2 used the associativity of the product on
H. Rework it to use Exercise 1 instead.

3. Using Exercise 1, define an injective ring homomorphism

τn :M(n,H) −→M(2n,C).

Deduce that

τn : Sp(n) −→ U(2n),

and this is a group homomorphism. Note how this refines (1.2.34).

4. Show that

ξ ∈ H, |ξ| = 1 =⇒ 1√
2

(
ξ −1

1 ξ

)
∈ Sp(2).

5. Show that

ξ ∈ H, |ξ| = 1 =⇒ 1√
2

(
1 −ξ
ξ 1

)
∈ Sp(2),

and more generally, if c, s ∈ [−1, 1], c2 + s2 = 1,(
c −sξ
sξ c

)
∈ Sp(2).

6. Show that

α, β ∈ Sp(1) =⇒
(
α

β

)
∈ Sp(2).

7. Define γ : Sp(1)× Sp(1) → L(H) by

γ(α, β)ξ = αξβ, α, β ∈ Sp(1), ξ ∈ H.
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Show that γ(α, β) preserves the inner product (1.2.8), and yields a group
homomorphism

γ : Sp(1)× Sp(1) −→ SO(4).

Show that Ker γ = {(1, 1), (−1,−1)}.

8. Note that for θ ∈ R, eiθ = cos θ + i sin θ ∈ Sp(1). If also ϕ ∈ R, analyze
γ(eiθ, eiφ) ∈ SO(4) as follows:

eiθ(a+ bi+ cj + dk)e−iφ = eiθ(a+ bi)e−iφ + eiθ(c+ di)je−iφ.

Show that je−iφ = eiφj, and deduce that

γ(eiθ, eiφ)(a+ bi+ cj + dj)

= ei(θ−φ)(a+ bi) + ei(θ+φ)(c+ di)j.

In matrix representation,

γ(eiθ, eiφ) =

(
R(θ − ϕ)

R(θ + ϕ)

)
, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

9. The isomorphism SU(2) ≈ Sp(1) given in Proposition 1.2.2 is(
ξ −η
η ξ

)
7→ ξ + jη.

Show that composing SU(2)×SU(2) ≈ Sp(1)×Sp(1) with the map γ from
Exercise 7 yields γ̃ : SU(2)× SU(2) → SO(4), satisfying

γ̃
((u(θ)

u(ϕ)

))
=

(
R(θ − ϕ)

R(θ + ϕ)

)
,

where

u(θ) =

(
eiθ

e−iθ

)
.

10. Show that, for ξ, η ∈ H and (ξ, η) as in (1.2.8),

(ξ, η) = (ξ, η).

11. A special case of (1.2.30)–(1.2.32) is that

a, ξ, η ∈ H ⇒ 〈aξ, η〉 = 〈ξ, aη〉
⇒ (aξ, η) = (ξ, aη),

hence
u ∈ ImH = R3 ⇒ (uξ, η) = −(ξ, uη).

Show that also
u ∈ R3 ⇒ (ξu, η) = −(ξ, ηu).

Hint. By Exercise 10, (ξu, η) = −(uξ, η) and (ξ, ηu) = −(ξ, uη).
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1.3. The matrix exponential and other functions of matrices

If A ∈ M(n,C), we define

(1.3.1) etA =
∞∑
k=0

tk

k!
Ak.

We also denote this by Exp(tA). Making use of the operator norm (1.1.2)
and noting that ‖Ak‖ ≤ ‖A‖k, we see that (1.3.1) is absolutely convergent
for all A and all t. The power series (1.3.1) can be differentiated term by
term, and we obtain

(1.3.2)
d

dt
etA = AetA = etAA.

Using this we can establish the identity

(1.3.3) e(s+t)A = esAetA.

To get this, we can first compute

(1.3.4)
d

dt

[
e(s+t)Ae−tA

]
= e(s+t)AAe−tA − e(s+t)AAe−tA = 0,

using the product rule; hence e(s+t)Ae−tA is independent of t. Evaluating at
t = 0 gives

(1.3.5) e(s+t)Ae−tA = esA.

Setting s = 0 gives

(1.3.6) etAe−tA = I.

Thus e−tA is the multiplicative inverse of etA. Using this, we can multiply
both sides of (1.3.5) on the right by etA and obtain (1.3.3).

A similar argument, which we leave to the reader, gives

(1.3.7) AB = BA =⇒ et(A+B) = etAetB,

though such an identity fails when A and B do not commute.

We note a few easy identities:

(1.3.8) etX
−1AX = X−1etAX, etA

∗
=
(
etA
)∗
,

given X invertible, t ∈ R. If A is diagonal, etA is obtained by exponentiating
the diagonal entries. Also one has

(1.3.9) det etA = et TrA.

If A is diagonal this is checked by the remarks above; it then follows for A
diagonalizable, by (1.3.8). It can be shown that the set of diagonalizable
matrices is dense in M(n,C), and then (1.3.9) holds for all A, by continuity.
Alternatively, it is quite easy to show that there exists an open subset of
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M(n,C) consisting of diagonalizable matrices. Since both sides of (1.3.9)
are holomorphic on M(n,C), this suffices.

We remark on the behavior of the exponential map on the tangent space
at the identity to the groups described in (1.1.7)–(1.1.10). Making use of
the criterion (1.1.12), one can calculate the following:

(1.3.10)

TI Sl(n,F) = {A ∈ M(n,F) : TrA = 0},
TI O(n) = {A ∈ M(n,R) : A∗ = −A} = TI SO(n),

TI U(n) = {A ∈ M(n,C) : A∗ = −A},
TI SU(n) = {A ∈ M(n,C) : A∗ = −A, TrA = 0}.

For the first two, take A = I in (1.1.16) and (1.1.20), respectively, yielding
DF (I)A = TrA and DF (I)A = A + A∗, respectively. Having (1.3.10) and
making use of (1.3.8)–(1.3.9), one readily verifies the following.

Proposition 1.3.1. For each Lie group listed above,

(1.3.11) Exp : TIG −→ G.

We will discuss how this result fits in a more general framework in §§3.1–
3.2.

We next want to calculate the derivative of the map Exp : M(n,R) →
Gl(n,R). Equivalently, if A,B ∈ M(n,R), we calculate

(1.3.12)
d

dt
eA+tB

∣∣
t=0

.

When A and B commute, this is easily calculated via (1.3.7). Otherwise,
matters are more complicated. To calculate (1.3.12), it is useful to look at

(1.3.13) U(s, t) = es(A+tB),

which satisfies

(1.3.14)
∂U

∂s
= (A+ tB)U(s, t), U(0, t) = I.

Then Ut = ∂U/∂t satisfies

(1.3.15)
∂

∂s
Ut(s, t) = (A+ tB)Ut(s, t) +BU(s, t), Ut(0, t) = 0,

and in particular

(1.3.16)
∂

∂s
Ut(s, 0) = AUt(s, 0) +BU(s, 0), Ut(0, 0) = 0.

This is an inhomogeneous linear ODE, whose solution is

(1.3.17)

Ut(s, 0) =

∫ s

0
e(s−σ)ABU(σ, 0) dσ

=

∫ s

0
e(s−σ)ABeσA dσ.
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We get (1.3.12) by setting s = 1:

(1.3.18)
d

dt
eA+tB

∣∣
t=0

=

∫ 1

0
e(1−σ)ABeσA dσ,

so

(1.3.19) D Exp(A)B = eA
∫ 1

0
e−σABeσA dσ.

The method (1.3.1) of defining the matrix exponential extends to other
cases. Suppose F (z) is a holomorphic function with a power series expansion

(1.3.20) F (z) =

∞∑
k=0

akz
k.

If (1.3.20) converges on the disk DR = {z ∈ C : |z| < R}, and if A ∈
M(n,C), ‖A‖ < R, then we can define

(1.3.21) F (A) =

∞∑
k=0

akA
k,

and this power series is absolutely convergent. Power series manipulations
show that if also G(z) is holomorphic on DR, and we set H(z) = F (z)G(z),
then, for ‖A‖ < R,

(1.3.22) F (A)G(A) = H(A).

We will see more examples of (1.3.21) in subsequent sections.

Here we look into one other example, namely, for ‖tA‖ < 1, set

(1.3.23) log(I + tA) = tA− t2

2
A2 +

t3

3
A3 − · · · =

∞∑
k=1

(−1)k−1

k
tkAk.

We aim to prove that

(1.3.24) elog(I+tA) = I + tA.

To see this, note that for ‖tA‖ < 1,

(1.3.25)
X(t) = log(I + tA) ⇒ X ′(t) = A(I − tA+ t2A2 − · · · )

= A(I + tA)−1,

as follows from (1.3.23) by differentiating term by term. For such X(t),
we see that X(t) and X(s) always commute, so it follows from (1.3.19) (or
otherwise) that

(1.3.26)
d

dt
eX(t) = X ′(t)eX(t).

Consequently, if we set

(1.3.27) V (t) = (I + tA)−1elog(I+tA),
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we have V (0) = I and

(1.3.28) V ′(t) = −A(I + tA)−2elog(I+tA) +A(I + tA)−2elog(I+tA) = 0,

so (2.24) is established.

It follows directly from (1.3.1) that

Exp(0 +B) = I +B +O(‖B‖2),

and hence

(1.3.29) DExp(0)B = B,

i.e., DExp(0) is the identity operator on M(n,R). (This is of course also a
special case of (1.3.19).) It follows from the inverse function theorem that
there are neighborhoods O of 0 ∈ M(n,R) and Ω of I ∈ Gl(n,R) such that

(1.3.30) Exp : O −→ Ω, diffeomorphically,

hence there is a smooth inverse from Ω to O. The results (1.3.23)–(1.3.24)
provide an explicit formula for this inverse. Putting this together with
Proposition 1.3.1 yields the following.

Proposition 1.3.2. For each Lie group G listed in (1.3.10), there exists
a neighborhood O of 0 in TIG and a neighborhood Ω of I in G such that
(1.3.30) holds.

Exponentiation of quaternions and quaternionic matrices

If ξ ∈ H, then, parallel to (1.3.1), we have the exponential

(1.3.31) etξ =

∞∑
k=0

tk

k!
ξk,

a convergent power series that can be differentiated term by term, to give

(1.3.32)
d

dt
etξ = ξetξ.

Parallel to (1.3.3), we have

(1.3.33) e(s+t)ξ = esξetξ, ∀ s, t ∈ R, ξ ∈ H,

and parallel to (1.3.7), we have

(1.3.34) ξη = ηξ =⇒ et(ξ+η) = etξetη.

It is of interest to know we have the following explicit computation.

Proposition 1.3.3. If u ∈ R3 ⊂ H and |u| = 1, then

(1.3.35) etu = cos t+ (sin t)u.
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Proof. This extends Euler’s identity eti = cos t + i sin t, and has a similar
proof. Since |u| = 1 ⇒ u2ℓ = (−1)ℓ, u2ℓ+1 = (−1)ℓu, we have

(1.3.36) etu =

∞∑
ℓ=0

t2ℓ

(2`)!
u2ℓ +

∞∑
ℓ=0

t2ℓ+1

(2`+ 1)!
u2ℓ+1,

leading directly to (1.3.35). □

Bringing in (1.3.34), we see that, for a ∈ R, u ∈ R3, u 6= 0,

(1.3.37) ξ = a+ u⇒ etξ = eta
[
(cos t|u|) + (sin t|u|) u

|u|

]
.

Moving on, if A ∈M(n,H) then, parallel to (1.3.1) we have

(1.3.38) etA =

∞∑
k=0

tk

k!
Ak ∈M(n,H),

a convergent power series, yielding

(1.3.39)
d

dt
etA = AetA,

and analogues of (1.3.3) and (1.3.7) hold. Also, for A ∈M(n,H), t ∈ R,

(1.3.40)
(
etA
)∗

= etA
∗
.

Furthermore, complementing (1.3.10), we have

(1.3.41) TISp(n) = {A ∈M(n,H) : A∗ = −A},
and

(1.3.42) A ∈ TISp(n), t ∈ R =⇒ etA ∈ Sp(n).
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Exercises

1. Take

X =

(
0 −ξ
ξ 0

)
∈ sp(2) = TISp(2), ξ ∈ H, |ξ| = 1.

Show that
etX = (cos t)I + (sin t)X

=

(
c −sξ
sξ c

)
, c = cos t, s = sin t.

By (1.3.42), etX ∈ Sp(2), for t ∈ R. Relate this to Exercise 5 of §1.2.
Hint. X2 = −|ξ|2I = −I.

2. Given

Y =

(
u

v

)
∈ sp(u), u, v ∈ ImH = R3,

show that

etY =

(
etu

etv

)
=

(
α

β

)
, α, β ∈ Sp(1).

Relate this to Exercise 6 of §1.2.

3. Show that if F (z) is holomorphic on DR, with power series (1.3.20),
A ∈M(n,C), ‖A‖ < R, and F (A) is defined as in (1.3.21), then, for t ∈ R,

‖tA‖ < R =⇒ d

dt
F (tA) = AF ′(tA).

Apply this to
F (z) = log(1 + z), f(z) = (1 + z)−1,

to re-derive (1.3.25) and (1.3.28).

4. Let G(z) be holomorphic on DS and assume G : DS → DR, and that
G(0) = 0. Thus, with F as in Exercise 3,

F (G(tA)) =
∑

akG(tA)
k.

Show that if ‖tA‖ < S and ‖G(tA)‖ < R, then

d

dt
F (G(tA)) =

∑
kakAG

′(tA)G(tA)k−1

= AG′(tA)F ′(G(tA)).

5. Apply Exercise 4 to F (z) = log(1+ z), G(z) = ez − 1, R = 1. Show that
if ‖etA − I‖ < 1, then

d

dt
log(etA) = A,
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and deduce that
log(etA) = tA.
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1.4. Integration on a Lie group

For our first construction, assume G is a compact subgroup of the unitary
group U(n), sitting in M(n,C), the space of complex n × n matrices. The
space M(n,C) has a Hermitian inner product,

(1.4.1) (A,B) = TrAB∗ = TrB∗A,

giving a real inner product 〈A,B〉 = Re (A,B). This induces a Riemannian
metric on G. Let us define, for g ∈ G,

(1.4.2) Lg, Rg : M(n,C) −→ M(n,C), LgX = gX, RgX = Xg.

Clearly each such map is a linear isometry on M(n,C) (given that g ∈ U(n)),
and we have isometries Lg and Rg on G.

A Riemannian metric tensor on a smooth manifold induces a volume
element on M , as follows. In local coordinates (x1, . . . , xN ) on U ⊂M , say
the metric tensor has components hjk(x). Then, on U ,

(1.4.3) dV (x) =
√
det(hjk) dx1 · · · dxN .

See §A.2 for a demonstration that dV is well defined, independent of the
choice of coordinates.

In such a way we get a volume element on a compact group G ⊂ U(n),
and since Lg and Rg are isometries, they also preserve the volume element.
We normalize this volume element to define normalized Haar measure on G:

(1.4.4)

∫
G

f(g) dg =
1

V (G)

∫
G

f dV.

We have left invariance

(1.4.5)

∫
G

f(hg) dg =

∫
G

f(g) dg

and right invariance

(1.4.6)

∫
G

f(gh) dg =

∫
G

f(g) dg,

for all h ∈ G, in such a situation.

We give a more general construction of Haar measure, working on any
Lie group G. To start, we fix some Euclidean inner product on TeG ≈ g;
call it 〈 , 〉g. Here e denotes the identity element of G. Defining Lg and Rg
on G as in (1.4.2), we have

(1.4.7) DLg−1 , DRg−1 : TgG −→ TeG ≈ g.
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We define two metric tensors on G as follows. Given U, V ∈ TgG, we define
inner products

(1.4.8)
〈U, V 〉ℓ = 〈DLg−1U,DLg−1V 〉g,
〈U, V 〉r = 〈DRg−1U,DRg−1V 〉g.

A straightforward computation shows that, for each g ∈ G, Lg : G → G
is an isometry for 〈 , 〉ℓ and Rg : G → G is an isometry for 〈 , 〉r. Now
the procedure (1.4.3) yields two volume elements on G, which we denote
dVℓ and dVr. As noted above, isometries of Riemannian manifolds naturally
preserve the induced volume elements, so we have, for all h ∈ G,
(1.4.9)∫

G

f(hg) dVℓ(g) =

∫
G

f(g) dVℓ(g),

∫
G

f(gh) dVr(g) =

∫
G

f(g) dVr(g).

Thus dVℓ is left-invariant and dVr is right-invariant. We call these Haar
measures.

We discuss the extent to which dVℓ is unique. If dV ′
ℓ is another left-

invariant measure, given in local coordinates by a smooth multiple of Lebesgue
measure, then dV ′

ℓ = ϕ(g) dVℓ for a smooth positive function ϕ, and from
the left invariance of both measures one can deduce that ϕ(hg) = ϕ(g) for
all g, h ∈ G, so ϕ must be constant. A similar remark holds for dVr.

We consider the effect of a right translation on dVℓ. For convenience set

(1.4.10) Iℓ(f) =

∫
G

f(g) dVℓ(g),

so right translation by h yields

(1.4.11) Ihℓ (f) =

∫
G

f(gh) dVℓ(g).

It is easy to check that Ihℓ is left-invariant, so by the uniqueness described
above we have

(1.4.12) Ihℓ (f) = α(h)Iℓ(f),

for a map

(1.4.13) α : G −→ (0,∞).

It is easy to show that α is smooth, and that

(1.4.14) α(h1h2) = α(h1)α(h2), ∀ hj ∈ G,

i.e., α is a group homomorphism from G to the multiplicative group (0,∞).

We say G is unimodular if α ≡ 1. In such a case, the left-invariant Haar
measure is also right-invariant; we say Haar measure is bi-invariant on G, and
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that G is unimodular. The Haar measure constructed on a compact group
G ⊂ U(n) at the begining of this section is bi-invariant. More generally, note
that for any Lie group G the image of G under α is a subgroup of (0,∞); if
G is compact this must be a compact subgroup, hence {1}, so every compact
Lie group has a bi-invariant Haar measure. If G is compact, we normalize
Haar measure as in (1.4.4), so

(1.4.15)

∫
G

1 dg = 1.

Lots of noncompact Lie groups are also unimodular, but some are not
unimodular. We will discuss this further in a later section.

We now give yet another construction of Haar measure, making use of
differential forms. See §A.3 for material on this. Let G be any Lie group,
say of dimension N . Pick any nonzero ωe ∈ ΛNT ∗

eG, where e denotes the
identity element of G. Then there is a unique N -form ωℓ on G such that

(1.4.16) ωℓ(e) = ωe, L∗
gωℓ = ωℓ, ∀ g ∈ G,

and a unique N -form ωr on G such that

(1.4.17) ωr(e) = ωe, R∗
gωr = ωr, ∀ g ∈ G.

In fact ωe = L∗
gωℓ(g) and ωe = R∗

gωr(g). If we use ωℓ (or ωr) to define
an orientation on G, then we have volume elements, which we denote dVℓ
and dVr. Again we have (1.4.9). Since ΛNT ∗

eG is 1-dimensional, it is clear
that both dVℓ and dVr are unique, up to a constant positive multiple; this
provides another demonstration of such uniqueness.

Note that L∗
g and R∗

h commute for each g, h ∈ G. Hence R∗
gωℓ is left-

invariant and L∗
gωr is right-invariant for each g, h ∈ G. The uniqueness

mentioned above implies

(1.4.18) R∗
hωℓ = α(h)ωℓ,

for all h ∈ G, with α as in (1.4.12). From this point of view, (1.4.14) follows
from the identity

(1.4.19) R∗
h1h2 = R∗

h2R
∗
h1 .

We next comment on integrating f(g−1). It is easily verified that for
any left-invariant Haar measure dVℓ,

(1.4.20)

∫
G

f(g−1) dVℓ = I(f)

is right-invariant, i.e., equal to
∫
G f(g) dVr(g) for some right-invariant Haar

measure dVr. See Exercise 4 below. If G is compact and (1.4.15) holds, then
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I(1) = 1, and we have

(1.4.21)

∫
G

f(g−1) dg =

∫
G

f(g) dg.

To illustrate some of the concepts discussed in this section, we will cal-
culate explicitly Haar measure on Gl(n,R), in the form

(1.4.22) dVℓ(X) = ϕ(X) dX,

where

(1.4.23) X =

x11 · · · x1n
...

...
xn1 · · · xnn

 , dX = dx11 · · · dxnn,

and ϕ ∈ C∞(Gl(n,R)). The condition ϕ must satisfy is described as follows:
we have

(1.4.24) Lg : Gl(n,R) −→ Gl(n,R), LgX = gX,

and the standard change of variable formula gives, for each u ∈ C∞
0 (Gl(n,R)),

(1.4.25)

∫
u(X)ϕ(X) dX =

∫
u(LgX)ϕ(LgX) | detDLg(X)| dX

=

∫
u(gX)ϕ(gX) | det g|n dX.

The left invariance of dVℓ demands that this equal

(1.4.26)

∫
u(gX)ϕ(X) dX.

Hence ϕ(X) must satisfy the condition

(1.4.27) ϕ(gX) = | det g|−nϕ(X), ∀ g,X ∈ Gl(n,R).
This clearly holds if and only if ϕ is a constant multiple of

(1.4.28) ϕ(g) = | det g|−n,
so we have dVℓ uniquely specified (up to a positive constant factor) as

(1.4.29) dVℓ(X) = | detX|−n dX.
Similar calculations show dVr(X) is given by the same formula, so Gl(n,R)
is unimodular.
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Exercises

1. C∗ = C \ 0 is a multiplicative group. Show that, with z = x+ iy,

dVℓ(z) = dVr(z) = |z|−2 dx dy.

2. Consider Gl(n,C), an open subset of M(n,C), with coordinates

Z =

z11 · · · z1n
...

...
zn1 · · · znn

 , dZ = dx11 · · · dxnn dy11 · · · dynn,

with zjk = xjk+ iyjk. Note that we have an analogue of (1.4.25), where, for
the factor

| detDLg(Z)|,
we regard DLg(Z) : M(n,C) → M(n,C) as an R-linear map. Generally, if

A : Ck → Ck is C-linear, it induces an R-linear map on R2k = Ck, and the
determinants are related by

detRA = |detCA|2.
With this in mind, show that

dVℓ(Z) = | detZ|−2n dZ,

with detZ = detC Z.

3. H∗ = H \ 0 is a multiplicative group. Show that, in coordinates

ξ = ξ1 + ξ2i+ ξ3j + ξ4k,

we have
dVℓ(ξ) = dVr(ξ) = |ξ|−4 dξ,

where dξ = dξ1 · · · dξ4.

4. Let dVℓ be left invariant, so Iℓ(f) =
∫
G f(x) dVℓ(x) satisfies Iℓ(gf) =

Iℓ(f), gf(x) = f(gx). Set

I(f) = Iℓ(f
∨), f∨(x) = f(x−1).

Show that I is right-invariant.
Hint. With fg(x) = f(xg), show that (fg)

∨ = g−1(f∨).



Chapter 2

Lie groups and
representations

A major theme in this text is the study of representations of a Lie group
G on a vector space V , with emphasis on the cases where G is compact
and V is finite dimensional and endowed with an inner product, and the
representation π is unitary. We also assume π(g) is a continuous function
of g. We show that this automatically implies π(g) is smooth in g, when V
is finite dimensional. A major tool for this result, as well as for most of the
results of this chapter is the invariant integral.

Key results established here include the break-up of representations of
a compact group G into irreducible components, the Weyl orthogonality
relations for irreducible unitary representations of G, and the Peter-Weyl
theorem, which says the matrix entries of such representations, suitably
normalized, form an orthonormal basis of L2(G). We first prove this when G
is a compact matrix group. Then, after introducing the convolution algebra
L1(G), we provide a proof valid for an arbitrary compact Lie group, which
incidentally implies that any such group is isomorphic to a matrix group.

25
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2.1. Basic notions of representation theory

We define a representation of a Lie group on a finite-dimensional vector
space V to be a continuous map

(2.1.1) π : G −→ End(V )

such that

(2.1.2) π(e) = I, π(gg′) = π(g)π(g′), ∀ g, g′ ∈ G.

Note that then π(g−1) = π(g)−1, so in fact π : G → Gl(V ). If V is a real
vector space with a Euclidean inner product and

(2.1.3) (π(g)v, π(g)w) = (v, w), ∀ g ∈ G, v, w ∈ V,

we say π is an orthogonal representation. If V is complex with a Hermit-
ian inner product and (2.1.3) holds, we say π is a unitary representation.
Representations of a compact Lie group are unitarizable, as follows.

Proposition 2.1.1. If π is a representation of a compact Lie group on a
finite-dimensional vector space V , then V has an inner product for which
(2.1.3) holds.

Proof. Pick some Hermitian inner product (( , )) on V . Then define ( , )
on V by

(2.1.4) (u, v) =

∫
G

((π(g)u, π(g)v)) dg.

We have, for all h ∈ G,

(2.1.5)

(π(h)u, π(h)v) =

∫
G

((π(g)π(h)u, π(g)π(h)v)) dg

=

∫
G

((π(gh)u, π(gh)v)) dg

= (u, v),

by right invariance of Haar measure on G. □

We say a representation π of G on V is irreducible if V has no proper
invariant linear subspace. Not all representations break up into irreducibles,
but all unitary representations do.

Proposition 2.1.2. If π is a unitary representation of G on a finite-dimensional
space V , then V is a direct sum of subspaces on which π acts irreducibly.
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Proof. If V0 ⊂ V is a linear space invariant under the action of π and π is
unitary, then V ⊥

0 is also invariant. If V0 and/or V ⊥
0 have proper invariant

subspaces, repeat this process. Since dim V <∞, it must terminate. □

We now discuss an important result in representation theory known as
Schur’s lemma. This has two parts.

Lemma 2.1.3. Suppose π and λ are finite-dimensional, irreducible unitary
representations of G on V and W . Assume A : V →W satisfies

(2.1.6) Aπ(g) = λ(g)A, ∀g ∈ G.

Then either A = 0 or A is an isomorphism. In the latter case, A must be a
scalar multiple of a unitary map from V to W .

Proof. One sees that KerA ⊂ V is invariant under π(g) for all g ∈ G, so
KerA = 0 or V . Also the range RanA ⊂ W is invariant under λ(g) for all
g ∈ G, so RanA = 0 or W . The last statement of Lemma 2.1.3 follows from
the next lemma. □

Lemma 2.1.4. Suppose π is a finite-dimensional, irreducible unitary rep-
resentation of G on V . Assume B : V → V satisfies

(2.1.7) Bπ(g) = π(g)B, ∀ g ∈ G.

Then B is a scalar multiple of the identity.

Proof. Set B = B1 + iB2, B
∗
j = Bj . It follows from (2.1.7) and unitarity

that

(2.1.8) Bjπ(g) = π(g)Bj , ∀ g ∈ G.

Now each Bj is diagonalizable, and

(2.1.9) Bjv = av ⇒ Bjπ(g)v = π(g)Bjv = aπ(g)v, ∀ g ∈ G,

so π leaves each eigenspace of Bj invariant. Irreducibility implies each Bj is
scalar, so the lemma is proven. □

Finally, we set B = A∗A to prove the last assertion in Lemma 2.1.3.
In fact, if λ and π are unitary, (2.1.6) implies also A∗λ(g) = π(g)A∗, so
A∗Aπ(g) = A∗λ(g)A = π(g)A∗A, for all g, hence A∗A = aI for some a ∈ C.
In fact, a > 0 since A∗A ≥ 0.

Given two finite-dimensional representations π and λ of G on V and W ,
we say π and λ are equivalent (π ≈ λ) if and only if there is an isomorphism
A : V → W such that A−1λ(g)A = π(g) for all g ∈ G. If these repre-
sentations are unitary, we say they are unitarily equivalent provided such a
unitary A exists. It follows that when π and λ are irreducible and unitary,
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they are equivalent if and only if they are unitarily equivalent. In fact, this
holds regardless of whether π and λ are irreducible.

The following result is a first version of what will be a very important
extension in the next section.

Proposition 2.1.5. Let G be a compact Lie group, π a unitary represen-
tation of G on V , a finite-dimensional vector space with an inner product.
Set

(2.1.10) Pv =

∫
G

π(g)v dg.

Then P is the orthogonal projection of V on the space where π acts trivially.

The proof consists of four easy pieces:

(2.1.11) π(g)Pv = Pv, ∀ g ∈ G,

(2.1.12) P ∗ =

∫
π(g−1) dg = P,

(2.1.13) P 2 =

∫∫
π(g)π(h) dg dh =

∫∫
π(gh) dg dh = P,

(2.1.14) π(g)v = v ∀ g =⇒ Pv = v.

Each step follows from the bi-invariance of Haar measure on G when it is
compact.

We next record some ways of producing new representations from old.
Let π be a representation of G on V and λ a representation of G on W .
First, there is the direct sum of two representations. We define π ⊕ λ, a
representation of G on V ⊕W , as

(2.1.15) (π ⊕ λ)(g)(v, w) = (π(g)v, λ(g)w), v ∈ V, w ∈W,

with (v, w) ∈ V ⊕W .

Next, we define the representation λ/π of G on Hom(V,W ), by

(2.1.16) λ/π(g)A = λ(g)Aπ(g)−1, A ∈ Hom(V,W ).

If V and W are finite-dimensional inner product spaces, then Hom(V,W )
gets the Hermitan inner product

(2.1.17) (A,B) = TrAB∗,

and if π and λ are unitary, so is λ/π, since

(2.1.18)

(λ(g)Aπ(g)−1, λ(g)Bπ(g)−1)

= Trλ(g)Aπ(g)−1π(g)B∗λ(g)−1

= TrAB∗.
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If we take orthonormal bases of V and W , and write matrix entries πjk(g),
Aℓm, etc., we have

(2.1.19)
(
λ/π(g)A

)
jk

=
∑
ℓ,m

λjℓ(g)Aℓm πkm(g).

In case W = C and λ(g) ≡ 1, we have Hom(V,W ) = Hom(V,C) = V ′,
the dual of V . In such a case, we use the notation π, so for v ∈ V, ω ∈ V ′,

(2.1.20) 〈v, π(g)ω〉 = 〈π(g−1)v, ω〉.
Equivalently,

(2.1.21) π(g) = π(g−1)t : V ′ −→ V ′.

If V is an inner product space, π is a unitary representation of G, and
(πjk(g)) is the matrix representation of π(g) with respect to a given or-
thonormal basis, then

(2.1.22)
(
πjk(g)

)
is the matrix representation of π with respect to the dual basis of V ′.

Another notation for (2.1.16) is

(2.1.23) λ/π = λ⊗ π,

the tensor product representation, acting on

(2.1.24) W ⊗ V ′ ≈ Hom(V,W ).

We also have λ⊗ π, acting on W ⊗ V ≈ Hom(V ′,W ), given by

(2.1.25) λ⊗ π(g)A = λ/π(g)A = λ(g)Aπ(g)−1, A ∈ Hom(V ′,W ).
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Exercises

1. Deduce from (2.1.19) that

Trλ/π(g) =
∑
ℓ,m

λℓℓ(g)πmm(g)

= Trλ(g) · Trπ(g).
Hence

Trλ⊗ π(g) = Trλ(g) · Trπ(g).
2. For k ∈ Z+, n ∈ N, let Pk(Cn) denote the space of polynomials on Cn,
homogeneous of degree k. Use the inner product

(u, v) =

∫
|z|≤1

u(z)v(z) dV (z),

with dV (z) = dx1 · · · dxn dy1 · · · dyn. Define

πk : SU(n) −→ L(Pk(Cn))
by

πk(g)u(z) = u(g−1z).

Show that πk is a unitary representation of SU(n) on Pk(Cn).

3. If also ` ∈ Z, show that

πk,ℓ(g)u(z) = (det g)ℓu(g−1z)

defines a unitary representation of U(n) on Pk(Cn).

4. Do Exercise 2 with Pk(Cn) replaced by Pk(Rn) and SU(n) replaced by
SO(n). Similarly, modify Exercise 3 to produce unitary representations of
O(n).
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2.2. Weyl orthogonality

Let G be a compact Lie group. Assume π is an irreducible unitary repre-
sentation of G on V and λ an irreducible unitary representation of G on W .
Define P acting on Hom(V,W ) as follows. If A : V →W , set

(2.2.1) P (A) =

∫
G

λ(g)Aπ(g)−1 dg.

It is readily verified that

(2.2.2) λ(g)P (A)π(g)−1 = P (A), ∀ g ∈ G.

In other words, P (A) intertwines π and λ. Now Schur’s lemma, established
in §2.1, gives the following:

(2.2.3)
π not ≈ λ =⇒ P (A) = 0, ∀A,

π = λ =⇒ P (A) = cπ(A)I,

where cπ(A) is scalar and I the identity operator on V =W .

In the latter case, taking the trace yields dπ cπ(A) = TrA (where dπ =
dim V ), hence cπ(A) = d−1

π TrA, so

(2.2.4)

∫
G

π(g)Aπ(g)∗ dg = d−1
π (TrA)I.

If matrix entries are denoted π(g)jk, Ajk, etc., we have (cf. (2.1.19))

(2.2.5)

∑
k,ℓ

∫
G

π(g)jkAkℓπ(g)mℓ dg = d−1
π δjm TrA

= d−1
π δjm

∑
k,ℓ

δkℓAkℓ,

hence

(2.2.6)

∫
G

π(g)jkπ(g)mℓ dg = d−1
π δjm δkℓ.

On the other hand, if π is not ≈ λ, the first case of (2.2.3) applies. In
this case, P (A)jm is equal to

(2.2.7)
∑
k,ℓ

∫
G

λ(g)jkAkℓπ(g)mℓ dg = 0, ∀A ∈ Hom(V,W ),

and this yields

(2.2.8)

∫
G

λ(g)jkπ(g)mℓ dg = 0, if π not ≈ λ,
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for each j, k ∈ {1, . . . , dλ} and `,m ∈ {1, . . . , dπ}. Together, (2.2.6) and
(2.2.8) make up the Weyl orhogonality relations. The following is a conve-
nient restatement.

Proposition 2.2.1. Let {πα : α ∈ I} be a mutually inequivalent family of
ireducible unitary representations of a compact Lie group G, on spaces Vα
of dimension dα. Then

(2.2.9) {d1/2α παjk : α ∈ I, 1 ≤ j, k ≤ dα}

is an orthonormal set in L2(G), where παjk(g) denotes the matrix represen-

tation of πα(g) with respect to an orthonormal basis of Vα.
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Exercises

1. Let π and λ be unitary representations of a compact Lie group G on V
and W , and define Qλπ : L(V,W ) → L(V,W ) by

QλπA =

∫
G

λ(g)Aπ(g)−1 dg.

Show that Qλπ is the orthogonal projection of L(V,W ) onto

I(λ, π) = {A ∈ L(V,W ) : λ(g)A = Aπ(g), ∀ g ∈ G}.
Relate this to Proposition (2.1.5), applied to the representation ν of G on
L(V,W ) given by ν(g)A = λ(g)Aπ(g)−1, or, as defined in §2.1, ν = λ/π.

2. In case λ and π are also irreducible, relate the conclusion of Exercise 1
to the results (2.2.3)–(2.2.4).
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2.3. The Peter-Weyl theorem, I

Let G be a compact Lie group and let πα, α ∈ I, be a maximal set of
mutually inequivalent irreducible unitary representations of G, on spaces Vα,
of dimension dα. Pick an orthonormal basis of Vα and say the corresponding
matrix entries of πα are παjk, 1 ≤ j, k ≤ dα. In §2.2 it was shown that

{d1/2α παjk} forms an orthonormal set in L2(G). The Peter-Weyl theorem
asserts the completeness of this orthonormal set.

Theorem 2.3.1. The set {d1/2α παjk : α ∈ I, 1 ≤ j, k ≤ dα} is an orthonormal

basis of L2(G).

What it remains to prove is that the linear span E of {παjk} is dense in

L2(G). We will give a proof of this here, under the additional hypothesis
that G is isomorphic to a subgroup of U(N), for some N . We will show
that E is dense in the space C(G) of continuous functions on G, using the
Stone-Weierstrass theorem. Since C(G) is dense in L2(G) and has a stronger
topology, this suffices. Clearly E is a linear space and 1 ∈ E . To apply the
Stone-Weierstrass theorem, we need to have the following:

(2.3.1) E separates points of G,

(2.3.2) u ∈ E =⇒ u ∈ E ,

(2.3.3) u, v ∈ E =⇒ uv ∈ E .

Of these conditions, (2.3.1) follows directly from the hypothesis G ⊂
U(N). As for (2.3.2), if πα has matrix representation (παjk), then (παjk) is
also the matrix of an irreducible unitary representation of G. Finally, we
note that the tensor product representation πα ⊗ πβ on Vα ⊗ Vβ (defined
as in (2.1.23)–(2.1.25)) can be decomposed into irreducibles, by Proposition
2.1.2, and this gives (2.3.3).

That these arguments can be applied to all compact G can be stated as
follows.

Proposition 2.3.2. If G is a compact Lie group, then there is an injective
representation

(2.3.4) ρ : G −→ U(N).

We say G has a faithful unitary representation.

Actually, we will prove this result in §2.8, as a corollary to the Peter-Weyl
theorem, which will be proven for all compact Lie groups in that section.
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From the Peter-Weyl theorem it follows that, if u ∈ L2(G), then

(2.3.5) u =
∑
α∈I

d1/2α

∑
j,k

ûjk(α)π
α
jk(g),

where

(2.3.6) ûjk(α) = d1/2α

∫
G

u(g)παjk(g) dg,

the convergence in (2.3.5) holding in L2-norm. See the basic development
of Hilbert space theory in Appendix C, §C.2.

Let us also set

(2.3.7) Pαu = d1/2α

∑
j,k

ûjk(α)π
α
jk(g),

the orthogonal projection of u onto the space

(2.3.8) Vα = span {παjk : 1 ≤ j, k ≤ dα}.

We have, for u ∈ L2(G),

(2.3.9) u =
∑
α∈I

Pαu,

convergence in L2-norm.

Another way to write (2.3.7) is as

(2.3.10) Pαu(g) = d1/2α Tr
(
û(α)tπα(g)

)
,

where

(2.3.11) û(α) = d1/2α

∫
G

u(g)πα(g) dg.

Here, as in (2.1.21), we can define πα as the representation of G on V ′
α given

by

(2.3.12) πα(g) = πα(g−1)t : V ′
α −→ V ′

α,

so û(α) : V ′
α → V ′

α. If (παjk(g)) is the matrix representation of πα(g) with

respect to an orthonormal basis of Vα, then (παjk(g)) is the matrix represen-

tation of πα(g) with respect to the dual basis of V ′
α. The Hermitian inner

product ( , ) on Vα gives rise to a conjugate linear isomorphism

(2.3.13) C : Vα −→ V ′
α, (u, v) = 〈u,Cv〉,

and a straightforward calculation gives

(2.3.14) πα(g) = Cπα(g)C−1.
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We also note that for a unitary representation πα we have (as asserted
shortly below (2.3.3))

(2.3.15) πα irreducible =⇒ πα irreducible.

Indeed, if E ⊂ V ′
α is a C-linear subspace invariant under πα(g) for all g,

then C−1E ⊂ Vα is a C-linear subspace invariant under πα(g).
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Exercises

We look at an explicit version of Theorem 2.3.1 in case G = T = R/2πZ,
with one-dimensional unitary representations

ek : T −→ S1, ek(θ) = eikθ, k ∈ Z.
We have the inner product on L2(T),

(u, v) =
1

2π

∫ 2π

0
u(θ)v(θ) dθ.

1. Show that {ek : k ∈ Z} is an orthonormal set, i.e.,

(ek, eℓ) =
1

2π

∫ 2π

0
ei(k−ℓ) dθ = δkℓ.

2. Let L = Span{ek : k ∈ Z}. Note that

1 = e0, ek = e−k, ekeℓ = ek+ℓ.

Deduce that L is an algebra of continuous functions on T satisfying (2.3.1)–
(2.3.3), and hence, by the Stone-Weierstrass theorem,

L is dense in C(T).
3. Deduce that L is an orthonormal basis of L2(T) and, by the general
theory treated in Appendix C,

u ∈ L2(T), SNu =
∑
|k|≤N

û(k)ek, û(k) =
1

2π

∫ 2π

0
u(θ)e−ikθ dθ

=⇒ Sn → u in L2-norm, as N → ∞.

Note. The series

u =
∞∑

k=−∞
û(k)eikθ

is called the Fourier series of u.

4. Extend the constriction above to G = Tn = Rn/2πZn, with

ek(θ) = eik·θ, k ∈ Zn, k · θ = k1θ1 + · · ·+ knθn.
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2.4. Characters and central functions

Let G be a Lie group. A function u on G is said to be central provided that,
for each h ∈ G, u(h−1gh) = u(g) (for a.e. g ∈ G if u ∈ L1

loc(G)). Examples
of central functions on G include

(2.4.1) Tr ρ(g) = χρ(g),

where ρ is a representation of G on a finite-dimensional vector space. We
call χρ the character of ρ.

Suppose now that G is compact. Let πα, α ∈ I be a maximal set of
mutually inequivalent unitary representations of G, on vector spaces Vα. We
set χα = Trπα. Note that, if α 6= β,

(2.4.2)

∫
G

χα(g)χβ(g) dg =
∑
j,k

∫
G

παjj(g)π
β
kk(g) dg = 0,

as a consequence of (2.2.8). On the other hand, using (2.2.6) we have

(2.4.3)

∫
G

χα(g)χα(g) dg =
∑
j,k

∫
G

παjj(g)π
α
kk(g) dg

=
∑
j,k

d−1
α δjk

= 1.

Hence {χα : α ∈ I} is an orthonormal set in L2(G). We have more, from
the Peter-Weyl theorem, proved for a certain class of compact G in §2.3,
and to be proved for general compact Lie groups in §2.8.

Proposition 2.4.1. The set {χα : α ∈ I} is an orthonormal basis of

(2.4.4) L2
C(G) = {u ∈ L2(G) : u is central}.

Proof. Take u ∈ L2
C(G). By (2.3.9)–(2.3.10) we can write

(2.4.5) u =
∑
α∈I

Pαu, Pαu = d1/2α Tr
(
û(α)t πα(g)

)
∈ Vα,

with convergence in L2-norm. We claim that each term Pαu is a multiple
of χα. Note that, for each h ∈ G,

(2.4.6) uh(g) = u(h−1gh) =⇒ ûh(α) = πα(h)û(α)πα(h)−1.

Hence

(2.4.7) u central =⇒ û(α)πα(h) = πα(h)û(α), ∀h ∈ G.
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Thus, by Schur’s lemma, û(α) is a scalar multiple of the identity. Taking

traces in (2.3.11) gives Tr û(α) = d
1/2
α

∫
G u(g)χα(g) dg, which gives

(2.4.8)
u central =⇒ û(α) = cα(u)I, cα(u) = d−1/2

α (u, χα)L2(G)

=⇒ Pαu(g) = d1/2α cα(u)Trπα(g) = (u, χα)L2(G) χα(g),

finishing the proof. □

We now establish a generalization of Proposition 2.1.5.

Proposition 2.4.2. Let G be a compact Lie group and ρ a unitary repre-
sentation of G on a finite-dimensional vector space V . Set

(2.4.9) Pα = dα

∫
G

χα(g) ρ(g) dg.

Then Pα is the orthogonal projection of V onto the space where G acts like
copies of πα.

Proof. As shown in §2.1, one has an orthogonal direct sum decomposition

(2.4.10) V = V1 ⊕ · · · ⊕ VK ,

with Vj invariant under ρ and ρj = ρ|Vj irreducible; say ρj ≈ πβj . The
content of the proposition is that

(2.4.11)
u ∈ Vj , βj 6= α =⇒ Pαu = 0,

u ∈ Vj , βj = α =⇒ Pαu = u.

The first part of (2.4.11) follows from the identity

(2.4.12)

∫
G

χα(g)π
β
kℓ(g) dg = 0 ⇐ β 6= α,

a consequence of (2.2.8). The second part of (2.4.11) follows from the iden-
tity

(2.4.13) dα

∫
G

χα(g)π
α
kℓ(g) dg = δkℓ,

a consequence of (2.2.6). □

The number of factors Vj in (2.4.10) for which ρj ≈ πα is called the
multiplicity of the irreducible representation πα in ρ and denoted µ(πα, ρ).
This is seen to be the dimension of the image of Pα divided by dα, i.e., by
(2.4.9),

(2.4.14) µ(πα, ρ) = d−1
α TrPα =

∫
G

χρ(g)χα(g) dg.
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It is apparent that two finite-dimensional unitary representations of a
compact Lie group G are equivalent if and only if they break up into the
same irreducible components, with the same multiplicities. Thus we have
the following.

Proposition 2.4.3. If ρ and λ are finite-dimensional unitary representa-
tions of a compact Lie group G, then

(2.4.15) ρ ≈ λ⇐⇒ χρ = χλ.

Conjugacy classes.

If G is a Lie group, we say g1 and g2 ∈ G are conjugate (in G) if
there exists h ∈ G such that g1 = h−1g2h. We write g1 ∼ g2, This is an
equivalence relation, and the set G/ ∼ of equivalence classes is called the
set of conjugacy classes of G. Central functions are precisely those that are
constant on each conjugacy class, so it is of interest to understand what
conjugacy classes look like.

Suppose G = U(n). Given A ∈ U(n), Cn has an orthonormal basis {uk}
of eigenvectors of A,

(2.4.16) Auk = λkuk, |λk| = 1.

It is clear that an element B ∈ U(n) is unitarily conjugate to A if and
only if A and B have the same eigenvalues, with the same multiplicity, or
equivalently

(2.4.17) A ∼ B in U(n) ⇐⇒ det(λI −A) = det(λI −B),

as polynomials in λ.

In case G = SU(n), A,B ∈ SU(n), we have the criterion (2.4.17) for
conjugacy in U(n). However, it is elementary that, given A,B ∈ SU(n),

(2.4.18) A ∼ B in SU(n) ⇐⇒ A ∼ B in U(n).

Indeed, if X ∈ U(n) and A = X−1BX, we can set X = ωY, Y ∈ SU(n),
ω ∈ C, ωn = detX, and note that A = Y −1BY .

Now consider G = O(n). Given A ∈ O(n), SpecA consists of points in
{z ∈ C : |z| = 1}, and non-real eigenvalues occur in complex conjugate pairs.
For example, if λ1 ∈ SpecA, λ1 /∈ R, Av1 = λ1v1, say v1 = x1+ iy1, x1, y1 ∈
Rn. Note that

(2.4.19) Av1 = λ1v1, so v1 ⊥ v1, hence |x1| = |y1|, x1 ⊥ y1.

Writing λ1 = c1 + is1, c1, s1 ∈ R, c21 + s21 = 1, we have

(2.4.20) A(x1 + iy1) = (c1 + is1)(x1 + iy1),
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hence

(2.4.21)
Ax1 = c1x1 − s1y1,

Ay1 = s1x1 + c1y1.

The space V1 = Span{x1, y1} is invariant under A, hence A : V ⊥
1 → V ⊥

1 ,
a real inner product space of dimension n − 2. Inductively, we obtain the
following.

Proposition 2.4.4. Let A ∈ O(n). Then Rn has an orthonormal basis
of the following form. If {λj , λj : 1 ≤ j ≤ k} are the complex conjugate
pairs of non-real eigenvalues of A, counted by multiplicity, then there is an
orthonormal set S = {xj , yj ∈ Rn : 1 ≤ j ≤ k} such that, with λj =
cj + isj , cj , sj ∈ R,

(2.4.22)
Axj = cjxj − sjyj ,

Ayj = sjxj + cjyj .

If m = n − 2k > 0, there is an orthonormal set {xj : k + 1 ≤ j ≤ k +m}
which, together with S, forms an orthonormal basis of Rn, such that

(2.4.23) Axj = λjxj , for k + 1 ≤ j ≤ k +m, λj ∈ {±1}.

Hence we have the following analogue of (2.4.17).

Corollary 2.4.5. Given A,B ∈ O(n), A ∼ B in O(n) if and only if
these matrices have the same eigenvalues, counted according to multiplic-
ity. Equivalently,

(2.4.24) A ∼ B in O(n) ⇐⇒ det(λI −A) = det(λI −B).

For G = SO(n), there is a partial analogue of (2.4.18). Namely, given
A,B ∈ SO(n),

(2.4.25) A ∼ B in SO(n) ⇐⇒ A ∼ B in O(n), provided n is odd.

Indeed, n odd ⇒ det(−I) = −1, so if X ∈ O(n), A = X−1BX, and
detX = −1, set Y = −X ∈ SO(n) to get A = Y −1BY .

For n even, matters are different. For example, SO(2) is commutative,
so

(2.4.26) for A,B ∈ SO(2), A ∼ B in SO(2) ⇐⇒ A = B.

On the other hand, for c2 + s2 = 1, s 6= 0,

(2.4.27)

(
c −s
s c

)
∼
(
c s
−s c

)
in O(2), not in SO(2).
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Exercises

1. Consider A,B ∈ SU(2),

A =

(
z −w
w z

)
, z, w ∈ C, |z|2 + |w|2 = 1.

Show that

A ∼ B in SU(2) ⇐⇒ TrA = TrB.

Note that TrA = 2Re z.

2. Given ξ, η ∈ Sp(1), i.e., ξ, η ∈ H, |ξ| = |η| = 1, show that

Re(ηξη) = Re ξ.

Going further, if also ζ ∈ Sp(1), show that

ξ ∼ ζ ⇐⇒ Re ξ = Re ζ.

3. Given A,B ∈ SO(2), show that

A ∼ B in O(2) ⇐⇒ TrA = TrB.

4. Given A ∈ SO(3), show that there exists R ∈ SO(2) such that

A ∼
(
R

1

)
in SO(3).

5. Given A ∈ SO(4), show there exist Rj ∈ SO(2) such that

A ∼
(
R1

R2

)
in O(4).

See if you can replace conjugation in O(4) by conjugation in SO(4).

6. Set O−(n) = O(n) \ SO(n). Show that

A ∈ O−(2) =⇒ A ∼
(
1

−1

)
,

A ∈ O−(3) =⇒ A ∼
(
R

−1

)
, R ∈ SO(2),

A ∈ O−(4) =⇒ A ∼

R 1
−1

 , R ∈ SO(2).

7. Let π be an irreducible unitary representation of a compact Lie group G
on V , of dimension dπ. Take B ∈ L(V ). Set

χπ,B(g) = Tr(Bπ(g)).



2.4. Characters and central functions 43

Let B and π(g) have matrix representations (bjk) and πjk(g)) with respect
to some orthonormal basis of V . Show that

χπ,B(g) =
∑
j,k

bjkπkj(g).

Deduce that if also C ∈ L(V ),

(χπ,B, χπ,C)L2(G) =
1

dπ
Tr(BC∗).
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2.5. Representations of O(2)

The group O(2) has two connected components, O+(2) = SO(2) and O−(2),
components on which the determinant is 1 and −1, respectively. We have

(2.5.1) SO(2) = {R(θ) : θ ∈ T = R/2πZ}, O−(2) = {R(θ)T : θ ∈ T},

where

(2.5.2) R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, T =

(
0 1
1 0

)
.

Note that O(2) is generated by SO(2) and T , with relations

(2.5.3) R(0) = I, R(θ + ϕ) = R(θ)R(ϕ), R(θ)T = TR(−θ), T 2 = I.

The 2 × 2 representation R of SO(2), regarded as a representation on
C2, is not irreducible. We have

(2.5.4) R(θ) ∼
(
eiθ

e−iθ

)
.

The conjugation is done via the unitary matrix

U =
1√
2

(
1 i
i 1

)
,

which commutes with T .

Guided by these formulas, we define the following representations πn of
O(2) on C2, for n ∈ Z. To start, we set

(2.5.5) πn(R(θ)) =

(
einθ

e−inθ

)
, πn(T ) = T.

A calculation gives

(2.5.6) πn(R(θ))T =

(
einθ

e−inθ

)
= Tπn(R(−θ)),

paralleling the relations in (2.5.3). Hence (2.5.5) uniquely defines a group
homomorphism πn : O(2) → U(2) ⊂ L(C2), and we have

(2.5.7) πn(R(θ)T ) =

(
einθ

e−inθ

)
= πn(TR(−θ)).

We see that, for g ∈ O(2),

(2.5.8) T−1πn(g)T = π−n(g), so πn ≈ π−n.

The representations πn of O(2) are irreducible for n 6= 0, but π0 is not;
indeed

(2.5.9) π0(R(θ)) ≡ I, π0(T ) = T.
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so the eigenspaces of T in C2 are invariant under π0. We have

(2.5.10) π0 ≈ α0 ⊕ β0,

where α0 and β0 are the following one-dimensional representations of O(2):

(2.5.11) α0(g) = 1, β0(g) = det g, ∀ g ∈ O(2).

Noting that the matrix entries of {
√
2πn : n ∈ N}, α0, and β0 yield an

orthonormal basis of O(2), we have the following.

Proposition 2.5.1. A complete set of irreducible unitary representations
of O(2) is given by

(2.5.12) {πn : n ∈ N}, α0, and β0.

It is of interest to compute characters:

(2.5.13)
Trπn(R(θ)) = 2 cosnθ, Trπn(R(θ)T ) = 0, n 6= 0,

Trα0(g) = 1, Trβ0(g) = det g, ∀ g ∈ O(2).

Note that each irreducible character of O(2) is constant on O−(2), consis-
tent with the analysis of conjugacy classes indicated in Exercise 6 of §2.4,
implying that all of O−(2) is one conjugacy class in O(2).
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2.6. Comments on representations of finite groups

Throughout this section G will be a finite group (i.e., a compact Lie group
of dimension zero). We denote its order by o(G). Then the integral is given
by

(2.6.1)

∫
G

f(g) dg =
1

o(G)

∑
g∈G

f(g).

In this case L2(G) is a finite-dimensional vector space, of dimension o(G),
and the regular representation of G on L2(G), given by

(2.6.2) L(g)u(x) = u(g−1x), g, x ∈ G, u ∈ L2(G),

is a faithful unitary representation of G.

If πα, α ∈ I is a maximal set of mutually inequivalent irreducible unitary
representations of G, onto vector spaces Vα, of dimension dα, then it is a
special case of the results of §2.3 that {παjk : α ∈ I, 1 ≤ j, k ≤ dα} forms an

orthonormal basis of L2(G). In particular, with Vα as in (2.3.8), we have

(2.6.3) L2(G) =
⊕
α∈I

Vα, dimVα = d2α,

and hence

(2.6.4)
∑
α∈I

d2α = o(G).

Note that, for finite G, L2
C(G) is equal to the set of all central functions

on G. Hence

(2.6.5) dimL2
C(G) = o(C),

where C denotes the set of conjugacy classes in G and o(C) its cardinality.
Since {χα : α ∈ I} is an orthonormal basis of L2

C(G), we deduce that

(2.6.6) o(I) = o(C),

i.e., the number of distinct irreducible unitary representations of G is equal
to the number of conjugacy classes of G.

We illustrate some of these results on a selection of finite groups, starting
with a couple of the smallest symmetric groups. We denote by Sn the group
of permutations of {1, . . . , n}; clearly n! = o(Sn). Each group has a trivial
representation, which we denote 1, acting on C by 1(g) = 1, for all g ∈ G.
Each group Sn has another one-dimensional representation,

(2.6.7) sgn : Sn −→ {±1}.
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One way to define sgn(σ) is the following. Consider

(2.6.8) Dn(x) =
∏

1≤j<k≤n
(xj − xk).

Then, for σ ∈ Sn,

(2.6.9)
∏

1≤j<k≤n
(xσ(j) − xσ(k)) = sgn(σ)Dn(x).

It is easy to verify that sgn(στ) = sgn(σ) sgn(τ) for σ, τ ∈ Sn.

We next define a representation ρn of Sn on Cn by

(2.6.10) ρn(σ)ej = eσ(j),

where e1, . . . , en is the standard basis of Cn. This representation is not
irreducible, since

(2.6.11) ρn(σ)(e1 + · · ·+ en) = e1 + · · ·+ en, ∀ σ ∈ Sn.

The orthogonal complement of this vector is also invariant, so Sn acts on

(2.6.12) Vn−1 = {u ∈ Cn : u1 + · · ·+ un = 0}.

Let us denote the action of Sn on Vn−1 by πnS .

Lemma 2.6.1. The representation πnS of Sn on Vn−1 is irreducible.

Proof. We note the result is trivial for S2 acting on V1. Now take n ≥ 3
and consider a nonzero v ∈ Vn−1. We aim to show the span W of {πnS(σ)v :
σ ∈ Sn} is all of Vn−1. If we can show

(2.6.13) e1 − e2 ∈W,

this is easily accomplished. Note that W must contain a vector of the form

(2.6.14) (v1, v2, . . . , vn), v1 6= v2.

Then
(2.6.15)
(v1, v2, v3, . . . , vn)− (v2, v1, v3, . . . , vn) = (v1 − v2, v2 − v1, 0, . . . , 0) ∈W

is nonzero, and we have (9.13). The proof is done. □

Note that ρn acts on Rn and this complexifies to the action on Cn given
above. Similarly πnS acts on V R

n−1 = {u ∈ Rn : u1 + · · · + un = 0} and
complexifies to to action on Vn−1. Acting on Rn, ρn acts as the group
of symmetries of the simplex spanned by e1, . . . , en, lying in the surface
{u : u1 + · · · + un = 1}. The projection onto V R

n−1 sends {e1, . . . , en} to
the vertices of a simplex centered at the origin, and πnS acts as the group of
symmetries of this simplex.
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For example, via πnS , S3 acts as the group of symmetries of an equilateral
triangle in R2 and S4 acts as the group of symmetries of a regular tetrahedron
in R3.

We claim that, when n = 3, the set

(2.6.16) 1, sgn, πnS

exhausts the set of irreducible representations of S3. In fact, in view of
(2.6.4), the dimension check

(2.6.17) o(S3) = 6 = 12 + 12 + 22

verifies this.

The group S4 has the irreducible representations (2.6.16) and a couple
more. One is given by

(2.6.18) π4Q(σ) = sgn(σ)π4S(σ),

acting on V3. Since the representations π4S and π4Q are three-dimensional
representations, we have

(2.6.19) detπ4Q(σ) = sgn(σ) detπ4S(σ),

so they cannot be equivalent. (By contrast, sgn ·π3S is equivalent to π3S .)

So far the representations of S4 we have contribute 1 + 1+ 32 + 32 = 20
to o(S4) = 24. In addition, there is a two-dimensional representation of S4,
coming from a surjective homomorphism

(2.6.20) β : S4 −→ S3.

To construct β, we need to have S4 act on a 3-point set. To this end, consider
the following situation. The regular tetrahedron T has 4 vertices, 4 faces,
and 6 edges. The edges come in 3 sets of opposite pairs. The action of S4 on
T preserves this pairing, and gives the action of S4 on a 3-point set, yielding
(2.6.20). Then the representation

(2.6.21) π3S ◦ β
is a 2-dimensional irreducible representation of S4, completing the list.

We make some more comments on the representations π4S and π4Q. Note
that, for all σ ∈ S4,

(2.6.22) detπ4S(σ) = sgn(σ), detπ4Q(σ) = 1.

Hence π4Q acts as a group of rotations on V R
3 ≈ R3. In fact, we claim π4Q

acts as the group of rotational symmetries of a cube Q ⊂ R3, centered at the
origin. To see this, let GQ denote the group of such symmetries of Q and
refer to Figure 2.6.1, which shows a tetrahedron T , with vertices A,B,C,D,
sitting in a cube, with vertices A,B,C,D and also A′ = −A,B′ = −B,C ′ =
−C,D′ = −D. Each g ∈ GQ either takes T to T or takes T to −T .



2.6. Comments on representations of finite groups 49

Figure 2.6.1. Geometrical setting for the actions of π4
S and π4

Q

This dichotomy defines a homomorphism γ : GQ → {±1}, and we see that
g 7→ γ(g)g gives the group of symmetries of T . This is equivalent to

(2.6.23) π4S(σ) = sgn(σ)π4Q(σ),

which is another way of putting (2.6.18).

We note another perspective on (2.6.20). Namely π4Q acts on the 3-point
set consisting of opposite pairs of faces of the cube Q.

Dihedral groups. We next consider, for k ≥ 3, the groupDk of symmetries
of a regular k-gon in the plane. We have

(2.6.24) Dk = Dk
+ ∪Dk

−,

where

(2.6.25)
Dk

+ = {R(θj) : j ∈ Z/(k)}, θj =
2πj

k
,

Dk
− = {R(θj)T : j ∈ Z/(k)},
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and we set

(2.6.26) R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, T =

(
0 1
1 0

)
.

We see that Dk is a subgroup of O(2), and Dk
± consists of elements in

O±(2). We define unitary representations πn of Dk on C2 by specializing
representations of O(2) constructed in §2.5. Consequently

(2.6.27) πn(R(θj)) =

(
einθj

e−inθj

)
, πn(T ) = T, n ∈ Z/(k).

We have

(2.6.28) πn(R(θj)T ) =

(
einθj

e−inθj

)
.

As in §2.5,

(2.6.29) πn ≈ π−n,

and π0 is reducible:

(2.6.30) π0 ≈ α0 ⊕ β0, α0(g) = 1, β0(g) = det g, g ∈ Dk.

For n ∈ Z/(k), we see that

(2.6.31)
πn is reducible ⇐⇒

(
einθ1

e−inθ1

)
commutes with T

⇐⇒ einθ1 ∈ {±1}.

Since einθ1 = e2πin/k, we have

Lemma 2.6.2. For n 6= 0 in Z/(k), the representation πn of Dk is reducible
if and only if

(2.6.32) k is even and n =
k

2
.

Note that if (2.6.32) holds, then

(2.6.33) πk/2(R(θ1)) = −I,
hence

(2.6.34)
πk/2(R(θj)) = (−1)jI, and

πk/2(R(θj)T ) = (−1)jT.

We hence have

(2.6.35) πk/2 ≈ αk/2 ⊕ βk/2,

with

(2.6.36)
αk/2(R(θj)) = (−1)j = αk/2(R(θj)T ),

βk/2(R(θj)) = (−1)j = −βk/2(R(θj)T ).



2.6. Comments on representations of finite groups 51

To draw connections to (2.6.4), we note that when k is even, we have de-
scribed

(2.6.37)
k − 2

2
2D representations, and 4 1D representations,

so the left side of (2.6.4) gives

(2.6.38) 4
k − 2

2
+ 4 = 2k = o(Dk),

and when k is odd, we have described

(2.6.39)
k − 1

2
2D representations, and 2 1D representations,

so the left side of (2.6.4) gives

(2.6.40) 4
k − 1

2
+ 2 = 2k = o(Dk).

In both cases we verify (2.6.4).
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2.7. The convolution product and group algebras

Let G be a Lie group. Given integrable functions u, v : G→ C (for example,
continuous functions with compact support) we define the convolution u∗v :
G→ C by

(2.7.1) u ∗ v(x) =
∫
G

u(g)v(g−1x) dg.

We use left-invariant Haar measure. One easily sees that u ∗ v is continuous
with compact support if u and v are. It is a consequence of Fubini’s theorem
that u, v ∈ L1(G) ⇒ u ∗ v ∈ L1(G). This convolution product is easily seen
to have the associative property:

(2.7.2) u ∗ (v ∗ w) = (u ∗ v) ∗ w.

Let π be a unitary representation of G. For u ∈ L1(G), we set

(2.7.3) π(u) =

∫
G

u(g)π(g) dg.

The following relates (2.7.3) to the convolution product.

Proposition 2.7.1. We have

(2.7.4) π(u ∗ v) = π(u)π(v).

Proof. The definitions give

(2.7.5)

π(u ∗ v) =
∫
(u ∗ v)(g)π(g) dg

=

∫∫
u(h)v(h−1g)π(g) dg dh

=

∫∫
u(h)π(h) v(h−1g)π(h−1g) dg dh

=

∫
u(h)π(h) dh π(v)

= π(u)π(v),

where left invariance of Haar measure is used in the fourth identity. □

In the rest of this section we restrict attention to the case where G is
compact; in particular its Haar measure is bi-invariant. The following result
bears on the meaning of “central.”

Proposition 2.7.2. If u is central, then for all v ∈ L1(G), u ∗ v = v ∗ u.
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Proof. Recall that to say u is central is to say u(g−1xg) = u(x). We have

(2.7.6)

v ∗ u(x) =
∫
v(g)u(g−1x) dg

=

∫
v(g)u(xg−1) dg (if u is central)

=

∫
v(h−1x)u(h) dh

= u ∗ v(x).

□

When u is central, π(u) has a special behavior, as we now derive. To
see this, let us set

(2.7.7) Cgu(x) = u(g−1xg),

and note that

(2.7.8)

π(Chu) =

∫
π(g)u(h−1gh) dg

=

∫
π(hxh−1)u(x) dx

= π(h)π(u)π(h)−1,

so

(2.7.9) u central =⇒ π(u)π(h) = π(h)π(u), ∀ h ∈ G.

In particular, if u is central and πα is irreducible (on Vα, of dimension dα),
then, by Schur’s lemma, πα(u) must be scalar. Taking traces yields

(2.7.10)

u central =⇒ πα(u) = σα(u)I,

σα(u) =
1

dα

∫
χα(g)u(g) dg,

where χα(g) = Trπα(g). Compare (2.4.8), noting that û(α) = d
1/2
α πα(u).

Generalizing (2.7.7)–(2.7.8), we note that

(2.7.11) Gg,hu(x) = u(g−1xh) ⇒ π(Cg,hu) = π(g)π(u)π(h)−1.

The following is a useful formula for the projection Pα defined in (2.3.7).

Proposition 2.7.3. For u ∈ L2(G),

(2.7.12) Pαu = dα χα ∗ u = dα u ∗ χα.
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Proof. By Proposition 2.7.2, the last two functions in (2.7.12) are equal.
By (2.3.10)–(2.3.11) we have

(2.7.13)
Pαu(g) = d1/2α Tr

(
û(α)tπα(g)

)
= dα Tr

(
πα(u)tπα(g)

)
.

Meanwhile

(2.7.14)

u ∗ χα(g) = Tr

∫
G

u(h)πα(h−1g) dh

= Tr
[∫
G

u(h)πα(h−1) dh πα(g)
]
.

Finally,

(2.7.15) πα(h) = πα(h−1)t ⇒ πα(u)t =

∫
G

u(h)πα(h−1) dh.

Then (2.7.13)–(2.7.15) yield (2.7.12). □

We define the following involution on functions on G:

(2.7.16) u∗(g) = u(g−1),

and note that

(2.7.17) (u ∗ v)∗ = v∗ ∗ u∗,

and if π is a unitary representation of G,

(2.7.18) π(u∗) = π(u)∗,

as is readily checked.

Given f ∈ L1(G), we can define the operator

(2.7.19) Kf : L2(G) −→ L2(G), Kfu(x) = f ∗ u(x) =
∫
f(g)u(g−1x) dg.

The estimate

(2.7.20) ‖Kfu‖L2 ≤ ‖f‖L1‖u‖L2

follows from the triangle inequality for the L2 norm. Also, if (u, v) denotes
the L2-inner product, we have

(2.7.21)

(Kfu, v) =

∫∫
f(g)u(g−1x)v(x) dg dx

=

∫∫
f(xy−1)u(y)v(x) dy dx

= (u,Kf∗v),
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or

(2.7.22) K∗
f = Kf∗ .

Also it follows from (2.7.2) that

(2.7.23) Kf∗g = KfKg.

We can draw some parallels between Kf and π(f) as follows. Consider
the left- and right-regular representations of G on L2(G):

(2.7.24) L(g)u(x) = u(g−1x), R(g)u(x) = u(xg).

These unitary representations are infinite dimensional, but many of the pre-
viously studied concepts apply. We have, for f ∈ L1(G), u ∈ L2(G),

(2.7.25) L(f)u(x) =

∫
f(g)u(g−1x) dg = f ∗ u(x) = Kfu(x),

and

(2.7.26) R(f)u(x) =

∫
f(g)u(xg) dg =

∫
f(hx−1)u(h) dh = u ∗ f̌(x),

where

(2.7.27) f̌(g) = f(g−1).

Then (2.7.23) becomes L(f ∗ g) = L(f)L(g), a result parallel to (2.7.4).
Similarly one has R(f ∗ g) = R(f)R(g).

Here is another useful result.

Proposition 2.7.4. For all f ∈ L1(G), we have

(2.7.28) R(g)Kf = KfR(g), ∀ g ∈ G.

In addition,

(2.7.29) f central =⇒ L(g)Kf = KfL(g), ∀ g ∈ G.

The proof involves more calculations like those done above. We leave it
as an exercise.

We make note on the continuity of the representations L(g) and R(g).
They are strongly continuous on L2(G), in the sense that

(2.7.30) ∀ u ∈ L2(G), L(g)u and R(g)u are continuous from G to L2(G).

This continuity is obvious if u ∈ C(G) and it follows for general u via
the denseness of C(G) in L2(G) and the fact that ‖L(g)u‖L2 = ‖u‖L2 =
‖R(g)u‖L2 for all g.
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We make some comments on the convolution algebra of a finite group
G, with integral given by (2.6.1). In such a case, the convolution algebra
L1(G) is also denoted `1(G). Another common notation for u ∈ `1(G) is

(2.7.31) u =
∑
g∈G

u(g)g.

Then convolution is given by

(2.7.32)

u ∗ v =
1

o(G)

∑
g,h∈G

u(g)v(h) gh

=
1

o(G)

∑
g,x∈G

u(g)v(g−1x)x,

which is consistent with (2.7.1).
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Exercises

1. Verify the associativity property (2.7.2), i.e.,

u ∗ (v ∗ w) = (u ∗ v) ∗ w,
for u, v, w ∈ L1(G).

2. Show from (2.3.10)–(2.3.11) that, for u ∈ L2(G), g ∈ G,

û(α) = d1/2α πα(u),

and hence
Pαu(g) = dαTr

(
πα(u)tπα(g)

)
= dαTr

(
πα(g)tπα(u)

)
.

3. Verify the identities in (2.7.17) and (2.7.18), when G is compact.

4. Extending (2.7.19), show that

f ∈ L1(G) =⇒ Kf : Lp(G) → Lp(G), 1 ≤ p <∞,

and
‖Kfu‖Lp ≤ ‖f‖L1‖u‖Lp .

5. Extending (2.7.25), show that

f ∈ L1(G), u ∈ Lp(G) =⇒ L(f)u = Kfu = f ∗ u.
6. In the setting of Exercise 3, show that the identity

L(f ∗ g) = L(f)L(g)

implies the associative law (2.7.2).

7. Assume G is compact. Show that

f ∈ L2(G) =⇒ Kf : L2(G) → C(G), sup |Kfu| ≤ ‖f‖L2‖u‖L2 ,

and, more generally, for 1 < p <∞,

f ∈ Lp
′
(G) =⇒ Kf : Lp(G) → C(G), sup |Kfu| ≤ ‖f‖Lp′‖u‖Lp .
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2.8. The Peter-Weyl theorem, II

Let G be a compact Lie group. We give G a bi-invariant Riemannian met-
ric. Indeed, if any left-invariant Riemannian metric tensor is put on G, as
discussed in §1.4, we can integrate over G its pull-back under the action of
right translations to get a bi-invariant metric tensor. It is clear that the
pull-back of such a metric tensor under g 7→ g−1 is also bi-invariant. In
fact, the two agree, but rather than argue this let us just average the two,
obtaining a bi-invariant metric tensor that is also invariant under g 7→ g−1.

If d(x, y) denotes the resulting distance function between x and y in G,
we note that, for any continuous function ϕ : R → R,

(2.8.1) ψ(g) = ϕ(d(g, e)) is a central function on G.

Also, with ψ∗ defined as in (2.7.12), we have ψ∗ = ψ. Hence, for any unitary
representation π of G, π(ψ) is self-adjoint.

Let us assume ϕ is ≥ 0, Lipschitz, and satisfies ϕ(s) = 1 for |s| ≤
1/2, ϕ(s) = 0 for |s| ≥ 1, and let us set

(2.8.2) ψν(g) = ϕ(νd(g, e)), ν ≥ 1.

Then ψν ∈ Lip(G), and it is supported on B1/ν(e), where Br(h) = {g ∈ G :
d(g, h) ≤ r}. Set

(2.8.3) Ψν(g) = A−1
ν ψν(g), Aν =

∫
ψν(g) dg,

so Ψν ∈ Lip(G) is also supported in B1/ν(e) and
∫
Ψν(g) dg = 1. Now set

(2.8.4) Φν(g) = Ψν ∗Ψν(g).

Then Φν ∈ Lip(G) is supported in B2/ν(e) and
∫
Φν(g) dg = 1. Now define

the convolution operators

(2.8.5) Cνu = Ψν ∗ u, Kνu = Φν ∗ u.

Proposition 2.8.1. The operators Cν and Kν are approximate identities.
That is, as ν → ∞,

(2.8.6) u ∈ C(G) =⇒ Cνu→ u and Kνu→ u uniformly.

Also

(2.8.7) u ∈ L2(G) =⇒ Cνu→ u and Kνu→ u in L2-norm.

Proof. We note that, for every g ∈ G, Cνu(g) is a weighted average of u over
the set B1/ν(g) and Kνu(g) is a weighted average of u over the set B2/ν(g).
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Thus if u has the modulus of continuity ω, i.e., |u(g) − u(h)| ≤ ω(d(g, h)),
then

(2.8.8) ‖Cνu− u‖sup ≤ ω(1/ν), ‖Kνu− u‖sup ≤ ω(2/ν).

This gives (2.8.6). The result (2.8.7) for Cν follows from

(2.8.9) ‖Cνu‖L2 ≤ ‖u‖L2 , ‖u‖L2 ≤ ‖u‖sup, C(G) dense in L2(G).

In fact, given u ∈ L2(G) and ε > 0, pick v ∈ C(G) such that ‖u− v‖L2 < ε.
Pick N such that ν ≥ N ⇒ ‖Cνu− u‖sup < ε. Then, for ν ≥ N ,

(2.8.10)

‖Cνu− u‖L2 = ‖Cνu− Cνv + Cνv − v + v − u‖L2

≤ ‖Cν(u− v)‖L2 + ‖Cνv − v‖sup + ‖v − u‖L2

< 3ε,

giving (2.8.7) for Cνu. The proof for Kνu is similar. □

For other properties of Cν and Kν on L2(G), we note from (2.7.22)–
(2.7.23) that

(2.8.11) Cν = C∗
ν , Kν = C2

ν ;

hence

(2.8.12) (Kνu, u) = ‖Cνu‖2L2 ≥ 0, ∀ u ∈ L2(G),

i.e., Kν is a positive semi-definite self-adjoint operator on L2(G).

Proposition 2.8.2. For each ν, Cν and Kν are compact operators on
L2(G).

There are several ways to prove this. The integral kernel of Cν is Lips-
chitz on G×G, hence square-integrable, so Cν is a Hilbert-Schmidt operator,
hence compact. Also, for each ν,

(2.8.13) Cν : L2(G) −→ Lip(G).

Now Lip(G) ↪→ C(G) is compact, by Ascoli’s theorem, while C(G) ↪→ L2(G)
is continuous.

Now ifK is a compact self-adjoint operator on L2(G), then the eigenspaces
Eλ corresponding to nonzero eigenvalues are all finite dimensional, and these
spaces together with KerK span L2(G). The following result will help us
prove the Peter-Weyl theorem for general compact Lie groups. As usual, let
{πα : α ∈ I} be a maximal set of inequivalent irreducible unitary represen-
tations of G, acting on spaces Vα.

Proposition 2.8.3. Let K : L2(G) → L2(G) be compact and self-adjoint,
and assume

(2.8.14) KR(g) = R(g)K, ∀ g ∈ G,
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where R(g) denotes the right-regular representation of G on L2(G), given
by (2.7.24). Let Eλ be the eigenspace of K for some nonzero eigenvalue λ.
Then each u ∈ Eλ is a finite linear combination of matrix entries παjk.

Proof. By (2.8.14), R(g) : Eλ → Eλ. We know this representation decom-
poses into irreducibles; Eλ = V1 ⊕ · · · ⊕ VK . Say R(g)|Vℓ ≈ πα, so there
is a unitary map U : Vℓ → Vα intertwining these representations. Say an
orthonormal basis {uj} of Vℓ corresponds to an orthonormal basis {ej} of
Vα, with respect to which πα has matrix entries παjk. Then, for all g ∈ G,
all k,

(2.8.15) R(g)uk = U−1πα(g)ek = U−1
∑
j

παjk(g)ej ,

or

(2.8.16) uk(xg) =
∑
j

uj(x)π
α
jk(g), ∀ x, g ∈ G.

Taking x = e gives

(2.8.17) uk(g) =
∑
j

uj(e)π
α
jk(g),

proving the proposition. □

We are now ready for our second proof of the Peter-Weyl theorem, one
that works for all compact Lie groups G.

Proposition 2.8.4. Let G be a compact Lie group, {πα : α ∈ I} a maximal
set of irreducible unitary representations of G, on vector spaces Vα, of di-

mension dα. Then {d1/2α παjk : α ∈ I, 1 ≤ j, k ≤ dα} is an orthonormal basis

of L2(G).

Proof. It suffices to prove the span of παjk is dense in L2(G). Suppose

we have a positive, self-adjoint, compact operator K : L2(G) → L2(G),
satisfying (2.8.14), and suppose KerK = 0. Then the span of the eigenspaces
of K is dense in L2(G), and the result then follows from Proposition 2.8.3.
The task that remains is to construct such an injective operator K.

To this end, set

(2.8.18) K =
∑
ν≥0

2−νKν ,

with Kν as in (2.8.4)–(2.8.5). Then K is a norm limit of compact operators,
hence compact, and also clearly positive, self-adjoint. By Proposition 2.7.4
each Kν has the property (2.8.14), hence so does K.
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Finally, we showK is injective. Suppose u ∈ KerK. Thus 0 = (Ku, u) =∑
2−ν(Kνu, u). Since each Kν is ≥ 0, we must have Kνu = 0 for each ν.

But Proposition 2.8.1 implies Kνu → u in L2-norm, so u = 0, and we are
done. □

Let us again denote by Vα the linear span of {παjk : 1 ≤ j, k ≤ dα}, and
Pα the orthogonal projection of L2(G) on Vα. We want to show that the span
of {Vα} is dense in C(G), for any compact G (not yet knowing the properties
used in the demonstration in §2.3 under the hypothesis G ⊂ U(N)). The
following will be useful for this. Here, Ku denotes a convolution operator,
as in (2.7.19).

Proposition 2.8.5. For any u ∈ L1(G),

(2.8.19) Ku : Vα −→ Vα.

Furthermore, for any v ∈ L2(G),

(2.8.20) Pα(u ∗ v) = u ∗ (Pαv).

Proof. Recall from Proposition 2.7.3 that

(2.8.21) Pαv = dα χα ∗ v.

Hence, by Proposition 2.7.2,

(2.8.22)
Pα(u ∗ v) = dα χα ∗ u ∗ v

= dα u ∗ χα ∗ v,

and we have (2.8.19)–(2.8.20). □

To proceed, we know that I is countable (i.e., L2(G) is separable), so
make an ordering so I ≈ Z+, and set

(2.8.23) ΠN f =
∑

|α|≤N

Pαf.

Then the content of Proposition 2.8.4 is that, as N → ∞,

(2.8.24) f ∈ L2(G) =⇒ ΠNf → f in L2-norm.

Here is a result on uniform convergence.

Proposition 2.8.6. Assume f ∈ C(G) has the form

(2.8.25) f = u ∗ v, u, v ∈ L2(G).

Then, as N → ∞,

(2.8.26) ΠNf → f uniformly on G.
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Proof. It follows from (2.8.20) that

(2.8.27) ΠNf = u ∗ (ΠNv).
Now convolution yields a continuous bilinear map

(2.8.28) L2(G)× L2(G) −→ C(G),

so using ΠNv → v in L2-norm in (2.8.27) yields (2.8.26). □

From Proposition 2.8.1 it follows that the set of functions of the form
(2.8.25) is dense in C(G), so we have:

Corollary 2.8.7. The linear span L of {παjk : α ∈ I, 1 ≤ j, k ≤ dα} is dense

in C(G).

We use this to prove:

Proposition 2.8.8. Every compact Lie group has a faithful finite-dimensional
unitary representation.

To see this, let

(2.8.29) Kα = {g ∈ G : πα(g) = I}.
We want to show that there is a finite set S ⊂ I such that ∩α∈SKα = {e}.
Then ⊕α∈Sπ

α provides such a representation.

By Corollary 2.8.7, for any g ∈ G, g 6= e, there exists α ∈ I such
that πα(g) 6= I. Otherwise, πα(gx) = πα(x) for all x ∈ G, α ∈ I, hence
u(gx) = u(x) for all x ∈ G, u ∈ L, which forces g = e. We use this as follows.
Take any open neighborhood O of e in G. Then G \ O is compact. By the
reasoning above, for each g ∈ G \ O there exists α ∈ I and a neighborhood
Ug of g such that πα(h) 6= I for all h ∈ Ug. Since any open cover of G \ O
has a finite subcover, we have the following.

For any open neighborhood O of e, there is a finite set S ⊂ I such that

(2.8.30)
⋂
α∈S

Kα ⊂ O.

Thus the proof of Proposition 2.8.8 is completed by the following assertion.

Proposition 2.8.9. If G is a Lie group, then there is an open O 3 e such
that if K is a subgroup of G and K ⊂ O, then K = {e}.

Proof. Let Sq : G→ G be defined as Sq(g) = g2. In §3.1 we will prove

(2.8.31) D Sq(e) = 2I.

In other words, if we take a coordinate system on a neighborhood U of e, in
which e corresponds to 0 ∈ Rn, then
(2.8.32) Sq(x) = 2x+R(x), |R(x)| ≤ C|x|2.
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We use the Euclidean norm |x|. It follows that, in this coordinate system,

(2.8.33) |x| < 1

2C
=⇒ | Sq(x)| > 3

2
|x|.

Thus if O = {x : |x| < 1/4C}, we see that the orbit of any g 6= e (given here
by e = 0) under Sq cannot remain in O. □

We can also use approximate identities to study the smoothness of rep-
resentations of a (not necessarily compact) Lie group G. Let us consider
the case of a representation π of G on a Banach space V . We assume π is
strongly continuous, i.e., for each u ∈ V , π(g)u is a continuous function of g
with values in V . As we have seen, the regular representations L and R of
G on L2(G) have this property (when G has, respectively, left-invariant or
right-invariant Haar measure). It is a consequence of the uniform bounded-
ness principle that the operator norm ‖π(g)‖ is bounded on compact subsets
of G. If f is compactly supported and integrable on G, we can define π(f)
as before:

(2.8.34) π(f)u =

∫
G

f(g)π(g)u dg, π(f) : V → V.

Here we will use left-invariant Haar measure. Note that, for any h ∈ G,

(2.8.35) π(h)π(f)u =

∫
f(h−1g)π(g)u dg.

From this it is easy to see that, for all u ∈ V ,

(2.8.36) f ∈ C∞
0 (G) ⇒ π(h)π(f)u is a smooth V -valued function of h,

Generally we say v ∈ V is a smooth vector for the representation π if π(g)v
is a smooth function of g with values in V .

Now we can construct a sequence fν ∈ C∞
0 (G), each integrating to 1,

supported on progressively smaller neighborhoods of the identity element e,
and (as in the proof of Proposition 2.8.1) we have

(2.8.37) π(fν)u −→ u in V, ∀ u ∈ V.

We hence have:

Proposition 2.8.10. If π is a strongly continuous representation of a Lie
group G on a Banach space V , then the space V0 of smooth vectors is a
dense linear subspace of V . In particular, if V is finite dimensional, then
all vectors in V are smooth.

Remark. Complementing Propositions 2.8.8 and 2.8.10, we can show that
if π is a faithful finite dimensional representation of G on V , then π : G →
L(V ) is a smooth embedding. See the exercises of Chapter 3, §3.3 for details.
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We close this section with the following corollary to the Peter-Weyl
theorem, which will prove useful later.

Proposition 2.8.11. If G1 and G2 are two compact Lie groups, then the
irreducible unitary representations of G = G1×G2 are, up to unitary equiv-
alence, precisely those of the form

(2.8.38) π(g) = π1(g1)⊗ π2(g2),

where g = (g1, g2) ∈ G, and πj is a general irreducible unitary representation
of Gj.

Proof. Given πj irreducible unitary representations of Gj , the unitarity of
(2.8.38) is clear, and irreducibility can be established as follows. We have
χπ(g1, g2) = χπ1(g1)χπ2(g2) (cf. Exercise 1 of §2.1), and hence

(2.8.39)

∫∫
G1×G2

|χπ(g1, g2)|2 dg1 dg2 = 1.

It remains to prove the completeness of the set of such representations. For
this, it suffices to show that the matrix entries of such representations have
dense linear span in L2(G1 ×G2). This follows from the general elementary
fact that products ϕj(g1)ψk(g2) of orthonormal bases {ϕj} of L2(G1) and
{ψk} of L2(G2) form an orthonormal basis of L2(G1 ×G2). □
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Exercises

1. From the arguments proving Proposition 2.8.5, show that also

Pα(u ∗ v) = (Pαu) ∗ v = (Pαu) ∗ (Pαv).
2. Deduce from Exercise 1 that

‖Pα(u ∗ v)‖L∞ ≤ ‖Pαu‖L2‖Pαv‖L2

≤ t

2
‖Pαu‖2L2 +

1

2t
‖Pαv‖2L2 , ∀ t > 0.

Hence, for u, v ∈ L2(G),∑
α

‖Pα(u ∗ v)‖L∞ ≤ inf
t>0

t

2
‖u‖2L2 +

1

2t
‖v‖2L2

= ‖u‖L2‖v‖L2 .

Note how this strengthens Proposition 2.8.6.
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2.9. Denseness of Span {παjk} in Cm(G)

Our goal here is to establish the following improvement of Corollary 2.8.7.

Proposition 2.9.1. Let G be a compact Lie and {πα : α ∈ I} a complete
set of irreducible unitary representations of G, on spaces Vα, of dimension
dα. Then

(2.9.1) L = Span{παjk : α ∈ I, 1 ≤ j, k ≤ dα}

is dense in Cm(G), for each m ∈ N.

We obtain this by tweaking arguments from §2.8. To begin, we define
ψν and Ψν as in (2.8.2)–(2.8.3), requiring that ψ be C∞, as well as ψ(s) = 1
for |s| ≤ 1/2 and 0 for |s| ≥ 1. Then, for ν sufficiently large, say for ν ≥M ,

(2.9.2) Ψν ∈ C∞
0 (B2/ν(e)).

As in (2.8.5), we set

(2.9.3) Cνu = Ψν ∗ u.

We have

(2.9.4) Cν : L2(G) −→ Cm(G),

for each m ∈ N, ν ≥M . We can apply Proposition 2.8.5 to deduce that

(2.9.5) ΠNCνf = CνΠNf,

where

(2.9.6) ΠNf =
∑

|α|≤N

Pαf.

We hence have, for each m ∈ N, ν ≥M ,

(2.9.7)

f ∈ L2(G) =⇒ ΠNf → f in L2, as N → ∞,

=⇒ CνΠNf → Cνf in Cm, as N → ∞,

=⇒ ΠNCνf → Cνf in Cm, as N → ∞.

The next ingredient in the proof of Proposition 2.9.1 is the following.

Lemma 2.9.2. Given m ∈ N, f ∈ Cm(G),

(2.9.8) Cνf −→ f in Cm(G), as ν → ∞.

Proof. Best carried out with tools developed in Chapter 3. □

Accepting this, we proceed as follows. Take f ∈ Cm(G) and pick ε > 0.
Then, fix ν ∈ N such that

(2.9.9) ‖Cνf − f‖Cm < ε.
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With such ν fixed, we have

‖ΠN (Cνf)− Cνf‖Cm −→ 0, as N → ∞,

hence there exists M1 such that

(2.9.10) ‖ΠN (Cνf)− Cνf‖Cm < ε, for N ≥M1,

so

(2.9.11) ‖ΠN (Cνf)− f‖Cm < 2ε, for N ≥M1.

Since ΠN (Cνf) ∈ L, we have Proposition 2.9.1.





Chapter 3

Lie algebras

A very important tool in the study of Lie groups is the concept of a Lie
algebra. Generally, if G is a Lie group, its Lie algebra g can be defined
as the space of left-invariant vector fields on G. If X and Y are two such
vector fields, so is the commutator [X,Y ], and this (also called the Lie
bracket) defines the Lie algebra structure. We introduce the basic notions
in §3.1. We show that if X ∈ g, the flow F t

X it generates has the property
that

F t
X(g) = gγX(t),

where γX(t) = F t
X(e) is a one-parameter subgroup, satisfying γ′X(0) = X(e).

We also introduce the exponential map

Exp : g −→ G, Exp(tX) = γX(t).

If G is a matrix group, one can also look at the tangent space to G at the
identity element, a space of matrices closed under the matrix commutator.
In this case, we show in §3.2 that the two notions of the Lie algebra of
G are naturally isomorphic. Under this isomorphism, the exponential map
introduced in §3.1 is taken to the matrix exponential.

In §3.3 we study how a representation π of G on a vector space V gives
rise to a “derived” Lie algebra representation dπ of g on V , satisfying

et dπ(X) = π(Exp tX).

The natural “adjoint” representation Ad of G on g, and its derived repre-
sentation ad of g on itself, studied in §3.4, provide important tools for the
study of the internal structure of G. Key identities here are

Ad(ExpX) = eadX , ad(X)Y = [X,Y ].
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In §3.5, we derive a formula for the product on G in terms of the action
of ad on g, known as the Campbell-Hausdorff formula. This takes the form

(ExpX)(ExpY ) = Exp C(X,Y ),

for X and Y in a suitable neighborhood of 0 in g, where

C(X,Y ) = X +

∫ 1

0
Ψ(eadXet adY )Y dt,

with

Ψ(ζ) =
ζ log ζ

ζ − 1
.

One consequence of this result is that G, a priori assumed to be a C∞

manifold, automatically carries a uniquely defined real analytic structure.
Another consequence, established in §3.6, is that each Lie algebra homomor-
phism g → h, between Lie algebras of Lie groups G and H, gives rise to a
Lie group homomorphism ρ : G→ H, provided G is simply connected.

This chapter concludes with an introduction of the universal enveloping
algebra of g in §3.7 and a result about its structure known as the Poincaré-
Birkhoff-Witt theorem in §3.8.
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3.1. Lie algebras of general Lie groups

Let G be a Lie group, TeG the tangent space to the identity element. For
each X0 ∈ TeG, there is a unique left-invariant vector field X on G such
that X(e) = X0. Here to say X is left-invariant is to say

(3.1.1) DLg(h)X(h) = X(gh),

where

(3.1.2) Lg : G→ G, Lgx = gx, DLg : ThG→ TghG.

In fact, such X is uniquely specified by

(3.1.3) X(g) = DLg(e)X0.

To justify this, we claim that one can deduce from the chain rule that if
X0 ∈ TeG and X(g) is defined by (3.1.3), then (3.1.1) holds. In detail, if
(3.1.3) holds for each g, then

DLg(h)X(h) = DLg(h)DLh(e)X0

= D(Lg ◦ Lh)(e)X0

= DLgh(e)X0,

giving (3.1.1).

We denote by g the set of left-invariant vector fields on G, so g ≈ TeG
as a linear space.

A vector field X ∈ g generates a flow F t
X on G; cf. §A.4. The general

theory of ODE gives us a local flow, but in fact calculations below will yield
a global flow when X ∈ g. The defining property of F t

Xg is

(3.1.4) F0
Xg = g,

d

dt
F t
Xg = X(F t

Xg).

The following property helps reveal the nature of this flow.

Proposition 3.1.1. Given X ∈ g, g, h ∈ G,

(3.1.5) gF t
Xh = F t

X(gh).

Proof. Denote the left side of (3.1.5) by x(t) and the right side by y(t).
Then x(0) = y(0) = gh. The result (3.1.4) easily gives y′(t) = X(y). Mean-
while,

x′(t) = DLg(F t
Xh)X(F t

Xh) = X(x),

the first identity by the chain rule and the second by (3.1.1). Uniqueness
for ODE then yields x(t) ≡ y(t). □
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Let us set

(3.1.6) γX(t) = F t
Xe,

for X ∈ g. Then taking h = e in (3.1.5) gives

(3.1.7) F t
Xg = g γX(t).

The following is a key group property.

Proposition 3.1.2. For X ∈ g,

(3.1.8) γX(s+ t) = γX(s)γX(t).

Proof. This follows from (3.1.7) plus the fact that Fs+t
X = F t

X ◦ Fs
X (a

general property of flows). In detail,

γX(s+ t) = F t
X(Fs

Xe) = F t
XγX(s)

= γX(s)γX(t),

the second identity by (3.1.6) and the third by (3.1.7). □

We say that γX(t) is a one-parameter subgroup of G. Note that (3.1.8)
implies γX(t) is well defined for all t ∈ R, hence, by (3.1.7), F t

X is well
defined for all t ∈ R, when X ∈ g. We can characterize γX(t) as follows.

Proposition 3.1.3. The curve γX(t) is the unique smooth one-parameter
subgroup of G satisfying γ′X(0) = X(e).

Proof. In fact, if γ(t) is another such one-parameter subgroup and we set
F tg = gγ(t), we see that

(3.1.9)

d

dt
F tg =

d

ds
gγ(t+ s)

∣∣
s=0

=
d

ds
gγ(t)γ(s)

∣∣
s=0

= DLgγ(t)(e)X(e)

= X(F tg),

so by uniqueness for ODE, F t ≡ F t
X . □

We pause to prove (2.8.31), i.e.,

(3.1.10) Sq(x) = x · x =⇒ D Sq(e)X = 2X, ∀ X ∈ TeG.

To see this, since we know Sq is smooth, it suffices to note that

(3.1.11) Sq(γX(t)) = γX(2t) =⇒
d

dt
Sq(γX(t))

∣∣
t=0

= 2X.

Thus the last detail in the proof of Proposition 2.8.9 is taken care of.
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We now define the exponential map:

(3.1.12) Exp : g → G, ExpX = γX(1) = F1
Xe.

Results covered in §A.7 imply Exp is C∞. In view of the uniqueness result
from Proposition 3.1.3, we have γsX(t) = γX(st), and hence

(3.1.13) Exp tX = γX(t).

Also the unique characterization of γX(t) given above implies the following.
If G = Gl(n,F) (F = R or C), or if G is a matrix group, such as O(n) or
U(n), then, with X ∈ TeG ≈ g,

(3.1.14) Exp tX = etX ,

the right side denoting the matrix exponential. See §3.2 for more.

Note that (3.1.13) implies

(3.1.15) DExp(0) : TeG→ TeG is the identity map.

Hence, by the inverse function theorem, we have the following.

Proposition 3.1.4. Exp is a diffeomorphism from some open neighborhood
O of 0 in g onto a neighborhood U of e in G.

This provides what is known as an exponential coordinate system.

A vector field on G yields a first-order differential operator on smooth
functions on G, via

(3.1.16) Xf(x) =
d

dt
f(F t

Xx)
∣∣
t=0

.

See §A.4 for more details. If X ∈ g, then, by (3.1.7), we can write this as

(3.1.17) Xf(x) =
d

dt
f(xγX(t))

∣∣
t=0

.

It then follows that, when X is a vector field on G, then X is left-invariant
(i.e., X ∈ g) if and only if

(3.1.18) XL(g)f = L(g)Xf, ∀ g ∈ G, f ∈ C∞(G),

where, as usual,

(3.1.19) L(g)f(x) = f(g−1x).

In fact, the map f(x) 7→ f(xγX(t)) commutes with L(g), so any vector
field X of the form (3.1.17), i.e., any X ∈ g, commutes with L(g). For the
converse, note that if X is a vector field that commutes with L(g) for all
g ∈ G, then, for each f ∈ C∞(G),

Df(g)X(g) = Xf(g) = L(g−1)Xf(e)

= XL(g−1)f(e) = X(f ◦ Lg)(e)
= Df(g)DLg(e)X(e),
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so X(g) = DLg(e)X(e), hence X ∈ g.

If X and Y have the property (3.1.18), then so does the commutator (or
Lie bracket)

(3.1.20) [X,Y ] = XY − Y X,

i.e., X,Y ∈ g ⇒ [X,Y ] ∈ g. This structure makes g a Lie algebra.

In general, a Lie algebra is a vector space g on which there is a bilinear
map

(3.1.21) g× g → g, (X,Y ) 7→ [X,Y ],

satisfying two identities. One is

(3.1.22) [X,Y ] = −[Y,X].

The other, known as the Jacobi identity, can be expressed as follows. Given
X ∈ g, define the linear map adX : g → g by

(3.1.23) adX(Y ) = [X,Y ].

Then the Jacobi identity is

(3.1.24) ad[X,Y ] = [adX, adY ],

where

(3.1.25) [adX, adY ] = (adX)(adY )− (adY )(adX).

Plugging in the definition (3.1.23), one can write out the Jacobi identity as

(3.1.26) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

It is routine to show that the commutator (3.1.20) satisfies (3.1.22) and
(3.1.26).

The fact that each X ∈ g generates a one-parameter subgroup of G has
the following generalization, to a fundamental result of S. Lie. Suppose G is
a Lie group with Lie algebra g, and suppose h is a Lie subalgebra of g. That
is, h is a linear subspace of g and Xj ∈ h ⇒ [X1, X2] ∈ h. By Frobenius’
theorem (discussed in §A.6), through each point p ∈ G there is a smooth
manifold Mp, of dimension k = dim h, which is an integral manifold for h
(i.e., h spans the tangent space of Mp at each q ∈Mp). We can take Mp to
be the maximal such (connected) manifold, and then it is unique. Let H be
the maximal integral manifold of h containing the identity element.

Proposition 3.1.5. If h is a subalgebra of the Lie algebra g of G, then the
integral manifold H of h through e is a subgroup of G.

Proof. Take h0 ∈ H and consider H0 = h−1
0 H. Clearly e ∈ H0. By left-

invariance, H0 is also an integral manifold of h, so H0 ⊂ H. This shows that
h0, h1 ∈ H ⇒ h−1

0 h1 ∈ H, so H is a group. □
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The next result gives one sense in which the Lie algebra g of a Lie group
G generates G, at least when G is connected.

Proposition 3.1.6. Let G be a connected Lie group, g ∈ G. Then there
exist X1, . . . , XK ∈ g such that

(3.1.27) g = (ExpX1) · · · (ExpXK).

Proof. Put a left-invariant Riemannian metric on G. By (3.1.15) and the
inverse function theorem, there exists δ > 0 such that, for h ∈ G,

(3.1.28) dist(h, e) < δ =⇒ h = ExpY (h), for some Y (h) ∈ g.

Given any g ∈ G, pick a smooth path σ(t) from e to g, and find g0, . . . , gK
on the path such that

(3.1.29) g0 = e, . . . , gK = g, dist(gj−1, gj) < δ.

Then

(3.1.30) g = (g−1
0 g1)(g

−1
1 g2) · · · (g−1

K−2gK−1)(g
−1
K−1gK),

and dist(g−1
j−1gj , e) = dist(gj , gj−1) < δ, so each g−1

j−1gj = Exp(Xj) for some
Xj ∈ g. □
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Exercises

In Exercises 1–3, we identify g with TeG, via the isomorphism described in
the first paragraph of this section.

1. Define
M : G×G −→ G, M(g, h) = gh.

We have
DM(e, e) : g⊕ g −→ g, g ≈ TeG.

Show that

DM(e, e)

(
X

Y

)
= X + Y.

2. We can write Sq(g) = g2 as Sq(g) =M ◦ E(g), with

E : G −→ G×G, E(g) = (g, g),

so DE(e) : g → g⊕ g. Show that

DE(e)X =

(
X

X

)
,

and deduce that
D Sq(e)X = 2X,

thus obtaining (3.1.20) without using the exponential map.

3. Assume γ0, γ1 : (a, b) → G are smooth curves, a < 0 < b, and γj(0) = e.
Show that

γ′j(0) = Xj ∈ TeG =⇒ d

ds
γ0(s)γ1(s)

∣∣
s=0

= X0 +X1.

Hint. γ0(s)γ1(s) =M(γ0(s), γ1(s)). Use the chain rule.
Remark. If G ⊂ Gl(n,R) is a matrix group, we have

d

ds
γ0(s)γ1(s) = γ′0(s)γ1(s) + γ0(s)γ

′
1(s), in M(n,R),

but we cannot use such a formula if G is not known to be a matrix group.

4. Recall that the convolution is given by

u ∗ v(x) =
∫
G

u(g)v(g−1x) dg, g, x ∈ G.

Show that if v ∈ C1(G),

X ∈ g =⇒ X(u ∗ v) = u ∗Xv.
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3.2. Lie algebras of matrix groups

Here we present another approach to the Lie algebra of a Lie subgroup

(3.2.1) G ⊂ Gl(n,R).
As a linear space, the Lie algebra of G can be identified as

(3.2.2) g = TIG.

We can apply to an element A ∈ g the matrix exponential, etA, introduced
in §1.3,

etA =

∞∑
k=0

tk

k!
Ak.

We need to connect this with the notion of the exponential map developed
in §3.1. This connection begins with the following fundamental property of
the matrix exponential.

Proposition 3.2.1. For A ∈ M(n,R), we have

(3.2.3) A ∈ g ⇐⇒ etA ∈ G, ∀ t ∈ R.

Proof. The “⇐” part is clear from the identity (d/dt)etA|t=0 = A. As for
the “⇒” part, it has been noted in Proposition 1.3.1 that this follows by
inspection for G of the form (1.1.7)–(1.1.10), in which case g is given by
(1.3.10).

For a general matrix Lie group G ⊂ Gl(n,R), we bring in results of §3.1.
Given A ∈ TIG, let X denote the unique left-invariant vector field on G
such that X(I) = A. Then γX(t) = Exp(tX) is a one-parameter subgroup
of G. Hence γX(t) and γA(t) = etA are both one-parameter subgroups of
Gl(n,R) satisfying γ′X(0) = γ′A(0) = A. The uniqueness result, Proposition
3.1.3 implies γX(t) ≡ γA(t), so γA(t) ∈ G for all t. □

Using (3.2.3), we establish the following:

Proposition 3.2.2. With [A,B] = AB −BA, we have

(3.2.4) A,B ∈ g =⇒ [A,B] ∈ g.

Proof. Given g ∈ G, A ∈ g,

(3.2.5) getAg−1 = etgAg
−1
, ∀ t,

and the left side of (3.2.5) belongs to G, so by (3.2.3) we have

(3.2.6) gAg−1 ∈ g, ∀ g ∈ G, A ∈ g.

Now, for general B ∈ g, (3.2.3) yields g = etB ∈ G, so we have

(3.2.7) etBAe−tB ∈ g, ∀A,B ∈ g.

Applying d/dt at t = 0 gives (3.2.4). □
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Remark. Again, for G of the form (1.1.7)–(1.1.10), the result (3.2.4) follows
readily from the explicit description of TIG in (1.3.10).

The commutator [A,B] = AB−BA gives g the structure of a Lie algebra.
We aim to establish further relations between the Lie algebra structure of g
and the group structure of G.

To begin, let us take A,B ∈ g and record the calculation

(3.2.8)
etAesB =

(
I + tA+

t2

2
A2 +O(t3)

)(
I + sB +

s2

2
B2 +O(s3)

)
= I + tA+ sB + stAB +

t2

2
A2 +

s2

2
B2 +O(|(s, t)|3),

and similarly

(3.2.9) esBetA = I + tA+ sB + stBA+
t2

2
A2 +

s2

2
B2 +O(|(s, t)|3),

Hence

(3.2.10) etAesB = esBetA + st[A,B] +O(|(s, t)|3).

We apply these calculations to show how the Lie algebra structure is
preserved under representations of G. Thus, assume we have a smooth
homomorphism

(3.2.11) π : G −→ Gl(m,R).

(It is shown in Proposition 2.8.10 that every continuous homomorphism of
G into Gl(m,R) is actually smooth.) Let us set

(3.2.12) σ = Dπ(I) : g −→ M(m,R), so σ(A) =
d

ds
π(esA)

∣∣
s=0

,

for A ∈ g. Note that for such A,

(3.2.13)

d

dt
π(etA) =

d

ds
π(e(s+t)A)

∣∣
s=0

=
d

ds
π(esA)π(etA)

∣∣
s=0

= σ(A)π(etA),

and since γ(t) = π(etA) satisfies γ(0) = I, this gives

(3.2.14) π(etA) = etσ(A).

We are ready to prove:

Proposition 3.2.3. For π, σ as in (3.2.11)–(3.2.12), A,B ∈ g, we have

(3.2.15) σ([A,B]) = [σ(A), σ(B)] = σ(A)σ(B)− σ(B)σ(A).
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Proof. Setting s = t in (3.2.10), we have

(3.2.16)
etAetBe−tAe−tB = I + t2[A,B] +O(t3)

= et
2[A,B] +O(t3).

Applying π, we have

(3.2.17) π(etAetBe−tAe−tB) = π(et
2[A,B]) +O(t3),

which, by (3.2.14), is equal to

(3.2.18)
etσ(A)etσ(B)e−tσ(A)e−tσ(B) = I + t2[σ(A), σ(B)] +O(t3)

= et
2[σ(A),σ(B)] +O(t3),

the last two identities holding by (3.2.16), with A,B replaced by σ(A), σ(B).
From (3.2.17)–(3.2.18), we have

(3.2.19) π(es[A,B]) = es[σ(A),σ(B)] +O(s3/2),

while (3.2.14) yields

(3.2.20) π(es[A,B]) = esσ([A,B]).

Applying d/ds at s = 0 yields (3.2.15). □

We next associate to each A ∈ TIG = g a certain vector field on G. To
start, take A ∈ M(n,R), the Lie algebra of Gl(n,R). We define a vector
field XA on Gl(n,R) by

(3.2.21) XA(g) = gA,

for g ∈ Gl(n,R). This vector field is left-invariant. That is to say, if for each
h ∈ Gl(n,R), we define Lh : Gl(n,R) → Gl(n,R) by

(3.2.22) Lhg = hg,

then we have

(3.2.23) XA(hg) = DLh(g)XA(g).

We now have the following simple result:

Proposition 3.2.4. If A ∈ g = TIG, then XA is tangent to G.

Proof. Given g ∈ G, we have Lg : G→ G, and hence

(3.2.24) DLg(I) : TIG −→ TgG,

hence A ∈ g ⇒ XA(g) ∈ TgG. □
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Given A ∈ M(n,R), the flow F t
A on Gl(n,R) generated by XA is given

by

(3.2.25) F t
Ag = getA,

as is readily checked:

(3.2.26)

d

dt
F t
Ag
∣∣
t=0

= XA(g) (by definition)

= gA,

which coincides with (d/dt)getA|t=0. Note that X = XA is the vector field
arising in the last part of the proof of Proposition 3.2.1.

Generally, a smooth vector field X defines a differential operator (also
denoted X) on smooth functions by Xu(x) = (d/dt)u(F tx)|t=0, where F t is
the flow generated by X. In particular, for A ∈ M(n,R),

(3.2.27)
XAu(g) =

d

dt
u(getA)

∣∣
t=0

= Du(g) · gA,

where the “dot product” gives the action of Du(g) ∈ L(M(n,R),R) on
gA ∈ M(n,R). Recall the Lie bracket of vector fields is given by

(3.2.28) [XA, XB] = XAXB −XBXA.

The following result provides an equivalence between the Lie algebra struc-
ture on g as we have defined it here and the Lie algebra structure as it is
defined in §3.1.

Proposition 3.2.5. Given A,B ∈ M(n,R), we have

(3.2.29) [XA, XB] = X[A,B].

Proof. To begin, we have, for u smooth on Gl(n,R),

(3.2.30) XAXBu(g) =
∂2

∂s∂t
u(getAesB)

∣∣
s,t=0

,

and hence

(3.2.31) (XAXB −XBXA)u(g) =
∂2

∂s∂t

[
u(getAesB)− u(gesBetA)

]∣∣∣
s,t=0

.

Recalling (3.2.10), we see that

(3.2.32)
u(getAesB) = u(gesBetA + stg[A,B] +O(|(s, t)|3))

= u(gesBetA) + stDu(gesBetA) · g[A,B] +O(|(s, t)|3).

Applying (∂2/∂s∂t)|s,t=0, we obtain

(3.2.33)
[XA, XB]u(g) = Du(g) · g[A,B]

= X[A,B]u(g),
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the last identity holding by (3.2.27). This proves (3.2.29). □

This leads to an analogue of Proposition 3.1.5.

Proposition 3.2.6. Let h be a linear subspace of M(n,R), and assume

(3.2.34) A,B ∈ h =⇒ [A,B] ∈ h.

Then the set of left invariant vector fields on Gl(n,R),
(3.2.35) {XA : A ∈ h} = H
is closed under the Lie bracket of vector fields:

(3.2.36) XA, XB ∈ H =⇒ [XA, XB] = X[A,B] ∈ H.
Hence the integral manifold H of H through I is a subgroup of Gl(n,R). We
have

(3.2.37) TIH = h.
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Exercises

1. Define the conjugation map

Cg :M(n,R) −→M(n,R), Cg(X) = gXg−1, g ∈ Gl(n,R), X ∈M(n,R).

Show that, for each X ∈M(n,R),

DCg(X)A = gAg−1, ∀A ∈M(n,R).

Hint. Cg(X) is linear in X.

2. If G ⊂ Gl(n,R) is a smooth matrix group, define

Cg : G −→ G, Cg(x) = gxg−1.

We have Cg(I) = I, hence

DCg(I) : TIG −→ TIG, ∀ g ∈ G.

Show that this leads to another proof of (3.2.6), one that does not rely on
Proposition 3.2.1. (We still need Proposition 3.2.1 for (3.2.7).)

3. For A ∈ g = TIG, set

Ad(g)A = DCg(I)A, Ad(g) : g → g.

Hence

Ad(g)A = gAg−1, A ∈ g, g ∈ G.

Show that Ad is a representation of G on g.

Recall the correspondence between a representation π of G and the associ-
ated representation σ of g, defined by (3.2.12). Show that

π(g) = Ad(g) =⇒ σ(A)B = [A,B],

i.e., σ(A)B = ad(A)B, where

ad(A)B = [A,B].

Deduce from (3.2.14) that

Ad(etA) = et adA, for A ∈ g.

4. Complement the s = t case of (3.2.8)–(3.2.10) with

et(A+B) = I + t(A+B) +
t2

2
(A2 +AB +BA+B2) +O(t3),

hence

etAetB = et(A+B) +
t2

2
(AB −BA) +O(t3).
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5. Show that, for X,Y ∈M(n,R),

etX+t2Y = etX + t2Y +O(t3).

6. Use Exercises 4 and 5 to show that

etAetB = et(A+B)+(t2/2)[A,B] +O(t3).

See §3.5 for a more precise result.

7. Verify using Proposition 3.2.1 and the inverse function theorem that if G
is a matrix Lie group, g = TIG,

Exp : g −→ G, Exp(X) = eX

yields a diffeomorphism of a neighborhood of 0 in g onto a neighborhood of
I in G.

8. Show that Exp : g → G is onto for the following cases:

G = SU(n), U(n), SO(n).

Hint. Diagonalize elements of SU(n) and U(n). If A ∈ SO(n), show that A
is similar to a block diagonal matrix containing 2 × 2 blocks

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
= eθJ ,

if n is even, and similar to such a form plus one diagonal entry of 1 if n is
odd.

9. In fact, Exp is onto whenever G is a compact, connected Lie group. See
if you can prove this. Maybe peek at Appendix E.3.

10. Show that

A ∈ sl(2,R) =⇒ eA /∈
{
−
(
λ

1/λ

)
: λ > 1

}
.

Hint. Say SpecA = {α,−α}. α ∈ R ⇒ Spec eA ⊂ R+. α /∈ R ⇒ −α = α⇒
α = ia, a ∈ R ⇒ Spec eA ∈ {ζ ∈ C : |ζ| = 1}.

11. Show that

A ∈ sl(2,R) =⇒ eA 6= −
(
1 1
0 1

)
.

Hint. Say SpecA = {−α, α}. α 6= 0 ⇒ A diagonalizable ⇒ eA diagonal-
izable (in Gl(2,C)). But SpecA = {0} implies A is nilpotent, so A2 = 0,
hence

eA = I +A, but I +A 6= −I +N.
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Note. −I = eπJ .
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3.3. Lie algebra representations

Let G be a Lie group and π a (strongly continuous) representation of G
on a finite-dimensional vector space V . As we have seen in Proposition
2.8.10, when dimV < ∞ all vectors v ∈ V are smooth. We define the map
dπ : g → End(V ) as follows:

(3.3.1) dπ(X)v =
d

dt
π(Exp tX)v

∣∣
t=0

, X ∈ g, v ∈ V.

Recall that X is a left-invariant vector field on G. The following lemma will
be helpful to understand dπ. Given f ∈ C∞

0 (G), we set

(3.3.2) π(f) =

∫
G

f(g)π(g) dg,

as before, except now we use right-invariant Haar measure on G.

Lemma 3.3.1. Given f ∈ C∞
0 (G), X ∈ g, we have

(3.3.3) π(f)dπ(X) = −π(Xf).

Proof. Plugging in the definitions yields

(3.3.4)

π(f)dπ(X)v =
d

dt

∫
f(g)π(g)π(Exp tX)v dg

∣∣∣
t=0

=
d

dt

∫
f(g)π(g Exp tX)v dg

∣∣∣
t=0

=
d

dt

∫
f
(
g Exp(−tX)

)
π(g)v dg

∣∣∣
t=0

= −
∫

(Xf)(g)π(g)v dg

= −π(Xf)v.

Here the third identity uses the right invariance of Haar measure and the
fourth identity uses (3.1.17). □

We can deduce the following important consequence. Compare the result
for matrix groups in Proposition 3.2.3, though the proof is perhaps more
parallel to that of Proposition 3.2.5.

Proposition 3.3.2. Given X,Y ∈ g,

(3.3.5) dπ([X,Y ]) = [dπ(X), dπ(Y )].
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Proof. For any f ∈ C∞
0 (G), v ∈ V , we have

(3.3.6)

π(f)
(
dπ(X)dπ(Y )− dπ(Y )dπ(X)

)
v

= π(Y Xf)v − π(XY f)v

= −π([X,Y ]f)v

= π(f)dπ([X,Y ])v.

Letting f = fν be an approximate identity gives the result. □

Due to (3.3.5), we say dπ is a Lie algebra representation. We call it the
derived representation associated to the representation π. The following is
an important connection between Lie algebra and Lie group representations.
Compare (3.2.14).

Proposition 3.3.3. For all X ∈ g,

(3.3.7) π(Exp tX) = et dπ(X).

Proof. Let A = dπ(X) ∈ End(V ) and let γ(t) denote the left side of (3.3.7).
We want to show that γ(t) ≡ etA. It is clear that γ : R → Gl(V ) is a smooth
one-parameter group, and (3.3.1) gives γ′(0) = dπ(X) = A. The group
property gives

(3.3.8) γ′(t) =
d

ds
γ(s+ t)

∣∣
s=0

= Aγ(t) = γ(t)A,

and hence

(3.3.9)
d

dt
γ(t)e−tA = γ(t)Ae−tA − γ(t)Ae−tA = 0,

so γ(t)e−tA ≡ I.

Alternatively, the uniqueness of the one-parameter subgroup γ of Gl(V )
satisfying γ′(0) = A (cf. (3.1.9)) gives γ(t) = etA. □

We next relate irreducibility of π and of dπ.

Proposition 3.3.4. Assume G is connected. Then π is an irreducible rep-
resentation of G if and only if dπ is an irreducible representation of g.

Proof. Let V0 ⊂ V be a linear subspace of V . First suppose V0 is invariant
under π(g) for all g ∈ G. Then, for any X ∈ g,

(3.3.10) v ∈ V0 ⇒ dπ(X)v =
d

dt
π(Exp tX)v

∣∣
t=0

∈ V0,

so V0 is invariant under dπ(X) for all X ∈ g.
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Next suppose V0 is invariant under dπ(X) for all X ∈ g. Then, for any
X ∈ g,

(3.3.11) v ∈ V0 ⇒ π(Exp tX)v = et dπ(X)v =
∑
k≥0

tk

k!
dπ(X)k v ∈ V0.

Now if G is connected, any g ∈ G can be written in the form (3.1.27), so

(3.3.12) v ∈ V0 ⇒ π(g)v = π(ExpX1) · · ·π(ExpXK)v ∈ V0.

□

Suppose V has a Hermitian inner product and the representation π of
G on V is unitary. Then, for X ∈ g,

(3.3.13) e−t dπ(X) = π(γX(t))
−1 = π(γX(t))

∗ = (et dπ(X))∗,

and hence

(3.3.14) dπ(X)∗ = −dπ(X).

In other words, g is represented by skew-Hermitian operators on V . The
following is a Lie algebra variant of Schur’s lemma.

Proposition 3.3.5. Let g be a Lie algebra, V a complex inner product space,
and α : g → End(V ) a Lie algebra representation of g by skew-Hermitian
operators on V . Then α is irreducible if and only if the following holds:

(3.3.15)
A ∈ End(V ), α(X)A = Aα(X) for all X ∈ g

=⇒ A is a scalar multiple of the identity.

The proof is as for Lemma 2.1.4. One sees that if A commutes with
α(X), so do A1 = A+ A∗ and A2 = (A− A∗)/i, and the eigenspaces of Aj
are invariant.

This gives one implication. For the converse, observe that if V0 ⊂ V
is invariant under α, so is V ⊥

0 , so the orthogonal projection of V nto V0
commutes with α(X), for all X.
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Exercises

1. Recall that a representation π of G on V is a smooth map π : G→ L(V ).
Show that, for X ∈ g,

dπ(X) = Dπ(e)X(e),

with Dπ(e) : TeG→ L(V ).

2. Suppose the representation π : G → L(V ) is a one-to-one map. Show
that dπ : g → L(V ) is injective.
Hint. Use Proposition 3.3.3.

3. Show that, for g ∈ G, π : G→ L(V ) a representation, X ∈ g, so

X(g) = DLg(e)X(e) ∈ TgG,

we have
Dπ(g)X(g) = π(g)dπ(X).

4. Deduce from Exercises 2–3 that if the representation π : G → L(V ) is
one-to-one, then

Dπ(g) : TgG −→ L(V ) is injective, ∀ g ∈ G.

Hence π is a sooth embedding of G into L(V ).
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3.4. The adjoint representation

Here we consider a particularly important representation of a Lie group G
on its Lie algebra g, the adjoint representation, defined as follows. Take

(3.4.1) Kg : G→ G, Kg(x) = gxg−1,

and set

(3.4.2) Ad(g) = DKg(e) : TeG→ TeG ≈ g.

Note that

(3.4.3) Kgh = Kg ◦Kh =⇒ Ad(gh) = Ad(g)Ad(h).

Proposition 3.4.1. For g ∈ G, X ∈ g,

(3.4.4) Exp(t Ad(g)X) = g Exp(tX) g−1.

Proof. Both sides of (3.4.4) are one-parameter subgroups of G. Call them
γ(t) and σ(t), respectively. It follows from (3.1.13) that γ′(0) = Ad(g)X.
Meanwhile, since σ(t) = Kg(Exp(tX)), the chain rule plus (3.4.2) gives
σ′(0) = Ad(g)X. The uniqueness result established in (3.1.9) then implies
γ(t) ≡ σ(t). □

Let us take g = Exp sY . By (3.1.7) the right side of (3.4.4) is then equal
to

(3.4.5)

gγX(t)g
−1 = F−s

Y (gγX(t))

= F−s
Y ◦ F t

Xg

= F−s
Y ◦ F t

X ◦ Fs
Y e

= F t
X(s) e, X(s) = Fs

Y#X,

the last identity using (A.5.1). Consequently, comparing the left side of
(3.4.4), and noting that F t

X(s)e = Exp(tX(s)), we have

Exp(tAd(Exp sY )X) = Exp(tFs
Y#X),

hence

(3.4.6) Ad(Exp sY )X = Fs
Y#X.

Taking the s-derivative at s = 0 and using (A.5.3)–(A.5.5), we have the
following important conclusion.

Proposition 3.4.2. For X,Y ∈ g,

(3.4.7)
d

ds
Ad(Exp sY )X

∣∣
s=0

= [Y,X].
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According to (3.3.1), the left side of (3.4.7) is the Lie algebra represen-
tation derived from Ad, i.e., d Ad(Y )X. We use the notation ad(Y ) instead
of d Ad(Y ), a notation already brought forward in (3.1.23), and express the
conclusion of Proposition 3.4.2 as follows:

(3.4.8) ad(Y )X = [Y,X].

Having examined the adjoint representation in the setting of abstract
Lie groups, let us take a second look in the concrete setting where G is a
matrix group, e.g., G = Gl(n,F), F = R or C. Then Kg in (3.4.1) extends
to a map linear in x ∈ M(n,F), and we simply have

(3.4.9) Ad(g)X = gXg−1, X ∈ g ⊂ M(n,F).

See Exercise 3 in §3.2. If g = Exp sY = γY (s), we have

(3.4.10) Ad(Exp sY )X = γY (s)X γY (−s), X, Y ∈ g ⊂ M(n,F).

Since the matrix product (A,B) 7→ AB is bilinear on M(n,F), we can apply
the Leibniz rule to differentiate such a product, and obtain

(3.4.11)
d

ds
Ad(Exp sY )X

∣∣
s=0

= Y X −XY, X, Y ∈ g ⊂ M(n,F).

Thus the Lie bracket on g ⊂ M(n,F) is seen to be the matrix commutator.
This result is consistent with (3.3.5), applied to the “identity” representation
G ↪→ Gl(n,F) of G on Fn. Compare also the presentation in §3.2.

The adjoint representation can be used to tell whether G is unimodular.
In fact, take a nonzero ω0 ∈ ΛNT ∗

eG (N = dimG). and define a left Haar
measure via ω0 = L∗

gω(g). We have

(3.4.12) R∗
g−1ω = R∗

g−1L
∗
gω = K∗

gω = detAd(g)ω.

(Otherwise said, K∗
gω(e) = ΛNDKg(e)

tω0 = detAd(g)ω0.) Hence G is
unimodular if and only if detAd(g) = 1 for all g ∈ G.

We can make use of the identity

(3.4.13) Ad(ExpX) = eadX ,

which is a special case of (3.3.7), to formulate the unimodularity condition in
purely Lie algebra terms. In view of Proposition 3.1.6, when G is connected,
detAd(g) = 1 for all g ∈ G if and only if detAd(ExpX) = 1 for all X ∈ g.
Now, for a general linear map A on a finite-dimensional vector space,

(3.4.14) det eA = eTrA,

so we have:

Proposition 3.4.3. A connected Lie group G is unimodular if and only if
Tr ad(X) = 0 for all X ∈ g.
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We give an example of a Lie group that is not unimodular, namely
the 2-dimensional group Aff(1), known as the “ax + b-group.” As a set,
Aff(1) = R+ × R; it acts on R by (a, b) · x = ax+ b, so the group law is

(3.4.15) (a, b)(a′, b′) = (aa′, b+ ab′).

This group is isomorphic to the group of matrices

(3.4.16)
{(a b

0 1

)
: a > 0, b ∈ R

}
.

Compare (1.1.19)–(1.1.22). The Lie algebra of Aff(1) is isomorphic to the
matrix Lie subalgebra of M(2,R) spanned by

(3.4.17) X =

(
1 0
0 0

)
, Y =

(
0 1
0 0

)
.

We have

(3.4.18) [X,Y ] = Y, Tr adX = 1.

It is instructive to compute left and right invariant measures on this
group, or equivalently left and right invariant 2-forms:

ωL = ϕ(x, y) dx ∧ dy, ωR = ψ(x, y) dx ∧ dy,

on {(x, y) : x > 0, y ∈ R}. Using

La,b(x, y) = (ax, ay + b), Ra,b(x, y) = (ax, bx+ y),

we have
L∗
a,bωL = a2ϕ(ax, ay + b) dx ∧ dy,

R∗
a,bωR = aψ(ax, bx+ y) dx ∧ dy.

Invariance is achieved by setting ϕ(x, y) = 1/x2 and ψ(x, y) = 1/x, so we
have

ωL = x−2 dx ∧ dy, ωR = x−1 dx ∧ dy.

We next express the formula (1.3.19) for the derivative of the matrix
exponential in terms of Ad. As shown in (1.3.19), if we consider

(3.4.19) Exp : M(n,R) −→ Gl(n,R), ExpX = eX ,

then

(3.4.20) DExp(X)Y = eX
∫ 1

0
e−σXY eσX dσ.

Now, by (3.4.9) and (3.4.13),

(3.4.21) e−σXY eσX = Ad(e−σX)Y = e−σ adXY,

so we can rewrite (3.4.20) as

(3.4.22) DExp(X)Y = eX Ξ(adX)Y,
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where

(3.4.23) Ξ(z) =

∫ 1

0
e−σz dσ =

1− e−z

z

is an entire holomorphic function and Ξ(A) is defined as in (1.3.20)–(1.3.21)
for a linear transformation A on a finite-dimensional vector space; in this
case V = g and A = adX.

We now point out analogues of (3.4.19)–(3.4.23) valid for a general Lie
group G, arising by defining etX for x ∈ g as an operator on functions:

(3.4.24) etXu(x) = u(F t
Xx) = u(x · Exp tX).

Note that, for u ∈ C∞(G),

(3.4.25)

d

dt
etXu(x) = Du(F t

Xx)X(F t
Xx)

= Xu(F t
Xx)

= etXXu(x).

We claim that

(3.4.26) etXXu(x) = XetXu(x).

Indeed, since Xv(y) = (d/ds)v(Fs
Xy)|s=0,

(3.4.27)

X(etXu)(x) =
d

ds
(etXu)(Fs

Xx)|s=0

=
d

ds
u(F t

XFs
Xx)|s=0

=
d

ds
u(Fs

XF t
Xx)|s=0

= Xu(F t
Xx),

yielding (3.4.26). Thus

(3.4.28)
d

dt
etXu(x) = etXXu(x) = XetXu(x).

From here, the derivation of (1.3.18)–(1.3.19) readily extends to yield

(3.4.29)

DExp(X)Y =
d

dt
eX+tY

∣∣
t=0

= eX
∫ 1

0
e−σXY eσX dσ.

Actually, (3.4.29) works for general smooth vector fields X and Y on a
smooth manifold, assuming their flows are everywhere defined. However,
the next step,

(3.4.30) e−σXY eσX = e−σ adXY,
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extending (3.4.21), is problematic for such general vector fields, particularly
if one wants to treat the right hand side as a convergent power series. We
establish that (3.4.30) holds if G is a Lie group, with Lie algebra g, and
X,Y ∈ g.

To get this, note that

(3.4.31) Y (σ) = e−σXY eσX

commutes with L(g) for all g ∈ G, hence is a smooth curve in g. Also,

(3.4.32)

Y ′(σ) = −Xe−σXY eσX + e−σXY eσXX

= −[X,Y (σ)]

= − adX(Y (σ)),

the first identity by (3.4.28). Since g is finite dimensional, adX is a bounded
linear operator on g, so the unique solution to (3.4.32) that is a smooth curve
in g satisfying Y (0) = Y is

(3.4.33) Y (σ) = e−σ adXY.

To proceed, we now have

(3.4.34)
DExp(X)Y = eX

∫ 1

0
e−σ adXY dσ

= eXΞ(adX)Y,

as in (3.4.22). This will be useful in §3.5.
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Exercises

1. Let G be a Lie group. Recall R(g)u(x) = u(xg). By (3.4.24), for Z ∈ g,

R(Exp(tZ))u = etZu,

By (3.4.4),

Exp
(
t Ad(Exp sY )X

)
= Exp(sY ) Exp(tX) Exp(−sY ).

Deduce that

R
(
Exp

(
tAd(Exp sY )X

))
u = esY etXe−sY u,

2. Show that for Z ∈ g, u ∈ C∞
0 (G),

dR(Z)u = Zu.

Deduce from Exercise 1 and (3.4.25) that

dR
(
Ad(Exp sY )X

)
u = esYXe−sY u.

Again using (3.4.25), show that

d

ds
dR
(
Ad(Exp sY )X

)
u
∣∣∣
s=0

= (Y X −XY )u,

hence re-deriving (3.4.7),

d

ds
Ad(Exp sY )X

∣∣
s=0

= [Y,X].

3. Note that ad : g → L(g) satisfies

ad([X,Y ]) = [adX, adY ],

which is equivalent to the Jacobi identity (3.1.26), and is also a special case
of Proposition 3.3.2. Deduce that

τ : g −→ R, τ(X) = Tr adX

satisfies

τ([X,Y ]) = 0, ∀X,Y ∈ g.

4. Rewrite (3.4.34) as

DExp(X)Y = DLg(e) Ξ(adX)Y, g = Exp(X).

5. Show that

Ξ(z) = 0 ⇐⇒ z = 2πik, k ∈ Z \ 0.
Deduce that Ξ(adX) ∈ L(g) fails to be invertible if and only if adX has an
eigenvalue in {2πik : k ∈ Z \ 0}.

6. Assume G has a bi-invariant metric tensor. Show that Kg in (3.4.1) is
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a group of isometries of G, and that Ad(g) in (3.4.2) is a group of linear
isometries of g.
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3.5. The Campbell-Hausdorff formula

The Campbell-Hausdorff formula has the form

(3.5.1) Exp(X) Exp(Y ) = Exp
(
C(X,Y )

)
,

where G is any Lie group, with Lie algebra g, and Exp : g → G is the expo-
nential map defined by (3.1.12)); X and Y are elements of g in a sufficiently
small neighborhood U of zero. The map C : U × U → g has a “universal”
form, independent of g. We give a demonstration similar to one in [22].

We begin with the case G = Gl(n,R), and produce an explicit formula
for the matrix-valued analytic function X(s) of s in the identity

(3.5.2) eX(s) = eXesY ,

near s = 0. Note that this function satisfies the ODE

(3.5.3)
d

ds
eX(s) = eX(s)Y.

We can produce an ODE for X(s) by using the following formula, derived
in (1.3.19):

(3.5.4)
d

ds
eX(s) = eX(s)

∫ 1

0
e−τX(s)X ′(s)eτX(s) dτ.

As shown in (3.4.22), we can rewrite this as

(3.5.5)
d

ds
eX(s) = eX(s)Ξ

(
ad X(s)

)
X ′(s),

with

(3.5.6) Ξ(z) =

∫ 1

0
e−τz dτ =

1− e−z

z
.

Comparing (3.5.3) and (3.5.5), we obtain

(3.5.7) Ξ
(
ad X(s)

)
X ′(s) = Y, X(0) = X.

We can obtain a more convenient ODE for X(s) as follows. Note that

(3.5.8) ead X(s) = Ad eX(s) = Ad eX ·Ad esY = ead X es ad Y .

Now let Ψ(ζ) be holomorphic near ζ = 1 and satisfy

(3.5.9) Ψ(ea) =
1

Ξ(a)
=

a

1− e−a
,

explicitly,

(3.5.10) Ψ(ζ) =
ζ log ζ

ζ − 1
,
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for |ζ − 1| < 1. (Note that the singularity at ζ = 1 is removable.) It follows
that

(3.5.11) Ψ
(
ead Xes ad Y

)
Ξ
(
ad X(s)

)
= I,

so we can transform (3.5.7) to

(3.5.12) X ′(s) = Ψ
(
ead Xes ad Y

)
Y, X(0) = X.

Integrating gives the Campbell-Hausdorff formula for X(s) in (3.5.2):

(3.5.13) X(s) = X +

∫ s

0
Ψ
(
ead Xet ad Y

)
Y dt.

This is valid for ‖sY ‖ small enough, if also X is close enough to 0.

Taking the s = 1 case, we can rewrite this formula as

(3.5.14) eXeY = eC(X,Y ), C(X,Y ) = X +

∫ 1

0
Ψ
(
ead Xet ad Y

)
Y dt.

The formula (3.5.14) gives a power series in ad X and ad Y which is norm-
summable provided

(3.5.15) ‖ad X‖ ≤ x, ‖ad Y ‖ ≤ y,

with ex+y − 1 < 1, i.e.,

(3.5.16) x+ y < log 2.

We can extend the analysis above to the case where X and Y belong to
the Lie algebra g of a Lie group G. As shown in §3.4, if X(s) is a smooth
curve in g, then (3.5.5) continues to hold. Since adX and adY are bounded
linear transformations on g, the argument involving (3.5.7)–(3.5.16) extends.
We have

(3.5.17) F t
XF t

Y = F t
C(t,X,Y ),

with

(3.5.18) C(t,X, Y ) = X +

∫ 1

0
Ψ
(
ead tXead stY

)
Y ds,

provided ‖ad tX‖+ ‖ad tY ‖ < log 2, the operator norm ‖ad X‖ being com-
puted using any convenient norm on g. This yields the Campbell-Hausdorff
formula for general Lie groups.

Another way to describe the extension of the Campbell-Hausdorff for-
mula to general Lie groups is given by studying etX as operators for X ∈ g,
given by (3.4.24). In this approach, we take X,Y ∈ g, near 0, and look for
C(X,Y ) ∈ g such that

(3.5.19) eXeY u(x) = eC(X,Y )u(x).
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The construction of C(X,Y ) uses the same formulas as in (3.5.2)–(3.5.14).
Again we have

(3.5.20) C(X,Y ) = X +

∫ 1

0
Ψ(eadXet adY )Y dt.

Note that the left and right sides of (3.5.19) are equal respectively to

(3.5.21) u
(
x(ExpX)(ExpY )

)
and u(x · Exp C(X,Y )),

so from (3.5.19) we again deduce

(3.5.22) (ExpX)(ExpY ) = Exp C(X,Y ).

One remarkable property of Lie groups that follows readily from the
Campbell-Hausdorff formula is the existence of a natural real analytic struc-
ture on any Lie group G. (Recall we originally assumed G has a C∞ struc-
ture.) This comes about as follows. Pick a neighborhood U of the origin 0
in the Lie algebra g of G sufficiently small that

(3.5.23) Exp : U −→ G

is a diffeomorphism of U onto a neighborhood O of e ∈ G. Then, for each
p ∈ G, define

(3.5.24) ψp : U −→ G, ψp(X) = p Exp(X).

Proposition 3.5.1. The coordinate cover {ψp : p ∈ G} gives G the structure
of a real-analytic manifold, on which the maps (g, h) 7→ gh and g 7→ g−1 are
real analytic.

Proof. We need to show that, if p and q are sufficiently close, then ψ−1
q ◦ψp

is real analytic on a neighborhood of 0 in g. In fact, in such a case,

(3.5.25) ψ−1
q ◦ ψp(X) = Y =⇒ Exp(Y ) = q−1p Exp(X),

and hence, if Zpq = Exp−1(q−1p), we have

(3.5.26) ψ−1
q ◦ ψp(X) = C(Zpq, X).

The analyticity in X then follows from the explicit formula (3.5.18).

The formula (3.5.18) immediately gives analyticity of (g, h) 7→ gh for g
and h in a small neighborhood of e. We now want to show that, for p, q ∈ G
fixed, (p ExpX)(q ExpY ) is analytic in X and Y (near 0 ∈ g). To see this,
write

(3.5.27)

(p ExpX)(q ExpY ) = pq(q−1 ExpX q) ExpY

= pq Exp(Ad(q−1)X) ExpY

= pq Exp(C(Ad(q−1)X,Y )),

the second identity by (3.4.4). This gives the desired analyticity. The ana-
lyticity of g 7→ g−1 is established similarly. □
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It is customary to write down a few terms in the series expansion for
C(X,Y ). We note that

(3.5.28)

Ψ(1 + z) = (1 + z)
log(1 + z)

z
= (1 + z)

(
1− z

2
+
z2

3
− · · ·

)
= 1 +

∑
k≥1

(−1)k−1

k(k + 1)
zk

= 1 +
z

2
− z2

6
+ · · · .

If we set adX = ξ and adY = η, we have

(3.5.29)

Ψ(eξetη) = Ψ
(
(I + ξ + 1

2ξ
2 + · · · )(I + tη + 1

2 t
2η2 + · · · )

)
= Ψ(I + ξ + tη + 1

2ξ
2 + tξη + 1

2 t
2η2 + · · · )

= I + 1
2ξ +

1
2 tη +

1
12ξ

2 + 1
3 tξη −

1
6 tηξ +

1
12 t

2η2 + · · · .

Noting that η(Y ) = [Y, Y ] = 0, we see that

(3.5.30)

∫ 1

0
Ψ(eadXet adY )Y dt = Y +

1

2
ξ(Y ) +

1

12
ξ2(Y )− 1

12
ηξ(Y ) + · · · ,

and hence

(3.5.31) C(X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · · .

We complement (3.5.31) with a complete power series expansion, as
follows. We have

(3.5.32) Ψ(eξetη) = I +

∞∑
k=1

(−1)k−1

k(k + 1)

(
eξetη − I

)k
,

and

(3.5.33) (eξetη − I)k =
( ∑
(ℓ,m)∈S1

ξℓ

`!

tmηm

m!

)k
,

where we set S1 = {(`,m) : `,m ≥ 0, `+m > 0}. More generally, set

(3.5.34) Sk = {(`1, . . . , `k,m1, . . . ,mk) : `j ≥ 0,mj ≥ 0, `j +mj > 0}.

Then we can expand the right side of (3.5.33), to obtain

(3.5.35) (eξetη − I)k =
∑
Sk

tm1+···+mk
ξℓ1

`1!

ηm1

m1!
· · · ξ

ℓk

`k!

ηmk

mk!
.
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Plugging this into (3.5.32) and then into (3.5.20), we obtain
(3.5.36)

C(X,Y ) = X + Y +

∞∑
k=1

(−1)k−1

k(k + 1)

∑
Sk

1

m1 + · · ·+mk + 1

(adX)ℓ1

`1!

(adY )m1

m1!
· · ·

× (adX)ℓk

`k!

(adY )mk

mk!
Y.
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Exercises

For notational simplicity, we work on matrix groups. Take X,Y ∈M(n,R).

1. If A,B ∈M(n,R), show that

‖eAeB − I‖ ≤ e||A∥e∥B∥ − 1,

and use this to show that Ψ(eadXes adY ) is well defined for s ∈ [0, 1] when
(3.5.15)–(3.5.16) hold.
Hint. Write eAeB − I as a double power series.

2. Recalling that eXeY = eC(X,Y ), use

eY eX = eY (eXeY )e−Y = eY eC(X,Y )e−Y

to show that (for ‖X‖ and ‖Y ‖ small)

C(Y,X) = eY C(X,Y )e−Y .

3. Given C ∈M(n,R), show that

C(s) = esY Ce−sY ⇒ C ′(s) = adY C(s)

⇒ C(s) = es adY C.

Deduce that, in the setting of Exercise 2,

C(Y,X) = eadY C(X,Y ).

Show that also

C(Y,X) = e− adXC(X,Y ).

4. Let h ⊂M(n,R) be a linear subspace, and assume

X,Y ∈ h =⇒ [X,Y ] ∈ h.

Show that, if X and Y belong to a suitable neighborhood of 0 in M(n,R),
i.e., (3.5.15)–(3.5.16) hold, then

X,Y ∈ h =⇒ C(X,Y ) ∈ h.

Compare Proposition 3.2.6. Obtain an alternative proof of the existence of
a subgroup H ⊂ Gl(n,R) such that (3.2.37) holds.

5. Given X,Y, Z ∈M(n,R), show that (eXeY )eZ = eX(eY eZ) implies

C(C(X,Y ), Z) = C(X, C(Y, Z)),

for X,Y, Z suitably small. Try to establish this with M(n,R) replaced by a
general Lie algebra.
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6. Now let g be a general Lie algebra, and assume σ : g → h is a Lie
algebra homomorphism, i.e., σ is linear and σ([X,Y ]) = [σ(X), σ(Y )] for all
X,Y ∈ g. Show that, for X and Y in a suitable neighborhood of 0 in g,

σC(X,Y ) = C(σ(X), σ(Y )).

7. Ponder how (3.5.36) provides an answer to the question: why do lots of
people hate the Campbell-Hausdorff formula? Ponder how (3.5.14) might
provide the cure.

8. We say a Lie algebra g is a two-step nilpotent Lie algebra provided

X1, X2 ∈ g =⇒ (adX1)(adX2) = 0.

If g is the Lie algebra of a connected Lie group G, we say G is a two-step
nilpotent Lie group. Show that, in such a case, the Campbell-Hausdorff
formula yields

(ExpX1)(ExpX2) = Exp C(X1, X2)

with

C(X1, X2) = X1 +X2 +
1

2
[X1, X2].

9. Consider the group H3 consisting of elements1 p t
1 q

1

 , p, q, t ∈ R.

Show that H3 is a two-step nilpotent Lie group.

10. More generally, consider the group H2k+1 ⊂ Gl(k + 2,R) consisting of
elements 1 pt t

1 q
1

 , t ∈ R, p, q ∈ Rk.

Show that H2k+1 is a two-step nilpotent Lie group. This group is called the
(2k + 1)-dimensional Heisenberg group.
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3.6. More Lie group – Lie algebra connections

We establish an essential equivalence between Lie group and Lie algebra
homomorphisms. Our first result is in some sense a generalization of Propo-
sition 3.3.2. Let G and H be Lie groups, and suppose

(3.6.1) ρ : G −→ H

is a smooth group homomorphism. Denote the Lie algebras by g and h,
respectively, and set

(3.6.2) σ = Dρ(e) : g −→ h.

Thus, if X ∈ g, generating the one-parameter group γX(t), we have

(3.6.3) ρ ◦ γX(t) = γσ(X)(t).

Proposition 3.6.1. The linear map σ in (3.6.2) is a Lie algebra homomor-
phism, i.e.,

(3.6.4) X,Y ∈ g =⇒ σ([X,Y ]) = [σ(X), σ(Y )].

Proof. We make use of results on the adjoint representation established in
§3.4. With Kg given by (3.4.1), we have

(3.6.5) ρ ◦Kg(x) = ρ(gxg−1) = Kρ(g)(ρ(x)).

Regard each side of (3.6.5) as a smooth function of x, mapping G to H.
Differentiate each side, using the chain rule, and evaluate the derivatives at
x = e. This yields

(3.6.6) Dρ(e) ◦DKg(e) = DKρ(g)(e) ◦Dρ(e),

or

(3.6.7) σ ◦Ad(g) = Ad(ρ(g)) ◦ σ,

as maps from g to h. Taking g = γX(t) and using (3.6.3), we have

(3.6.8) σ ◦Ad(γX(t)) = Ad(γσ(X)(t)) ◦ σ.

Taking d/dt at t = 0 and using (3.4.7) then gives

(3.6.9) σ ◦ adX = adσ(X) ◦ σ,

which is equivalent to (3.6.4). □

We aim for a converse to Proposition 3.6.1. Suppose σ : g → h is a Lie
algebra homomorphism. We desire to obtain a Lie group homomorphism. To
start things off, let U be a neighborhood of 0 ∈ g such that Exp : U → G is a
diffeomorphism onto a neighborhood O of e ∈ G, and assume the Cambell-
Hausdorff formula (3.5.18) holds for t ∈ [0, 1], X, Y ∈ U . Let us define

(3.6.10) ρ : O −→ H
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by

(3.6.11) ρ(g) = Exp(σ ◦ Exp−1(g)).

Lemma 3.6.2. Let O1 be a sufficiently small neighborhood of e ∈ G. In
particular assume O1 ⊂ O has the properties

g1, g2 ∈ O1 =⇒ g−1
1 ∈ O1, g1g2 ∈ O.

Then

(3.6.12) g1, g2 ∈ O1 =⇒ ρ(g1g2) = ρ(g1)ρ(g2).

Proof. With Xj = Exp−1(gj), we have ρ(g1g2) = Exp(σC(X1, X2)). Now
the Campbell-Hausdorff formula (3.5.18) implies that, if σ is a Lie algebra
homomorphism, then, for Xj sufficiently close to 0,

(3.6.13) σC(X1, X2) = C(σ(X1), σ(X2)).

See Exercise 5 of §3.5. Hence

(3.6.14)

ρ(g1g2) = Exp C(σ(X1), σ(X2))

= Expσ(X1) Expσ(X2)

= ρ(g1)ρ(g2),

as asserted. □

A map ρ : O → H as in Lemma 3.6.2 is called a local homomorphism of
G to H. We have the following result.

Proposition 3.6.3. Let O1 ⊂ O and ρ : O → H be as in Lemma 3.6.2. If
G is simply connected, then ρ extends uniquely from O1 to a real-analytic
homomorphism ρ : G→ H.

Proof. Put a left-invariant metric on G and assume for simplicity that
O = Bδ(e) = {g ∈ G : dist(g, e) < δ} and O1 = Bε/2(e), with ε and δ small
enough. Given g ∈ G, let γ be a smooth path from e to g, parametrized by
arc length, say with γ(0) = e, γ(L) = g. We first define ργ(g) as follows.
Pick gj = γ(tj) with 0 = t0 < t1 < · · · < tN = L and |tj+1− tj | < ε/2. Thus

(3.6.15) g0 = e, gN = g, gj+1 = xjgj , xj ∈ O1, g = xN−1 · · ·x2x1.

See Figure 3.6.1. We set

(3.6.16) ργ(g) = ρ(xN−1) · · · ρ(x2)ρ(x1).

First we show that ργ(g) is well defined, independent of the partition
0 = t0 < t1 < · · · < tN = L described above. Any two such partitions have
a common refinement, so it suffices to show that refining a given partition
does not change the value of ργ(g) presented in (3.6.16). So say we add one
point, tj+1/2 ∈ (tj , tj+1). Then the factor ρ(xj) in (3.6.16) gets replaced by
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Figure 3.6.1. Defining ργ(g)

ρ(zj)ρ(yj), where γ(tj+1/2) = gj+1/2 = yjgj and gj+1 = zjgj+1/2. But xj , yj
and zj all belong to O1 and xj = yjzj , so, by (3.6.12), ρ(zj)ρ(yj) = ρ(xj),
and indeed (3.6.16) is not changed.

Now that we have ργ(g) well defined for a smooth path γ from e to
g, we want to show that ργ(g) is independent of the path. This is where
simple connectivity comes in. We will show that ργ(g) = ρσ(g) if γ and σ
are smoothly homotopic paths from e to g. It suffices to show that ργ(g) =
ρσ(g) when γ and σ are close enough, so assume σ(t) is defined for t ∈
[0, L], σ(0) = e, σ(L) = g, and assume dist(σ(t), γ(t)) < δ/8 for each t ∈
[0, L]. Pick a partition 0 = t0 < t1 < · · · < tN = L such that |tj+1−tj | < δ/8.
Let gj = γ(tj) as in (3.6.15) and take g′j = σ(tj), with

(3.6.17) g′0 = e, g′N = g, g′j+1 = x′jg
′
j , g = x′N−1 · · ·x′2x′1.

See the right side of Figure 3.6.1. Here dist(xj , e) < δ/8 and dist(x′j , e) <

δ/8. We also have

(3.6.18) g′j = zjgj , dist(zj , e) <
δ

8
.
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In order to show that ργ(g) = ρσ(g), it will suffice to show that, for each k,

(3.6.19) ρσ(g
′
k) = ρ(zk)ργ(gk),

and we do this by induction.

Clearly (3.6.19) holds for k = 0. Suppose it holds for k = j − 1. That
is, we assume

(3.6.20) ρσ(g
′
j−1) = ρ(zj−1)ργ(gj−1),

and try to show

(3.6.21) ρσ(g
′
j) = ρ(zj)ργ(gj),

assuming j ≤ N . In fact,

(3.6.22) g′j = x′jzj−1x
−1
j gj , and g′j = zjgj , so zj = x′jzj−1x

−1
j ,

and x′j , xj , zj−1 are all sufficiently close to the identity that (3.6.12) gives

(3.6.23) ρ(zj) = ρ(x′j)ρ(zj−1)ρ(x
−1
j ),

which does lead to (3.6.21) from (3.6.20).

At this point we can define

(3.6.24) ρ : G −→ H, ρ(g) = ργ(g),

where γ is any smooth path from e to g, and we know that ρ is uniquely
defined.

To show that ρ is a homomorphism in (3.6.24), take any h ∈ G and write

(3.6.25) h = yM−1 · · · y2y1, yj ∈ O1,

parallel to (3.6.15), with partial products hk = yk−1 · · · y2y1 lying along a
smooth curve from e to h. Then

(3.6.26) gh = xN−1 · · ·x2x1yM−1 · · · y2y1
has the form developed above, so the construction of ρ in (3.6.24) yields

(3.6.27) ρ(gh) = ρ(xN−1) · · · ρ(x2)ρ(x1)ρ(yM−1) · · · ρ(y2)ρ(y1).
However the right side of (3.6.27) is equal to ρ(g)ρ(h), so indeed

(3.6.28) ρ(gh) = ρ(g)ρ(h), ∀ g, h ∈ G.

Finally, the analyticity of ρ on O1 follows from (3.6.11) and the analyt-
icity of ρ near a general g0 ∈ G follows by writing g = g0h, h ∈ O1, and
using ρ(g) = ρ(g0)ρ(h), plus analyticity of multiplication on G and H. □

Thus we have a converse to Proposition 3.6.1:

Corollary 3.6.4. If G is simply connected, then, for any Lie algebra homo-
morphism σ : g → h, there is a unique Lie group homomorphism ρ : G→ H
such that dρ = σ.
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In the setting of Corollary 3.6.4, we say the Lie algebra homomorphism
σ exponentiates to the Lie group homomorphism ρ.

We return to the setting of Proposition 3.6.1 and apply it to the family
of group automorphisms

(3.6.29) Kg : G −→ G, Kg(x) = gxg−1.

Recall that

(3.6.30) DKg(e) = Ad(g) : g −→ g.

Thus Proposition 3.6.1 applies to H = G, σ = Ad(g), to yield:

Proposition 3.6.5. For each g ∈ G, Ad(g) : g → g is a Lie algebra auto-
morphism:

(3.6.31) Ad(g)([X,Y ]) = [Ad(g)X,Ad(g)Y ].

Note that taking g = Exp tZ and applying d/dt at t = 0 simply recovers
the Jacobi identity, in the following form (compare (3.1.23)–(3.1.26)):

(3.6.32) adZ([X,Y ]) = [adZ(X), Y ] + [X, adZ(Y )].
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Exercises

1. Suppose H ⊂ Gl(m,R) is a matrix Lie group. Show that in this case
Proposition 3.6.1 follows from the combination of Proposition 3.3.2 and
Proposition 3.2.5.

2. Suppose G ⊂ Gl(n,R) is a matrix Lie group. Recall from Exercise 3 of
§3.2 the formula

Ad(g)A = gAg−1, A ∈ TIG, g ∈ G.

Show that this leads directly to (3.6.31), i.e.,

Ad(g)[A,B] = [Ad(g)A,Ad(g)B], A,B ∈ TIG.

3. Note that adZ([X,Y ]) = − ad[X,Y ](Z), and (3.1.24) says

ad[X,Y ] = (adX)(adY )− (adY )(adX).

Show that this is equivalent to (3.6.32).
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3.7. Enveloping algebras

Associated to the Lie algebra g of a Lie group G is an associative algebra
U(g), called the universal enveloping algebra of g, defined as

(3.7.1) U(g) =
⊗

gC/J,

where gC is the complexification of G and J is the two-sided ideal in the
tensor algebra ⊗gC generated by

(3.7.2) {XY − Y X − [X,Y ] : X,Y ∈ g}.
It is easy to show that each element of U(g) defines a left-invariant differential
operator on G. In fact, it can be shown that U(g) is isomorphic to the algebra
of left-invariant differential operators on G. See §3.8 for further comments
related to this.

Given a representation π of G on a finite-dimensional vector space V,
there is also a representation of U(g), defined as follows. If

(3.7.3) P =
∑
µ≤m

ci1···iµXi1 · · ·Xiµ , Xj ∈ g,

with ci1···iµ ∈ C, we have

(3.7.4) dπ(P ) =
∑
µ≤m

ci1···iµdπ(Xi1) · · · dπ(Xiµ).

The following result is an immediate consequence of Proposition 3.3.5. As
we will see it will be quite useful.

Proposition 3.7.1. Suppose G is connected. Let P ∈ U(g) and assume

(3.7.5) PX = XP, ∀ X ∈ g.

If π is an irreducible unitary representation of G on V, then dπ(P ) is a
scalar multiple of the identity:

dπ(P ) = λI.
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3.8. The Poincaré-Birkhoff-Witt theorem

Given a Lie algebra g, the universal enveloping algebra U(g) =
⊗

gC/J ,
where J is the two-sided ideal in

⊗
gC generated by {X⊗Y −Y ⊗X−[X,Y ] :

X,Y ∈ g}, was introduced in §3.7. We can also form the space

(3.8.1) P(g) = {P : g′ → C, polynomial}.
There is a natural linear map

(3.8.2) β : P(g) −→ U(g),

given as follows. Say n = dim g and {X1, . . . , Xn} is a basis of g. Then
{Xα1

1 · · ·Xαn
n } is a basis of P(g), and we have

(3.8.3) β(Xα1
1 · · ·Xαn

n ) = (X1⊗ · · ·⊗X1)⊗ · · ·⊗ (Xn⊗ · · ·⊗Xn), mod J,

where on the right side of (3.8.3) we have αj factors of Xj ⊗ · · · ⊗Xj . The
Poincaré-Birkhoff-Witt theorem is the following:

Theorem 3.8.1. The map β in (3.8.2) is a linear isomorphism.

To prove that β is surjective, we note that U(g) is spanned by monomials

(3.8.4) Xj1 ⊗Xj2 ⊗ · · · ⊗Xjk (mod J).

The assertion that β is surjective is equivalent to the assertion that U(g) is
actually spanned by monomials of the form (3.8.4) satisfying

(3.8.5) j1 ≤ j2 ≤ · · · ≤ jk.

To see this, consider for example a monomial of the form (3.8.4) for which
j1 > j2. We can rewrite it as

Xj2 ⊗Xj1 ⊗Xj3 ⊗ · · · ⊗Xjk + [Xj1 , Xj2 ]⊗Xj3 ⊗ · · · ⊗Xjk (mod J),

that is, as a sum of two terms, the first of which is closer to satisfying the
order criterion (3.8.5) and the second of which has lower order. A finite iter-
ation rewrites each monomial (3.8.4) as a linear combination of monomials
satisfying this order criterion (mod J), showing that β is surjective.

To complete the proof of Theorem 3.8.1, it remains to show that β is
injective. To do this, we bring in another linear map:

(3.8.6) α : U(g) −→ DL(G),

where DL(G) is the space of left-invariant differential operators on G. This
is defined by

(3.8.7) α(Xj1 ⊗ · · · ⊗Xjk) = Xj1 · · ·Xjk ,

where the right side is the product of first order differential operators Xj1 , . . . , Xjk .
Now

(3.8.8) α(X ⊗ Y − Y ⊗X − [X,Y ]) = XY − Y X − [X,Y ] = 0,
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so α annihilates J , and hence (3.8.6) is well defined. Furthermore, we can
compose α and β to get γ = α ◦ β : P(g) → DL(G):

(3.8.9)

P(g)
β−→ U(g)

γ ↘ ↓ α

DL(G)

The formula looks tautological:

(3.8.10) γ(Xα1
1 · · ·Xαn

n ) = Xα1
1 · · ·Xαn

n ,

but note thatXα1
1 · · ·Xαn

n on the left side of (3.8.10) is a polynomial function
on g′, a product of linear functions Xj : g

′ → R, while Xα1
1 · · ·Xαn

n on the
right side of (3.8.10) is a differential operator of order |α| = α1 + · · · + αn,
a product of powers of first order differential operators Xj .

In order to prove that β is injective and complete the proof of Theorem
3.8.1, it suffices to prove:

Lemma 3.8.2. The map γ in (3.8.9) is injective.

Proof. The injectivity of γ is equivalent to the following assertion. Assume

(3.8.11)
∑
|α|≤k

CαX
α1
1 · · ·Xαn

n = 0 in DL(G).

Then we assert that

(3.8.12) Cα = 0, ∀α.

To see this, use coordinates (x1, . . . , xn) on g,

(3.8.13) X = x1X1 + · · ·xnXn,

and use the map Exp : g → G, a diffeomorphism of a neighborhood U of
0 ∈ g onto a neighborhood O of e ∈ G, to express the basis Xj of g in these
local exponential coordinates as

(3.8.14) Xj =
n∑
ℓ=1

Ajℓ(x)
∂

∂xℓ
.

Note that

(3.8.15) Ajℓ(0) = δjℓ.

The hypothesis (3.8.11) implies that

(3.8.16)
∑
|α|≤k

Cα

(∑
ℓ

A1ℓ(x)
∂

∂xℓ

)α1

· · ·
(∑

ℓ

Anℓ(x)
∂

∂xℓ

)αn

= 0.
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Now the left side of (3.8.16) is a differential operator of order k:

(3.8.17)
∑
|α|≤k

C̃α(x)∂
α1
1 · · · ∂αn

n ,

(with ∂j = ∂/∂xj), and from (3.8.14)–(3.8.15) we obtain

(3.8.18) C̃α(0) = Cα, ∀ |α| = k.

Now if (3.8.14) holds, then C̃α ≡ 0 for all α, so we deduce that Cα = 0
whenever |α| = k. Recording this in (3.8.11) then gives

(3.8.19)
∑

|α|≤k−1

CαX
α1
1 · · ·Xαn

n = 0 in DL(G),

and iterating this argument finishes the proof of Lemma 3.8.2. □

Remark. It is also the case that α and γ in (3.8.6) and (3.8.9) are linear
isomorphisms. This follows from the results proven above plus the result
that

(3.8.20) α is surjective.

For a proof of (3.8.20), see [38], p. 24. From these results it follows that
α is an isomorphism of algebras. On the other hand, β and γ are not
homomorphisms of algebras.



Chapter 4

The unitary groups
U(n) and their
representations

In this chapter we give a detailed description of the irreducible unitary rep-
resentations of U(n) and related groups, making use of the tools developed
in Chapters 2 and 3, such as Weyl orthogonality theorems and Lie algebra
representations. We begin in §4.1 with a clasification of the representations
of SU(2). We show that for each k ∈ Z+, there is precisely one equiva-
lence class of irreducible unitary representations of SU(2) on Ck+1. This is
realized as

(4.0.1) Dk/2(g)f(z) = f(g−1z), g ∈ SU(2), z ∈ C2,

acting on Pk ≈ Ck+1, the space of polynomials homogeneous of degree k
on C2, and this exhausts all the irreducible representations of SU(2). A
key tool is to diagonalize a representation of SU(2) on the commutative
subgroup T, consisting of diagonal elements of SU(2). Having this result,
we deduce the structure of irreducible unitary representations of the related
groups, U(2), SO(3), and SO(4).

This study provides a blueprint for a study of U(n), pursued in §§4.2–
4.4. Given a unitary representation π of U(n) on V , we simultaneously
diagonalize it on the “maximal torus” T, consisting of the diagonal elements
of U(n), forming a decomposition

(4.0.2) V =
⊕
λ∈h′

Vλ, Vλ = {v ∈ V : dπ(X)v = iλ(X)v, X ∈ h},

113
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where h is the Lie algebra of T. When Vλ 6= 0, we say λ is a weight for π,
and a nonzero element v ∈ Vλ is called a weight vector. In the special case
where π is the adjoint representation, we say λ is a root and v ∈ Vλ is a root
vector. We put an order on h′, and show in §4.2 that each irreducible unitary
representation of U(n) has a highest weight, that the associated space of
highest weight vectors is one-dimensional, and that two such representations
with the same highest weight are equivalent. This presents the problem of
identifying just which elements of h′ arise as highest weights of irreducible
representations.

Before tackling this highest weight question, we produce some examples
of irreducible representations of U(n) in §4.3, including

(4.0.3) Sk(g)f(z) = f(gtz), S
k
(g)f(z) = f(g−1z),

acting on the space Pk of polynomials on Cn, homogeneous of degree k.
Note that Sk = Dk/2 when n = 2. Another family of representations of

U(n) is Λk, representing U(n) on the exterior algebra ΛkCn by

(4.0.4) Λk(g)v1 ∧ · · · ∧ vk = gv1 ∧ · · · ∧ gvk.

In §4.4 we identify the class of highest weights, and classify the irre-
ducible unitary representations of U(n) by the labels

(4.0.5) D(k1,...,kn), kν ∈ Z, k1 ≥ · · · ≥ kn.

In this classification scheme,

(4.0.6) Sk ≈ D(k,0,...,0), S
k ≈ D(0,...,0,−k),

and

(4.0.7) Λk ≈ D(1,...,1,0,...,0) (with k ones) 0 ≤ k ≤ n.

In §4.5 we show that the irreducible unitary representations of SU(n) are
precisely given by those of the form (4.0.5), this time with the equivalence

(4.0.8) D(k1,...,kn) ≈ D(k1+j,...,kn+j) on SU(n),

for all j ∈ Z.
The analysis of representations in §§4.2–4.5 make use of the concept of

Gl(n,C) as the complexification of U(n), and analytic continuation of repre-
sentations from U(n) to Gl(n,C). Section 4.6 provides a second perspective
on this process.

Sections 4.7–4.10 deal with the decomposition of various tensor product
representations into irreducible pieces. In §4.7 we show that

(4.0.9) Sk ⊗ S
ℓ ≈

⊕
0≤µ≤k∧ℓ

D(k−µ,0,...,0,µ−ℓ),



4. The unitary groups U(n) and their representations 115

as representations of U(n). This extends the scope of the Clebsch-Gordon
series, established in §4.1. Section 4.9 examines the linear subspace of

(4.0.10) (⊗kCn)⊗ (⊗kCn)′ ≈ End(⊗kCn)

on which U(n) acts trivially. This result is known as the First fundamental
theorem of invariant theory (for unitary invariants). The analysis makes use
of the fact that the groups Sk and U(n) act as a dual pair on ⊗kCn, a notion
introduced in §4.8.

We take up the decomposition of the representation ⊗k of U(n) on ⊗kCn
in §4.10. In fact, this representation commutes with a natural representation
τ of Sk, and these groups form a dual pair, as seen in §4.9. The major result
presented in §4.10 is that there is an irreducible decomposition

(4.0.11) τ · ⊗k ≈
⊕
λ∈Fnk

Sλ ⊗Dλ.

See §4.10 for the definitions of the objects that appear on the right side of
(4.0.11). An element λ of Fnk is called a Young frame, and associated with
it is a Young diagram. The representations Dλ of U(n) that arise in (4.0.11)
are those depicted in (4.0.5), and Sλ are certain irreducible representations
of Sk.

Section 4.11 takes up the Weyl integration formula, which implies

(4.0.12)

∫
U(n)

f(g) dg = Cn

∫
Tn

f(D(θ))J(θ) dθ,

where f ∈ C(G) is a central function, Tn is the set of diagonal elements of
U(n), D(θ) = diag(eiθ1 , . . . , eiθn), and

(4.0.13) J(θ) =
∏
j<k

|eiθj − eiθk |2.

Major examples of central functions are the characters χπ(g) = Trπ(g) of
representations π of U(n). Section 4.12 produces the Weyl character formula

(4.0.14) χλ(D(θ)) = TrDλ(D(θ)) =
Aλ+ρ(θ)

Aρ(θ)
,

where, for µ ∈ h′,

(4.0.15) Aµ(θ) =
∑
σ∈Sn

(sgnσ)eiσ·µ(θ).

Here ρ is half the sum of the positive roots,

(4.0.16) ρ =
1

2

∑
j<k

ωjk,
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where {ωjk} are the roots, introduced in §4.2, which are positive for j < k.
We regard θ ∈ h to evaluate µ(θ) for µ ∈ h′. Evaluation at θ = 0 gives the
Weyl dimension formula

(4.0.17) dλ =
∏
j<k

〈ωjk, λ+ ρ〉
〈ωjk, ρ〉

.

Section 4.13 evaluates the characters of the representations Sk and Λk, in-
troduced in (4.0.3)–(4.0.4).

Section 4.14 looks at the character of the representation (4.0.11),

(4.0.18) Tr τ(σ) · ⊗kg =
∑
λ∈Fnk

χSλ(σ)χλ(g),

for σ ∈ Sk, g ∈ U(n), with χλ given by (4.0.14), and derives a formula for
χSλ(σ), and for the dimension dSλ of the associated representation space.

Section 4.15 treats an integral that arises in random matrix theory, and
establishes that

(4.0.19)

∫
U(n)

|Tr gk|2 dg = k ∧ n.

Connections are made with results of §§4.10–4.11, and applications are in-
dicated to formulas for

(4.0.20)

∫
U(n)

Xu(g)Xv(g) dg,

where Xf (g) = Tr f(g), with f(g) defined by the spectral representation of
g ∈ U(n), when f : S1 → C is a continuous function. Further material on
this appears in §E.5.
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4.1. Representations of SU(2) and related groups

Recall that SU(2) is the group of 2 × 2 complex unitary matrices of deter-
minant 1, i.e.,

(4.1.1) SU(2) =

{(
z1 z2
−z2 z1

)
: |z1|2 + |z2|2 = 1, zj ∈ C

}
.

As a set, SU(2) is naturally identified with the unit sphere S3 in C2. Its Lie
algebra su(2) consists of 2× 2 complex skew adjoint matrices of trace zero.
A basis of su(2) is formed by

(4.1.2) X1 =
1

2

(
i 0
0 −i

)
, X2 =

1

2

(
0 1
−1 0

)
, X3 =

1

2

(
0 i
i 0

)
.

Note the commutation relations

(4.1.3) [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

We also recall that the group SO(3) is the group of linear isometries of
R3 with determinant 1. Its Lie algebra so(3) is spanned by elements Jℓ, ` =
1, 2, 3, which generate rotations about the xℓ-axis. One readily verifies that
these satisfy the same commutation relations as in (4.1.3). Thus SU(2) and
SO(3) have isomorphic Lie algebras. There is an explicit homomorphism

(4.1.4) p : SU(2) −→ SO(3),

which exhibits SU(2) as a double cover of SO(3). One way to construct p is
the following. The linear span g of (4.1.2) over R is a three-dimensional real
vector space, with an inner product given by (X,Y ) = − Tr XY. It is clear
that the representation p of SU(2) by a group of linear transformations on
g given by p(g)X = gXg−1 preserves this inner product and gives (4.1.4).
Note that Ker p = {I,−I}. (Note also that p(g) = Ad(g).)

If we regard Xj as left-invariant vector fields on SU(2), set

(4.1.5) ∆ = X2
1 +X2

2 +X2
3 ,

a second-order, left-invariant differential operator. It follows easily from
(4.1.3) that Xj and ∆ commute:

(4.1.6) ∆Xj = Xj∆, 1 ≤ j ≤ 3.

Suppose π is an irreducible unitary representation of SU(2) on V. Then
π induces a skew-adjoint representation dπ of the Lie algebra su(2), and
an algebraic representation of the universal enveloping algebra. By (4.1.6),
dπ(∆) commutes with dπ(Xj), j = 1, . . . , 3. Thus, if π is irreducible, Propo-
sition 3.7.1 implies

(4.1.7) dπ(∆) = −λ2I,
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for some λ ∈ R. (Since dπ(∆) is a sum of squares of skew-adjoint operators,
it must be negative.) Let

(4.1.8) Lj = dπ(Xj).

Now we will diagonalize L1 on V. Set

(4.1.9) Vµ = {v ∈ V : L1v = iµv}, V =
⊕

iµ∈ Spec L1

Vµ.

The structure of π is defined by how L2 and L3 behave on Vµ. It is convenient
to set

(4.1.10) L± = L2 ∓ iL3,

i.e., L± = dπ(X±) where

(4.1.11) X+ = X2 − iX3 =

(
0 1
0 0

)
, X− = X2 + iX3 =

(
0 0
−1 0

)
.

We have the following key identities, as a direct consequence of (4.1.3):

(4.1.12) [X1, X±] = ±iX±, hence [L1, L±] = ±iL±.

Using this, we can establish the following:

Lemma 4.1.1. We have

(4.1.13) L± : Vµ −→ Vµ±1.

In particular, if iµ ∈ Spec L1, then either L+ = 0 on Vµ or i(µ+ 1) ∈ Spec
L1, and also either L− = 0 on Vµ or i(µ− 1) ∈ Spec L1.

Proof. Let v ∈ Vµ. By (4.1.12) we have

L1L±v = L±L1v ± iL±v = i(µ± 1)L±v,

which establishes the lemma. The operators L± are called “ladder opera-
tors.” □

To continue, if π is irreducible on V , we claim that Spec (1/i)L1 must
consist of a sequence

(4.1.14) Spec
1

i
L1 = {µ0, µ0 + 1, . . . , µ0 + k = µ1},

with

(4.1.15) L+ : Vµ0+j → Vµ0+j+1 isomorphism, for 0 ≤ j ≤ k − 1,

and

(4.1.16) L− : Vµ1−j → Vµ1−j−1 isomorphism, for 0 ≤ j ≤ k − 1.

In fact, we can compute

(4.1.17) L−L+ = L2
2 + L2

3 + i[L3, L2] = −λ2 − L2
1 − iL1



4.1. Representations of SU(2) and related groups 119

on V, and

(4.1.18) L+L− = −λ2 − L2
1 + iL1

on V, so

(4.1.19)
L−L+ = µ(µ+ 1)− λ2 on Vµ,

L+L− = µ(µ− 1)− λ2 on Vµ.

Note that, since L2 and L3 are skew-adjoint, L+ = −L∗
−, so

L+L− = −L∗
−L−, L−L+ = −L∗

+L+.

Thus

(4.1.20) Ker L+ = Ker L−L+, Ker L− = Ker L+L−.

From (4.1.19) we see that, if µ0 = min Spec(1/i)L1 and µ1 = maxSpec(1/i)L1,
then, since L+ = 0 on Vµ1 and L− = 0 on Vµ0 ,

µ1(µ1 + 1) = λ2 = µ0(µ0 − 1).

Hence

(4.1.21) µ1 − µ0 = k =⇒ µ0 = −k
2
, µ1 =

k

2
, λ2 =

1

4
k(k + 2).

If L+ is not injective on Vµ, then, by (4.1.19)–(4.1.20), L+ = 0 on Vµ, so
(by (4.1.19)),

µ = −1

2
± 1

2

√
1 + 4λ2 = −1

2
± 1

2
(k + 1),

i.e., µ = k/2 = µ1 or µ = −k/2−1 = µ0−1, which is not allowed. Similarly,
if L− is not injective on Vµ, then

µ =
1

2
± 1

2

√
1 + 4λ2 =

1

2
± 1

2
(k + 1),

i.e., µ = −k/2 = µ0 or µ = k/2 + 1 = µ1 + 1, which is not allowed. These
observations establish (4.1.14)–(4.1.16).

Considering that dπ preserves the linear span of {v, L+v, . . . L
µ1−µ0
+ v}

for any nonzero v ∈ Vµ0 , and that irreducibility implies this must be all of
V, we have

(4.1.22) dim Vµ = 1, µ0 ≤ µ ≤ µ1.

Hence we have

(4.1.23) dim V = k + 1, λ2 =
1

4
k(k + 2) =

1

4
(dim V 2 − 1).

A nonzero element v ∈ V such that L+v = 0 is called a “highest weight
vector” for the representation π of SU(2) on V. It follows from the analysis
above that all highest weight vectors for an irreducible representation on V
belong to the one-dimensional space Vµ1 .
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The calculations above establish that an irreducible unitary representa-
tion π of SU(2) on V is determined uniquely up to equivalence by dim V.
We are ready to prove:

Proposition 4.1.2. There is precisely one equivalence class of irreducible
unitary representation of SU(2) on Ck+1, for each k = 0, 1, 2, . . . .

We will realize each such representation, which is denoted Dk/2, on the
space

(4.1.24) Pk = {p(z) : p homogeneous polynomial of degree k on C2},
with SU(2) acting on Pk by

(4.1.25) Dk/2(g)f(z) = f(g−1z), g ∈ SU(2), z ∈ C2.

Note that, for X ∈ su(2),

(4.1.26) dDk/2(X)f(z) =
d

dt
f
(
e−tXz

)∣∣
t=0

= −(∂1f, ∂2f) ·X
(
z1
z2

)
,

where ∂jf = ∂f/∂zj . A calculation gives

(4.1.27)

L1f(z) = − i

2
(z1∂1f − z2∂2f),

L2f(z) = −1

2
(z2∂1f − z1∂2f),

L3f(z) = − i

2
(z2∂1f + z1∂2f).

In particular, for

(4.1.28) ϕkj(z) = zk−j1 zj2 ∈ Pk, 0 ≤ j ≤ k,

we have

(4.1.29) L1ϕkj = i
(
−k
2
+ j
)
ϕkj ,

so

(4.1.30) V = Pk =⇒ span ϕkj = V−k/2+j , 0 ≤ j ≤ k.

Note that

(4.1.31) L+f(z) = −z2∂1f(z), L−f(z) = z1∂2f(z),

so

(4.1.32) L+ϕkj = −(k − j)ϕk,j+1, L−ϕkj = jϕk,j−1.

We see that the structure of the representation Dk/2 of SU(2) on Pk is
as described in (4.1.13)–(4.1.23). The last detail is to show that Dk/2 is
irreducible. If not, then Pk splits into a direct sum of several irreducible
subspaces, each of which have a one-dimensional space of highest weight
vectors, annihilated by L+. But as seen above, within Pk, only multiples
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of zk2 are annihilated by L+, so the representation Dk/2 of SU(2) on Pk is
irreducible.

Representations of SO(3)

We can deduce the classification of irreducible unitary representations of
SO(3) from the result above as follows. We have the covering homomorphism
(4.1.4), and Ker p = {±I}. Now each irreducible representation dj of SO(3)
defines an irreducible representation dj◦p of SU(2), which must be equivalent
to one of the representations Dk/2 described above. On the other hand, Dk/2

factors through to yield a representation of SO(3) if and only if Dk/2 is the
identity on Ker p, i.e., if and only if Dk/2(−I) = I. Clearly this holds if and
only if k is even, since

Dk/2(−I) = (−1)kI.

Thus all the irreducible unitary representations of SO(3) are given by rep-

resentations D̃j on P2j , uniquely defined by

(4.1.33) D̃j

(
p(g)

)
= Dj(g), g ∈ SU(2).

It is conventional to use Dj instead of D̃j to denote such a representation of
SO(3). Note that Dj represents SO(3) on a space of dimension 2j + 1, and

(4.1.34) dDj(∆) = −j(j + 1).

Representations of U(2)

Also we can classify the irreducible representations of U(2), using the
results on SU(2). To do this, use the exact sequence

(4.1.35) 1 → K → S1 × SU(2) → U(2) → 1,

where “1” denotes the trivial multiplicative group, and

(4.1.36) K = {(ω, g) ∈ S1 × SU(2) : g = ω−1I, ω2 = 1} = {±(1, I)}.

The irreducible representations of S1 × SU(2) are given by

(4.1.37) πmk(ω, g) = ωmDk/2(g) on Pk,

with m, k ∈ Z, k ≥ 0. Those giving a complete set of irreducible repre-
sentations of U(2) are those for which πmk(K) = I, i.e., those for which
(−1)mDk/2(−I) = I. Since Dk/2(−I) = (−1)kI, we see the condition is that
m+ k be an even integer.

For another perspective on the irreducible representations of U(2), note
that (4.1.25), i.e., Dk/2(g)p(z) = p(z−1z), for p ∈ Pk, is clearly well defined
for g ∈ U(2). If g = ωg0, with |ω| = 1, g0 ∈ SU(2), then

Dk/2(ωg0) = ω−kDk/2(g0) = πkk(ω, g0),
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so the general irreducible representation of U(2) has the form

πk+2j,k(ω, g0) = (detωg0)
jDk/2(ωg0), j ∈ Z, k ∈ Z+,

i.e.,

(4.1.38) (det g)j Dk/2(g), j ∈ Z, k ∈ Z+.

Representations of SO(4)

We now consider the representations of SO(4). First note that SO(4) is
covered by SU(2)×SU(2). To see this, equate the unit sphere S3 ⊂ R4, with
its standard metric, to SU(2), with a bi-invariant metric. Then SO(4) is the
identity component in the isometry group of S3. Meanwhile, SU(2)× SU(2)
acts as a group of isometries, by

(4.1.39) (g1, g2) · x = g1xg
−1
2 , gj ∈ SU(2), x ∈ SU(2) ≈ S3.

Thus we have a map

(4.1.40) τ : SU(2)× SU(2) −→ SO(4).

This is a group homomorphism. Note that (g1, g2) ∈ Ker τ implies g1 =
g2 = ±I. In fact, if g1xg

−1
2 = x for all x ∈ SU(2), taking x = e implies

g1 = g2, then Schur’s lemma implies g1 = g2 is a scalar, and then g1 ∈ SU(2)
implies g1 = g2 = ±I. Furthermore, a dimension count shows τ must be
surjective, so

(4.1.41) SO(4) ≈ SU(2)× SU(2)/{±(I, I)}.

As shown in Proposition 2.8.11, if G1 and G2 are compact Lie groups,
and G = G1 ×G2, then the set of all irreducible unitary representations of
G, up to unitary equivalence, is given by

(4.1.42) {π(g) = π1(g1)⊗ π2(g2) : πj ∈ Ĝj},

where g = (g1, g2) ∈ G and Ĝj parametrizes the irreducible unitary rep-
resentations of Gj . In particular, the irreducible unitary representations of
SU(2)×SU(2), up to equivalence, are precisely the representations of the
form

(4.1.43) γkℓ(g) = Dk/2(g1)⊗Dℓ/2(g2), k, ` ∈ {0, 1, 2, . . . },

acting on Pk ⊗ Pℓ ≈ Ck+1 ⊗ Cℓ+1. By (4.1.41), the irreducible unitary rep-
resentations of SO(4) are given by all γkℓ such that k + ` is even, since, for
p0 = (−I,−I) ∈ SU(2)× SU(2), γkℓ(p0) = (−1)k+ℓI.

Tensor products and the Clebsch-Gordon series

We next consider the problem of decomposing the tensor product rep-
resentations Dk/2 ⊗Dℓ/2 of SU(2), i.e., the composition of (4.1.43) with the
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diagonal map SU(2) ↪→ SU(2)×SU(2), into irreducible representations. We
may as well assume that ` ≤ k. Note that πkℓ = Dk/2 ⊗Dℓ/2 acts on

(4.1.44)
Pkℓ = {f(z, w) : polynomial on C2 × C2,

homogeneous of degree k in z, ` in w},
as

(4.1.45) πkℓ(g)f(z, w) = f(g−1z, g−1w).

Parallel to (4.1.27) and (4.1.31), we have, on Pkℓ,

(4.1.46)

L1f = − i

2
(z1∂z1f − z2∂z2f + w1∂w1f − w2∂w2f),

L+f = −z2∂z1f − w2∂w1f,

L−f = z1∂z2f + w1∂w2f.

To decompose Pkℓ into irreducible subspaces, we specify Ker L+. In fact, a
holomorphic function f(z, w) annihilated by L+ is of the form

(4.1.47) f(z, w) = g(z2, w2, w2z1 − z2w1).

In more detail, if L+f(z, w) = 0, then f(etX+z, etX+w) is independent of t,
with X+ as in (4.1.11), i.e.,

(4.1.48) f(z1 + tz2, z2, w1 + tw2, w2) is independent of t.

If z2 6= 0, take t = −z1/z2, to conclude

f(z1, z2, w1, w2) = f(0, z2, w1 − (z1/z2)w2), w2).

If f ∈ Pkℓ and k ≥ `, this yields

f(z1, z2, w1, w2) = zk−ℓ2 f(0, 1, w1z2 − z1w2, z2w2),

which also holds at z2 = 0.

Thus the kernel of L+ in Pkℓ is the linear span of

(4.1.49) ψkℓµ(z, w) = zk−µ2 wℓ−µ2 (w2z1 − z2w1)
µ, 0 ≤ µ ≤ `.

A calculation gives

(4.1.50) L1ψkℓµ =
i

2
(k + `− 2µ)ψkℓµ.

In fact, since e−tX1z = (e−(i/2)tz1, e
(i/2)tz2), and similarly for e−tX1w, we

see that

(4.1.51) ψkℓµ(e
−tX1z, e−tX1w) = e(i/2)(k+ℓ−2µ)tψkℓµ(z, w),

which gives (4.1.50).
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It follows that, for fixed k, `, 0 ≤ ` ≤ k, and for each µ = 0, . . . , `, ψkℓµ
is the highest weight vector of a representation equivalent to D(k+ℓ−2µ)/2, so
we have

(4.1.52)
Dk/2 ⊗Dℓ/2 ≈

ℓ⊕
µ=0

D(k+ℓ−2µ)/2

= D(k−ℓ)/2 ⊕D(k−ℓ)/2+1 ⊕ · · · ⊕D(k+ℓ)/2.

This is called the Clebsch-Gordon series.

We make some general comments about decomposing a unitary repre-
sentation π of SU(2) on V into irreducible pieces. First, one identifies

(4.1.53) K = KerL+ ⊂ V.

We know that π splits into mutually orthogonal irreducible pieces, π1⊕· · ·⊕
πM , on V1⊕· · ·⊕VM = V , and K is spanned by the one-dimensional highest
weight subspaces of each Vj , each of them eigenspaces of L1. Hence

(4.1.54) L1 : K −→ K,

and of course L1|K is skew-adjoint. To find the pieces Vj , one diagonalizes
L1|K (and each space Vj is spanned by the images of an eigenvector of L1|K
under L− and its powers). This procedure can be seen to have been followed
in the decomposition described above of Dk/2 ⊗Dℓ/2 on Pkℓ.

Note also how it has been convenient to analyze KerL+ and eigenspaces
of L1 via passage back to the group SU(2), via

(4.1.55)
L+v = 0 ⇐⇒ π(etX+)v = v, ∀ t,

L1v = iµv ⇐⇒ π(etX1)v = eiµtv, ∀ t.

Compare (4.1.48) and (4.1.51). Analogous observations will be useful in
§4.2.

Characters of Dk/2

We turn our attention to the representations Dk/2 of SU(2) on Pk, given
by (4.1.24)–(4.1.25), and discuss the characters

(4.1.56) χk/2(g) = TrDk/2(g).

These are central functions, and they are uniquely determined by their values
on the one-dimensional subgroup

(4.1.57) T =
{(eiθ

e−iθ

)
= u(θ) : θ ∈ R/2πZ

}
,
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since every element of SU(2) is conjugate to some element u(θ). Taking the

basis ϕkj(z) = zk−j1 zj2 ∈ Pk as in (4.1.28)–(4.1.29), we see that

(4.1.58)
Dk/2(u(θ))ϕkj = e−i(k−j)θeijθϕkj

= ei(2j−k)θϕkj .

Hence

(4.1.59) χk/2(u(θ)) =
k∑
j=0

ei(2j−k)θ.

One way to write this sum is as

(4.1.60) χk/2(u(θ)) =
k∑
j=0

cos(−k + 2j)θ.

In particular, we have

(4.1.61) χ0(u(θ)) = 1, χ1/2(u(θ)) = 2 cos θ,

and, inductively,

(4.1.62) χk/2+1(u(θ)) = χk/2(u(θ)) + 2 cos(k + 2)θ.

It follows that

(4.1.63) Span{χk/2 ◦ u : 0 ≤ k ≤ N} = Span{cos kθ : 0 ≤ k ≤ N},

hence

(4.1.64) Span{χk/2 ◦ u : k ∈ Z+} is dense in Ce(T),

the space of even continuous functions on R/2πZ. In connection with this,
note that

(4.1.65) J =

(
0 −1
1 0

)
=⇒ Ju(θ)J−1 = u(−θ),

so every continuous central function on SU(2) restricts to an element of
Ce(T). This yields the following.

Proposition 4.1.3. The space

(4.1.66) Span{χk/2 : k ∈ Z+}

is dense in the space CC(SU(2)) of continuous central functions, hence also
in the space L2

C(SU(2)) of L2 central functions.

Proof. This follows from (4.1.64) plus the fact that, for each f ∈ CC(SU(2)),

(4.1.67) sup
g∈SU(2)

|f(g)| = sup
g∈T

|f(g)|.

□
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This argument yields a second proof of Proposition 4.1.2:

Corollary 4.1.4. The representations Dk/2 of SU(2) on Pk form a complete
set of irreducible unitary representations of SU(2).

Proof. This follows from Proposition 4.1.3 plus the orthogonality relations
for the characters of irreducible representations established in §2.4. □

Note that (4.1.59) represents χk/2(u(θ)) as a geometric series. Summing
this series gives the compact formula

(4.1.68)
χk/2(u(θ)) =

ei(k+1)θ − e−i(k+1)θ

eiθ − e−iθ

=
sin(k + 1)θ

sin θ
.

We move on to an application of the character formula to an alternative
derivation of the Clebsch-Gordon formula, (4.1.52).

Proposition 4.1.5. Given k, ` ∈ Z+, g ∈ SU(2),

(4.1.69) χk/2(g)χℓ/2(g) = χ|k−ℓ|/2(g) + χ|k−ℓ|/2+1(g) · · ·+ χ(k+ℓ)/2(g).

Proof. It suffices to establish (4.1.69) for g = u(θ) ∈ T. With ω = eiθ,
write the character formula (4.1.58) as

(4.1.70) χk/2(ω) =
k∑
j=0

ω2j−k.

Then

(4.1.71) χk/2(ω)χℓ/2(ω) =

k∑
j=0

ℓ∑
m=0

ω2(j+m)−k−ℓ.

There is no loss in generality in assuming k ≤ `. Then the double sum
(4.1.71) can be rearranged to yield

(4.1.72)

k∑
a=0

(a+1)ω2a−k−ℓ+

ℓ−1∑
a=k+1

(k+1)ω2a−k−ℓ+

ℓ+k∑
a=ℓ

(k+`+1−a)ω2a−k−ℓ.

We can set b = k + `− a and write the last sum in (4.1.72) as

(4.1.73)
k∑
b=0

(b+ 1)ωk+ℓ−2b.

Now we can rewrite (4.1.72) as a sum of k + 1 strings each string, labeled
by a ∈ {0. . . . , k}, having the form

(4.1.74)

∑
ωM , for − (k + `) + 2a ≤M ≤ (k + `)− 2a,

proceeding by even integer increments.
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Such a sum is equal to

(4.1.75) χ(k+ℓ)/2−a(ω), 0 ≤ a ≤ k,

i.e., for k ≤ `, to

(4.1.76) χ(ℓ−k)/2(ω), χ(ℓ−k)/2+1(ω), · · · , χ(ℓ+k)/2(ω).

This proves (4.1.69). □
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Exercises

1. Show that the elements Xj ∈ su(2) given by (4.1.2) are an orthogonal set
with respect to the inner product (X,Y ) = TrX∗Y . Verify the commutation
relations (4.1.3).

2. With Xk as in (4.1.2), consider

Jk = adXk : su(2) −→ su(2).

Show that the matrix representations Jk with respect to the orthonormal
basis {X1, X2, X3} are

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 .

Deduce that

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2.

Note that

e2πXk = −I, e2πJk = I.

Relate this to (4.1.4).

3. Verify that, for each j, k ∈ {1, 2, 3},

[Xj , X
2
k ] = [Xj , Xk]Xk +Xk[Xj , Xk],

hence ∑
k

[Xj , X
2
k ] =

∑
k ̸=j

{
[Xj , Xk]Xk +Xk[Xj , Xk]

}
.

In particular,∑
k

[X1, X
2
k ] =

3∑
k=2

{
[X1, Xk]Xk +Xk[X1, Xk]

}
= X3X2 +X2X3 −X2X3 −X3X2 = 0.

4. Define the linear map σ : su(2) → su(2) by

σ(Xj) = Xj+1, j, j + 1 ∈ Z/(3).

Show that σ is a Lie algebra automorphism, as is τ = σ2.
Show that these Lie algebra automorphisms act on the universal enveloping
algebra, and that each preserves ∆ = X2

1 +X2
2 +X2

3 .
Deduce from this and from Exercise 3 that [Xj ,∆] = 0 for each j.
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5. Recall the isomorphism τ : SU(2) × SU(2)
≈→ SO(4), from (4.1.40).

Using results from §1.2 (Chapter 1), show that

τ
((u(θ)

u(ϕ)

))
=

(
R(θ − ϕ)

R(θ + ϕ)

)
,

where

u(θ) =

(
eiθ

e−iθ

)
∈ SU(2), R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2).

Deduce from (4.1.68) that if γkℓ : SO(4) → L(Pk⊗Pℓ) is as in (4.1.43), with
k + ` even, then

Tr γkℓ

((R(θ)
R(ϕ)

))
= TrDk/2

(
u
(ϕ+ θ

2

))
⊗Dℓ/2

(
u
(ϕ− θ

2

))
=

sin (k + 1)(ϕ+ θ)/2

sin(ϕ+ θ)/2
· sin (`+ 1)(ϕ− θ)/2

sin(ϕ− θ)/2
.
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4.2. Representations of U(n), I: roots and weights

Here we begin to take a detailed look at U(n) and its representations. Recall
that the Lie algebra of U(n) is

(4.2.1) u(n) = {X ∈ M(n,C) : X∗ = −X}.

The complexified Lie algebra gC of g = u(n) is just M(n,C), which is the Lie
algebra of Gl(n,C), which in turn can be regarded as the complexification
of U(n). We can write

(4.2.2) M(n,C) = Ch⊕ n+ ⊕ n−.

Here

(4.2.3) h = {diag(ia1, . . . , ian) : aj ∈ R}

is the Lie algebra of

(4.2.4) T = {diag(eia1 , . . . , eian) : aj ∈ R} ⊂ U(n).

In addition n+ consists of strictly upper triangular matrices and n− of strictly
lower triangular matrices, in M(n,C). It is clear that each of the three factors
on the right side of (4.2.2) is a Lie algebra. The Lie algebra Ch generates

(4.2.5) D = {diag(c1, . . . , cn) : cj ∈ C \ 0} ⊂ Gl(n,C),

while n+ generates N+, the group of upper triangular matrices in Gl(n,C)
with ones on the diagonal, and n− generates N−, the group of lower trian-
gular matrices in Gl(n,C) with ones on the diagonal. There is the Gauss
decomposition:

(4.2.6) N−DN+ = Greg is dense in Gl(n,C),

or (in a weaker form)

(4.2.7) Greg contains a neighborhood of the identity.

The latter result follows fairly easily from the spanning property (4.2.2).

Convenient bases for the factors in (4.2.2) are provided by the matrices
ejk. Here we define ejk to be the n× n matrix with a 1 in row j, column k,
and zeros elsewhere. Equivalently, let u1, . . . , un denote the standard basis
of Cn. Then

(4.2.8) ejkuℓ = δkℓ uj .

Then {ejk : j < k} spans n+, {ejk : j > k} spans n−, and, with

(4.2.9) ej = iejj ,

the set {ej : 1 ≤ j ≤ n} spans h.

Suppose now that π is a unitary representation of U(n) on V , assumed
to be finite dimensional. Since T is commutative, we can simultaneously
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diagonalize {π(h) : h ∈ T}. Equivalently, we can simultaneously diagonalize
{dπ(X) : X ∈ h}. In other words,

(4.2.10) V =
⊕
λ∈h′

Vλ,

where, for λ ∈ h′,

(4.2.11) Vλ = {v ∈ V : dπ(X)v = iλ(X)v, ∀ X ∈ h}.

If λ ∈ h′ and Vλ 6= 0, we call λ a weight for π, and a nonzero v ∈ Vλ is called
a weight vector. Note that the spaces Vλ in (4.2.10) are mutually orthogonal.

Let us apply this notion to the adjoint representation of U(n) on u(n)C =
M(n,C). It is convenient to use the basis ejk defined in (4.2.8). A compu-
tation gives eijekℓ = δjkeiℓ, hence

(4.2.12) [eij , ekℓ] = δjkeiℓ − δiℓekj .

In particular, [ejj , ekℓ] = δjkejℓ − δjℓekj , and hence

(4.2.13) X =
∑
j

xjej ∈ h =⇒ [X, ejk] = i(xj − xk)ejk.

In other words, if we define

(4.2.14) ωjk ∈ h′, ωjk(X) = xj − xk,

then ωjk is a weight for the adjoint representation, with weight vector ejk.
We call ωjk a root, and ejk a root vector. Note the parallel between (4.2.13)
and the commutator relation [X1, X±] = ±iX±, from (4.1.12).

Let us return to a general unitary representation π of U(n) on V . The
following can be compared with Lemma 4.1.1.

Proposition 4.2.1. Set Ejk = dπ(ejk). Then

(4.2.15) Ejk : Vλ −→ Vλ+ωjk
.

Thus if λ ∈ h′ is a weight for the representation π, then either Ejk annihi-
lates Vλ or λ+ ωjk is a weight for π.

Proof. The commutation relation (4.2.13), which can be rewritten as

(4.2.16) [X, ejk] = iωjk(X)ejk, X ∈ h,

leads to the identity

(4.2.17) dπ(X)Ejk = Ejk
(
dπ(X) + iωjk(X)I

)
, X ∈ h,

which implies (4.2.15). □
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Let us define an order on h′ as follows. Use the basis {ej : 1 ≤ j ≤ n}
to make h ≈ Rn; then h′ ≈ Rn. Given α, β ∈ Rn, we say α < β if the first
nonzero entry of β − α is positive. With respect to this order, we have

(4.2.18)
λ+ ωjk > λ if j < k,

λ+ ωjk < λ if j > k.

Hence we call Ejk a raising operator if j < k (so ejk ∈ n+) and a lowering
operator if j > k (in which case ejk ∈ n−).

In (4.2.10) only finitely many weights appear. Thus there is a highest
weight λm and a lowest weight λs. All the raising operators annihilate Vλm
and all the lowering operators annihilate Vλs . Nonzero elements of Vλm are
called highest weight vectors.

In view of this discussion, we have the following criterion for irreducibil-
ity. A converse will be established below.

Proposition 4.2.2. Let π be a unitary representation of U(n) on V , finite
dimensional. Consider the set A(π) of weight vectors annihilated by all
raising operators. If A(π) ∪ {0} is a linear space of dimension 1, then π is
irreducible.

Proof. Suppose V = V1 ⊕ V2 with Vj invariant. We see from the previous
paragraph that both V1 and V2 contain a nonzero element of A(π). □

Remark. A vector v ∈ V is annihilated by all raising operators if and only
if

(4.2.19) dπ(X+)v = 0, ∀X+ ∈ n+.

Let us note the following. Set

(4.2.20) H(π) =
⋂
j<k

KerEjk.

From (4.2.17) it follows that

(4.2.21) X ∈ h =⇒ dπ(X) : H(π) → H(π),

and of course {dπ(X)|H(π) : X ∈ h} forms a commuting family of skew-
adjoint operators, so they are simultaneously diagonalizable on H(π), i.e.,
H(π) is spanned by weight vectors. Thus the hypothesis that A(π)∪{0} is a
linear space of dimension 1 is equivalent to the hypothesis that dimH(π) =
1.
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We next bring in the notion of contragredient representations. If π is a
representation of a Lie group G on a finite dimensional space V , we define
its contragredient representation π on V ′ by

(4.2.22) 〈v, π(g)w〉 = 〈π(g−1)v, w〉, v ∈ V, w ∈ V ′,

as in (2.3.12). Suppose π is unitary and V is given an orthonormal basis,
so π(g) is given by a unitary matrix (πjk(g)). Then the matrix entries of
π(g), with respect to the dual basis of V ′, are just the complex conjugates
of those of π. If π is irreducible, so is π.

Now assume π is an irreducible representation of U(n) on V , with con-
tragredient representation π on V ′. Let ξ0 ∈ A(π) ⊂ V (i.e., ξ0 is a weight
vector annihilated by all raising operators) and let η0 ∈ Ab(π) (i.e., η0 is a
weight vector for π annihilated by all lowering operators). Assume ξ0 and
η0 are nonvanishing. Say ξ0 has weight λ ∈ h′ and η0 has weight −µ ∈ h′.
We form

(4.2.23) ψ(X) = 〈dπ(X)ξ0, η0〉 = −〈ξ0, dπ(X)η0〉, X ∈ M(n,C).

Note that

(4.2.24)

X+ ∈ n+ =⇒ ψ(X+) = 0,

X− ∈ n− =⇒ ψ(X−) = 0,

H ∈ h =⇒ ψ(H) = iλ(H)〈ξ0, η0〉 = iµ(H)〈ξ0, η0〉.

We aim to show that 〈ξ0, η0〉 6= 0, which will imply that λ = µ. First, it is
convenient to bring in the following group level analogue of (4.2.23). Thus,
with π a representation of U(n) on V , and with nonzero ξ0 ∈ A(π), η0 ∈
Ab(π) as before, set

(4.2.25) α(g) = 〈π(g)ξ0, η0〉 = 〈ξ0, π(g−1)η0〉.

As we will show in §4.5, a finite-dimensional representation π of U(n) always
extends to a holomorphic representation of Gl(n,C). (Another proof is given
in §4.6.) Hence α(g) is well defined for g ∈ Gl(n,C) and is holomorphic in
g. At this point it is useful to note that dπ(X+)ξ0 = 0 for all X+ ∈ n+
(cf. (4.2.19)), and

dπ(X+)ξ0 = 0 =⇒ π(etX+)ξ0 = etdπ(X+)ξ0 = ξ0, ∀ t.

Hence, since Exp : n+ → N+ has range containing a neighborhood of e ∈
N+,

π(ζ+)ξ0 = ξ0, ∀ ζ+ ∈ N+.

Similarly, π(ζ−1
− )η0 = η0 for all ζ− ∈ N−. Hence, parallel to (4.2.24), we

have, for all g ∈ Gl(n,C),

(4.2.26)
α(gζ+) = α(g), ζ+ ∈ N+,

α(ζ−g) = α(g), ζ− ∈ N−,
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Also

(4.2.27)
α(gδ) = eiλ(H)α(g), δ = eH ∈ T,

α(δg) = eiµ(H)α(g),

since π(eH)ξ0 = eiλ(H)ξ0 and π(e−H)η0 = eiµ(H)η0. More generally,

(4.2.28)
α(δg) = ei(λ(H1)+iλ(H2))α(g), δ = eH1+iH2 ∈ D,

α(gδ) = ei(µ(H1)+iµ(H2))α(g).

We have from (4.2.26)–(4.2.28) that

(4.2.29)
ζ± ∈ N±, δ = eH1+iH2 ∈ D

=⇒ α(ζ−δζ+) = α(δ) = ei(λ(H1)+iλ(H2))α(e).

We are now prepared to prove:

Lemma 4.2.3. Given that π is irreducible,

(4.2.30) 〈ξ0, η0〉 6= 0.

Hence λ = µ.

Proof. We have 〈ξ0, η0〉 = α(e). By (4.2.29), (4.2.7) and holomorphy, if
α(e) = 0 then α(g) ≡ 0. Consider

(4.2.31) V0 = {ξ ∈ V : 〈π(g)ξ, η0〉 = 0, ∀ g ∈ Gl(n,C)}.
Then V0 is an invariant linear subspace of V and ξ0 ∈ V0, so V0 6= 0.
Irreducibility forces V0 = V , but this is clearly false, since η0 6= 0, and the
contradiction forces (4.2.30) to hold. □

Having λ = µ, we can rewrite (4.2.28) as

(4.2.32) α(gδ) = α(δg) = ei(λ(H1)+iλ(H2))α(g), δ = eH1+iH2 ∈ D.

We next prove:

Proposition 4.2.4. If π is an irreducible representation of U(n) on V , then
H(π), given in (4.2.20), is a one-dimensional linear space. Hence the highest
weight vector for π is unique, up to a constant multiple.

Proof. Suppose ξ1 ∈ H(π) is a weight vector. The argument above also
shows 〈ξ1, η0〉 6= 0. Normalize so 〈ξ1, η0〉 = 〈ξ0, η0〉. Then computations
parallel to (4.2.23)–(4.2.29) give 〈π(g)ξ1, η0〉 ≡ α(g), so

(4.2.33) 〈π(g)(ξ1 − ξ0), η0〉 = 0, ∀ g,
hence

(4.2.34) W = Span{π(g)(ξ1 − ξ0) : g ∈ U(n)} ⊥ η0.

Since π(g) :W →W and π is irreducible, this implies ξ1 = ξ0. □
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We next show that inequivalent irreducible representations of U(n) have
distinct highest weights.

Proposition 4.2.5. If π and π′ are irreducible representations of U(n) with
the same highest weight, then π ≈ π′.

Proof. Suppose π′ also has highest weight λ. Pick ξ′0 ∈ A(π′), η′0 ∈ Ab(π′)
and arrange that 〈ξ0, η0〉 = 〈ξ′0, η′0〉. Consider
(4.2.35) β(g) = 〈π′(g)ξ′0, η′0〉.
We have β(e) = α(e) 6= 0, and results parallel to (4.2.26)–(4.2.29) for β
imply

(4.2.36) β(ζ−δζ+) = α(ζ−δζ+), ∀ ζ− ∈ N−, δ ∈ D, ζ+ ∈ N+.

As both α and β are holomorphic on Gl(n,C) and N−DN+ contains a
neighborhood of e ∈ Gl(n,C), it follows that α ≡ β on Gl(n,C) and a fortiori
α ≡ β on U(n). But if π and π′ are not equivalent the Weyl orthogonality
relations imply α ⊥ β in L2(U(n)), so the proposition is proven □

It remains to characterize which elements λ ∈ h′ are highest weights of
irreducible representations of U(n). We take this up in §4.4.



136 4. The unitary groups U(n) and their representations

Exercises

1. A matrix A ∈ Gl(n,C) is said to have an LU factorization if it can be
written A = LU , with L lower triangular and U upper triangular. Show
that this exists if and only if A ∈ Greg, as defined in (4.2.6).

2. The following result is Proposition 1.6.7 of [42].

Proposition. Take A ∈ M(n,C), and for ` ∈ {1, . . . , n}, let A(ℓ) denote
the `× ` matrix forming the upper left corner of A, i.e.,

A(1) = (a11), A(2) =

(
a11 a12
a21 a22

)
, . . . , A(n) = A.

Assume each A(ℓ) is invertible, i.e., detA(ℓ) 6= 0 for 1 ≤ ` ≤ n. Then A has
an LU factorization.

Show that this proposition implies the denseness result stated in (4.2.6). See
if you can prove this proposition (or consult §1.6 of [42]).

3. Show that the map E : Ch⊕ n+ ⊕ n− → Gl(n,C), given by

E(H,N+, N−) = eHeN+eN−

maps a neighborhood of 0 inM(n,C) diffeomorphically onto a neighborhood
of the identity I in Gl(n,C), and use this to establish that Greg contains a
neighborhood of the identity in Gl(n,C), as stated in (4.2.7).
Hint. Show that DE(0, 0, 0) = I.
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4.3. Representations of U(n), II: some basic examples

Here we consider some basic examples of representations of U(n). First,

define representations Sℓ and S
ℓ
of U(n) on

(4.3.1) Pℓ = space of polynomials on Cn homogeneous of degree `,

by

(4.3.2) Sℓ(g)f(z) = f(gtz), S
ℓ
(g)f(z) = f(g−1z).

Note that (4.3.2) extends to g ∈ Gl(n,C), and we have

(4.3.3) dS
ℓ
(X)f(z) =

d

dt
f(e−tXz)

∣∣
t=0

=
d

dt
f(z−tXz)

∣∣
t=0

, X ∈ M(n,C).

Hence

(4.3.4)

dS
ℓ
(ejk)p(z) =

d

dt
p(z1, . . . , zj − tzk, . . . , zn)

∣∣
t=0

= −zk
∂p

∂zj
,

and in particular

(4.3.5) dS
ℓ
(ej)p(z) = −izj

∂p

∂zj
.

We see that, for zα = zα1
1 · · · zαn

n with |α| = α1 + · · ·+ αn = `,

(4.3.6) dS
ℓ
(ej)z

α = −iαjzα.

Thus zα is a weight vector for S
ℓ
, with weight −α. The highest weight

is (0, . . . , 0,−`), with weight vector zℓn. It is clear from (4.3.4) that the

only weight vector annihilated by all raising operators is zℓn. Hence S
ℓ
is

irreducible.

Note that

(4.3.7) dSℓ(X)f(z) =
d

dt
f(etX

t
z)
∣∣
t=0

= −dSℓ(Xt).

Hence

(4.3.8) dSℓ(ejk)p(z) = −dSℓ(ekj)p(z) = zj
∂p

∂zk
, dSℓ(ej)p(z) = izj

∂p

∂zj
.

In particular zα is a weight vector for Sℓ, with weight α. The highest
weight is (`, 0, . . . , 0), with weight vector zℓ1. This is the only weight vector
annihilated by all raising operators, so Sℓ is also irreducible.

Next, we define representations Λℓ of U(n) on ΛℓCn (0 ≤ ` ≤ n) by

(4.3.9) Λℓ(g) v1 ∧ · · · ∧ vℓ = gv1 ∧ · · · ∧ gvℓ.
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This is also well defined for g ∈ Gl(n,C), and we have, for X ∈ M(n,C),

(4.3.10)

dΛℓ(X) v1 ∧ · · · ∧ vℓ

=
d

dt
etXv1 ∧ · · · ∧ etXvℓ

∣∣
t=0

= Xv1 ∧ v2 ∧ · · · ∧ vℓ + · · ·+ v1 ∧ · · · ∧ vℓ−1 ∧Xvℓ.
In this case, with u1, . . . , un as before denoting the standard basis of Cn, if
we set

(4.3.11) uJ = uj1 ∧ · · · ∧ ujℓ , J = (j1, . . . , jℓ),

with j1 < · · · < jℓ, then

(4.3.12)
EjkuJ = uj1 ∧ · · · ∧ ujν−1∧ uj ∧ ujν+1 ∧ · · · ∧ ujℓ , if k = jν ,

0, if k /∈ {j1, . . . , jℓ},
and

(4.3.13)
dΛℓ(ej)uJ = iuJ if j ∈ {j1, . . . , jℓ},

0 if j /∈ {j1, . . . , jℓ}.

Thus uJ is a weight vector for Λℓ, of weight γ(J), where γ(J)j = 1 if
j ∈ {j1, . . . , jℓ}, 0 otherwise. Also from (4.3.12) it follows that the only
weight vector annihilated by all raising operators is u1 ∧ · · · ∧ uℓ. Hence Λℓ

is irreducible, with highest weight (1, . . . , 1, 0, . . . , 0) (with ` ones).

We record the dimensions of the representation spaces described above.
A look at a standard basis shows that

(4.3.14) dimΛℓCn =

(
n

`

)
.

As for Pℓ ≈ SℓCn, we have

(4.3.15) dimSℓCn = #{β ≥ 0 : zβ = zβ11 · · · zβnn , |β| = `}.
If we set ϑn(`) = dimSℓCn, we can see that

(4.3.16) ϑn+1(`) = ϑn(`) + ϑn(`− 1) + · · ·+ ϑn(0).

It is shown in §8.A that

(4.3.17) dimSℓCn+1 =

(
n+ `

n

)
.

We next reconsider the adjoint representation of U(n) on M(n,C), given
by

(4.3.18) Ad(g)X = gXg−1,

and the derived representation ad of u(n) on M(n,C), and its extension to
the representation Cu(n) = M(n,C) on M(n,C), given by

(4.3.19) adX(Y ) = [X,Y ].
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These representations are not irreducible. We have a decomposition into
invariant subspaces

(4.3.20)
M(n,C) = {cI} ⊕M0(n,C),
M0(n,C) = {X ∈ M(n,C) : TrX = 0}.

Ad acts trivially on {cI}. We claim it acts irreducibly on M0(n,C). The
analysis below will establish this.

Using (4.2.12)–(4.2.14), we have the weight space (aka root space) de-
composition

(4.3.21)

M(n,C) = Ch⊕
⊕
j ̸=k

Span(ejk)

= g0 ⊕
⊕
j ̸=k

gωjk
,

where, for X =
∑
xjej , ωjk(X) = xj − xk. Recall from (4.2.15) that

Eℓm = ad eℓm satisfies

(4.3.22) Eℓm : gωjk
−→ gωjk+ωℓm

.

Now ωjk(X)+ωℓm(X) = xj −xk+xℓ−xm, so, given that ` < m and j 6= k,

(4.3.23) ωjk + ωℓm is a root ⇐⇒ k = ` or j = m.

Furthermore,

(4.3.24)
Eℓmejk = [eℓm, ejk] = δmjeℓk − δℓkejm

= 0 provided m 6= j and ` 6= k,

and also

(4.3.25)
m = j ⇒ Eℓmejk = eℓk − δℓkemm = eℓk if ` 6= k

eℓℓ − emm if ` = k,

and

(4.3.26)
` = k ⇒ Eℓmejk = δmjeℓℓ − ejm = − ejm if m 6= j,

eℓℓ − emm if m = j.

In conclusion, we deduce that

(4.3.27)
Eℓmejk = 0, ∀ ` < m⇐⇒ m 6= j and ` 6= k, ∀ ` < m

⇐⇒ j = 1 and k = n.

Hence the subspace of ⊕j ̸=kgωjk
annihilated by all raising operators is gω1n =

Span(e1n), with weight ω1n = (1, 0, . . . , 0,−1).

It remains to investigate which elements of g0 = Ch are annihilated by
all raising operators. In fact, by (4.2.13), for X ∈ h, −[eℓm, X] = [X, eℓm] =
iωℓm(X)eℓm, hence

(4.3.28) Eℓm

(∑
xjej

)
= −i(xℓ − xm)eℓm,
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which is 0 for all ` < m if and only if x1 = · · · = xn.

It follows from these arguments that H(Ad) is spanned by e1n and e11+
· · ·+ enn. These are weight vectors with weights

(4.3.29) (1, 0, . . . , 0,−1) and (0, . . . , 0).

This establishes the irreducibility of Ad on each of the two factors in (4.3.20).

The irreducibility of the representation Ad of U(n) on M0(n,C) is equiv-
alent to the irreducibility of ad, representing M(n,C) on M0(n,C), In turn,
since {cI} is the center of M(n,C), this is equivalent to the irreducibility of
ad, representing M0(n,C) on M0(n,C).

Generally, if g is a Lie algebra, the representation ad of g on g has an
invariant linear subspace h ⊂ g if and only if

(4.3.30) X ∈ g, Y ∈ h =⇒ [X,Y ] ∈ h,

i.e., if and only if h is an ideal of g. If g has no proper ideals, we say g is a
simple Lie algebra. Hence the content of the irreducibility of the action of
U(n) on M0(n,C) derived above is that

(4.3.31) M0(n,C) is a simple complex Lie algebra.
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Exercises

1. Consider the following alternative analyses of the weight vectors for the

representations S
ℓ
, Sℓ, Λℓ, and Ad of U(n).

(a) S
ℓ
(diag(eiθ1 , . . . , eiθn))zα = e−iα·θzα.

So zα is a weight vector for S
ℓ
, with weight −α.

Highest weight (0, . . . , 0,−`).

(b) Sℓ(diag(eiθ1 , . . . , eiθn))zα = eiα·θzα.

So zα is a weight vector for Sℓ, with weight α.

Highest weight (`, 0, . . . , 0).

(c) Λℓ(diag(eiθ1 , . . . , eiθn))uJ = eiγ(J)·θuJ , with

γ(J)j = 1, if j ∈ {j1, . . . , jℓ} (J = (j1, . . . , jℓ)),

0, if not.

So uJ = uj1 ∧ · · · ∧ ujℓ is a weight vector for Λℓ, with weight γ(J).

Highest weight (1, . . . , 1, 0, . . . , 0) (` ones).

(d) Ad(diag(eiθ1 , . . . , eiθn))ejk = ei(θj−θk)ejk.

So ejk is a weight vector for Ad, with weight ωjk(θ) = θj − θk.

Highest weight (1, 0, . . . , 0,−1).
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4.4. Representations of U(n), III: identification of highest
weights

In this section we characterize which elements of h′ are highest weights of
irreducible representations of U(n) and hence parametrize the set of such
representations. As in §4.2, we use the basis {ej : 1 ≤ j ≤ n} of h and
the dual basis of h′ to identify these spaces with Rn, so λ ∈ h′ is written as
λ = (λ1, . . . , λn). Here is our main result.

Theorem 4.4.1. The elements of h′ that are highest weights of an irre-
ducible representation of U(n) are precisely given by

(4.4.1) {(k1, . . . , kn) : kν ∈ Z, k1 ≥ · · · ≥ kn}.
Hence the set of equivalence classes of irreducible unitary representations of
U(n) is in natural one-to-one correspondence with the set (4.4.1).

First we show that if λ = (λ1, . . . , λn) ∈ h′ is a highest weight, then
it must have the form (4.4.1). Since iλ : h → iR must exponentiate to a
homomorphism T → S1 ⊂ C, we must have λ = (k1, . . . , kn), kν ∈ Z. The
fact that k1 ≥ · · · ≥ kn is a consequence of the following.

Lemma 4.4.2. If λ = (λ1, . . . , λn) is a weight of a representation π of U(n)
on V , so is λ(σ) = (λσ(1), . . . , λσ(n)), for each σ ∈ Sn.

Proof. Let Eσ denote the permutation matrix, Eσuk = uσ(k), where {u1, . . . , un}
is the standard basis of Cn; thus Eσ ∈ U(n). It is readily verified that

(4.4.2) E−1
σ diag (c1, . . . , cn)Eσ = diag(cσ(1), . . . , cσ(n)).

Now, given λ = (λ1, . . . , λn), the weight space Vλ has the characterization

(4.4.3) v ∈ Vλ ⇐⇒ π
(
diag(c1, . . . , cn)

)
v = (cλ11 · · · cλnn )v.

It follows that

(4.4.4) π(E−1
σ ) : Vλ −→ Vλ(σ)

is an isomorphism. □

It remains to show that each element of the form (4.4.1) is the high-
est weight of an irreducible representation of U(n). First note that if
(k1, . . . , kn) ∈ h′ is the highest weight of π, then, for each j ∈ Z,
(4.4.5) jπ(g) = (det g)j π(g) has highest weight (k1 + j, . . . , kn + j),

with the same weight vector as π, as follows readily from (4.4.3).

Thus it suffices to construct an irreducible representation of U(n) with
highest weight (k1, . . . , kn) satisfying kν ∈ Z and k1 ≥ · · · ≥ kn ≥ 0. In this
case we can write

(4.4.6) (k1, . . . , kn) = j1γ1 + · · ·+ jnγn, jν ∈ Z+,
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where γℓ is the highest weight of the representation Λℓ of U(n) discussed in
(4.3.9)–(4.3.13), i.e.,

(4.4.7) γℓ = (1, . . . , 1, 0, . . . , 0) (with ` ones).

The following gives the key construction.

Proposition 4.4.3. A weight of the type (4.4.6) occurs as the highest weight
of an irreducible component of the representation

(4.4.8) (Λ1)⊗j1 ⊗ · · · ⊗ (Λn)⊗jn

of U(n) on (Λ1Cn)⊗j1 ⊗ · · · ⊗ (ΛnCn)⊗jn.

Here V ⊗j denotes the j-fold tensor product V ⊗· · ·⊗V . More generally
than Proposition 4.4.3, we have the following.

Proposition 4.4.4. Suppose πj is a unitary representation of U(n) on Vj,
with highest weight λj. Then the representation

(4.4.9) π1 ⊗ · · · ⊗ πK on V1 ⊗ · · · ⊗ VK

has highest weight λ1 + · · ·+ λK .

Proof. Indeed, suppose we have weight space decompositions

(4.4.10) Vj =
⊕

µ∈Sj⊂h′

Vjµ

for πj . Then V1 ⊗ · · · ⊗ VK is spanned by

(4.4.11) V1µ1 ⊗ · · · ⊗ VKµK , µν ∈ Sν ,
and we claim this consists of weight vectors for π1 ⊗ · · · ⊗ πK , of weight
µ1 + · · ·+ µK . Indeed, if vjµj ∈ Vjµj and ϑ(θ) = diag(eiθ1 , . . . , eiθn), then

(4.4.12)

π1 ⊗ · · · ⊗ πK(ϑ(θ))(v1µ1 ⊗ · · · ⊗ vKµK )

= π1(ϑ(θ))v1µ1 ⊗ · · · ⊗ πK(ϑ(θ))vKµK

= eiµ1(θ) · · · eiµK(θ) v1µ1 ⊗ · · · ⊗ vKµK .

□

To return to Proposition 4.4.3, we have that (4.4.6) is the highest weight
of the representation (4.4.8). Now when a representation π of U(n) on V is
decomposed into irreducible factors, the weights that occur in these factors
are precisely the weights that occur in π, so an irreducible factor of (4.4.8)
has the desired highest weight. This finishes the proof of Theorem 4.4.1.

We will denote by D(k1,...,kn) an irreducible unitary representation of
U(n) with highest weight (k1, . . . , kn), satisfying (4.4.1). In particular, from
§4.3 we have

(4.4.13) Sℓ ≈ D(ℓ,0,...,0), S
ℓ ≈ D(0,...,0,−ℓ),
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and

(4.4.14) Λℓ ≈ D(1,...,1,0,...,0), (with ` ones), 0 ≤ ` ≤ n.

It is useful to record explicitly the content of (4.4.5) in this notation:

(4.4.15) D(k1+j,...,kn+j)(g) = (det g)j D(k1,...,kn)(g).

Also from §4.3 we have

(4.4.16) Ad ≈ D(1,0,...,0,−1) ⊕D(0,...,0).

One simple corollary of Theorem 4.4.1 and Lemma 4.4.2 is the following.

Proposition 4.4.5. All the one-dimensional representations of U(n) are
equivalent to the representations

(4.4.17) θj(g) = (det g)j ,

for some j ∈ Z, in turn equivalent to D(j,...,j).

Proof. A representation of U(n) on V when dim V = 1 has only one
weight, say λ = (k1, . . . , kn), with k1 ≥ · · · ≥ kn. By Lemma 4.4.2, each
(kσ(1), . . . , kσ(n)) must also be a weight. This forces k1 = · · · = kn = j (say),
which gives (4.4.17). □
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4.5. Connections between representations of U(n), SU(n),
and Gl(n,C)

Here we compare finite-dimensional representations of the three groups U(n),
SU(n), and Gl(n,C). We first show that any such representation of U(n)
extends to Gl(n,C), as a holomorphic representation. (See §4.6 for another
proof.) To this end, let π be a representation of U(n) on V , dim V < ∞.
We have a Lie algebra representation

(4.5.1) dπ : u(n) −→ End(V ),

which extends to a Lie algebra representation

(4.5.2) dπ : M(n,C) −→ End(V ),

which is also C-linear. By Corollary 3.6.4, this exponentiates to a represen-
tation

(4.5.3) π : G̃l(n,C) −→ Gl(V ),

where G̃l is the universal cover of Gl(n,C). In order to obtain

(4.5.4) π : Gl(n,C) −→ Gl(V ),

we need to show that π in (4.5.3) has the property

(4.5.5) π(g) = I, ∀ g ∈ Kerβ,

where

(4.5.6) β : G̃l(n,C) −→ Gl(n,C)

is the natural covering map. To see this let

(4.5.7) α : Ũ(n) −→ U(n)

denote the natural projection of the universal group Ũ(n) onto U(n). We
have a commutative diagram

Ũ(n) −→G̃l(n,C)
α ↓ β ↓
U(n) −→Gl(n,C)

The following result is key:

Lemma 4.5.1. We have

(4.5.8) Kerα = Ker β.
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Proof. Since Kerα and Ker β are naturally isomorphic to the fundamental
groups of U(n) and Gl(n,C), it suffices to note:

(4.5.9) U(n) ↪→ Gl(n,C) is a deformation retract.

As for this result, this follows by polar decomposition:

(4.5.10) Gl(n,C) ≈ U(n)× P(n),

where P(n) denotes the set of positive-definite operators on Cn. If A ∈
Gl(n,C), we have

(4.5.11) A = UP, U ∈ U(n), P ∈ P(n),

uniquely defined by

(4.5.12) P = (A∗A)1/2, U = AP−1.

□

Returning to (4.5.5), we see this is true when π represents U(n), since,

on Ũ(n), we have π(g) = I for g ∈ Kerα, and (4.5.8) holds. Thus (4.5.4) is
established. Since

(4.5.13) Exp : M(n,C) −→ Gl(n,C)
is holomorphic, we also have that π in (4.5.3) is holomorphic on Gl(n,C).

Our next topic in this section is the comparison of the unitary irreducible
representations of U(n) and SU(n). The key to this study comes from the
exact sequence of groups

(4.5.14) 1 −→ Kn −→ S1 × SU(n) −→ U(n) −→ 1,

where (ω, g) 7→ ωg and

(4.5.15) Kn = {(ω, g) ∈ S1 × SU(n) : g = ω−1I, ωn = 1},
a cyclic group of order n, generated by

(4.5.16) (ζ−1, ζI), ζ = e2πi/n.

Let {σα : α ∈ I} denote a complete set of irreducible unitary representa-
tions of SU(n). By Proposition 2.8.11, a complete set of irreducible unitary
representations of S1 × SU(n) is given by {πmα : m ∈ Z, α ∈ I}, defined by

(4.5.17) πmα(ω, g) = ωmσα(g).

Such a representation of S1 × SU(n) produces a representation of U(n) if
and only if πmα(Kn) = I, i.e., if and only if

(4.5.18) σα(ζI) = ζmI,

when ζ = e2πi/n. Now, since ζI is in the center of SU(n), it follows that, for
any α ∈ I, σα(ζI) is a scalar that is an nth root of unity, i.e.,

(4.5.19) σα(ζI) = ζµI, µ = µ(α) ∈ Z.
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Then πmα in (4.5.17) gives a representation of U(n) if and only if

(4.5.20) m = µ(α) mod n.

Since we have already produced a complete set of irreducible unitary
representations of U(n), it is appropriate to turn this around. We have the
following.

Proposition 4.5.2. Each irreducible unitary representation of U(n) re-
stricts to an irreducible unitary representation of SU(n), and all irreducible
unitary representations of SU(n) are obtained in this fashion. Furthermore,
two irreducible unitary representations π1 and π2 of U(n) restrict to the
same representation of SU(n) if and only if, for some j ∈ Z,

(4.5.21) π2(g) = (det g)j π1(g), ∀ g ∈ U(n).

Hence the set of equivalence classes of irreducible unitary representations of
SU(n) is parametrized by

(4.5.22) {(d1, . . . , dn−1, 0) : dν ∈ Z, d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 0}.

Proof. It remains to show that if πℓ are irreducible and π1 = π2 on SU(n),
then there exists j ∈ Z such that (4.5.21) holds. To see this, suppose πℓ are
as in (4.5.17), which we rewrite as

(4.5.23) πℓ(ωg) = ωmℓσℓ(g), ω ∈ S1, g ∈ SU(n),

where σℓ is an irreducible representation of SU(n), so, as in (22.18),

(4.5.24) σℓ(ζI) = ζmℓI,

where ζ = e2πi/n. We have

(4.5.25) π1 = π2 on SU(n) ⇐⇒ σ1 ≡ σ2,

which implies

(4.5.26) π1(ωg) = ωm1−m2π2(ωg), ∀ω ∈ S1, g ∈ SU(n).

We claim

(4.5.27) n|(m1 −m2), i.e., m1 −m2 = nj, j ∈ Z.

Since detωg = ωn, this would give (4.5.21). To verify (4.5.27), we note that
(4.5.24)–(4.5.25) give

(4.5.28) ζm1−m2 = 1,

from which (4.5.27) follows. This proves (4.5.21). □
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Recall from §4.4 the notation D(k1,...,kn) for an irreducible representation
of U(n) with highest weight (k1, . . . , kn). We keep this notation for the
restriction to SU(n), noting that

(4.5.29) D(k1,...,kn) ≈ D(k1+j,...,kn+j) on SU(n), ∀ j ∈ Z.
Note that the representations Dk/2 of SU(2) produced in §4.1, by (4.1.25),
are given in this nomenclature (cf. (4.4.13), in light of (4.3.2)) as

(4.5.30)
Dk/2 = D(0,−k)

≈ D(k,0), on SU(2),

the last equivalence (special to n = 2) by (4.5.29).
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4.6. Analytic continuation from U(n) to Gl(n,C) revisited

The following result proved useful in the analysis of the irreducible repre-
sentations of U(n) in §4.2.

Theorem 4.6.1. If π is a representation of U(n) on a finite dimensional
complex vector space V , then π extends to a holomorphic representation of
Gl(n,C) on V .

This was proven in §4.5. The proof given there extended dπ, C-linearly,
from the Lie algebra u(n) of U(n) to the Lie algebra M(n,C) of Gl(n,C).
Then it was shown that this Lie algebra representation arose from a repre-
sentation of Gl(n,C) itself, and not just its universal covering group. This
latter step involved some topology. Here we give another proof of Theo-
rem 4.6.1, deriving it from Proposition 4.6.2, below, which is of independent
interest.

To set up Proposition 4.6.2, we define the representation T p,q of U(n)
on T p,q(Cn) = (⊗pCn)⊗ (⊗qCn) by

(4.6.1)
T p,q(g)v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq

= gv1 ⊗ · · · ⊗ gvp ⊗ (g−1)tw1 ⊗ · · · ⊗ (g−1)twq.

Note that

(4.6.2) g ∈ U(n) ⇐⇒ (g−1)t = g.

Next, we define the representation TK of U(n) on TK(Cn) = ⊕p+q≤KT
p,q(Cn)

by

(4.6.3) TK(g)
( ⊕
p+q≤K

vpq

)
=

⊕
p+q≤K

T p,q(g)vpq.

The following result is closely related to the “easy” proof of the Peter-Weyl
theorem for compact matrix groups given in §2.3.

Proposition 4.6.2. If π is a finite dimensional representation of U(n) on
V , then there exists K <∞ such that π is contained in TK .

The content of Proposition 4.6.2 is that, for some K, there is a linear
subspace W ⊂ TK(Cn), invariant under the action of TK , and a linear
isomorphism J : V →W such that

(4.6.4) π(g) = J−1TK(g)J,

for all g ∈ U(n). Given this result, Theorem 4.6.1 has the following simple
proof. The formula (4.6.1) is clearly well defined for g ∈ Gl(n,C), holo-
morphic in g, and this formula together with (4.6.3) provides an explicit
extension of TK from U(n) to Gl(n,C).
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We claim that (4.6.4) extends π from U(n) to Gl(n,C). To see this, we
start with the fact that

(4.6.5) TK(g) :W −→W,

for all g ∈ U(n). We want to show that (4.6.5) holds for all g ∈ Gl(n,C).
Indeed, the validity of (4.6.5) for all g ∈ U(n) implies

(4.6.6) dTK(X) :W −→W,

for all X ∈ u(n), i.e., X = −X∗. Since TK is holomorphic, dTK :M(n,C) →
L(TK(Cn)) is C-linear, hence (4.6.6) holds for all X ∈M(n,C). Thus

(4.6.7) TK(etX) = et dTK(X) :W −→W,

for all X ∈ M(n,C), so (4.6.5) holds for all g in a neighborhood of I in
Gl(n,C), hence for all g ∈ Gl(n,C). Thus we have Theorem 4.6.1, once we
have proved Proposition 4.6.2.

To prove Proposition 4.6.2, we can produce hermitian inner products
so that π and TK are unitary representations. Also π breaks up into irre-
ducible pieces, and it suffices to treat each piece. Thus we can assume π
is irreducible. Let us assume such π is not contained in TK for any K and
obtain a contradiction.

Let L denote the linear span of the matrix entries of TK , as K varies
over N. If π is not contained in any TK , it is not equivalent to any of
the irreducible representations into which TK breaks up, so by the Weyl
orthogonality relations it follows that the matrix entries of π must be or-
thogonal to each element of L, in L2(U(n)). However, from the construction
(4.6.1)–(4.6.3) it is clear that L is an algebra of continuous functions on
U(n), invariant under complex conjugation, and L separates the points of
U(n). Hence, by the Stone-Weierstrass theorem, L is dense in C(U(n)), and
a fortiori dense in L2(U(n)). This contradiction proves Proposition 4.6.2.

We complement Theorem 4.6.1 with the following uniqueness result.

Proposition 4.6.3. In the setting of Theorem 4.6.1, the extension of π on
U(n) to a holomorphic representation of Gl(n,C) on V is unique.

Proof. Suppose π1 and π2 are holomorphic representations of Gl(n,C) that
agree on U(n):

(4.6.8) π1(g) = π2(g) = π(g), ∀ g ∈ U(n).

The representations πj have derived representations

(4.6.9) dπj :M(n,C) −→ L(V ),
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Lie algebra homomorphisms, and

(4.6.10) dπ1(X) = dπ2(X) = dπ(X), ∀X = −X∗ ∈M(n,C).
Furthermore, the fact that πj are holomorphic implies

(4.6.11) dπj :M(n,C) −→ L(V ) are C-linear.
Since each Y ∈M(n,C) can be written as Y = X1 + iX2, with X

∗
j = −Xj ,

this forces

(4.6.12) dπ1 = dπ2 :M(n,C) −→ L(V ).

Hence

(4.6.13) π1(e
tY ) = et dπ1(Y ) = et dπ2(Y ) = π2(e

tY ), ∀Y ∈M(n,C).
Thus π1(g) = π2(g) for all g in a neighborhood of I in Gl(n,C), and this
implies

(4.6.14) π1(g) = π2(g), ∀ g ∈ Gl(n,C).
□
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4.7. Decomposition of Sk ⊗ S
ℓ

Here we consider how to decompose the representation

(4.7.1) Skℓ = Sk ⊗ S
ℓ

of U(n) into irreducible pieces. This representation acts on Pk⊗Pℓ, which we
can identify with the space of polynomials p(z, w), homogeneous of degree
k in z and ` in w. We have

(4.7.2) Skℓ (g)p(z, w) = p(gtz, g−1w),

for g ∈ U(n), extending holomorphically to g ∈ Gl(n,C). This induces an
action dSkℓ (X) on such polynomials, for X in u(n), and its complexification
M(n,C). Parallel to (4.3.4) and (4.3.8) we have

(4.7.3) dSkℓ (eµν) = zµ
∂

∂zν
− wν

∂

∂wµ
.

To decompose Skℓ into irreducible pieces, it will be helpful to identify the
set of elements of Pk ⊗ Pℓ annihilated by all raising operators, i.e., by all
operators of the form (4.7.3) with µ < ν. The following result accomplishes
this.

Lemma 4.7.1. If p(z, w) is a polynomial annihilated by all operators of the
form (4.7.3) with µ < ν, then

(4.7.4) p(z, w) = q(z1, wn, z · w),

for some polynomial q on C3, where z · w = z1w1 + · · ·+ znwn.

Proof. The polynomials we are considering can be characterized by

p(gtz, g−1w) = p(z, w), ∀g ∈ N+.

In particular, p(z, w) is invariant under the action of one-parameter sub-
groups:

(4.7.5) zν 7→ zν + tzµ, wµ 7→ wµ − twν , µ < ν.

Suppose z1 6= 0 and take, successively for ν = 2, . . . , n, parameters t such
that zν + tz1 = 0. We deduce that

(4.7.6) p(z, w) = p((z1, 0, . . . , 0), w̃),

where w̃ differs from w only in the first coordinate. Note that z ·w = z1w̃1,
since gtz · g−1w = z · w for all g ∈ Gl(n,C). Next, taking ν = n and
µ ∈ {1, . . . , n−1} in (4.7.5), if wn 6= 0 we can transform w̃ to a vector whose
first n − 1 coordinates vanish, while leaving unchanged its last coordinate,
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and also leaving unchanged all coordinates of (z1, 0, . . . , 0) but the last.
Hence (4.7.5) implies

(4.7.7) p(z, w) = p((z1, 0, . . . , 0, ζ), (0, . . . , 0, wn)).

Again z · w = (z1, 0, . . . , 0, ζ) · (0, . . . , 0, wn) = ζwn, so

(4.7.8) ζ =
z · w
wn

.

Consequently, for p ∈ Pk ⊗ Pℓ, (23.7) yields

p(z, w) = wℓ−kn p((z1wn, 0, . . . , 0, z · w), (0, . . . , 0, 1)),

for z1 6= 0, wn 6= 0, an identity that clearly extends to z1 = 0. If ` ≥ k, it
also extends to wn = 0, yielding (4.7.4).

If ` < k, we can argue in the opposite order, obtaining the following
analogue of (4.7.7):

p(z, w) = p((z1, 0, . . . , 0), (ζ, 0, . . . , 0, wn)),

this time with ζ = (z · w)/z1. Hence, for p ∈ Pk ⊗ Pℓ,

p(z, w) = zk−ℓ1 p((1, 0, . . . , 0), (z · w, 0, . . . , 0, z1wn)),

for z1 6= 0, wn 6= 0. This extends to wn = 0 and also, given k > `, to z1 = 0,
and again we have (4.7.4). □

It follows from Lemma 4.7.1 that the space Zkℓ of elements of Pk ⊗ Pℓ
annihilated by all raising operators is spanned by

(4.7.9) ψkℓµ(z, w) = zk−µ1 wℓ−µn (z1w1 + · · ·+ znwn)
µ, 0 ≤ µ ≤ k ∧ `.

Each of these elements is a weight vector for Skℓ . In fact,

(4.7.10)
dSkℓ (eν)ψkℓµ(z, w) = i

(
zν

∂

∂zν
− wν

∂

∂wν

)
ψkℓµ(z, w)

= i[(k − µ)δν1 − (`− µ)δνn]ψkℓµ(z, w).

The weight so obtained is

(4.7.11) (k − µ, 0, . . . , 0, µ− `), 0 ≤ µ ≤ k ∧ `.

Alternatively, note that if g = diag(c1, . . . , cn) then

(4.7.12)

Skℓ (g)ψkℓµ(z, w) = ψkℓµ(g
tz, g−1w)

= ck−µ1 c−(ℓ−µ)
n zk−µ1 wℓ−µn (z · w)µ

= ck−µ1 cµ−ℓn ψkℓµ(z, w),

again leading to (4.7.11). These calculations establish the following.
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Proposition 4.7.2. For k, ` ≥ 0 we have

(4.7.13) Sk ⊗ S
ℓ ≈

⊕
0≤µ≤k∧ℓ

D(k−µ,0,...,0,µ−ℓ),

as representations of U(n). The highest weight vectors for the irreducible
components on the right side of (4.7.13) are given by (4.7.9).

Remark 1. For n = 2, this result captures the Clebsch-Gordon series
(4.1.52), in view of the identities in (4.5.30).

Remark 2. In case k = ` = 1, we have S1 ⊗ S
1 ≈ Ad, analyzed in §20.

Compare this case of (4.7.13) with (4.4.16).

Note that the highest weight that occurs in (4.7.13) is (k, 0, . . . , 0,−`).
We specifically identify the subspace of Pk ⊗ Pℓ on which Skℓ acts like
D(k,0,...,0,−ℓ).

Proposition 4.7.3. The irreducible component of Pk ⊗ Pℓ containing the
highest weight vector ψkℓ0(z, w) = zk1w

ℓ
n is given by

(4.7.14) P#
kℓ =

{
p(z, w) ∈ Pk ⊗ Pℓ :

n∑
j=1

∂2p

∂zj∂wj
= 0
}
.

Proof. That P#
kℓ is invariant under the action of U(n) follows from the

fact that the operator
∑
∂2/∂zj∂wj commutes with all the operators in

(4.7.3). Now we consider which elements of P#
kℓ are annihilated by all raising

operators, i.e., we identify the intersection of P#
kℓ with the linear span of the

elements ψkℓµ given by (4.7.9). A calculation gives

(4.7.15)
n∑
j=1

∂2

∂zj∂wj
ψkℓµ(z, w) = µ(n− 1 + k + `− µ)

ψkℓµ(z, w)

z · w
.

Hence the only element in P#
kℓ annihilated by all raising operators is (up to

a scalar multiple) ψkℓ0(z, w) = zk1w
ℓ
n. This establishes irreducibility of the

action of U(n) on P#
kℓ and finishes the proof. □

In conclusion, we see that

(4.7.16) D(k,0,...,0,−ℓ) is realized on P#
kℓ.

Let us specialize to n = 3. We have representations

(4.7.17) D(k,0,−ℓ) of U(3) on P#
kℓ.



4.7. Decomposition of Sk ⊗ S
ℓ

155

Multiplying by (det g)j gives representations

(4.7.18) D(k+j,j,j−ℓ) of U(3) on P#
kℓ.

The results of §4.4 show that (4.7.18) produces a complete set of irreducible
representations of U(3).

We can produce an alternative realization of (4.7.16) as follows. An
element of Pk ⊗ Pℓ can be written

(4.7.19) p(z, w) =
∑

Aj1···jki1···iℓ zj1 · · · zjkwi1 · · ·wiℓ ,

with A···
··· symmetric in the js and the is. A computation gives

(4.7.20)

n∑
j=1

∂2

∂zj∂wj
p(z, w) =

∑
ν,i,j

Aνj2···jkνi2···iℓ zj2 · · · zjkwi2 · · ·wiℓ .

In other words, we have U(n) acting on

(4.7.21) Pk ⊗ Pℓ ≈ (SkCn)⊗ (SℓCn)′,
and

(4.7.22) P#
kℓ ≈

{
Aj1···jki1···iℓ ∈ (SkCn)⊗ (SℓCn)′ : Aνj2···jkνi2···iℓ ≡ 0

}
,

where the summation convention is indicated over ν.

Let us return to (4.7.13) and set k = ` = 1, so (4.7.13) gives

(4.7.23) S1 ⊗ S
1 ≈ D(1,0,...,0,−1) ⊕D(0,...,0).

Note that S1 acts on Cn and S
1
acts on (Cn)′, and via Cn⊗(Cn)′ ≈ M(n,C),

we have

(4.7.24) S1 ⊗ S
1 ≈ Ad,

so (4.7.23) is equivalent to (4.4.16).

Contrast this with the decomposition of Cn ⊗ Cn into symmetric and
antisymmetric 2-tensors. This yields

(4.7.25) S1 ⊗ S1 ≈ Λ2 ⊕ S2 ≈ D(1,1,0,...,0) ⊕D(2,0,...,0).

The decomposition of ⊗kCn into irreducible spaces for larger k will be stud-
ied in §4.10.
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4.8. Commutants, double commutants, and dual pairs

In this section we make some general observations on decomposing a unitary
representation π of a compact Lie group G on a finite-dimensional space V
into irreducible pieces. Recall that π is irreducible if and only if the set
of operators on V commuting with π(g) for all g ∈ G consists of scalar
multiples of the identity. In the general case, it is useful to look at

(4.8.1) A = algebra generated by π(g) : g ∈ G, A ⊂ End(V ),

and its commutant, defined by

(4.8.2) A′ = {B ∈ End(V ) : BA = AB, ∀ A ∈ A}.

As we know, V can be decomposed into irreducible subspaces. Say

(4.8.3) V =
k⊕
j=1

njVj ,

where njVj = Vj⊕· · ·⊕Vj (nj factors), with π acting irreducibly on each Vj
(call the irreducible representation Uj). Arrange the decomposition (4.8.3)
so that distinct js correspond to inequivalent Ujs. We can write njVj =
Vj ⊗Wj , Wj ≈ Cnj , i.e.,

(4.8.4) V =

k⊕
j=1

Vj ⊗Wj ,

with πj = π|Vj⊗Wj given by

(4.8.5) πj(g) = Uj(g)⊗ I,

and

(4.8.6) Uj irreducible on Vj , j1 6= j2 ⇒ Uj1 inequivalent to Uj2 .

The following result records some important structure.

Proposition 4.8.1. In the set-up described above,

(4.8.7) A =
{ k⊕
j=1

Aj ⊗ I : Aj ∈ End(Vj)
}
.

If we set

(4.8.8) B = A′,

then

(4.8.9) B =
{ k⊕
j=1

I ⊗Bj : Bj ∈ End(Wj)
}
.
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Furthermore,

(4.8.10) B′ = A.

Proof. It is immediate from (4.8.5) that every element of A has the form

given on the right side of (4.8.7). For the converse, pick a basis u
(j)
1 , . . . , u

(j)
dj

for Vj and, for `,m ∈ {1, . . . , dj}, let e(j)ℓm ∈ End(Vj) be given by e
(j)
ℓmu

(j)
µ =

δµmu
(j)
ℓ . Also write (U

(j)
ℓm(g)) as the matrix representation of Uj(g) ∈ End(Vj)

with respect to this basis. It follows from the Weyl orthogonality relations
(2.2.6)–(2.2.7) that

(4.8.11) dj

∫
G

U
(j)
ℓm(g)π(g) dg = e

(j)
ℓm ⊗ I,

on Vj ⊗Wj , and vanishes on Vℓ ⊗Wℓ for ` 6= j, so every element on the
right side of (4.8.7) is a limit of superpositions of elements of A, hence an
element of A (since the linear subspace A of the finite-dimensional space
End(V ) must be closed). Thus we have (4.8.7).

To prove (4.8.9), first note that whenever A is given by (4.8.7), then
clearly the right side of (4.8.9) is contained in A′. We establish the reverse
inclusion. Let Pj be the orthogonal projection of V onto Vj ⊗ Wj . By
(4.8.7), Pj ∈ A. Hence B ∈ A′ ⇒ BPj = PjB, 1 ≤ j ≤ k, i.e., B leaves

each Vj ⊗Wj invariant; say B|Vj⊗Wj = B̃j . We have

(4.8.12) B̃j : Vj⊗Wj → Vj⊗Wj , B̃j(A⊗I) = (A⊗I)B̃j , ∀A ∈ End(Vj).

Taking A = e
(j)
ℓℓ we see that B̃j leaves invariant each space (u

(j)
ℓ ) ⊗ Wj .

Taking a basis w
(j)
1 , . . . , w

(j)
nj of Wj , we have

(4.8.13) B̃j(u
(j)
ℓ ⊗ w(j)

m ) =
∑
µ

βµℓm u
(j)
ℓ ⊗ w(j)

µ .

If we next take A = e
(j)
ℓν ⊗ I and compute B̃jA(u

(j)
ν ⊗ w

(j)
m ) and AB̃j(u

(j)
ν ⊗

w
(j)
m ) and compare, we see that βµℓm = βµνm, i.e., β

µ
ℓm is independent of `.

Hence B̃j = I ⊗ Bj with Bj ∈ End(Wj), proving (4.8.9). The way we got
(4.8.9) from (4.8.7) immediately gives (4.8.10). □

The result (4.8.10) is a special case of a result known as the double
commutant theorem. It holds when A is a subalgebra of End(V ) closed
under adjoints (we say A is a C∗-algebra). In fact there is a far ranging
extension to a special class of C∗-algebras (called von Neumann algebras)
valid when V is an infinite dimensional Hilbert space. See [33].

Now we add structure by bringing in two groups, acting on V .
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Proposition 4.8.2. Let G and K be compact Lie groups, π a unitary rep-
resentation of G on V , τ a unitary representation of K on V . Let

(4.8.14)
A = algebra generated by π(g), g ∈ G,

B = algebra generated by τ(k), k ∈ K.

Assume

(4.8.15) A′ = B.

Let Sπ = {αj} denote the set of irreducible unitary representations of G
contained in π, and let Sτ = {βj} denote the set of irreducible unitary
representations of K contained in τ (up to equivalence). Then there exists
a bijective map Q : Sπ → Sτ and a decomposition

(4.8.16) V =

ℓ⊕
j=1

Vj ⊗Wj , ` = #(Sπ) = #(Sτ ),

such that

(4.8.17) π(g) =
ℓ⊕

j=1

αj(g)⊗ I, τ(k) =
ℓ⊕

j=1

I ⊗ βQ(j)(k).

Proof. The representation π of G decomposes as in (4.8.3). The orthogonal
projections Pj of V on njVj are the minimal projections in the center of A,
so such minimal projections match up bijectively with Sπ. Similarly Sτ is in
one-to-one correspondence with the minimal orthogonal projections in the
center of B. Now we are given that A′ = B, and hence, by Proposition
4.8.1, B′ = A. Hence central projections in A are precisely projections in
A ∩ B and similarly for central projections in B. Thus both Sπ and Sτ are
in one-to-one correspondence with the same set of projections.

Let us focus on the range of the projection Pj , relabeling this space as
V , so π contains n1 copies of one irreducible representation (say α1) of G
and τ contains m1 copies of one irreducible representation (say β1) of K.
Our final claim is that in such a case

(4.8.18) V ≈ V1 ⊗W1,

with

(4.8.19) π(g) = α1(g)⊗ I, τ(k) = I ⊗ β1(k),

given (4.8.15). In fact Proposition 4.8.1 gives a tensor product decompo-
sition (4.8.18) such that (4.8.19) holds for π(g). Then the fact that A′ is
given by (4.8.9) also puts τ(k) in the general form indicated in (4.8.19), i.e.,

τ(k) = I ⊗ γ(k).
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It remains to dispose of the possibility that γ is a sum of several copies
of an irreducible representation (i.e., of β1). Indeed, again by Proposition
4.8.1, the commutant of the set of operators generated by α1(g)⊗ I is all of
I ⊗ End(W1), which (by hypothesis) is the algebra generated by I ⊗ γ(k),
so γ cannot decompose into several irreducibles. □

When compact G and K act on V as in Proposition 4.8.2, with (4.8.15)
holding, we say G and K act as a dual pair on V . A key family of examples
of dual pairs will be given in §4.9.

Note that, in the setting of Proposition 4.8.2, π(g)τ(k) gives a represen-
tation of G×K on V , and (4.8.17) gives

(4.8.20) π(g)τ(k) =

ℓ⊕
j=1

αj(g)⊗ βQ(j)(k).

In particular, taking traces gives

(4.8.21) Trπ(g)τ(k) =
ℓ∑

j=1

χαj (g)χβQ(j)
(k).
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4.9. The first fundamental theorem of invariant theory

The group U(n) acts on ⊗kCn via

(4.9.1) ⊗kg(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk, g ∈ U(n), vν ∈ Cn.

In addition, the permutation group Sk acts on ⊗kCn via

(4.9.2) τ(σ)(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k), σ ∈ Sk.

It is clear that ⊗kg commutes with τ(σ) for each g ∈ U(n), σ ∈ Sk, so we
get a representation of Sk × U(n) on ⊗kCn. The following is the key result
of this section.

Proposition 4.9.1. The groups Sk and U(n) act as a dual pair on ⊗kCn.

To restate this, let

(4.9.3)
A = algebra generated by τ(σ), σ ∈ Sk, A ⊂ End(⊗kCn),

B = algebra generated by ⊗k g, g ∈ U(n).

It is clear that B ⊂ A′ and A ⊂ B′, as we have already mentioned. To prove
Proposition 4.9.1, we will show that

(4.9.4) A′ = B.

In view of Proposition 4.8.1, this gives also

(4.9.5) B′ = A.

Our treatment follows [34].

To begin our analysis of A′, we note that

(4.9.6) End(⊗kCn) ≈ ⊗k End(Cn),

via

(4.9.7) A1 ⊗ · · · ⊗ Ak(v1 ⊗ · · · ⊗ vk) = A1v1 ⊗ · · · ⊗ Akvk.

In fact, (4.9.7) yields a homomorphism ⊗k End(Cn) → End(⊗kCn). One
verifies that this map is injective, hence bijective, since the dimensions of
the two sides of (4.9.6) are equal. We let σ ∈ Sk act on ⊗k End(Cn) by

(4.9.8) T (σ)A1 ⊗ · · · ⊗ Ak = Aσ(1) ⊗ · · · ⊗ Aσ(k).

Lemma 4.9.2. Given X ∈ End(⊗kCn), σ ∈ Sk,

(4.9.9) T (σ)X = τ(σ)Xτ(σ)−1.



4.9. The first fundamental theorem of invariant theory 161

Proof. It suffices to check (4.9.9) for X = A1 ⊗ · · · ⊗ Ak. Then

(4.9.10)

τ(σ)(A1 ⊗ · · · ⊗ Ak)τ(σ)
−1(v1 ⊗ · · · ⊗ vk)

= τ(σ)A1 ⊗ · · · ⊗ Ak(vσ−1(1) ⊗ · · · ⊗ vσ−1(k))

= τ(σ)A1vσ−1(1) ⊗ · · · ⊗ Akvσ−1(k)

= Aσ(1)v1 ⊗ · · · ⊗ Aσ(k)vk,

which gives (4.9.9). □

At this point we have

(4.9.11)

A′ = {X : τ(σ)X = Xτ(σ), ∀ σ ∈ Sk}
= {X : T (σ)X = X, ∀ σ ∈ Sk}

= Sk End(Cn).

The next lemma is an exercise in linear algebra.

Lemma 4.9.3. If W is a finite-dimensional vector space,

(4.9.12) SkW = Span {a⊗ · · · ⊗ a : a ∈W}.

Hence we have from (4.9.11)

(4.9.13) A′ = Span {A⊗ · · · ⊗ A : A ∈ End(Cn)}.

By comparison,

(4.9.14) B = Span {g ⊗ · · · ⊗ g : g ∈ U(n)}.

To prove (4.9.4), it remains to show that the spaces (4.9.13) and (4.9.14)
coincide. To see this, note that, for Y ∈ u(n),

(4.9.15) d⊗k(Y )(v1⊗· · ·⊗vk) = Y v1⊗v2⊗· · ·⊗vk+· · ·+v1⊗· · ·⊗vk−1⊗Y vk
has the property that

(4.9.16) d⊗k (Y ) ∈ B,

since this is a limit of difference quotients of elements of B, by (4.9.14).
Then (4.9.16) holds for all Y ∈ Cu(n) = End(Cn), and exponentiating this
gives

(4.9.17) A⊗ · · · ⊗ A ∈ B, ∀ A ∈ Gl(n,C).

Since Gl(n,C) is dense in End(Cn), we have A ⊗ · · · ⊗ A ∈ B for all A ∈
End(Cn), so in view of (4.9.13) we now have A′ = B, as advertised in (4.9.4),
and Proposition 4.9.1 is proven.

It is useful to restate the result (4.9.5) as follows. Define the represen-
tation ϑnk of U(n) on End(⊗kCn) by

(4.9.18) ϑnk(g)A = (⊗kg)A(⊗kg−1), g ∈ U(n), A ∈ End(⊗kCn).
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Denote by Enk the subspace of End(⊗kCn) on which ϑnk acts trivially. Then
(4.9.5) implies that Enk is spanned by the operators τ(σ), σ ∈ Sk, given by
(4.9.2). To elaborate, (4.9.2) yields a linear map

(4.9.19) τ#nk : `
1(Sk) −→ End(⊗kCn),

as a special case of the construction in §2.7, and

(4.9.20) Enk = Range of τ#nk.

Note that

(4.9.21) ϑnk ≈ (⊗k)⊗ (⊗k),

acting on (⊗kCn)⊗ (⊗kCn)′, via

(4.9.22) g ·(v1⊗· · ·⊗vk⊗w1⊗· · ·⊗wk) = gv1⊗· · ·⊗gvk⊗g′w1⊗· · ·⊗g′wk,

where g′ = (gt)−1, so g ∈ U(n) ⇒ g′ = g. Hence Enk is isomorphic to the
space

(4.9.23) Enk ⊂ (⊗kCn)⊗ (⊗kCn)′ where U(n) acts trivially.

The following restatement of (4.9.20) is known as the first fundamental
theorem of invariant theory (for unitary invariants).

Proposition 4.9.4. The space Enk ⊂ (⊗kCn) ⊗ (⊗kCn)′ on which U(n)
acts trivially is spanned by {tσ : σ ∈ Sk}, where

(4.9.24) tσ(w1 ⊗ · · · ⊗ wk, v1 ⊗ · · · ⊗ vk) = 〈v1, wσ(1)〉 · · · 〈vk, wσ(k)〉,

with vν ∈ Cn, wν ∈ (Cn)′, and the standard identification of V ⊗ V ′ with
the space of bilinear maps on V ′ × V .

It follows from Proposition 2.1.5 that the orthogonal projection of (⊗kCn)⊗
(⊗kCn)′ onto Enk is given by

(4.9.25) Pnk =

∫
U(n)

(⊗kg)⊗ (⊗kg) dg.

Hence

(4.9.26) dimEnk = TrPnk =

∫
U(n)

|Tr g|2k dg.

A computation of this dimension is of interest; “half” the cases are elemen-
tary:

Proposition 4.9.5. If k ≤ n, then the map τ#nk in (4.9.19) is injective.
Hence

(4.9.27) k ≤ n =⇒ dimEnk = k!
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Proof. Let {u1, . . . , un} denote the standard basis of Cn. If k ≤ n, then
the elements

(4.9.28) τ(σ)u1 ⊗ · · · ⊗ uk = uσ(1) ⊗ · · · ⊗ uσ(k), σ ∈ Sk,

are linearly independent in ⊗kCn, which implies injectivity of τ#nk. □

If k > n, neither the left nor the right side of (4.9.26) is easy to evaluate.
We will make further comments on this in §4.10.
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4.10. Decomposition of ⊗kCn

Since Sk and U(n) act as a dual pair on ⊗kCn, Proposition 4.8.2 is applica-
ble. Hence ⊗kCn has a decomposition of the form (4.8.16), with Sk acting
irreducibly on Vj and U(n) acting irreducibly on Wj . In this section we give
a more explicit description of these factors and representations, though we
refer to other sources for proofs.

To start, we recall from §4.4 irreducible representations of U(n) that
were produced on subspaces of ⊗kCn. Namely we have the representation
Dλ of U(n) on the linear subspace of

(4.10.1) (Λ1Cn)⊗j1 ⊗ · · · ⊗ (ΛnCn)⊗jn ,

generated by the weight vector (u1)
j1 ⊗ (u1 ∧ u2)j2 ⊗ · · · ⊗ (u1 ∧ · · · ∧ un)jn ,

with highest weight

(4.10.2) λ = j1γ1 + · · ·+ jnγn = (r1, . . . , rn), rν = jν + · · ·+ jn.

The cases that arise for which (4.10.1) is a subspace of ⊗kCn are those for
which

(4.10.3) r1 ≥ · · · ≥ rn ≥ 0, r1 + · · ·+ rn = k, rν ∈ Z+.

We denote by Fnk the set of n-tuples λ = (r1, . . . , rn) satisfying (4.10.3).
Such λ is called a Young frame on k for U(n). It turns out that precisely
these representations Dλ of U(n) occur in the decomposition (4.8.16) when
V = ⊗kCn.

We now describe the associated representation Sλ of Sk. To the Young
frame λ ∈ Fnk we associate a Young diagram as follows. The diagram
consists of boxes, arranged in columns. Proceeding from left to right, there
are jn columns of length n, then jn−1 columns of length n − 1, . . . , to j1
columns of length 1. See Figure 4.10.1. Note that the top row has length
r1 = j1+ · · ·+jn, the next row has length r2 = j2+ · · ·+jn, etc. We number
these boxes as follows. The leftmost column is numbered 1, . . . , n from the
top down (if jn 6= 0). The numbering proceeds to the next column, from
top to bottom, etc. With this set-up, we define some special subsets of Sk,
as follows. Let Fλ denote the Young diagram just described. We set

(4.10.4)
Pλ = {σ ∈ Sk : σ preserves each row of Fλ},
Qλ = {σ ∈ Sk : σ preserves each column of Fλ}.

We define pλ, qλ, cλ ∈ `1(Sk) by

(4.10.5) pλ =
∑
σ∈Pλ

σ, qλ =
∑
σ∈Qλ

(sgnσ)σ, cλ = pλ ∗ qλ.

Proposition 4.10.1. In the convolution algebra `1(Sk),

(4.10.6) cλ ∗ cλ = µ cλ,
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Figure 4.10.1. Young diagram

for some µ ∈ (0,∞).

Thus µ−1cλ is an idempotent in `1(Sk), yielding a projection Cλ on
`2(Sk), via right convolution. The range Eλ of Cλ in `2(Sk) is a linear
subspace of `2(Sk) that is invariant under the left regular representation of
Sk on `2(Sk). We denote the resulting representation of Sk on Eλ by Sλ.

Proposition 4.10.2. The representation Sλ of Sk on Eλ is irreducible.

The following result is due to H. Weyl.

Proposition 4.10.3. For the representations τ of Sk and ⊗k of U(n) on
⊗kCn, we have

(4.10.7) τ · ⊗k ≈
⊕
λ∈Fnk

Sλ ⊗Dλ.

Complete proofs of Propositions 4.10.1–4.10.3 can be found in [19] and
[34]. Let us explicitate how much of Proposition 4.10.3 has been proven
in these notes. That τ · ⊗k has a decomposition of the form (4.10.7), as
λ ranges over some set of maximal weights for irreducible representations
of U(n), is a consequence of Proposition 4.8.2, combined with Proposition
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4.9.1. That each λ ∈ Fnk arises in this decomposition follows from our
observations about (4.10.1). For a complete proof of Proposition 4.10.3, it
remains to establish two things:

(i) There are no other highest weights that should appear in (4.10.7).

(ii) The irreducible representation of Sk that is paired with Dλ, whose ex-
istence is established in Proposition 4.8.2, is in fact the representation Sλ
described above.

Proofs of these results, which can be found on p. 251 if [34], rely strictly on
the representation theory of Sk.

We obtain some consequences of (4.10.7) for characters. Let us set

(4.10.8) χUλ (g) = TrDλ(g), χSλ(σ) = TrSλ(σ).

Then (4.10.7) implies

(4.10.9) Tr
(
τ(σ) · ⊗kg

)
=
∑
λ∈Fnk

χSλ(σ)χ
U
λ (g), σ ∈ Sk, g ∈ U(n).

In particular, taking σ = e, the identity element of Sk, gives

(4.10.10) (Tr g)k =
∑
λ∈Fnk

fλ χUλ (g),

where

(4.10.11) fλ = χSλ(e)

is the dimension of the representation space for Sλ. The Weyl orthogonality
relations imply

(4.10.12)

∫
U(n)

|Tr g|2k dg =
∑
λ∈Fnk

(fλ)2.

Recall that the left side of (4.10.12) also satisfies (4.9.26). In other words,
(4.10.12) is equal to

(4.10.13) dimEnk = k!− dimKer τ#nk,

where τ#nk : `
1(Sk) → End(⊗kCn) is as in (4.9.19).

We illustrate the decomposition (4.10.7) in the case k = n = 3. The
three Young diagrams that arise in F33 are pictured in Figure 4.10.2. They
correspond, respectively, to

(4.10.14) λ = (1, 1, 1), λ = (2, 1, 0), λ = (3, 0, 0).
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Figure 4.10.2. Young diagrams in F33

The representations of S3 so obtained are

(4.10.15) S(1,1,1) = sgn, S(2,1,0) = π3S , S(3,0,0) = 1.

The representation π3S , discussed in Lemma 2.6.1, represents S3 as the group
of symmetries of an equilateral triangle. Hence (4.10.7) leads to

(4.10.16) ⊗3C3 ≈ Λ3C3 ⊕ V8 ⊕ V8 ⊕ S3C3,

where U(3) acts on V8 as D(2,1,0). As for dimensions, clearly dim⊗3C3 = 27

and dimΛ3C3 = 1. We also have

(4.10.17) dimS3C3 = 10,

as a special case of the general result

(4.10.18) dimSkCn+1 =

(
n+ k

n

)
,

as shown in §4.3. Hence

(4.10.19) dimV8 = 8.
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Figure 4.10.3. Young diagrams in F44

In fact, more can be said about V8. The adjoint representation of U(3)
on M(3,C) is

(4.10.20) S1 ⊗ S
1 ≈ D(0,0,0) ⊕D(1,0,−1),

by (4.7.13). Here D(0,0,0) is a one-dimensional representation and D(1,0,−1)

is an 8-dimensional representation, acting on

(4.10.21) {A ∈ M(3,C) : TrA = 0}.

On the other hand, by (4.4.5),

(4.10.22) D(2,1,0)(g) = (det g)D(1,0,−1)(g).

Let us turn to ⊗4C3. The five Young diagrams that arise in F44 are
pictured in Figure 4.10.3, but the first one does not belong to F34, though
the others do. They correspond, respectively, to

(4.10.23) λ = (2, 1, 1), λ = (2, 2, 0), λ = (3, 1, 0), λ = (4, 0, 0).

Recall the representations of S4 as described in §2.6:

(4.10.24) 1, sgn, π4S , π4Q, π3S ◦ β,
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where β : S4 → S3 is as in (2.6.20). Of these, of course

(4.10.25) S(4,0,0) = 1.

As we have noted, the representation sgn of S4 does not arise in ⊗4C3. We
claim that

(4.10.26) S(2,2,0) ≈ π3S ◦ β,
and that

(4.10.27) D(2,2,0) acts on S2(Λ2C3).

Note that

(4.10.28) D(2,2,0)(g) = (det g)2 S
2
(g).

We ask the reader to pair π4S and π4Q with the two remaining weights

listed in (4.10.23), and to work out explicit descriptions (or at least dimen-
sion counts) for the representation spaces for Dλ in these two cases.

Look at the formula (4.10.12) for k = 4, n = 3. The right side involves
all the representations of S4 but sgn, which is one dimensional, so we have

(4.10.29)

∫
U(3)

|Tr g|8 dg = 23.

One has a parallel treatment of ⊗4Cn for n ≥ 4. One significant differ-
ence is that the representation sgn of S4 now appears, too. Another is that
S2(Λ2Ck) is not irreducible, when k ≥ 4.
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4.11. The Weyl integration formula

Say G is a compact, connected Lie group, T ⊂ G a maximal torus. The
following is Weyl’s integration formula:

(4.11.1)

∫
G

f(x) dx =
1

w

∫
T

(∫
G

f(g−1kg) dg
)
| det(I −Ad k)g/h| dk.

Here h is the Lie algebra of T , and w = w(G) is a constant, which we will
specify below. For most of this section we work in the context of a general
compact, connected Lie group, but right at the point of specifying w we will
need to refer the reader to other sources for details when G is not U(n).

The formula (4.11.1) arises from a study of

(4.11.2) F : G× T −→ G, F (g, h) = ghg−1,

and its induced action

(4.11.3) F̃ : (G/T )× T −→ G.

Since there are natural volume elements on (G/T ) × T and on G, we need

to compute detDF̃ . Note that DF (g, h) : TgG ⊕ ThT → Tghg−1G; it is
convenient to produce a linear map that takes TeG ⊕ TeT → TeG. That
would be

(4.11.4) DLgh−1g−1(ghg−1) ◦DF (g, h) ◦ (DLg(e)×DLh(e)),

where Lg(x) = gx. Note that (4.11.4) is equal to DG(e, e), where

(4.11.5)
G(x, z) = Lgh−1g−1 ◦ F ◦ (Lg × Lh)(x, z)

= gh−1xhzx−1g−1.

Note that G(e, e) = e; we compute

(4.11.6) DG(e, e) : g⊕ h −→ g.

First, with Z ∈ h, z(t) a curve in T such that z(0) = e, z′(0) = Z, we
have

(4.11.7)
D2G(e, e)Z =

d

dt
gz(t)g−1

∣∣
t=0

= Ad g(Z),

the last identity following from (3.4.2), or alternatively from (3.4.9). Next,
with X ∈ g, x(t) a curve in G such that x(0) = e, x′(0) = X, we have

(4.11.8)
D1G(e, e)X =

d

dt
gh−1x(t)hx(t)−1g−1

∣∣
t=0

= Ad g DK(e)X,

where

(4.11.9) K(x) = h−1xhx−1,
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so

(4.11.10)

DK(e)X =
d

dt
h−1x(t)hx(t)−1

∣∣
t=0

= h−1Xh−X

= (Adh−1 − I)X.

(Here we take G ⊂ End(Cm), to simplify the calculation.) Putting together
(4.11.7), (4.11.8), and (4.11.10), we have

(4.11.11) DG(e, e)(X,Z) = Ad g(Adh−1 − I)X +Ad g Z.

Now we can take X ∈ g/h. Thus we have

(4.11.12) detDF̃ (g, h) = det(Adh−1 − I)g/h = det(I −Adh)g/h.

The formula (4.11.1) is now a consequence of the following assertion:

Lemma 4.11.1. The map F̃ in (4.11.3) is onto, and there is an integer
w = w(G) and an open dense set O ⊂ G, whose complement has measure
zero, such that

F̃−1(g) ⊂ (G/T )× T has w elements, ∀ g ∈ O.

In the case G = U(n), we take T to be the set T of diagonal matrices,

with diagonal entries in S1 ⊂ C, as in (4.2.4). The surjectivity of F̃ is
equivalent to the statement that every unitary matrix yields an orthonor-
mal basis of eigenvectors. If g ∈ U(n) has distinct eigenvalues, then the
eigenspaces are all 1-dimensional, and the diagonalized form is determined
up to ordering of the eigenvalues, so such a matrix has n! pre-images in
(G/T)× T.

The reader can verify Lemma 4.11.1 and determine w(G) when G =
SO(n). For general compact, connected G, w(G) is the order of a finite group
called the Weyl group. See [16], [34], or another source for a treatment of
the general case.

We give an explicit formula for the right side of (4.11.12) when G = U(n).
In such a case, gC = End(Cn). As in §4.2, let ejk be the matrix with 1 at
row j, column k, 0 elsewhere, and set ej = iejj . Then h is the real linear
span of {ej : 1 ≤ j ≤ n}, and

(4.11.13) H =
∑

tjej =⇒ [H, ejk] = i(tj − tk)ejk.

Using this, we have that, when G = U(n), h = diag(eiθ1 , . . . , eiθn) ∈ T ,

(4.11.14) Adh(ejk) = ei(θj−θk) ejk.
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Thus

(4.11.15)

det(I −Adh)g/h = det(I −Adh)gC/hC

=
∏
j ̸=k

(1− ei(θj−θk))

=
∏
j ̸=k

e−iθk(eiθk − eiθj ),

and hence

(4.11.16) | det(I −Adh)g/h| =
∏
j<k

|eiθj − eiθk |2.

We explicitly specialize (4.11.1) to the case where G = U(n) and f is a
central function, i.e., f(g−1hg) = f(h) for all g, h ∈ U(n).

Corollary 4.11.2. If f : U(n) → C is a central function, then

(4.11.17)

∫
U(n)

f(g) dg =
1

(2π)nn!

∫
Tn

f(D(θ))J(θ) dθ1 · · · dθn,

where D(θ) is the diagonal matrix with diagonal entries eiθ1 , . . . , eiθn, and

(4.11.18) J(θ) =
∏
j<k

|eiθj − eiθk |2.

Here we take Tn = (R/2πZ)n. We mention another way of writing J(θ),
namely as

(4.11.19) J(θ) = A(θ)A(θ), A(θ) =
∏
j<k

(
1− e−iωjk(θ)

)
,

where we regard θ ∈ Rn ≈ h, and we take ωjk ∈ h′ as in (19.12).

Here is another way of writing J(θ), which is useful. Set eiθj = ζj . Then

(4.11.20) J(θ) = V (ζ)V (ζ), V (ζ) =
∏
j<k

(ζk − ζj).

Now V (ζ) is a Vandermonde determinant:

(4.11.21) V (ζ) = det


1 · · · 1
ζ1 · · · ζn
...

...

ζn−1
1 · · · ζn−1

n

 .

Hence

(4.11.22) V (ζ) =
∑
σ∈Sn

(sgnσ) ζ
σ(1)−1
1 · · · ζσ(n)−1

n .
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Now ζj = ζ−1
j for ζj ∈ S1, so

(4.11.23) J(θ) =
∑

σ,τ∈Sn

(sgnσ)(sgn τ) ζ
σ(1)−τ(1)
1 · · · ζσ(n)−τ(n)n .

Note that

(4.11.24)

(2π)−n
∫
Tn

J(θ) dθ = constant term in (4.11.23)

=
∑{

(sgnσ)(sgn τ) : σ = τ ∈ Sn
}

= n!,

which gives a check on the coefficient on the right side of (4.11.17).
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4.12. The character formula

Here we calculate the character χλ of the irreducible unitary representation
Dλ of U(n) with highest weight λ. We know χλ is a central function, so it
suffices to calculate χλ(h) for h ∈ T, the group of diagonal matrices in U(n).
Say h = D(θ) = diag(eiθ1 , . . . , eiθn). Recall from §4.2 that the representation
space V of Dλ has a decomposition

(4.12.1) V =
⊕
µ

Vµ

into spaces of weight vectors. It follows from (4.2.10) that

(4.12.2) χλ(D(θ)) =
∑

mµ e
iµ(θ), mµ = dimVµ.

Our goal is to get a more explicit formula for this object. To be sure,
(4.12.2) as it stands will be a useful tool.

To begin, recall the role of Sn as a group of automorphisms of U(n), as
described in Lemma 4.4.2 and its proof; σ ∈ Sn acts on U(n) via conjugation
by Eσ. This action leaves T invariant, so Sn acts on h. We denote its adjoint
action on h′ by µ 7→ σ · µ; with h′ ≈ Rn via the usual basis,

(4.12.3) σ · µ = (µσ(1), . . . , µσ(n)).

In view of (4.4.4), we have the identity

(4.12.4) mσ·µ = mµ, ∀ σ ∈ Sn.

Another identity arises by rewriting the identity

(4.12.5)

∫
U(n)

χλ(g)χλ(g) dg = 1,

using the Weyl integration formula (4.11.17):

(4.12.6) (2π)−n
∫
Tn

A(θ)χλ(D(θ))A(θ)χλ(D(θ)) dθ = n!

To exploit this, we consider

(4.12.7) ϕ(θ) = A(θ)χλ(D(θ)).

Recall from (4.11.19) that

(4.12.8) A(θ) =
∏
j<k

(
1− e−iωjk(θ)

)
.

In particular, we have a finite sum

(4.12.9) ϕ(θ) =
∑

cµ e
iµ(θ), cµ ∈ Z,
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and the identity (4.12.6) implies

(4.12.10)
∑

c2µ = n!

As we will see, this will help place strong constraints on the coefficients cµ,
particularly in concert with the following observation.

Lemma 4.12.1. For the highest weight λ of Dλ, we have

(4.12.11) cλ = mλ = 1.

Proof. Since the elements ωjk ∈ h′ are all positive for j < k (with respect to
the ordering defined in §4.2), it is clear from (4.12.7)–(4.12.8) that cλ = mλ.
That mλ = 1 follows from Proposition 4.2.4. □

Further progress in understanding ϕ(θ) comes from looking at how it
behaves under the Sn action on Tn. Clearly χλ(D(θ)) is invariant under
this action, so we need to see how A(θ) behaves under the Sn action. We
have

(4.12.12) A(σt · θ) =
∏
j<k

(
1− e−iωσ(j)σ(k)(θ)

)
.

We can break up this product into two products, one over {(j, k) : j <
k and σ(j) < σ(k)} and the second over {(j, k) : j < k and σ(j) > σ(k)}.
Write the factors in the second product as

(4.12.13) 1− e−iωσ(j)σ(k)(θ) = −e−iωσ(j)σ(k)(θ)
(
1− e−iωσ(k)σ(j)(θ)

)
.

Recombining the two products gives

(4.12.14) A(σt · θ) = α e−iβ A(θ),

with
(4.12.15)

α =
∏

{(j,k):j<k,σ(j)>σ(k)}

(−1), β =
∑

{(j,k):j<k,σ(j)>σ(k)}

ωσ(j)σ(k)(θ).

A calculation gives α = sgnσ. Also, if we set

(4.12.16) ρ =
1

2

∑
j<k

ωjk ∈ h′,

then

(4.12.17) β =
1

2

∑
j<k

[
ωσ(j)σ(k) − ωjk

]
= σ · ρ− ρ.

Hence (4.12.14) becomes

(4.12.18) A(σt · θ) = (sgnσ) ei(ρ(θ)−σ·ρ(θ))A(θ).
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In view of the conjugation invariance of χλ and (4.4.2), this gives

(4.12.19) ϕ(σt · θ) = (sgnσ) ei(ρ(θ)−σ·ρ(θ)) ϕ(θ).

Equivalently, the coefficients cµ in (4.12.9) satisfy

(4.12.20) cσ·µ+σ·ρ−ρ = (sgnσ)cµ.

We are led to consider a “shifted” action of Sn on h′:

(4.12.21) σ̃(µ) = σ · µ+ σ · ρ− ρ,

where σ · µ = (µσ(1), . . . , µσ(n)). A calculation shows that this is a group
action, i.e., σ̃ ◦ τ̃(µ) = σ̃τ(µ) for σ, τ ∈ Sn. (It is not a linear action, but
rather an action by affine transformations.) The following result will reveal
a great deal about the coefficients cµ.

Lemma 4.12.2. The orbit of the highest weight λ under the action of Sn
given by (4.12.21) has n! elements.

Proof. Consider σ ∈ Sn such that σ̃(λ) = λ. This implies

(4.12.22) σ · λ+ σ · ρ = λ+ ρ.

Now λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn and

(4.12.23) ρ = (ρ1, . . . , ρn) =
1

2
(n− 1, n− 3, . . . , 3− n, 1− n),

so ρ1 > · · · > ρn, and hence λ + ρ = (ξ1, . . . , ξn) with ξ1 > · · · > ξn. Thus
(4.12.2) can hold only if σ is the identity element of Sn. □

Thus taking µ = λ in (4.12.20) gives n! coefficients cµ that are equal to
±1. In view of (4.12.10), these are all the nonzero coefficients in (4.12.9).
We have established

(4.12.24) A(θ)χλ(D(θ)) =
∑
σ∈Sn

(sgnσ) ei(σ·λ(θ)+σ·ρ(θ)−ρ(θ)).

In view of the formula (4.12.8) for A(θ), this gives a rather explicit formula
for χλ(D(θ)).

Note that if we take the trivial representation, with highest weight λ = 0,
the character is ≡ 1, and (4.12.24) yields

(4.12.25) A(θ) =
∑
σ∈Sn

(sgnσ) ei(σ·ρ(θ)−ρ(θ)),

which one might also try to derive directly from (4.12.8). This suggests
writing the character formula in terms of

(4.12.26) Aµ(θ) =
∑
σ∈Sn

(sgnσ) eiσ·µ(θ).
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Proposition 4.12.3. The irreducible representation of U(n) with highest
weight λ has character satisfying

(4.12.27) χλ(D(θ)) =
Aλ+ρ(θ)

Aρ(θ)
.

Proof. Multiplying both sides of (28.34) by eiρ(θ), one obtains Aλ+ρ(θ) on
the right and A(θ) is turned into Aρ(θ) on the left. □

Remark. The entries of ρ = (ρ1, . . . , ρn) might be half-integers, rather than
integers (if n is odd), so then neither the numerator nor the denominator in
the right side of (4.12.27) is periodic of period 2πZ, but the quotient is. In
any case the numerator and denominator have period 4πZ in θ.

We can represent Aµ(θ) as a product in some special cases. First note

that since Aρ(θ) is obtained by multiplying (4.12.25) by eiρ(θ), the product
(4.12.8) for A(θ) yields

(4.12.28) Aρ(θ) =
∏
j<k

(
eiωjk(θ)/2 − e−iωjk(θ)/2

)
.

To proceed, note that our choice of basis for h gives h ≈ Rn and also h′ ≈ Rn,
and hence h′ ≈ h. If we so identify h and h′, we see from (4.12.26) that
Aµ(ξ) = Aξ(µ), for µ, ξ ∈ Rn, and furthermore Aµ(tξ) = Aξ(tµ). Hence

(4.12.29) Aµ(tρ) = Aρ(tµ) =
∏
j<k

(
eit⟨ωjk,µ⟩/2 − e−it⟨ωjk,µ⟩/2

)
.

Here we have used (4.12.28) and replaced the pairing µ(ξ) of h′ and h by
〈µ, ξ〉, the standard inner product in Rn. Using (4.12.29) we can prove the
following dimension formula.

Proposition 4.12.4. The irreducible representation of U(n) with highest
weight λ acts on a space V (λ) whose dimension is

(4.12.30) dimV (λ) = dλ =
∏
j<k

〈ωjk, λ+ ρ〉
〈ωjk, ρ〉

.

Proof. Clearly dλ = χλ(I), and hence

(4.12.31) dλ = lim
t→0

χλ(D(tρ)) = lim
t→0

Aλ+ρ(tρ)

Aρ(tρ)
,

by (4.12.27). Now we can apply (4.12.29) to obtain

(4.12.32) dλ = lim
t→0

∏
j<k

sin t〈ωjk, λ+ ρ〉/2
sin t〈ωjk, ρ〉/2

,
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which yields (4.12.30), granted that
∏
j<k〈ωjk, ρ〉 6= 0. In fact,

(4.12.33) j < k =⇒ 〈ωjk, ρ〉 = ρj − ρk = k − j,

by (4.12.23), which leads to the following explicit formula for the denomi-
nator that arises in (4.12.30):

(4.12.34)
∏
j<k

〈ωjk, ρ〉 =
∏

1≤j<k≤n
(k − j) =

n−1∏
ℓ=1

`!.

□
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4.13. Examples of characters

Let us first specialize the character formula of §4.12 to the case of U(2).
We consider χλ(D(θ)) with λ = (λ1, λ2), λ1 ≥ λ2, λν ∈ Z. In this case,
ω12 = (1,−1), ρ = (1/2,−1/2), and hence Aµ(θ), defined by (4.12.25), takes
the form

(4.13.1) Aµ(θ) = ei(µ1θ1+µ2θ2) − ei(µ2θ1+µ1θ2).

In particular, the denominator Aρ(θ) in (4.12.27) becomes

(4.13.2) Aρ(θ) = ei(θ1−θ2)/2 − ei(θ2−θ1)/2 = 2i sin
θ1 − θ2

2
.

To evaluate the numerator in (4.12.27), we take µ = λ+ ρ = (λ1+1/2, λ2−
1/2) in (4.13.1). For simplicity, let us take

(4.13.3) λ = (k, 0).

Then

(4.13.4) Aλ+ρ(θ) = ei(k+1/2)θ1−iθ2/2 − ei(k+1/2)θ2−iθ1/2.

If we also take θ2 = −θ1, so D(θ) ∈ SU(2), then

(4.13.5) Aλ+ρ(θ) = ei(k+1)θ1 − e−i(k+1)θ1 ,

and hence the character formula (4.12.27) gives

(4.13.6) χ(k,0)(D(θ,−θ)) = sin(k + 1/2)θ

sin θ
.

Taking the limit θ → 0 gives the dimension formula

(4.13.7) d(k,0) = k + 1,

familiar from our previous discussion of the representations of SU(2).

Note that it is a direct consequence of (4.1.9), (4.1.14), (4.1.21), and
(4.1.22) that

(4.13.8) χ(k,0)(D(θ,−θ)) =
k∑

j=−k
eijθ,

which sums to the right side of (4.13.6).

Let us generalize these calculations to the representations Sk = D(k,0,...,0)

of U(n). Using (4.3.1)–(4.3.8), we see that

(4.13.9) TrSk(D(θ)) =
∑
|α|=k

ei⟨α,θ⟩,



180 4. The unitary groups U(n) and their representations

where in this sum α = (α1, . . . , αn) with αν ∈ Z+ and |α| = α1 + · · · + αn.
The character formula (4.12.27) then asserts that

(4.13.10) Aρ(θ) TrS
k(D(θ)) =

∑
|α|=k

∑
σ∈Sn

(sgnσ) ei⟨σ·ρ+α,θ⟩

is equal to

(4.13.11) A(k,0,...,0)+ρ(θ) =
∑
σ∈Sn

(sgnσ) ei⟨σ·ρ+σ·(k,0,...,0),θ⟩.

To check this for n = 2, note that (4.13.10) becomes

(4.13.12)
∑

α1+α2=k

(
ei(α1+1/2)θ1+i(α2−1/2)θ2 − ei(α1−1/2)θ1+i(α2+1/2)θ2

)
.

Note also that (α1+1/2)+ (α2− 1/2) = k and (α1− 1/2)+ (α2+1/2) = k.
Hence we get cancellation of all terms except the first part of the sum at
α = (k, 0) and the last part of the sum at α = (0, k). Thus (4.13.12)
telescopes to the right side of (4.13.4), verifying identity of (4.13.10) and
(4.13.11) when n = 2.

Note that if we reverse the order of summation in (4.13.10) and sum
over E = {(σ, α) : α = σ · (k, 0, . . . , 0)}, we get (4.13.11). Also note that all
the frequencies that arise in (4.13.10) with α = σ · (k, 0, . . . , 0) are distinct
from all the frequencies that arise with α 6= σ · (k, 0, . . . , 0). Now we can
deduce from (4.12.10), an analogue of which also holds for Aρ(θ)χλ(θ), that
the rest of the sum in (4.13.10) vanishes, due to cancellations. The reader
is invited to find a more direct demonstration of this vanishing.

Next consider the representation Λℓ of U(n) on ΛℓCn, discussed in (4.3.9)–

(4.3.14). We see that ΛℓD(θ) has eigenvalues ei(θj1+···+θjℓ ), for general
j1 < · · · < jℓ, with jν running from 1 to n. Hence

(4.13.13) TrΛℓD(θ) = σℓ(e
iθ1 , . . . , eiθn),

where σℓ is the `th elementary symmetric polynomial. We can write this as

(4.13.14)

TrΛℓ(D(θ)) =
1

`!(n− `)!

∑
σ∈Sn

ei(θσ(1)+···+θσ(ℓ))

=
1

n!

(
n

`

) ∑
σ∈Sn

ei⟨σ·γℓ,θ⟩,

where γℓ = (1, . . . , 1, 0, . . . , 0), with ` ones, is the highest weight of Λℓ. Recall
that Λℓ = D(1,...,1,0,...,0). According to the character formula (4.12.27), the
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quantity

(4.13.15) Aρ(θ) TrΛ
ℓ(D(θ)) =

1

n!

(
n

`

) ∑
σ,τ∈Sn

(sgn τ)ei⟨τ ·ρ+σ·γℓ,θ⟩

is equal to

(4.13.16) Aγℓ+ρ(θ) =
∑
τ∈Sn

(sgn τ)ei⟨τ ·(ρ+γℓ),θ⟩.

Note that by taking σ 7→ τσ, we can rewrite the right side of (4.13.15) as

(4.13.17)
1

n!

(
n

`

) ∑
σ,τ∈Sn

(sgn τ)ei⟨τ ·(ρ+σ·γℓ),θ⟩.

The sum in (4.13.17) over {(σ, τ) : σ fixes γℓ} is equal to (4.13.16). An ar-
gument involving (4.12.10), similar to that made above comparing (4.13.10)
and (4.13.11), can be used to show that all the other terms in (4.13.17) must
cancel out. Again the reader is invited to find a direct demonstration of this
cancellation.
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4.14. Duality and the Frobenius character formula

We take a further look at the decomposition of the action of Sk × U(n) on
⊗kCn given by (4.10.7), i.e.,

(4.14.1) τ · ⊗k =
⊕
λ∈Fnk

Sλ ⊗Dλ,

and its implication for characters,

(4.14.2) Tr(τ(σ) · ⊗kg) =
∑
λ∈Fnk

χSλ(σ)χλ(g), σ ∈ Sk, g ∈ U(n).

Here χλ(g) = TrDλ is the character for which (4.12.27) furnishes a formula.
Our goal here is to produce a formula for χSλ(σ). To begin, we have the
following explicit formula for the left side of (4.14.2).

Lemma 4.14.1. Suppose σ ∈ Sk has cycles of length `1, . . . , `r (so `1+ · · ·+
`r = k). Then

(4.14.3) Tr(τ(σ) · ⊗kg) =
r∏

ν=1

Tr(gℓν ).

Proof. Since the left side of (4.14.3) is invariant under conjugacy of σ and
of g, it suffices to treat the case when

σ = (1 · · · `1)(`1 + 1 · · · `1 + `2) · · · (k − `r + 1 · · · k),

and when g acts on the standard basis {u1, . . . , un} of Cn by gui = ζiui.
Then the left side of (4.14.3) is given by

(4.14.4)

∑
1≤j1,...,jk≤n

〈τ(σ) · ⊗kg(uj1 ⊗ · · · ⊗ ujk), uj1 ⊗ · · · ⊗ ujk〉

=
∑

〈g ujσ(1)
, uj1〉 · · · 〈g ujσ(k)

, ujk〉

=
∑

ζj1 · · · ζjk δj1jσ(1)
· · · δjkjσ(k)

.

Meanwhile the right side of (4.14.3) is equal to

(4.14.5)
∑

j1,...,jr

ζℓ1j1 · · · ζ
ℓr
jr
.

Now under our stated hypotheses on σ, the nonzero terms in the last sum
in (4.14.4) are indexed by (j1, . . . , jk) for which

j1 = · · · = jℓ1 , jℓ1+1 = · · · = jℓ1+ℓ2 , · · · , jk−ℓr+1 = · · · = jk,

so (4.14.4) does indeed coincide with (4.14.5). □
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We will denote the quantity (4.14.3) by Ξ(σ, g), so (4.14.2) reads

(4.14.6) Ξ(σ, g) =
∑
λ∈Fnk

χSλ(σ)χλ(g).

Given µ ∈ Fnk, we can multiply both sides of (4.14.6) by χSµ(σ) and average
over σ ∈ Sk, obtaining (upon switching notation from µ to λ)

(4.14.7) χλ(g) =
1

k!

∑
σ∈Sk

Ξ(σ, g)χSλ(σ).

Similarly,

(4.14.8) χSλ(σ) =

∫
U(n)

Ξ(σ, g)χλ(g) dg.

Another way to write Ξ(σ, g) is as follows. Set Pj(ζ) = ζj1 + · · ·+ ζjn and
for σ ∈ Sk set

(4.14.9) Pσ(ζ) = Pℓ1(ζ) · · ·Pℓr(ζ)
if σ consists of cycles of length `1, . . . , `r (so `1 + · · ·+ `r = k). Then

(4.14.10) Ξ(σ, g) = Pσ(ζ)

provided the eigenvalues of g are ζ1, . . . , ζn.

If we insert the character formula (4.12.27) into (4.14.8), we can derive
the Frobenius character formula for χSλ(σ). Let us proceed. Fix k ∈ Z+

and consider λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0, λν ∈ Z+, and
λ1 + · · · + λn = k, i.e., λ ∈ Fnk. We will write (4.14.8) as an integral over

Tn, using the Weyl formula (4.11.17). Note that, in place of J(θ) = A(θ)A(θ)
as in (4.11.19), we can write

(4.14.11) J(θ) = Aρ(θ)Aρ(θ),

with Aρ(θ) the denominator in (4.12.27). Hence (4.14.8) yields

(4.14.12) χSλ(σ) =
1

(2π)nn!

∫
Tn

Ξ(σ,D(θ))Aλ+ρ(θ)Aρ(θ) dθ,

Next, we write

(4.14.13) Aρ(θ) = ei⟨ρ,θ⟩
(∏
j<k

e−iθj
)
∆(θ), ∆(θ) =

∏
j<k

(eiθj − eiθk),

and note that

(4.14.14)
∑
j<k

θj = (n− 1)θ1 + (n− 2)θ2 + · · ·+ θn−1 = 〈Γ, θ〉,

with

(4.14.15) Γ = (n− 1, n− 2, . . . , 1, 0).
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Hence

(4.14.16)
Aρ(θ) = ei⟨ρ−Γ,θ⟩∆(θ)

= ei(n−1)(θ1+···+θn)/2∆(θ).

We have (via (4.12.26) with µ = λ+ ρ)

(4.14.17) χSλ(σ) =
1

n!

∑
τ∈Sn

(sgn τ)Iτλ(σ),

with

(4.14.18) Iτλ(σ) =
1

(2π)n

∫
Tn

Ξ(σ,D(θ))∆(θ) ei⟨ρ−Γ,θ⟩e−i⟨τ ·(λ+ρ),θ⟩ dθ.

Now Ξ(σ,D(θ)) and ei⟨ρ−Γ,θ⟩ are symmetric in (θ1, . . . , θn) (the latter by
(4.14.16)), while applying a permutation τ to θ multiplies ∆(θ) by sgn τ .
Hence we have

(4.14.19)

Iτλ(σ) =
sgn τ

(2π)n

∫
Tn

Ξ(σ,D(θ))∆(θ) ei⟨ρ−Γ,θ⟩e−i⟨λ+ρ,θ⟩ dθ

=
sgn τ

(2π)n

∫
Tn

Ξ(σ,D(θ))∆(θ)e−i⟨λ+Γ,θ⟩ dθ.

Plugging this into (4.14.17), we have Schur’s formula:

Proposition 4.14.2. Given λ ∈ Fnk, the associated representation Sλ of
Sk has character

(4.14.20) χSλ(σ) = (2π)−n
∫
Tn

Ξ(σ,D(θ))∆(θ)e−i⟨λ+Γ,θ⟩ dθ.

Equivalently, χSλ(σ) is equal to the coefficient of ζℓ11 · · · ζℓnn in

(4.14.21) Pσ(ζ)
∏
j<k

(ζj − ζk),

where

(4.14.22) `1 = λ1 + n− 1, `2 = λ2 + n− 2, . . . , `n = λn.

The dimension of the representation space of Sλ is dSλ = χSλ(e), where e
is the identity element of Sk. By (4.14.9),

(4.14.23) Pe(ζ) = (ζ1 + · · ·+ ζn)
k =

∑
|β|=k

k!

β1! · · ·βn!
ζβ11 · · · ζβnn .

Using the Vandermonde determinant, as in (4.11.22), we have

(4.14.24)
∏
i<j

(ζi − ζj) = (−1)n(n−1)/2
∑
σ∈Sn

(sgnσ) ζ
σ(1)−1
1 · · · ζσ(n)−1

n .
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After some computation, there results the dimension formula

(4.14.25) dSλ =
k!

`1! · · · `n!
∏
i<j

(`i − `j),

for the representation Sλ of Sk, with `1, . . . , `n given by (4.14.22). For
details, see [19], pp. 49–50.
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4.15. Integral of |Tr gk|2 and variants

Integrals of the form

(4.15.1) I(σ1, σ2) =
∫

U(n)

Ξ(σ1, g)Ξ(σ2, g) dg

are of interest in random matrix theory (cf., e.g., [14], [13]). Here Ξ(σ, g) is
as in (4.14.6)–(4.14.10). Note that

(4.15.2) σ ∈ Sk, ϑ ∈ R =⇒ Ξ(σ, eiϑg) = eikϑΞ(σ, g),

and since g 7→ eiϑg is a measure preserving map on U(n) it easily follows
that

(4.15.3) σν ∈ Skν , k1 6= k2 =⇒ I(σ1, σ2) = 0.

on the other hand, if σ1, σ2 ∈ Sk, one can use (4.14.6) to write

(4.15.4) I(σ1, σ2) =
∑
λ∈Fnk

χSλ(σ1)χ
S
λ(σ2).

Such an identity is applied to random matrix theory in [13].

Cases of (4.15.4) where σ1 = σ2 = σ are of particular interest. One
example, which has already been mentioned in (4.10.12), arises from σ = e,
the identity element of Sk:

(4.15.5)

∫
U(n)

|Tr g|2k dg =
∑
λ∈Fnk

(fλ)2,

where fλ is the dimension of the representation space of Sλ. Another inter-
esting example is

(4.15.6)

∫
U(n)

|Tr gk|2 dg =
∑
λ∈Fnk

|χSλ(ck)|2, ck = (12 · · · k) ∈ Sk.

See [13] for a direct evaluation of the right side of (4.15.6), using results on
the symmetric group. Here we will make a direct calculation of the left side
of (4.15.6), using the Weyl integration formula.

We have

(4.15.7) Ink =

∫
U(n)

|Tr gk|2 dM =
1

(2π)n

∫
Tn

|eikθ1 + · · ·+ eikθn |2J(θ) dθ.

We re-state this as follows. Set ζj = eiθj , so

(4.15.8) |eikθ1 + · · ·+ eikθn |2 = |ζk1 + · · ·+ ζkn|2 =
∑
µ,ν

ζkµζ
−k
ν .

Also, we use (4.11.23) for J(θ).
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Thus Ink is equal to the constant term in

(4.15.9)
1

n!

∑
µ,ν,σ,τ

(sgnσ)(sgn τ)ζkµζ
−k
ν ζ

σ(1)−τ(1)
1 · · · ζσ(n)−τ(n)n ,

which we write as

(4.15.10)
1

n!
(S1 + S2),

where S1 arises from the sum over µ = ν and S2 arises from the sum over
µ 6= ν. It is straightforward to obtain

(4.15.11) S1 = n · n!.

It remains to consider S2. We see that, for a given µ 6= ν, a pair σ, τ ∈ Sn
contributes to S2 in the sum (4.15.9) if and only if σ(j) = τ(j) for all but
two values of j ∈ {1, . . . , n}, namely j = µ and ν, and

(4.15.12)
σ(µ)− τ(µ) = −k,
σ(ν)− τ(ν) = k.

Equivalently, we require τ = ψσ where ψ ∈ Sn has the property that ψ(j) =
j except for two values of j ∈ {1, . . . , n}, namely j1 = σ(µ) and j2 = σ(ν),
and

(4.15.13) ψ(j1) = j1 + k, ψ(j2) = j2 − k.

This requires ψ(j1) = j2, ψ(j2) = j1, with

(4.15.14) j1 = j2 − k.

Then

(4.15.15) S2 =
∑

(sgnσ)(sgnψσ),

the sum running over such allowable (µ, ν, σ, ψ). Note that (4.15.14) con-
strains j1; we require k + 1 ≤ j1 ≤ n. Thus if k ≥ n the sum in (4.15.15)
is empty and S2 = 0. If 1 ≤ k ≤ n− 1, then there are (n− k) · n! terms in
the sum (4.15.15). In fact, if we pick σ ∈ Sn and then pick one of the n− k
permutations ψ ∈ Sn for which (4.15.13) holds, then for each such (σ, ψ),
the pair (µ, ν) is uniquely determined. Furthermore, each term in (4.15.15)
is equal to sgnψ = −1. Hence

(4.15.16) S2 = −(n− k) · n!, 1 ≤ k ≤ n− 1.

Putting together these computations, we have, for integers k ≥ 1,

(4.15.17)

∫
U(n)

|Tr gk|2 dg = k ∧ n.

The formula (4.15.17) is useful for evaluating inner products of trace
functions on U(n), which arise as follows. If f : S1 → C is a bounded
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Borel function, define f(g) by the spectral representation of g ∈ U(n). Set
Xf (g) = Tr f(g). Using (4.15.17), one can show that

(4.15.18)

∫
U(n)

Xu(g)Xv(g) dg =

∞∑
k=−∞

ank û(k)v̂(−k),

where û(k) are the Fourier coefficients of u, an0 = n2, and ank = (|k| ∧ n)
for k 6= 0. See §E.5 for details.

To compare the derivation (4.15.7)–(4.15.17) with a treatment via (4.15.6),

note that, by Proposition 4.14.2, χSλ(ck) is the coefficient of ζℓ11 · · · ζℓnn in

(4.15.19)

(ζk1 + · · ·+ ζkn)
∏
i<j

(ζi − ζj)

= (−1)n(n−1)/2
n∑
j=1

∑
σ∈Sn

(sgnσ)ζkj ζ
σ(1)−1
1 · · · ζσ(n)−1

n .

Using this one can show that χSλ(ck) is either 0 or ±1. Computing the right
side of (4.15.6) then apparently involves calculations somewhat similar to
those done in (4.15.7)–(4.15.17).



Chapter 5

Some analysis on U(n)

In this chapter we deal with some aspects of analysis on U(n) connected
with the Laplace operator and the heat equation. In §5.1 we give two char-
acterizations of the Laplace operator, first

(5.0.1) ∆ =
∑

X2
j ,

where {Xj} is an orthonormal basis of the Lie algebra g of U(n), consisting
of vector fields. So defined, ∆ is shown to be independent of the choice of
such a basis. Second, ∆ is the Laplace-Beltrami operator on U(n), endowed
with a bi-invariant metric tensor that defines the same inner product on the
tangent space to U(n) at I as we have on g. We have that ∆ is a bi-invariant
differential operator, so it acts as a scalar on each irreducible representation
space. We derive the formula

(5.0.2) dDλ(∆) = −(|λ+ ρ|2 − |ρ|2)I,

where ρ is half the sum of the positive roots of g.

In §5.2 we look at the heat equation

(5.0.3)
∂u

∂t
= ∆u, u(0, x) = f(x),

with solution

(5.0.4) u(t, x) = Ht ∗ f(x),

and produce a formula for Ht, using (5.0.2), the Weyl character formula, and
the dimension formula. Ht is a central function, and we relate Ht(D(θ)) to
the heat kernel on R+ × Tn, i.e., to theta functions.

189
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In §5.3 we look at the integral

(5.0.5) H(s,X, Y ) =

∫
U(n)

esTr(gXg
−1Y ) dg,

for X,Y ∈ M(n,C), which is of great interest in random matrix theory.
In one approach, we concentrate on X = x, Y = y ∈ U(n), and consider
formulas for H(s, x, y), making use of results of §4.10. In another approach,
we take X,Y ∈ u(n) and make contact with the heat kernel, from §5.2.
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5.1. The Laplace operator on U(n)

If {Xj} is an orthonormal basis of the Lie algebra g = u(n), regarded as an
algebra of left-invariant vector fields, then the Laplace operator on U(n) is
the second order differential operator

(5.1.1) ∆ =
∑

X2
j .

The ∆ is independent of the choice of orthonormal basis. To see this, let
{Yj} be another orthonormal basis of g. Then

Yj =
∑
k

akjXk, (akj) = A ∈ O(m), m = dimU(n).

Hence ∑
j

Y 2
j =

∑
j

(∑
k

akjXk

)(∑
ℓ

aℓjXℓ

)
=
∑
j,k,ℓ

akjaℓjXkXℓ

=
∑
k,ℓ

δkℓXkXℓ

=
∑
k

X2
k ,

as desired (the third identity by AAt = I).

We will give several explicit formulas for ∆ and establish some important
basic properties. One is that ∆ lies in the center of U(g). Hence its image
under an irreducible representation is a scalar, which we will compute.

Recall that Cg = M(n,C), with basis {ejk : 1 ≤ j, k ≤ n}. We have
ej = iejj ∈ h. If we also take xjk, yjk ∈ g, for j < k, as

(5.1.2) xjk =
1√
2
(ejk − ekj), yjk = − i√

2
(ejk + ekj),

then we have an orthonormal basis of g, so

(5.1.3) ∆ =
∑
j

e2j +
∑
j<k

(x2jk + y2jk).

Proposition 5.1.1. For all X ∈ g, [∆, X] = 0.

Proof. It suffices to show that, for all j, k,

(5.1.4) [∆, ejk] = 0,

This is a straightforward computation using (4.2.11), i.e.,

(5.1.5) [eij , ekℓ] = δjkeiℓ − δiℓekj .

Details are an exercise. □
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We next bring in a geometrical characterization of ∆.

Proposition 5.1.2. Let U(n) be endowed with a bi-invariant Riemannian
metric tensor, coinciding with the inner product on g = u(n) at the identity
element of U(n). Then ∆ is equal to the Laplace-Beltrami operator on U(n).

Proof. Let L denote the Laplace-Beltrami operator. Then ∆ and L are
both second-order, self-adjoint, bi-invariant differential operators on U(n),
whose expressions in local coordinates have the same leading order terms
at I, hence on all of U(n). Thus L−∆ is a first-order differential operator
with real coefficients, so

L−∆ = X + V,

where X is a real vector field and V is multiplication by a function V (x).
Since L1 = ∆1 = 0, we have V = 0, so L − ∆ = X. But X is a real,
bi-invariant vector field, hence is skew-adjoint, so also X = 0. □

We produce some more useful formulas for ∆. Note that

(5.1.6) xjk + iyjk =
√
2 ejk, xjk − iyjk = −

√
2 ekj .

Also, using (5.1.5), we have

(5.1.7) [xjk, yjk] = −(ej − ek).

Hence we can rewrite (5.1.3) as

(5.1.8)

∆ =
∑
j

e2j +
∑
j<k

{
(xjk − iyjk)(xjk + iyjk)− i[xjk, yjk]

}
=
∑
j

e2j + i
∑
j<k

(ej − ek)− 2
∑
j<k

ekjejk.

The significance for representation theory is highlighted by the following:

Proposition 5.1.3. For the irreducible representation Dλ of U(n) on V (λ),
we have

(5.1.9) dDλ(∆) = −(|λ+ ρ|2 − |ρ|2)I.

Proof. It follows from Proposition 3.7.1 that dDλ(∆) is scalar on V (λ).
Thus it suffices to evaluate dDλ(∆)v when v is a highest weight vector. In
such a case dDλ(ejk)v = 0 when j < k, so

(5.1.10) dDλ(∆)v =
∑
j

dDλ(ej)
2v + i

∑
j<k

dDλ(ej − ek)v.

Now dDλ(ej)v = iλ(ej)v, so

(5.1.11)

dDλ(∆)v = −
∑
j

λ(ej)
2v −

∑
j<k

λ(ej − ek)v

= −(|λ|2 + 2〈λ, ρ〉)v,
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where we recall from (4.12.16) that

ρ =
1

2

∑
j<k

ωjk ∈ h′.

This gives (5.1.8). □

These results generalize to any compact Lie group G. Give G a bi-
invariant Riemannian metric tensor and let ∆ be the Laplace-Beltrami op-
erator. Then left and right translations are isometries, so ∆ commutes with
L(g) and R(g) for all g ∈ G. If πα is an irreducible unitary representation
of G, onto a space of dimension dα, and with matrix form (παjk), let

(5.1.12) Vα = span of {παjk : 1 ≤ j, k ≤ dα},

and let Pα denote the orthogonal projection of L2(G) onto Vα, as in Propo-
sition 11.5. We have

(5.1.13) Pαu(x) = dα
∑
j,k

παjk(x)

∫
G

u(y)παjk(y) dy.

Writing
∑
παjk(x)π

α
jk(y) = Tr(πα(x)πα(y)∗) = χα(xy

−1), we see that

(5.1.14) Pαu(x) = dα χα ∗ u(x).

It follows that Pα commutes with ∆, so

∆ : Vα −→ Vα.

Now G×G acts on Vα via

(5.1.15) Γα(g, h)u(x) = u(g−1xh), u ∈ Vα.

A brief calculation shows that

(5.1.16) Γα(g, h)π
α
jk(x) =

∑
ℓ,m

παℓj(g)π
α
mk(h)π

α
ℓm(x).

It follows readily that

(5.1.17) TrΓα(g, h) = χα(g)χα(h),

and in particular

(5.1.18)

∫
G×G

|TrΓα(g, h)|2 dg dh =

∫
G

|χα(g)|2 dg
∫
G

|χα(h)|2 dh = 1,

so Γα is an irreducible representation of G×G. Since the Laplace operator
∆ commutes with Γα, it must be a scalar on Vα:

(5.1.19) ∆παjk(x) = c(α)παjk(x).

The formula (5.1.1) also holds for ∆ in the more general setting of a
compact Lie group G with a bi-invariant metric, and dπ(∆) is defined for a
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finite-dimensional representation π of G. Since R|Vα acts as a sum of copies
of πα, by (5.1.16), we see that

(5.1.20) dπα(∆) = c(α)I.

We mention that (5.1.9) generalizes from U(n) to a general compact G; see,
e.g., [38], pp. 123–124, for a derivation.

Let us return to G = U(n), with irreducible representations Dλ. Special-
izing the fact that identical factors of c(α) appear in (5.1.19) and (5.1.20),
we see that (5.1.9) gives

(5.1.21) ∆πλjk(x) = −(|λ+ ρ|2 − |ρ|2)πλjk(x), 1,≤ j, k ≤ dλ,

if (πλjk) denotes a matrix form of Dλ.
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5.2. The heat equation on U(n)

Before specializing to G = U(n), we begin with an arbitrary compact Lie
group G, with bi-invariant Riemannian metric and Laplace operator ∆, as
discussed in §5.1. We consider the heat equation for u(t, x) on R+ ×G:

(5.2.1)
∂u

∂t
= ∆u, u(0, x) = f(x).

As seen in §2.3, we can write

(5.2.2) f(x) =
∑
α∈I

dα
∑
j,k

f̂jk(α)π
α
jk(x),

where {πα : α ∈ I} is a complete set of irreducible unitary representations
of G and

(5.2.3) f̂jk(α) = παjk(f) =

∫
G

f(y)παjk(y) dy.

In view of (5.1.19), we then have

(5.2.4) u(t, x) =
∑
α∈I

dαe
c(α)t

∑
j,k

f̂jk(α)π
α
jk(x).

We can write

(5.2.5) u(t, x) = Ht ∗ f(x),

with Ht(x), known as the heat kernel, given as follows. By (2.7.5), (5.2.5)
is equivalent to

(5.2.6) Ĥt(α) = ec(α)t I,

so, parallel to (5.2.2),

(5.2.7) Ht(x) =
∑
α∈I

dαe
c(α)t χα(x).

Specializing to U(n), with irreducible representations Dλ, parametrized
by P+ = {λ ∈ Zn : λ1 ≥ · · · ≥ λn}, we have

(5.2.8) Ht(x) =
∑
λ∈P+

dλe
−(|λ+ρ|2−|ρ|2)t χλ(x).

Note that Ht is a central function, uniquely determined by its values at
D(θ), θ ∈ Rn. We bring in the Weyl character formula and the dimension
formula to write

(5.2.9) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑
λ∈P+

∑
σ∈Sn

(sgnσ)∆(λ+ ρ)ei⟨σ·(λ+ρ),θ⟩e−|λ+ρ|2t.
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Here M =
∏n−1
ℓ=1 `! is the denominator calculated in (4.12.34) and

(5.2.10) ∆(λ) =
∏
j<k

〈ωjk, λ〉 =
∏
j<k

(λj − λk).

We can rewrite (5.2.9) as

(5.2.11) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑
λ∈P̃+

∑
σ∈Sn

(sgnσ)∆(λ)ei⟨σ·λ,θ⟩e−|λ|2t,

where

(5.2.12) P̃+ = {λ ∈ (Z+ γ)n : λ1 > · · · > λn},

and where

(5.2.13) γ = 0 for n odd, 1/2 for n even.

Note that

(5.2.14) ∆(σ · λ) = (sgnσ)∆(λ),

and that ∆(λ) = 0 whenever λµ = λν for some µ 6= ν. Hence

(5.2.15) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)

∑
λ∈(Z+γ)n

∆(λ)ei⟨λ,θ⟩e−|λ|2t.

Let us set

(5.2.16) Eγ(t, θ) =
∑

λ∈(Z+γ)n
ei⟨λ,θ⟩e−|λ|2t.

Then (5.2.15) yields

(5.2.17) Ht(D(θ)) =
e|ρ|

2t

MAρ(θ)
Q(D)Eγ(t, θ),

where Q(D) is the differential operator on functions of θ:

(5.2.18) Q(D)v(θ) =
∏
j<k

1

i

( ∂

∂θj
− ∂

∂θk

)
.

Note that Eγ(t, θ) satisfies the heat equation on R+ × Rn:

(5.2.19)
∂Eγ
∂t

=

n∑
j=1

∂2Eγ
∂θ2j

.
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Also, Eγ(t, θ) is periodic in each variable θj , of period 2π if γ = 0 and of
period 4π if γ = 1/2. In fact,

(5.2.20)

E0(0, θ) = (2π)n
∑
ν∈Zn

δ2πν(θ),

E1/2(0, θ) = (2π)n
∑
ν∈Zn

(−1)ν1+···+νn δ2πν(θ).

Hence, for t > 0,

(5.2.21) E0(t, θ) =
(π
t

)n/2 ∑
ν∈Zn

e−|θ−2πν|2/4t,

and

(5.2.22) E1/2(t, θ) =
(π
t

)n/2 ∑
ν∈Zn

(−1)ν1+···+νn e−|θ−2πν|2/4t.

Both functions have the same asymptotic behavior for |θ| ≤ π as t↘ 0:

(5.2.23) Eγ(t, θ) ∼
(π
t

)n/2
e−|θ|2/4t.

Regarding the heat kernel Ht(x), we also have

(5.2.24) Ht(x) ∼ (4πt)−n
2/2 e−d(x)

2/4t, t↘ 0,

where d(x) denotes the distance from x to the identity element in the Rie-
mannian metric on U(n). In particular, for X ∈ u(n), |X| ≤ π/2,

(5.2.25) Ht(e
X) ∼ (4πt)−n

2/2 e−|X|2/4t, t↘ 0.

The n2 in the exponent of t arises as the dimension of U(n). This is a special
case of a general analysis of the heat kernel on a Riemannian manifold;
see [39], Chapter 7 for a proof, and Chapter 10 for important geometrical
applications. The reader might try to obtain (5.2.25) from (5.2.17) and
(5.2.23).
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5.3. The Harish-Chandra/Itzykson-Zuber integral

The integral

(5.3.1)

∫
U(n)

esTr(gXg
−1Y ) dg = H(s,X, Y ), X, Y ∈ M(n,C),

is of great interest in random matrix theory. Here we give several formulas
for this, with arguments adapted from [2] and [25]. Note that H(s,X, Y ) is
holomorphic in its arguments, so it is uniquely determined from its values
on various subsets. Let us take X = x, Y = y ∈ U(n), and write

(5.3.2)

H(s, x, y) =

∞∑
k=0

sk

k!

∫
U(n)

(
Tr(gxg−1y)

)k
dg

=

∞∑
k=0

sk

k!

∫
U(n)

Tr⊗k(gxg−1y) dg.

To proceed, we use the following.

Lemma 5.3.1. Let π, π′ be irreducible representations of a compact Lie
group G, with characters χπ, χπ′. Then

(5.3.3)

∫
G

χπ(xy)χπ′(y) dy = d−1
π χπ(x) δππ′ ,

where δππ′ = 1 if π ≈ π′, 0 otherwise. Furthermore,

(5.3.4)

∫
G

χπ(gxg
−1y) dg = d−1

π χπ(x)χπ(y).

Proof. If we write the integrand in the left side of (5.3.3) as Tr(π(x)π(y))χπ′(y)
and apply Proposition 2.4.2 to

∫
G π(y)χπ′(y) dy, we get the identity (5.3.3).

As for (5.3.4), one easily shows the left side is invariant under y 7→ h−1yh, h ∈
G. Hence

(5.3.5)

∫
G

χπ(gxg
−1y) dg =

∑
α∈I

ψα(x)χα(y),

with

(5.3.6) ψα(x) =

∫∫
GG

χπ(gxg
−1y)χα(y) dy dg = d−1

π δππα ,

the last identity by (5.3.3). □
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To apply (5.3.4) to (5.3.2), we break up ⊗k into irreducibles, using
Proposition 4.10.3. We get

(5.3.7)

∫
U(n)

Tr⊗k(gxg−1y) dy =
∑
λ∈Fnk

fλ

dλ
χλ(x)χλ(y),

where fλ is the dimension of the representation space for Sλ. Hence

(5.3.8) H(s, x, y) =
∞∑
k=0

sk

k!

∑
λ∈Fnk

fλ

dλ
χλ(x)χλ(y).

For a second approach, we apply (5.3.4) to each term in the series (5.2.8)
for the heat kernel Ht(x), obtaining

(5.3.9)

∫
U(n)

Ht(gxg
−1y) dg =

∑
λ∈P+

e−(|λ+ρ|2−|ρ|2)t χλ(x)χλ(y).

We analyze this in a fashion parallel to (5.2.9)–(5.2.15). Denoting the quan-
tity (5.3.9) by Kt(x, y), we have
(5.3.10)

Kt(D(θ), D(ϕ))

=
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑
λ∈P+

∑
σ,τ

(sgnσ)(sgn τ)ei⟨σ·(λ+ρ),θ⟩ei⟨τ ·(λ+ρ),φ⟩e−|λ+ρ|2t

=
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑
λ∈P̃+

∑
σ,τ

(sgn τ)ei⟨σ·λ,θ+τ
tφ⟩e−|λ|2t,

where we take τ 7→ τσ to produce the last identity, and we define P̃+ as in
(5.2.16). To proceed further, we note that

(5.3.11) Bλ(θ + τ tϕ) =
∑
σ,τ

(sgn τ)ei⟨σ·λ,θ+τ
tφ⟩ = Aλ(θ)Aλ(ϕ),

and

(5.3.12) Aσ·λ(θ) = (sgnσ)Aλ(θ).

Hence Bλ(θ+ τ tϕ) vanishes whenever there exists σ 6= e such that σ · λ = λ
and sgnσ = −1, hence whenever λµ = λν for some µ 6= ν. Thus we can
rewrite (5.3.10) as
(5.3.13)

Kt(D(θ), D(ϕ)) =
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑
λ∈(Z+γ)n

∑
τ∈Sn

(sgn τ)ei⟨λ,θ+τ
tφ⟩e−|λ|2t.
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Equivalently, with Eγ(t, θ) as in (33.16),

(5.3.14) Kt(D(θ), D(ϕ)) =
e|ρ|

2t

Aρ(θ)Aρ(ϕ)

∑
τ∈Sn

(sgn τ)Eγ(t, θ + τ tϕ).

The relevance of (5.3.14) to a calculation of (5.3.1) arises from the heat
kernel asymptotics

(5.3.15) Ht(g) ∼ (4πt)−n
2/2 e−d(g)

2/4t, t↘ 0,

discussed in §5.2. (Actually, an extra factor An enters, which we will discuss
at the end of this section.) Let us take

(5.3.16) x = eηX , y = eηY , X, Y ∈ u(n),

with |η| small. Then

(5.3.17) gxg−1y = eηAd(g)XeηY = eη(Ad(g)X+Y ) +O(η2).

We take

(5.3.18) η = 2
√
t.

Then

(5.3.19)
Ht(gxg

−1y) ∼ (4πt)−n
2/2 e−η

2|Ad(g)X+Y |2/4t

= (4πt)−n
2/2 e−(|X|2+|Y |2+2⟨Ad(g)X,Y ⟩).

Hence, with (5.3.16) and (5.3.18) in effect,

(5.3.20)

Kt(x, y) ∼ (4πt)−n
2/2e−(|X|2+|Y |2)

∫
U(n)

e−2⟨Ad(g)X,Y ⟩ dg

= (4πt)−n
2/2e−(|X|2+|Y |2)H(2, X, Y ),

since 〈X,Y 〉 = −Tr(XY ) in this case, so, for X,Y ∈ u(n),

(5.3.21) H(2, X, Y ) = e|X|2+|Y |2 lim
t↘0

(4πt)n
2/2Kt(e

2
√
tX , e2

√
tY ).

Say

(5.3.22) eηX ∼ D(ηθ), eηY ∼ D(ηϕ),

i.e., these matrices are similar. Then (5.3.14) gives

(5.3.23)

Kt(e
2
√
tX , e2

√
tY )

=
e|ρ|

2t

Aρ(2
√
tθ)Aρ(2

√
tϕ)

∑
τ∈Sn

(sgn τ)Eγ(t, 2
√
t(θ + τ tϕ)).

Now, as t↘ 0,

(5.3.24) Aρ(2
√
tθ) ∼ (2i

√
t)n(n−1)/2∆(θ),
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and, by (5.2.22),

(5.3.25) Eγ(t, 2
√
tθ) ∼

(π
t

)n/2
e−|θ|2 .

Thus, as t↘ 0,
(5.3.26)

Kt(e
2
√
tX , e2

√
tY ) ∼ t−n/2

πn/2

(2i)n(n−1)

1

∆(θ)∆(ϕ)

∑
τ∈Sn

(sgn τ)e−|θ+τ tφ|2 .

Hence, by (5.3.21),

(5.3.27) H(2, X, Y ) =
Cn

∆(θ)∆(ϕ)

∑
τ∈Sn

(sgn τ)e−2⟨τ ·θ,φ⟩,

whereX and Y are related to θ and ϕ by (5.3.22). Since clearlyH(s,X, Y ) =
H(1, sX, Y ) = H(2, (s/2)X,Y ), we have
(5.3.28)

H(s,X, Y ) = s−n(n−1)/2 C ′
n

∆(θ)∆(ϕ)

∑
τ∈Sn

(sgn τ)e−s⟨τ ·θ,φ⟩, X, Y ∈ u(n).

Our renaming of the constants Cn, C
′
n derives from the fact that (5.3.15)

holds when U(n) has the Riemannian metric in which the norm on TI U(n) =
u(n) is the Hilbert-Schmidt norm. However, in normalizing the Haar mea-
sure on U(n) to have mass one, we scale the metric. One way to evaluate
C ′
n in (5.3.28) is to consider the s→ 0 limit, using H(0, X, Y ) = 1. In fact,

(5.3.29) C ′
n =

n−1∏
ℓ=1

`!.

We mention that if instead of X and Y being skew-adjoint, as in (5.3.28),
we take X and Y self-adjoint, with eigenvalues θj and ϕj , respectively, then
(5.3.28) holds with −s changed to s in the exponent. This is the form in
which the identity commonly appears. See [18] for an application of such
an identity.





Chapter 6

Representations of
general compact Lie
groups

Given a compact, connected Lie group G, with Lie algebra g, we want to
present results on its representation theory parallel to those discussed for
G = U(n) and SU(n) in Chapter 4.

To start, we can find a torus T ⊂ G, of maximal dimension, whose Lie
algebra h is a commutative Lie subalgebra of the Lie algebra g of maximal
dimension. Given a continuous unitary representation π of G on a finite
dimensional V , we simultaneously diagonalize it on T, forming a decompo-
sition

(6.0.1) V =
⊕
λ∈h′

Vλ, Vλ = {v ∈ V : dπ(X)v = iλ(X)v, X ∈ h}.

When Vλ 6= 0, we say λ is a weight for π, and a nonzero v ∈ Vλ is called a
weight vector. In the special case where π is the adjoint representation, on
V = gC, we have

(6.0.2) gC = hC ⊕
⊕
α

gα,

where α runs over the roots of g.

We put an order on h′, which induces an order on the roots and more
generally on the weights. In particular, we refine (6.0.2) to

(6.0.3) gC = hC ⊕ n+ ⊕ n−, n± =
⊕
±α>0

gα.

203
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It follows that each finite dimensional representation π of G has a highest
weight. We show that if π is an irreducible unitary representation of G
on V , then there is exactly one weight λ for which Vλ is annihilated by all
the “raising operators,” i.e., the operators dπ(eα) for all eα ∈ gα, α > 0.
This λ is the highest weight, and dim Vλ = 1. Furthermore, if π1 and π2
are irreducible representations with the same highest weight, then they are
unitarily equivalent. As in the case of SU(n), this presents the problem of
identifying just which elements of h′ arise as highest weights of irreducible
representations.

In case g has trivial center and G is simply connected, the answer to this
problem is given by the Theorem of the Highest Weight, which says that an
element λ ∈ h′ is the highest weight of an irreducible representation of G if
and only if

(6.0.4) 2
〈λ, α〉
〈α, α〉

∈ Z+,

for each positive root α of g. Here the inner product on h′ is derived from
that on g, namely the Ad-invariant inner product determined by the Killing
form. An element λ ∈ h′ satisfying (6.0.4) for each positive root α is called
a dominant integral weight. When this result is specialized to G = SU(n),
we get the weights described in Chapter 4.

Considering the adjoint representation of G on gC , we show that

(6.0.5) nαβ = 2
〈α, β〉
〈β, β〉

∈ Z,

whenever α and β are roots. The integers nαβ are called Cartan integers.
Further analysis shows that

(6.0.6) nαβ ∈ {0,±1,±2,±3}.

This leads to a number of restrictions on the structure of roots, obtained in
§6.2. An important source of results obtained in this section is the injection
su(2) ↪→ g associated to each root pair {±α}.

In §6.3 we discuss the Weyl group, which acts as a group of automor-
phisms of T. In Chapter 4, for G = U(n), the Weyl group was Sn. Its
significance is that each central function f ∈ C(G) is uniquely determined
by its restriction to T, on which it is invariant under the Weyl group action.
In §6.4 we examine a certain family of functions ϕλ, which have an intrigu-
ing relation to the characters χλ of irreducible representations. Unlike in
Chapter 4, we do not derive the character formula in general here. For this,
one can consult [34].
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As seen above, we make use of the complexification gC of the Lie algebra
g. We also make use of the complexification of the Lie group G. Section 6.5
gives a construction of this complexification.

In §6.6 we consider a subset Σ of the set of positive roots, called simple
roots. The matrix (nαβ) of Cartan integers formed as α, β range over Σ
is called the Cartan matrix of g. Using it, one constructs a certain graph,
whose vertices are the elements of Σ, called the Dynkin diagram. We discuss
the Cartan matrices and Dynkin diagrams of various Lie algebras, including
those of U(n), SO(2k), SO(2k + 1), and G2.

Section 6.7 presents some results on representations of compact Lie
groups that are not connected, such as O(n), which has two connected
components, one being SO(n). We see that the representation theory of
O(n) is a simple variant of that of SO(n) if n is odd, but entails further
complications if n is even. A preview of this for n = 2 was given in §2.5.
Here we take a detailed look at the case n = 4.

Appendix 6.A has additional material on maximal tori. If G is a compact
Lie group, we say a torus T ⊂ G is a conjugating torus for G if each x ∈ G is
conjugate to an element of T. We record standard examples of conjugating
tori for U(n), SU(n), and SO(n). We also describe conjugating tori for
Sp(n), referring to Chapter 10 for a proof. We show that if T is a conjugating
torus for G and T′ is another torus, then there exists g ∈ G such that
T′ ⊂ g−1Tg. It follows that such T is a maximal torus, and moreover each
maximal torus in G is conjugate to T.
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6.1. Roots and weights for general compact Lie groups

The notions of roots and weights, described for U(n) in §4.2, have natural
counterparts for a general compact, connected Lie group G. Take such a
group, denote its Lie algebra by g, and endow G with a bi-invariant Rie-
mannian metric, so g has an inner product 〈 , 〉 with the property that for
each g ∈ G, Ad g is an orthogonal transformation on g, and hence for each
X ∈ g, adX is a skew-adjoint operator on g.

Let h be a commutative subalgebra of g of maximal dimension, and de-
note the Lie group it generates by T. This group is commutative, and it
is closed, hence compact. Indeed, otherwise its closure T would be a com-
mutative Lie subgroup of G of larger dimension. Note that the exponential
map h → T is a group homomorphism. Hence T is a compact quotient of
a Euclidean space by a discrete subgroup; hence T is a torus. It is called
a maximal torus in G. The dimension (say n) of T, or equivalently of h, is
called the rank of G.

If {h1, . . . , hn} is a basis of h, we can simultaneously put the skew-adjoint
operators adhj on g in normal form. In fact, for almost all choices rj ∈ R,
hb =

∑
rjhj separates out the spectra of ad hj and it suffices to put ad hb

in normal form. Hence there is a set of elements x1, . . . , xk, y1, . . . , yk ∈ g
such that

{h1, . . . , hn, x1, . . . , xk, y1, . . . , yk}
is a basis of g with the property that

(6.1.1) adh(xj ± iyj) = ±iαj(h)(xj ± iyj), ∀h ∈ h,

for certain αj ∈ h′. Hence we can decompose the complexified Lie algebra
gC as

(6.1.2) gC = hC ⊕
⊕
α

gα,

where, given α ∈ h′,

(6.1.3) gα = {z ∈ gC : [h, z] = iα(h)z, ∀h ∈ h}.

If gα 6= 0, we call α a root, and nonzero elements of gα are called root vectors,
provided α 6= 0. Note that g0 = hC. From the Jacobi identity, in the form

(6.1.4) adh([zα, zβ ]) = [adh(zα), zβ ] + [zα, adh(zβ)],

it follows that

(6.1.5) [gα, gβ ] ⊂ gα+β .

Note from (6.1.1) that if α is a root, so is −α.
The choice of ordered basis {hj : j = 1, . . . , n} of h induces an ordering

of h′ as follows. Given α, β ∈ h′, we say α > β provided the first nonzero
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number (α − β)(hj) is positive. As in §4.2, the root vectors corresponding
to positive roots will play the role of raising operators in the representation
theory of G. We first consider as a special case the adjoint representation
of G on g. This will give some valuable information on the structure of g.

To begin, associate to each root α ∈ h′ an element Hα uniquely deter-
mined by

(6.1.6) Hα ∈ h, α(h) = 〈Hα, h〉, ∀h ∈ h.

Here 〈 , 〉 is the Ad-invariant inner product on g mentioned above (restricted
in (6.1.6) to an inner product on h). Next, extend 〈 , 〉 to a symmetric
bilinear form on gC × gC. We have the following.

Lemma 6.1.1. If X ∈ gα and Y ∈ g−α, then

(6.1.7) [X,Y ] = i〈X,Y 〉Hα.

Proof. By (6.1.5), [X,Y ] ∈ hC = g0. Now, for any H ∈ h,

(6.1.8) 〈[X,Y ],H〉 = 〈Y, [H,X]〉 = iα(H)〈Y,X〉,

and, by (6.1.6), this identity is equivalent to (6.1.7). □

Note also that

(6.1.9) α(Hα) = 〈Hα,Hα〉 > 0.

We are ready for the following key result.

Proposition 6.1.2. For each root α,

(6.1.10) dim gα = 1.

Proof. Assume dim gα ≥ 2. We will show that gα and g−α are not orthog-
onal. Granted this, we can pick X,Z ∈ gα and Y ∈ g−α such that

(6.1.11) 〈X,Y 〉 = 1, 〈Z, Y 〉 = 0.

This implies

(6.1.12) [X,Y ] = iHα, [Z, Y ] = 0.

From here an inductive argument shows

(6.1.13) adY (adX)nZ =
n(n+ 1)

2
α(Hα)(adX)n−1Z.

To do the induction, we first check (6.1.13) for n = 1. Indeed,

adY (adX)Z = (adX)(adY )Z − [adX, adY ]Z

= 0− i adHα(Z)

= α(Hα)Z,
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since

(6.1.14) [adX, adY ] = ad[X,Y ] = i ad(Hα),

(6.1.15) ad Hα = iβ(Hα)Id, on gβ ,

and Z ∈ gα. Now, given n ≥ 2, assume (6.1.13) holds with n replaced by
n− 1. Then
(6.1.16)

adY (adX)nZ = adX(adY )(adX)n−1Z − [adX, adY ](adX)n−1Z

=
(n− 1)n

2
α(Hα)(adX)n−1 − i ad(Hα)(adX)n−1Z,

the second identity by the inductive hypothesis and (6.1.14). Now (adX)n−1Z ∈
gnα, so taking β = nα in (6.1.15) gives

(6.1.17) −i ad(Hα)(adX)n−1Z = nα(Hα)(adX)n−1Z,

so

(6.1.18) adY (adX)nZ =
[(n− 1)n

2
+ n

]
α(Hα)(adX)n−1Z,

yielding (6.1.13).

By (6.1.9) and (6.1.13), it follows that, if dim gα ≥ 2, then all the
elements (adX)nZ ∈ g(n+1)α are nonzero. This contradicts the fact that g
is finite dimensional.

To complete the proof of Proposition 6.1.2, it remains to show that gα
and g−α are not orthogonal with respect to 〈 , 〉. Indeed,

(6.1.19)
x+ iy ∈ gα (x, y ∈ g) =⇒ x− iy ∈ g−α

=⇒ 〈x+ iy, x− iy〉 = 〈x, x〉+ 〈y, y〉,

which is > 0 as long as x+ iy 6= 0. This completes the proof of Proposition
6.1.2. □

Remark. The endgame of this last proof uses the fact that, if α is a root,
then nα cannot be a root for all n ∈ N. See Proposition 6.2.4 for a much
stronger result.

Given Proposition 6.1.2, we can pick nonzero vectors eα ∈ gα, and ar-
range that e−α be the complex conjugate of eα,

(6.1.20) e±α = xα ± iyα, xα, yα ∈ g.

Furthermore, we can scale these elements so that 〈eα, e−α〉 = 1. Thus

(6.1.21) [eα, e−α] = iHα.
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These commutation relations, together with [Hα, e±α] = ±iα(Hα)e±α are
equivalent to
(6.1.22)

[xα, yα] = −1

2
Hα, [Hα, xα] = −α(Hα)yα, [Hα, yα] = α(Hα)xα.

The following result bears on the size of the linear span of the set of
roots α in h′.

Proposition 6.1.3. We have

(6.1.23)
⋂
α root

kerα = z,

the center of g.

Proof. Given h ∈ h,

(6.1.24)
α(h) = 0 ∀α⇐⇒ adh = 0 on each gα

⇐⇒ h ∈ z.

Of course, z ⊂ h, so this gives (6.1.23). Note that an equivalent statement
is that (with the orthogonal complement taken in h)⋂

α root

(Span Hα)
⊥ = z.

□

Corollary 6.1.4. If z = 0, then the set of roots spans h′; hence {Hα :
α is a root} spans h.

Examples. If g = u(n), then z = {iaI : a ∈ R}. If g = su(n), then z = 0. If
g = so(n), then z = 0.

We turn now to the representation theory of G. Let π be a unitary
representation of G on a finite dimensional complex vector space V . This
gives rise to a representation dπ of g by skew adjoint operators on V , which
extends to a complex linear representation, also denoted dπ of gC on V . As
in §4.2, we will find it convenient to bring in the complexification GC of G,
and use the following fact:

Proposition 6.1.5. The representation π of G on V extends to a holomor-
phic representation of GC on V .

See §6.5 for a description of GC and a proof of Proposition 6.1.5.
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To pursue our analysis of the representation π, take a maximal torus T
of G as above, with Lie algebra h, and for λ ∈ h′ set

(6.1.25) Vλ = {v ∈ V : dπ(h)v = iλ(h)v, ∀h ∈ h}.

We have

(6.1.26) V =
⊕
λ

Vλ.

If Vλ 6= 0 we call λ a weight, and any nonzero v ∈ Vλ a weight vector. The
decomposition (6.1.25)–(6.1.26) is called the weight space decomposition of
V .

For the root vectors eα considered above, set

(6.1.27) Eα = dπ(eα).

We call Eα a raising operator if α > 0 and a lowering operator if α < 0. The
commutation relations

(6.1.28) [h, eα] = iα(h)eα, ∀h ∈ h

imply

(6.1.29) dπ(h)Eα = Eαdπ(h) + iα(h)Eα.

Using this we can prove the following.

Proposition 6.1.6. For each root α, we have

(6.1.30) Eα : Vλ −→ Vλ+α.

In particular, if λ is a weight and α is a root, then either Eα annihilates Vλ
or λ+ α is a weight.

Proof. If ξ ∈ Vλ, we have, for all h ∈ h,

(6.1.31)
dπ(h)(Eαξ) = Eαdπ(h)ξ + iα(h)Eαξ

= i
(
λ(h) + α(h)

)
Eαξ,

which proves the proposition. □

The ordering we have put on h′ induces an ordering on the weights. For a
given finite dimensional representation π, with respect to this ordering there
will be a highest weight λm, and also a lowest weight λs. From Proposition
6.1.6 we see that

(6.1.32)
Eα = 0 on Vλm , for all raising operators Eα,

Eα = 0 on Vλs , for all lowering operators Eα.

In general, call a weight λ nonraisable if Vλ is annihilated by all raising
operators and call it nonlowerable if Vλ is annihilated by all lowering oper-
ators. Later in this section we will show that if π is irreducible, then the
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only nonraisable weight is maximal. Here we record our progress up to this
point.

Proposition 6.1.7. If π is a unitary representation of the compact Lie
group G in a finite dimensional space V , then there exists a highest weight
vector ξ, and in particular there exists a nonzero weight vector ξ ∈ V anni-
hilated by all raising operators.

This result gives a tool for showing that certain representations of G are
irreducible, namely:

Corollary 6.1.8. Let π be a unitary representation of G on a finite dimen-
sional space V . Suppose the set of weight vectors ξ ∈ V annihilated by all
raising operators is equal to the set of nonzero multiples of a single element.
Then π is irreducible.

Proof. Otherwise, V = V1 ⊕ V2 with π acting on each factor, and Proposi-
tion 6.1.5 produces two linearly independent weight vectors ξj ∈ Vj , annihi-
lated by all raising operators. □

We note the following. Set

(6.1.33) H(π) =
⋂
α>0

KerEα.

From (6.1.29) it follows that

(6.1.34) h ∈ h =⇒ dπ(h) : H(π) → H(π),

and of course {dπ(h)|H(π) : h ∈ h} forms a commuting family of skew-
adjoint operators, so they are simultaneously diagonalizable on H(π), i.e.,
H(π) is spanned by weight vectors. Hence the hypothesis in Corollary 6.1.8
is equivalent to the hypothesis that dimH(π) = 1.

We now head for a circle of results that include a converse to Corollary
6.1.8, parallel to Propositions 4.2.4–4.2.5. Let π denote the representation
of G on V ′ contragredient to π, given by

(6.1.35) 〈ξ, π(g)η〉 = 〈π(g−1)ξ, η〉, ξ ∈ V, η ∈ V ′.

Suppose ξ0 ∈ V is a nonraisable weight vector for π, with weight λ ∈ h′, and
suppose η0 ∈ V ′ is a nonlowerable weight vector for π, with weight −µ ∈ h′.
As in §4.2, we will study the function

(6.1.36) ϕ(g) = 〈π(g)ξ0, η0〉.

As stated in Proposition 6.1.5, we can extend π to a holomorphic represen-
tation of the complexified group GC, which then extends ϕ to a holomorphic
function on GC.
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Write the complexified Lie algebra gC as

(6.1.37) gC = hC ⊕ n+ ⊕ n−, n+ =
⊕
α>0

gα, n− =
⊕
α<0

gα.

Let D, N+, and N− denote the Lie subgroups of GC with Lie algebras
hC, n+, and n−, respectively. It follows from the inverse function theorem
that

(6.1.38) N−DN+ = Greg

is a subset of GC that contains an open neighborhood of the identity element
e. Let

(6.1.39) g = ζδz, ζ ∈ N−, z ∈ N+, δ = exp(h) = exp(h1 + ih2) ∈ D,

with hj ∈ h. We see that

(6.1.40)
π(z)ξ0 = ξ0, π(δ)ξ0 = eiλ(h)ξ0,

π(ζ)η0 = η0, π(δ−1)η0 = eiµ(h)η0.

Consequently,

(6.1.41) ϕ(ζg) = ϕ(g), ϕ(δg) = ei(µ(h1)+iµ(h2))ϕ(g),

and

(6.1.42) ϕ(gz) = ϕ(g), ϕ(gδ) = ei(λ(h1)+iλ(h2))ϕ(g).

Hence

(6.1.43)
ϕ(ζδz) = ϕ(δ) = ei(λ(h1)+iλ(h2))ϕ(e)

= ei(µ(h1)+iµ(h2))ϕ(e).

This identity is very significant, in light of the following result.

Lemma 6.1.9. Assume π is irreducible. Then the function ϕ has the prop-
erty

(6.1.44) ϕ(e) 6= 0.

Proof. If ϕ(e) = 0, then (6.1.43) implies that ϕ(g) = 0 on Greg. Since ϕ is
holomorphic and Greg contains a neighborhood of g, it follows that ϕ ≡ 0
on G. However, if π is irreducible and ξ0 6= 0 then

(6.1.45) Span{π(g)ξ0 : g ∈ G}

is invariant, hence all of V , so ϕ ≡ 0 cannot hold. This proves the lemma. □

From (6.1.43) and the lemma, we can deduce the following important
result.
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Theorem 6.1.10. If π is irreducible on V , the only weight λ that is nonrais-
able is the highest weight. Furthermore, the highest weight vector is unique,
up to a scalar multiple. Finally, if π and π2 are irreducible representations
with the same highest weight, they are unitarily equivalent.

Proof. The identity λ = µ (a consequence of (6.1.43)–(6.1.44)) proves the
uniqueness of λ, and establishes the first assertion. To proceed, note that if
we normalize the weight vectors so ϕ(e) = 1, the function ϕ(g) is uniquely
characterized by the following three properties:

(6.1.46) ϕ is holomorphic on GC,

(6.1.47) ϕ(ζgz) = ϕ(g), ∀ ζ ∈ N−, z ∈ N+, g ∈ G,

(6.1.48) ϕ(δ) = ei(λ(h1)+iλ(h2)), ∀ δ = exp(h1 + ih2) ∈ D.

Thus, if ξ1 were another highest weight vector, also normalized so 〈ξ1, η0〉 =
1, we would have

(6.1.49) 〈π(g)ξ1, η0〉 = ϕ(g), ∀ g ∈ G,

so 〈π(g)(ξ1 − ξ0), η0〉 = 0 for all g, hence

(6.1.50) W = Span{π(g)(ξ1 − ξ0) : g ∈ G} ⊥ η0.

Since π(g) :W →W and π is irreducible, this gives ξ1 = ξ0.

As for the final assertion of Theorem 6.1.10, let π2 be an irreducible
representation on V2, with the same highest weight λ as π. Pick a maximal
weight vector ξ2 for π2 and a minimal weight vector η2 for its contragredient
representation π2, normalized so 〈ξ2, η2〉 = 1, and form

(6.1.51) ϕ2(g) = 〈π2(g)ξ2, η2〉.
Then ϕ2 also satisfies the conditions (6.1.46)–(6.1.48). Hence ϕ ≡ ϕ2. Hence
π2 must be equivalent to π, since otherwise the Weyl orthogonality relations
would imply that ϕ and ϕ2 are orthogonal in L2(G). □
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6.2. Roots and weights for compact G, II: injections
su(2) ↪→ g

Recall from (6.1.20)–(6.1.22) the construction of e±α = xα ± iyα, spanning
g±α, satisfying

(6.2.1) [xα, yα] = −1

2
Hα, [Hα, xα] = −α(Hα)yα, [Hα, yα] = α(Hα)xα,

with Hα ∈ h given by (6.1.6). This holds for each root α. Recall that
α(Hα) = 〈Hα,Hα〉 > 0. If we take the inner product on h′ induced by that
on h, we also have

(6.2.2) α(Hα) = 〈α, α〉,

and more generally λ(Hα) = 〈λ, α〉 for each λ ∈ h′. Let us set

(6.2.3) Xα
1 =

1

〈α, α〉
Hα, Xα

2 =

√
2

〈α, α〉
yα, Xα

3 =

√
2

〈α, α〉
xα.

Then the commutation relations (6.2.1) are equivalent to

(6.2.4) [Xα
1 , X

α
2 ] = Xα

3 , [Xα
2 , X

α
3 ] = Xα

1 , [Xα
3 , X

α
1 ] = Xα

2 .

Now these commutation relations are identical to those in (4.1.2). Hence
each root α gives rise to an injective Lie algebra homomorphism su(2) ↪→ g,
which in turn, since SU(2) is simply connected, exponentiates to a Lie group
homomorphism

(6.2.5) γα : SU(2) −→ G,

defined for each root α. Since dγα is injective, either γα is injective or
Ker γα = {±I}, the only proper normal subgroup of SU(2).

The homomorphisms (6.2.5) have implications for the behavior of a uni-
tary representation π of G (say on V ). In fact, given such π, the composition
πα = π ◦ γα is a unitary representation of SU(2), and the material of §4.1
applies. Suppose λ is a weight of π, with weight space Vλ ⊂ V . Then

(6.2.6)

v ∈ Vλ =⇒ π(Exp tXα
1 )v = eitλ(X

α
1 )v

=⇒ π ◦ γα(etX1)v = eitλ(X
α
1 )v

=⇒ dπα(X1)v = iλ(Xα
1 )v.

Results of §4.1, analyzing (4.1.1), imply that λ(Xα
1 ) = n/2 for some n ∈ Z,

hence

(6.2.7)
λ(Hα)

〈α, α〉
=

〈λ, α〉
〈α, α〉

=
n

2
, for some n ∈ Z.
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Note that

(6.2.8) dγα(X2 ∓ iX3) = ∓i

√
2

〈α, α〉
(xα ± iyα) = ∓i

√
2

〈α, α〉
e±α,

hence, taking into account (4.1.10), we see that if Vλ is annihilated by all
raising operators for the representation π of G, then it is annihilated by the
raising operator for the representation π ◦ γα of SU(2), for each α > 0. This
forces n ≥ 0 in (6.2.7), for α > 0. We record the result.

Proposition 6.2.1. Let π be a unitary representation of G on V . Then for
each root α of g and each weight λ of π,

(6.2.9) 2
〈λ, α〉
〈α, α〉

is an integer. If α > 0 and Vλ is annihilated by all raising operators (e.g.,
if λ is a highest weight), then (6.2.9) is a non-negative integer.

Example 1. Take G = U(n), take the basis {ej : 1 ≤ j ≤ n} of h given
by (4.2.9), which is orthonormal with respect to the Ad-invariant Hilbert-
Schmidt inner product on g = u(n). This then defines an order on h, and an
order and an inner product on h′. The roots are ωjk, given by (4.2.14), which
are positive provided j < k. An element λ ∈ h′ is given by λ = (d1, . . . , dn).
We have 〈ωjk, ωjk〉 = 2 and

(6.2.10) 2
〈λ, ωjk〉
〈ωjk, ωjk〉

= dj − dk.

This is non-negative for all positive roots if and only if d1 ≥ · · · ≥ dn. For
the right side to be an integer for all j 6= k, it is sufficient (but not necessary)
that all dj be integers. Compare the characterization of highest weights in
Theorem 4.4.1.

Example 2. Take G = SU(n). If u(n)C = hC ⊕ (⊕j ̸=kgωjk
), then su(n)C

has the same form, with h replaced by h̃, the codimension one subspace of
h defined by

(6.2.11) h̃ = {h ∈ h : Trh = 0}.

It is natural to take the order on h̃ induced from that on h via inclusion.
The roots for su(n) are the restrictions to h̃ of the elements ωjk, and the
root spaces are still the one-dimensional spans of the elements ejk, for each
j 6= k. We have

(6.2.12) h̃′ = h′/{(r, . . . , r) : r ∈ R}.
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The weights are equivalence classes (d1, . . . , dn) ∼ (d1 + r, . . . , dn + r), and
(6.2.10) holds in this context; note that dj − dk = (dj + r)− (dk + r). Again
the condition that (6.2.10) be ≥ 0 whenever j < k becomes d1 ≥ · · · ≥ dn. If
we pick r = −dn, then the representative of λ is (d1, . . . , dn−1, 0), satisfying
dj ∈ Z+, d1 ≥ · · · ≥ dn−1. Compare the description of the highest weights
for the irreducible representations of SU(n) in Proposition 4.5.2.

Remark. In Example 2 we see that the necessary condition given in Propo-
sition 6.2.1 for an element λ ∈ h′ to be the highest weight for some irreducible
representation of SU(n) is also sufficient. By contrast, in Example 1 the nec-
essary condition given in Proposition 6.2.1 is not quite sufficient, since these
conditions do not imply that the entries dj be integers (only that their dif-
ferences be integers). It turns out that what is behind this dichotomy is
that the Lie algebra of SU(n) has a trivial center, while the center of the Lie
algebra of U(n) is {iaI : a ∈ R}, which is nontrivial. The following result
completes Proposition 6.2.1.

Theorem of the Highest Weight. If G is a compact, simply connected
Lie group whose Lie algebra g has a trivial center, then the condition that
(6.2.9) be a non-negative integer for each positive root α is necessary and
sufficient for a given λ ∈ h′ to be the highest weight of some irreducible
representation of G. One calls such λ a dominant integral weight.

A proof can be found in Chapter 4 of [47]. We outline an approach to obtain-
ing such a proof. Namely, one produces a certain finite set {λ1, . . . , λK} ⊂ h′

of dominant integral weights (called “fundamental weights”), with the prop-
erty that each dominant integral weight λ has the form

λ = n1λ1 + · · ·+ nKλK , nj ∈ Z+.

Then one exhibits irreducible unitary representations πj of G with highest
weight λj , 1 ≤ j ≤ K. Once one has this, the Theorem is a consequence of
the following.

Proposition 6.2.2. Suppose πj is a unitary representation of G on Vj with
highest weight µj (with highest weight vector vj ∈ Vj). Then the representa-
tion

π1 ⊗ π2 on V1 ⊗ V2

has highest weight µ1 + µ2 (with highest weight vector v1 ⊗ v2).

Proof. Same as for Proposition 4.4.4. □

Recall that this was the program used in §4.4 to classify the irreducible
representations of U(n).
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We turn our attention to the adjoint representation of G on gC. If we
apply Proposition 6.2.1 to the adjoint representation, we get:

Corollary 6.2.3. If α and β are roots, then

(6.2.13) nαβ = 2
〈α, β〉
〈β, β〉

∈ Z.

The integers nαβ are called the Cartan integers.

Remark 1. The orthogonal projection of β onto the linear span of α in h′

is given by

(6.2.14) Pαβ =
〈α, β〉
〈α, α〉

α.

Hence Corollary 6.2.3 impacts the geometry of the roots, as a subset of h′.
We look further at this impact.

Remark 2. Of course, one can reverse the roles of α and β in (6.2.13). Com-
paring the results implies the following. If θαβ denotes the angle between α
and β in h′, then

(6.2.15) cos2 θαβ =
nαβnβα

4
,

and hence, since the numerator must be an integer,

(6.2.16) cos2 θαβ ∈
{
0,

1

4
,
1

2
,
3

4
, 1
}
.

It also follows that

(6.2.17) nαβ ∈ {0,±1,±2,±3,±4}.
More precisely, we have the following. Assume

(6.2.18) 〈α, β〉 6= 0, 〈α, α〉 ≥ 〈β, β〉 (so nαβ ≥ nβα).

Then, with σ = ±1,

(6.2.19)
cos2 θαβ =

1

4
⇐⇒ nαβ = nβα = σ

=⇒ 〈α, α〉 = 〈β, β〉,

(6.2.20)
cos2 θαβ =

1

2
⇐⇒ nαβ = 2σ, nβα = σ

=⇒ 〈α, α〉 = 2〈β, β〉,

(6.2.21)
cos2 θαβ =

3

4
⇐⇒ nαβ = 3σ, nβα = σ

=⇒ 〈α, α〉 = 3〈β, β〉.
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Here is another restriction on the set of roots.

Proposition 6.2.4. If α is a root and also β = sα is a root, for some
s ∈ R \ 0, then s = ±1.

Proof. Interchanging the roles of α and β and changing the sign of β if
necessary, we see it suffices to show that if α is a root and 0 < s < 1, then
sα is not a root. If such sα were a root, (6.2.13) would imply 2s ∈ Z. This
forces s = 1/2, i.e., β = (1/2)α, or α = 2β. Thus it suffices to show:

(6.2.22) If β is a root, then 2β is not a root.

To see this, consider

(6.2.23) Wβ = C-Span(Hβ)⊕
⊕
k∈Z

gkβ .

Then Wβ is invariant under Ad ◦γβ , i.e., we have a representation πβ of
SU(2) on Wβ . This representation splits into an orthogonal direct sum of
irreducible pieces, each isomorphic to a representation of the form Dℓ/2,
given in Proposition 4.1.2, having weight space decomposition

(6.2.24) V−ℓ/2 ⊕ V−ℓ/2+1 ⊕ · · · ⊕ Vℓ/2, dDℓ/2(X1) = iµ on Vµ.

Now if we take π = Ad in (6.2.6) (and replace α by β, and λ by kβ), we get

(6.2.25)

πβ(g) = Ad(γβ(g)) ⇒ dπβ(X1) = ad dγβ(X1) = adXβ
1

=
1

〈β, β〉
adHβ (by (6.2.3))

⇒ dπβ(X1) = ik on gkβ ,

since

adHβ

∣∣
gkβ

= ikβ(Hβ)Id = ik〈β, β〉Id.

Hence the only representations Dℓ/2 of SU(2) that occur in the decom-

position of πβ are those for which ` is even. Each one of these has a copy
of V0, on which dπβ(X1) = 0. However, comparing (6.2.23) and (6.2.24), we
see that this occurs only as the one-dimensional space Span(Hβ). Hence π

β

is irreducible. Since Span(Hβ)⊕gβ⊕g−β is invariant under πβ = Ad ◦γβ , we
must have (6.2.23) equal to Span(Hβ)⊕ gβ ⊕ g−β . This establishes (6.2.22)
and completes the proof of Proposition 6.2.4. □

In light of Proposition 6.2.4, we can complement (6.2.19)–(6.2.21) with

(6.2.26)
cos2 θαβ = 1 ⇐⇒ α = σβ

=⇒ nαβ = nβα = 2σ,
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where again σ = ±1. Also, we can sharpen (6.2.17) to

(6.2.27) nαβ ∈ {0,±1,±2,±3}.
To see this, note that nαβ = ±4 ⇒ nβα = ±1 ⇒ 〈β, β〉 = 4〈α, α〉 and
cos2 θαβ = 1, but these last two identities contradict (6.2.26).

We also note that, given |α| ≥ |β| and β 6= ±α, then, by (6.2.19)–
(6.2.21),

(6.2.28)

nαβ = 1 ⇔ nβα = 1, nαβ = −1 ⇔ nβα = −1,

nαβ = 2 ⇔ nβα = 1, nαβ = −2 ⇔ nβα = −1,

nαβ = 3 ⇔ nβα = 1, nαβ = −3 ⇔ nβα = −1,

Here is another perspective on the numbers in (6.2.9). Assume λ is a
weight for the unitary representation π of G on V , take ϕ0 ∈ Vλ, let α be a
root of g, and, with E±α = dπ(e±α), assume

(6.2.29)
(Eα)

jϕ0 = ϕj 6= 0 in Vλ+jα, for 0 ≤ j ≤ p,

(E−α)
jϕ0 = ϕ−j 6= 0 in Vλ−jα, for 0 ≤ j ≤ m,

while

(6.2.30) Eαϕp = 0 = E−αϕ−m.

We call {ϕj : −m ≤ j ≤ p} an α-string.

For such a string, we set

(6.2.31) ψ0 = (Eα)
pϕ0 ∈ Vλ∗ , λ∗ = λ+ pα,

and we have

(6.2.32)
(E−α)

kψ0 = ψk 6= 0 in Vλ∗−kα, for 0 ≤ k ≤ q = m+ p,

E−αψq = 0, Eαψ0 = 0.

We have the following important identity.

Proposition 6.2.5. Given an α-string, as described above,

(6.2.33) m+ p = 2
〈λ+ pα, α〉

〈α, α〉
,

hence

(6.2.34) m− p = 2
〈λ, α〉
〈α, α〉

.

Proof. Equivalently, in the setup (6.2.31)–(6.2.32), we claim

(6.2.35) q = 2
〈λ∗, α〉
〈α, α〉

,

with q = m+p. Clearly {ψk : 0 ≤ k ≤ q} are linearly independent vectors in
V , spanning a (q+1)-dimensional spaceW , on which the complex Lie algebra
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spanned by {Eα, E−α,Hα} acts irreducibly. Thus we have the representation
Dq/2 of SU(2) on W . The calculation (6.2.6)–(6.2.7), with Vλ replaced by
Vλ∗ , and n by q, exactly gives (6.2.35). □

When Proposition 6.2.5 is specialized to the adjoint representation of G
on gC, we get some useful results on the roots of g. Here is one.

Proposition 6.2.6. If α and β are roots of g and [eα, eβ ] = 0, then gα+β =
0.

Proof. In this case, we have an α-string generated by eβ , of the form
{gβ+µα : −M ≤ µ ≤ 0}, for some M ∈ Z+. By (6.2.34), with m =M,p = 0,

(6.2.36) 2
〈β, α〉
〈α, α〉

=M.

Now assume ξ ∈ gα+β and ξ 6= 0. Then we have an α-string generated by ξ,
of the form {gα+β+να : −m ≤ ν ≤ p}, with m, p ∈ Z+. By (6.2.34),

(6.2.37) m− p = 2
〈α+ β, α〉
〈α, α〉

= 2 +M,

hence

(6.2.38) m = 2 +M + p ≥ 2 +M ≥ 2.

Also

(6.2.39)
ad e−α(ξ) = Aeβ (since dim gβ = 1)

6= 0 (since m ≥ 2).

Thus the bottom of this α-string is gβ−Mα = gβ+α−(M+1)α, hence

(6.2.40) m =M + 1.

However, this contradicts (6.2.38), so there can be no such ξ. □

Corollary 6.2.7. If α and β are roots of g, then

(6.2.41) gα+β = ad eα(gβ).

Note that Proposition 6.2.6 applies with α = β to reprove (6.2.22), again
proving Proposition 6.2.4.
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6.3. The Weyl group

In §4.4 we found it useful to know that conjugation by a permutation matrix
Eσ, defined on the standard basis {u1, . . . , un} of Cn by

(6.3.1) Eσuk = uσ(k),

preserves the maximal torus T ⊂ U(n), consisting of diagonal unitary ma-
trices, and permutes their entries:

(6.3.2) E−1
σ diag(c1, . . . , cn)Eσ = diag(cσ(1), . . . , cσ(n)).

It followed that if π is a unitary representation of U(n) on V , then applica-
tions of π(Eσ) permute the weight spaces; cf. (4.4.4).

Here we study an analogous structure on a general compact, connected
Lie group G. The role of the symmetric group Sn for G = U(n) is taken by
the Weyl group W (G), defined as

(6.3.3) W (G) = N(T)/T,

where T is a maximal torus of G and N(T) is the normalizer of T:

(6.3.4) N(T) = {g ∈ G : g−1xg ∈ T, ∀x ∈ T}.

Note that

(6.3.5) g ∈ N(T) =⇒ Ad g : h → h.

We define the representation W of N(T) on h by

(6.3.6) W(g) = Ad(g)
∣∣
h
, for g ∈ N(T).

Then N(T) has the contragredient representation W on h′:

(6.3.7) 〈W(g−1)H,λ〉 = 〈H,W(g)λ〉, g ∈ N(T), H ∈ h, λ ∈ h′.

Clearly g ∈ T ⇒ W(g) = Ad(g)|h = I, so we get representations of W (G)

on h and h′, which we also denote W and W. We put an Ad-invariant inner
product on g, inducing an inner product on h invariant under W(g) for each
g ∈ N(T), and this induces an inner product on h′, invariant under W(g) for
each g ∈ N(T). Since the representation W is real, W and W are equivalent
representations, intertwined by the isomorphism h ≈ h′ induced by the inner
product on h just mentioned.

The following result generalizes (4.4.4).

Proposition 6.3.1. Let π be a unitary representation of G on V , with
weight space decomposition V = ⊕Vλ. Then

(6.3.8) g ∈ N(T) =⇒ π(g) : Vλ → VW(g)λ.



222 6. Representations of general compact Lie groups

Proof. Recall that

(6.3.9)
Vλ = {v ∈ V : dπ(h)v = iλ(h)v, ∀h ∈ h}

= {v ∈ V : π(Exph)v = eiλ(h)v, ∀h ∈ h}.

Now

(6.3.10)
g ∈ N(T), v ∈ Vλ =⇒ π(g−1)π(Exph)π(g)v = π(ExpAd g−1 h)v

= eiλ(Ad g−1 h)v,

and

(6.3.11) λ(Ad g−1 h) = 〈W(g−1)h, λ〉 = 〈h,W(g)λ〉,

so

(6.3.12)
g ∈ N(T), v ∈ Vλ =⇒ π(Exph)π(g)v = ei(W(g)λ)(h)π(g)v

=⇒ π(g)v ∈ VW(g)λ,

as stated in (6.3.8). □

In particular, the Weyl group permutes the roots of g. That is, if α is
a root, so is W(g)α, for each g ∈ N(T). The following result gives valuable
information on how W (G) permutes the roots, and implies that W (G) has
lots of elements.

Proposition 6.3.2. For each root α, there exists gα ∈ N(T) such that

(6.3.13) W(gα)H = H − 2
〈Hα,H〉
〈Hα,Hα〉

Hα, ∀H ∈ h,

i.e., W(gα) is reflection across the hyperplane in h orthogonal to Hα. Hence

(6.3.14) W(gα)λ = λ− 2
〈α, λ〉
〈α, α〉

α, ∀λ ∈ h′.

This is reflection across the hyperplane in h′ orthogonal to α.

Proof. We will show that (6.3.13) holds with gα = Aα(π), where

(6.3.15) Aα(t) = Exp tXα
3 .

Here Xα
3 is as in (6.2.3) and π = 3.14159 · · · . To begin, note that

(6.3.16) Ad(Aα(t))H = et adX
α
3 H.

Now

(6.3.17)

H ∈ kerα ⊂ h =⇒ ad e±α(H) = 0 (since [H, e±α] = ±iα(H)e±α)

=⇒ adXα
3 (H) = 0

=⇒ et adX
α
3 (H) = H.
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We note parenthetically that by the same reasoning, α(H) = 0 ⇒ adXα
2 (H) =

0, and of course ad(Hα)H = 0; that is to say, more generally than (6.3.17),
we have

(6.3.18) H ∈ kerα =⇒ Ad ◦γα(g)H = H, ∀ g ∈ SU(2),

with γα defined by (6.2.5).

Since α(H) = 〈H,Hα〉, we have kerα = (Hα)
⊥. The result (6.3.13) (and

the containment Aα(π) ∈ N(T)) will hence follow from (6.3.17) together
with the result

(6.3.19) Ad(Aα(π))Hα = −Hα.

To establish (6.3.19), we analyze the action of Ad(Aα(t)) on X
α
1 (which by

(6.2.3) is parallel to Hα). The commutation relations (6.2.4) give

(6.3.20) adXα
3 (X

α
1 ± iXα

2 ) = ∓i(Xα
1 ± iXα

2 ),

hence

(6.3.21) et adX
α
3 (Xα

1 ± iXα
2 ) = e∓it(Xα

1 ± iXα
2 ),

hence

(6.3.22)

Ad(Aα(t))X
α
1 = et adX

α
3 Xα

1

=
1

2
et adX

α
3 [(Xα

1 + iXα
2 ) + (Xα

1 − iXα
2 )]

=
1

2
[e−it(Xα

1 + iXα
2 ) + eit(Xα

1 − iXα
2 )],

hence

(6.3.23) Ad(Aα(π))X
α
1 = −Xα

1 ,

which gives (6.3.19). This proves (6.3.13), and (6.3.14) follows. □

Remark. If α, β ∈ h′ are both roots, then (6.3.14) together with (6.2.13)
gives

(6.3.24) W(gα)β = β − nβαα,

where nαβ are the Cartan integers. We use the notation

(6.3.25) Sαβ = W(gα)β.

The following result implies we can identify W (G) with its image under
W in Gl(h), or under W in Gl(h′).

Proposition 6.3.3. If g ∈ G and g−1xg = x for each x ∈ T, then g ∈ T.
Hence if g ∈ N(T) and W(g) = I on h, then g ∈ T.
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For a proof valid for general compact, connected G, see [34], p. 167. In
the special case G = U(n) (or G = SU(n)) we can see the result as follows.
Take g ∈ U(n) and x = diag(c1, . . . , cn) ∈ T. Then forming gx multiplies
the jth column of g by cj and forming xg multiplies the jth row of g by cj .
From this it is apparent that if gx = xg for all such x, then g must be a
diagonal matrix.

Here is another proof, for G = U(n). If g ∈ U(n) commutes with each
x ∈ T, then g commutes with superpositions of such elements. In particular,
one can take xj = (1, . . . ,−1, . . . , 1), with all ones except −1 in the jth
position, and see that g commutes with I − xj , hence with the orthogonal
projection onto Span ej , for each j. This requires g to be diagonal, and
forces g ∈ T.

The reader is invited to produce a similar argument for G = SO(n).

Regarding the image of W (G) under W, of course each element W(g)
(g ∈ N(T)) acts trivially on the center z of g (z ⊂ h). By Proposition 6.1.3
and (6.1.6), we have

(6.3.26) h = z⊕ Span {Hα : α root}.

Consequently,

(6.3.27)

g ∈ N(T), W(g)Hα = Hα, ∀α
=⇒ W(g) = I on h

=⇒ [g] = [e] in W (G),

where [g] denotes the image of g under N(T) → N(T)/T = W (G). We
deduce that the isomorphic image of W (G) in Gl(h) is in turn isomorphic
to a subgroup of the group of permutations of the set

(6.3.28) ∆ = {α ∈ h′ : α root of g}.

In particular,

(6.3.29) #W (G)
∣∣ (#∆)!,

where #S denotes the number of elements of a set S. To reiterate, for
g ∈ N(T), the action of W(g) on h′ is uniquely determined by the action of
W(g) on the roots. The following result complements this assertion.

Proposition 6.3.4. The image of W (G) under W in Gl(h′) is generated by
the set of reflections Sα, given by (6.3.24)–(6.3.25).

For a proof of this, see [34], Chapter 8. It is easy enough to verify in
case G = U(n). In that case,

(6.3.30) ∆ = {ωjk : j 6= k, 1 ≤ j, k ≤ n},
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with ωjk as in (4.2.14). Equivalently, with {ej : 1 ≤ j ≤ n} the basis of
h given by (4.2.9) and {e′j : 1 ≤ j ≤ n} the dual basis, ωjk = e′j − e′k. A
calculation gives

(6.3.31) Sωjk
ωℓm = ωσ(ℓ)σ(m), where σ = (j k),

i.e., σ ∈ Sn is the transposition that switches j and k and leaves the other
elements of {1, . . . , n} fixed. It is well known that the set of transpositions
generates Sn, so {Sωjk

} generates

(6.3.32) {Sσ : σ ∈ Sn}, Sσωℓm = ωσ(ℓ)σ(m).

That this exhausts W (U(n)) follows from:

Proposition 6.3.5. Let V be an n-dimensional real inner product space with
orthonormal basis {e′j : 1 ≤ j ≤ n}. Let S be an orthogonal transformation

on V such that S fixes e′1+· · ·+e′n and permutes the vectors ωjk = e′j−e′k, j 6=
k. Then S has the form (6.3.32), for some σ ∈ Sn.

Proof. Left to the reader. □

Given Proposition 6.3.5, we have

(6.3.33) W (U(n)) ≈ Sn.

We also claim

(6.3.34) W (SU(n)) ≈ Sn.

The action of σ ∈ Sn on the maximal torus in SU(n) is given by a slight
modification of (6.3.1)–(6.3.2), needed because detEσ = sgnσ. More gen-
erally than (6.3.1), we can take θ = (θ1, . . . , θn) ∈ {±1} × · · · × {±1} and
define Eθσ ∈ O(n) ⊂ U(n) by

(6.3.35) Eθσuk = θkuσ(k).

Then

(6.3.36) detEθσ = θ1 · · · θn · sgnσ,
so for each σ ∈ Sn there exist elements Eθσ ∈ SO(n) ⊂ SU(n). One has the
following extension of (6.3.2):

(6.3.37) (Eθσ)
−1 diag(c1, . . . , cn)E

θ
σ = diag(cσ(1), . . . , cσ(n)).

If also Eφσ ∈ SU(n), then Eθσ(E
φ
σ )−1 is a diagonal element of SU(n), so the

two elements define the same element of N(T)/T, where T is the maximal
torus consisting of diagonal elements of SU(n).
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6.4. A generating function

Let G be a compact, connected Lie group, with maximal torus T, whose Lie
algebra is denoted h. Let λ ∈ h′ run over the collection of highest weights
for irreducible unitary representations of G. Denote the corresponding rep-
resentation by πλ, acting on Wλ. Parallel to (6.1.36), we let ξλ ∈ Wλ be a
highest weight vector, and take ηλ ∈W ′

λ to be a lowest weight vector for πλ.
We know by Lemma 6.1.9 that 〈ξλ, ηλ〉 6= 0; normalize so that 〈ξλ, ηλ〉 = 1,
and set

(6.4.1) ϕλ(g) = 〈πλ(g)ξλ, ηλ〉.

This is just as in (6.1.36), except that here we record the dependence on λ.
This family of functions on G has the following important property.

Proposition 6.4.1. If λ and µ are highest weights, then

(6.4.2) ϕλ+µ(g) = ϕλ(g)ϕµ(g).

Proof. We know by Proposition 6.2.2 that λ + µ is the highest weight for
an irreducible component of πλ⊗πµ onWλ⊗Wµ, with weight vector ξλ⊗ξµ.
Similarly, −λ−µ is the lowest weight for an irreducible component of πλ⊗πµ
onW ′

λ⊗W ′
µ, with weight vector ηλ⊗ηµ. Hence, by uniqueness (cf. Theorem

6.1.10),

(6.4.3)
ϕλ+µ(g) = 〈πλ(g)⊗ πµ(g)(ξλ ⊗ ξµ), ηλ ⊗ ηµ〉

= ϕλ(g)ϕµ(g),

as asserted. □

Let us recall the conjugate linear map C : Vλ → V ′
λ from (2.3.13)–

(2.3.14), satisfying

(6.4.4) (u, v) = 〈u,Cv〉, πλ(g) = Cπλ(g)C
−1.

In this setting we have (up to scaling)

(6.4.5) ηλ = Cξλ,

and hence

(6.4.6) ϕλ(g) = (πλ(g)ξλ, ξλ),

using the Hermitian inner product on Wλ rather than the Wλ−W ′
λ duality.

We require (ξλ, ξλ) = 1, so as before

(6.4.7) ϕλ(e) = 1.

We now demonstrate a connection between ϕλ and the character χλ(g) =
Trπλ(g).
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Proposition 6.4.2. We have

(6.4.8) χλ(x) = dλ

∫
G

ϕλ(g
−1xg) dg,

where dλ = dimWλ.

Proof. Denote the right side of (6.4.8) by ψλ(x). We have

(6.4.9) ψλ(g
−1xg) = ψλ(x), ∀x, g ∈ G.

That is to say, ψλ is central, so by Proposition 2.4.1 it must be a constant
multiple of χλ. Since ψλ(e) = dλ = χλ(e), we have the identity (6.4.8). □

We do not address here the possible use of Propositions 6.4.1–6.4.2 as a
tool for a derivation of the Weyl character formula, nor of the Weyl dimen-
sion formula, which in the current setting is

(6.4.10) dλ =
∏
α∈∆+

〈λ+ ρ, α〉
〈ρ, α〉

,

where ∆+ is the set of positive roots,

(6.4.11) ρ =
1

2

∑
α∈∆+

α,

and 〈 , 〉 is the inner product on h′ arising from the Killing form.
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6.5. The complexification of a general compact Lie group

Here we construct the complexification GC of a compact, connected Lie
group G and extend Theorem 4.6.1. To begin, take a faithful unitary repre-
sentation ρ of G on some space Cn. The existence of such a representation is
guaranteed by Proposition 2.8.8, and is apparent for the standard examples.
Thus we have

(6.5.1) ρ : G −→ U(n) ⊂ Gl(n,C),

taking G isomorphically onto its image Gρ, with

(6.5.2) dρ : g −→ u(n) ⊂ M(n,C),

taking g isomorphically onto its image, gρ. Define GρC to be the Lie subgroup
of Gl(n,C) generated by gρC ⊂ M(n,C).

The group GρC is a complex submanifold of Gl(n,C), with a natural
holomorphic structure, such that the group actions are holomorphic maps.
To see this, note that

(6.5.3) Exp :M(n,C) −→ Gl(n,C)

is a holomorphic map (being given by a convergent power series), and
DExp(0) = I. The inverse function theorem applied to holomorphic maps
yields local inverses that are not only smooth but also holomorphic. Hence
Exp is a holomorphic diffeomorphism of a neighborhood Ω of 0 ∈ M(n,C)
onto a neighborhood O of I in Gl(n,C). Thus it restricts to a holomorphic
diffeomorhism of Ω ∩ gρC onto its image, defining the complex structure of
GρC in a neighborhood of I. Given any g0 ∈ GρC, one has the holomorphic
diffeomorphism

(6.5.4) Eg0 : Ω −→ g0O, Eg0(X) = g0 Exp(X),

mapping Ω ∩ gρC diffeomorphically onto a neighborhood of g0 in GρC.

Shortly we will show that this complexification of G is independent of
the choice of ρ, up to natural isomorphism.

Here is the extension of Theorem 4.6.1.

Theorem 6.5.1. If π is a representation of G on a finite dimensional com-
plex vector space V , then there is a holomorphic representation πρ of GρC on
V such that

(6.5.5) πρ ◦ ρ(g) = π(g), ∀ g ∈ G.

The proof will parallel that of Theorem 4.6.1. To set it up, define the
representation T p,qρ of G on T p,q(Cn) = (⊗pCn)⊗ (⊗qCn) by

(6.5.6)
T p,qρ (g)v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq

= ρ(g)v1 ⊗ · · · ⊗ ρ(g)vp ⊗ ρ(g−1)tw1 ⊗ · · · ⊗ ρ(g−1)twq.
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Note that

(6.5.7) ρ(g) ∈ U(n) =⇒ ρ(g−1)t = ρ(g).

Next we define the representation TK,ρ of G on TK(Cn) = ⊕p+q≤KT
p,q(Cn)

by

(6.5.8) TK,ρ(g)
( ⊕
p+q≤K

vpq

)
=

⊕
p+q≤K

T p,qρ (g)vpq.

Then we have:

Proposition 6.5.2. If π is a finite dimensional representation of G on V ,
then there exists K <∞ such that π is contained in TK,ρ.

Proof. Same as that of Proposition 4.6.2. □

The content of Proposition 6.5.2 is that, for some K, there is a linear
subspace W of TK(Cn), invariant under the action of TK,ρ, and a linear
isomorphism J : V →W such that

(6.5.9) π(g) = J−1TK,ρ(g)J,

for all g ∈ G. Note that, with TK as in (4.6.3)–(4.6.4), we have

(6.5.10) π(g) = J−1TK(ρ(g))J, ∀ g ∈ G.

Theorem 6.5.1 follows from this, via arguments similar to those used in
§4.6. As noted there, TK extends from U(n) to Gl(n,C), holomorphically.
We have

(6.5.11) πρ(g̃) = J−1TK(g̃)J,

for g̃ ∈ Gρ. We claim that (6.5.11) extends from g̃ ∈ Gρ to g̃ ∈ GρC. To see
this, we start with the fact that

(6.5.12) TK(g̃) :W −→W,

for all g̃ ∈ Gρ. We want to show that (6.5.12) holds for all g̃ ∈ GρC. Indeed,
the validity of (6.5.12) for all g̃ ∈ Gρ implies

(6.5.13) dTK(X) :W −→W,

for all X ∈ gρ. Since TK is holomorphic, dTK : M(n,C) → L(TK(Cn)) is
C-linear, so (6.5.13) holds for all X ∈ gρC. Thus

(6.5.14) TK(etX) = et dTK(X) :W −→W,

for all X ∈ gρC, so (6.5.12) holds for all g̃ in a neighborhood of the identity
in GρC, hence for all g̃ ∈ GρC. This yields the desired extension of (6.5.11) to
all g̃ ∈ GρC, and hence yields Theorem 6.5.1.

We next establish uniqueness:
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Proposition 6.5.3. If σ is another faithful unitary representation of G, on
Cm, we have a natural holomorphic isomorphism

(6.5.15) GρC ≈ GσC.

Proof. Applying Theorem 6.5.1 to π = σ, we have a holomorphic represen-
tation σρ of GρC on Cm, i.e.,
(6.5.16) σρ : GρC −→ Gl(m,C),
such that

(6.5.17) σρ ◦ ρ(g) = σ(g), ∀ g ∈ G.

We see that dσρ takes the Lie algebra gρ isomorphically onto gσ; hence it
extends to an isomorphism of the complexifications of these Lie algebras.
This implies

(6.5.18) σρ : GρC −→ GσC,

with dσρ : gρC → gσC, isomorphically. Interchanging the roles of ρ and σ, we
have a holomorphic homomorphism

(6.5.19) ρσ : GσC −→ GρC.

We claim that the maps in (6.5.18) and (6.5.19) are inverse to each other,
which will yield (6.5.15).

To see this, consider

(6.5.20) κ = ρσ ◦ σρ : GρC → GρC.

We have

(6.5.21) κ(g) = g, ∀ g ∈ Gρ.

Hence dκ : gρC → gρC is a C-linear Lie algebra homomorphism that is the
identity on gρ ⊂ gρC, hence is the identity on gρC. It follows that κ : GρC → GρC
is the identity. Similarly σρ ◦ ρσ : GσC → GσC is the identity, and we are
done. □

In light of this uniqueness, we choose any such GρC as constructed above,
denote it GC, and call it “the complexification” of G.



6.5. The complexification of a general compact Lie group 231

Exercises

1. Show that

U(1)C = {eiz : z ∈ C} = C \ 0 = Gl(1,C),
and

SO(2)C = {ezJ : z ∈ C}, J =

(
0 −1
1 0

)
,

and verify that U(1)C ≈ SO(2)C.

2. Show that

U(n)C = Gl(n,C), SU(n)C = Sl(n,C).
3. Show that

SO(n)C = {A ∈ Sl(n,C) : AtA = I},
with Lie algebra

so(n)C = {X ∈M(n,C) : Xt = −X}.
Compare the case n = 2 with the result of Exercise 1.
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6.6. Simple roots, Cartan matrices, and Dynkin diagrams

Let G be a compact, connected Lie group, with Lie algebra g and maximal
torus T, whose Lie algebra is h. A choice of ordered basis of h produces an
order on h′, hence on the set of roots of g. We set

(6.6.1) ∆ = set of roots, ∆+ = set of positive roots.

A root α is called a simple root if α is positive and it cannot be written as
a sum of two positive roots. We set

(6.6.2) Σ = set of simple roots.

For example, if G = U(n), or SU(n), then, with ωjk as in (19.13),

(6.6.3) ∆ = {ωjk : j 6= k}, ∆+ = {ωjk : j < k},

and one has

(6.6.4) Σ = {ωj,j+1 : 1 ≤ j ≤ n− 1}.

Recall from (6.2.13) the quantities

(6.6.5) nαβ = 2
〈α, β〉
〈β, β〉

∈ Z,

associated to α, β ∈ ∆, called the Cartan integers. These possess a number
of properties, given in (6.2.15)–(6.2.21) and (6.2.26)–(6.2.27). We form the
Cartan matrix of g, from (6.6.5) with α and β from

(6.6.6) Σ = {α1, . . . , αm}.

This is the m×m matrix A, with entries

(6.6.7) Ajk = 2
〈αj , αk〉
〈αk, αk〉

.

Clearly Ajj = 2 for each j. We say more about the off-diagonal entries
below.

If G = U(n) or SU(n), we take αj = ωj,j+1, as in (6.6.4). Thusm = n−1.
Note that

(6.6.8)

〈ωj,j+1, ωk,k+1〉 = −1 if |j − k| = 1,

2 if j = k,

0 otherwise,
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and we have the (n− 1)× (n− 1) matrix

(6.6.9) A =



2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −1

−1 2


.

The Dynkin diagram associated to g is produced as follows. It is a graph
whose vertices are the simple roots {αj}. Thus, for each αj ∈ Σ, place a
small circle. Connect the dots αj and αk by a number of straight lines equal
to AjkAkj . By (6.2.15),

(6.6.10)
AjkAkj = 4

〈αj , αk〉2

|αj |2|αk|2

= 4 cos2 θjk,

where θjk is the angle between αj and αk in h′. By (36.16), 4 cos2 θjk ∈
{0, 1, 2, 3, 4}. However, cos2 θjk = 1 ⇔ αj is a real multiple of αk, which, by
Proposition 6.2.4, forces αj = αk. Thus

(6.6.11) j 6= k =⇒ 4 cos2 θjk ∈ {0, 1, 2, 3}.

When αj ⊥ αk, these vertices are not connected by any lines. Otherwise,
the number of lines connecting αj to αk is 1, 2, or 3.

The Dynkin diagram for U(n) or SU(n) has n− 1 dots, and is depicted
in Figure 6.6.1.

There is one further ingredient in the constructon of a Dynkin diagram.
If g is a simple Lie algebra, it turns out that there are at most two distinct
lengths of the simple roots. In such a case, put a bull’s eye in each circle
corresponding to the smaller roots. For g = su(n), all the simple roots ωj,j+1

have length
√
2, so we do not alter any of them.

We record some general results concerning simple roots. To begin, we
have

Proposition 6.6.1.

(6.6.12) α, β ∈ Σ =⇒ α− β /∈ ∆.

Proof. If α− β ∈ ∆, then either α− β ∈ ∆+ or β − α ∈ ∆+. Hence either
α = β + (α− β) or β = α+ (β − α) is a sum of two positive roots. □

Next, we claim
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Figure 6.6.1. Dynkin diagrams of su(n) and so(5)

Proposition 6.6.2.

(6.6.13) α, β ∈ Σ, α 6= β =⇒ 〈α, β〉 ≤ 0.

Proof. We apply Proposition 6.2.5, taking π to be the adjoint represen-
tation. Given distinct α, β ∈ Σ, (6.6.12) implies β is at the bottom of an
α-string of roots,

(6.6.14) β + jα, 0 ≤ j ≤ p,

for some p ∈ Z+. Then (6.2.34) applies, with λ = β,m = 0:

(6.6.15) 2
〈β, α〉
〈α, α〉

= −p.

□

A consequence of (6.6.13) is that each off-diagonal element of the Cartan
matrix is either 0 or a negative integer. The example (6.6.9) illustrates this.

From Proposition 6.6.2, we have the following.

Proposition 6.6.3. The set Σ of simple roots is linearly independent in h′.
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Proof. If not, there is an identity of the form

(6.6.16)
∑
αj∈Σ0

xjαj =
∑
αk∈Σ1

ykαk, xj , yk > 0,

with Σ0 and Σ1 disjoint subsets of Σ. Taking the inner product of both sides
with the left side yields

(6.6.17)
〈∑

xjαj ,
∑

yjαk

〉
> 0,

contradicting (6.6.13). □

There are enough simple roots to yield the following.

Proposition 6.6.4. Each α ∈ ∆+ can be written as a positive sum of simple
roots.

Proof. If not, let β ∈ ∆+ be the smallest root for which this is not true.
Then β is not simple, so it is a sum β = β1 + β2 of positive roots βj . But
then each βj is a positive sum of simple roots. □

Recall from Corollary 6.1.4 that if the center z of g is 0, then {α ∈ ∆}
spans h′. Of course, this implies {α ∈ ∆+} spans h′. We then have the
following, from Propositions 6.6.3–6.6.4:

Corollary 6.6.5. If z = 0, then {α ∈ Σ} is a basis of h′.

Thus dim h = dim h′ = #Σ if z = 0. We see this for g = su(n), where
dim h = n− 1 = #Σ, directly from (6.6.4).

The following is a stronger statement about how plentiful the simple
roots are.

Proposition 6.6.6. The set {eαj : αj ∈ Σ} generates the Lie algebra n+ =

Span{eα : α ∈ ∆+}.

Proof. The Lie algebra generated by {eαj : αj ∈ Σ} is the span of

(6.6.18) ad eαj1
· · · ad eαjµ

(eαjℓ
),

as jν range independently over {1, . . . ,m}. This is clearly contained in n+.
For the converse, we need to show that, whenever β ∈ ∆+, eβ is a linear
combination of elements of the form (6.6.18).

Clearly each element of Σ has this property. If not each element of ∆+

does, there is a smallest γ ∈ ∆+ such that eγ is not a linear combination
of elements of the form (6.6.18). Since γ /∈ Σ, we have γ = β1 + β2 with
βj ∈ ∆+, and each term is smaller than γ. Hence each eβj is a linear
combination of elements of the form (6.6.18). By Proposition 6.2.6, [eβ1 , eβ2 ]
must be a nonzero multiple of eγ , so by Jacobi’s identity eγ must be of the
desired form. This contradiction proves the proposition. □
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The following refinement of Proposition 6.6.4 will be useful.

Proposition 6.6.7. If β ∈ ∆+, β /∈ Σ, then there exists αj ∈ Σ and

βb ∈ ∆+ such that β = βb + αj.

Proof. If not, then for each αj ∈ Σ, β is at the bottom of an αj-string of
roots, β + ναj , 0 ≤ ν ≤ pj , for some pj ∈ Z+. As in (6.6.15), we have

2
〈β, αj〉
〈αj , αj〉

= −pj ≤ 0,

for each αj ∈ Σ. Then the argument proving Proposition 6.6.3 would imply
that Σ∪{β} is linearly independent, which contradicts Proposition 6.6.4. □

Let us now assume gC is simple (so z = 0). We will show that the
Cartan matrix A, with entries (6.6.7) (for Σ = {α1, . . . , αm}) determines all
the roots of g. It suffices to determine all the positive roots. Each β ∈ ∆+

can be written

(6.6.19) β =
∑
j

kjαj , kj ∈ Z+.

Call Σjkj the level of the root β, so the simple roots have level 1. Suppose
one has determined all the roots up to level n, and wants to determine those
at level n + 1. For each root β ∈ ∆+ at level n, and each αj ∈ Σ, we need
to determine whether β+αj is a root. By Proposition 6.6.7, this will suffice
to determine all the roots at level n+ 1.

Given such knowledge of roots up to level n, for each root β of level n, we
know how far back the αj-string of roots extends: β, β − αj , . . . , β −mαj .
From here, we can use (6.2.34) to determine how far forward the string
extends: β, β + αj , . . . , β + pαj . We have

(6.6.20)

m− p = 2
〈β, αj〉
〈αj , αj〉

= 2
∑
ℓ

kℓ
〈αℓ, αj〉
〈αj , αj〉

=
∑
ℓ

kℓAℓj .

Thus, using Proposition 6.2.6, we see that β + αj is a root if and only if

(6.6.21) p = m−
∑
ℓ

kℓAℓj > 0.
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In case g = su(n), with the simple roots (6.6.4), we have the following:

(6.6.22)

level 2 : {ωj,j+2 : 1 ≤ j ≤ n− 2},
level 3 : {ωj,j+3 : 1 ≤ j ≤ n− 3},

...

level n− 1 : {ω1n}.

This can be seen directly from (6.6.3). However, the point of the discussion
above is that it can also be deduced, without a priori knowledge of the set
of positive roots of g, from the Cartan matrix, via (6.6.21).

To summarize, we start with the linear space h, Σ ⊂ h′, and the Cartan
matrix A. We assume there exists a simple Lie algebra g, of which h is a
maximal commutative Lie subalgebra, for which Σ is the set of simple roots.
Given that the center z of g is 0, we know by Corollary 6.6.5 that Σ is a basis
of h′. We assume that A is given by (6.6.7), where g has an Ad-invariant
inner product, inducing an inner product on h and hence on h′. Now we
have constructed ∆+ ⊂ h′. These roots and their negatives form ∆ ⊂ h′.

To see how much of the structure of g is revealed by the data h, Σ, and
A, we will find the following result useful.

Proposition 6.6.8. Assume the Lie algebra g of the compact Lie group G
has the property that gC is simple. Then Σ cannot be partitioned into two
disjoint nonempty sets Σ0 ∪ Σ1 such that αj ⊥ αk whenever αj ∈ Σ0 and
αk ∈ Σ1. Consequently the Dynkin diagram of g is connected. Furthermore,
the Cartan matrix of g determines the inner product on h uniquely, up to a
constant factor.

Proof. It follows from (6.2.34) that

(6.6.23) αj , αk ∈ Σ, 〈αj , αk〉 = 0 =⇒ [eαj , eαk
] = 0,

since (by (6.6.13)) in this setting m = 0 in (6.2.34), hence p = 0. Thus if
there were such a partition Σ = Σ0 ∪ Σ1, we would have

(6.6.24) αj ∈ Σ0, αk ∈ Σ1 =⇒ [eαj , eαk
] = 0.

It follows that, if n0+ is the Lie algebra generated by {eαj : αj ∈ Σ0} and n1+
that generated by {eαk

: αk ∈ Σ1}, then

(6.6.25) X0 ∈ n0+, X1 ∈ n1+ =⇒ [X0, X1] = 0.

Furthermore, Proposition 6.6.6 and its proof imply

(6.6.26) n+ = n0+ ⊕ n1+.
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Similarly, if n0− is the Lie algebra generated by {e−αj : αj ∈ Σ0} and n1−
that generated by {e−αk

: αk ∈ Σ1}, then

(6.6.27) Y0 ∈ n0−, Y1 ∈ n1− =⇒ [Y0, Y1] = 0,

and

(6.6.28) n− = n0− ⊕ n1−.

Furthermore, by Proposition 6.6.1,

(6.6.29) αj ∈ Σ0, αk ∈ Σ1 =⇒ [eαj , e−αk
] = 0 = [e−αj , eαk

],

so

(6.6.30) [n0+, n
1
−] = 0 = [n1+, n

0
−].

Now, n+ and n− generate gC, and, by (6.6.25)–(6.6.30), if n0+ and n0− generate
G0 and n1+ and n1− generate G1, then

(6.6.31) gC = G0 ⊕G1, [G0,G1] = 0.

This implies gC is not simple. This proves the first assertion of Proposition
6.6.8. The connectedness of the Dynkin diagram is an immediate conse-
quence.

We now address the degree to which the formula (6.6.7) for the Cartan
matrix determines the inner product on h′, hence on h. Setting |α|2 = 〈α, α〉,
we have

(6.6.32) αj , αk ∈ Σ, 〈αj , αk〉 6= 0 =⇒
Ajk
Akj

=
|αj |2

|αk|2
.

Suppose we select some value a > 0 of |α1|. By the first part of Proposition
6.6.8, there is a path from α1 to each αℓ through simple roots whose nearest
neighbors satisfy (6.6.32), so |αℓ| is then determined uniquely for each αℓ ∈
Σ. Then the identity

(6.6.33) 〈αj , αk〉 =
1

2
|αk|2Ajk

uniquely determines the inner product 〈αj , αk〉 for each αj , αk ∈ Σ. Since
{αj ∈ Σ} is a basis for h′, this uniquely determines the inner product on h′

and finishes the proof of Proposition 6.6.8. □

Let us note that the proof of Proposition 6.6.8 produces a factorization
of the Cartan matrix,

(6.6.34) A = 2GD,

where

(6.6.35) D = diag(|α1|−2, . . . , |αm|−2), G = (Gjk), Gjk = 〈αj , αk〉.
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unique up to a positive scalar factor on D (and its inverse on G). All the
diagonal entries of D are positive, and G is a positive definite matrix.

We now record some necessary conditions on a matrix A for it to be a
Cartan matrix.

Proposition 6.6.9. If A = (Ajk) is the Cartan matrix associated to the
Lie algebra g of a compact Lie group, whose complexified Lie algebra gC is
simple, then

(6.6.36) Ajj = 2 and j 6= k ⇒ Ajk ∈ {0,−1,−2,−3},

(6.6.37) Ajk 6= 0 ⇐⇒ Akj 6= 0,

(6.6.38) Ajk, Ajℓ, Akℓ 6= 0 ⇒
Ajℓ
Aℓj

=
Akℓ
Aℓk

·
Ajk
Akj

,

(6.6.39) detA 6= 0.

Proof. The result (6.6.36) follows from (6.2.27). Each condition in (6.6.37)
is equivalent to 〈αj , αk〉 6= 0. The conclusion in (6.6.38) follows from

(6.6.40)
|αj |2

|αℓ|2
=

|αk|2

|αℓ|2
· |αj |

2

|αk|2
,

in light of (6.6.32). Actually, we can rewrite (6.6.38) as

(6.6.41) AjℓAℓkAkj = AℓjAkℓAjk,

and, given (6.6.37), we can say that this holds even in the absence of the
nonvanishing hypothesis in (6.6.38).

The result (6.6.39) follows from (6.6.34)–(6.6.35). □

Note. In the example (6.6.9), Ajk = Akj , but this is not always the case.
Specializing (6.2.28), we have, when |αj | ≥ |αk|,

(6.6.42)

Ajk = −1 ⇐⇒ Akj = −1,

Ajk = −2 ⇐⇒ Akj = −1,

Ajk = −3 ⇐⇒ Akj = −1.

Let us construct the Cartan matrix associated to so(5). As will be seen
in §7.1, dim so(5) = 10 and dim h = 2, so there are 8 roots, and 4 of them
are postive. As shown in Figure 7.1.1, with respect to a natural basis of h,
they are

(6.6.43) β−2 = (0, 1), α4 = (1,−1), β+
2 = (1, 0), α2 = (1, 1).

Then

(6.6.44) Σ = {α4, β
−
2 },
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and β+2 = α4 + β−2 , α2 = β−2 + β+2 . We compute as above, with α̃1 =
α4, α̃2 = β−2 , so

(6.6.45)

A12 = 2
〈α4, β

−
2 〉

〈β−2 , β
−
2 〉

= −2,

A21 = 2
〈α4, β

−
2 〉

〈α4, α4〉
= −1.

Hence

(6.6.46) A =

(
2 −2
−1 2

)
.

The associated Dynkin diagram is given in Figure 6.6.1.

Let us see how the material laid out after Proposition 6.6.7 enables us
to construct the root system (6.6.43) from the Cartan matrix (6.6.46). We
will change notation to

(6.6.47) Σ = {α1, α2},

in place of α̃1 and α̃2, given above by α̃1 = α4, α̃2 = β−2 . We have

(6.6.48) 2
〈α1, α2〉
|α2|2

= A12 = −2, 2
〈α1, α2〉
|α1|2

= A21 = −1,

hence

(6.6.49)
|α1|2

|α2|2
= 2.

The angle θ12 between α1 and α2 satisfies

(6.6.50) cos2 θ12 =
1

4
A12A21 =

1

2
;

cf. (6.2.15). Hence, taking the negative square root, by Proposition 6.6.2,

(6.6.51) cos θ12 =
〈α1, α2〉
|α1| · |α2|

= − 1√
2
, so θ12 =

3π

4
.

We can take α2 to be (0, 1) ∈ R2, and then α1 = (1,−1).

As for the members of ∆+, we have

(6.6.52)

level 1 : α1, α2,

level 2 : α1 + α2,

level 3 : α1 + 2α2.

We explain these results. First, the set Σ of simple roots always makes up
level 1. If Σ has just 2 elements, the only possible element of level 2 is their
sum. One can check the α1-string through α2 to verify that this sum is a
root, in the current setting. To investigate level 3, we examine two strings.
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(I) The α1-string through α1 + α2. Here m = 1 and

(6.6.53) m− p = 2
〈α1 + α2, α1〉

|α1|2
= 2 +A21,

hence m− p = 1, so p = 0. This implies α1 + α2 + α1 is not a root.

(II) The α2-string through α1 + α2. Again m = 1, and

(6.6.54) m− p = 2
〈α1 + α2, α2〉

|α2|2
= 2 +A12,

hence m− p = 0, so p = 1. Thus α1 +α2 +α2 is a root. This exhausts level
3.

When A is given by (6.6.46), there are no level 4 roots. In fact, by
Proposition 6.6.7, the only candidates for level 4 roots are α1 + 2α2 + α1 =
2(α1 + α2) and α1 + 2α2 + α2 = α1 + 3α2. Proposition 6.2.4 implies the
former is not a root, and the calculation p = 1 for the α2-string through
α1 + α2 implies α1 + 3α2 is not a root.

Thus the root system associated to the Cartan matrix (6.6.46) is as
depicted in Figure 6.6.2. This figure is identical to Figure 7.1.1, except for
the re-labeling of the roots.

As we have seen in (6.6.9), the Cartan matrix associated to SU(3) is

(6.6.55) A =

(
2 −1
−1 2

)
.

Its root system is depicted in Figure 6.6.3. Here, the level 1 and level 2 roots
are as in (6.6.52). The calculation (6.6.53) for the α1-string through α1+α2

again gives p = 0, and this time the calculation for the α2-string through
α1+α2 also gives p = 0, so there are no level 3 roots. This is consistent with
the observation that SU(3) has dimension 8 (and a 2-dimensional maximal
torus), so it has 6 roots, 3 of them positive. (As we have also seen, these
positive roots are ωjk, 1 ≤ j < k ≤ 3.)

Another candidate for a 2× 2 Cartan matrix is

(6.6.56) A =

(
2 −3
−1 2

)
.

This turns out to be the Cartan matrix associated to the exceptional Lie
group known as G2. We construct its root system.

Use the notation (6.6.47) for Σ. This time, we have

(6.6.57) 2
〈α1, α2〉
|α2|2

= A12 = −3, 2
〈α1, α2〉
|α1|2

= A21 = −1,
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Figure 6.6.2. Root system of SO(5)

hence

(6.6.58)
|α1|2

|α2|2
= 3.

The angle θ12 between α1 and α2 satisfies

(6.6.59) cos2 θ12 =
1

4
A12A21 =

3

4
,

hence (again taking Proposition 6.6.2 into account)

(6.6.60) cos θ12 = −
√
3

2
, so θ12 =

5π

6
.

We can take

(6.6.61) α1 = (0, 1), hence α2 =
(√3

6
,−1

2

)
,
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Figure 6.6.3. Root system of SU(3)

since 〈α1, α2〉 = (1/2)|α1|2A21 = −1/2 while |α2|2 = 1/3, and 1/3 = 1/4 +
1/12. As for the members of ∆+, we have the following.

(6.6.62)

level 1 : α1, α2,

level 2 : α1 + α2,

level 3 : α1 + 2α2,

level 4 : α1 + 3α2,

level 5 : 2α1 + 3α2.

The identities of levels 1 and 2 are by the same reasoning as applied to
(6.6.52). To investigate level 3, we again examine two strings.

(I) The α1-string through α1 + α2. Then m = 1 and (6.6.53) applies, again
yielding p = 0, so 2α1 + α2 is not a root.

(II) The α2-string through α1 +α2. Again m = 1, and (6.6.54) applies, this
time yielding p = 2. Thus α1 + 2α2 is a root, the only level 3 root, and
α1 + 3α2 is also a root (a level 4 root).
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We have exhausted level 3. The only candidates for level 4 are α1 +
2α2 + α2 (seen above to be a root) and α1 + 2α2 + α1 = 2(α1 + α2), which
is not a root, by Propsition 36.4. This takes care of level 4.

Hence there are two candidates for level 5 roots, 2α1+3α2 and α1+4α2.
Again we have two strings to examine.

(I) The α1-string through α1 + 3α2. Here m = 0, since 3α2 is not a root.
Then

(6.6.63) m− p = 2
〈α1 + 3α2, α1〉

|α1|2
= 2 + 3A21,

hence m− p = −1, so p = 1. Thus 2α1 + 3α2 is a root.

(II) The α2-string through α1 +3α2. We have already seen that α1 +3α2 is
the end of the α2-string through α1 + α2, so α1 + 4α2 is not a root.

There are no level 6 roots. Candidates would be 3α1+3α2 = 3(α1+α2)
and 2α1 + 4α2 = 2(α1 + 2α2), not roots by Proposition 6.2.4. The root
system associated to the Cartan matrix (6.6.56) is depicted in Figure 6.6.4.
Its Dynkin diagram is shown in Figure 6.6.5. Note that we have 12 roots,
so dim G2 = 14.

We will identify G2 as Aut(O) in Chapter 11.

We return to the classical groups and take a look at SO(n). For this,
we peek ahead to §7.2. For n = 2k, the roots of so(n) are given by (7.2.45).
The positive roots are

(6.6.64)

(0, . . ., 1, . . . , ε, . . . , 0) (k-tuple), ε = ±1,

↑ ↑
i1 i2

From this, one sees that the simple roots are
(6.6.65)
α1 = (1,−1, 0, . . . , 0), α2 = (0, 1,−1, . . . , 0), αk−1 = (0, . . . , 0, 1,−1),

and

(6.6.66) αk = (0, . . . , 0, 1, 1).

Thus each |αj |2 = 2 and Ajℓ = Aℓj = 〈αj , αℓ〉. Differences from (6.6.8) are
that

(6.6.67) 〈αk, αk−1〉 = 0, 〈αk, αk−2〉 = −1.
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Figure 6.6.4. Root system for G2

The Cartan matrix for SO(2k) is given by

(6.6.68)



2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2


.

The associated Dynkin diagram is depicted in Figure 6.6.5.

As we show in §7.2, for n = 2k + 1, the roots of so(n) are given by
(7.2.45) plus (7.2.50). The positive roots consist of (6.6.64) plus

(6.6.69)

(0, . . ., ε, . . . , 0), (k-tuple), ε = ±1.

↑
i
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Figure 6.6.5. Dynkin diagrams of G2, SO(2k), and SO(2k + 1)

Then the simple roots are given by (6.6.65) plus

(6.6.70) αk = (0, . . . , 0, 1).

In this case, |αj |2 = 2 for 1 ≤ j ≤ k − 1 and |αk|2 = 1. As opposed to
(6.6.67),

(6.6.71) Ak−1,k = 2〈αk, αk−1〉 = −2, 〈αk, αk−2〉 = 0.

The Cartan matrix for so(2k + 1) is given by

(6.6.72)



2 −1

−1 2
. . .

−1
. . . −1
. . . 2 −2

−1 2


.

The associated Dynkin diagram is depicted in Figure 6.6.5.
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The Cartan-Killing classification

Compact Lie groups studied in this section fall into the following cate-
gories, known as the Cartan-Killing classification:

An SU(n+ 1)

Bn SO(2n+ 1)

Cn Sp(n)

Dn SO(2n)

In each case, the subscript n refers to the dimension of the maximal torus
in the group. These groups (together with U(n)) are known as the classical
compact Lie groups. The family Sp(n) was introduced in §1.2. Their root
systems will be analyzed in Chapter 10. In addition to these classical groups,
there are five exceptional groups:

G2, F4, E6, E7, E8.

As mentioned above, G2 will appear in Chapter 11, as the automorphism
group of the algebra of octonions O.

To be more precise, the Cartan-Killing classification is a classification
of the complexifications of the Lie algebras of these groups. Various non-
compact Lie groups have Lie algebras with isomorphic complexifications, for
example:

An Sl(n+ 1,R)

Bn SO(2n, 1)

Cn Sp(n,R)

Dn SO(2n− 1, 1).

More material on these noncompact Lie groups can be found in [38].
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6.7. Representations of disconnected compact Lie groups

Previous sections in this chapter have restricted attention to compact con-
nected Lie groups. If G is not connected, the Lie algebra approach needs to
be supplemented by other techniques. We look into some cases here.

One paradigmatic case is O(n), which has two connected components,

(6.7.1) O(n) = O+(n) ∪O−(n), detA = ±1 for A ∈ O±(n).

We also write O+(n) = SO(n). The case O(2) was treated in Chapter 2,
§2.5. More generally, we consider

(6.7.2) G = G+ ∪G−, e ∈ G+,

where G+ and G− are connected, and G+ contains the identity element e of
the compact group G. It is useful to have the following.

Proposition 6.7.1. In the setting of (6.7.2), with G± compact and con-
nected, the following hold.
(1) x, y ∈ G+ =⇒ x−1, xy ∈ G+.
(2) x ∈ G+, y ∈ G =⇒ y−1xy ∈ G+.

Proof. Property (1) is clear for x = e, then follows by connectedness for all
x ∈ G+. The same strategy works to establish property (2). □

Proposition 6.7.1 implies G+ is a normal subgroup of G, and we have

(6.7.3) G/G+ ≈ Γ2, Γ2 = {±1}.

Thus we have the natural group homomorphism

(6.7.4) ϑ : G −→ Γ2, ϑ(g) = ±1 for g ∈ G±.

When G = O(n), we have ϑ(g) = det g.

Sometimes one has G ≈ G+ × Γ2, where the direct product of groups
has the multiplication law

(g1, a1)(g2, a2) = (g1g2, a1a2), gj ∈ G+, aj ∈ Γ2.

For example:

Proposition 6.7.2. We have

(6.7.5) O(n) ≈ O+(n)× Γ2 if n is odd.

Proof. If I ∈ L(Rn) is the identity, then det(−I) = (−1)n, so −I ∈ O−(n)
when n is odd. This readily leads to the product group law. □

More generally, we have the following.
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Proposition 6.7.3. In the setting of (6.7.2), with G± compact and con-
nected, we have

(6.7.6) G ≈ G+ × Γ2

if and only if G− contains an element ẽ that commutes with each g ∈ G and
satisfies ẽ2 = e.

When (6.7.6) holds, the description of the irreducible unitary represen-
tations of G follows from that of G+, as a consequence of Proposition 2.8.11.
In particular, this holds for O(n) with n odd.

As we saw in §2.5, matters are very different for O(2). We claim O(n)
does not have the direct product structure (6.7.6) if n is even. We prove
this with the aid of the following result.

Proposition 6.7.4. The representation of O(n) on Cn arising from

(6.7.7) O(n) ⊂M(n,R) ⊂M(n,C)
is irreducible for each n ≥ 2.

Proof. Assume V ⊂ Cn is a nonzero linear space invariant under O(n).
Take

(6.7.8) v =
∑

ajej ∈ V, v 6= 0 (aj ∈ C),

where {ej} is the standard basis of Rn Define Tk ∈ O(n) by Tkej = ej if
j 6= k, Tkek = −ek. Then Tkv ∈ V , so Skv = (1/2)(v−Tkv) ∈ V . Note that

(6.7.9) Skv = akvk.

Hence akek ∈ V for each k. Since v 6= 0, we have ej ∈ V for some j. Then
applying elements of O(n) yields eℓ ∈ V for each `, so V = Cn, and we have
the irreducibility. □

Remark. A variant of this argument shows that the standard representation
of SO(n) on Cn is irreducible for n ≥ 3. See §7.2 for a generalization,
regarding representations of SO(n) on ΛℓCn.

Corollary 6.7.5. If n is even, O−(n) has no element that commutes with
each g ∈ O(n).

Proof. By Proposition 6.7.4 and Schur’s lemma, if A ∈ L(Cn) commutes
with each element of O(n), then A = αI for some α ∈ C. If A ∈ O(n), this
forces α ∈ {±1}. But if n is even, −I belongs to O+(n), not O−(n). □

We recall that a key ingredient in the analysis of O(2) in §2.5 was an
element u ∈ O−(2) that switched the two standard basis elements e1 and e2
of R2. Taking this as a cue, we assume we have

(6.7.10) u ∈ G−, u2 = e,
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where e ∈ G+ is the identity element. This yields an automorphism of G+,

(6.7.11) τ : G+ −→ G+, τ(g) = ugu.

Note that τ2(g) = g. Note also that each element of G− can be uniquely
written as gu with g ∈ G+. The group law on G is specified by

(6.7.12) h(gu) = (hg)u, (gu)h = gτ(h)u, g, h ∈ G+.

To proceed, let ρ be an irreducible unitary representation of G+ on V .
Define a representation πρ of G on V ⊕ V as follows. First, set

(6.7.13) πρ(g) =

(
ρ(g)

ρ̃(g)

)
, g ∈ G+, ρ̃(g) = ρ ◦ τ(g).

Set

(6.7.14) T =

(
0 I
I 0

)
∈ L(V ⊕ V ).

Note that, for g ∈ G+,

(6.7.15) πρ(g)T =

(
ρ(g)

ρ̃(g)

)
, Tπρ(g) =

(
ρ̃(g)

ρ(g)

)
.

Hence, for g ∈ G+,

(6.7.16) πρ(g)T = Tπρ̃(g), Tπρ(g)T = πρ̃(g).

Hence setting

(6.7.17) πρ(u) = T

defines πρ as a representation of G on V ⊕ V . We have

(6.7.18) πρ(gu) =

(
ρ(g)

ρ̃(g)

)
, g ∈ G+.

We have the character formulas

(6.7.19) χπρ(g) = χρ(g) + χρ̃(g), χπρ(gu) = 0, g ∈ G+.

Hence

(6.7.20)
‖χπρ‖2L2(G) =

1

2
‖χρ + χρ̃‖2L2(G+)

= 1 + Re(χρ, χρ̃)L2(G+).

Now

(6.7.21)
(χρ, χρ̃)L2(G+) = 0, if ρ not ≈ ρ̃,

1, if ρ ≈ ρ̃.

This yields the following result.
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Proposition 6.7.6. If ρ is an irreducible unitary representation of G+ and
the representation πρ of G is defined by (6.7.13)–(6.7.18), then πρ is irre-
ducible if and only if ρ and ρ̃ are not equivalent representations of G+. If
ρ ≈ ρ̃, then πρ decomposes into two irreducible pieces.

Recall how this works for O(2) in §2.5. A complete set of irreducible
representations of SO(2) is given by

(6.7.22) ρn(R(θ)) = einθ, n ∈ Z,

we have u ∈ O−(2), yielding τ(R(θ)) = R(−θ), hence ρ̃n = ρ−n. All the
representations πn = πρn of O(2) are irreducible except for the case n = 0,
and π−n ≈ πn. The reducible case π0 splits into two irreducible factors.

Contrast this with the case G = O(3), u = −I, τ(g) = g. Then ρ̃ = ρ for
each irreducible representation ρ of SO(3), and none of the representations
πρ are irreducible; they all split into two pieces. Of course, we know the
irreducible representations of O(3), thanks to Proposition 6.7.2. The same
goes for O(n) whenever n is odd.

In light of these considerations, we turn to the construction of irreducible
representations of G in case ρ ≈ ρ̃, say

(6.7.23) ρ ◦ τ(g) = B−1ρ(g)B, ∀ g ∈ G+,

with B ∈ L(V ) unitary. Replacing g by τ(g) and recalling that τ2(g) = g,
we have

(6.7.24) ρ(g) = B−1ρ(τ(g))B,

hence

(6.7.25) ρ(g) = B−2ρ(g)B2, ∀ g ∈ G+.

Since ρ is irreducible, we have B2 = β2I for some β ∈ S1 ⊂ C, and replacing
B by β−1B (and relabeling), we arrange that (6.7.23) holds with

(6.7.26) B2 = I.

When (6.7.23) and (6.7.26) hold, we define the representations π±ρ of G on
V by

(6.7.27)
π+ρ (g) = ρ(g), π+ρ (gu) = ρ(g)B,

π−ρ (g) = ρ(g), π−ρ (gu) = −ρ(g)B,

for g ∈ G+, and note that the maps π±ρ : G → L(V ) preserve products, in
light of the identities

(6.7.28)

π+ρ (g)π
+
ρ (hu) = ρ(gh)B = π+ρ (ghu),

π+ρ (hu)π
+
ρ (g) = ρ(h)Bρ(g) = ρ(h)ρ̃(g) = ρ(hτ(g))B,

π+ρ (hug) = π+ρ (hτ(g)u) = ρ(hτ(g))B,
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and similar identities involving π−ρ . These representations have characters

(6.7.29)
χπ±

ρ
= Tr(ρ), on G+,

±Tr(ρB), on G−.

We have

(6.7.30) ‖χπ±
ρ
‖2L2(G) =

1

2

∫
G+

[
|Tr ρ(g)|2 + |Tr ρ(g)B|2

]
dg.

As seen in Exercise 7 of §2.4,

(6.7.31)

∫
G+

|Tr ρ(g)B|2 dg =
1

dρ
TrBB∗ = 1.

Hence

(6.7.32) ‖χπ±
ρ
‖2L2(G) = 1,

and we have that the representations π±ρ of G on V are irreducible. Fur-
thermore,

(6.7.33) (χπ+
ρ
, χπ−

ρ
)L2(G) =

1

2

∫
G+

[
|Tr ρ(g)|2 − |Tr ρ(g)B|2

]
dg = 0,

so the representations π+ρ and π−ρ are inequivalent. We also have, for g ∈ G+,

(6.7.34)
χπρ(g) = 2χρ(g) = χπ+

ρ
(g) + χπ−

ρ
(g),

χπρ(gu) = 0 = χπ+
ρ
(gu) + χπ−

ρ
(gu),

so

(6.7.35) πρ ≈ π+ρ ⊕ π−ρ ,

in this case.

The following result summarizes our analysis of the irreducible unitary
representations of G = G+ ∪G−.

Proposition 6.7.7. Take compact G = G+ ∪G−, as in Proposition 6.7.1.
Assume u ∈ G− satisfies (6.7.10), and take τ as in (6.7.11). Let {ρα : α ∈
I} denote a complete set of irreducible unitary representations of G+. If
ρα ≈ ρβ ◦ τ , eliminate one of these, to form {ρα : α ∈ Ib}.

Then form πα = πρα as in (6.7.13)–(6.7.18). If ρα ≈ ρα ◦ τ , decompose

πα ≈ π+α ⊕ π−α . Otherwise, keep πα, α ∈ Ib.
The representations so obtained form a complete set of irreducible uni-

tary representations of G.
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Proof. It just remains to check completeness. This follows from the fact
that, as ρ ranges over ρα, α ∈ Ib, the matrix entries of πρ, given on G by
(6.7.13) and (6.7.18), have dense linear span in L2(G). □

Remark. The element u ∈ G− satisfying (6.7.10) need not be unique. Say
also

(6.7.36) v ∈ G−, v2 = e, σ(g) = vgv for g ∈ G+.

Then v = hu for some h ∈ G+, and σ(g) = (hu)g(hu)−1 = h(ugu)h−1, so

(6.7.37) σ(g) = hτ(g)h−1.

Hence, if ρ is a representation of G+, we have

(6.7.38) ρ ◦ σ(g) = ρ(h) ρ ◦ τ(g) ρ(h)−1,

so ρ ◦ σ and ρ ◦ τ are equivalent representations. In particular,

(6.7.39) ρ ≈ ρ ◦ τ ⇐⇒ ρ ≈ ρ ◦ σ.

Representations of O(4). As seen in §4.1 (Chapter 4), as a consequence of
the 2-fold covering homomorphism p : SU(2)×SU(2) → SO(4), a complete
set of irreducible unitary representations of SO(4) is given by

(6.7.40) γkℓ ◦ p(g1, g2) = Dk/2(g1)⊗Dℓ/2(g2), k + ` even,

with gj ∈ SU(2). The condition k + ` even guarantees γkℓ ◦ p(±(I, I)) = I.
A maximal torus in SO(4) is given by

(6.7.41)

(
R(θ)

R(ϕ)

)
, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2).

As seen in the exercises for §4.1, we have
(6.7.42)

Tr γkℓ

((R(θ)
R(ϕ)

))
=

sin(k + 1)(θ + ϕ)/2

sin(θ + ϕ)/2
· sin(`+ 1)(θ − ϕ)/2

sin(θ − ϕ)/2
.

Now we have the involution τ : SO(4) → SO(4), given by conjugation by

(6.7.43) diag(−1, 1, 1, 1) ∈ O−(4),

and a computation yields

(6.7.44) τ
((R(θ)

R(ϕ)

))
=

(
R(−θ)

R(ϕ)

)
.
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We have

(6.7.45)

Tr γkℓ ◦ τ
((R(θ)

R(ϕ)

))
=

sin(k + 1)(θ − ϕ)/2

sin(θ − ϕ)/2
· sin(`+ 1)(θ + ϕ)/2

sin(θ + ϕ)/2

= Tr γℓk

((R(θ)
R(ϕ)

))
.

Hence

(6.7.46) γkℓ ◦ τ ≈ γℓk,

and

(6.7.47) γkℓ ◦ τ ≈ γkℓ ⇐⇒ k = `.

Thus Proposition 6.7.7 gives the following conclusion.

Proposition 6.7.8. A complete set of irreducible unitary representations
of O(4) is given as follows. Let

(6.7.48) γkℓ, k, ` ∈ N, k + ` even.

denote the complete set of irreducible unitary representations of SO(4) pro-
duced in §4.1 and described above. With (6.7.46) in mind, pare this down
to

(6.7.49) (k, `) ∈ Ib, i.e., k, ` ∈ N, k + ` even, k ≥ `.

Then form πkℓ = πγkℓ as in (6.7.13)–(6.7.18). If k = `, decompose

(6.7.50) πkk ≈ π+kk ⊕ π−kk,

as indicated above. Otherwise, we keep πkℓ. The representations so obtained
form a complete set of irreducible unitary representations of O(4).

We will investigate representations of O(n) for even n > 4 in Chapter 7.

Many interesting compact Lie groups have more than two connected
components. Let’s consider a compact Lie group with k connected compo-
nents. Denote by Ge the connected component of G containing the identity
element e. Parallel to Proposition 6.7.1 we have:

Proposition 6.7.9. If Ge is the connected component of the identity in G,
then Ge is a normal subgroup of G.

If G has k connected components, it follows that

(6.7.51) G/Ge ≈ Γ,
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where Γ is a group with k elements, and we have a natural group homomor-
phism

(6.7.52) ϑ : G −→ Γ, Kerϑ = Ge.

Here is an example of a subgroup of U(n) with k connected components.

The groups SkU(n). Let us set

(6.7.53) SkU(n) = {g ∈ U(n) : det g ∈ Γk}, Γk = {e2πiℓ/k : ` ∈ Z/(k)}.

Elements of G = SkU(n) that are scalar multiples of I have the form

(6.7.54) uνk, ν ∈ Z/(nk), uk = e2πi/nkI.

Note that

(6.7.55) detuk = e2πi/k, unkk = I.

Each connected component of G contains n of these elements. In particular,
Ge = SU(n) contains all powers of ukk = e2πi/n. Parallel to (4.5.14), we have
the exact sequence of groups

(6.7.56) 1 −→ Γn −→ Γnk × SU(n) −→ SkU(n) −→ 1,

where

(6.7.57) Γnk = {uνk : ν ∈ Z/(nk)},

and

(6.7.58) Γn = {(ω, g) ∈ Γnk × SU(n) : g = ω−1I, ωn = 1},

a cyclic group of order n, generated by

(6.7.59) (ζ−1, ζI), ζ = e2πi/n = ukk.

We now look at the representations of SkU(n). Let {ρα : α ∈ I} denote
a complete set of irreducible unitary representations of SU(n). (These were
classified in Chapter 4.) By Proposition 2.8.11, a complete set of irreducible
unitary representations of Γnk ×SU(n) is given by {πmα : m ∈ Z/(nk), α ∈
I}, defined by

(6.7.60) πmα(ω, g) = ωmρα(g), ω = uνk.

Such a representation of Γnk × SU(n) produces a representation of SkU(n)
if and only if πmα(Γn) = I, i.e., if and only if

(6.7.61) ρα(ζI) = ζmI,

with ζ as in (6.7.59). Now, since ζI is in the center of SU(n), it follows that
for each α ∈ I, ρα(ζI) is a scalar that is an nth root of unity, i.e.,

(6.7.62) ρα(ζI) = ζµI, µ = µ(α) ∈ Z.
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Thus πmα in (6.7.60) gives a representation of SkU(n) if and only if

(6.7.63) m = µ(α), mod n.

We have the following:

Proposition 6.7.10. Let {ρα : α ∈ I} denote a complete set of irreducible
unitary representations of SU(n). Then each irreducible unitary represen-
tation of SkU(n) has the form πmα, given by

(6.7.64) πmα(ωg) = ωmρα(g), ω = uνk, g ∈ SU(n),

for α ∈ I, m ∈ Z/(nk), subject to the constraint (6.7.62)–(6.7.63), with

ζ = e2πi/n.
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6.A. Maximal tori

A torus T in a Lie group G is a compact abelian subgroup, and it is the
image of its Lie algebra under the exponential map. Hence T is isomorphic
to the quotient

(6.A.1) T = Rn/Zn.

The group T is a multiplicative subgroup of G, but it is convenient to treat
T as an additive group.

We begin with the following useful general property of tori.

Proposition 6.A.1. If T is a torus, there exists t0 ∈ T such that

(6.A.2) {tk0 : k ∈ Z} is dense in T.

For a proof, it suffices to show that there exists α ∈ T such that

(6.A.3) {kα : k ∈ Z} is dense in T .

To produce such α, we note that R is a vector space over Q satisfying

(6.A.4) dimQR = ∞,

since R is uncountable. Now take α0 = 1, α1, . . . , αn ∈ R, linearly indepen-
dent over Q, and set α = (α1, . . . , αn) (mod Zn). We claim (6.A.3) holds.
A convenient route to this result involves considering the linear operator

(6.A.5) Tα : L2(T ) −→ L2(T ), Tαf(x) = f(x− α).

We show that Tα has the following ergodic property.

Lemma 6.A.2. Take α as above. If f ∈ L2(T ) and Tαf = f , then f is
constant.

Proof. We expand f as a Fourier series, with Fourier coefficients

(6.A.6) f̂(`) =

∫
T

f(x)e−2πiℓ·x dx, ` ∈ Zn.

Then

(6.A.7) T̂αf(`) = e−2πiℓ·αf̂(`),

so

(6.A.8) Tαf = f, f̂(`) 6= 0 =⇒ ` · α ∈ Z.

Given the linear independence of {αj : 0 ≤ j ≤ n} over Q, we see that if

Tαf = f , then f̂(`) = 0 for ` 6= 0, so f is constant. □
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We can now prove (6.A.3). Indeed, if this denseness fails, we have {kα :
k ∈ Z} disjoint from Bε(x0), for some x0 ∈ T , ε > 0. Hence

(6.A.9) O =
⋃
k∈Z

Bε/2(kα) is disjoint from Bε/2(x0).

Then

(6.A.10) f = χO =⇒ Tαf = f and f = 0 on Bε/2(x0),

contradicting Lemma 6.A.2.

To proceed, we say a torus T ⊂ G is a conjugating torus for G if each
x ∈ G is conjugate to some element of T, or equivalently if

(6.A.11)
⋃
g∈G

g−1Tg = G.

It is elementary that

(6.A.12) T =
{
u(θ) =

e
iθ1

. . .

eiθn

 : θj ∈ R
}

is a conjugating torus for U(n). Furthermore,

(6.A.13) T = {u(θ) : θ1 + · · ·+ θn = 0}

is a conjugating torus for SU(n). These results follow from the fact that for
each A ∈ U(n), Cn has an orthonormal basis of eigenvectors of A. Similarly,
a use of Proposition 2.4.4, applied to A ∈ SO(n), shows that
(6.A.14)

T =
{
Rk(θ) =

R(θ1) . . .

R(θk)

 : θj ∈ R
}
, R(θj) =

(
cos θj − sin θj
sin θj cos θj

)
,

is a conjugating torus for SO(2k), and

(6.A.15) T =
{(Rk(θ)

1

)
: θ ∈ Rk

}
is a conjugating torus for SO(2k + 1). In Chapter 10 it is proved that

(6.A.16) the torus (6.A.12) is also a conjugating torus for Sp(n).

Knowing that one has a conjugating torus has the following implication.

Proposition 6.A.3. Let G be a compact Lie group and assume T ⊂ G is
a conjugating torus. Let T′ be another torus in G. Then there exists g ∈ G
such that

(6.A.17) T′ ⊂ g−1Tg.
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Consequently T is a maximal torus. In such a case, whenever T′ ⊂ G is a
maximal torus, one has gT′g−1 = T, for some g ∈ G.

Proof. Pick t1 ∈ T′ such that {tk1 : k ∈ Z} is dense in T′. Since T is
conjugating, there exists g ∈ G such that

(6.A.18)
gt1g

−1 ∈ T, hence gtk1g−1 ∈ T, ∀ k ∈ Z,

hence gT′g−1 ⊂ T,

so (6.A.17) holds. Finally, if the inclusion in (6.A.17) is strict, T′ cannot be
maximal. □

The following is a useful topological consequence of the existence of a
conjugating torus.

Proposition 6.A.4. Let G be a compact Lie group. If G has a conjugating
torus T, then G is connected.

Proof. Take x ∈ G, and then take g ∈ G such that x ∈ g−1Tg = T′. Then
T′ is a torus in G containing the identity element e, so there is a continuous
path from x to e. □

Corollary 6.A.5. The groups U(n), SU(n) and SO(n) are all connected.

In Chapter 10 we will show that (6.A.12) is also a conjugating torus for
Sp(n), obtaining incidentally that Sp(n) is connected.





Chapter 7

The orthogonal groups
SO(n) and their
representations

We begin our treatment of the structure and representation theory of the
groups SO(n) in §7.1 with a discussion of the cases 2 ≤ n ≤ 5. Of these
the case SO(2) ≈ T1 is elementary, and the cases n = 3 and 4 have been
treated in §4.1, where they are related to SU(2). After a brief recollection
of this, §7.1 concentrates on SO(5). This group has rank 2 and dimension
10, hence 8 roots, denoted αj (1 ≤ j ≤ 4) and β±j (1 ≤ j ≤ 2). We see

that the adjoint representation of SO(5) is irreducible, with highest weight
α2 and that the standard representation on C5 is irreducible, with highest
weight β+2 . Hence, there are unique irreducible unitary representations of
SO(5) with highest weights jα2 + kβ+

2 , for arbitrary j, k ∈ Z+. Now, these
elements of h′ are only “half” of the dominant integral weights, as specified
by the Theorem of the Highest Weight in §6.2. The rest of the dominant
integral weights will be associated to representations of the double cover
Spin(5) later in this chapter. In this connection, recall from §4.1 that SU(2)
is a double cover of SO(3) and SU(2) × SU(2) is a double cover of SO(4).

We move to the study of representations of SO(n) for general n in §7.2.
As in Chapter 4, we use as building blocks the representations Λℓ on Cn,
given by

(7.0.1) Λℓ(g)v1 ∧ · · · ∧ vℓ = gv1 ∧ · · · ∧ gvℓ,

this time for g ∈ SO(n). Of course, the details are different for SO(n) than
they were for SU(n). For one, now Λℓ is irreducible for each ` ∈ {0, . . . , n}

261
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except when n is even and ` = n/2. Furthermore, for ` in this range, the
representations Λℓ and Λn−ℓ of SO(n) are equivalent. These phenomena
arise thanks to the Hodge star operator. Also, for n = 2k, we have

(7.0.2) ΛkC2k = Λk+C2k ⊕ Λk−C2k,

where Λk±C2k are eigenspaces for this star operator, and SO(2k) acts on
each summand, irreducibly. We analyze the weight vectors and weights
of these representations, and identify the highest weights. We note that
Λ2 is equivalent to the adjoint representation of SO(n), which reveals the
structure of the roots of so(n). A description of the roots splits onto two
cases: n = 2k and n = 2k+1. We identify the dominant integral weights for
SO(n) in these two cases. Extending material from §7.1, we see that “half”
of these weights are positive integral combinations of the highest weights
of representations described above. Again, the rest of these weights will be
associated to representations of Spin(n).

Sections 7.3–7.6 are devoted to the construction of Spin(n), as a double
cover of SO(n), and a study of its representations. We begin in §7.3 with the
construction of Clifford algebras. Then §7.4 produces Spin(n) as a subset of
C`(n, 0), shows that it is a connected Lie group, and produces a surjective,
2-to-1 homomorphism

(7.0.3) τ : Spin(n) −→ SO(n).

Section 7.5 constructs spinor representations D±
1/2 of Spin(2k) onto S±(2k),

where

(7.0.4) S+(2k) =
⊕
j even

ΛjCC
k, S−(2k) =

⊕
j odd

ΛjCC
k,

which are irreducible. There is a natural inclusion Spin(2k−1) ↪→ Spin(2k),
yielding an irreducible representation of Spin(2k − 1) on S+(2k) (and also
one on S−(2k), but for Spin(2k − 1) these two are equivalent). In §7.6 we
study the weight spaces and highest weights of the spinor representations,
and show that these together with the ones produced in §7.2 generate all the
dominant integral weights, which implies that we have all the irreducible uni-
tary representations of Spin(n). As a corollary, we have a “non-topological”
proof that Spin(n) is simply connected.
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7.1. Representations of SO(n), n ≤ 5

Before proceeding to general results, in the next section, here we describe
maximal tori of G = SO(n), the root space decompositions, and the Weyl
groups, when n ≤ 5. We start with n = 2. We have

(7.1.1) SO(2) ≈ S1, so(2) = h ≈ R, no roots.

Moving on to n = 3, as shown in §4.1, there is a 2-fold covering map

(7.1.2) SU(2) −→ SO(3), hence so(3) ≈ su(2),

we have h spanned by X1, and root vectors X± = X2 ∓ iX3, with Xj as in
(4.1.3). Hence

(7.1.3) dim so(3) = 3, rank so(3) = 1, there are 2 roots.

Next, SO(4) was also studied in §4.1. As shown there, there is a 2-fold
covering map

(7.1.4) SU(2)× SU(2) −→ SO(4), hence so(4) ≈ su(2)⊕ su(2).

On each factor we have a piece of h and a couple of root vectors (in the
complexification), so

(7.1.5) dim so(4) = 6, rank so(4) = 2, there are 4 roots.

As a warm-up for studying SO(5), we take a second look at the maximal
torus of SO(4) and the roots of so(4). We have

(7.1.6) T =

{(
Rθ1 0
0 Rθ2

)
: θj ∈ R/2πZ

}
, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Equivalently,

(7.1.7) h =

{
Da,b =

(
aJ 0
0 bJ

)
: a, b ∈ R

}
, J =

(
0 −1
1 0

)
.

To get the root spaces gα, we decompose the following linear complement
to hC in so(4)C,

(7.1.8)

{
AC =

(
0 C

−Ct 0

)
: C ∈ M(2,C)

}
,

into 4 pieces, each of complex dimension 1, joint eigenvectors for the ad h
action. A computation gives

(7.1.9) [Da,b, AC ] =

(
0 aJC − bCJ

−bJCt + aCtJ 0

)
.

Thus we look for Ck ∈ M(2,C) such that

(7.1.10) aJCk − bCkJ = iαk(a, b)Ck,
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or equivalently,

(7.1.11) JCk = iαk(1, 0)Ck, CkJ = iαk(0, 1)Ck.

Such matrices can be found by inspection from the formulas

(7.1.12) J

(
1

±i

)
= ∓i

(
1

±i

)
, (1,±i)J = ±i(1,±i).

One obtains
(7.1.13)

C1 =

(
1 i
i −1

)
, C2 =

(
1 −i
−i −1

)
, C3 =

(
1 −i
i 1

)
, C4 =

(
1 i
−i 1

)
,

for which (7.1.10)–(7.1.11) hold with
(7.1.14)
α1(a, b) = −(a+b), α2(a, b) = a+b, α3(a, b) = −(a−b), α4(a, b) = a−b.

We now tackle the case n = 5. A maximal torus of SO(5) is given by

(7.1.15) T =


Rθ1 Rθ2

1

 : θj ∈ R/2πZ

 ,

with Rθ as in (7.1.6). In this case,

(7.1.16) h =

Da,b =

aJ bJ
0

 : a, b ∈ R

 ,

with J as in (7.1.7). Parallel to (7.1.5), we have

(7.1.17) dim so(5) = 10, rank so(5) = 2, there are 8 roots.

Four of the root spaces are spanned by

(7.1.18)

 0 Cj
−Ctj 0

0

 ,

with Cj as in (7.1.13). The corresponding roots α ∈ h′ ≈ R2, with h ≈
{(a, b) : a, b ∈ R} via (7.1.16), are again given by (7.1.14).

The other 4 root spaces are 1-dimensional complex subspaces of

(7.1.19)

Ev,w =

 v
w

−vt −wt 0

 : v, w ∈ C2

 .

A computation gives

(7.1.20) [Da,b, Ev,w] =

 aJv
bJw

avtJ bwtJ 0

 .
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Figure 7.1.1. Roots of SO(5)

Referring to (7.1.12), we take

(7.1.21) vj = wj =

(
1

(−1)j−1i

)
,

to get

(7.1.22) [Da,b, Evj ,0] = iβ+j (a, b)Evj ,0

with

(7.1.23) β+j (a, b) = (−1)ja,

and

(7.1.24) [Da,b, E0,wj ] = iβ−j (a, b)E0,wj ,

with

(7.1.25) β−j (a, b) = (−1)jb.

In summary, the 8 roots of so(5) are αj (1 ≤ j ≤ 4), given by (7.1.14), and
β±j (1 ≤ j ≤ 2), given by (7.1.23) and (7.1.24). These roots, expanded with

respect to the basis dual to {D1,0, D0,1} of h, from (7.1.16), are depicted in
Figure 7.1.1.
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Take a look at the (image under W of) the elements of the Weyl group,
acting on h′. In particular, the set of reflections {Sα : α ∈ ∆}, given by
(6.3.24)–(6.3.25), generate a group that coincides with the symmetry group
of the square, D4. Since each element W(g), g ∈ N(T), must permute the
roots and act as an orthogonal transformation on h′, we see that W (G) is
generated by {Sα : α ∈ ∆} in this case, illustrating Proposition 6.3.4. We
also have

(7.1.26) W (SO(5)) ≈ D4.

Another readily verifiable result is that the unique non-raisable weight
vector (up to scaling) is the element C2 of gα2 . Hence the adjoint represen-
tation of SO(5) on so(5)C is irreducible. Equivalently,

(7.1.27) so(5)C is simple,

as a complex Lie algebra.

Having looked at the roots of so(5), i.e., the weights for the adjoint
representation, we next turn to the standard representation of SO(5) on C5,
and decompose C5 = ⊕Vλ, where
(7.1.28) Vλ = {v ∈ C5 : Hv = iλ(H)v, ∀H ∈ h}.
Here H takes the form Da,b of (7.1.16). We have

(7.1.29) Da,b


1
±i
0
0
0

 = ∓ia


1
±i
0
0
0

 , weights λ∓1 (a, b) = ∓a,

(7.1.30) Da,b


0
0
1
±i
0

 = ∓ib


0
0
1
±i
0

 , weights λ∓2 (a, b) = ∓b,

and

(7.1.31) Da,b


0
0
0
0
1

 = 0, weight λ3(a, b) = 0.

In summary:

(7.1.32)
λ+1 = a = β+2 , λ−1 = −a = β+1

λ+2 = b = β−2 , λ−2 = −b = β−1 , λ3 = 0.
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The highest weight is λ+1 = β+2 , and this can be seen to be the only non-
raisable weight. Hence the standard representation of SO(5) on C5 is irre-
ducible. This is a special case of the fact that the standard representation
of SO(n) on Cn is irreducible whenever n ≥ 3, which will be proven in §7.2.

At this point we have identified α2 and β+2 as highest weights of irre-
ducible unitary representations of SO(5). Of course, 0 ∈ h′ is the highest
weight of the trivial representation. We can produce other elements of h′

known to be highest weights of irreducible representations of SO(5), using
the observation that

(7.1.33)
µ1, µ2 highest weights for irreducible representations of G

=⇒ µ1 + µ2 highest weight for an irreducible representation.

Cf. Proposition 6.2.2. See Figure 7.1.2 for a depiction of the elements so pro-
duced, depicted by two black dots (representing α2 and β

+
2 ) and a collection

of circles (representing the other non-negative integral combinations of α2

and β+2 ). These elements of h′ are not all the dominant integral weights, as
specified in the Theorem of the Highest Weight in §6.2. It is readily checked
that α2/2 is also dominant integral, and the collection of all dominant in-
tegral weights is the set of non-negative integral combinations of α2/2 and
β+2 . The additional dominant integral weights are depicted as diamonds in
Figure 7.1.2.

In this context, the group to which the Theorem of the Highest Weight
applies is not SO(5), but its simply connected double cover. In general, for
n ≥ 3, SO(n) has a simply connected double cover

(7.1.34) Spin(n) −→ SO(n).

This group will be constructed in §7.4, following prerequisite material on
Clifford algebras presented in §7.3. Section 7.5 will present spinor repre-
sentations of Spin(n). For n = 5, there will be such a representation with
highest weight α2/2.
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Figure 7.1.2. Dominant integral weights for SO(5)

Exercises

1. Set

g = so(5) = {X ∈M(5,R) : X∗ = −X},

k = so(4) =
{(Y

0

)
: Y ∈M(4,R), Y ∗ = −Y

}
,

p =
{( v

−vt 0

)
: v ∈ R4

}
.

Show that

g = k⊕ p, [k, k] ⊂ k. [k, p] ⊂ p, [p, p] ⊂ k.

For the later, compute[(
v

−vt 0

)
,

(
w

−wt 0

)]
=

(
wvt − vwt

0

)
.
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2. Denote the groups generated by g and k by G = SO(5) and K ≈ SO(4).

Given

(
B

1

)
= A ∈ K and Z =

(
v

−vt
)

∈ p, compute

AZA−1, representing K on p.

3. Take

Z =

(
v

−vt 0

)
, v ∈ R4, |v| = 1.

Show that

Z2 = −
(
Pv

1

)
= −Qv, Z = QvZ,

where Qv = vvt is the orthogonal projection of R4 onto Span(v). Deduce
that

etZ = Q⊥
v +

[
(cos t)I + (sin t)Z

]
Qv.
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7.2. Representations of SO(n), general n

We present some results on irreducible representations of SO(n) valid for
general n. To start, note that SO(n) (and more generally Gl(n)) acts on
ΛℓRn for each ` ∈ {0, 1, . . . , n}, via
(7.2.1) Λℓ(g) v1 ∧ · · · ∧ vℓ = gv1 ∧ · · · ∧ gvℓ.
This extends by complexification to Λℓ(g) : ΛℓCn → ΛℓCn.

Proposition 7.2.1. The representation Λℓ of SO(n) on ΛℓCn is irreducible
for each ` ∈ {0, . . . , n}, except when n is even and ` = n/2.

Proof. To start, we assume ` < n/2. Let {ej : 1 ≤ j ≤ n} be the standard

basis of Rn, hence of Cn. Assume V ⊂ ΛℓCn is a complex linear subspace,
invariant under the SO(n) action, and assume V 6= 0. Pick a nonzero ϕ ∈ V ,
and write

(7.2.2) ϕ =
∑

ai1···iℓ ei1 ∧ · · · ∧ eiℓ ,

the sum taken over `-tuples satisfying 1 ≤ i1 < · · · < iℓ ≤ n.

Suppose there is only one nonzero term, so we can assume

(7.2.3) ϕ = ei1 ∧ · · · ∧ eiℓ .
Then as g runs over elements Eθσ ∈ SO(n) given by

(7.2.4) Eθσej = θjeσ(j), σ ∈ Sn, θj = ±1,

such that detEθσ = θ1 · · · θn(sgnσ) = 1, we have Λℓ(g)(ei1 ∧· · ·∧eiℓ) running
over ±ej1 ∧ · · · ∧ ejn for all multiindices satisfying 1 ≤ j1 < · · · < jℓ ≤ n,

hence V = ΛℓCn.
Next suppose ϕ as in (7.2.2) belongs to V and at least 2 of the coefficients

are nonzero, say ai1···iℓ 6= 0 and aj1···jℓ 6= 0, with (i1, . . . , iℓ) 6= (j1, . . . , jℓ).
As long as ` < n/2, there exist a, b ∈ {1, . . . , n} such that

(7.2.5) a ∈ {i1, . . . , iℓ}, a /∈ {j1, . . . , jℓ}, b /∈ {i1, . . . , iℓ} ∪ {j1, . . . , jℓ}.
Choose g ∈ SO(n) so that

(7.2.6) gea = −ea, geb = −eb, gej = ej otherwise.

Then

(7.2.7) ψ = ϕ+ Λℓ(g)ϕ

has fewer nonzero coefficients than ϕ, but it has at least one. An induction
finishes the irreducibility proof for ` < n/2. □

To take care of the case n/2 < ` ≤ n, we have the following.

Proposition 7.2.2. For 0 ≤ ` ≤ n, the representations Λℓ of SO(n) on
ΛℓCn and Λn−ℓ of SO(n) on Λn−ℓCn are equivalent.
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Proof. We bring in the Hodge star operator

(7.2.8) ∗ : ΛℓRn −→ Λn−ℓRn,

defined for ψ ∈ ΛℓRn by

(7.2.9) ϕ ∧ ∗ψ = 〈ϕ,ψ〉ω, ∀ϕ ∈ ΛℓRn,

where ω ∈ ΛnRn is the “volume element” e1 ∧ · · · ∧ en and 〈 , 〉 is the
natural inner product on ΛℓRn specified as follows. An inner product on
a real vector space V induces an isomorphism V → V ′, which gives an
isomorphism ΛℓV → ΛℓV ′ ≈ (ΛℓV )′, hence an inner product on ΛℓV . In
the case V = Rn with standard orthonormal basis {ej : 1 ≤ j ≤ n}, the set

{ei1 ∧ · · · ∧ eiℓ : 1 ≤ i1 < · · · < iℓ ≤ n} is an orthonormal basis for ΛℓRn.
With such a specification, we have

(7.2.10) ∗ ◦ Λℓ(g) = Λn−ℓ(g) ◦ ∗

whenever g ∈ Gl(n,R) preserves the inner product and ω, i.e., whenever
g ∈ SO(n). Having this, we extend

(7.2.11) ∗ : ΛℓCn −→ Λn−ℓCn

by C-linearity, and (7.2.10) continues to hold. To complete the proof of
Proposition 7.2.2, we note that ∗ in (7.2.11) is an isomorphism. In fact, a
calculation gives

(7.2.12) ∗ei1 ∧ · · · ∧ eiℓ = (sgnπ)ej1 ∧ · · · ∧ ejn−ℓ
,

where {i1, . . . , iℓ, j1, . . . , jn−ℓ} = {1, . . . , n}, and the permutation π puts this
set of indices in standard order. It follows that

(7.2.13) ∗∗ = (−1)ℓ(n−ℓ) on ΛℓCn.

□

Proposition 7.2.2 finishes the proof of all the statements in Proposition
7.2.1 about the action of SO(n) on ΛℓCn for ` 6= n/2. In case n = 2k and
` = k, we have the SO(2k) action commuting with ∗ : ΛkC2k → ΛkC2k.
Note that if 1 ≤ i1 < · · · < ik ≤ 2k,
(7.2.14)
∗ei1 ∧ · · · eik = ±ej1 ∧ · · · ∧ ejk , {i1, . . . , ik} ∪ {j1, . . . , jk} = {1, . . . , 2k},

so ∗ is not a multiple of the identity. According to (7.2.13),

(7.2.15) ∗2 = (−1)k
2
= (−1)k on ΛkC2k.

Hence

(7.2.16)
k even =⇒ Spec ∗ = {±1} on ΛkC2k,

k odd =⇒ Spec ∗ = {±i} on ΛkC2k.
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(As an aside, the definitions imply that ∗ is orthogonal on ΛℓRn and hence
unitary on ΛℓCn. Consequently, by (7.2.15), ∗ is self-adjoint on ΛkC2k for k
even and skew-adjoint on ΛkC2k for k odd.) We see that ΛkC2k breaks up
into two pieces under the SO(2k) action:

(7.2.17)

ΛkC2k = Λk+C2k ⊕ Λk−C2k,

Λk±C2k = ± 1 eigenspace of ∗ for k even

± i eigenspace of ∗ for k odd.

We also have
(7.2.18)

g ∈ O(n), det g = −1 =⇒ ∗ ◦ Λℓ(g) = −Λn−ℓ(g) ◦ ∗, ∀ ` ∈ {1, . . . , n}

=⇒ Λk(g) : Λk+C2k ≈−→ Λk−C2k,

the latter when n = 2k.

The following is one complement to Proposition 7.2.1.

Proposition 7.2.3. The action Λk of O(2k) on ΛkC2k is irreducible.

Proof. This is a variation of the proof of Proposition 7.2.1. Say V ⊂ ΛkC2k

is invariant under the O(2k) action. Take nonzero ϕ ∈ V , represented as in
(7.2.2). If ϕ has the form (7.2.3), the argument given before implies V =
ΛkC2k. If there are at least two nonzero coefficients in (7.2.2), say ai1···ik and
aj1···jk , in this situation we take a ∈ {1, . . . , 2k} such that a ∈ {i1, . . . , ik}
but a /∈ {j1, . . . , jk}, and in place of (40.6) define g ∈ O(n) by

(7.2.19) gea = −ea, gej = ej otherwise.

Then, as in (7.2.7),

(7.2.20) ψ = ϕ+ Λk(g)ϕ

has fewer non-vanishing coefficients than ϕ, but is does have at least one.
As in Proposition 7.2.1, an induction finishes the proof of irreducibility. □

Here is another complement to Proposition 7.2.1.

Proposition 7.2.4. The representations Λk± of SO(2k) on Λk±C2k are irre-
ducible.

Proof. Take the case Λk+C2k. Suppose V+ ⊂ Λk+C2k is nonzero and invariant
under the SO(2k) action. Take g0 ∈ O(2k) with det g0 = −1, and set

(7.2.21) V− = Λk(g0)V+,

a subspace of Λk−C2k, by (7.2.18). Consider

(7.2.22) V = V+ ⊕ V− ⊂ ΛkC2k.
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We have

(7.2.23) g ∈ O(2k) =⇒ Λk(g) : V → V,

and hence, by Proposition 7.2.2, V = ΛkC2k. This forces V+ = Λk+C2k, and

proves irreducibility of Λk+. The treatment of Λk− is similar. □

We next consider the weights and weight spaces for the representations
Λℓ. We take the following maximal torus in SO(n). Assume n = 2k or
n = 2k + 1. For 1 ≤ j ≤ k, define Rj(θ) by

(7.2.24)

Rj(θ)e2j−1 = (cos θ)e2j−1 + (sin θ)e2j

Rj(θ)e2j = −(sin θ)e2j−1 + (cos θ)e2j

Rj(θ)ei = ei for i /∈ {2j − 1, 2j}.

Then we take

(7.2.25) T = {R1(θ1) · · ·Rk(θk) : θj ∈ R/2πZ}.

The Lie algebra h of T is spanned by {J2j−1,2j : 1 ≤ j ≤ k}, where, for
1 ≤ i < j ≤ k,

(7.2.26) Jijei = ej , Jijej = −ei, Jijem = 0 for m /∈ {i, j}.

Let us also set

(7.2.27) Ej = J2j−1,2j .

We prepare to calculate dΛℓ(Ej) on ΛℓCn. We assume 0 ≤ ` < n/2, n =
2k or 2k + 1. It is convenient to pass from the standard basis {e1, . . . , en}
of Rn (hence of Cn) to the orthonormal basis {u1, . . . , un} of Cn, given by

(7.2.28)

u2j−1 =
1√
2
(e2j−1 − ie2j),

u2j =
1√
2
(e2j−1 + ie2j), 1 ≤ j ≤ k,

un = en, if n = 2k + 1.

We have

(7.2.29)

Eju2j−1 = iu2j−1,

Eju2j = −iu2j ,
Ejui = 0, if i /∈ {2j − 1, 2j}.

Since

(7.2.30)
dΛℓ(Ej)ui1 ∧ · · · ∧ uiℓ = Ejui1 ∧ ui2 ∧ · · · ∧ uiℓ + · · ·

+ ui1 ∧ · · · ∧ uiℓ−1
∧ Ejuiℓ ,
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we get
(7.2.31)

dΛℓ(Ej)ui1 ∧ · · · ∧ uiℓ
= i ui1 ∧ · · · ∧ uiℓ , if 2j − 1 ∈ {i1, . . . , iℓ}, and 2j /∈ {i1, . . . , iℓ},
−i ui1 ∧ · · · ∧ uiℓ , if 2j ∈ {i1, . . . , iℓ}, and 2j − 1 /∈ {i1, . . . , iℓ},

0 otherwise.

Hence we have the following.

Proposition 7.2.5. If ` < n/2, then the monomials

{ui1 ∧ · · · ∧ uiℓ : 1 ≤ i1 < · · · < iℓ ≤ n}
form a basis of weight vectors, with weights determined by (7.2.31), for the
representation Λℓ of SO(n) on ΛℓCn. In particular, this representation has
highest weight given by the following k-tuple, if n = 2k or 2k + 1:

(7.2.32) (1, . . . , 1, 0, . . . , 0) (` ones),

with highest weight vector

(7.2.33) u1 ∧ u3 ∧ · · · ∧ u2ℓ−1.

Recall Proposition 7.2.2, which then takes care of the cases n/2 < ` ≤ n.
Finally, consider the case n = 2k, ` = k. The calculations (7.2.28)–(7.2.31)
still apply. We have weight vectors

(7.2.34)
ϕ0 = u1 ∧ u3 ∧ · · · ∧ u2k−1, weight (1, . . . , 1, 1) (k-tuple),

ϕ1 = u1 ∧ u3 ∧ · · · ∧ u2k−3 ∧ u2k, weight (1, . . . , 1,−1).

These are the two highest weights for the representation Λk of SO(2k) on
ΛkC2k. It follows that ϕ0 is the highest weight vector for the representation
Λkσ on ΛkσC2k, for some choice of sign σ = ± (the reader can have fun figuring
out which choice). By (7.2.18), if ϕ0 ∈ ΛkσC2k, then ϕ1 ∈ Λk−σC2k, as one
can see by taking g ∈ O(2k) to switch e2k−1 and e2k and fix the other ej .

Thus ϕ1 must be the highest weight vector for the representation Λk−σ of

SO(2k) on Λk−σC2k. We summarize:

Proposition 7.2.6. The representations Λk± of SO(2k) on Λk±C2k have high-
est weights given by k-tuples

(7.2.35) (1, . . . , 1, 1) and (1, . . . , 1,−1),

in some order.

We next take a second look at Λ2Cn. This has the following significance.
There is an isomorphism

(7.2.36)
A : Λ2Rn −→ Skew(n) = so(n)

A : Λ2Cn −→ soC(n),
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defined by

(7.2.37) A(u ∧ v)x = 〈u, x〉v − 〈v, x〉u,

for u, v, x ∈ Rn, and extended by C-linearity. Note that if u, v, x, y ∈ Rn,
then 〈A(u ∧ v)x, y〉 = 〈u, x〉〈v, y〉 − 〈v, x〉〈u, y〉, giving the asserted skew-
symmetry. Now, given g ∈ SO(n) (or, more generally, g ∈ O(n)),

(7.2.38)

gA(u ∧ v)g−1x = 〈u, g−1x〉gv − 〈v, g−1x〉gu
= 〈gu, x, 〉gv − 〈gv, x〉gu
= A(gu ∧ gv)x.

In other words, A intertwines the representations Λ2 and Ad. We record the
consequence:

Proposition 7.2.7. The representation Λ2 of SO(n) on Λ2Cn is unitarily
equivalent to the adjoint representation of SO(n) on soC(n).

Thus the study of Λ2 has the potential to reveal information about the
structure of the Lie algebra so(n). In particular, the nonzero weights of Λ2

are the roots of so(n).

In our second look at Λ2, we relabel the basis (7.2.28) of Cn as follows.
For convenience, assume n ≥ 4. Set

(7.2.39) vjε =
1√
2
(e2j−1 − iεe2j), 1 ≤ j ≤ k, ε = ±1.

Then {vjε : 1 ≤ j ≤ k, ε = ±1} forms a basis of Cn if n = 2k. If n = 2k+1,
complete the basis by taking

(7.2.40) vn = en if n = 2k + 1.

Parallel to (7.2.29), we have

(7.2.41)
Ejviε = iεδijviε,

Ejvn = 0 if n = 2k + 1.

In the current situation, a basis for Λ2Cn is given by
(7.2.42)

{vi1ε1 ∧ vi2ε2 : 1 ≤ i1 < i2 ≤ k, ε1, ε2 = ±1} ∪ {vi,1 ∧ vi,−1 : 1 ≤ i ≤ k},

if n = 2k, and if n = 2k + 1 we complete the basis by taking

(7.2.43) {viε ∧ vn : 1 ≤ i ≤ k, ε = ±1}.

Now we calculate dΛ2(Ej) on this basis.

First, we have

(7.2.44) dΛ2(Ej)(vi1ε1 ∧ vi2ε2) = i(δji1ε1 + δji2ε2)vi1ε1 ∧ vi2ε2 ,
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so each vi1ε1 ∧ vi2ε2 is a weight vector, with weight

(7.2.45)

(0, . . . , ε1, . . . , ε2, . . . , 0) (k-tuple).

↑ ↑
i1 i2

This weight is positive if and only if ε1 = 1. Next,

(7.2.46) vi,1 ∧ vi,−1 = ie2i−1 ∧ e2i,

and

(7.2.47) dΛ2(Ej)(vi,1 ∧ vi,−1) = 0,

so each vi,1 ∧ vi,−1 is a weight vector with weight

(7.2.48) (0, . . . , 0) (k-tuple).

If n = 2k, the weights given by (7.2.45) and (7.2.48) are all the weights. If
n = 2k + 1, we also have

(7.2.49) dΛ2(Ej)(viε ∧ vn) = iδijε viε ∧ vn,

so viε ∧ vn is a weight vector, with weight

(7.2.50)

(0, . . . , ε, . . . , 0) (k-tuple).

↑
i

Taking Proposition 7.2.7 into account, we have:

Proposition 7.2.8. The roots of so(n) are given by (7.2.45) if n = 2k. If
n = 2k + 1, the roots are given by (7.2.45) and (7.2.50). The positive roots
are given by

(7.2.51)

(0, . . . , 1, . . . , ε2, . . . , 0) (k-tuple),

↑ ↑
i1 i2

for 1 ≤ i1 < i2 ≤ k, if n = 2k, and if n = 2k + 1, also

(7.2.52)

(0, . . . , 1, . . . , 0) (k-tuple),

↑
i

for 1 ≤ i ≤ k.

It is useful to record the image under A : Λ2Cn → soC(n) of the weight
vectors given in (7.2.44), (7.2.47), and (7.2.49). The definition (7.2.37) read-
ily yields

(7.2.53) A(ei ∧ ej) = Jij ,
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which is defined in (7.2.26). Hence vi,1 ∧ vi,−1 = ie2i−1 ∧ e2i ⇒
(7.2.54) A(vi,1 ∧ vi,−1) = iJ2i−1,2i, 1 ≤ i ≤ k,

a basis of hC, which is expected since the weights (7.2.48) are zero.

Next vi1ε1∧vi2ε2 = (1/2)(e2i1−1∧e2i2−1−ε1ε2e2i1∧e2i2−iε1e2i1∧e2i2−1−
iε2e2i1−1 ∧ e2i2) ⇒

(7.2.55)

A(vi1ε1 ∧ vi2ε2)

=
1

2

(
J2i1−1,2i2−1 − ε1ε2J2i1,2i2 − iε1J2i1,2i2−1 − iε2J2i1−1,2i2

)
,

1 ≤ i1 < i2 ≤ k, ε1, ε2 = ±1.

These elements span root spaces with roots given by (7.2.45). In case n =
2k = 4, we have

(7.2.56)

A(v1ε1 ∧ v2ε2) =
1

2

(
J13 − ε1ε2J24 − iε1J23 − iε2J14

)

=
1

2


−1 iε2
iε1 ε1ε2

1 −iε1
−iε2 −ε1ε2

 .

Compare the root space calculation (7.1.8)–(7.1.13).

If n = 2k, the spaces spanned by elements of the form (7.2.55) give all
the root spaces. If n = 2k+1, we also have the images under A of (7.2.49).
Then v1ε ∧ vn = (1/

√
2)(e2i−1 ∧ en − iεe2i ∧ en) ⇒

(7.2.57) A(viε ∧ vn) =
1√
2

(
J2i−1,n − iεJ2i,n

)
.

These elements span root spaces with roots given by (7.2.50). In case n =
2k + 1 = 5, we have

(7.2.58)

A(v1ε ∧ v5) =
1√
2

(
J15 − iεJ25

)

=
1√
2


−1
iε
0
0

1 −iε 0 0 0

 ,

with a similar result for A(v2ε ∧ v5). Compare the root space calculations
(7.1.19)–(7.1.21).

Recall from §6.2 the definition of a dominant integral weight, namely an
element λ ∈ h′ such that

(7.2.59) 2
〈λ, α〉
〈α, α〉
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is a non-negative integer, for each positive root α. Note that 〈α, α〉 = 2 for
all roots of the form (7.2.51) and 〈α, α〉 = 1 for all roots of the form (7.2.52).
As a consequence of Proposition 7.2.8, we have the following.

Proposition 7.2.9. The dominant integral weights for so(2k) are given by
k-tuples of the form (d1, . . . , dk), satisfying

(7.2.60) d1 ≥ · · · ≥ dk−1 ≥ |dk|,
where either all the components dj are integers or they are all (non-integral)
half-integers. The dominant integral weights for so(2k+1) are given by such
k-tuples, satisfying

(7.2.61) d1 ≥ · · · ≥ dk ≥ 0,

instead of (7.2.60).

Proof. For each positive root of the form (7.2.51), the condition that (7.2.59)
belong to Z+ is that 〈λ, α〉 ∈ Z+, hence, if λ = (d1, . . . , dk), that dj + εdℓ ∈
Z+, for 1 ≤ j < ` ≤ k, ε = ±1, i.e.,

(7.2.62) dj + dℓ, dj − dℓ ∈ Z+, for 1 ≤ j < ` ≤ k.

This requires dj ≥ dℓ for 1 ≤ j < ` ≤ k, and it also requires 2dj ∈ Z+ for
1 ≤ j < k. Hence d1 is either an integer or a (non-integral) half integer,
and then (7.2.62) requires the same property of each dj , 1 ≤ j ≤ k. With
j = k − 1, (7.2.62) requires dk−1 ≥ |dk|, and we have (7.2.60). This takes
care of SO(2k).

For SO(2k + 1), we need also consider the positive roots of the form
(40.51). If α is such a root, membership of (7.2.59) in Z+ requires

(7.2.63) 2dj ∈ Z+, for 1 ≤ j ≤ k.

Hence we have (7.2.61). □

The dominant integral weights described above are non-negative inte-
gral combinations of the highest weight representations of SO(n) described
above, provided dj are all integers, as is seen upon recalling that the previ-
ously obtained highest weights are the k-tuples

(7.2.64) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1) and (1, . . . , 1,−1)

when n = 2k, for ΛℓC2k, 1 ≤ ` ≤ k − 1, and Λk±C2k, and they are

(7.2.65) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1)

when n = 2k + 1, for ΛℓC2k+1, 1 ≤ ` ≤ k.

The dominant integral weights involving half integral dj are non-negative
integral combinations of these plus the k-tuples

(7.2.66)
(1
2
, . . . ,

1

2
,
1

2

)
and

(1
2
, . . . ,

1

2
,−1

2

)
,
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for n = 2k, and

(7.2.67)
(1
2
, . . . ,

1

2
,
1

2

)
,

for n = 2k+1. Constructions of representations of two-fold covers of SO(n)
with these highest weights will be given in §§7.5–7.6.

We next specify the Weyl group W (SO(n)) for each n ≥ 3, or more
precisely its image under W in Gl(h′) (defined by (6.3.6)–(6.3.7)), which we
will denote W(SO(n)). Recall that for n = 2k the roots of so(n) are given
by (7.2.45); denote such roots as

(7.2.68) ε1E
′
i1 + ε2E

′
i2 = αi1ε1i2ε2 ,

where 1 ≤ i1 < i2 ≤ k, ε1, ε2 ∈ {±1} and {E′
1, . . . , E

′
k} is the basis of h′ dual

to the basis {E1, . . . , Ek}, specified by (7.2.27) (which is orthonormal with
respect to an Ad-invariant inner product on so(n)). By Proposition 6.3.2,
the following reflections belong to W(SO(2k)):

(7.2.69) ρi1ε1i2ε2(λ) = λ− 〈αi1ε1i2ε2 , λ〉αi1ε1i2ε2 ,

since 〈αi1ε1i2ε2 , αi1ε1i2ε2〉 = 2. Note that

(7.2.70)

ρi1ε1i2ε2E
′
i1 = −ε1ε2E′

i2 ,

ρi1ε1i2ε2E
′
i2 = −ε1ε2E′

i1 ,

ρi1ε1i2ε2E
′
ℓ = E′

ℓ, ` /∈ {i1, i2}.

Noting that (7.2.70) is a function of −ε1ε2, we can relabel these reflections
as

(7.2.71) {Ri1i2ε : 1 ≤ i1 < i2 ≤ k, ε = ±1},

given by

(7.2.72)

Ri1i2εE
′
i1 = εE′

i2 ,

Ri1i2εE
′
i2 = εE′

i1 ,

Ri1i2εE
′
ℓ = E′

ℓ, ` /∈ {i1, i2}.

By Proposition 6.3.4, W(SO(2k)) is the group generated by the set of re-
flections (7.2.71).

The roots of SO(2k + 1) are given by (7.2.68) plus

(7.2.73) εE′
i, 1 ≤ i ≤ k, ε = ±1.

Thus, in addition to the reflections (7.2.71), W(SO(2k+1)) contains the set
of reflections

(7.2.74) {Ri : 1 ≤ i ≤ k},
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given by

(7.2.75)
RiE

′
i = −E′

i,

RiE
′
ℓ = E′

ℓ, ` 6= i.

By Proposition 6.3.4, W(SO(2k + 1)) is the group generated by the set of
reflections given in (7.2.71) and (7.2.74). It follows that

(7.2.76) W(SO(2k + 1)) = {Eθσ : σ ∈ Sk, θ = (±1, . . . ,±1)},

where, as in (7.2.4), Eθσ ∈ End(h′) is defined by

(7.2.77) EθσE
′
j = θjE

′
σ(j).

Given this, we have

Proposition 7.2.10. For k ≥ 1, W(SO(2k + 1)) is the group of transfor-
mations of h′ ≈ Rk that are symmetries of the k-dimensional cube

(7.2.78) Qk = {x ∈ Rk : −1 ≤ xi ≤ 1, for 1 ≤ i ≤ k}.

Proof. Each transformation given by (7.2.77) clearly produces a symmetry
of Qk. Conversely, each symmetry S of Qk is an orthogonal transformation
of Rk that is uniquely specified by the image under S of the ordered basis
(E′

1, . . . , E
′
k). This image is necessarily of the form

(7.2.79) θ1E
′
σ(1), . . . , θkE

′
σ(k)

for some permutation σ of {1, . . . , k} and some θj ∈ {±1}, so S is of the
form (7.2.77). □

Remark. Inspection of (7.2.72) shows that

(7.2.80) W(SO(2k)) = {Eθσ : σ ∈ Sk, θ1 · · · θk = 1}.

Returning to the issue of highest weights, we recall the central role that
the Lie group homomorphisms

(7.2.81) γα : SU(2) −→ G,

defined for each root α of g, played in §6.2, in the statement of the Theorem
of the Highest Weight. We record some results on γα when G = SO(n),
starting with the case n = 2k.

Proposition 7.2.11. For each root α of so(2k),

(7.2.82) γα : SU(2) −→ SO(2k) is injective.
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Proof. As noted in §6.2, the kernel of γα is either {I} or {±I} ⊂ SU(2).
Now, by (6.2.4),

(7.2.83) γα(Exp tX1) = Exp(tXα
1 ),

and, by (4.1.2), Exp(2πX1) = −I ∈ SU(2), so our task is to examine
Exp(2πXα

1 ) ∈ SO(n). Now, by (6.2.3) and (6.1.6), Xα
1 is specified as the

element of h satisfying

(7.2.84) 〈h,Xα
1 〉 =

α(h)

〈α, α〉
, ∀h ∈ h.

Given that α has the form (7.2.45) (so 〈α, α〉 = 2), we deduce that

(7.2.85) 2Xα
1 = ε1Ei1 + ε2Ei2 ,

with i1 6= i2, εj = ±1, and Ej = J2j−1,2j , as in (7.2.27). Hence

(7.2.86) Exp(2tXα
1 ) = etε1J2i1−1,2i1 etε2J2i2−1,2i2 ∈ SO(n),

and in particular, for α of the form (7.2.45),

(7.2.87)
γα(−I) = Exp(2πXα

1 ) = eπε1J2i1−1,2i1eπε2J2i2−1,2i2

6= I in SO(n),

since

(7.2.88) J =

(
0 −1
1 0

)
=⇒ e±πJ =

(
−1 0
0 −1

)
.

□

Here is the contrasting result for SO(2k + 1).

Proposition 7.2.12. For each root α of so(2k + 1) of the form (7.2.45),

(7.2.89) γα : SU(2) −→ SO(2k + 1) is injetive.

However, for each root of so(2k + 1) of the form (7.2.50),

(7.2.90) γα(−I) = I in SO(2k + 1),

hence γα(SU(2)) is isomorphic to SO(3).

Proof. If the root α has the form (7.2.45), the arguments proving Proposi-
tion 40.11 apply, to give (7.2.89). If α has the form (7.2.50), then 〈α, α〉 = 1,
and in place of (7.2.85) we have

(7.2.91) Xα
1 = εEi,

again with ε = ±1 and Ei = J2i−1,2i. Hence

(7.2.92) Exp(tXα
1 ) = etεJ2i−1,2i ∈ SO(2k + 1),
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so

(7.2.93)
γα(−I) = Exp(2πXα

1 ) = e2πεJ2i−1,2i

= I, in SO(2k + 1),

as asserted in (7.2.90). □

Note that (7.2.90) implies that, for each root of so(2k + 1) of the form
(7.2.50), and each representation π of SO(2k + 1), πα = π ◦ γα is an SO(3)
representation, so in place of (7.2.63), we have dj ∈ Z+, for 1 ≤ j ≤ k. This
is consistent with our observation about the irreducible representations of
SO(n) whose existence was proved above. Such an argument does not apply
to representations of SO(2k).

However, we can see directly that each dj is an integer, for each irre-
ducible representation of SO(n), as follows. If π is a representation of SO(n)
on V and v ∈ Vλ is a weight vector, associated to the weight λ = (d1, . . . , dk),
with n = 2k or 2k + 1, then, for each j ∈ {1, . . . , k), Ej = J2j−1,2j , as in
(7.2.27),

(7.2.94) dπ(Ej)v = idjv,

hence

(7.2.95) π(etJ2j−1,2j )v = eitdjv.

Since, parallel to (7.2.93),

(7.2.96) e2πJ2j−1,2j = I ∈ SO(n),

this requires dj ∈ Z. Hence we have the following.

Proposition 7.2.13. If n = 2k or 2k+1, the highest weights of irreducible
unitary representations of SO(n) are precisely the k-tuples (d1, . . . , dk) sat-
isfying (7.2.60) if n = 2k, (7.2.61) if n = 2k + 1, and

(7.2.97) dj ∈ Z, ∀ j ∈ {1, . . . , k}.

Proof. The existence of such representations follows, via Proposition 6.2.2,
from the results (7.2.64)–(7.2.65). The necessity of (7.2.97) has just been
established. □
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7.3. Clifford algebras

Let V be a finite dimensional, real vector space and Q : V × V → R a
symmetric bilinear form. The Clifford algebra C`(V,Q) is an associative
algebra, with unit 1, generated by V , and satisfying the anticommutation
relations

(7.3.1) uv + vu = −2Q(u, v) · 1, ∀u, v ∈ V.

Formally, we construct C`(V,Q) as

(7.3.2) C`(V,Q) = ⊗∗V/I,

where ⊗∗V is the tensor algebra:

(7.3.3) ⊗∗V = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

and
(7.3.4)
I = two-sided ideal generated by {u⊗ v + v ⊗ u+ 2Q(u, v)1 : u, v ∈ V }
= two-sided ideal generated by {ej ⊗ ek + ek ⊗ ej + 2Q(ej , ek)1},

where {ej} is a basis of V . Note that

(7.3.5) Q = 0 =⇒ C`(V,Q) ≈ Λ∗V (the exterior algebra).

Here is a fundamental property of C`(V,Q).

Proposition 7.3.1. Let A be an associative algebra with unit, and let

(7.3.6) M : V −→ A

be a linear map satisfying

(7.3.7) M(u)M(v) +M(v)M(u) = −2Q(u, v)1,

for each u, v ∈ V (or equivalently for all u = ej , v = ek, where {ej} is a
basis of V ). Then M extends to a homomorphism

(7.3.8) M : C`(V,Q) −→ A, M(1) = 1.

Proof. Given (7.3.6), there is a homomorphism M̃ : ⊗∗V → A extending

M , with M̃(1) = 1. The relation (7.3.7) implies M̃ = 0 on I, so it descends
to ⊗∗V/I → A, giving (7.3.8). □

From here on we require Q to be nondegenerate. Thus each Clifford
algebra C`(V,Q) we consider will be isomorphic to one of the following.
Take V = Rn, with standard basis {e1, . . . , en}, take p, q ≥ 0 such that
p + q = n, and take Q(u, v) =

∑
j≤p ujvj −

∑
j>p ujvj , where u =

∑
ujej

and v =
∑
vjej . In such a case, C`(V,Q) is denoted C`(p, q).
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We also define the complexification of C`(V,Q):

(7.3.9) C`(V,Q) = C⊗ C`(V,Q).

(We tensor over R.) Note that taking ej 7→ iej for p + 1 ≤ j ≤ n gives,
whenever p+ q = n,

(7.3.10) C`(p, q) ≈ C`(n, 0), which we denote C`(n).

Use of the anticommutator relations (7.3.1) show that if {e1, . . . , en} is
a basis of V , then each element u ∈ C`(V,Q) can be written in the form

(7.3.11) u =
∑

iν=0 or 1

ai1···ine
i1
1 · · · einn ,

or, equivalently, in the form

(7.3.12) u =

n∑
k=0

∑
j1<···<jk

ãj1···jkej1 · · · ejk .

(By convention the k = 0 summand in (41.12) is ã∅ · 1.) In other words, we
see that

(7.3.13) {ej1 · · · ejk : 0 ≤ k ≤ n, j1 < · · · < jk}

spans C`(V,Q). Again, by convention, the subset of (7.3.13) for which k = 0
is {1}. It is very useful to know that the following is true.

Proposition 7.3.2. The set (7.3.13) is a basis of C`(V,Q).

This is true for all Q, but we will restrict attention to nondegenerate
Q. Since we know that (7.3.13) spans, the assertion is that the dimension
of C`(p, q) is 2n when p + q = n. By (7.3.10), it suffices to show this for
C`(n, 0), and we can assume {e1, . . . , en} is the standard orthonormal basis
of Rn Note that the assertion for Q = 0 corresponding to Proposition 7.3.2
is that

(7.3.14) {ej1 ∧ · · · ∧ ejk : 0 ≤ k ≤ n, j1 < · · · < jk} is a basis of Λ∗Rn,

where {e1, . . . , en} is the standard basis of Rn. We will use this in our proof
of Proposition 7.3.2. See §B.5 for a proof of (7.3.14).

Given that (7.3.14) is true, we can define a linear map

(7.3.15) α : Λ∗Rn −→ C`(n, 0)

by α(1) = 1 and

(7.3.16) α(ej1 ∧ · · · ∧ ejk) = ej1 · · · ejk ,

when 1 ≤ j1 < · · · < jk ≤ n. The content of Proposition 7.3.2 is that
α is a linear isomorphism. On the way to proving this, we construct a
representation of C`(n, 0) on Λ∗Rn, of interest in its own right.
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To construct this representation, i.e., homomorphism of algebras

(7.3.17) M : C`(n, 0) −→ End(Λ∗Rn),

we begin with a linear map

(7.3.18) M : Rn −→ End(Λ∗Rn),

defined on the basis {e1, . . . , en} as follows. Define

(7.3.19) ∧j : ΛkRn −→ Λk+1Rn, ιj : Λ
kRn −→ Λk−1Rn

by

(7.3.20) ∧j(ej1 ∧ · · · ∧ ejk) = ej ∧ ej1 ∧ · · · ∧ ejk ,

and

(7.3.21)

ιj(ej1 ∧ · · · ∧ ejk) =

(−1)ℓ−1ej1 ∧ · · · ∧êjℓ ∧ · · · ∧ ejk if j = jℓ,

0 if j /∈ {j1, . . . , jk}.

Here the symbol êjℓ signifies that ejℓ is removed from the product.

Remark. If Λ∗Rn has the inner product such that (7.3.14) is an orthonormal
basis, then ιj is the adjoint of ∧j .

A calculation (left to the reader) gives the following anticommutator
relations for these operators:

(7.3.22)

∧j ∧k + ∧k ∧j = 0,

ιjιk + ιkιj = 0,

∧jιk + ιk∧j = δjk.

Now we define M in (7.3.18) by

(7.3.23) M(ej) =Mj = ∧j − ιj .

From (7.3.22) we get

(7.3.24) MjMk +MkMj = −2δjk.

Hence Proposition 7.3.1 applies to give the homomorphism of algebras (7.3.17),
with M(1) = I, the identity operator.

We can now prove Proposition 7.3.2. We define a linear map

(7.3.25) β : C`(n, 0) −→ Λ∗Rn, β(u) =M(u)1.

Recalling the map α from (7.3.15)–(7.3.16), we have

(7.3.26)
β ◦ α(ej1 ∧ · · · ∧ ejk) =M(ej1 · · · ejk)1

=M(ej1) · · ·M(ejk)1.
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Now M(ejk)1 = ejk , M(ejk−1
)ejk = ejk−1

∧ ejk if jk−1 < jk, and inductively
we see that

(7.3.27) j1 < · · · < jk =⇒M(ej1) · · ·M(ejk)1 = ej1 ∧ · · · ∧ ejk .

It follows that α and β are inverses, and that each is a linear isomorphism.
This proves Proposition 7.3.2 (granted (7.3.14)).

We next characterize C`(p, q) for small p and q. For starters, C`(1, 0)
and C`(0, 1) are linear spaces of the form

(7.3.28) {a+ be1 : a, b ∈ R}.

In C`(1, 0), e21 = −1, so

(7.3.29) C`(1, 0) ≈ C, e1 ↔ i.

Meanwhile, in C`(0, 1), e21 = 1, so C`(0, 1) is of the form

(7.3.30)

{αf+ + βf− : α, β ∈ R}

f± =
1± e1

2
⇒ f2± = f±, f+f− = f−f+ = 0,

and we have

(7.3.31) C`(0, 1) ≈ R⊕ R ≈ CR({+,−}),

the space of real valued functions on the two-point set {+,−}.
Next, C`(2, 0), C`(1, 1), and C`(0, 2) are linear spaces of the form

(7.3.32) {a+ be1 + ce2 + de1e2 : a, b, c, d ∈ R}.

In C`(2, 0), e21 = e22 = (e1e2)
2 = −1, and also e2(e1e2) = e1, while (e1e2)e1 =

e2, which are the algebraic relations satisfied by i, j, k in the algebra H of
quaternions, defined by (1.2.1)–(1.2.3). Hence

(7.3.33) C`(2, 0) ≈ H = {a+ bi+ cj + dk}.

In C`(0, 2), e21 = e22 = 1, while (e1e2)
2 = −1. Meanwhile e2(e1e2) = −e1

and (e1e2)e1 = −e2, and we have

(7.3.34)

C`(0, 2) ≈ M(2,R)

=
{
aI + b

(
0 1
1 0

)
+ c

(
1 0
0 −1

)
+ d

(
0 −1
1 0

)
: a, b, c, d ∈ R

}
.

It turns out that also

C`(1, 1) ≈M(2,R).
We leave this to the reader.

Using (7.3.31) and (7.3.34), we find the complexified algebras

(7.3.35) C`(1) ≈ C⊕ C, C`(2) ≈ M(2,C).

These results are special cases of the following:
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Proposition 7.3.3. The complex Clifford algebras C`(n) have the properties

(7.3.36)
C`(2k) ≈ M(2k,C),

C`(2k + 1) ≈ M(2k,C)⊕M(2k,C).

Proposition 7.3.3 follows inductively from (7.3.35) and the following re-
sult.

Proposition 7.3.4. For n ∈ N, we have isomorphisms of algebras

(7.3.37) C`(n+ 2) ≈ C`(n)⊗ C`(2).

In turn, Proposition 7.3.4 follows from:

Proposition 7.3.5. For n ∈ N, we have isomorphisms of algebras

(7.3.38) C`(n, 0)⊗ C`(0, 2) ≈ C`(0, n+ 2).

It remains to prove (7.3.38). To do this, we construct a homomorphism
of algebras

(7.3.39) M : C`(0, n+ 2) −→ C`(n, 0)⊗ C`(0, 2).

Once it is checked that M is onto, a dimension count guarantees it is an
isomorphism.

To produce (7.3.39), we start with a linear map

(7.3.40) M : Rn+2 −→ C`(n, 0)⊗ C`(0, 2),

defined by

(7.3.41)
Mej =Mj = ej ⊗ en+1en+2, 1 ≤ j ≤ n,

Mej =Mj = 1⊗ ej , j = n+ 1, n+ 2.

Here we take {e1, . . . , en} to generate C`(n, 0) and {en+1, en+2} to generate
C`(0, 2). To extend M in (7.3.40) to (7.3.39), we need to establish the
anticommutation relations

(7.3.42) MjMk +MkMj = 2δjk, 1 ≤ j, k ≤ n+ 2.

To get this for 1 ≤ j, k ≤ n, we use the computations
(7.3.43)

(en+1en+2)
2 = −e2n+1e

2
n+2 = −1,

(ej ⊗ en+1en+2)(ek ⊗ en+1en+2) = ejek ⊗ (en+1en+2)
2 = −ejek ⊗ 1,

which yield

(7.3.44)
1 ≤ j, k ≤ n⇒MjMk +MkMj = −(ejek ⊗ 1 + ekej ⊗ 1)

= 2δjk,
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as desired. Next we have

(7.3.45)

1 ≤ j ≤ n =⇒
MjMn+1 +Mn+1Mj

= (ej ⊗ en+1en+2)(1⊗ en+1) + (1⊗ en+1)(ej ⊗ en+1en+2)

= ej ⊗ en+1en+2en+1 + ej ⊗ en+1en+1en+2

= 0,

since en+1en+2 = −en+2en+1. Similarly one gets MjMn+2 +Mn+2Mj = 0
for 1 ≤ j ≤ n. Next,

(7.3.46) Mn+1Mn+1 = (1⊗ en+1)(1⊗ en+1) = 1⊗ e2n+1 = 1,

and similarly Mn+2Mn+2 = 1. Finally,

(7.3.47)

Mn+1Mn+2 +Mn+2Mn+1

= (1⊗ en+1)(1⊗ en+2) + (1⊗ en+2)(1⊗ en+1)

= 1⊗ (en+1en+2 + en+2en+1)

= 0.

This establishes (7.3.42). Hence, by Proposition 7.3.1, M extends to the
algebra homomorphism (7.3.39) (with M1 = I). It is routine to verify that
the elements on the right side of (7.3.41) generate C`(n, 0) ⊗ C`(0, 2), so
M in (7.3.39) is onto, hence an isomorphism. This completes the proof of
Proposition 7.3.5, hence Propositions 7.3.3–7.3.4.

Remark. The following companions to (7.3.38),

(7.3.48)
C`(0, n)⊗ C`(2, 0) ≈ C`(n+ 2, 0),

C`(p, q)⊗ C`(1, 1) ≈ C`(p+ 1, q + 1),

have essentially the same proof. From (7.3.38) and (7.3.48) it follows that

(7.3.49) C`(n+ 8, 0) ≈ C`(n, 0)⊗ C`(0, 2)⊗ C`(2, 0)⊗ C`(0, 2)⊗ C`(2, 0).

Meanwhile, by (7.3.33)–(7.3.34),

(7.3.50) C`(0, 2)⊗ C`(2, 0) ≈ M(2,R)⊗H.

This, together with the isomorphism

(7.3.51) H⊗H ≈ M(4,R),

leads to

(7.3.52) C`(n+ 8, 0) ≈ C`(n, 0)⊗M(16,R).

For use in §7.5, we note that C`(V,Q) has a Z/(2) grading,

(7.3.53) C`(V,Q) = C`0(V,Q)⊕ C`1(V,Q),
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where elements of C`0(V,Q) have the form (7.3.12) with k restricted to be
even and elements of C`1(V,Q) have such a form with k restricted to be odd.
In view of (7.3.1), we have

(7.3.54)
C`0 · C`0 ⊂ C`0, C`0 · C`1 ⊂ C`1,
C`1 · C`0 ⊂ C`1, C`1 · C`1 ⊂ C`0.

If V = Rn with its standard positive definite inner product, we write (41.53)
as

(7.3.55) C`(n, 0) = C`0(n, 0)⊕ C`1(n, 0).
The complexification of C`j(V,Q) is denoted C`j(V,Q), and that of C`j(n, 0)
is denoted C`j(n).
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7.4. The groups Spin(n)

We will construct Spin(n) as a subset of C`(n, 0). A more general construc-
tion produces groups Spin(p, q) ⊂ C`(p, q), but we will not deal with this
here; cf. [38], [26] for material on this. Let us take V = Rn, with the stan-
dard basis {e1, . . . , en} and inner product defined by Q(ej , ek) = 〈ej , ek〉 =
δjk. We start with the observation that if v ∈ V, 〈v, v〉 = 1, then, for x ∈ V ,

(7.4.1)

τ(v)x = vxv

= −xvv − 2〈v, x〉v
= x− 2〈v, x〉v.

Hence τ(v) : V → V is reflection across the hyperplane (v)⊥. With this in
mind, we set

(7.4.2) Pin(n) = {v1 · · · vk ∈ C`(n, 0) : k ∈ N, vj ∈ Rn, 〈vj , vj〉 = 1},
and define

(7.4.3) τ : Pin(n) −→ O(n)

by

(7.4.4)
τ(v1 · · · vk)x = v1 · · · vkxvk · · · v1

= τ(v1) · · · τ(vk)x,

so τ(v1 · · · vk) is a product of k reflections of the form (7.4.1).

We need to show that (7.4.4) is well defined, independently of the rep-
resentation of an element of Pin(n) as a particular product. The following
takes care of this.

Lemma 7.4.1. If vj ∈ Rn are unit vectors, so u = v1 · · · vk ∈ Pin(n), then

v1 · · · vk = 1 =⇒ τ(v1 · · · vk) = I.

Proof. First we note that if v1 · · · vk = 1, then k is even. In fact, if k is
odd, we have from (7.3.54) that v1 · · · vk ∈ C`1(n, 0). Now that we know k
must be even, we have (v1 · · · vk)(vk · · · v1) = 1, so in such a case

τ(u)x = uxu−1,

which is well defined in C`(n, 0) for any invertible u ∈ C`(n, 0), independently
of the representation of u. □

Note that det τ(v1 · · · vk) = (−1)k. Hence, if we set

(7.4.5) Spin(n) = {v1 · · · vk : k ∈ 2N, vj ∈ Rn, 〈vj , vj〉 = 1},
we have

(7.4.6) τ : Spin(n) −→ SO(n).
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Note that Pin(n) and Spin(n) are groups, since (v1 · · · vk)(vk · · · v1) = ±1.
Also ±v1v1 = ∓1, so {±1} ⊂ Spin(n). The following result is fundamental.

Proposition 7.4.2. The maps (7.4.3) and (7.4.6) are surjective, and

(7.4.7) Ker τ = {±1}.

First we discuss the surjectivity. For v ∈ Rn, τ(v) in (7.4.1) is a reflec-
tion, and each reflection on Rn has this form. Hence the surjectivity follows
from:

Proposition 7.4.3. Each A ∈ O(n) is a product of reflections.

Proof. We make use of the basic linear algebra result that given such A,
there exist Q ∈ O(n) such that Q−1AQ has the block diagonal form

(7.4.8) Q−1AQ =



Rθ1
. . .

Rθk
−1

. . .

−1
1

. . .

1


.

Since QτQ−1 is a reflection whenever τ is a reflection, it suffices to show
that the right side of (7.4.8) is a product of reflections. It suffices to consider
the separate blocks. In particular, we show that each rotation

(7.4.9) Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is a product of two reflections in R2, of the form

(7.4.10) ρ(v)x = x− 2〈v, x〉v, x, v ∈ R2, |v| = 1.

In fact, it is readily verified that

(7.4.11) v ∈ R2, |v| = 1 =⇒ ρ(Rθ/2v)ρ(v) = Rθ.

As far as the diagonal entries ±1 represented as reflections, this is obvious,
so the surjectivity assertion of Proposition 7.4.2 is proven. □

Our next task is to establish (7.4.7). To tackle this, suppose vj ∈ Rn are
unit vectors such that

(7.4.12) τ(u) = I, u = v1 · · · vk.
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Since each τ(vj) has determinant −1, k is even in (7.4.12). Therefore we
have (vk · · · v1)(v1 · · · vk) = 1. Referring to (7.4.4), we have

(7.4.13)

τ(u)x = x, ∀x ∈ Rn

⇔ ux = xu, ∀x ∈ Rn,

⇔ xux = −|x|2u, ∀x ∈ Rn

⇔ u = −ejuej ,

for the standard orthonormal basis {ej} of Rn. Now, using Proposition 7.3.2,
set

(7.4.14) u =
∑

iν=0 or 1

ai1···ine
i1
1 · · · einn .

We have, with i1 + · · ·+ in = 2`,

(7.4.15)

− ej(e
i1
1 · · · eijj · · · einn )ej

= (−1)2ℓ−ij+1ei11 · · · eij+2
j · · · einn

= (−1)2ℓ−ij+2ei11 · · · eijj · · · einn .

Hence, for u as in (7.4.14), if (7.4.13) holds, then

(7.4.16) u =
∑

iν=0 or 1

(−1)ijai1···ine
i1
1 · · · einn , ∀ j.

Given Proposition 7.3.2, we deduce that, for u of the form (7.4.14),

(7.4.17) τ(u) = I =⇒ ai1···in = 0, except for a0···0,

which gives (7.4.7), and completes the proof of Proposition 7.4.2.

The next result is an important complement to Proposition 7.4.2, to the
effect that (7.4.6) presents Spin(n) as a connected double cover of SO(n).

Proposition 7.4.4. For each n ≥ 2, Spin(n) is connected.

Proof. Since we know SO(n) is connected, it suffices to show that there is
a continuous path in Spin(n) from 1 to −1. Set

(7.4.18) γ(t) = e1 ·
(
(cos t)e1 + (sin t)e2

)
, 0 ≤ t ≤ π.

We have γ : [0, π] → Spin(n), and

(7.4.19) γ(0) = −1, γ(π) = 1,

so Proposition 7.4.4 is proven. □

We examine the Lie algebra spin(n) of Spin(n), i.e., the tangent space
to Spin(n) at 1. The Lie algebra so(n) of SO(n) is spanned by elements

(7.4.20) Jjk = −Ejk + Ekj , j < k,
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where Ejk ∈ M(n,R) is defined by

(7.4.21) Ejkeℓ = δkℓej .

The element Jjk generates the group Rjk(t) = etJjk of rotations in the ej−ek
plane, given by

(7.4.22)

Rjk(t)ej = (cos t)ej + (sin t)ek

Rjk(t)ek = −(sin t)ej + (cos t)ek

Rjk(t)eℓ = eℓ, ` /∈ {j, k}.

Comparing (7.4.1) with (7.4.10)–(7.4.11), we see that

(7.4.23) Rjk(t) = τ
(
Rjk(t/2)ej · ej

)
= τ(−Rjk(t/2)ej · ej).

The curves γjk(t) = −Rjk(t/2)ej ·ej are curves in Spin(n) through the group
identity 1. Since R′

jk(0) = Jjk, we have

(7.4.24) γ′jk(0) =
1

2
ejek ∈ T1 Spin(n) = spin(n).

From (42.23),

(7.4.25)
R′
jk(0) = −1

2
Dτ(1)(R′

jk(0)ej · ej)

=
1

2
Dτ(1)(ejek),

hence

(7.4.26) dτ(ejek) = 2Jjk.

Hence

(7.4.27) spin(n) = Span {ejek : j < k} ⊂ C`(n, 0).

Note that, for j < k,

(7.4.28)

(ejek)
2 = −1 =⇒ etejek = cos t+ (sin t)ejek

= −(cos t)e2j + (sin t)ejek

= −
(
(cos t)ej + (sin t)ek)

)
· ej

= −Rjk(t)ej · ej ,

so we recover the result implicit in (7.4.23)–(7.4.26) that the one-parameter
group in Spin(n) generated by ejek is

(7.4.29) Exp(tejek) = −Rjk(t)ej · ej .

Either by a calculation or by applying analogues of reasoning done in
§3.2, we see that the Lie bracket on spin(n) is given by

(7.4.30) [ejek, eℓem] = ejekeℓem − eℓemejek,
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and

(7.4.31) dτ([ejek, eℓem]) = [2Jjk, 2Jℓm].

The reader is invited to verify that the right side of (7.4.30) belongs to the
space described in (7.4.27).

The space

(7.4.32) h = Span {Ej : 1 ≤ j ≤ k} ⊂ so(n), Ej = J2j−1,2j ,

is the Lie algebra of a maximal torus of SO(n), when n = 2k or n = 2k+1.
The preimage under dτ is

(7.4.33) h̃ = Span {e2j−1e2j : 1 ≤ j ≤ k} ⊂ spin(n).

By (7.4.28)–(7.4.29), we can say that there exists ε > 0 such that, with

(7.4.34)

Ψ :
∏

1≤j<k≤n
R −→ Spin(n),

Ψ((tjk)) =
∏
j<k

Exp(tjkejek) =
∏
j<k

−Rjk(tjk)ej · ej ,

there is a neighborhood O of 1 ∈ Spin(n) such that

(7.4.35) Ψ :
∏

1≤j<k≤n
(−ε, ε) −→ O, diffeomorphically.

Alternative description of Spin(n)

Since C`(n, 0) is a finite-dimensional associative algebra over R with unit,
the set C`inv(n, 0) of invertible elements is a nonempty open subset, forming
a multiplicative group. We have a representation ρ of C`inv(n, 0) on C`(n, 0),
given by

(7.4.36) ρ(u)w = uwu−1, u ∈ C`inv(n, 0), w ∈ C`(n, 0).
The set

(7.4.37) P(n, 0) = {u ∈ C`inv(n, 0) : ρ(u) : Rn → Rn}
(regarding Rn ⊂ C`(n, 0)) is a subgroup of C`inv(n, 0), containing {v ∈ Rn :
|v| = 1}, by (7.4.21). We can describe

(7.4.38)
Spin(n) =

subgroup of P(n, 0) generated by {v1v2 : vj ∈ Rn, |vj | = 1},
and

(7.4.39) Pin(n) = Spin(n) ∪ e1 · Spin(n).
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7.5. Spinor representations

Let V be an n-dimensional real vector space, with a positive definite inner
product 〈 , 〉. We want to associate a representation of C`(V, 〈 , 〉) and
associated objects on a space of spinors, which we will define below. To
construct this space we need some extra structure on V .

First consider the case where n is even, i.e., n = 2k. We assume there
is given a complex structure on V , i.e., a linear map J : V → V satisfying
J2 = −I, and that J is an isometry with respect to 〈 , 〉. We denote by
V the k-dimensional complex vector space (V, J), and we endow V with a
hermitian inner product

(7.5.1) (u, v) = 〈u, v〉+ i〈u, Jv〉.

We set

(7.5.2) S = S(V, 〈 , 〉, J) = Λ∗
CV =

k⊕
j=0

ΛjCV.

The inner product (7.5.1) defines a conjugate linear isomorphism V → V ′,
which gives a conjugate linear isomorphism Λ∗

CV → Λ∗
CV ′ ≈ (Λ∗

CV)′, *hence
a hermitian inner product on Λ∗

CV. Concretely, if {v1, . . . , vn} is an or-
thonormal basis of V, then

(7.5.3) {vj1 ∧ · · · ∧ vjℓ : j1 < · · · < jℓ} is an orthonormal basis of ΛℓCV.

We may as well take V = Rn, {ej : 1 ≤ j ≤ n} the standard basis, with
〈ej , ek〉 = δjk, and define J by Je2j−1 = e2j , Je2j = −e2j−1, 1 ≤ j ≤ k.

(Recall n = 2k). Then (V, J) = Ck, with orthonormal basis {vj = e2j : 1 ≤
j ≤ k}, and

(7.5.4) S = Λ∗Ck.

In order to define a representation of C`(n, 0) on S, we produce an R-
linear map

(7.5.5) M : Rn −→ EndC(Λ
∗
CV),

in the form

(7.5.6) M(v) = ∧v − jv,

where

(7.5.7) ∧v : ΛℓCV −→ Λℓ+1
C V, ∧vϕ = v ∧ ϕ,

with v interpreted as an element of V, and

(7.5.8) jv : Λ
ℓ+1
C −→ ΛℓCV, jvψ = (∧v)∗ψ,



296 7. The orthogonal groups SO(n) and their representations

that is,

(7.5.9) (v ∧ ϕ,ψ) = (ϕ, jvψ), ϕ ∈ ΛℓCV, ψ ∈ Λℓ+1
C V.

We claim that, for u, v ∈ Rn,
(7.5.10) M(u)M(v) +M(v)M(u) = −2〈u, v〉I.
It suffices to show that

(7.5.11) M(v)2 = −〈v, v〉I,
and insert u±v into this identity. To prove (7.5.11), we can assume 〈v, v〉 =
1. Pick an orthonormal basis {v1, . . . , vk} for Ck with v1 = v. Then use of
(43.9) establishes that, for j1 < · · · < jℓ+1,

(7.5.12)
jv(vj1 ∧ · · · ∧ vjℓ+1

) = vj2∧ · · · ∧ vjℓ+1
if j1 = 1,

0 if j1 > 1.

Since ∧2
v = 0 and (hence) j2v = 0, we get

(7.5.13) M(v)2 = −(∧vjv + jv∧v) = −〈v, v〉I,
the last identity via (7.5.12).

Now Proposition 7.3.1 impliesM extends to a homomorphism of algebras

(7.5.14) M : C`(2k, 0) −→ EndC(Λ
∗Ck),

which in turn extends to a C-linear algebra homomorphism

(7.5.15) M : C`(2k) −→ EndC(Λ
∗Ck).

The following is fundamental.

Proposition 7.5.1. In (7.5.15), M is an isomorphism of algebras.

Proof. Note that dimC Λ∗Ck = 2k; hence

(7.5.16) dimC EndC(Λ
∗Ck) = 22k = dimCC`(2k).

Thus it suffices to prove M is injective. Clearly M(v) 6= 0 for nonzero
v ∈ Rn, and KerM must be a two-sided ideal in C`(2k). Recall from
(7.3.36) that C`(2k) ≈ M(2k,C). It is a fact that, for each m ∈ N,
(7.5.17) M(m,C) has no proper two-sided ideals;

i.e., M(m,C) is simple. See §B.6 for a proof. This finishes the proof of
Proposition 7.5.1. □

The algebra homomorphismM in (7.5.15) restricts to Pin(2k) ⊂ C`(2k, 0),
yielding a group homomorphism

(7.5.18) D1/2 : Pin(2k) −→ Gl(Λ∗Ck),

i.e., a representation of Pin(2k) on Λ∗Ck. Since the linear span of Pin(2k)
(over R) is C`(2k, 0), we have from Proposition 7.5.1 that:
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Corollary 7.5.2. The representation D1/2 of Pin(2k) on S = Λ∗Ck is ir-
reducible.

Remark. The operator D1/2(g) is unitary for each g ∈ Pin(2k). In fact,

if v ∈ R2k and 〈v, v〉 = 1, then M(v) is skew-adjoint and M(v)2 = −I, so
SpecM(v) ⊂ {±i}, and hence M(v) is unitary.

The restriction of D1/2 to Spin(2k) is not irreducible. In fact, the spaces

(7.5.19)
⊕
j even

ΛjCC
k = S+(2k),

⊕
j odd

ΛjCC
k = S−(2k)

are invariant under the action of D1/2 restricted to Spin(2k), and more gen-

erally under the action of M restricted to C`0(2k, 0), defined as in (7.3.53)–
(7.3.55). We have

(7.5.20) M : C`0(2k) −→ EndC(S+(2k))⊕ EndC(S−(2k)).

Note that

(7.5.21) v ∈ R2k, v 6= 0 =⇒M(v) : S±(2k) → S∓(2k),

while left multiplication by v takes C`0(2k) to C`1(2k), and these maps are
all isomorphisms. We have

(7.5.22) dimC EndC S+(2k)⊕ EndC S−(2k) = 22k−1 = dimCC`0(2k).

We already know from Proposition 7.5.1 that M in (7.5.20) is injective, so
it is an isomorphism. We deduce the following.

Corollary 7.5.3. The representation D1/2 restricted to Spin(2k) splits into
two factors:

(7.5.23) D±
1/2 : Spin(2k) −→ Gl(S±(2k)),

and both are irreducible.

We next discuss the spinor representation of Spin(2k−1). If {e1, . . . , e2k}
is the standard basis of R2k, and R2k−1 = Span {e1, . . . , e2k−1}, the map

(7.5.24) R2k−1 −→ C`0(2k, 0), v 7→ ve2k, v ∈ R2k−1

satisfies the analogue of (7.3.7) and hence, via Proposition 7.3.1, gives rise
to a homomorphism of algebras

(7.5.25) κ : C`(2k − 1, 0) −→ C`0(2k, 0).
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Explicitly,

(7.5.26)

κ
( ∑
j1<···<jℓ

aj1···jℓej1 · · · ejℓ
)

=
∑

j1<···<jℓ

aj1···jℓej1e2k · · · ejℓe2k.

Now, since eje2k = −e2kej for j < 2k and e22k = −1,

(7.5.27)

ej1e2kej2e2k · · · ejℓe2k
= ej1ej2ej3e2k · · · ejℓe2k
= · · ·
= ej1ej2 · · · ejℓ if ` is even

ej1ej2 · · · ejℓe2k if ` is odd,

so

(7.5.28)

κ
( 2k−1∑
ℓ=0

∑
j1<···<jℓ

aj1···jℓej1 · · · ejℓ
)

=
∑
ℓ even

∑
j1<···<jℓ

aj1···jℓej1 · · · ejℓ

+
∑
ℓ odd

∑
j1<···<jℓ

aj1···jℓej1 · · · ejℓe2k.

The map κ is thus clearly injective. Since the dimensions match, it is an
isomorphism.

The inclusion Pin(2k − 1) ⊂ C`(2k − 1, 0) gives an inclusion

(7.5.29) Pin(2k − 1) ↪→ Spin(2k),

and restricting D+
1/2 gives a representation

(7.5.30) D+
1/2 : Pin(2k − 1) −→ Gl(S+(2k)).

There is also a representation D−
1/2 of Pin(2k−1) on S−(2k)), but these two

are intertwined by the isomorphism M(e2k) : S+(2k) → S−(2k).

Proposition 7.5.4. The representation (7.5.30) is irreducible.

Proof. In (7.5.25), κ is an isomorphism, in (7.5.20), M is an isomorphism,
and Pin(2k − 1) spans C`(2k − 1, 0). □

Remark. Restriction of (7.5.30) to Spin(2k − 1) gives a representation

(7.5.31) D+
1/2 : Spin(2k − 1) −→ Gl(S+(2k)).

In §7.6 we show that this is also irreducible.
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7.6. Weight spaces for the spinor representations

In §7.5 we constructed representations of Spin(n) on S±(n) = Λeven/oddCk in
case n = 2k and on S+(n) = ΛevenCk in case n = 2k− 1. Here we will show
that the monomials in these subspaces of Λ∗Ck are weight vectors, compute
the weights, and identify the highest weights. Our ordered basis of h̃, the
Lie algebra of a maximal torus in Spin(n) described in (7.4.33), will be

(7.6.1)
{1
2
e1e2,

1

2
e3e4, . . .

}
=
{1
2
e2j−1e2j : 1 ≤ j ≤ k

}
,

given n = 2k or 2k + 1. Recall that this maps via dτ to the ordered basis

(7.6.2) {J2j−1,2j : 1 ≤ j ≤ k}

for the Lie algebra of a maximal torus of SO(n), described in (7.4.20);
cf. (7.4.26).

We first treat the case n = 2k. To get started, note that

(7.6.3)

γij(t) = et(eiej) = (cos t)1 + (sin t)eiej

=⇒ D±
1/2(γij(t))ϕ = (cos t)ϕ+ (sin t)M(ei)M(ej)ϕ

=⇒ dD±
1/2(eiej)ϕ =M(ei)M(ej)ϕ =MiMjϕ,

for 1 ≤ i, j ≤ 2k, ϕ ∈ Λ∗Ck, and, as in (7.5.6), M(v) = ∧v − jv, v ∈ R2k,
and we introduce simplified notation

(7.6.4) Mi =M(ei) = ∧ei − jei = ∧i − ji.

Hence

(7.6.5) dD±
1/2(e2j−1e2j)ϕ =M2j−1M2jϕ = (∧2j−1 − j2j−1)(∧2j − j2j)ϕ.

Since the wedge product is in Λ∗Ck, and in Ck we have e2j = ie2j−1, it
follows that ∧2j∧2j−1 = 0, and similarly j2jj2j−1 = 0, while ∧2j−1 = −i∧2j

and j2j−1 = ij2j . Hence

(7.6.6)
dD±

1/2(e2j−1e2j)ϕ = −i(j2j ∧2j − ∧2j j2j)ϕ

= i(1− 2j2j∧2j)ϕ,

the last identity using ∧2jj2j + j2j∧2j = 1.

Let us take ϕ to be a monomial in ΛℓCk, with respect to the basis of Ck
given by

(7.6.7) {vj : 1 ≤ j ≤ k}, vj = e2j = ie2j−1.

We have

(7.6.8) dD±
1/2(e2j−1e2j) = iQj
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where, for 1 ≤ i1 < · · · < iℓ ≤ k,

(7.6.9)
Qj vi1 ∧ · · · ∧ viℓ = − vi1 ∧ · · · ∧ viℓ if j /∈ {i1, . . . , iℓ}

+ vi1 ∧ · · · ∧ viℓ if j ∈ {i1, . . . , iℓ}.
In particular,

(7.6.10)
1

2
Qj v1 ∧ · · · ∧ vk =

1

2
v1 ∧ · · · ∧ vk, ∀ j ∈ {1, . . . , k},

and

(7.6.11)

1

2
Qj v1 ∧ · · · ∧ vk−1 = +

1

2
v1 ∧ · · · ∧ vk−1 if j ∈ {1, . . . , k − 1}

− 1

2
v1 ∧ · · · ∧ vk−1 if j = k.

These calculations prove the following:

Proposition 7.6.1. The vector v1 ∧ · · · ∧ vk is a highest weight vector with
weight

(7.6.12)
(1
2
,
1

2
, . . . ,

1

2

)
.

The vector v1 ∧ · · · ∧ vk−1 is a weight vector with weight

(7.6.13)
(1
2
, . . . ,

1

2
,−1

2

)
.

The weight (7.6.12) is the highest weight for D+
1/2 on S+(2k) if k is even

and for D−
1/2 on S−(2k) if k is odd, and vice-versa for the weight (7.6.13).

We turn to the case n = 2k − 1. Then we replace the basis (7.6.1) by

(7.6.14)
{1
2
e2j−1e2j : 1 ≤ j ≤ k − 1

}
.

Recalling the description (7.5.24)–(7.5.29) of the representation D+
1/2 of

Spin(2k − 1) on S+(2k) = ΛevenCk, we bring in the following counterpoint
to (7.6.3), for 1 ≤ i, j ≤ 2k − 1:

(7.6.15)

γij(t) = et(eie2keje2k)

= et(eiej)

= (cos t)1 + (sin t)eiej ,

since, for i, j < 2k, we have eie2keje2k = −e1eje22k = eiej . Hence dD
+
1/2(eiej)

is given exactly by the formula (7.6.3), and the calculations (7.6.4)–(7.6.10)
need essentially no further changes. We have

(7.6.16) dD+
1/2(e2j−1e2j) = iQj , 1 ≤ j ≤ k − 1,

where, for 1 ≤ i1 < · · · < iℓ ≤ k, Qj vi1 ∧ · · · ∧ viℓ is given by (44.9). We
thus have the following counterpart to Proposition 7.6.1.
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Proposition 7.6.2. The representation D+
1/2 of Spin(2k−1) on S+(2k) has

highest weight vector v1 ∧ · · · ∧ vκ, with κ = k if k is even and k − 1 if k is
odd, and its highest weight is given by the (k − 1)-tuple

(7.6.17)
(1
2
,
1

2
, . . . ,

1

2

)
.

We now deduce the following refinement of Proposition 7.5.4.

Corollary 7.6.3. The representation D+
1/2 of Spin(2k − 1) on S+(2k) is

irreducible.

Proof. If not, there would be an irreducible component with highest weight
different from (7.6.17). However, none of the other weights arising in (7.6.8)–
(7.6.9) for the representation D+

1/2 of Spin(2k − 1) are dominant integral

weights, so they cannot be highest weights of a representation of Spin(2k −
1). □

In view of the tensor product result of Proposition 6.2.2, we can com-
bine Propositions 7.6.1–7.6.2 with Proposition 7.2.13, on representations of
SO(n), to obtain highest weights for representations of Spin(n). A compar-
ison with Proposition 7.2.9 gives the following definitive result.

Proposition 7.6.4. Assume n ≥ 3. The highest weights of irreducible
representations of Spin(n) are precisely the dominant integral weights of
so(n).

The following is an incidental corollary.

Corollary 7.6.5. If n ≥ 3, Spin(n) is simply connected.

Proof. Since the center of so(n) is trivial for n ≥ 3, a general result es-

tablished in §E.3 implies the universal covering group G̃ of SO(n) is com-

pact. We have a covering homomorphism µ : G̃ → Spin(n), and claim
µ is an isomorphism. Each irreducible representation π of Spin(n) yields

an irreducible representation π ◦ µ of G̃, with the same derived action on
g = spin(n) = so(n), and the same highest weight. If µ were not an iso-

morphism, there would have to be other irreducible representations of G̃, by
the Peter-Weyl theorem, but there are no further dominant integral weights
available. Thus µ must be an isomorphism. □

One can also give a purely topological proof of this simple connectivity,
though it requires background in homotopy theory, which can be found in
[36]. The argument goes as follows. The quotient result

(7.6.18) SO(n+ 1)/ SO(n) = Sn
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yields a homotopy exact sequence

(7.6.19) πk+1(S
n) −→ πk(SO(n)) −→ πk(SO(n+ 1)) −→ πk(S

n),

where πk(M) is the group of homotopy classes of continuous maps Sk →M .
See [36], p. 91 for this.

Now 0 < k < n⇒ πk(S
n) = 0, and k + 1 < n⇒ πk+1(S

n) = 0, so

(7.6.20) n ≥ 3 =⇒ π1(SO(n)) ≈ π1(SO(n+ 1)).

We see directly from the 2-to-1 homomorphism SU(2) → SO(3) that π1(SO(3)) ≈
Z/(2), so
(7.6.21) n ≥ 3 =⇒ π1(SO(n)) ≈ Z/(2).
Thus

(7.6.22) n ≥ 3 =⇒ π1(Spin(n)) = 0.

Alternatively, using

(7.6.23) Spin(n+ 1)/ Spin(n) = Sn

in place of (7.6.18) yields analogues of (7.6.19)–(7.6.20), including

(7.6.24) n ≥ 3 =⇒ π1(Spin(n)) ≈ π1(Spin(n+ 1)),

and then (7.6.22) follows from

(7.6.25) π1(Spin(3)) = π1(SU(2)) = π1(S
3) = 0.



Chapter 8

SO(n), harmonic
functions, and analysis
on spheres

This chapter examines fruitful interactions of the study of the action of
SO(n) on functions on Rn and on Sn−1 with the study of harmonic functions
on domains in Rn and of a class of special functions on Sn−1 known as
spherical harmonics.

Section 8.1 provides basic material on harmonic functions on a domain
Ω ⊂ Rn, i.e., solutions to ∆u = 0 on Ω, where ∆ = ∂21 + · · · + ∂2n is the
Laplace operator. The relevance of SO(n) arises because ∆ commutes with
the action of SO(n) on functions on Rn given by u(x) 7→ u(gx). We use this
to give a proof of the mean value property,

(8.0.1) u(p) = Avg∂Br(p) u,

for a harmonic function u on Ω, given Br(p) ⊂ Ω. The proof given in
Proposition 8.1.1 differs from standard proofs in avoiding the use of the
divergence theorem. From (8.0.1) we proceed to the maximum principle for
harmonic functions, hence uniqueness of solutions to the Dirichlet problem

(8.0.2) ∆u = 0 on Ω, u = f on ∂Ω, u ∈ C2(Ω) ∩ C(Ω),

when Ω ⊂ Rn is a bounded domain and f ∈ C(∂Ω). We next examine
existence of solutions to (8.0.2) when Ω = Bn is the unit ball. We start with

303
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n = 2, producing the solution

(8.0.3) u(reiθ) =
∞∑

k=−∞
r|k|f̂(k)eikθ,

where f̂(k) are the Fourier coefficients of f ,

(8.0.4) f̂(k) =
1

2π

∫
T

f(θ)e−ikθ dθ.

Plugging (8.0.4) into (8.0.3) and summing a geometric series yields the for-
mula

(8.0.5) u(reiθ) =
1− r2

2π

∫
T

f(ϕ)

1− 2r cos(θ − ϕ) + r2
dϕ,

and a change of variable yields

(8.0.6) u(x) = PI f(x) =
1− |x|2

2π

∫
S1

f(y)

|x− y|2
ds(y).

We take this as a cue to try to solve (8.0.2) for Ω = Bn as

(8.0.7) PI f(x) =
1− |x|2

An−1

∫
Sn−1

f(y)

|x− y|n
dS(y),

and verify that this works. We end §8.1 with some consequences of this
Poisson integral formula, including the C∞ nature of all harmonic functions,
and a removable singularity theorem.

The formula (8.0.3) works because we know the eigenfunctions eikθ of
the Laplace operator ∂2θ on S1, yielding the harmonic functions rkeikθ = zk

and rke−ikθ = zk, k ∈ N. This leads to the formula (8.0.6). The theory
of spherical harmonics on Sn−1 for n ≥ 3 continues this connection, but
the formulas tend to flow in the opposite direction, since we now have the
Poisson integral formula (8.0.7) and need to discover what the spherical
harmonics are. We take this up in §8.2, seeking harmonic functions on Rn
of the form

(8.0.8) u(rω) = ϕ(r)g(ω), r ∈ R+, ω ∈ Sn−1.

This is done via the formula for the Laplace operator in spherical polar
coordinates,

(8.0.9) ∆u(rω) = ∂2ru+
n− 1

r
∂ru+

1

r2
∆Su,
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where ∆S is the Laplace-Beltrami operator on Sn−1. We obtain

(8.0.10)
ϕ(r) = rk, ∆Sg = −λ2kg,

k ∈ Z+, λ2k = k2 + (n− 2)k.

This gives rise to the spaces

(8.0.11) Vk = {g ∈ C∞(Sn−1) : ∆Sg = −λ2kg},

the eigenspaces of ∆S . The fact that u in (8.0.8) is smooth on Bn is seen to
imply that such u is a harmonic polynomial on Rn, homogeneous of degree
k, i.e., an element of Hk. We have an isomorphism,

(8.0.12) τ : Hk
≈−→ Vk, τu = u

∣∣
Sn−1 .

In light of this, there is an incisive result, Proposition 8.2.3, which says that,
if Pk = Pk(Rn) is the space of polynomials on Rn, homogeneous of degree
k, then there is a direct sum decomposition

(8.0.13) Pk = Hk ⊕ |x|2Hk−2 ⊕ · · · ⊕ |x|2jHk−2j ,

with k ∈ {2j, 2j + 1}. Consequences of this include the computation

(8.0.14) dimVk =

(
k + n− 2

k

)
+

(
k + n− 3

k − 1

)
,

and the algebraic result that

(8.0.15) gj ∈ Vj , gk ∈ Vk =⇒ gjgk ∈
j+k⊕

ℓ=|j−k|

Vℓ.

One consequence of (8.0.15) is that the Stone-Weierstrass theorem applies
to show that the space of finite linear combinations of eigenfunctions of ∆S

is dense in C(Sn−1), a result that also follows from the general theory of
the Laplace operator on a compact Riemannian manifold, via the theory of
elliptic differential operators. As a consequence, we have that, if
(8.0.16)

Ek : L
2(Sn−1) −→ Vk is the orthogonal projection, SN =

N∑
k=0

Ek,

then

(8.0.17) f ∈ L2(Sn−1) =⇒ SNf → f in L2-norm,

as N → ∞. In Proposition 8.2.12, we show that if

(8.0.18) (−∆S + 1)mf ∈ L2(Sn−1), 2m >
n− 1

2
,

then

(8.0.19) SNf −→ f, uniformly, on Sn−1.
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In §8.3 we continue our study of the relation between the Dirichlet prob-
lem on Bn and spherical functions. We show in Proposition 8.3.2 that, for
all f ∈ C(Sn−1),

(8.0.20) PI f(rω) =

∞∑
k=0

rkEkf(ω).

Combining this with the Poisson integral formula (8.0.7) yields the identity

(8.0.21)

∞∑
k=0

rkEkf(ω) =
1− r2

An−1

∫
Sn−1

f(y)

(1− 2rω · y + r2)n/2
dS(y),

which in turn yields

(8.0.22) Ekf(ω) =

∫
Sn−1

Ek(ω, y)f(y) dS(y),

with

(8.0.23) Ek(ω, y) =
2νk

(n− 2)An−1
C

(n−2)/2
k (ω · y), νk = k +

n− 2

2
.

Here the functions Cαk (t) are Gegenbauer polynomials, defined by (8.3.15)–
(8.3.18). They are polynomials of degree k in t. A special case, arising when
n = 3, is the class of Legendre polynomials,

(8.0.24) Pk(t) = C
1/2
k (t).

We see that

(8.0.25) dimVk =

∫
Sn−1

Ek(y, y) dS(y),

and that inserting (8.0.23) produces a formula for dim Vk in terms of C
(n−2)/2
k (1),

leading to another proof of (8.0.14).

For n ≥ 3, we define a zonal function on Sn−1 as a function that is
invariant under the action of SO(n − 1), acting on Rn by fixing the vector
e = (0, . . . , 0, 1). We denote by Z(Sn−1) the class of zonal functions on
Sn−1, and by Zk = Vk ∩Z(Sn−1) the class of zonal harmonics. An example
is

(8.0.26) Zk(ω) = C
(n−1)/2
k (ω · e).

A key result of §8.4 is that, for each k ∈ Z+,

(8.0.27) Zk = Span(Zk).

Equivalently, dimZk = 1. We normalize to define the spherical harmonic

(8.0.28) Y 0
k (ω) = ‖Zk‖−1

L2Zk(ω).
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In §8.4 we also look at

(8.0.29) Πf(ω) =

∫
SO(n−1)

f(R−1ω) dR,

see that Π : Vk → Vk, denote the restriction by Πk, and show that

(8.0.30) Πk : Vk −→ Zk is an orthogonal projection.

One consequence is that

(8.0.31) f ∈ Vk, f ⊥ Y 0
k =⇒ f(e) = 0,

from which in turn we obtain a second demonstration that

(8.0.32) |Y 0
k (e)|2 =

dimVk
An−1

,

complementing a demonstration via (8.0.25).

Section 8.5 concentrates on the action of SO(n) on functions on Sn−1,
given by

(8.0.33) π(R)f(ω) = f(R−1ω).

This action commutes with ∆S , so it maps each eigenspace Vk to itself, and
we have representations

(8.0.34) πk : SO(n) −→ L(Vk).

The first key result of §8.5, Proposition 8.5.1, says that, for each k ∈ Z+,

(8.0.35) πk is irreducible.

The key ingredient in the proof is (8.0.27).

For n = 3, the dimension count dim Vk = 2k + 1 implies that each
irreducible representation of SO(3) is equivalent to exactly one πk, i.e., each
irreducible representation of SO(3) is contained, exactly once, in L2(S2). For
n ≥ 4, this is no longer the case. We look at the irreducible representations of
SO(4) and describe precisely which ones are contained in L2(S3). In general,
we characterize those representations of SO(n) contained in L2(Sn−1) as
class one representations.

The remainder of §8.5 is devoted to applying the structure of the irre-
ducible representations of SO(3), as developed in Chapter 4, and partially
recalled here, to specifying the structure of the representations πk in this
case. The analysis leads to a specification of an orthonormal basis

(8.0.36) Y ℓ
k , −k ≤ ` ≤ k,

of Vk, obtained from Y 0
k by repeatedly applying a certain “ladder operator”

L+, for ` > 0, and taking complex conjugates (for ` < 0). To wit, we obtain
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for 1 ≤ ` ≤ k (if k ≥ 1)

(8.0.37) Y ℓ
k (ω) = αkℓ(ω1 + iω2)

ℓP
(ℓ)
k (ω3), Y −ℓ

k (ω) = Y ℓ
k (ω),

with coefficients αkℓ obtainable from (8.5.60).

In §8.7 we derive some formulas for the characters χk(g) = Trπk(g) of
the representations πk of SO(n) on Vk. We start with the identity

(8.0.38)

∞∑
k=0

rkπk(g)Ekf(x) = PI f(rg−1x),

together with the Poisson integral formula (8.0.7) and proceed to derive the
formula

(8.0.39)
∞∑
k=0

rkχk(g) =
1− r2

An−1

∫
Sn−1

dS(y)

(1− 2ry · gy + r2)n/2
.

Taking g = I leads to a third proof of the dimension formula (8.0.14).

This chapter ends with a couple of appendices. Appendix 8.A computes
that

(8.0.40) dimPk(Rn) =
(
n+ k − 1

k

)
,

which is used in the proof that (8.0.13) leads to (8.0.14). The derivation of
(8.0.40) involves some legerdemain with multi-variable power series.

Appendix 8.B establishes that if M is a homogeneous space, on which
a compact Lie group G acts transitively as a group of isometries, and if
V ⊂ C(M) is a finite-dimensional space invariant under such an action,
then, for any orthonormal basis {uk} of V ,

(8.0.41)
∑
k

|uk(x)|2 =
dimV

Vol(M)
, ∀x ∈M.

As a consequence,

(8.0.42) ‖f‖2L∞ ≤ dimV

Vol(M)
‖f‖2L2 , ∀ f ∈ V.

These results, specialized to V = Vk ⊂ L2(Sn−1), lead to both (8.0.18)–
(8.0.19) and (8.0.32). We have seen fit to cast some results on spherical
harmonics in a broader context, in Appendix 8.B. See Chapter 9 for further
extensions of results of this chapter, particularly to analysis of functions on
rank-one symmetric spaces.
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8.1. Harmonic functions

The Laplace operator ∆ is defined on functions on an open set Ω ⊂ Rn by

(8.1.1) ∆u(x) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

Given u ∈ C2(Ω), we say

(8.1.2) u is harmonic on Ω ⇔ ∆u = 0 on Ω.

As seen in §A.8, we have for ug(x) = u(gx) that

(8.1.3) g ∈ SO(n) =⇒ ∆ug = (∆u)g.

Section A.8 also shows that, in spherical polar coordinates

(8.1.4) x = rω, r ∈ (0,∞), ω ∈ Sn−1,

we have

(8.1.5) ∆u(rω) = ∂2ru+
n− 1

r
∂ru+

1

r2
∆Su,

where ∆S is the Laplace-Beltrami operator on Sn−1. In particular,

(8.1.6) u(x) = f(|x|) =⇒ ∆u(x) = f ′′(|x|) + n− 1

|x|
f ′(|x|).

This equation allows us to classify all the radial functions that are harmonic.
They must satisfy

(8.1.7) f ′′(r) +
n− 1

r
f ′(r) = 0,

or, with g(r) = f ′(r),

(8.1.8) rg′(r) + (n− 1)g(r) = 0.

This is an Euler equation, whose general solution is

(8.1.9) g(r) = Ar1−n.

Hence

(8.1.10)
f(r) =

A

2− n
r2−n +B, if n ≥ 3,

A log r +B, if n = 2.

Thus a radial harmonic function v has the form

(8.1.11)
v(x) = C|x|2−n +B, n ≥ 3,

C log |x|+B, n = 2.

The following important result is known as the mean value property of
harmonic functions. This is often proved using Green’s theorem, but we will
get it from a symmetry argument.
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Proposition 8.1.1. If Ω ⊂ Rn is open, u ∈ C2(Ω) is harmonic, and

Br(p) ⊂ Ω, then

(8.1.12) u(p) = Avg∂Br(p) u.

Proof. Translating, we can arrange that p = 0, so u ∈ C(Br(0)) is harmonic
on Br(0), and we claim that

(8.1.13) u(0) = Avg∂Br(0) u.

Let us set

(8.1.14) v(x) =

∫
SO(n)

u(gx) dg.

Then v is a radial function, and

(8.1.15) v ≡ Avg∂Br(0) u on ∂Br(0).

By (8.1.3), v is harmonic on Br(0). Hence v satisfies (8.1.11). On the
other hand, (8.1.14) implies v is bounded as |x| → 0, so we conclude that
v(x) = B, constant on Br(0). This constant must be v|∂Br(0) = Avg∂Br(0) u.

Meanwhile, u(0) = v(0), so we have (8.1.13). □

Here is a variant of the mean value property. We leave the deduction
from (8.1.12) as an exercise to the reader.

Corollary 8.1.2. In the setting of Proposition 8.1.1,

(8.1.16) u(p) = AvgBr(p) u.

The mean value property leads to the following strong maximum prin-
ciple.

Proposition 8.1.3. Assume Ω ⊂ Rn is open and connected. Let u : Ω → R
be harmonic, and assume there exists p ∈ Ω such that

(8.1.17) u(p) ≥ u(x), ∀x ∈ Ω.

Then u is constant.

Proof. Let O = {x ∈ Ω : u(x) = u(p)}. Clearly O is a closed subset of Ω,

and p ∈ O. Let q ∈ O, so there exists ε > 0 such that Bε(q) ⊂ Ω. Applying
corollary 8.1.2 to Bε(q), we get u(x) = u(q) for all x ∈ Bε(q), so Bε(q) ⊂ O,
hence O is open. Since Ω is connected, we have O = Ω. □

The following is a straightforward consequence of Proposition 8.1.3.

Corollary 8.1.4. Assume Ω ⊂ Rn is bounded and open. If u : Ω → C is
continuous on Ω and harmonic on Ω, then

(8.1.18) sup
Ω

|u(x)| = sup
∂Ω

|u(x)|.
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Corollary 8.1.4 implies uniqueness for solutions to the Dirichlet problem,
which is the following. Let Ω ⊂ Rn be a bounded open set, and take f ∈
C(∂Ω). The Dirichlet problem is to find u ∈ C(Ω) ∩ C2(Ω) such that

(8.1.19) ∆u = 0 on Ω, u
∣∣
∂Ω

= f.

This is treated in many PDE books, such as [39], Chapter 5. Here we
restrict attention to Ω = Bn = {x ∈ Rn : |x| < 1}, and establish existence
by producing an integral formula for the solution.

We start with the case n = 2, where Bn is the unit disk,

(8.1.20) D = {(x, y) ∈ R2 : x2 + y2 < 1},
and seek u satisfying

(8.1.21) ∆u = 0 on D, u = f on ∂D,

given f ∈ C(∂D). In a precursor to arguments that will arise in §8.2, we
bring in the Fourier coefficients,

(8.1.22) f̂(k) =
1

2π

∫
T

f(θ)e−ikθ dθ,

where we identify R2 and C, and T = R/2πZ with ∂D = S1, via θ 7→ eiθ.
We claim that the solution to ((8.1.21) is given by

(8.1.23) u(reiθ) =
∑
k

f̂(k)r|k|eikθ.

Note that reiθ = z ⇒ re−iθ = z, so (8.1.23) yields

(8.1.24) u(reiθ) =
∞∑
k=0

f̂(k)zk +
∞∑
k=1

f̂(−k)zk.

Since |f̂(k)| ≤ sup |f | for all k, we see that each power series converges
for |z| < 1, so u is the sum of a holomorphic function and a conjugate
holomorphic function, hence is harmonic on D. To conclude that u solves
(8.1.21), we establish the following.

Proposition 8.1.5. If f ∈ C(T) and u is given by (8.1.23), then

(8.1.25) u(reiθ) −→ f(θ), as r ↗ 1,

uniformly in θ.

Proof. Inserting the integral formula (8.1.22) for f̂(k), we have, for r < 1,

(8.1.26)

u(reiθ) =
1

2π

∑
k

∫
T

f(ϕ)eik(θ−φ) dϕ

=

∫ π

−π
f(θ − ϕ)pr(ϕ) dϕ,
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where

(8.1.27)

pr(ϕ) =
1

2π

∞∑
k=−∞

r|k|eikφ

=
1

2π

[ ∞∑
k=0

rkeikφ +
∞∑
k=1

rke−ikφ
]

=
1

2π

1− r2

1− 2r cosϕ+ r2
,

the last identity obtained by summing two geometric series.

Let us examine pr(ϕ). It is clear that the numerator and denominator of
the last fraction in (8.1.27) are positive, so pr(ϕ) > 0 for each r ∈ [0, 1), ϕ ∈
T. As r ↗ 1, the numerator tends to 0, and the denominator tends to a
nonzero limit, except at ϕ = 0. Since we have

(8.1.28)

∫ π

−π
pr(ϕ) dϕ =

1

2π

∫ π

−π

∑
k

r|k|eikφ dϕ = 1,

we see that, for r close to 1, pr(ϕ), as a function of ϕ, is highly peaked near
ϕ = 0, and small elsewhere. It follows that, for each δ ∈ (0, π),

(8.1.29)

∫
|φ|≤δ

pr(ϕ) dϕ = 1− ε(r, δ),

with ε(r, δ) → 0 as r ↗ 1. Now we break (8.1.26) into three pieces:

(8.1.30)

u(reiθ) = f(θ)

∫ δ

−δ
pr(ϕ) dϕ

+

∫ δ

−δ

[
f(θ − ϕ)− f(θ)

]
pr(ϕ) dϕ

+

∫
δ≤|φ|≤π

f(θ − ϕ)pr(ϕ) dϕ

= I + II + III.

We have

(8.1.31)

I = f(θ)(1− ε(r, δ)),

|II| ≤ sup
|φ|≤δ

|f(θ − ϕ)− f(θ)|,

|III| ≤ ε(r, δ) sup |f |.

These estimates yield (8.1.25). □
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The integral formula defining the solution to the Dirichlet problem (8.1.21)
is called the Poisson integral. We rewrite it as

(8.1.32) u(reiθ) =
1− r2

2π

∫
T

f(ϕ)

1− 2r cos(θ − ϕ) + r2
dϕ.

A change of variable gives, for x ∈ R2, |x| < 1,

(8.1.33) u(x) =
1− |x|2

2π

∫
S1

f(y)

|x− y|2
ds(y),

where ds(y) denotes arclength.

Moving from dimension 2 to dimension n ≥ 3, we are motivated to try
a formula for the solution to the Dirichlet problem

(8.1.34) ∆u = 0 on Bn, u
∣∣
Sn−1 = f,

on the unit ball Bn ⊂ Rn, of the form

(8.1.35) u(x) = Cn(1− |x|2)
∫

Sn−1

f(y)

|x− y|n
dS(y).

We will show that this works, and along the way calculate the constant Cn.
First we will show that, for each f ∈ C(Sn−1), the function u is harmonic
on Bn. This is a consequence of the following.

Lemma 8.1.6. For a given y ∈ Sn−1 (i.e., |y| = 1), set

(8.1.36) v(x) = (1− |x|2)|x− y|−n.

Then v is harmonic on Rn \ {y}.

Proof. It suffices to show that w(x) = v(x+y) is harmonic on Rn \0. Since
1− |x+ y|2 = −(2x · y + |x|2) provided |y| = 1, we have

(8.1.37) −w(x) = 2(y · x)|x|−n + |x|2−n.

That |x|2−n is harmonic on Rn \ 0 has already arisen in (8.1.11). Now
applying ∂/∂xj to a smooth harmonic function on an open set in Rn gives
another, so the following are harmonic on Rn \ 0:

(8.1.38) wj(x) =
∂

∂xj
|x|2−n = (2− n)xj |x|−n.

For n = 2 we take instead

(8.1.39)
∂

∂xj
log |x| = xj |x|−2.

Thus the first term on the right side of (8.1.37) is a linear combination of
these functions, so the lemma is proved. □
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To justify (8.1.35), it remains to show that if u is given by this formula
and Cn is chosen correctly, then u = f on Sn−1. Note that if we write
x = rω, ω ∈ Sn−1, then (8.1.35) yields

(8.1.40) u(rω) =

∫
Sn−1

pr(ω, y)f(y) dS(y),

where

(8.1.41) pr(ω, y) = Cn(1− r2)|rω − y|−n.

It is clear that

(8.1.42) pr(ω, y) −→ 0, as r ↗ 1, if ω 6= y,

the convergence being uniform on each compact subset of {(ω, y) ∈ Sn−1 ×
Sn−1 : ω 6= y}. We claim that

(8.1.43)

∫
Sn−1

pr(ω, y) dS(y) = C ′
n,

a constant independent of r and ω. The independence of ω follows by rota-
tional symmetry. Thus we can integrate over ω. But Lemma 8.1.6 implies
that

(8.1.44) pr(x, y) = Cn(1− |rx|2)|rx− y|−n

is harmonic in x, for |x| < 1/r, so the mean value property for harmonic
functions gives

(8.1.45)
1

An−1

∫
Sn−1

pr(ω, y) dS(ω) = Cn,

for all r < 1, y ∈ Sn−1. This implies (8.1.43), with C ′
n = CnAn−1.

Thus, in view of (8.1.42), pr(ω, y) is highly peaked near ω = y ∈ Sn−1, as
r ↗ 1. Hence an argument parallel to that used in the proof of Proposition
8.1.5 showd that the limit of (8.1.40) as r ↗ 1 is equal to CnAn−1f(ω), for
each f ∈ C(Sn−1). This justifies the formula (8.1.35) and fixes the constant:
Cn = 1/An−1. We have proved most of the following.

Proposition 8.1.7. Given f ∈ C(Sn−1), the solution in C(B
n
) ∩ C2(Bn)

to the Dirichlet problem (8.1.34) is given by the Poisson integral

(8.1.46) u(x) =
1− |x|2

An−1

∫
Sn−1

f(y)

|x− y|n
dS(y).

Proof. It remains to establish uniqueness. In fact, the difference v of two
such solutions would be harmonic on Bn and vanish on ∂Bn. Hence the
maximum principle, Corollary 8.1.4, yields v ≡ 0 on Bn. □
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Another way to write the conclusion (8.1.46) of Proposition 8.1.7 is

(8.1.47) u(rω) =
1− r2

An−1

∫
Sn−1

f(y)

(1− 2rω · y + r2)n/2
dS(y),

for ω ∈ Sn−1, 0 ≤ r < 1.

Having Proposition 8.1.7, we can apply translations and scaling to solve
the Dirichlet problem

(8.1.48) ∆u = 0 on Br(p), u = f on ∂Br(p),

on arbitrary balls Br(p) = {x ∈ Rn : |x − p| < r}, with analogous Poisson
integral formulas. We denote the solution to (8.1.48) by

(8.1.49) u = PI f.

We discuss some applications of Proposition 8.1.7 to the behavior of
harmonic functions. Here is one.

Proposition 8.1.8. Let Ω ⊂ Rn be open. Assume u ∈ C2(Ω) is harmonic.
Then

(8.1.50) u ∈ C∞(Ω),

and each function uα = ∂αu is harmonic on Ω.

Proof. Let Br(p) be a ball whose closure is contained in Ω. Translating
and scaling, we may as well suppose the ball is Bn. Apply (8.1.46), with
f = u|∂Bn . Then apply ∂α to the right side of (8.1.46). □

Here is an offshoot.

Proposition 8.1.9. Let Ω ⊂ Rn be open. Assume uν ∈ C∞(Ω) are har-
monic and uν → u, uniformly on compact subsets of Ω. Then

(8.1.51) u ∈ C∞(Ω), ∂αuν → ∂αu uniformly on compact subsets of Ω,

and u is harmonic on Ω.

Proof. It suffices to show that if x0 ∈ BR(x0) ⊂ Ω and 0 < ρ < R, then

(8.1.52)
uν → u uniformly on ∂BR(x0)

⇒ ∂αuν uniformly Cauchy on Bρ(x0).

Translating and dilating, we can assume x0 = 0 and R = 1, and apply
Proposition 8.1.7, to write

(8.1.53) uµ(x)− uν(x) =
1− |x|2

An−1

∫
Sn−1

uµ(y)− uν(y)

|x− y|n
dS(y).

We can apply ∂α to the right side to get (8.1.52). □
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The next result is a removable singularity theorem. Take B = B1(0).

Proposition 8.1.10. Assume u ∈ C2(B \ 0) ∩ C(B \ 0) is harmonic on B
and bounded, i.e., there exists M <∞ such that

(8.1.54) |u(x)| ≤M, ∀x ∈ B \ 0.
Then u can be extended (in a unique fashion) to be harmonic on all of B.

Proof. Let f = u|∂B ∈ C(∂B), and set

(8.1.55) v = PI f, v ∈ C(B) ∩ C2(B).

We claim v = u on B \ 0. To see this, consider w = u − v on B \ 0. We
have w ∈ C(B \ 0) ∩ C2(B \ 0), ∆w = 0 on B \ 0, and w = 0 on ∂B. Also
|w| ≤ 2M on B \ 0. We claim this implies w ≡ 0. To prove this, we can
assume w is real valued.Now bring in the function H ∈ C(B \0)∩C2(B \0),
given by

(8.1.56)

H(x) = |x|2−n − 1, if n ≥ 3,

log
1

|x|
, if n = 2.

We see that H is harmonic on B \ 0, H ≥ 0 on B \ 0, H = 0 on ∂B, and
H(x) → +∞ as x→ 0. Hence, for each ε > 0, there exists δ0 > 0 such that

(8.1.57) εH − w ≥ 0 on ∂Bδ(0), ∀ δ ∈ (0, δ0].

The maximum principle implies that

(8.1.58) εH − w ≥ 0

on B \ Bδ(0). Taking δ ↘ 0 yields (8.1.58) on B \ 0. Then taking ε ↘ 0
yields

(8.1.59) w ≤ 0 on B \ 0.
A similar argument gives w ≥ 0 on B \ 0, hence w ≡ 0, and the proof is
complete. □
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8.2. Spherical harmonics

The Laplace-Beltrami operator ∆S on Sn−1 gives rise to an orthonormal
basis of L2(Sn−1) consisting of eigenfunctions of ∆S . These functions are
called spherical harmonics. Our approach to studying these spherical har-
monics will exploit the connection they have with the Dirichlet problem on
the ball,

(8.2.1) ∆u = 0 on Bn, u = f on Sn−1.

This connection was previewed (for n = 2) in (8.1.21)–(8.1.27). Use of
(8.1.22) derives from the fact that

(8.2.2) {eikθ : k ∈ Z} is an orthonormal basis of L2(T, dθ/2π),

consisting of eigenfunctions of the Laplace operator on T, i.e., ∂2θe
ikθ =

−k2eikθ. In §8.1 we used this to find a formula for the Poisson integral.

For n ≥ 3, we go in the opposite direction. We have in hand the formula
(8.1.46) for the Poisson integral, and we will use this as a tool to investigate
the eigenfunctions of ∆S . To start, we look for harmonic functions on Bn

in the form

(8.2.3) u(rω) = ϕ(r)g(ω).

To get this, we use the formula (8.1.5) for ∆ in spherical polar coordinates.
In case u is given by (8.2.3), we have

(8.2.4) ∆u(rω) =
{
ϕ′′(r) +

n− 1

r
ϕ′(r)

}
g(ω) +

1

r2
∆Sg(ω).

Thus (8.2.3) defines a harmonic function on Bn \ 0 if and only if there is a
constant µ such that

(8.2.5) ∆Sg = µg on Sn−1,

and

(8.2.6) ϕ′′(r) +
n− 1

r
ϕ′(r) +

µ

r2
ϕ(r) = 0,

for 0 < r < 1. Recall that Proposition 8.1.8 implies the harmonic function u
is C∞ on Bn. Hence, in (8.2.3), we must have g ∈ C∞(Sn−1). If g satisfies
(8.2.5), we say g is an eigenfunction of ∆S , with eigenvalue µ. Note that

(8.2.7) µ

∫
Sn−1

|g|2 dS =

∫
Sn−1

(∆Sg)g dS = −
∫

Sn−1

|∇g|2 dS,

so µ ≤ 0. Say µ = −λ2. Now the equation (8.2.6) is an Euler equation,
whose solutions are linear combinations of

(8.2.8) ϕ±(r) = rk± ,
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where k = k± satisfies the equation

(8.2.9) k(k − 1) + (n− 1)k − λ2 = 0,

with roots

(8.2.10) k± = −n− 2

2
± 1

2

√
(n− 2)2 + 4λ2.

The smoothness of u on Bn requires that the exponent in (8.2.8) be positive,
so we need

(8.2.11) ϕ(r) = rk, k = −n− 2

2
+

1

2

√
(n− 2)2 + 4λ2.

Furthermore, such smoothness requires

(8.2.12) k ∈ Z+ = {0, 1, 2, 3, . . . }.

Then (8.2.10) yields the eigenvalue µ = −λ2k, with

(8.2.13)
λ2k = k2 + (n− 2)k

=
(
k +

n− 2

2

)2
−
(n− 2

2

)2
.

Let us set

(8.2.14) Vk = {g ∈ C∞(Sn−1) : ∆Sg = −λ2kg}.

We see that if k ∈ Z+ and g ∈ Vk, then u(rω) = rkg(ω) is harmonic on Bn\0
and bounded. It follows from Proposition 8.1.10 that {0} is a removable
singularity, and u extends to be harmonic on all of Bn, and furthermore
u ∈ C∞(Bn). It is homogeneous of degree k, so ∂αxu(x) is homogeneous of
degree k − |α|. In particular, it is homogeneous of degree 0 for |α| = k.
Being smooth, it must be constant, so

(8.2.15) |α| = k =⇒ ∂αxu = cα, const.

Hence u(x) is a polynomial in x, homogeneous of degree k. Let us set

(8.2.16)
Hk = space of harmonic polynomials on Rn

homogeneous of degree k.

The polynomials can have complex coefficients. If we need to specify n, we
write Hk(Rn). We have the following.

Proposition 8.2.1. The map

(8.2.17) τ : Hk −→ Vk, τu = u
∣∣
Sn−1 ,

is an isomorphism.

Next, we have the following important orthogonality result.
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Proposition 8.2.2. Assume gj ∈ Vj , gk ∈ Vk, j 6= k. Then

(8.2.18) (gj , gk)L2(Sn−1) =

∫
Sn−1

gjgk dS = 0.

Proof. For such gj , gk,

(8.2.19)

−λ2j (gj , gk)L2 = (∆Sgj , gk)L2

= (gj ,∆Sgk)L2

= −λ2k(gj , gk)L2 .

since j 6= k ⇒ λj 6= λk, we have (8.2.18). □

The following result provides valuable information on the spaces Hk.
Let

(8.2.20) Pk = space of polynomials on Rn, homogeneous of degree k.

As in (8.2.16), we allow complex coefficients, and if we need to specify n, we
write Pk(Rn).

Proposition 8.2.3. For all k ∈ Z+, we have the direct sum decomposition

(8.2.21) Pk = Hk ⊕ |x|2Hk−2 ⊕ · · · ⊕ |x|2jHk−2j ,

with k ∈ {2j, 2j + 1}.

Proof. By Proposition 8.2.2, the various summands on the right side of
(8.2.21) are mutually orthogonal with respect to the L2-inner product on
Sn−1, so the sum on the right is direct. It remains to do a dimension count.

We do this by induction on k. Note that P0 = H0 and P1 = H1, so
(8.2.21) is clear for k = 0, 1. Now assume the analogue of (8.2.21) holds for
Pℓ, for all ` < k. Given this, the right side of (8.2.21) is equal to

(8.2.22) Hk ⊕ |x|2Pk−2 = Qk,

and we need to show this has the same dimension as Pk. The direct sum
condition in (8.2.22) implies

(8.2.23) dimHk + dimPk−2 = dimQk ≤ dimPk.

Now consider

(8.2.24) ∆ : Pk −→ Pk−2.

The null space is N (∆) = Hk, so the fundamental theorem of linear algebra
implies

(8.2.25)
dimPk = dimN (∆) + dimR(∆)

≤ dimHk + dimPk−2.
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Comparison with (8.2.23) gives dimPk = dimQk and finishes the proof. (It
also shows that ∆ in (8.2.24) is surjective.) □

We can apply Proposition 8.2.3, and its corollary

(8.2.26) Pk = Hk ⊕ |x|2Pk−2,

to compute dimHk (hence dimVk). Let us set

(8.2.27) dk(n) = dimPk(Rn).

Then (8.2.26) implies

(8.2.28) dimHk = dk(n)− dk−2(n).

As shown in Appendix 8.A,

(8.2.29) dk(n) =

(
n+ k − 1

k

)
.

Hence we have dimHk as a difference of two binomial coefficients. We prefer
to express dimHk as a sum of two binomial coefficients, so we proceed. Let
us set

(8.2.30) Pk(Rn) = space of polynomials on Rn of degree ≤ k.

We see that

(8.2.31) dk(n) = dimPk(Rn−1) = dk(n−1)+dk−1(n−1)+ · · ·+d0(n−1),

and similarly

(8.2.32) dk−1(n) = dk−1(n− 1) + · · ·+ d0(n− 1),

hence

(8.2.33) dk(n)− dk−1(n) = dk(n− 1).

Similarly

(8.2.34) dk−1(n)− dk−2(n) = dk−1(n− 1),

so

(8.2.35) dk(n)− dk−2(n) = dk(n− 1) + dk−1(n− 1).

Hence (8.2.28) gives

(8.2.36) dimHk = dk(n− 1) + dk−1(n− 1).

Using the formula (8.2.29), we record our conclusion as follows.

Proposition 8.2.4. On Sn−1,

(8.2.37) dimVk =

(
k + n− 2

k

)
+

(
k + n− 3

k − 1

)
.
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For example,

(8.2.38) On S2, dimVk = 2k + 1.

Returning from dimension counts to other consequences of Proposition
8.2.3, we have the following important algebraic result.

Proposition 8.2.5. Given gj ∈ Vj and gk ∈ Vk, the product satisfies

(8.2.39) gjgk ∈
j+k⊕
ℓ=0

Vℓ.

Proof. The functions gj and gk extend to elements of Pj and Pk, so gjgk
extends to an element of Pj+k. Then (8.2.39) follows from (8.2.21), applied
to Pj+k. □

Before we discuss our main use of Proposition 8.2.5, we linger to savor
the following refinement.

Proposition 8.2.6. In the setting of Proposition 8.2.5, actually

(8.2.40) gjgk ∈
j+k⊕

ℓ=|j−k|

Vℓ.

Proof. Suppose 0 ≤ j < k and m < k − j, so k > j +m. We need to show
that

(8.2.41) f ∈ Vm =⇒ f ⊥ gjgk.

This follows from the implications

(8.2.42)
f ∈ Vm, gj ∈ Vj =⇒ fgj ∈

j+m⊕
ℓ=0

Vℓ

=⇒ fgj ⊥ Vk,

the first implication holding by Proposition 8.2.5. □

Proposition 8.2.5 implies the following important density result.

Proposition 8.2.7. The space

(8.2.43) V =
⋃
ℓ>0

ℓ⊕
k=0

Vk

of finite linear combinations of eigenfunctions of ∆S is dense in C(Sn−1).



322 8. SO(n), harmonic functions, and analysis on spheres

Proof. We see that (8.2.43) is an algebra of continuous functions on Sn−1

Clearly it separates points (since V1 does that) and it is closed under complex
conjugates, so the Stone-Weierstrass theorem applies, to yield denseness in
C(Sn−1). □

Remark. General results from PDE theory (cf. [39], Chapters 5 and 8)
also yield this denseness, in the more general setting of the eigenfunctions of
the Laplace-Beltrami operator on a general compact Riemannian manifold.
However, the argument given above is a bit more elementary, and in any
case the special structure behind (8.2.39) and its refinement (8.2.40) are of
great intrinsic interest.

The following is a convenient restatement of Proposition 8.2.7.

Corollary 8.2.8. For each k ∈ Z+, let

(8.2.44) {Y ℓ
k : ` ∈ Σk}

be an orthonormal basis of Vk, where Σk is an index set, of cardinality
dimVk. Then

(8.2.45) {Y ℓ
k : k ≥ 0, ` ∈ Σk}

is an orthonormal set of functions on Sn−1 whose linear span is dense in
C(Sn−1), hence an orthonormal basis of L2(Sn−1).

Expansions of functions in terms of such an orthonormal basis are called
spherical harmonic expansions. In detail, given f ∈ L2(Sn−1), set

(8.2.46) f̂(k, `) =

∫
Sn−1

f(y)Y ℓ
k (y) dS(y).

Then set

(8.2.47) Ekf(y) =
∑
ℓ∈Σk

f̂(k, `)Y ℓ
k (y),

yielding

(8.2.48) Ek : L
2(Sn−1) −→ Vk.

The map Ek is an orthogonal projection of L2(Sn−1) onto Vk, satisfying

(8.2.49)
Ekf = f, ∀ f ∈ Vk,

f − Ekf ⊥ Vk, ∀ f ∈ L2(Sn−1),

in the sense that

(8.2.50) (f − Ekf, g)L2 = 0, ∀ g ∈ Vk.



8.2. Spherical harmonics 323

The properties (8.2.48)–(8.2.49) uniquely characterize Ek. As such, Ek is
independent of the choice of orthonormal basis of Vk. We set

(8.2.51)

SNf =
N∑
k=0

Ekf

=
N∑
k=0

∑
ℓ∈Σk

f̂(k, `)Y ℓ
k .

Given Corollary 8.2.8, standard Hilbert space theory yields the following.

Proposition 8.2.9. We have

(8.2.52)

f ∈ L2(Sn−1) =⇒ SNf → f in L2-norm, and
∞∑
k=0

∑
ℓ∈Σk

|f̂(k, `)|2 = ‖f‖2L2 .

It is of interest to give conditions on f that imply SNf → f uniformly
on Sn−1. This study is complicated by the fact that, for n ≥ 3, the eigen-
functions Y ℓ

k are not uniformly bounded (as we will see later). Somewhat
compensating for this is the following interesting result.

Proposition 8.2.10. For each k ∈ Z+, if {Y ℓ
k : ` ∈ Σk} is an orthonormal

basis of Vk, then

(8.2.53)
∑
ℓ∈Σk

|Y ℓ
k (ω)|2 =

dimVk
An−1

, ∀ω ∈ Sn−1.

To prove this, we bring in the action of SO(n) on L2(Sn−1),

(8.2.54) π(R)f(x) = f(R−1x), R ∈ SO(n).

Since R acts on Sn−1 as an isometry, this action commutes with ∆S , so
π(R) : Vk → Vk for each k. We set

(8.2.55) πk(R) : Vk −→ Vk, πk(R) = π(R)
∣∣∣
Vk
.

Now SO(n) acts transitively on Sn−1, so Sn−1 is a homogeneous space.
It turns out that Proposition 8.2.10 is a special case of a general result
about finite dimensional subspaces of C(M) invariant under the action of a
transitive isometry group of M . See Proposition 8.B.1.

A companion to Proposition 8.B.1 is Corollary 8.B.2, which yields the
following.

Corollary 8.2.11. In the setting of Proposition 8.2.10,

(8.2.56) ‖f‖L∞ ≤
(dimVk
An−1

)1/2
‖f‖L2 , ∀ f ∈ Vk.
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Consequently,

(8.2.57) ‖Ekf‖L∞ ≤
(dimVk
An−1

)1/2
‖Ekf‖L2 , ∀ f ∈ L2(Sn−1).

Let us set

(8.2.58) Dk = dimVk, L = 1−∆S , 〈λk〉 = (1 + λ2k)
1/2.

Then, for m ∈ R,

(8.2.59) EkL
mf = LmEkf = (1 + λ2k)

mEkf = 〈λk〉2mEkf.

We deduce from (8.2.57) that

(8.2.60) A
1/2
n−1‖Ekf‖L∞ ≤ D

1/2
k 〈λk〉−2m‖EkLmf‖L2 .

Using this estimate, we will prove the following.

Proposition 8.2.12. Let f ∈ L2(Sn−1). Assume

(8.2.61) Lmf ∈ L2(Sn−1), 2m >
n− 1

2
.

Then

(8.2.62)
∑
k

‖Ekf‖L∞ ≤ C‖Lmf‖L2 .

Hence, as N → ∞,

(8.2.63) SNf −→ f uniformly on Sn−1.

Proof. We apply (8.2.60) and Cauchy’s inequality to write

(8.2.64)

A
1/2
n−1

∑
k

‖Ekf‖L∞ ≤
∑
k

D
1/2
k 〈λk〉−2m‖EkLmf‖L2

≤
(∑

k

Dk〈λk〉−4m
)1/2(∑

k

‖EkLmf‖2L2

)1/2
= Bm‖Lmf‖L2 ,

where

(8.2.65) B2
m =

∑
k

Dk〈λk〉−4m.

Recall that λ2k is given by (8.2.13) and Dk by (8.2.37). It follows that

(8.2.66) 〈λk〉−4mDk ≤ cn(1 + k)−4m+n−2.

Hence

(8.2.67) 4m > n− 1 =⇒ Bm <∞,
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and we have (8.2.62). Finally,

(8.2.68)
‖f − SNf‖L∞ ≤

∑
k>N

‖Ek(f − SNf)‖L∞

≤ C‖(I − SN )L
mf‖L2 ,

and we have (8.2.63). □
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8.3. The Poisson integral and spherical harmonic formulas

We return to the connection between the Dirichlet problem and spherical
harmonic expansions, and examine

(8.3.1)

u(rω) =
∞∑
k=0

rkEkf(ω)

=

∞∑
k=0

∑
ℓ∈Σk

f̂(k, `)rkY ℓ
k (ω).

Recall that each term rkY ℓ
k (ω) = hℓk(rω) is a harmonic polynomial (homo-

geneous of degree k) on Rn. We have from (8.2.37) and (8.2.57) that, for all
ω ∈ Sn−1,

(8.3.2)

∞∑
k=0

rk|Ekf(ω)|

≤ cn

∞∑
k=0

(1 + k)(n−2)/2rk‖Ekf‖L2

≤ cn

(∑
k=0

(1 + k)n−2r2k
)1/2

‖f‖L2 ,

the last estimate by Cauchy’s inequality. It follows that whenever f ∈
L2(Sn−1), the series (8.3.1) converges uniformly on all balls BR = {x ∈ Rn :
|x| ≤ R}, for each R < 1, to a function u ∈ C(Bn). Of course, each partial
sum

(8.3.3) SNf(rω) =
N∑
k=0

rkEkf(ω)

is harmonic, being a finite sum of harmonic polynomials. Applying Propo-
sition 8.1.9, we have the following.

Proposition 8.3.1. Given f ∈ L2(Sn−1), the function u defined by (8.3.1)
is harmonic on Bn, and the sequence SNf(rω) of harmonic polynomials
satisfies

(8.3.4) ∂αSNf(x) −→ ∂αu(x),

uniformly on each ball Bρ(0), for each ρ < 1.

We now want to show that the solution to the Dirichlet problem (8.1.34),
with f ∈ C(Sn−1), has the representation (8.3.1). Let us fix some notation,
and denote by

(8.3.5) PI : C(Sn−1) −→ {u ∈ C(B
n
) ∩ C∞(B) : ∆u = 0 on Bn}
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the solution to (8.1.34) given by Proposition 8.1.7, i.e., the Poisson integral

(8.3.6) PI f(x) =
1− |x|2

An−1

∫
Sn−1

f(y)

|x− y|n
dS(y).

Here is the result.

Proposition 8.3.2. For all f ∈ C(Sn−1),

(8.3.7) PI f(rω) =

∞∑
k=0

rkEkf(ω),

for rω ∈ Bn.

Proof. Denote the right side of (8.3.7) by P̃If(rω). As seen in (8.3.1)–
(8.3.3) and Proposition 8.1.9, we have

(8.3.8) P̃I : L2(Sn−1) −→ {u ∈ C∞(Bn) : ∆u = 0 on Bn},
and

(8.3.9) |P̃If(rω)| ≤ cn

( ∞∑
k=0

(1 + k)n−2r2k
)1/2

‖f‖L2 .

We want to show that

(8.3.10) PI f(rω) = P̃If(rω), ∀ rω ∈ Bn,

for all f ∈ C(Sn−1). It is clear that if f is a finite sum of eigenfunctions, i.e.,

if f ∈ V , defined in (8.2.43), then P̃If is a smooth solution to (8.1.34), so
by the uniqueness part of Proposition 8.1.7, (8.3.10) holds for all f ∈ V . As
seen in Proposition 8.2.7, V is dense in C(Sn−1). Thus, given f ∈ C(Sn−1),
there exist fν ∈ V such that

(8.3.11) fν → f uniformly on C(Sn−1), hence in L2-norm.

We have

(8.3.12) PI fν(rω) = P̃Ifν(rω),

for all rω ∈ Bn. Furthermore, as ν → ∞,

(8.3.13)
PI fν(rω) −→ PI f(rω),

P̃Ifν(rω) −→ P̃If(rω),

the latter result by (8.3.9), applied to f − fν . Together, (8.3.12)–(8.3.13)
give (8.3.10), hence (8.3.7). □

Combining Proposition 8.3.2 and (8.1.47), we have, for f ∈ C(Sn−1),

(8.3.14)

∞∑
k=0

rkEkf(ω) =
1− r2

An−1

∫
Sn−1

f(y)

(1− 2rω · y + r2)n/2
dS(y).
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We are consequently motivated to expand the integrand on the right side of
(8.3.14) in powers of r. The following “generating function identity,”

(8.3.15) (1− 2tr + r2)−α =

∞∑
k=0

Cαk (t)r
k,

defines a class of special functions known as Gegenbauer polynomials. To
compute these, we can use the identity

(8.3.16) (1− z)−α =

∞∑
j=0

(
j + α− 1

j

)
zj ,

with z = r(2t− r), to write the left side of (8.3.15) as

(8.3.17)

∞∑
j=0

(
j + α− 1

j

)
rj(2t− r)j

=
∞∑
j=0

j∑
ℓ=0

(
j + α− 1

j

)(
j

`

)
(−1)ℓrj+ℓ(2t)j−ℓ

=

∞∑
k=0

[k/2]∑
ℓ=0

(−1)ℓ
(
k − `+ α− 1

k − `

)(
k − `

`

)
(2t)k−2ℓrk.

Hence

(8.3.18) Cαk (t) =

[k/2]∑
ℓ=0

(−1)ℓ
(
k − `+ α− 1

k − `

)(
k − `

`

)
(2t)k−2ℓ.

We have

(8.3.19) PI f(rω) =
1− r2

An−1

∞∑
k=0

rk
∫

Sn−1

C
n/2
k (ω · y)f(y) dS(y),

for 0 ≤ r < 1. Comparison with the left side of (8.3.14) gives

(8.3.20) Ekf(ω) =
1

An−1

∫
Sn−1

[
C
n/2
k (ω · y)− C

n/2
k−2(ω · y)

]
f(y) dS(y),

provided we make the convention that Cαk (t) = 0 for k < 0. Summing
(8.3.20) over 0 ≤ k ≤ N yields

(8.3.21) SNf(ω) =
1

An−1

∫
Sn−1

[
C
n/2
N (ω · y) + C

n/2
N−1(ω · y)

]
f(y) dS(y).

We seek an alternative formula for Ek. For its derivation, it is convenient
to temporarily replace the exponent k in rk by νk, given by

(8.3.22) ν2k = λ2k +
(n− 2

2

)2
, νk = k +

n− 2

2
.
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Multiplying (8.3.14) by r(n−2)/2 and making the change of variable r = e−s

yields

(8.3.23)
∞∑
k=0

e−νksEkf(ω) =
2

An−1

∫
Sn−1

sinh s

(2 cosh s− 2ω · y)n/2
f(y) dS(y).

Now integrating over s ∈ [s1,∞) and taking r = e−s1 (and dividing by

r(n−2)/2) gives
(8.3.24)

∞∑
k=0

ν−1
k rkEkf(ω) =

2

(n− 2)An−1

∫
Sn−1

f(y)

(1− 2rω · y + r2)(n−2)/2
dS(y).

We again apply the generating formula identity (8.3.15), this time with
α = (n− 2)/2, and compare coefficients of rk, to get

(8.3.25) Ekf(ω) =
2νk

(n− 2)An−1

∫
Sn−1

C
(n−2)/2
k (ω · y)f(y) dS(y).

In the classical case S2 ⊂ R3, these Gegenbauer polynomials specialize
to Legendre polynomials

(8.3.26) Pk(t) = C
1/2
k (t).

Since A2 = 4π and νk = k + 1/2 in this case, we get

(8.3.27) Ekf(ω) =
2k + 1

4π

∫
S2

Pk(ω · y)f(y) dS(y).

We denote the integral kernel of the projection Ek by Ek(ω, y), so

(8.3.28) Ekf(ω) =

∫
Sn−1

Ek(ω, y)f(y) dS(y).

Then the content of (8.3.25) is that

(8.3.29) Ek(ω, y) =
2νk

(n− 2)An−1
C

(n−2)/2
k (ω · y).

The following is a useful general identity.

Proposition 8.3.3. If {Y ℓ
k : ` ∈ Σk} is an orthonormal basis of Vk, then

(8.3.30) Ek(ω, y) =
∑
ℓ∈Σk

Y ℓ
k (ω)Y

ℓ
k (y).

Proof. Denote the right side of (8.3.30) by Fk(ω, y), and set

(8.3.31) Fkf(ω) =

∫
Sn−n

Fk(ω, y)f(y) dS(y).
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We see that FkY
ℓ
k = Y ℓ

k for all ` ∈ Σk, and that Fkf = 0 for f ⊥ Vk, so
indeed Fk = Ek. □

If we set ω = y in (8.3.30) and integrate over Sn−1, we get

(8.3.32)

∫
Sn−1

Ek(y, y) dS(y) = dimVk.

Since ω = y ∈ Sn−1 ⇒ ω · y = 1, we deduce from (8.3.29) that

(8.3.33) dimVk =
2νk
n− 2

C
(n−2)/2
k (1).

On the other hand, setting t = 1 in (8.3.15), obtaining (1 − r)−2α, we have

(8.3.34) Cαk (1) =

(
k + 2α− 1

k

)
,

so (8.3.33) implies

(8.3.35) dimVk =
2k + n− 2

n− 2

(
k + n− 3

k

)
,

which, as one can check (writing the numerator in the fraction above as
k + (k + n− 2)), agrees with (8.2.37). Specializing to n = 3, we have

(8.3.36) Pk(1) = C
1/2
k (1) = 1,

and hence

(8.3.37) on S2, dimVk = 2νk = 2k + 1,

in agreement with (8.2.38).

The following identity is a useful complement to (8.3.32).

Proposition 8.3.4. For each k ∈ Z+,

(8.3.38)

∫
Sn−1

∫
Sn−1

|Ek(ω, y)|2 dS(ω) dS(y) = dimVk.

Proof. From (8.3.30), we have

(8.3.39) |Ek(ω, y)|2 =
∑

ℓ,m∈Σk

Y ℓ
k (ω)Y

ℓ
k (y)Y

m
k (ω)Y m

k (y).

Integrating over Sn−1 × Sn−1 and using orthonormality of {Y ℓ
k : ` ∈ Σk}

gives

(8.3.40)

∫∫
|Ek(ω, y)|2 dS(ω) dS(y) =

∑
ℓ,m∈Σk

δℓm

=
∑
ℓ∈Σk

1 = dimVk.
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□

To proceed, we would like to apply the formula (8.3.29) to (8.3.38). The
following general comments are useful. Each T ∈ SO(n) acts on Sn−1, and
we have, for each y ∈ Sn−1,

(8.3.41)

∫
Sn−1

F (ω · y) dS(ω) =
∫

Sn−1

F (Tω · Ty) dS(ω)

=

∫
Sn−1

F (ω · Ty) dS(ω),

the last identity because T is an isometry on Sn−1, and hence perserves
volumes. It follows that the integral on the left side of (8.3.41) is independent
of y ∈ Sn−1. We can fix e ∈ Sn−1, and obtain

(8.3.42)

∫
Sn−1

∫
Sn−1

F (ω · y) dS(ω) dS(y) = An−1

∫
Sn−1

F (ω · e) dS(ω).

It follows that, with

(8.3.43) γnk =
2k + n− 2

(n− 2)An−1
,

we have

(8.3.44)

∫
Sn−1

∫
Sn−1

|Ek(ω, y)|2 dS(ω) dS(y)

= γ2nk

∫
Sn−1

∫
Sn−1

C
(n−2)/2
k (ω · y)2 dS(ω) dS(y)

= γ2nkAn−1

∫
Sn−1

C
(n−2)/2
k (ω · e)2 dS(ω),

and this is equal to dim Vk.

Let us specialize this to n = 3, i.e., to analysis on S2 ⊂ R3. Then we
have the Legendre polynomials Pk, given by (8.3.36), and (8.3.44) yields

(8.3.45)
1

4π

∫
S2

Pk(ω · e)2 dS(ω) = 1

2k + 1
.

The identities obtained above from (8.3.38) can be generalized. In fact,
from (8.3.30) (plus the fact that each Ej(ω, y) is real valued) we have

(8.3.46)

∫
Sn−1

Ej(ω, z)Ek(z, y) dS(z) = δjkEk(ω, y), ∀ω, y ∈ Sn−1.



332 8. SO(n), harmonic functions, and analysis on spheres

Using (8.3.29), we can rewrite this as

(8.3.47) γnk

∫
Sn−1

C
(n−2)/2
j (ω · z)C(n−2)/2

k (z · y) dS(z) = δjkC
(n−2)/2
k (ω · y).

In particular, for n = 3,

(8.3.48)
2k + 1

4π

∫
S2

Pj(ω · z)Pk(z · y) dS(z) = δjkPk(ω · y).

Note that taking j = k and ω = y = e ∈ S2 gives (8.3.45), since Pk(1) = 1.
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8.4. Zonal functions

A zonal function on Sn−1 is a continuous function of the form

(8.4.1) f(ω) = ϕ(ω · e),

where e = (0, . . . , 0, 1) (which we might call the “north pole”). We write
f ∈ Z(Sn−1). Provided n ≥ 3, an equivalent condition is the following.
Consider SO(n − 1) as a subgroup of SO(n) consisting of rotations about
the xn-axis:

(8.4.2) SO(n− 1) = {R ∈ SO(n) : Re = e}.

Then, given f ∈ C(Sn−1),

(8.4.3) f ∈ Z(Sn−1) ⇐⇒ f(Rω) = f(ω), ∀R ∈ SO(n− 1), ω ∈ Sn−1.

For n = 2, SO(1) consists only of the identity transformation, and this
equivalence fails. In the rest of this section, we will assume n ≥ 3.

We define the space of zonal harmonics

(8.4.4) Zk = Vk ∩ Z(Sn−1).

We have seen examples of elements of Zk, namely

(8.4.5) Zk(ω) = C
(n−2)/2
k (ω · e).

The following complement to Proposition 8.2.7 is of key importance.

Proposition 8.4.1. The linear span of {Zk : k ∈ Z+} is dense in Z(Sn−1).

Proof. From (8.3.18) we see that Cαk (t) is a polynomial in t of degree k,
whose leading term is

(8.4.6)

(
k + α− 1

k

)
(2t)k.

Thus the linear span of {Cαk : k ∈ Z+} is the space of all polynomials in t,
which, by the Weierstrass approximation theorem, is dense in C([−1, 1]), so
we have the proposition. □

Here is an important corollary of Proposition 8.4.1.

Proposition 8.4.2. For each k ∈ Z+,

(8.4.7) Zk = Span(Zk).

In particular, dimZk = 1.

Proof. Suppose f ∈ Zk and f ⊥ Zk, i.e., (f, Zk)L2 = 0. Clearly (f, Zj)L2 =
0 for all j 6= k, so (f, g)L2 = 0 for all g ∈ Span{Zj}, hence, by Proposition
8.4.1, for all g ∈ Zk. Taking g = f yields

∫
|f |2 dS = 0, hence f = 0. □
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To proceed, let us set

(8.4.8) Y 0
k (ω) = ‖Zk‖−1

L2Zk(ω),

so {Y 0
k : k ∈ Z+} is an orthonormal set of functions in Z(Sn−1). As observed

in (8.2.55), the action of SO(n) on C(Sn−1) given by

(8.4.9) π(R)f(ω) = f(R−1ω)

preserve each space Vk. Hence it commutes with Ek. Thus the characteri-
zation (8.4.3) implies

(8.4.10) Ek : Z(Sn−1) −→ Zk.

By (8.4.7), the identity (8.2.47) specializes to

(8.4.11)
f ∈ Z(Sn−1) ⇒ Ekf(ω) = (f, Y 0

k )L2Y 0
k (ω)

= f̂(k, 0)Y 0
k (ω).

Hence Proposition 8.2.9 specializes to the following.

Proposition 8.4.3. If f ∈ Z(Sn−1), then

(8.4.12) SNf(ω) =

N∑
k=0

f̂(k, 0)Y 0
k (ω)

has the property that

(8.4.13) SNf −→ f in L2-norm,

and

(8.4.14)
∞∑
k=0

|f̂(k, 0)|2 = ‖f‖2L2 .

If we specialize to n = 3, then (8.3.45) yields

(8.4.15) Y 0
k (ω) =

(2k + 1

4π

)1/2
Pk(ω · e),

and we have, for f(ω) = ϕ(ω · e),

(8.4.16) ϕ(ω · e) =
∞∑
k=0

ϕkPk(ω · e),

with

(8.4.17)

ϕk =
2k + 1

4π

∫
S2

ϕ(ω · e)Pk(ω · e) dS(ω)

=
(
k +

1

2

)∫ 1

−1
ϕ(t)Pk(t) dt,

a result known as the Funk-Hecke theorem.
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We turn to a consideration of the transformation

(8.4.18) Π : C(Sn−1) −→ Z(Sn−1),

given by

(8.4.19) Πf(ω) =

∫
SO(n−1)

f(R−1ω) dR,

where dR denotes Haar measure on SO(n− 1). Since π(R) commutes with
Ek, so does Π, and we have

(8.4.20) Πk : Vk −→ Zk, Πk = Π
∣∣∣
Vk
.

Clearly

(8.4.21) f ∈ Zk =⇒ Πkf = f.

Also, with

(8.4.22) Z⊥
k = {f ∈ Vk : (f, Zk)L2 = 0},

we have

(8.4.23) f ∈ Z⊥
k =⇒ fR ∈ Z⊥

k , ∀R ∈ SO(n− 1),

where fR(ω) = f(R−1ω), so

(8.4.24) Πk : Z⊥
k −→ Z⊥

k ∩ Zk = 0.

To summarize:

Proposition 8.4.4. The map Πk, given by (8.4.19)–(8.4.20), is the orthog-
onal projection of Vk onto Zk, hence, for f ∈ Vk,

(8.4.25) Πkf(ω) = (f, Y 0
k )L2Y 0

k (ω).

Incidentally, note from (8.4.19) that, for all f ∈ Vk,

(8.4.26) Πkf(e) = f(e).

Thus we have:

Corollary 8.4.5. for f ∈ Vk,

(8.4.27) f ⊥ Y 0
k =⇒ f(e) = 0.

In particular, if {Y ℓ
k : ` ∈ Σk} is an orthonormal basis of Vk,

(8.4.28) ` 6= 0 =⇒ Y ℓ
k (e) = 0.

Taking into account the identity (8.2.53), we have:

Corollary 8.4.6. for Y 0
k given by (8.4.5) and (8.4.8), we have

(8.4.29) |Y 0
k (e)|2 =

dimVk
An−1

.
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This gives a sharp illustration of the fact, mentioned above Proposition
8.2.10, that the eigenfunctions Y ℓ

k are not uniformly bounded. For n = 3,
(8.4.29) specializes to

(8.4.30) Y 0
k (e) =

(2k + 1

4π

)1/2
, on S2,

which we have already seen in (8.4.15).
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8.5. SO(n) actions on the spaces Vk of spherical harmonics

As we have seen, the rotation group SO(n) acts on functions on Sn−1 by

(8.5.1) π(R)f(ω) = f(R−1ω).

This action works on various function spaces, including C∞(Sn−1), C(Sn−1),
and L2(Sn−1). Since the transformation R is an isometry on Sn−1, this ac-
tion on C∞(Sn−1) commutes with the Laplace operator ∆S , so one has each
eigenspace Vk invariant, yielding

(8.5.2) πk : SO(n) −→ L(Vk).
One can check that the map πk is continuous, in fact smooth. Also, for
Rj ∈ SO(n),

(8.5.3) πk(R1R2) = πk(R1)πk(R2), πk(I) = I,

so πk is a representation of SO(n) on Vk. Note also that π(R) and hence
each πk(R) preserves the L

2-norm.

Recall that if V is a finite-dimensional inner product space, and

(8.5.4) ρ : SO(n) −→ L(V )

is a smooth representation by transformations that preserve the norm, then
ρ is a unitary representation of SO(n). Also recall that a linear subspace
W ⊂ V is said to be invariant under the representation ρ provided

(8.5.5) ρ(R) :W −→W, ∀R ∈ SO(n).

When this holds and ρ is unitary, we also have

(8.5.6) ρ(R) :W⊥ −→W⊥, ∀R ∈ SO(n),

where W⊥ = {v ∈ V : (v, w) = 0, ∀w ∈ W}. We recall the proof. If
w ∈W, v ∈W⊥, R ∈ SO(n), then

(8.5.7) (w, π(R)v) = (π(R)∗w, v) = (π(R−1)w, v),

which vanishes if (8.5.5) holds.

Recall also that a unitary representation ρ is said to be irreducible if
V has no proper invariant linear subspaces. As just seen, if W is a proper
invariant subspace, then V =W⊕W⊥ and ρ acts on each factor. If dim V <
∞, an inductive procedure decomposes

(8.5.8) V =W0 ⊕ · · · ⊕WM

into factors Wj , on each of which SO(n) acts irreducibly.

With these notions in hand, we can make the following important state-
ment about the representations πk defined by (8.5.1)–(8.5.2).

Proposition 8.5.1. For each k ∈ Z+, the representation πk of SO(n) on
the eigenspace Vk is irreducible.
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Proof. Suppose W ⊂ Vk is invariant under πk and f ∈ W, f 6= 0. Then
f(ω0) 6= 0 for some ω0 ∈ Sn−1. Pick R0 ∈ SO(n) such that R0ω0 = e. Then
g = π(R0)f ∈ W and g(e) 6= 0. Applying Πk, defined by (8.4.20), we have
h = Πkg ∈ W ∩ Zk, and h(e) = g(e) 6= 0. Thanks to Proposition 8.4.2, this
implies Zk ∈W .

If W is not all of Vk, then W⊥ ⊂ Vk is a nonzero invariant subspace,
and the same argument implies Zk ∈W⊥. Contradiction. □

Taking into account that, when n = 3, dimVk = 2k + 1, and recalling
the classification of the irreducible unitary representations of SO(3) given
in the first section of Chapter 4, we see that each irreducible representation
of SO(3) is contained, exactly once, in the action of SO(3) on L2(S2).

For n ≥ 4, not all irreducible representations of SO(n) are contained
in the action on L2(Sn−1). For example, let us take n = 4 and recall the
analysis of the irreducible representations of SO(4) given in the first section
of Chapter 4, making use of the two-fold covering

(8.5.9) SU(2)× SU(2) −→ SO(4),

arising from the action of SU(2)× SU(2) by isometries on SU(2) ≈ S3,

(8.5.10) (g1, g2) · x = g1xg
−1
2 , gj ∈ SU(2), x ∈ SU(2) ≈ S3.

In such a case, the irreducible representations of SO(4) are given by

(8.5.11)
γkℓ(g) = Dk/2(g1)⊗Dℓ/2(g2), for g = (g1, g2),

with k, ` ∈ Z+, k + ` even,

where Dk/2 is the irreducible representation of SU(2) on Ck+1. Now an

orthonormal basis of L2(S3) ≈ L2(SU(2)) consisting of eigenfunctions of the
Laplace-Beltrami operator is formed as follows (by the Peter-Weyl theorem):

(8.5.12)
√
k + 1uijk , k ∈ Z+, i, j ∈ {1, . . . , k + 1},

where uijk are the matrix entries of Dk/2. Consequently, the irreducible

representations of SO(4) contained in the action on L2(S3) are those of the
form

(8.5.13) γkk, k ∈ Z+.

In connection with this, note that

(8.5.14) S3 = SO(4)/SO(3) = SU(2)× SU(2)/K,

where K ≈ SU(2) is given by

(8.5.15) K = {(g, g) : g ∈ SU(2)},
so the zonal functions on S3 are the scalar multiples of

(8.5.16) χk/2 = TrDk/2.
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For k 6= `, the representations γkℓ do not have a nonzero element of Ck+1 ⊗
Cℓ+1 that is invariant under the action of K.

Generally, we say an irreducible unitary representation ρ of SO(n) on V
is a class one representation provided V contains a nonzero element that is
fixed by ρ(g) for all g ∈ SO(n− 1). We have the following result.

Proposition 8.5.2. Each class one representation of SO(n) is contained,
exactly once, in the action on L2(Sn−1).

See Proposition 9.2.8 for a proof, in a more general setting.

Returning to the case n = 3, we note that the representations πk of
SO(3) on Vk are equivalent to the representations Dk produced in Chapter
4. We aim to use the analysis of the structure of Dk to produce an explicit
orthonormal basis of the space Vk os spherical harmonics on S2. To this
end, it will be convenient to retrace some steps taken in Chapter 4.

To get started, we select the following basis of Skew(3):
(8.5.17)

A1 =

0 −1
1 0

0

 , A2 =

0 −1
0

1 0

 , A3 =

0
0 −1
1 0

 .

Note that the families of transformations etAj are groups of rotations about
the x3−j-axis, each periodic in t of period 2π. A straightforward calculation
yields the following commutator identities,

(8.5.18) [A1, A2] = A3, [A2, A3] = A1, [A3, A1] = A2.

Now suppose σ : Skew(3) → L(V ) is a skew-adjoint representation. Set

(8.5.19) Lj = σ(Aj) ∈ L(V ), L∗
j = −Lj .

The identities (8.5.15) yield

(8.5.20) [L1, L2] = L3, [L2, L3] = L1, [L3, L1] = L2.

One key to understanding the structure of this representation is provided
by

(8.5.21) M = L2
1 + L2

2 + L2
3 ∈ L(V ).

Note that

(8.5.22) M =M∗, (Mv, v) = −
3∑
j=1

‖Ljv‖2 ≤ 0, ∀ v ∈ V,

so V has an orthonormal basis of eigenvalues of M , and all its eigenvalues
are ≤ 0. Now, using the general identity

(8.5.23) [X,Y 2] = [X,Y ]Y + Y [X,Y ], X, Y ∈ L(V ),



340 8. SO(n), harmonic functions, and analysis on spheres

we can verify that

(8.5.24) [Lj ,M ] = 0, ∀ j.

It follows that each eigenspace of M is invariant under L1, L2, and L3.
Consequently, by Schur’s lemma,

(8.5.25) M = −λ2I, for some λ ∈ [0,∞].

To proceed, we diagonalize L1 on V . Set

(8.5.26) Wµ = {v ∈ V : L1v = iµv}, V =
⊕

iµ∈SpecL1

Wµ.

The structure of σ is determined by how L2 and L3 behave on Wµ. It is
convenient to set

(8.5.27) L± = L2 ∓ iL3.

The following key identity forllows directly from (8.5.20):

(8.5.28) [L1, L±] = ±iL±.

This leads to the following.

Lemma 8.5.3. For each µ,

(8.5.29) L± :Wµ −→Wµ±1.

In particular, if iµ ∈ SpecL1, then either L+ = 0 on Wµ or i(µ + 1) ∈
SpecL1, and also either L− = 0 on Wµ or i(µ− 1) ∈ SpecL1.

Proof. If v ∈Wµ, then (8.5.28) implies

(8.5.30) L1L±v = L±L1v ± iL±v = i(µ± 1)L±v,

and this identity yields the lemma. □

Remark. Because of (8.5.29), one calls L± ladder operators.

The following gives more precise information.

Proposition 8.5.4. If σ is an irreducible skew-adjoint representation of
Skew(3) on V , then SpecL1 must consist of a sequence

(8.5.31) SpecL1 = i{µ0, µ0 + 1, . . . , µ0 + ` = µ1},

with

(8.5.32) L+ :Wµ0+j
≈−→Wµ0+j+1, for 0 ≤ j ≤ `− 1,

and

(8.5.33) L− :Wµ1−j
≈−→Wµ1−j−1, for 0 ≤ j ≤ `− 1.
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Proof. A computation gives

(8.5.34)
L−L+ = L2

2 + L2
3 + i[L3, L2]

= −λ2 − L2
1 − iL1,

on V , and similarly

(8.5.35) L+L− = −λ2 − L2
1 + iL1

on V . Hence

(8.5.36)
L−L+ = µ(µ+ 1)− λ2, on Wµ,

L+L− = µ(µ− 1)− λ2, on Wµ.

Also, since L2 and L3 are skew-adjoint,

(8.5.37) L+ = −L∗
−,

so

(8.5.38) L+L− = −L∗
−L−, L−L+ = −L∗

+L+.

Hence, we have the identity of null spaces,

(8.5.39) N (L+) = N (L−L+), N (L−) = N (L+L−).

These observations establish (8.5.31)–(8.5.33). □

In the setting of Proposition 8.5.4, we see that, if v ∈ Wµ0 is nonzero,
then

(8.5.40) Span{v, L+v, . . . , L
µ1−µ0
+ v}

is invariant under L1, L+, and L−, hence under the representation σ, so it
must be all of V , if σ is irreducible. This implies

(8.5.41) dimWµ = 1, for iµ ∈ SpecL1, µ0 ≤ µ ≤ µ1.

From (8.5.36) we see that

(8.5.42) µ1(µ1 + 1) = λ2 = µ0(µ0 − 1),

hence

(8.5.43)

µ1 − µ0 = ` =⇒ µ0 = − `
2
, µ1 =

`

2
,

dimV = `+ 1, and

λ2 =
`(`+ 2)

4
.

The vectors in the basis (8.5.40) of V are mutually orthogonal, since the
various eigenspaces of L1 are, but they do not form an orthonormal basis.
To nail down the structure of the action of Skew(3) on V , we have the
following.
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Proposition 8.5.5. Assume σ is an irreducible skew-adjoint representation
of Skew(3) on V , iµ ∈ SpecL1, and wµ ∈Wµ. Then the norms of the vectors
L±wµ ∈Wµ±1 are given by

(8.5.44)
‖L+wµ‖2 = [λ2 − µ(µ+ 1)] ‖wµ‖2,
‖L−wµ‖2 = [λ2 − µ(µ− 1)] ‖wµ‖2.

Proof. Using (8.5.36) and (8.5.37), we have

(8.5.45)

‖L+wµ‖2 = (L∗
+L+wµ, wµ)

= −(L−L+wµ, wµ)

= [λ2 − µ(µ+ 1)] ‖wµ‖2.

The computation of ‖L−wµ‖2 is similar. □

This leads to the following explicit description of the action of Skew(3)
on V .

Proposition 8.5.6. Let V be a complex inner product space of dimension
`+ 1, ` ∈ Z+. If σ is an irreducible skew-adjoint representation of Skew(3)
on V , then V has an orthonormal basis

(8.5.46) vµ, µ = − `
2
+ j, j ∈ {0, . . . , `},

with respect to which

(8.5.47)

L1vµ = iµvµ,

L+vµ =
√
λ2 − µ(µ+ 1)vµ+1,

L−vµ =
√
λ2 − µ(µ− 1)vµ−1,

where

(8.5.48) λ2 =
`(`+ 2)

4
.

Consequently, for each ` ∈ Z+, there is, up to equivalence, just one such
representation of Skew(3).

Among the representations of Skew(3) arising in Proposition 8.5.6 are the
derived representations σk associated to the representations πk of SO(3) on
Vk ⊂ C(S2), with dimVk = 2k+1. Thus we get “half” of the representations
described in Proposition 8.5.6, those for which ` is even. As seen in Chapter
4, the other half arise from irreducible unitary representations of SU(2).

We now concentrate on the representations πk of SO(3) and derived
representations σk, on the eigenspaces Vk ⊂ C∞(S2) of ∆S , and see how



8.5. SO(n) actions on the spaces Vk of spherical harmonics 343

Proposition 8.5.6 yields further specific formulas. First note that, since
dimVk = 2k + 1, (8.5.48) gives

(8.5.49) λ = k(k + 1) = λk,

with λk as in (8.2.13), with n = 3. Equivalently,

(8.5.50) L2
1 + L2

2 + L2
3 = ∆S .

Next, we have an orthonormal basis of Vk of the form

(8.5.51) Y ℓ
k , −l ≤ ` ≤ k,

satisfying

(8.5.52) L1Y
ℓ
k = i`Y ℓ

k .

For ` = 0, this identifies Y 0
k as a zonal function. Following (8.4.15), we take

(8.5.53) Y 0
k (ω) =

(2k + 1

4π

)1/2
Pk(ω · e),

where e = (0, 0, 1) and Pk(t) are the Legendre polynomials. For each ` ∈
{−k, . . . , 0, . . . , k}, (8.5.52) says

(8.5.54) Y ℓ
k (e

tA1ω) = eiℓtY ℓ
k (ω),

with A1 given by (8.5.17). Writing a general element f ∈ Vk as f =
∑

j cjY
j
k ,

we deduce the following result.

Proposition 8.5.7. Given f ∈ Vk, ` ∈ {−k, . . . , 0, . . . , k}, we have

(8.5.55)
1

2π

∫ 2π

0
e−iℓtf(etA1ω) dt = (f, Y ℓ

k )L2 Y ℓ
k (ω).

Elements of Vk that one could plug into (8.5.55) include

(8.5.56) fyk (ω) = Pk(ω · y), y ∈ S2,

and

(8.5.57) gck(ω) =
(∑

j

cjωj

)k
, cj ∈ C,

∑
j

c2j = 0,

since then (
∑
cjxj)

2 is a harmonic polynomial, homogeneous of degree k.
A particular case of this is

(8.5.58) gk(ω) = (ω1 + iω2)
k,

which satisfies L1gk = ikgk, implying

(8.5.59) Y k
k (ω) = αk(ω1 + iω2)

k,

for some constant αk.
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Figure 8.5.1. Spherical coordinates x(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ)

A more direct path to explicit formulas for Y ℓ
k is found by applying

(8.5.47), to get

(8.5.60) L+Y
ℓ
k (ω) =

√
k(k + 1)− `(`+ 1)Y ℓ+1

k (ω).

We can start at ` = 0 with (8.5.53) and apply this iteratively to obtain
formulas for Y ℓ

k (ω), for 1 ≤ ` ≤ k. For −k ≤ ` ≤ −1, we could work
similarly with iterates of L−, or we could just take

(8.5.61) Y −ℓ
k (ω) = Y ℓ

k (ω),

noting that L1f = L1f .

To apply (8.5.60) explicitly, we use spherical coordinates (θ, ψ), defined
by

(8.5.62)
x(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ),

0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π,

so θ = 0 defines the “north pole,” (0, 0, 1) = e, and θ = π defines the south
pole. See Figure 8.5.1. In these coordinates, we have
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(8.5.63) L1 =
∂

∂ψ
, L± = ie±iψ

[
± ∂

∂θ
+ i cot θ

∂

∂ψ

]
.

Also, in these coordinates (8.5.53) takes the form

(8.5.64) Y 0
k (θ, ψ) =

(2k + 1

4π

)1/2
Pk(cos θ).

To start the iteration (8.5.60) at ` = 0, we have the general formula

(8.5.65) L+g(θ) = ieiψg′(θ),

hence

(8.5.66) L+G(cos θ) = −ieiψ(sin θ)G′(cos θ).

More generally, we calculate

(8.5.67)
L+

(
eiℓψ sinℓ θ Gℓ(cos θ)

)
= −iei(ℓ+1)ψ sinℓ+1 θ G′

ℓ(cos θ).

Hence, inductively, we obtain the formula

(8.5.68) Y ℓ
k (θ, ψ) = αkℓe

iℓψ sinℓ θ P
(ℓ)
k (cos θ), 0 ≤ ` ≤ k,

with constants αkℓ obtainable via (8.5.60). Recall that Pk(t) is a polynomial

in t of degree k, so P
(k)
k (t) is constant, so (8.5.68) gives

(8.5.69) Y k
k (θ, ψ) = αke

ikψsinkθ,

which recovers (8.5.59), since, by (8.5.62),

(8.5.70) eiψ sin θ = ω1 + iω2.

In light of this identity, we see that another way to write (8.5.68) is

(8.5.71) Y ℓ
k (ω) = αkℓ(ω1 + iω2)

ℓP
(ℓ)
k (ω3), 0 ≤ ` ≤ k.

We record the conclusion.

Proposition 8.5.8. Each eigenspace Vk ⊂ C∞(S2) of the Laplace operator
∆S on S2 has an orthonormal basis {Y ℓ

k : −k ≤ ` ≤ k} of the form

(8.5.72) Y 0
k (ω) =

(2k + 1

4π

)1/2
Pk(ω3),

and, for 1 ≤ ` ≤ k (if k ≥ 1),

(8.5.73)
Y ℓ
k (ω) = αkℓ(ω1 + iω2)

ℓP
(ℓ)
k (ω3),

Y −ℓ
k (ω) = αkℓ(ω1 − iω2)

ℓP
(ℓ)
k (ω3),

with coefficients αkℓ ∈ (0,∞) obtainable from (8.5.60).
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8.6. SO(n) actions on Vk, continued

Our next order of business is to fit the representations πk of SO(n) on
Vk ⊂ L2(Sn−1) into the classification of irreducible unitary representations
of SO(n), as presented in §§7.1–7.2. We recall the classification.

Suppose n = 2` or 2`+1. We denote by Ej (1 ≤ j ≤ `) the generators of
2π-periodic rotations in the (x2j−1, x2j)-plane in Rn. Then {Ej : 1 ≤ j ≤ `}
forms a basis of the Lie algebra h of a maximal torus T ⊂ SO(n). In (7.2.64)–
(7.2.65), we describe the irreducible unitary representations of SO(n) as
having highest weights that are non-negative integer combinations of certain
`-tuples,

(8.6.1) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1), and (1, . . . , 1,−1),

when n = 2`, for a representation on ΛµC2ℓ, 1 ≤ µ ≤ `− 1, and on Λℓ±C2ℓ,
and

(8.6.2) (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 1),

when n = 2` + 1, for a representation on ΛµC2ℓ+1, 1 ≤ µ ≤ `. We denote
the representations with highest weights given by (8.6.1) and (8.6.2) by

(8.6.3) D(1,0,...,0), D(1,1,0,...,0), . . . , D(1,...,1,1), and D(1,...,1,−1),

and

(8.6.4) D(1,0,...,0), D(1,1,0,...,0), . . . , D(1,...,1,1),

respectively. Then the general irreducible unitary representation of SO(n)
is denoted

(8.6.5) D(d1,...,dℓ), n = 2` or 2`+ 1,

where the indices satisfy

(8.6.6)
d1 ≥ · · · ≥ dℓ−1 ≥ |dℓ|, if n = 2`,

d1 ≥ · · · ≥ dℓ ≥ 0, if n = 2`+ 1.

In case our representation of SO(n) is πk on Vk ⊂ L2(Sn−1), we see that
the highest weight vector is

(8.6.7) (x1 + ix2)
k,

with weight

(8.6.8) (k, 0, . . . , 0).

This yields the following.

Proposition 8.6.1. The representation πk of SO(n) on Vk ⊂ L2(Sn−1) is
equivalent to

(8.6.9) D(k,0,...,0).
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8.7. Characters of the representations πk of SO(n) on Vk

To study the characters

(8.7.1) χk(g) = Trπk(g), g ∈ SO(n),

we will use the identity

(8.7.2)

∞∑
k=0

rkπk(g)Ekf(x) = PI f(rg−1x)

=
1− r2

An−1

∫
Sn−1

f(y)

|rx− gy|n
dS(y)

=

∫
Sn−1

Kn(r, g, x, y)f(y) dS(y),

to write

(8.7.3)

∞∑
k=0

rkχk(g) =

∫
Sn−1

Kn(r, g, y, y) dS(y)

=
1− r2

An−1

∫
Sn−1

dS(y)

|gy − ry|n
,

or, alternatively,

(8.7.4)
∞∑
k=0

rkχk(g) =
1− r2

An−1

∫
Sn−1

dS(y)

(1− 2ry · gy + r2)n/2
.

Note that taking g = I in (8.7.4) yields

(8.7.5)

∞∑
k=0

rk dimVk =
1− r2

(1− r)n
=

1 + r

(1− r)n−1

=

∞∑
k=0

(
k + n− 2

k

)
rk +

∞∑
k=0

(
k + n− 2

k

)
rk+1

=
∞∑
k=0

(
k + n− 2

k

)
rk +

∞∑
k=1

(
k + n− 3

k − 1

)
rk,

providing a further alternative proof of the dimension formula (8.2.37).

An alternative approach to these characters is to deduce from (8.3.28)–
(8.3.29) that

(8.7.6) χk(g) =
2νk

(n− 2)An−1

∫
Sn−1

C
(n−2)/2
k (y · gy) dS(y).



348 8. SO(n), harmonic functions, and analysis on spheres

8.A. Dimension of Pk(Rn)

Let Pk(Rn) denote the space of polynomials on Rn that are homogeneous of
degree k. We want to compute its dimension. We start with the identity

(8.A.1) dk(n) := dimPk(Rn) =
∑
|α|=k

1,

where α = (α1, . . . , αn), αν ≥ 0, |α| = α1 + · · · + αn. This is the value at
x1 = · · · = xn = 1 of

(8.A.2) pk(x) =
∑
|α|=k

xα,

where xα = xα1
1 · · ·xαn

n . To attack (8.A.2), we look at the infinite series

(8.A.3)

∑
α≥0

xα =
∑
α1≥0

· · ·
∑
αn≥0

xα1
1 · · ·xαn

n

= (1− x1)
−1 · · · (1− xn)

−1.

This series converges provided each |xj | < 1. This does not immediately
lead to an evaluation of (8.A.2) at xj = 1, but let us consider

(8.A.4)
∑
α≥0

t|α|xα =
∑
α≥0

(tx)α = (1− tx1)
−1 · · · (1− txn)

−1,

valid for |xj | ≤ 1 as long as |t| < 1. We deduce from (8.A.2) and (8.A.4)
that

(8.A.5)
∑
k≥0

tkpk(x) = (1− tx1)
−1 · · · (1− txn)

−1,

for |xj | ≤ 1, |t| < 1. Consequently,

(8.A.6)
∑
k≥0

dk(n)t
k = (1− t)−n, for |t| < 1.

If we denote the right side of (8.A.6) by fn(t), then repeated differentiation
gives

(8.A.7) f (k)n (t) = n(n+ 1) · · · (n+ k − 1) (1− t)−n−k,

hence

(8.A.8) (1− t)−n =
∞∑
k=0

(
n+ k − 1

k

)
tk.

Comparison with (8.A.6) gives the following conclusion.

Proposition 8.A.1. For n ≥ 1, k ≥ 0,

(8.A.9) dimPk(Rn) =
(
n+ k − 1

k

)
.
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Given that

(8.A.10) Pk(Rn) ≈ Pk(Rn−1),

where Pk(Rn) denotes the space of polynomials on Rn of degree ≤ k, we
also get:

Corollary 8.A.2. For n ≥ 1, k ≥ 0,

(8.A.11) dimPk(Rn) =
(
n+ k

k

)
.

Remark. The formulas (8.A.2)–(8.A.5) hold for complex x as well as real
x. For xj = eiθj , one gets the characters of an important family of represen-
tations of the unitary group U(n). See §§4.3 and 4.13.
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8.B. Invariant function spaces on a compact homogeneous
space

Let M be a compact Riemannian manifold. Assume its isometry group G
acts transitively on M . We say M is a homogeneous space. The group G
acts on functions on M , by

(8.B.1) π(g)f(x) = f(g−1x), x ∈M, g ∈ G.

This action is unitary on L2(M). Let V ⊂ C(M) be a linear space of
functions satisfying

(8.B.2) dimV <∞, π(g) : V → V, ∀ g ∈ G.

The L2 inner product gives V the structure of an inner product space. We
aim to prove the following.

Proposition 8.B.1. Let {uk : k ∈ S} be an orthonormal basis of V . Then

(8.B.3)
∑
k∈S

|uk(x)|2 =
dimV

Vol(M)
, ∀x ∈M.

Proof. Since π(g) is unitary, (8.B.2) implies π(g) : V ⊥ → V ⊥. Hence, if

(8.B.4) E : L2(M) −→ V

is the orthogonal projection, we have

(8.B.5) π(g)E = Eπ(g).

Note that, for f ∈ L2(M),

(8.B.6) Ef(x) =

∫
M

E(x, y)f(y) dV (y),

with

(8.B.7) E(x, y) =
∑
k

uk(x)uk(y).

Now

(8.B.8) π(g)Ef(x) =

∫
M

E(g−1x, y)f(y) dV (y),

and

(8.B.9)

Eπ(g)f(x) =

∫
M

E(x, y)f(g−1y) dV (y)

=

∫
M

E(x, gy)f(y) dV (y),
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the latter identity because the G-action preserves volumes. Hence

(8.B.10) E(g−1x, y) = E(x, gy), ∀x, y ∈M, g ∈ G.

Taking x = gy yields

(8.B.11) E(y, y) = E(gy, gy), ∀ g ∈ G, y ∈M.

Transitivity of the G-action then implies that E(y, y) is independent of y.
Using (8.B.7), we obtain

(8.B.12)
∑
k

|uk(x)|2 = E(x, x) = A2, independent of x.

Integrating both sides over x ∈M gives

(8.B.13) A2Vol(M) =
∑
k

∫
M

|uk(x)|2 dV (x) = dimV,

and we have (8.B.3). □

As a corollary, we have the following estimate.

Corollary 8.B.2. In the setting of Proposition 8.B.1, if f ∈ V , then

(8.B.14) sup
x

|f(x)| ≤
( dimV

Vol(M)

)1/2
‖f‖L2 .

Proof. With f̂(k) = (uk, f), we have, for each x ∈M ,

(8.B.15)

|f(x)| =
∣∣∣∑
k∈S

f̂(k)uk(x)
∣∣∣

≤
(∑
k∈S

|f̂(k)|2
)1/2(∑

k∈S
|uk(x)|2

)1/2
,

yielding (8.B.14), as a consequence of (8.B.3). □





Chapter 9

Representations of
compact groups on
eigenspaces of ∆

Let M be a compact Riemannian manifold, with Laplace-Beltrami operator
∆. General results from elliptic PDE (cf. [39], Chapter 5) imply that L2(M)
has an orthonormal basis of eigenfunctions of ∆. More precisely, there exist
λk ∈ [0,∞), λk ↗ ∞, such that for each k,

(9.0.1) Vλk = {u ∈ C∞(M) : ∆u = −λ2ku}

is nonzero and finite dimensional, and if we pick an orthonormal basis of
each Vλk , then their union is an orthonormal subset of L2(M) whose span
is dense in L2(M) (in fact, dense in C∞(M)). We say λk ∈ SpecΛ, where
Λ =

√
−∆, so Λu = λku for u ∈ Vλk .

Suppose G is a compact Lie group of isometries of M . We obtain a
unitary representation π of G on L2(M):

(9.0.2) π(g)u(x) = u(g−1x).

Then

(9.0.3) π(g)∆u = ∆π(g)u, ∀ g ∈ G, u ∈ C∞(M),

and hence π(g) : Vλ → Vλ for each λ ∈ SpecΛ. We obtain the representa-
tions

(9.0.4) πλ(g) : Vλ −→ Vλ, πλ(g) = π(g)
∣∣
Vλ
.

We investigate these representations in various situations, and see how re-
sults on them illuminate analysis on M .

353
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In §9.1 we take M to be a homogeneous space, so G acts transitively on
M . Picking p0 ∈M , we have

(9.0.5) M ≈ G/K, K = {g ∈ G : gp0 = p0}.

In such cases, dπ(∆G) = L is an elliptic self-adjoint operator on M . It is of
interest to know whether

(9.0.6) L = α∆,

for some constant α, where ∆ is the Laplace-Beltrami operator on M .
Proposition 9.1.1 gives a sufficient condition for this to hold.

We take a look at K-invariant elements of a finite-dimensional space
V ⊂ C∞(M) that is invariant under π, setting

(9.0.7) Z(V ) = {z ∈ V : π(k)z = z, ∀ k ∈ K}.

We note that

(9.0.8) V 6= 0 =⇒ Z(V ) 6= 0,

and that

(9.0.9) dimZ(V ) = 1 =⇒ π is irreducible on V .

In §9.2 we concentrate on a special class of compact homogeneous spaces,
known as compact rank-one symmetric spaces. For such M ,

(9.0.10) K acts transitively on Sp0M ,

where Sp0M denotes the unit sphere in Tp0M . Leading examples are the
spheres Sn−1 = SO(n)/SO(n−1). Other examples are given in (9.2.2). One
goal here is to generalize certain results of Chapter 8. For example, with Vλ
as in (9.0.4) and Zλ = Z(Vλ), we have

(9.0.11)
λ ∈ SpecΛ =⇒ dimZλ = 1

=⇒ πλ is irreducible on Vλ,

whenever M is a compact, rank-one symmetric space. If we take

(9.0.12) zλ ∈ Zλ, zλ(p0) > 0, ‖zλ‖L2 = 1,

then, extending (8.3.25), we have that the orthogonal projection of L2(M)
onto Vλ is given by

(9.0.13) Eλv(x) = zλ(p0)

∫
M

v(y)zλ(g
−1y) dV (y), x = gK.

We also extend from Sn−1 to general compact, rank-one symmetric M the
dimension identity

(9.0.14) dimVλ = zλ(p0)
2Vol(M),
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and the characterization of irreducible representations of G that are con-
tained in L2(M) as class one representations.

In §9.3 we move away from homogeneous spaces, and instead look at
cases where G is a finite group of isometries of M . We show that if π : G→
L(L2(M)) is injective and G is noncommutative, then infinitely many of the
spaces Vλ have dimension > 1. We use heat equation techniques to establish
the following asymptotic result. For an irreducible representation ρ of G (on
a space of dimension d(ρ)), let Vρ,λ denote the subspace of Vλ on which G
acts like copies of ρ. Set

(9.0.15) WR =
⊕
λ≤R

Vλ, Wρ,R =
⊕
λ≤R

Vρ,λ.

Then, for each ρ,

(9.0.16) lim
R→∞

dimWρ,R

dimWR
=
d(ρ)2

o(g)
.
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9.1. Homogeneous spaces

TakeM as in the introduction to this chapter, let G be a group of isometries
of M . We say M is a homogeneous space if G acts transitively on M . In
such a case, we can pick p0 ∈M and obtain

(9.1.1) M ≈ G/K, K = {g ∈M : gp0 = p0}.
It follows from Frobenius’s’ theorem that if G has a bi-invariant metric
tensor and if

(9.1.2) {Xk : 1 ≤ j ≤ γ}
is an orthonormal basis of g, then

(9.1.3) Lj = dπ(Xj), 1 ≤ j ≤ γ spans TxM , for each x ∈M.

In such a case
∑
X2
j = ∆G is the Laplace-Beltrami operator on G, and

(9.1.4)
dπ(∆G) = L is a negative semidefinite, self-adjoint

second-order elliptic differential operator on M .

Sometimes L = ∆ (the Laplace-Beltrami operator on M), at least up to a
scalar multiple, but not always, as we will see. On the other hand, each
operator Lj , and hence L, is a limit of elements of the algebra of operators
on C∞(M) given by {π(g) : g ∈ G} (a property that ∆ might or might not
possess). We deduce from (9.0.3) that

(9.1.5) L∆u = ∆Lu, ∀u ∈ C∞(M).

In particular, with Vλ given by (9.0.1), we have

(9.1.6) L : Vλ −→ Vλ, ∀λ ∈ SpecΛ.

The following result identifies a class of homogeneous spaces for which
∆ and L are essentially the same. Note that, by (9.1.1), K acts on Tp0M .

Proposition 9.1.1. Assume that

(9.1.7)
Tp0M has just one K-invariant inner product,

up to a scalar multiple.

Then there exists α > 0 such that L = α∆.

Proof. If (9.1.6) holds, there exists α > 0 such that L and α∆ have the
same principal symbol at p0, hence at each x ∈M (since they both commute
with π), so

(9.1.8) L − α∆ = X is a first-order differential operator on M .

This operator is real and annihilates constants, so X is a real vector field.
This implies X +X∗ is a zero-order operator. But L and ∆ are self-adjoint,
so X = X∗, and hence X = 0. □
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If M = G/K is a compact homogeneous space, and if V is a finite-
dimensional subspace of C∞(M) that is invariant under π, set

(9.1.9) Z(V ) = {z ∈ V : π(k)z = z, ∀ k ∈ K}.
The following is a useful observation.

Proposition 9.1.2. If V 6= 0, then Z(V ) 6= 0.

Proof. Take a nonzero v ∈ V , say v(x0) 6= 0. Then take g ∈ G such
that gx0 = p0. It follows that w(x) = v(g−1x) belongs to V and satisfies
w(p0) 6= 0, so

(9.1.10) z =

∫
K

π(k)w dk ∈ Z(V ), and z(p0) = w(p0) 6= 0.

□

This yields a useful method for establishing irreducibility.

Corollary 9.1.3. Take π as in (9.0.2). If π : V → V and dimZ(V ) = 1,
then π is irreducible on V .
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9.2. Rank-one symmetric spaces

Let M be a compact, connected Riemannian manifold, G a transitive group
of isometries, p0 ∈ M , K = {g ∈ G : gp0 = p0}. We say M is a rank-one
symmetric space if

(9.2.1) K acts transitively on the unit sphere Sp0M in Tp0M .

Note that, in such a case, the hypothesis (9.1.7) of Proposition 9.1.1 holds.
Furthermore, if (9.2.1) holds, then also K0, the connected component of
the identity in K, acts transitively on Sp0M , provided dimM ≥ 2. Clearly
Sn−1 = SO(n)/SO(n − 1) is a rank-one symmetric space. Other examples
include

(9.2.2)

G = SU(n), K = SU(n− 1), M = CPn−1,

G = Sp(n), K = Sp(n− 1), M = HPn−1,

G = F4, K = Spin(9), M = CaP2,

the last one called the Cayley projective plane. As in §9.1, we set

(9.2.3) π(g)u(x) = u(g−1x).

If V ⊂ C∞(M) is a finite dimensional space invariant under π, we define
Z(V ) as in (9.1.10). In particular, we have the eigenspace Vλ of the Laplace
operator, as in (9.0.1), and we set

(9.2.4) Zλ = {z ∈ Vλ : π(k)z = z, ∀ k ∈ K}.

Proposition 9.1.2 applies:

(9.2.5) Vλ 6= 0 =⇒ Zλ 6= 0.

The following result generalizes Proposition 8.4.2, but the proof here,
making use of basic results of PDE, is completely different from the proof
given there.

Proposition 9.2.1. If M is a rank-one symmetric space, then

(9.2.6) λ ∈ SpecΛ =⇒ dimZλ = 1.

To prove this, we start with a lemma.

Lemma 9.2.2. In the setting of Proposition 9.2.1, there exists δ = δ(λ) > 0
such that for each nonzero u ∈ Zλ,

(9.2.7) u(x) 6= 0, ∀x ∈ Bδ(p0) \ p0.
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Proof. Using the variational characterization of the fundamental frequency
for the Dirichlet problem on the domain ∂Bε(p0), you can pick δ = δ(λ) > 0
so small that

(9.2.8)
(∆ + λ2)u = 0 on Bδ(p0), u = 0 on ∂Bε(p0), ε < δ

=⇒ u ≡ 0 on Bε(p0).

Now if u ∈ Zλ and u(y) = 0 for some y ∈ Bδ(p0), say dist(y, p0) = ε < δ,
then u = 0 on ∂Bε(p0), so (9.2.8) implies u ≡ 0 on Bε(p0). Then the
Holmgren uniqueness theorem implies u ≡ 0 on M . □

Proof of Proposition 9.2.1. Suppose real valued v, w ∈ Zλ. Take δ as in
Lemma 9.2.2, r ∈ (0, δ). There exist a, b ∈ R, not both zero, such that

(9.2.9) av + bw = 0 on ∂Br(p0).

Then Lemma 9.2.2 implies

(9.2.10) av + bw ≡ 0 on M,

so v and w are linearly dependent. This proves (9.2.6). □
As a direct consequence of Proposition 9.2.1 and Corollary 9.1.3, we have

the following generalization of Proposition 8.5.1.

Corollary 9.2.3. In the setting of Proposition 9.2.1,

(9.2.11) λ ∈ SpecΛ =⇒ π acts irreducibly on Vλ.

Let zλ span Zλ, and arrange that

(9.2.12) zλ(p0) > 0, ‖zλ‖L2 = 1.

We aim to establish a key relation between zλ(p0) and dimVλ. The following
result gets us started.

Proposition 9.2.4. If λ ∈ SpecΛ, then

(9.2.13) v ∈ Vλ, v ⊥ zλ =⇒ v(p0) = 0.

Proof. Given such v,

(9.2.14) w(x) =

∫
K

v(k−1x) dk ⇒ w ∈ Vλ, w ⊥ Zλ, and w(p0) = v(p0).

But also w ∈ Zλ, so w = 0, hence v(p0) = 0. □

Now for our identity.

Proposition 9.2.5. The element zλ ∈ Zλ satisfying (9.2.12) also satisfies

(9.2.15) zλ(p0)
2 =

dimVλ
Vol(M)

.
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Proof. Let {zλ, vj} be an orthonormal basis of Vλ. Then, as a special case
of Proposition 8.B.1,

(9.2.16) zλ(x)
2 +

∑
j

|vj(x)|2 =
dimVλ
Vol(M)

, ∀x ∈M.

Setting x = p0 and applying Proposition 9.2.4 yields (9.2.15). □

Remark. The identity (9.2.15) generalizes (8.4.29), which treats the case
M = Sn−1.

To proceed, it is useful to consider the map

(9.2.17) Aλ : Vλ −→ L2(M), Aλ(v)(x) = (v, π(g)zλ)L2 , x = gK.

We see that, for h ∈ G,

(9.2.18)

π(h)Aλ(v)(gK) = Aλ(v)(h
−1gK)

= (v, π(h−1g)zλ)

= (π(h)v, π(g)zλ)

= Aλ(π(h)v)(x).

Consequently

(9.2.19) π(h)Aλ = Aλπ(h), ∀h ∈ G.

Denote the image of Aλ by Wλ, so

(9.2.20) Aλ : Vλ −→Wλ,

By (9.2.19), π(h) :Wλ →Wλ for all h ∈ G. Hence

(9.2.21)
Bλ = A∗

λAλ : Vλ −→ Vλ, and

π(h)−1Bλπ(h) = Bλ, ∀h ∈ G,

so by Schur’s lemma Bλ is a scalar multiple of the identity on Vλ. It is not
zero since Aλzλ(p0) = (zλ, zλ) = 1, so Aλ is an isomorphism in (9.2.20),
unitary up to a scalar, and π acts irreducibly on Wλ. Since the various
irreducible spaces Vµ are mutually inequivalent, this forces Wλ = Vλ. Hence

(9.2.22) Aλ : Vλ −→ Vλ, πλ(h)Aλ = Aλπλ(h), ∀h ∈ G,

so, by Schur’s lemma, Aλ is a scalar multiple of the identity on Vλ,

(9.2.23) Aλv = cλv, ∀ v ∈ Vλ.

Taking v = zλ, x = p0 yields

(9.2.24) cλzλ(p0) = (zλ, zλ) = 1,
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and we have the following conclusion.

Proposition 9.2.6. If M = G/K is a rank-one symmetric space, λ ∈
SpecΛ, and zλ ∈ Zλ satisfies (9.2.16), then

(9.2.25) v(x) = zλ(p0)

∫
M

v(y)zλ(g
−1y) dV (y), ∀ v ∈ Vλ, x = gK.

The formula (9.2.25) extends to one for the orthogonal projection of
L2(M) onto Vλ. Compare (8.3.25).

Proposition 9.2.7. If M is a rank-one symmetric space, the orthogonal
projection of L2(M) onto Vλ is given by

(9.2.26) Eλv(x) = zλ(p0)

∫
M

v(y)zλ(g
−1y) dV (y), x = gK.

Proof. The operator Eλ defined by (9.2.26) satisfies Eλv = v for all v ∈ Vλ,
by Proposition 9.2.6, and Eλv = 0 for v ⊥ Vλ, since then (v, π(g)zλ) =
0, ∀ g. □

Note that we can write

(9.2.27)
Eλv(x) =

∫
M

Eλ(x, y)v(y) dV (y),

Eλ(x, y) = zλ(p0)zλ(g
−1y), x = gK.

We have

(9.2.28) Eλ(gK, hK) = zλ(p0)zλ(Kg
−1hK),

hence

(9.2.29) Eλ(x, x) = zλ(p0)
2,

so

(9.2.30) TrEλ = zλ(p0)
2Vol(M),

recovering (9.2.15), since TrEλ = dimVλ. Compare the computation (8.3.32)–
(8.3.35).

Another interesting result arises from considering the following variant
of (9.2.17). Suppose ρ is an irreducible unitary representation of G on an
inner product space V . Assume V contains aK-invariant element, satisfying

(9.2.31) z ∈ V, ρ(k)z = z, ∀ k ∈ K, ‖z‖V = 1.

Now consider

(9.2.32) A : V −→ L2(M), Av(x) = (v, π(g)z)V , x = gK.
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Parallel to (9.2.18)–(9.2.19), we have

(9.2.33) π(h)A = Aρ(h), ∀h ∈ G.

Denoting the range of A by W ⊂ L2(M), we have analogues of (9.2.20)–
(9.2.21), yielding that

(9.2.34) A : V −→W ⊂ L2(M), π(h) :W −→W, ∀h ∈ G,

A is an isomorphism, unitary up to a scalar, and π acts irreducibly on W ,
hence W = Vλ for some λ ∈ SpecΛ, so

(9.2.35)
A : V −→W, isomorphically,

πλ(h)A = Aρ(h), ∀h ∈ G,

and the representation ρ of G on V is equivalent to πλ on Vλ. An irreducible
unitary representation ρ on V for which there is a z ∈ V satisfying (9.2.31)
is called a class one representation of G. We have the following conclusion.

Proposition 9.2.8. If M = G/K is a rank-one symmetric space, each
class one irreducible unitary representation of G is contained, exactly once,
in L2(M).
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9.3. Finite symmetry group actions on eigenspaces

The presence of a noncommutative finite group G of symmetries of an el-
liptic, self-adjoint differential operator L, with discrete spectrum, can force
the existence of an infinite number of multiple eigenvalues of L. We show
that such a phenomenon occurs rather generally, due to the fact that some
irreducible representation ρ of G of degree > 1 must be contained in infin-
itely many eigenspaces of L. We then show that, under mild assumptions,
the relative frequency of occurrence of each irreducible representation ρ of
G in the sum of all the eigenspaces with eigenvalues ≤ R tends as R → ∞
to a limit equal to the relative frequency that ρ occurs in the regular repre-
sentation of G. We also study an example where the multiplicities can get
arbitrarily large.

Inevitability of multiple eigenvalues

Let G be a finite group of measure-preserving transformations of a non-
atomic, σ-finite measure space (X,B, µ). Thus G has a unitary representa-
tion on H = L2(X,µ), given by U(g)f(x) = f(g−1x). We make the hypoth-
esis that

(9.3.1) U : G −→ U(H) is injective.

Our first result is the following.

Proposition 9.3.1. Let K be a compact self-adjoint operator on H =
L2(X,µ). Assume also that K is injective. Assume G is noncommutative,
and that (9.3.1) holds. If K commutes with U(g) for all g ∈ G, then K has
infinitely many multiple eigenvalues.

Proof. As a preliminary comment, we note that, if H0 is the closed linear
span of all the 1-dimensional eigenspaces of K, then G acts on H0, and the
restriction of U, given by V (g) = U(g)

∣∣
H0
, has the property that G/ker V

is commutative. Thus H0 cannot equal H, since then (9.3.1) would imply
G is commutative. The content of the proposition is that the orthogonal
complement H1 of H has infinite dimension.

To see this, we first note that there is an irreducible representation ρ of
G, on a space Vρ of dimension greater than 1, such that ρ is contained in
U. This follows by the same sort of argument as above; if every irreducible
representation of G contained in U were one-dimensional, then G would act
as a commutative group of transformations of H, and this contradicts our
hypotheses.
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Now, given such ρ, consider the orthogonal projection Pρ of H onto the
subspace on which G acts as a sum of copies of ρ; it is given by

(9.3.2) Pρ =
d(ρ)

o(G)

∑
g∈G

χρ(g)U(g),

where χρ(g) = Tr ρ(g) and d(ρ) = dim Vρ. In other words,

(9.3.3) Pρf(x) =
d(ρ)

o(G)

∑
g∈G

χρ(g) f(g
−1x).

We know that Pρ 6= 0. The proof will be complete when we show that the
rank of Pρ is infinite, since no eigenspace of K can contain infinitely many
copies of ρ.

Now, if Pρ has finite rank, it would be a Hilbert-Schmidt operator, so
there would exist ϕ ∈ L2(X ×X) such that

(9.3.4) Pρf(x) =

∫
X

ϕ(x, y)f(y) dµ(y).

However, as long as Pρ 6= 0, (9.3.3) and (9.3.4) are incompatible if X has no
atoms. In fact, we see that, for any A ∈ B, the set

Ã = {x ∈ X : not ϕ(x, y) = 0 a.e. y ∈ A}
satisfies

(9.3.5) µ(Ã) ≤ o(G)µ(A).

If X has no atoms, this implies ϕ = 0 a.e. □

Example 1. Let X be the circle S1 with its standard arc-length measure.
Let V ∈ C(S1) be real valued. Then the differential operator

(9.3.6) L =
d2

dθ2
− V (θ)

has compact resolvent. Take K = (L − λ)−1 for some sufficiently large
λ ∈ (0,∞). We deduce that:

Corollary 9.3.2. If V (θ) is invariant under a rotation through 2π/`, for
some ` ≥ 3, and also invariant under a reflection, then L has infinitely many
double eigenvalues.

Of course, each eigenspace of L has dimension 1 or 2. The argument
just recounted arose in a conversation of the author and E. Trubowitz, in
1975.

Example 2. Let X be an equilateral triangle in the plane. Consider the
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Laplace operator ∆ on X, with the Dirichlet (or Neumann) boundary con-
dition. Then ∆ is invariant under the group of isometries of X, a group
isomorphic to S3. It follows that ∆ has infinitely many multiple eigenvalues.

M. Pinsky has shown that, in this case, ∆ has eigenspaces of arbitrarily
large dimension. We have a similar situation when X is a square. The
number theoretic explanation that ∆ has eigenspaces of arbitrarily high
dimension is well known in that case.

Note that Example 2 can be extended to every regular polygon in R2, and
also to every regular polyhedron in R3. I do not know if ∆ has eigenspaces
of arbitrarily high dimension in all these cases.

There are other variations of Example 2, to which Proposition 9.3.1
applies. For example, X could be a wriggly perturbation of an equilateral
triangle, still having S3 as a symmetry group.

To take a variation of Example 1, consider the action of S5 on R3, as the
group of isometries of the regular icosahedron. This also provides a group
of isometries of the unit sphere S2. One can then consider

(9.3.7) L = ∆− V,

where V ∈ C(S2) is real valued and invariant under this action of S5.

Asymptotic density

Here we will specialize, as follows. We take X to be Ω, an open subset
of some smooth Riemannian manifold M , such that Ω is compact. We make
the following geometrical hypothesis on the action of G on Ω, which implies
(9.3.1):

(9.3.8) g 6= e =⇒ Vol{x ∈ Ω : gx = x} = 0.

We suppose L is a strongly elliptic, second order, negative semidefinite,
differential operator on Ω, and that the action of U on L2(Ω) commutes
with the semigroup etL. Assume either that L has the Dirichlet boundary
condition, or that it has some other coercive boundary condition, such as
the Neumann boundary condition, and ∂Ω is sufficiently regular, so that the
standard asymptotic analysis of the integral kernel p(t, x, y) of etL is valid.

In such a case, etL is trace class for each t > 0. For each irreducible
representation ρ of G, the operator Pρ given by (9.3.2) commutes with etL,
and we have the following two identities. On the one hand,

(9.3.9) TrPρe
tL =

∑
(dim Vρ,λ)e

−tλ2 ,

where the sum is over λ ∈ Spec
√
−L and Vρ,λ is the subspace of the λ2-

eigenspace Vλ of −L on which U acts as a sum of copies of ρ. On the other
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hand, by (9.3.3),

(9.3.10) TrPρe
tL =

d(ρ)

o(G)

∑
g∈G

χρ(g)

∫
Ω

p(t, g−1x, x) dV (x).

The asymptotic analysis of p(t, x, y) alluded to above implies

(9.3.11)

∫
Ω

p(t, x, x) dV (x) = (Vol Ω)(4πt)−n/2 + o(t−n/2),

as t↘ 0. On the other hand, the behavior of p(t, x, y) off the diagonal yields
the following, in cases where (9.3.8) holds:

(9.3.12) g 6= e =⇒
∫
Ω

p(t, g−1x, x) dV (x) = o(t−n/2).

Hence, under these hypotheses, we have

(9.3.13) TrPρe
tL =

d(ρ)2

o(G)
(Vol Ω)(4πt)−n/2 + o(t−n/2), t↘ 0.

We are ready to prove the following.

Proposition 9.3.3. For R ∈ (0,∞), set

(9.3.14) WR =
⊕
λ≤R

Vλ, Wρ,R =
⊕
λ≤R

Vρ,λ.

Then, for each irreducible representation ρ of G,

(9.3.15) lim
R→∞

dimWρ,R

dimWR
=
d(ρ)2

o(G)
.

Proof. The asymptotic behavior

(9.3.16) dimWR =
Vol Ω

Γ(n2 + 1)(4π)n/2
Rn + o(Rn), R→ ∞,

follows from (9.3.11), via Karamata’s Tauberian theorem; cf. [39], Chapter
8. The same argument applied to (9.3.13) yields

(9.3.17) dimWρ,R =
d(ρ)2

o(G)

Vol Ω

Γ(n2 + 1)(4π)n/2
Rn + o(Rn), R→ ∞,

and then (9.3.15) follows. □

Note that Proposition 9.3.3 applies to all the examples mentioned in the
early paragraphs of this section.

Regarding the right side of (9.3.15), we note that the subspace of `2(G)
on which the regular representation of G acts like copies of ρ is a space of
dimension d(ρ)2.
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D4 acting on T2: high multiplicities

The dihedral group D4 acts as a group of isometries of T2 = R2/(2πZ2),
hence as a unitary group on L2(T2), leaving invariant each eigenspace of the
Laplace operator ∆.

Proposition 9.3.4. Each irreducible representation ρ of D4 has the prop-
erty that there are eigenspaces of ∆ containing arbitrarily many copies of
ρ.

To see this, first recall one way of showing that there are eigenspaces of
∆ of arbitrarily high dimension. Namely,

(9.3.18) Spec(−∆) = {j2 + k2 : j, k ∈ Z},
and if ν = j2 + k2, the dimension of the ν-eigenspace of −∆ is equal to
the number of pairs (j, k) ∈ Z × Z such that j2 + k2 = ν. Now, number
theoretical constraints imply that the set of sums of two squares has mean
density zero in Z+. On the other hand, the sum of the dimensions of the
ν-eigenspaces of −∆, for ν ≤ R, which is the number of integer lattice points
within a disk of radius

√
R, behaves like πR as R→ ∞. It follows that some

eigenspaces must have arbitrarily large dimension.

Now, by Proposition 9.3.3, the same argument extends to the parts of
the eigenspaces of ∆ on which D4 acts like copies of ρ, so the proposition
follows.





Chapter 10

The groups Sp(n) and
their representations

The groups Sp(n), introduced in §1.2, consist of matrices A ∈ M(n,H)
satisfying A∗A = I, where H denotes the algebra of quaternions. Here we
study the structure and representations of these groups.

We begin in §10.1 with a treatment of quaternions, supplementing that
given in §1.2. For the sake of continuity, we reproduce some of the results
of §1.2. We provide a second proof of the important associativity property
of multiplication on H, different from that arising in §1.2. We relate this
to results on automorphisms of H, which we then extend to an action of
SO(3) as a group of automorphisms of H. Conjugation produces an action
of the group of unit quaternions Sp(1) as automorphisms of H, yielding
a 2-to-1 covering homomorphism Sp(1) → SO(3), consistent with a nat-
ural isomorphism Sp(1) ≈ SU(2), established here, and a 2-to-1 covering
SU(2) → SO(3) produced in §4.1.

Section 10.2 comprises a minicourse on quaternionic linear algebra, i.e.,
the study of H-linear transformations on quaternionic vector spaces, with
particular attention to quaternionic inner product spaces. This has notable
differences from real and complex linear algebra, and is likely not so familiar
to most readers. We present basic material on dimension and bases, partic-
ularly orthonormal bases. We define eigenvectors in this setting and show
that if V 6= 0, each T ∈ LH(V ) has an eigenvector. We define the adjoint
T ∗ of T ∈ LH(V ) when V is a quaternionic inner product space, and show
that if either T ∗ = T or T ∗ = −T , then V has an orthonormal basis of
eigenvectors of T . We then define Sp(V ) to consist of T ∈ LH(V ) such that

369
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T ∗T = I, and show that whenever T ∈ Sp(V ), V has an orthonormal basis
of eigenvectors of T . In case V = Hn, with the standard inner product,
Sp(V ) = Sp(n), and the last result then bears on identifying a maximal
torus in Sp(n).

In §10.3 we consider roots, weights, and representations of Sp(1) and
Sp(2). For Sp(1) there is not much to do, since, as stated above, we have
Sp(2) ≈ SU(2), which was analyzed in §4.1. For Sp(2), which has Lie
algebra

sp(2) =
{(u1 ξ

−ξ u2

)
: ξ ∈ H, uℓ ∈ R3

}
,

we take

h =
{
ϑab =

(
ai

bi

)
: a, b ∈ R

}
,

and find 8 roots and associated root vectors. We observe a similarity to the
root diagram of SO(5), treated in §7.1. This is no accident; in fact

Sp(2) ≈ Spin(5),

which allows us to describe the irreducible unitary representations of Sp(2),
using the results of Chapter 7. To derive this isomorphism, we consider the
representation of Sp(2) on M(2,H),

κ : Sp(2) → LR(M(2,H)), κ(A)X = AXA∗,

and decompose

M(2,H) = sp(2)⊕ {cI : c ∈ R} ⊕ S2
0(H),

with

S2
0(H) =

{(
a ξ
ξ −a

)
: a ∈ R, ξ ∈ H

}
,

obtaining from

κ0 : Sp(2) −→ LR(S
2
0(H))

a two-fold covering homomorphism κ0 : Sp(2) → SO(5). We also relate this
covering homomorphism to the natural action of Sp(2) on the quaternionic
projective space P1(H).

in §10.5 we analyze the roots of Sp(n), for n ≥ 3. We take

h = {ϑa : a ∈ Rn}, ϑa =

a1i . . .

ani

 ,

and show the roots consist of

ρ±ℓ (a) = ±2aℓ, ραβℓm(a) = (−1)αaℓ + (−1)βam,



10. The groups Sp(n) and their representations 371

where, respectively, 1 ≤ ` ≤ n and 1 ≤ ` < m ≤ n and α, β ∈ {0, 1}. With

respect to a natural ordering, the positive roots are ρ+ℓ and ρ0βℓm, and the
simple roots are

ρ01ℓ,ℓ+1, 1 ≤ ` ≤ n− 1, and ρ+n .

Examining their inner products produces the Dynkin diagram for Sp(n).

In §10.6, we examine the weights and representations of Sp(n). We iden-
tify the possible weights of representations as the elements λ ∈ h′ satisfying

λ(a) = λ1a1 + · · ·+ λnan,

with λℓ ∈ Z. We identify the dominant integral weights as those elements
satisfying

λℓ ∈ Z+, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We assign the label D(λ1,...,λn) to the irreducible unitary representation of
Sp(n) with highest weight λ(a) = λ1a1 + · · · + λnan (unique up to equiva-
lence). We consider the standard representation π of Sp(n) onHn (a complex
vector space isomorphic to C2n), compute its weights, and identify it as

π = D(1,0,...,0).

We extend the results of §10.3 on κ to the analogous representation of Sp(n)
on M(n,H), which decomposes as

M(n,H) = sp(n)⊕ {cI : c ∈ R} ⊕ S2
0(Hn),

giving the representations Ad and κ0 on sp(n) and S2
0(Hn), and their com-

plexifications. We examine their weights, and see that

Ad = D(2,0,...,0), κ0 = D(1,1,0,...,0).

Furthermore, we show that, for each k ∈ {1, . . . , n}
D(1,...,1,...0) (k ones) occurs as a subrepresentation of Λkπ on ΛkCHn.

This verifies the theorem of the highest weight for Sp(n) and hence provides
a representation-theoretic proof that this group is simply connected.
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10.1. Quaternions

The space H of quaternions is a four-dimensional real vector space, identified
with R4, with basis elements 1, i, j, k, the element 1 identified with the real
number 1. Elements of H are represented as follows:

(10.1.1) ξ = a+ bi+ cj + dk,

with a, b, c, d ∈ R. We call a the real part of ξ (a = Re ξ) and bi + cj + dk
the vector part (denoted Im ξ). We also have a multiplication on H, an R-
bilinear map H×H → H, such that 1 · ξ = ξ · 1 = ξ, and otherwise governed
by the rules

(10.1.2) ij = k = −ji, jk = i = −kj, ki = j = −ik,

and

(10.1.3) i2 = j2 = k2 = −1.

Otherwise stated, if we write

(10.1.4) ξ = a+ u, a ∈ R, u ∈ R3,

and similarly write η = b+ v, b ∈ R, v ∈ R3, the product is given by

(10.1.5) ξη = (a+ u)(b+ v) = (ab− u · v) + av + bu+ u× v.

Here u · v is the dot product in R3, and u × v is the cross product. The
quantity ab − u · v is the real part of ξη and av + bu + u × v is the vector
part. Note that

(10.1.6) ξη − ηξ = 2u× v.

It is useful to take note of the following symmetries of H.

Proposition 10.1.1. Let K : H → H be an R-linear transformation such
that K1 = 1 and K cyclically permutes (i, j, k) (e.g., Ki = j, Kj = k, Kk =
i). Then K preserves the product in H, i.e.,

(10.1.7) K(ξη) = K(ξ)K(η), ∀ ξ, η ∈ H.

We say K is an automorphism of H. We also have (10.1.7) if K switches two
of (i, j, k) and changes the sign of one (e.g., Ki = i, Kj = k, Kk = −j).

Proof. This is straightforward from the multiplication rules (10.1.2)–(10.1.3).
□

Using Proposition 10.1.1, we give a second proof of associativity.

Proposition 10.1.2. Multiplication in H is associative, i.e.,

(10.1.8) ζ(ξη) = (ζξ)η, ∀ ζ, ξ, η ∈ H.
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Proof. Given the R-bilinearity of the product, it suffices to check (10.1.8)
when each ζ, ξ, and η is either 1, i, j, or k. Since 1 is the multiplicative unit,
the result (10.1.8) is easy when any factor is 1. Furthermore, one can use
Proposition 10.1.1 to reduce the possibilities further; for example, one can
take ξ = i. Then it suffices to show that

ζ(iη) = (ζi)η, ∀ ζ, η ∈ {i, j, k}.

Taking η = i, j, k, respectively, we have the task of verifying that

(10.1.9) −ζ = (ζi)i, ζk = (ζi)j, −ζj = (ζi)k,

for ζ ∈ {i, j, k}. Note that, by Proposition 10.1.1, the third set of identities in
(10.1.9) follows from the second. This leaves 6 straightforward calculations
for the reader to check. □

Remark. In the case that ξ = u, η = v, and ζ = w are purely vectorial, we
have
(10.1.10)

w(uv) = w(−u · v + u× v) = −(u · v)w − w · (u× v) + w × (u× v),

(wu)v = (−w · u+ w × u)v = −(w · u)v − (w × u) · v + (w × u)× v.

Then the identity of the two left sides is equivalent to the pair of identities

(10.1.11) w · (u× v) = (w × u) · v,

(10.1.12) w × (u× v)− (w × u)× v = (u · v)w − (w · u)v.

The identity (10.1.12) also follows from the pair of identities

(10.1.13) w × (u× v)− (w × u)× v = (v × w)× u,

and

(10.1.14) (v × w)× u = (u · v)w − (w · u)v.

See the exercises below for more on this.

In addition to the product, we also have a conjugation operation on H:

(10.1.15) ξ = a− bi− cj − dk = a− u.

A calculation gives

(10.1.16) ξη = (ab+ u · v)− av + bu− u× v.

In particular,

(10.1.17) Re(ξη) = Re(ηξ) = (ξ, η),
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the right side denoting the Euclidean inner product on R4. Setting η = ξ in
(10.1.16) gives

(10.1.18) ξξ = |ξ|2,

the Euclidean square-norm of ξ. In particular, whenever ξ ∈ H is nonzero,
it has a multiplicative inverse,

(10.1.19) ξ−1 = |ξ|−2ξ.

We say a ring R with unit 1 is a division ring if each nonzero ξ ∈ R has a
multiplicative inverse. It follows from (10.1.19) that H is a division ring. It
is not a field, since multiplication in H is not commutative. Sometimes H is
called a “noncommutative field.”

To continue with products and conjugation, a routine calculation gives

(10.1.20) ξη = η ξ.

Hence, via the associative law,

(10.1.21) |ξη|2 = (ξη)(ξη) = ξηηξ = |η|2ξξ = |ξ|2|η|2,

or

(10.1.22) |ξη| = |ξ| |η|.

Note that C = {a + bi : a, b ∈ R} sits in H as a commutative subring, for
which the properties (10.1.18) and (10.1.22) are familiar.

Let us examine (10.1.22) when ξ = u and η = v are purely vectorial. We
have

(10.1.23) uv = −u · v + u× v.

Hence, directly,

(10.1.24) |uv|2 = (u · v)2 + |u× v|2,

while (10.1.22) implies

(10.1.25) |uv|2 = |u|2|v|2.

On the other hand, if θ is the angle between u and v in R3,

u · v = |u| |v| cos θ.

Hence (10.1.24) implies

(10.1.26) |u× v|2 = |u|2|v|2 sin2 θ.

We next consider the set of unit quaternions:

(10.1.27) Sp(1) = {ξ ∈ H : |ξ| = 1}.
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Using (10.1.19) and (10.1.22), we see that Sp(1) is a group under multiplica-
tion. It sits in R4 as the unit sphere S3. We compare Sp(1) with the group
SU(2), consisting of 2× 2 complex matrices of the form

(10.1.28) U =

(
ξ −η
η ξ

)
, ξ, η ∈ C, |ξ|2 + |η|2 = 1.

The group SU(2) is also in natural one-to-one correspondence with S3. Fur-
thermore, we have:

Proposition 10.1.3. The groups SU(2) and Sp(1) are isomorphic under
map σ : SU(2) → Sp(1) defined by

(10.1.29) σ(U) = ξ + jη,

for U as in (10.1.28).

Proof. The map (10.1.29) is clearly bijective. To see it is a homomorphism
of groups, we calculate:

(10.1.30)

(
ξ −η
η ξ

)(
ξ′ −η′

η′ ξ
′

)
=

(
ξξ′ − ηη′ −ξη′ − ηξ

′

ηξ′ + ξη′ −ηη′ + ξξ
′

)
,

given ξ, η ∈ C. Noting that, for a, b ∈ R, j(a+ bi) = (a− bi)j, we have

(10.1.31)
(ξ + jη)(ξ′ + jη′) = ξξ′ + ξjη′ + jηξ′ + jηjη′

= ξξ′ − ηη′ + j(ηξ′ + ξη′).

Comparison of (10.1.30) and (10.1.31) verifies that (10.1.29) is a homomor-
phism of groups. □

We next define the map

(10.1.32) π : Sp(1) −→ L(R3)

by

(10.1.33) π(ξ)u = ξuξ−1 = ξuξ, ξ ∈ Sp(1), u ∈ R3 ⊂ H.

To justify (10.1.32), we need to show that if u is purely vectorial, so is ξuξ.
In fact, by (10.1.20),

(10.1.34) ζ = ξuξ =⇒ ζ = ξuξ = −ξuξ = −ζ,

so that is indeed the case. By (10.1.22),

|π(ξ)u| = |ξ| |u| |ξ| = |u|, ∀u ∈ R3, ξ ∈ Sp(1),

so in fact

(10.1.35) π : Sp(1) −→ SO(3),



376 10. The groups Sp(n) and their representations

and it follows easily from the definition (10.1.33) that if also ζ ∈ Sp(1),
then π(ξζ) = π(ξ)π(ζ), so (10.1.35) is a group homomorphism. It is readily
verified that

(10.1.36) Kerπ = {±1}.

Note that we can extend (10.1.32) to

(10.1.37) π : Sp(1) −→ L(H), π(ξ)η = ξηξ, ξ ∈ Sp(1), η ∈ H,

and again π(ξζ) = π(ξ)π(ζ) for ξ, ζ ∈ Sp(1). Furthermore, each map π(ξ)
is a ring homomorphism, i.e.,

(10.1.38) π(ξ)(αβ) = (π(ξ)α)(π(ξ)β), α, β ∈ H, ξ ∈ Sp(1).

Since π(ξ) is invertible, this is a group of ring automorphisms of H.

Here is another presentation of this automorphism group. Define

(10.1.39) π̃ : SO(3) −→ L(H), π̃(T )(a+ u) = a+ Tu,

given a+ u ∈ H, a ∈ R, u ∈ R3. It is a consequence of the identity

T (u× v) = Tu× Tv, for u, v ∈ R3, T ∈ SO(3),

(cf. Exercise 3 below) that

(10.1.40) π̃(T )(αβ) = (π̃(T )α)(π̃(T )β), α, β ∈ H, T ∈ SO(3).

Thus SO(3) acts as a group of automorphisms of H. (Note that Proposi-
tion 10.1.1 is a special case of this.) We claim this is the same group of
automorphisms as described in (10.1.37)–(10.1.38), via (10.1.35). This is a
consequence of the fact that π in (10.1.35) is surjective. We mention that
the first automorphism K mentioned in Proposition 10.1.1 has the form
(10.1.37) with

ξ =
1

2
(1 + i+ j + k).

We return to a construction used in Proposition 10.1.3 and make some
further observations. Thus, with αν , βν ∈ C, set

(10.1.41) ξ = α1 + jα2, η = β1 + jβ2.

We have a C-linear isomorphism

(10.1.42) γ : H −→ C2, γ(ξ) =

(
α1

α2

)
,

where C acts on H on the right. We set

(10.1.43) Co ξ = α1, Sp ξ = α2.

Note that

(10.1.44)
ηξ = (β1 − β2j)(α1 + jα2)

= α1β1 + α2β2 − j(α1β2 − α2β1).
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Hence

(10.1.45)
Co(ηξ) = α1β1 + α2β2

= ((γ(ξ), γ(η) )),

where (( , )) denotes the standard Hermitian inner product on C2, and

(10.1.46)
Sp(ηξ) = −(α1β2 − α2β1)

= −σ(γ(ξ), γ(η)),
where

(10.1.47) σ((α1, α2), (β1, β2)) = α1β2 − α2β1

defines σ as an antisymmetric, C-bilinear form on C2, called the symplectic
form.
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Exercises

Exercises 1–8 deal with cross products of vectors in R3, and relate to the
identities (10.1.10)–(10.1.14), which in turn relate to associativity of the
product on H.

1. If u, v ∈ R3, we define the cross product u× v = Π(u, v) to be the unique
bilinear map Π : R3 × R3 → R3 satisfying

u× v = −v × u, and

i× j = k, j × k = i, k × i = j,

where {i, j, k} is the standard basis of R3. Show that, for all u, v, w ∈ R3,

(10.1.48) w · (u× v) = det

w1 u1 v1
w2 u2 v2
w3 u3 v3

 .

and show that this property uniquely specifies u× v.

2. Deduce from (10.1.48) that for u, v, w ∈ R3,

u · (v × w) = (u× v) · w.

This establishes (10.1.11).

3. Recall that T ∈ SO(3) provided that T ∈ M(3,R) satisfies T tT = I and
detT = 1. Show that

(10.1.49) T ∈ SO(3) =⇒ Tu× Tv = T (u× v).

Hint. Multiply the 3× 3 matrix in (10.1.48) on the left by T .

4. Generalize the identity

‖u× v‖ = ‖u‖ · ‖v‖ · | sin θ|

to the following, for u, v, w, x ∈ R3:

(10.1.50)

(u× v) · (w × x) = (u · w)(v · x)− (u · x)(v · w)

= det

(
u · w u · x
v · w v · x

)
.
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Hint. Check this for u = i, v = ai + bj, in which u × v = bk, and use
Exercise 3 to show this suffices. Note that the left side of (10.1.50) is then

bk · (w × x) = det

0 w · i x · i
0 w · j x · j
b w · k x · k

 .

Show that this equals the right side of (10.1.50).

5. Show that κ : R3 → L(R3), given by

(10.1.51) κ(y)x = y × x,

has the matrix representation

(10.1.52) κ(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 , y =

y1y2
y3

 ,

so that actually κ : R3 → Skew(3), the space of antisymmetric 3×3 matrices.
Show that, with [A,B] = AB −BA,

(10.1.53)
κ(x× y) = [κ(x), κ(y)],

Tr(κ(x)κ(y)t) = 2x · y.

6. Show that if u, v, w ∈ R3, then the first part of (10.1.53) implies

(u× v)× w = u× (v × w)− v × (u× w).

Relate this to the Jacobi identity

[[A,B], C] = [A, [B,C]]− [B, [A,C]],

for A,B,C ∈M(n,R) (with n = 3). This establishes (10.1.13).

7. Show that if u, v, w ∈ R3,

v × (u× w) = (v · w)u− (v · u)w.

This establishes (10.1.14).
Hint. Start with the observation that v × (u × w) is in Span{u,w} and is
orthogonal to v.
Alternative. Use Exercise 3 to reduce the calculation to the case u = i, w =
ai+ bj.

8. As noted before, the identity (10.1.12) follows from the pair of identities
(10.1.13)–(10.1.14). Establish the converse:

(10.1.12) =⇒ (10.1.13) and (10.1.14).
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Hint. To start, given (10.1.12), permute letters to supplement this with

(10.1.54)
w × (v × u)− (w × v)× u = (v · u)w − (w · v)u,
u× (w × v)− (u× w)× v = (w · v)u− (u · w)v.

Then add (10.1.54) to (10.1.12) to obtain (10.1.14).

Exercises 9–12 relate to the representation π of Sp(1) on R3 defined by
(10.1.32) and its derived representation.

9. Note that

(10.1.55) T1Sp(1) = ImH = R3.

Show that if u ∈ R3,

(10.1.56) π(etu)x = etuxe−tu,

and hence

(10.1.57) dπ(u)x = ux− xu.

10. Using (10.1.6) and Exercise 5, show that

(10.1.58) dπ(u) = 2κ(u).

11. Show that

(10.1.59) κ(k) =

(
J

0

)
, J =

(
0 −1
1 0

)
,

and that if T ∈ SO(3), Exercise 3 yields

(10.1.60)

u = Tk ⇒ κ(u) = Tκ(k)T−1

⇒ esκ(u) = T

(
esJ

1

)
T−1.

12. Deduce that

(10.1.61) π(etu) = T

(
e2tJ

1

)
T−1,

and relate the factor of 2 in (10.1.58) and in (10.1.61), hence in (10.1.6), to
the fact that (10.1.35) is a 2-to-1 map.

13. Show that there is no “product” on R3, i.e., bilinear map P : R3×R3 →
R3, with the property that

x, y ∈ R3 \ 0 =⇒ P (x, y) 6= 0.
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Hint. Define L(x) ∈M(3,R) by
L(x)y = P (x, y).

Note that for each x ∈ R3 \ 0, L(−x) = −L(x), and deduce that (since 3 is
odd),

detL(−x) = − detL(x).

Thus any curve connecting x to −x in R3 \ 0 must contain a point z such
that detL(z) = 0.
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10.2. Quaternionic linear algebra

A quaternionic vector space V is a real vector space, equipped with an R-
bilinear map s : V ×H → V , given by s(v, a) = va (so quaternionic scalars
act on the right), satisfying

(10.2.1) v1 = v, (va)b = v(ab), ∀ v ∈ V, a, b ∈ H.

Note that R-bilinearity then implies va = av for all a ∈ R. The prime
example of such a space is Hn, the space of n-tuples (a1, . . . , an)

t, aj ∈ H,
introduced in §1.2.

If V and W are quaternionic vector spaces, we say an R-linear transfor-
mation T : V → W is H-linear provided it commutes with scalar multipli-
cation, i.e., given T ∈ LR(V,W ),

(10.2.2) T ∈ LH(V,W ) ⇔ T (va) = (Tv)a, ∀ v ∈ V, a ∈ H.

For such T , we see that T (v1a1+v2a2) = (Tv1)a1+(Tv2)a2, for vj ∈ V, aj ∈
H. If V = W , we denote this space by LH(V ). As noted in §1.2, if V = Hn

and A = (ajk) ∈M(n,H), then the standard matrix product

(10.2.3) (Av)j =
∑
k

ajkvk, v = (v1, . . . , vn)
t ∈ Hn,

yields A ∈ LH(Hn).

An R-linear subspaceW of V is said to be an H-linear subspace provided
W is stable under quaternionic scalar multiplication, i.e., given W ⊂ V , R-
linear,

(10.2.4) W is H-linear ⇐⇒ wa ∈W, ∀w ∈W, a ∈ H.

Clearly suchW also has the natural structure of a quaternionic vector space.
Examples of H-linear subspaces include

(10.2.5)
N (S) = {w ∈ V : Sw = 0}, R(T ) = {Tu : u ∈ X},

S ∈ LH(V,X), T ∈ LH(X,V ).

Given a set S = {v1, . . . , vn} ⊂ V , we define

(10.2.6) JS : Hn −→ V, JS

a1...
an

 = v1a1 + · · ·+ vnan,

so JS ∈ LH(Hn, V ). We say

(10.2.7) SpanH(S) = R(JS),
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and

(10.2.8)

S is H-linearly independent ⇔ N (JS) = 0,

S H-spans V ⇔ R(JS) = V,

S is an H-basis of V ⇔ JS is bijective.

Clearly if dimR V < ∞, V has a finite H-spanning set (namely, any basis
over R), any minimal H-spanning subset of which is an H-basis of V . If S
as above is an H-basis of V , we say dimH V = n. Given V isomorphic to Hn

over H, it is a fortiori isomorphic to Hn over R, so

(10.2.9) dimH V = n⇐⇒ dimR V = 4n.

In particular, standard linear algebra over R implies dimH V is well defined.
Given this observation, the following is a simple variant of the R-linear
analogue.

Proposition 10.2.1. Given quaternionic vector spaces V,W such that dimV <
∞, and T ∈ LH(V,W ),

(10.2.10) dimHN (T ) + dimHR(T ) = dimH V.

Proof. The standard result is dimRN (T ) + dimRR(T ) = dimR V (cf. [42],
§1.3), and (10.2.10) follows from this in view of (10.2.9). □

Quaternionic inner product spaces

A quaternionic inner product space is a quaternionic vector space V ,
equipped with an R-bilinear map Q : V ×V → H, denoted 〈u, v〉, satisfying,
for all u, v ∈ V, a ∈ H,

(10.2.11)

〈ua, v〉 = 〈u, v〉a,

〈v, u〉 = 〈u, v〉,
〈u, u〉 > 0, if u 6= 0.

A direct consequence of the first two identities is

(10.2.12) 〈u, va〉 = a〈u, v〉.

The standard example is the inner product on Hn, introduced in §1.2,

(10.2.13) 〈u, v〉 =
n∑
k=1

vkuk,

for u = (u1, . . . , un)
t, v = (v1, . . . , vn)

t ∈ Hn.

A set S = {w1, . . . , wk} ⊂ V is said to be an orthonormal set provided

(10.2.14) 〈wj , wℓ〉 = δjℓ, ∀ j, ` ∈ {1, . . . , k}.
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It readily follows from (10.2.14) that

(10.2.15) w =
∑

wjaj =⇒ 〈w,w〉 =
∑

|aj |2.

Hence S is linearly independent. Suppose S spans W ⊂ V (over H). We
associate a transformation PW ∈ LH(V ), defined as follows:

(10.2.16) PW v =
k∑
j=1

wj〈v, wj〉, v ∈ V.

Note that, for 1 ≤ ` ≤ k,

(10.2.17) 〈PW v, wℓ〉 =
∑
j

〈wj , wℓ〉〈v, wj〉 = 〈v, wℓ〉,

hence

(10.2.18) 〈PW v, wℓaℓ〉 = aℓ〈v, wℓ〉 = 〈v, wℓaℓ〉,

so

(10.2.19) w ∈W =⇒ 〈PW v, w〉 = 〈v, w〉.

Hence

(10.2.20) v ∈ V, w ∈W =⇒ 〈(I − PW )v, w〉 = 0.

Generally, if W is an H-linear subspace of V , we set

(10.2.21) W⊥ = {v ∈ V : 〈v, w〉 = 0, ∀w ∈W}.

It follows from (10.2.11) that W⊥ is an H-linear subspace of V . The content
of (10.2.16) and (10.2.20) is that

(10.2.22) PW : V −→W, I − PW : V −→W⊥,

under the hypothesis that W has the orthonormal basis {w1, . . . , wk}. The
following is a useful complement to (10.2.22).

Proposition 10.2.2. Let W be an H-linear subspace of V . Take v ∈ V ,
and assume

(10.2.23) v = w1 + x1 = w2 + x2, wj ∈W, xj ∈W⊥.

Then

(10.2.24) w1 = w2, x1 = x2.

Proof. The hypothesis implies

(10.2.25) w1 − w2 = x2 − x1 ∈W ∩W⊥ = 0,

the last identity by the third item in (10.2.11). □

We are in a position to establish the following.
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Proposition 10.2.3. Let W be an H-linear subspace of V , and assume
dimH V = n < ∞. Assume {w1, . . . , wk} is an orthonormal basis of W .
Then this extends to an orthonormal basis {w1, . . . , wn} of V .

Proof. If W 6= V , take v ∈ V, v /∈W . Then

(10.2.26) w̃k+1 = (I − PW )v ∈W⊥, nonzero.

Setting

(10.2.27) wk+1 =
1

a
w̃k+1, a = 〈w̃k+1, w̃k+1〉1/2

gives a unit vector wk+1 ∈W⊥, so we have

(10.2.28) {w1, . . . , wk, wk+1},
an orthonormal set, spanning W1 ⊂ V , of H-dimension k + 1. An inductive
argument finishes the proof. □

Corollary 10.2.4. If V is a finite dimensional quaternionic inner product
space, of dimension n ≥ 1, then V has an orthonormal basis.

Proof. Pick a nonzero v ∈ V , set w1 = v/〈v, v〉1/2, spanning W , and apply
Proposition 10.2.3. □

Here is one useful application of an orthonormal basis.

Proposition 10.2.5. If V is a quaternionic inner product space with the
orthonormal basis S = {v1, . . . , vn}, then (10.2.6) provides an H-linear iso-
morphism

(10.2.29) JS : Hn ≈−→ V,

preserving the inner products, i.e.,

(10.2.30) 〈ξ, η〉 = 〈JSξ,JSη〉, ∀ ξ, η ∈ Hn,

where the left side uses the inner product (10.2.13) on Hn, and the right side
uses the given inner product on V .

Proof. We have

(10.2.31)

〈JSξ,JSη〉 =
n∑

j,k=1

〈vjξj , vkηk〉 =
n∑

j,k=1

ηk〈vj , vk〉ξj

=
n∑
k=1

ηkξk = 〈ξ, η〉.

□
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Eigenvectors

If T ∈ LH(V ), we say a nonzero element v ∈ V is an eigenvector of T ,
with eigenvalue λ ∈ H, if

(10.2.32) Tv = vλ.

Note that if this holds, then

(10.2.33) ξ ∈ H, |ξ| = 1 ⇒ T (vξ) = (Tv)ξ = vλξ = (vξ)ξλξ,

so vξ is an eigenvector of T , with eigenvalue ξλξ. If λ ∈ R, ξλξ ≡ λ. More
generally,

(10.2.34) λ = a+ η, a ∈ R, η ∈ ImH ⇒ ξλξ = a+ ξηξ,

and the action of Sp(1) on ImH covers the SO(3) action, as seen in §10.1.
In particular, there exists ξ ∈ Sp(1) such that vξ is an eigenvector with
eigenvalue in C ⊂ H. This observation sets us up to establish the following.

Proposition 10.2.6. If V is a quaternionic vector space, of dimension
n ∈ N, then each T ∈ LH(V ) has an eigenvector.

Proof. Restrict attention to scalars in C ⊂ H. Then V is a complex vector
space (of complex dimension 2n), and T ∈ LC(V ). Standard complex linear
algebra (cf. [42], §2.1) implies there is an eigenvector v such that Tv = vλ,
with λ ∈ C. □

Remark. The reader should check this proposition out when n = 1, V = H,
ξ ∈ H is given, and Tv = ξv.

Note that

(10.2.35) Tv = vλ =⇒ T kv = vλk, ∀ k ∈ N.

In particular, if T ∈ LH(V ) is nilpotent, its only eigenvalue is 0, so if such
T 6= 0, V does not have a basis of eigenvectors of T .

On the other hand, suppose V does have a basis S = {v1, . . . , vn} of
eigenvectors of T ∈ LH(V ),

(10.2.36) Tvj = vjλj .

Define JS : Hn ≈→ V as in (10.2.6), so JSej = vj , where {e1, . . . , en} is the
standard basis of Hn. Then

(10.2.37) (J −1
S TJS)ej = J −1

S vjλj = ejλj = λjej ,
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the last identity holding since H acts on both the left and the right of Hn,
and the only nonzero entry of ej is 1, which is real. This gives the following
result.

Proposition 10.2.7. Assume T ∈ LH(V ) and that V has a basis S = {vj}
of eigenvectors of T , satisfying (10.2.36). Then J −1

S TJS ∈ LH(Hn) is given
by the diagonal matrix

(10.2.38) J −1
S TJS =


λ1

λ2
. . .

λn

 .

Remark. Keep in mind that each eigenvector vj can be scaled to arrange
that λj ∈ C.

Adjoints

If V is a quaternionic inner product space and T ∈ LH(V ), its adjoint
T ∗ ∈ LH(V ) is characterized by

(10.2.39) 〈u, T ∗v〉 = 〈Tu, v〉, u, v ∈ V.

In case V = Hn, with the inner product (10.2.13), and A ∈ LH(Hn) is given
by (10.2.3), then, as seen in §1.2,

(10.2.40) A∗ = (akj).

Also, if JS : Hn → V is an isomorphism preserving inner products, as in
(10.2.30), then

(10.2.41) T = JSAJ −1
S =⇒ T ∗ = JSA∗J −1

S .

The following is an important property of adjoints.

Proposition 10.2.8. Let T ∈ LH(V ), and assume W ⊂ V is an H-linear
subspace. Then

(10.2.42) T :W →W =⇒ T ∗ :W⊥ →W⊥.

Proof. Let w ∈W, x ∈W⊥, and assume T :W →W . Then

(10.2.43) 〈w, T ∗x〉 = 〈Tw, x〉 = 0.

□
Corollary 10.2.9. Let T ∈ LH(V ) and assume T is either self adjoint
(T ∗ = T ) or skew adjoint (T ∗ = −T ). Let W ⊂ V be an H-linear subspace.
Then

(10.2.44) T :W →W =⇒ T :W⊥ →W⊥.
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Special classes of T yielding orthonormal bases of eigenvectors

It is an easy step to proceed from Corollary 10.2.9 to the following.

Proposition 10.2.10. Let V be a finite dimensional quaternionic inner
product space. Let T ∈ LH(V ) and assume T is either self adjoint or skew
adjoint. Then V has an orthonormal basis of eigenvectors of T .

Proof. By Proposition 10.2.6, T has an eigenvector, say v1, so Tv1 = v1λ1.
We can scale v1 to be a unit vector. If v1 spans V , we are done. Other-
wise, if we apply Corollary 10.2.9 to W = SpanH(v1), we get T : W⊥ →
W⊥, and T |W⊥ has an eigenvector v2, so Tv2 = v2λ2, and v2 ⊥ v1. If
SpanH(v1, v2) = V we are done, otherwise apply Corollary 10.2.9 again. An
inductive argument finishes the proof. □

Note that if T = T ∗, T v = vλ, v 6= 0, then

(10.2.45)
〈v, v〉λ = 〈vλ, v〉 = 〈Tv, v〉 = 〈v, Tv〉

= 〈v, vλ〉 = λ〈v, v〉,

hence

(10.2.46) λ = λ, so λ ∈ R.

On the other hand, if T = −T ∗, T v = vλ, v 6= 0, then

(10.2.47)
〈v, v〉λ = 〈vλ, v〉 = 〈Tv, v〉 = −〈v, Tv〉

= −〈v, vλ〉 = −λ〈v, v〉,

hence

(10.2.48) λ = −λ, so λ ∈ ImH.

By the remarks around (10.2.33)–(10.2.34), we can scale v to arrange that
λ ∈ C, hence

(10.2.49) λ = iµ, µ ∈ R,

in this case.

The group Sp(V)

We now consider the quaternionic “unitary” case. Let V be a finite
dimensional quaternionic inner product space. Given T ∈ LH(V ), we say

(10.2.50) T ∈ Sp(V ) ⇐⇒ T ∗T = I.
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This condition implies that T : V → V is injective, hence, by (10.2.10),
surjective, hence bijective, so

(10.2.51) T ∈ Sp(V ) =⇒ T ∗ = T−1 ∈ LH(V ).

In case V = Hn, with its standard inner product, we have Sp(Hn) = Sp(n),
the group introduced in §1.2, and the major focus of this chapter.

We have the following variant of Proposition 10.2.8.

Proposition 10.2.11. Let T ∈ Sp(V ). LetW ⊂ V be an H-linear subspace.
Then

(10.2.52) T :W →W =⇒ T :W⊥ →W⊥.

Proof. We see that T |W ∈ LH(W ) is injective, hence surjective, so T−1 ∈
LH(V ) satisfies T ∗ = T−1 : W → W . The fact that T : W⊥ → W⊥ then
follows from Proposition 10.2.8, with T replaced by T ∗. □

Having this, we proceed to the following, by the same arguments as used
in Proposition 10.2.10.

Proposition 10.2.12. Let T ∈ Sp(V ). Then V has an orthonormal basis
of eigenvectors of T .

Note that if T ∗ = T−1, T v = vλ, v 6= 0, then

(10.2.53)
〈v, v〉λ = 〈vλ, v〉 = 〈Tv, v〉 = 〈v, T−1v〉

= 〈v, vλ−1〉 = λ
−1〈v, v〉,

hence

(10.2.54) λ = λ
−1
, so |λ|2 = 1.

Again we can scale v to arrange that λ ∈ C, hence
(10.2.55) λ = eiθ, θ ∈ R.

In light of Proposition 10.2.7, each T ∈ Sp(n) is conjugate via an element
of Sp(n) to a diagonal matrix with entries of the form (10.2.55). Thus, in
the terminology introduced in §6.A, we have the following.

Corollary 10.2.13. The set of T diagonal matrices in Sp(n) with diago-
nal elements of the form (10.2.55) is a conjugating torus (hence a maximal
torus) for Sp(n).

Thus each T ∈ Sp(n) is contained in a torus JTJ−1, so T is connected
to the identity I ∈ Sp(n), via a continuous curve. This gives the following
topological information.

Corollary 10.2.14. For each n ≥ 1, Sp(n) is connected.
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Exercises.

Let V be an n-dimensional quaternionic vector space, with scalar action
v 7→ vλ, v ∈ V , λ ∈ H, the action also denoted by R(λ). Note that V is a
2n-dimensional complex vector space if we restrict the scalars to C.

1. Let T ∈ LH(V ). Assume v ∈ V, λ ∈ H, v 6= 0, and Tv = vλ. Say
λ = a+ η, as in (10.2.33)–(10.2.34), a ∈ R, η ∈ ImH, and η 6= 0. Let

E(T, a± i|η|) = {v ∈ V : Tv = v(a± i|η|)}.

Each of these spaces is a C-linear subspace of V . Show that we have R-linear
isomorphisms

R(j), R(k) : E(T, a± i|η|) ≈−→ E(T, a∓ i|η|).

Show that

SpanHE(T, a± i|η|) = E(T, a+ i|η|)⊕ E(T, a− i|η|).

Denote this span

E(T, λ).

If λ = a ∈ R, set E(T, λ) = E(T, a).

2. Show that if T ∈ LH(V ), λ ∈ H,

Tv = vλ =⇒ v ∈ E(T, λ).

3. Under the hypotheses of problem 2, show that

ξ ∈ H, |ξ| = 1 =⇒ E(T, λ) = E(T, ξλξ).

4. Show that if T ∈ LH(V ), λ ∈ H,

T : E(T, λ) −→ E(T, λ).

5. If T ∈ LC(V ), let detC T denote the standard complex determinant (an
element of C). Show that

T ∈ LH(V ) =⇒ detCT ≥ 0.

6. Show that if T ∈ LH(V ), λ ∈ H, λ = a+ η, as in exercise 1,

E(T, λ) = Ker(T − a)2 + |η|2.

Hint. Simplify (T − a− |η|R(i))(T − a+ |η|R(i)).
Note. R(i) is not H-linear on V , but it is C-linear, and it commutes with T .
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7. In this exercise, set

V = H2, T =

(
i
i

)
.

(a) Show that

E(T, i) = SpanC

{(1
0

)
,

(
0

1

)}
, E(T,−i) = SpanC

{(j
0

)
,

(
0

j

)}
.

From Exercise 1 we obtain E(T, i) = E(T, i)⊕ E(T,−i), hence
E(T, i) = V.

(b) Show that

v0 =

(
1

j

)
is not an eigenvector of T.

8. Return to the setting of Exercise 1. Suppose dimH E(T, λ) = k.

(a) Show that a basis {v1, . . . , vk} (over C) of E(t, a+ i|η|) provides a basis
(over H) of E(T, λ), consisting of eigenvectors of T .

(b) Modify the basis of part (a) to obtain a basis {w1, . . . , wk} of E(T, λ)
satisfying

Twj = wjλ.
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10.3. Roots, weights, and representations of Sp(1) and Sp(2)

As seen in §10.1, the Lie algebra of Sp(1) is

(10.3.1) sp(1) = T1Sp(1) = ImH = R3,

with Lie bracket

(10.3.2) [u, v] = uv − vu = 2u× v.

Parallel to (4.1.2) in Chapter 4, we set

(10.3.3) X1 =
1

2
i, X2 =

1

2
j, X3 =

1

2
k,

with commutation relations

(10.3.4) [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2,

yielding an isomorphism sp(1) ≈ su(2). In particular, if we take

(10.3.5) h = SpanX1,

we have root vectors:

(10.3.6) [X1, X2 ±
√
−1X3] = ∓

√
−1(X2 ±

√
−1X3).

Since here i denotes the first standard basis vector of R3, we will use
√
−1

to denote the complex number formerly known as i.

Now the treatment of roots, weights, and irreducible skew-adjoint rep-
resentations of sp(1) goes through exactly as that for su(2) in Chapter 4.
Furthermore, the isomorphism σ : SU(2) → Sp(1) of Proposition 10.1.3
yields the representation

(10.3.7) Dk/2 of Sp(1) on Pk ≈ Ck+1,

where Pk is the space of polynomials on C2, homogeneous of degree k, given,
for k ∈ Z+, by Dk/2(ξ) = Dk/2(g), with Dk/2 given by Proposition 4.1.2 and
σ(g) = ξ. That is,

(10.3.8) D1/2(ξ)f(z) = f(g−1z), ξ ∈ Sp(1), σ(g) = ξ, f ∈ Pk.

The group Sp(2) and its roots

We turn to Sp(2), with Lie algebra

(10.3.9) sp(2) = TISp(2) =
{(u1 ξ

−ξ u2

)
: ξ ∈ H, uℓ ∈ ImH = R3

}
.

Sp(2) has a maximal torus T with Lie algebra

(10.3.10) h =
{
ϑab =

(
ai

bi

)
: a, b ∈ R

}
.
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We see that Sp(2) has dimension 10 and rank 2, hence 8 roots. We seek a
root space decomposition

(10.3.11) sp(2)C = hC ⊕
⊕
α

gα,

summing over the eight roots α. A calculation yields

(10.3.12)
[
ϑab,

(
u1 ξ

−ξ u2

)]
=

(
a[i, u1] aiξ − bξi

aξi− biξ b[i, u2]

)
.

We hence seek root vectors of the form

(10.3.13)

(
u1

0

)
,

(
0

u2

)
,

(
ξ

−ξ

)
, uℓ ∈ C3, ξ ∈ HC.

Parallel to (10.3.6), we have

(10.3.14) [i, uℓ] = ∓2
√
−1uℓ, uℓ = j ±

√
−1k,

yielding 4 root vectors, with roots

(10.3.15) µ+m(a, b) = 2(−1)ma, µ−m(a, b) = 2(−1)mb, m ∈ {1, 2}.
Root vectors of the third kind in (10.3.13) arise for ξ ∈ HC that are simul-
taneously eigenvectors for left multiplication and for right multiplication by
i, i.e.,

(10.3.16) Lξ = iξ, Rξ = ξi.

We have

(10.3.17)
L1 = i, Li = −1, Lj = k, Lk = −j,
R1 = i, Ri = −1, Rj = −k, Rk = j,

and hence

(10.3.18)

L(1 +
√
−1i) = −

√
−1(1 +

√
−1i),

L(1−
√
−1i) =

√
−1(1−

√
−1i),

L(j +
√
−1k) = −

√
−1(j +

√
−1k),

L(j −
√
−1k) =

√
−1(j −

√
−1k),

and similarly for R. This yields values of ξ for which

(
ξ

−ξ

)
is a root

vector, with roots given, respectively, by

(10.3.19) −a+ b, a− b, −a− b, a+ b.

Here the R-linear map ξ 7→ ξ on H is extended to be C-linear on HC.

See Figure 10.3.1 for a picture of these roots, expanded with respect to
the dual basis to the basis {ϑ10, ϑ01} of h.
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Figure 10.3.1. Roots of Sp(2)

This looks like the root diagram of SO(5), depicted in Figure 7.1.1, except
it is rotated by 90◦ and dilated by a factor of

√
2, i.e., obtained from Figure

7.1.1 by applying the matrix

(10.3.20)

(
1 1
1 −1

)
.

Later in this section we show that Sp(2) and SO(5) are locally isomorphic.

Representation of Sp(2) on H2

We now look at the “standard” representation of Sp(2) on H2,

(10.3.21) π(T )v = Tv, T ∈ Sp(2), v =

(
v1
v2

)
∈ H2.

The maps π(T ) are H-linear, but here we consider π as a 4-dimensional
complex representation, on H2 ≈ C4. The derived representation of h is
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given by

(10.3.22) dπ(ϑab)v =

(
aiv1
biv2

)
.

Now Mi : H → H, given by Mivj = ivj , is C-linear on H, satisfying

(10.3.23) Mi1 = 1 · i, Mii = i · i; Mij = −ji, Mik = −ki.
Hence we have weights

(10.3.24) a, −a, b, −b,
with weight vectors given, respectively, by

(10.3.25)

(
1

0

)
,

(
j

0

)
,

(
0

1

)
,

(
0

j

)
.

Action of Sp(2) on P1(H)

The standard action of Sp(2) on H2 leads to an action on the quater-
nionic projective space

(10.3.26) P1(H) = H2 \ 0/ ∼,
with equivalence relation

(10.3.27)

(
ξ

η

)
∼
(
ξζ

ηζ

)
, ∀ ζ ∈ H \ 0.

Since Sp(2) acts on the left, this action preserves the equivalence relation.
We have

(10.3.28) τ(T ) : P1(H) −→ P1(H), T ∈ Sp(2),

each τ(T ) being a diffeomorphism of P1(H) onto itself, i.e.,

(10.3.29) τ : Sp(2) −→ Diff(P1(H)).

Let us single out special points on P1(H),

(10.3.30) N =

(
1

0

)
, S =

(
0

1

)
.

Here, with slight abuse of notation, we let
(
1
0

)
denote the equivalence class,

etc. We have “stereographic projections”

(10.3.31)

ψN : P1(H) \N → H, ψN

(
ξ

η

)
= ξη−1,

ψS : P1(H) \ S → H, ψS

(
ξ

η

)
= ηξ−1.

Then we have

(10.3.32) ψN ◦ ψ−1
S : H \ 0 −→ H \ 0,
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given by

(10.3.33) ψN ◦ ψ−1
S (ξ) = ψN

(
ξ−1

1

)
= ξ−1 = |ξ|−2ξ.

Comparison with standard stereographic projections for the unit sphere
S4 ⊂ R5 to R4 yields a diffeomorhphism

(10.3.34) ϕ : P1(H) −→ S4,

in turn yielding a group of diffeomorphisms of S4 to itself,

(10.3.35) γ : Sp(2) −→ Diff(S4),

given by

(10.3.36) γ(T ) : S4 → S4, γ(T ) = ϕ ◦ τ(T ) ◦ ϕ−1, T ∈ Sp(2).

In order to obtain more information on τ and γ, it is useful to consider

(10.3.37) KN = {A ∈ Sp(2) : A ·N = N}.

Now

(10.3.38) A =

(
ξ11 ξ12
ξ21 ξ22

)
, N =

(
1

0

)
=⇒ A ·N =

(
ξ11
ξ21

)
,

so

(10.3.39) A ·N = N =⇒ ξ21 = 0.

Hence

(10.3.40)

A =

(
ξ11 ξ12
0 ξ22

)
⇒ A∗ =

(
ξ11 0

ξ12 ξ22

)
⇒ A∗A =

(
|ξ11|2 ξ11ξ12
ξ12ξ11 |ξ12|2 + |ξ22|2

)
,

so

(10.3.41) A∗A = I =⇒ |ξ11| = 1, ξ12 = 0, |ξ22| = 1.

We have

(10.3.42) KN =
{(ξ1

ξ2

)
: ξj ∈ Sp(1)

}
.

For further insight into how KN acts on P1(H), we have, for η ∈ H, ξj ∈
Sp(1),

(10.3.43) ψS

(
ξ1

ξ2

)
ψ−1
S (η) = ψS

(
ξ1
ξ2η

)
= ξ2ηξ1,

the right side giving the action of Sp(1) × Sp(1) on H covering the SO(4)
action, as indicated in Exercise 7 of §1.2. It follows that γ : KN → Diff(S4)
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acts as a covering of the standard group of rotations of S4 about the axis
through the origin and N . Hence

(10.3.44) γ : KN −→ SO(4) ⊂ SO(5).

We pause to record a corollary to the computation (10.3.43).

Proposition 10.3.1. In (10.3.25), Ker τ = {±I}. Hence Ker γ = {±I}.

Proof. Clearly τ(I) = τ(−I) = I. For the converse, note that

(10.3.45)

A ∈ Ker τ ⇒ A ∈ KN and ψSAψ
−1
S (η) = η, ∀ η ∈ H \ 0

⇒ A ∈ diag (ξ1, ξ2) and ξ2ηξ1 = η, ∀ η ∈ H
⇒ ξ2 = ξ1 and ξ2η = ηξ2, ∀ η ∈ H
⇒ ξ1 = ξ2 = ±1.

□

To proceed, we examine etX , for X ∈ sp(2) in a space complementary
to the Lie algebra of KN , namely

(10.3.46) X =

(
−ξ

ξ

)
, ξ ∈ H.

Note that

(10.3.47)

ξ ∈ H, |ξ| = 1 ⇒ X2 = −I ⇒ etX = (cos t)I + (sin t)X

=

(
cos t −(sin t)ξ

(sin t)ξ cos t

)
.

Complementing (10.3.39), we have

(10.3.48) etXN =

(
cos t

(sin t)ξ

)
, hence ψS(e

tNN) = (tan t)ξ.

More generally, complementing (10.3.43), we have, for η ∈ H,

(10.3.49)

ψSe
tXψ−1

S (η) = ψS

(
c(t) −s(t)ξ
s(t)ξ c(t)

)(
1

η

)
= ψS

(
c(t)− s(t)ξη

s(t)ξ + c(t)η

)
= (s(t)ξ + c(t)η)(c(t)− s(t)ξη)−1,

where we have set

(10.3.50) c(t) = cos t, s(t) = sin t.

We can factor out ξ on the left and set η = ξζ, to write

(10.3.51) ψSe
tXψ−1

S (ξζ) = ξ(s(t) + c(t)ζ)(c(t)− s(t)ζ)−1, ζ ∈ H,

for X of the form (10.3.46)–(10.3.47).
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Representation of Sp(2) on M(2,H)

We define

(10.3.52) κ : Sp(2) −→ LR(M(2,H))

by

(10.3.53) κ(A)X = AXA∗, A ∈ Sp(2), X ∈M(2,H).

We give the R-linear space M(2,H) the Hilbert-Schmidt norm

(10.3.54) ‖X‖2HS =
∑
j,k

|ξjk|2, X =

(
ξ11 ξ12
ξ21 ξ22

)
, ξjk ∈ H.

We also give M(2,H) the associated real inner product. It is clear that

(10.3.55) X 7→ AX, A ∈ Sp(2)

preserves the HS-norm. Also, X 7→ X∗ preserves this norm, so

(10.3.56) X 7→ XB, B ∈ Sp(2)

also does. Hence, for each A ∈ Sp(2), κ(A) preserves the HS-norm on
M(2,H). The space M(2,H) has invariant subspaces,

(10.3.57) M(2,H) = sp(2)⊕ S2(H),

where

(10.3.58) sp(2) = {X∗ = −X}, S2(H) = {X∗ = X}.

The two spaces on the right side of (10.3.57) are mutually orthogonal, and
κ(A) preserves each factor:

(10.3.59) κ(A) : sp(2) → sp(2), κ(A) : S2(H) → S2(H).

The first action is the adjoint representation, already considered in this
section. There is a further decomposition of S2(H) into mutually orthogonal
pieces:

(10.3.60)

S2(H) = {cI : c ∈ R} ⊕ S2
0(H),

S2
0(H) =

{(
a ξ
ξ −a

)
: a ∈ R, ξ ∈ H

}
.

Restricting to S2
0(H) gives the representation

(10.3.61) κ0 : Sp(2) −→ LR(S
2
0(H)).

The isomorphism Sp(2) ≈ Spin(5)
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At this point, a dimension count is called for:

(10.3.62) dimRM(2,H) = 16, dimR sp(2) = 10, dimR S
2
0(H) = 5.

We have that κ(A) preserves the HS-norm, so (10.3.61) basically says

(10.3.63) κ0 : Sp(2) −→ SO(5).

It is instructive to compute κ0(A) for

(10.3.64) A =

(
α

β

)
, α, β ∈ Sp(1).

Indeed, a calculation gives

(10.3.65)

(
α

β

)(
a ξ
ξ −a

)(
α

β

)
=

(
a αξ β
βξα −a

)
.

We now have the following key result.

Proposition 10.3.2. In (10.3.63),

(10.3.66) Kerκ0 = {±I}.

Proof. Since κ0 is a group homomorphism, Ker κ0 is a normal subgroup of
Sp(2). Take x ∈ Kerκ0. We know that

(10.3.67) T =
{(eiθ1

eiθ2

)
: θj ∈ R

}
is a conjugating torus for Sp(2). Hence there exists g ∈ Sp(2) such that

(10.3.68) g−1xg =

(
α

β

)
∈ T,

and g−1xg ∈ Kerκ0. The calculation (10.3.65) implies

(10.3.69)

βξα = ξ, ∀ ξ ∈ H, hence (taking ξ = 1)

α = β, and αξ = ξα, ∀ ξ ∈ H, hence
α ∈ R, so α = β = ±1.

This implies

(10.3.70) g−1xg = ±I, hence x = ±I.

□

It follows from (10.3.66) that dκ0 : sp(2) → so(5) is injective, hence an
isomorphism, since both Lie algebas have dimension 10. Hence κ0(Sp(2))
is a 10-dimensional subgroup of SO(5), and since SO(5) is connected, this
implies

(10.3.71) κ0 in (10.3.63) is onto.
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Thus

(10.3.72) SO(5) ≈ Sp(2)/{±I}.
We know Sp(2) is connected, so κ0 in (10.3.63) presents Sp(2) as a two-fold
connected covering group of SO(5). Recall from Chapter 7 that Spin(5) has
this property. We have seen in Chapter 7 that Spin(n) is simply connected.
Hence the Lie group homomorphism

(10.3.73) Spin(5) −→ SO(5)

lifts to a Lie group homomorphism

(10.3.74) σ : Spin(5) −→ Sp(2).

Proposition 10.3.3. The homomorphism (10.3.74) is an isomorphism of
Lie groups.

Proof. The map κ0 ◦ σ : Spin(5) → SO(5) is the standard covering homo-
morphism, so Ker κ0 ◦σ has two elements. Thus ker σ has one element, so σ
in (10.3.74) is injective. Surjectivity is established by an argument similar
to that used in (10.3.71). □

Back to P1(H)

We give another perspectice on quaternionic projective space, using a
natural one-to-one correspondence between elements of P1(H) and orthogo-
nal projections in LH(H2) of the form

(10.3.75) Pvu = v〈u, v〉, v ∈ H2, |v| = 1.

Compare (10.2.16). Note that if ζ ∈ H, |ζ| = 1,

(10.3.76) Pvζu = vζ〈u, vζ〉 = vζζ〈u, v〉 = Pvu,

so Pvζ = Pv, i.e., Pv depends only on SpanH(v). This yields the bijection

(10.3.77) p : P1(H) −→ {Pv : v ∈ H2, |v| = 1}.
Note that

(10.3.78)

A ∈ Sp(2) ⇒ PAvu = Av〈u,Av〉
= Av〈A∗u, v〉
= APvA

∗u.

Next, we set

(10.3.79) Hv = Pv − P⊥
v = Pv − (I − Pv) = 2Pv − I,

for unit v ∈ H2. From (10.3.76) and (10.3.78) we have

(10.3.80) Hvζ = Hv, HAv = AHvA
∗, for ζ ∈ Sp(1), A ∈ Sp(2).
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Also (10.3.77) yields a bijection

(10.3.81) q : P1(H) −→ {Hv : v ∈ H2, |v| = 1}.

Note that

(10.3.82) Hv ∈ S2
0(H),

and we can rewrite the second half of (10.3.80) as

(10.3.83) A ∈ Sp(2) =⇒ HAv = κ0(A)Hv.

We compute the matrix representations of Pv and Hv, for unit v ∈ H2,
starting with

(10.3.84)

v =

(
ζ

η

)
⇒ Pv

(
1

0

)
=

(
ζ

η

)
ζ =

(
|ζ|2

ηζ

)
Pv

(
0

1

)
=

(
ζ

η

)
η =

(
ζη

|η|2

)
⇒ Pv =

(
|ζ|2 ζη

ηζ |η|2
)
, |ζ|2 + |η|2 = |v|2 = 1.

Hence

(10.3.85) Hv =

(
2|ζ|2 − 1 2ζη

2ηζ 2|η|2 − 1

)
∈ S2

0(H).

Note that

(10.3.86)
‖Pv‖2HS = |ζ|4 + |η|4 + 2|η|2|ζ|2

= (|ζ|2 + |η|2)2 = 1.

Also

(10.3.87)

2Pv = Hv + I, Hv ⊥ I in S2(H)

⇒ 4‖Pv‖2HS = ‖Hv‖2HS + ‖I‖2HS

⇒ ‖Hv‖2HS = 2.

This leads to the following

Proposition 10.3.4. We have

(10.3.88) {Hv : v ∈ H2, |v| = 1} = {X ∈ S2
0(H) : ‖X‖2HS = 2}.

Proof. By (10.3.87), the left side of (10.3.88) is contained in the right
side. By (10.3.63) and (10.3.71), Sp(2) acts transitively on the right side of
(10.3.88), and by (10.3.83) Sp(2) leaves the left side invariant. This implies
identity in (10.3.88). □
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Corollary 10.3.5. The results (10.3.81), (10.3.83), and (10.3.88) yield a
bijection

(10.3.89) q : P1(H) −→ {X ∈ S2
0(H) : ‖X‖2HS = 2},

intertwining the Sp(2) actions.

The representations of Sp(2)

The isomorphism Sp(2) ≈ Spin(5) established in Proposition 10.3.3 al-
lows us to read off the irreducible unitary representations of Sp(2) from the
results on Spin(n) (with n = 5) established in Chapter 7. It is worth noting
that the spinor representation, filling in the gap mentioned at the end of
§7.1, is given by the representation π of Sp(2) on H2 described in (10.3.21).
That is, in the notation of §7.5,

(10.3.90) π ≈ D+
1/2.

We note that H2 and S+(6) are both complex vector spaces of C-dimension
4. In particular,

(10.3.91) S+(6) =
⊕
j even

ΛjCC
3 = Λ0

CC3 ⊕ Λ2
CC3 ≈ C4.
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Exercises

1. Show that (10.3.88) implies

{Hv : v ∈ H2, |v| = 1} =
{(

a ξ
ξ −a

)
: a ∈ R, ξ ∈ H, a2 + |ξ|2 = 1

}
.

Given Hv of this form, show that

Pv =
1

2

(
1 + a ξ
ξ 1− a

)
,

and that

SpanH v = SpanH

(
1 + a

ξ

)
, if a 6= −1,

SpanH

(
ξ

1− a

)
, if a 6= 1.

2. Set
g = sp(2) = {X ∈M(2,H) : X∗ = −X},

k = sp(1)⊕ sp(1) =
{(u1

u2

)
: uj ∈ ImH

}
,

p =
{( −ξ

ξ

)
: ξ ∈ H

}
.

Show that
g = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

3. Given

Y =

(
u1

u2

)
∈ k, Z =

(
−ξ

ξ

)
∈ p, |ξ| = 1,

compute

etY =

(
α

β

)
, α, β ∈ Sp(1), etZ = (cos t)I + (sin t)Z.

Then compute (
α

β

)(
c(t) −s(t)ξ
s(t)ξ c(t)

)
∈ Sp(2).

4. Denote the groups generated by g and k by G = Sp(2) and K ≈ Sp(1)×

Sp(1). Given

(
α

β

)
= A ∈ K and Z ∈ p (as in Exercise 3), compute

AZA−1, representing K on p.
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10.4. Second introduction to Sp(n)

For general n ∈ N, the group Sp(n), introduced in Chapter 1, §1.2, is defined
as

(10.4.1) Sp(n) = {A ∈M(n,H) : A∗A = I},
where

(10.4.2) A = (aℓm), aℓm ∈ H =⇒ A∗ = (amℓ).

As seen in Chapter 1, Sp(n) ↪→ O(4n), as a consequence of the fact that,
given A ∈ M(n,H), A belongs to Sp(n) if and only if applying A preserves
the quaternionic inner product

(10.4.3) 〈ξ, η〉 =
∑
ℓ

ηℓξℓ.

An exercise there gives the more precise result that Sp(n) ↪→ U(2n). Here
we use (10.1.41)–(10.1.47) to prove a more precise result. In fact, parallel
to (10.1.42), we have the R-linear isomorphism

γ : Hn −→ C2n,

and then from (10.1.45)–(10.1.46) we have that, for ξ, η ∈ Hn,

(10.4.4)
Co〈ξ, η〉 = ((γ(ξ), γ(η) )),

Sp〈ξ, η〉 = −σ(γ(ξ), γ(η)),

where (( , )) denotes the standard Hermitian inner product on C2n, and

(10.4.5) σ((α1, α2), (β1, β2)) = α1 · β2 − α2 · β1,
is an antisymmetric, C-bilinear form on C2n, called the symplectic form.
(Here, αν , βν ∈ Cn, and αµ · βν is the usual C-bilinear dot product on Cn.)
Thus we have the natural injection

(10.4.6) Sp(n) ↪→ U(2n) ∩ Sp(2n,C),
where Sp(2n,C) denotes the group of elements of Gl(2n,C) that preserve
the form σ.

Having reintroduced Sp(n), we recall that its Lie algebra is given by

(10.4.7) sp(n) = {X ∈M(n,H) : X∗ = −X}.
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10.5. Roots of Sp(n), n ≥ 3

We now look at the roots of Sp(n) for n ≥ 3. Recall that

(10.5.1) sp(n) = {X ∈M(n,H) : X∗ = −X}.
Parallel to (10.3.10), we write

(10.5.2) h = {ϑa : a ∈ Rn}, ϑa =

a1i . . .

ani

 .

In case n = 3, the parallel to (10.3.9) is

(10.5.3) X =

 u1 ξ12 ξ13
−ξ21 u2 ξ23
−ξ13 −ξ23 u3

 , uℓ ∈ ImH, ξℓm ∈ H.

We use similar notation for X ∈ sp(n)C. As in §10.3, we extend the R-
linear involution ξ 7→ ξ on H by C-linearity to an involution on HC. More
generally, X ∈ sp(n)C has the form X = (xℓm), with

(10.5.4)
xℓℓ = uℓ ∈ (ImH)C ≈ C3,

` < m⇒ xℓm = ξℓm ∈ HC, xmℓ = −ξℓm.

We extend the commutator calculation (10.3.12). In case n = 3, this
becomes

(10.5.5) [ϑa, X] =

a1[i, u1] a1iξ12 − a2ξ12i a1iξ13 − a3ξ13i
∗ a2[i, u2] a2iξ23 − a3ξ23i
∗ ∗ a3[i, u3]

 ,

where the “∗”s indicate that Y = [ϑa, X] satisfies Y ∗ = −Y . More generally,
we have

(10.5.6)
[ϑa, X] = (yℓm), yℓℓ = aℓ[i, uℓ],

` < m⇒ yℓm = aℓiξℓm − amξℓmi, ymℓ = −yℓm.

Parallel to (10.3.13), we have two types of candidates for root vectors,
either Eℓ, a diagonal matrix with `th diagonal entry uℓ ∈ (ImH)C ≈ C3

and all other entries zero, or Eℓm, ` < m, with (`,m)-entry ξℓm ∈ HC,
(m, `)-entry −ξℓm, all other entries zero. Calculations parallel to (10.3.14)–
(10.3.19) yield the following.

Proposition 10.5.1. With respect to the basis of h defined by h ≈ Rn,
ϑa ↔ a, roots with root vectors of the form Eℓ are given by

(10.5.7) ρ±ℓ (a) = ±2aℓ,

and roots with root vectors of the form Eℓm are given by

(10.5.8) ραβℓm(a) = (−1)αaℓ + (−1)βam, ` < m, α, β ∈ {0, 1}.
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We see that sp(n)C has 2n roots of the first sort and 4(n2 − n)/2 =
2(n2 − n) roots of the second sort, hence a total of 2n2 roots. As a check,
note that

(10.5.9) dim sp(n) = 2n2 + n, dim h = n.

If we use the standard lexicographical ordering, we see that the n2 pos-
itive roots of Sp(n) are

(10.5.10) ρ+ℓ (a) = 2aℓ, ρ0βℓm(a) = aℓ + (−1)βam,

with, respectively, 1 ≤ ` ≤ n and 1 ≤ ` < m ≤ n. Recall from §6.6 that the
set Σ of simple roots consists of those positive roots that cannot be written
as a sum of two positive roots. Now

(10.5.11) ρ+ℓ = ρ00ℓm + ρ01ℓm if ` < m,

so among {ρ+ℓ }, only ρ
+
n is simple. Also

(10.5.12) ρ00ℓm = ρ01ℓm + ρ+m if ` < m,

so none of the roots ρ00ℓm are simple. Furthermore,

(10.5.13) aℓ − aℓ+j+1 = aℓ − aℓ+1 + aℓ+1 − aℓ+j+1,

so ρ01ℓm is simple only for m = `+ 1, 1 ≤ ` ≤ n− 1. We summarize:

Proposition 10.5.2. The set Σ of simple roots of Sp(n) consists of

(10.5.14) ρ01ℓ,ℓ+1, 1 ≤ ` ≤ n− 1, and ρ+n .

Let us denote these simple roots by

(10.5.15)
ρ̂ℓ (1 ≤ ` ≤ n− 1), and ρ̂n, so

ρ̂ℓ(a) = aℓ − aℓ+1 (1 ≤ ` ≤ n− 1) ρ̂n(a) = 2an.

We have

(10.5.16)
〈ρ̂ℓ, ρ̂ℓ〉 = 2 if 1 ≤ ` ≤ n− 1,

4 if ` = n.

and

(10.5.17)
〈ρ̂ℓ, ρ̂ℓ+1〉 = −1 if 1 ≤ ` ≤ n− 2,

−2 if ` = n− 1,

other inner products being 0 (subject to symmetry). Thus, following the
general construction described in §6.6, we have the following Dynkin dia-
gram.
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Figure 10.5.1. Dynkin diagram of Sp(n)

Note the similarity with the Dynkin diagram of SO(2n + 1) presented in
§6.6, except the vertices decorated by dots are reversed. Only for n = 2
(2n+ 1 = 5) are the two diagrams equivalent.
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10.6. Weights and representations of Sp(n), n ≥ 3

It is a special case of Proposition 6.2.1 that, if λ ∈ h′, then for λ to be the
weight of a unitary representation of Sp(n), it is necessary that

(10.6.1) 2
〈λ, α〉
〈α, α〉

∈ Z,

for each root α. It suffices to check the positive roots. If we identify h with
Rn via ϑa ↔ a, and write

(10.6.2) λ(a) = λ1a1 + · · ·+ λnan,

we see that

(10.6.3) 2
〈λ, ρ+ℓ 〉
〈ρ+ℓ , ρ

+
ℓ 〉

= λℓ, 2
〈λ, ρ0βℓm〉
〈ρ0βℓm, ρ

0β
ℓm〉

= λℓ + (−1)βλm,

so (10.6.1) holds for each root α if and only if

(10.6.4) λℓ ∈ Z, ∀ ` ∈ {1, . . . , n}.

In other words, the integer lattice Zn ⊂ Rn ≈ h′ forms the lattice of potential
weights of representations of Sp(n).

Furthermore, as defined in §6.2, an element λ ∈ h′ is a dominant integral
weight if and only if the quantity in (10.6.1) is a non-negative integer for
each positive root α. The calculations (10.6.3) then give the following.

Proposition 10.6.1. An element λ ∈ h′ is a dominant integral weight if
and only if (10.6.2) holds with

(10.6.5) λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, all λℓ ∈ Z+.

Proof. The first part of (10.6.3) gives λℓ ∈ Z+ for each `, and the second
part gives λℓ − λm ∈ Z+ for ` < m. □

The relevance to the issue at hand is stated as follows.

Theorem 10.6.2. An element λ ∈ h′ is the highest weight of an irreducible
unitary representation of Sp(n) ⇔ λ is a dominant integral weight.

We note that the implication “⇒” is established in great generality in
Proposition 6.2.1. Given that Sp(n) is simply connected (which we have
not yet established) Theorem 10.6.2 is a special case of the Theorem of the
Highest Weight, stated in §6.2. In light of general results of Chapter 6, this
result has the following corollary.

Corollary 10.6.3. There is a natural one-to-one correspondence between
the set of elements λ ∈ h′ satisfying (10.6.5) and the set of equivalence
classes of irreducible unitary representations of Sp(n).
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Accordingly, if we have an irreducible unitary representation of Sp(n)
with highest weight λ, satisfying (10.6.2), we denote the representation by

(10.6.6) D(λ1,λ2,...,λn).

Of course, D(0,0,...,0) is the trivial representation of Sp(n) on C. Note that
this notation differs from that used (for n = 1) in (10.3.7).

Representation of Sp(n) on Hn

We look at the standard representation of Sp(n) on Hn,

(10.6.7) π(T )v = Tv, T ∈ Sp(n), v = (v1, . . . , vn)
t ∈ Hn.

The maps π(T ) are H-linear, but we consider π as a 2n-dimensional complex
representation on Hn ≈ C2n. The derived representation of h is given by

(10.6.8) dπ(ϑa)v =

a1iv1...
anivn

 .

Calculations similar to (10.3.23)–(10.3.25) show that the weights of this
representation are

(10.6.9) λ±ℓ (a) = ±aℓ, 1 ≤ ` ≤ n.

In particular, the highest weight is λ+1 (a) = a1, and we have

(10.6.10) π = D(1,0,...,0).

Actually, to conclude (10.6.10), we need to know that π is irreducible. Here
is a “lazy” proof. If not, π would split into irreducible pieces, each of which
would have a non-raisable weight vector, and its weight must be a domi-
nant integral weight. But among the weights (10.6.9), only λ+1 is dominant
integral, and all the weight spaces are one-dimensional.

We compute the character of this representation, at points on the max-
imal torus T = Exp(h). We have

(10.6.11) Exp(ϑa) =

e
ia1

. . .

eian

 ,

and we want to compute the trace of the (2n)× (2n) matrix representing its
action on Cn, arising from the C-linear isomorphism H → C2, given by

(10.6.12) x+ iy + jz + kw = (x+ iy) + j(z − iw) 7→
(
x+ iy

z − iw

)
.
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One has left multiplication by ξ ∈ H on H represented by the 2× 2 complex
matrix M(ξ), given by

(10.6.13)

M(1) =

(
1

1

)
, M(i) =

(
i

−i

)
,

M(j) =

(
−1

1

)
, M(k) =

(
−i

−i

)
.

It follows that

(10.6.14)

χπ(Exp(ϑa)) = 2Re
∑
j

eiaj

= 2
∑
j

cos aj .

Representation of Sp(n) on M(n,H)

We define

(10.6.15) κ : Sp(n) −→ LR(M(n,H)), κ(A)X = AXA∗,

for A ∈ Sp(n), X ∈ M(n,H). We give the R-linear space M(n,H) the
Hilbert-Schmidt norm, parallel to (10.3.54), and the associated real in-
ner product. Parallel to (10.3.55)–(10.3.56), we have that for each A ∈
Sp(n), κ(A) preserves the HS-norm on M(n,H). Also, parallel to (10.3.57)–
(10.3.60), we have the orthogonal decomposition

(10.6.16) M(n,H) = sp(n)⊕ {cI : c ∈ R} ⊕ S2
0(Hn),

where

(10.6.17)
S2
0(Hn) = {X = (ξℓm) ∈M(n,H) : ξℓℓ ∈ R, ξℓm = ξmℓ,

ξ11 + · · ·+ ξnn = 0}.

We have the representation

(10.6.18) κ0 : Sp(n) −→ LR(S
2
0(Hn)).

Of course, κ|sp(n) = Ad, and κ acts trivially on {cI}. To study the weights,
we extend these representations to the complexifications, e.g., to sp(n)C
(already considered earlier in this section) and to S2

0(Hn)C. The weights of
Ad consist of the roots discussed above, plus the weight 0, whose associated
weight space is hC, of dimension n.
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We turn our attention to the representation κ0. As in (10.3.64)–(10.3.65),
it is instructive to compute κ0(A) for

(10.6.19) A =

α1

. . .

αn

 , αj ∈ Sp(1).

If X = (ξℓm) is as in (10.6.17), we have

(10.6.20) κ0(A)X = Y = (ηℓm), ηℓℓ = ξℓℓ, ηℓm = αℓξℓmαm, ηmℓ = ηℓm.

This leads to the following extension of Proposition 10.3.2.

Proposition 10.6.4. In (10.6.18),

(10.6.21) Kerκ0 = {±I}.

Proof. Kerκ0 is a normal subgroup of Sp(n). Take x ∈ Kerκ0. We know
that

(10.6.22) T = {diag(eiθ1 , . . . , eiθn) : θj ∈ R}

is a conjugating torus for Sp(n). Hence there exists g ∈ Sp(n) such that

(10.6.23) g−1xg =

α1

. . .

αn

 ∈ T,

and g−1xg ∈ Kerκ0. The calculation (10.6.20) implies

(10.6.24)

αℓξℓmαm = ξℓm, ∀ ξℓm ∈ H, hence (taking ξℓm = 1)

αℓ = αm, and αℓξ = ξαℓ, ∀ ξ ∈ H, hence
αℓ ∈ R, so α1 = · · ·αn = ±1.

This implies

(10.6.25) g−1xg = ±I, hence x = ±I.

□

Regarding the weights of κ0, an argument parallel to that leading from
(10.5.6) to Proposition 10.5.1, with [i, uℓ] replaced by [i, ξℓℓ] = 0, yields the
following result.

Proposition 10.6.5. With respect to the isomorphism h ≈ Rn defined by
ϑa ↔ a, the weights of the representation κ0 of Sp(n) on S2

0(Hn)C are given
by (10.5.8), i.e.,

(10.6.26) ραβℓm(a) = (−1)αaℓ + (−1)βam, ` < m, α, β ∈ {0, 1}.



412 10. The groups Sp(n) and their representations

Note that

(10.6.27) the highest weight of κ0 is ρ0012(a) = a1 + a2,

and this is the only dominant integral weight that occurs in (10.6.26).

Corollary 10.6.6. The representation κ0 is irreducible, and

(10.6.28) κ0 = D(1,1,0,...,0).

Returning to the adjoint representation Ad of Sp(n) on sp(n)C, we recall
that its weights are the roots (10.5.7)–(10.5.8). Thus

(10.6.29) the highest weight of Ad is ρ+1 (a) = 2a1.

In this case, there are two dominant integral weights that occur in the list
of weights for Ad, namely ρ+1 and ρ0012. This leads to the following.

Proposition 10.6.7. The adjoint representation Ad is an irreducible rep-
resentation of Sp(n) on sp(n)C, and

(10.6.30) Ad = D(2,0,...,0).

The reprsentations Λkπ on ΛkCHn

The space Hn, with C acting on the right, is a complex vector space
isomorphic to C2n, and for each k ∈ {1, . . . , 2n}, Λkπ is a unitary represen-
tation of Sp(n) on ΛkCHn. We aim to prove the following.

Proposition 10.6.8. For 1 ≤ k ≤ n, the highest weight of Λkπ is λ+1 +
· · ·+ λ+k . Hence ΛkCHn contains a C-linear subspace Vnk on which Λkπ acts

irreducibly, with highest weight λ+1 + · · ·+ λ+k . i.e., Sp(n) acts on Vnk as

(10.6.31) D(1,...,1,...0) (k ones).

Proof. The analysis of π on Hn yields an orthonormal basis {u±j : 1 ≤ j ≤
n} of the (2n)-dimensional complex vector space Hn, satisfying

(10.6.32) π(Γ(a))u±j = eiλ
±
j (a)u±j ,

with

(10.6.33) Γ(a) = Exp(ϑa).

Now, for 1 ≤ k ≤ 2n, ΛkCHn is spanned by monomials

(10.6.34) us1j1 ∧ · · · ∧ uskjk , 1 ≤ j1 ≤ · · · ≤ jk ≤ n, sν ∈ {±},

where the pairs (jν , sν) are all distinct, and we have

(10.6.35)
Λkπ(Γ(a))us1j1 ∧ · · · ∧ uskjk
= e

i[λ
s1
j1

(a)+···+λskjk (a)]us1j1 ∧ · · · ∧ uskjk .
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Thus, for 1 ≤ k ≤ 2n, all the weights of Λkπ are

(10.6.36) λs1j1 + · · ·+ λskjk ,

with (jν , sν) as described above. This yields the assertion on the highest
weight made in Proposition 10.6.8. If Λkπ is decomposed into irreducible
factors, one of these must have λ+1 + · · ·+ λ+k as its highest weight, as long
as k ≤ n, and we conclude that (10.6.31) holds. □

Remark. If k = n+ j, 1 ≤ j ≤ n, we obtain that the highest weight of Λkπ
is λ+1 + · · ·+ λ+n−j . In such a case, Λkπ decomposes into irreducible factors,
and one of them has this as its highest weight.

Let us focus on the case k = 2. Comparing (10.6.28) and (10.6.31), we
see that Λ2π contains κ0. We have the following dimension count:

(10.6.37) dimC Λ2
CHn =

(
2n

2

)
= 2n2 − n, dimC S

2
0(Hn)C = 2n2 − n− 1.

We conclude that

(10.6.38) Λ2π ≈ κ0 ⊕ 1,

where 1 denotes the trivial representation of Sp(n) on C.
Returning to the main thrust of Proposition 10.6.8, we see that, as a

consequence, the theorem of the highest weight holds for Sp(n). This has
the following topological consequence.

Proposition 10.6.9. For each n ∈ N, the group Sp(n) is simply connected.

Proof. Results of Appendix E.3 imply that the universal covering group

S̃p(n) is compact. If this is a k-to-1 cover of Sp(n) and k > 1, the Peter-Weyl
theorem implies that it must have irreducible unitary representations with
highest weight different from those on the list of irreducible representations
of Sp(n), hence with highest weights that are not dominant integral weights,
an impossibility. □





Chapter 11

The Octonions and the
group G2

There is a continuation of the construction leading from the real numbers
to the complex numbers that proceeds for two more steps, yielding first the
quaternions (of dimension 4 over R) and then the octonions (of dimension
8 over R). As seen already in §1.2, a quaternion ξ ∈ H is given by

(11.0.1) ξ = a+ bi+ cj + dk, a, b, c, d ∈ R.

Addition is performed componentwise, and multiplication is an R-bilinear
map H × H → H in which 1 is a unit, products of distinct factors i, j, k
behave like the cross product on R3, and i2 = j2 = k2 = −1. This product
is not commutative, but it is associative. An octonion x ∈ O is given by

(11.0.2) x = (ξ, η), ξ, η ∈ H.

Addition is again defined componentwise, and multiplication is an R-bilinear
map O × O → O, whose definition (given in §11.1) is a somewhat subtle
modification of the definition of multiplication on H. One major difference
is that multiplication on O is no longer associative. Nevertheless, this non-
associative algebra O has a very beautiful algebraic structure, whose study
is the principal object of this chapter.

In §11.1 we define the product xy of two elements of O and establish
basic properties. We introduce a norm and cross product, and study 4-
dimensional subalgebras of O that are isomorphic to H. These include A =
Span{1, u1, u2, u1u2}, when u1 and u2 are orthonormal elements of Im(O).
Analysis of the relationship of A and A⊥ gives rise to orthogonal linear maps

415
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on O that are shown to preserve the product, i.e., to automorphisms of O,
which form a group, denoted Aut(O).

Section 11.2 goes further into Aut(O), noting that it is a compact, con-
nected Lie group of dimension 14, and analyzing some of its subgroups, in-
cluding groups isomorphic to SO(4) and groups isomorphic to SU(3). Both
of these types of subgroups contain two-dimensional tori. It is shown that
Aut(O) contains no tori of larger dimension. These facts are used in §11.3
to show that Aut(O) is simple and to analyze its root system. The analysis
reveals that Aut(O) falls into the classification of compact simple Lie groups
as the group denoted G2. In §11.4 we make further comments about the Lie
algebra of Aut(O), including the fact that it has a Z/(3) grading.

The Lie group G2 is the first in a list of 5 exceptional compact Lie
groups, denoted G2, F4, E6, E7, and E8, with complexified Lie algebras de-
noted G2,F4,E6,E7, and E8.

Further material on the algebra of octonions, its automorphism group,
and other concepts arising here can be found in a number of sources, includ-
ing the survey article [4] and the books [35], [30], and [21].

Acknowledgment. Thanks to Robert Bryant for valuable conversations
on the material of this chapter, particularly for sharing his insights on the
Moufang identities.
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11.1. Octonions

The set of octonions (also known as Cayley numbers) is a special but in-
triguing example of a nonassociative algebra. This space is

(11.1.1) O = H⊕H,

with product given by

(11.1.2) (α, β) · (γ, δ) = (αγ − δβ, δα+ βγ), α, β, γ, δ ∈ H,

with conjugation δ 7→ δ on H defined as in §10.1. We mention that, with
H = C ⊕ C, the product in H is also given by (11.1.2), with α, β, γ, δ ∈ C.
Furthermore, with C = R ⊕ R, the product in C is given by (11.1.2), with
α, β, γ, δ ∈ R. In the setting of O = H⊕H, the product in (11.1.2) is clearly
R-bilinear, but it is neither commutative nor associative. However, it does
retain a vestige of associativity, namely

(11.1.3) x(yz) = (xy)z whenever any two of x, y, z ∈ O coincide.

We define a conjugation on O:

(11.1.4) x = (α, β) =⇒ x = (α,−β).

We set Rex = (x + x)/2 = (Reα, 0). Note that a = Rex lies in the
center of O (i.e., commutes with each element of O), and x = 2a − x. It is
straightforward to check that

(11.1.5) x, y ∈ O =⇒ Rexy = Re yx.

We have a decomposition

(11.1.6) x = a+ u, a = Rex, u = x− Rex = Imx,

parallel to (10.1.4). Again we call u the vector part of x, and we say that
u ∈ Im(O). If also y = b+ v, then

(11.1.7) xy = ab+ av + bu+ uv,

with a similar formula for yx, yielding

(11.1.8) xy − yx = uv − vu.

We now define the inner product

(11.1.9) 〈x, y〉 = Re(xy), x, y ∈ O.

To check symmetry, note that if x = a+ u, y = b+ v,

(11.1.10) 〈x, y〉 = ab− Re(uv),

and (11.1.5) then implies

(11.1.11) 〈x, y〉 = 〈y, x〉.
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In fact, (11.1.9) yields the standard Euclidean inner product on O ≈ R8,

with square norm |x|2 =
√
〈x, x〉. We have

(11.1.12) x = (α, β) =⇒ xx = (αα+ ββ, 0) = (|x|2, 0).

As a consequence, we see that

(11.1.13) x ∈ O, x 6= 0, y = |x|−2x =⇒ xy = yx = 1,

where 1 = (1, 0) is the multiplicative unit in O.

Returning to conjugation on O, we have, parallel to (10.1.20),

(11.1.14) x, y ∈ O =⇒ xy = y x,

via a calculation using the definition (11.1.2) of the product. Using the
decomposition x = a+u, y = b+ v, this is equivalent to uv = vu, and since
uv = 2Re(uv)− uv = −2〈u, v〉 − uv, this is equivalent to

(11.1.15) u, v ∈ Im(O) =⇒ uv + vu = −2〈u, v〉.

In turn, (11.1.15) follows by expanding (u + v)2 and using w2 = −|w|2 for
w ∈ =(O), with w = u, v, and u+v. We next establish the following parallel
to (10.1.22).

Proposition 11.1.1. Given x, y ∈ O,

(11.1.16) |xy| = |x| |y|.

Proof. To begin, we bring in the following variant of (11.1.3),

(11.1.17) x, y ∈ O =⇒ (xy)(yx) = ((xy)y)x,

which can be verified from the definition (11.1.2) of the product. Taking
into account x = 2a− x, y = 2b− y, and (11.1.14), we have

(11.1.18)
(xy)(xy) = (xy)(y x) = ((xy)y)x

= (x|y|2)x = |x|2|y|2,

which gives (11.1.16), since |xy|2 = (xy)(xy). □

Continuing to pursue parallels with §10.1, we define a cross product on
Im(O) as follows. Given u, v ∈ Im(O), set

(11.1.19) u× v =
1

2
(uv − vu).

By (11.1.5), this is an element of Im(O). Also, if x = a+ u, y = b+ v,

(11.1.20) xy − yx = 2u× v.

Compare (10.1.6). Putting together (11.1.15) and (11.1.19), we have

(11.1.21) uv = −〈u, v〉+ u× v, u, v ∈ Im(O).
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Hence

(11.1.22) |uv|2 = |〈u, v〉|2 + |u× v|2.

Now (11.1.16) implies |uv|2 = |u|2|v|2, and of course 〈u, v〉 = |u| |v| cos θ,
where θ is the angle between u and v. Hence, parallel to (10.1.26),

(11.1.23) |u× v|2 = |u|2|v|2| sin θ|2, ∀u, v ∈ Im(O).

We have the following complement.

Proposition 11.1.2. If u, v ∈ Im(O), then

(11.1.24) w = u× v =⇒ 〈w, u〉 = 〈w, v〉 = 0.

Proof. We know that w ∈ Im(O). Hence, by (11.1.21),

(11.1.25)
〈w, v〉 = 〈uv, v〉 = Re((uv)v)

= Re(u(vv)) = |v|2Reu = 0,

the third identity by (11.1.3) (applicable since v = −v). The proof that
〈w, u〉 = 0 is similar. □

Returning to basic observations about the product (11.1.2), we note that
it is uniquely determined as the R-bilinear map O×O → O satisfying

(11.1.26)
(α, 0) · (γ, 0) = (αγ, 0), (0, β) · (γ, 0) = (0, βγ),

(α, 0) · (0, δ) = (0, δα), (0, β) · (0, δ) = (−δβ, 0),

for α, β, γ, δ ∈ H. In particular, H ⊕ 0 is a subalgebra of O, isomorphic to
H. As we will see, O has lots of subalgebras isomorphic to H. First, let us
label the “standard” basis of O as

(11.1.27)
1 = (1, 0), e1 = (i, 0), e2 = (j, 0), e3 = (k, 0),

f0 = (0, 1), f1 = (0, i), f2 = (0, j), f3 = (0, k),

and describe the associated multiplication table. The mutiplication table for
1, e1, e2, e3 is the same as (10.1.2)–(10.1.3), of course. We also have f2ℓ = −1
and all the distinct eℓ and fm anticommute. These results are special cases
of the fact that

(11.1.28) u, v ∈ Im(O), |u| = 1, 〈u, v〉 = 0 =⇒ u2 = −1 and uv = −vu,

which is a consequence of (11.1.15).

To proceed with the multiplication table for O, note that (11.1.26) gives

(11.1.29) (α, 0)f0 = (0, α),

so

(11.1.30) eℓf0 = fℓ, 1 ≤ ` ≤ 3.
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By (11.1.28), f0eℓ = −fℓ. Using the notation ε1 = i, ε2 = j, ε3 = k ∈ H, we
have

(11.1.31) eℓfm = (εℓ, 0) · (0, εm) = (0, εmεℓ), 1 ≤ `,m ≤ 3,

and the multiplication table (10.1.2)–(10.1.3) gives the result as −f0 if ` =
m, and ±fµ if ` 6= m, where {`,m, µ} = {1, 2, 3}. Again by (11.1.28),
fmeℓ = −eℓfm. To complete the multiplication table, we have

(11.1.32) f0fm = (0, 1) · (0, εm) = (εm, 0) = em, 1 ≤ m ≤ 3,

and

(11.1.33) fℓfm = (0, εℓ) · (0, εm) = (εmεℓ, 0) = emeℓ, 1 ≤ `,m ≤ 3.

The following is a succinct summary of the results described above on
the multiplication table for O. In each row listed in (11.1.34), consisting of
three elements (say uj), Span{1, u1, u2, u3} is an algebra, isomorphic to H
under i 7→ u1, j 7→ u2, k 7→ u3.

(11.1.34)

i j k

e1 e2 e3

eℓ f0 fℓ

f1 e3 f2

f2 e1 f3

f3 e2 f1

See Figure 11.1.1 for a diagram of this multiplication table. In each case, one
has a triple recorded in (11.1.34), lying along a line (or a circle), equipped
with an arrow indicating the appropriate order.

We turn to the general task of constructing subalgebras of O, having
just seen several examples. To start, pick

(11.1.35) u1 ∈ Im(O), such that |u1| = 1.

By (11.1.28), u21 = −1, and we have the subalgebra of O,

(11.1.36) Span{1, u1} ≈ C.

To proceed, pick

(11.1.37) u2 ∈ Im(O), such that |u2| = 1 and 〈u1, u2〉 = 0,

and set

(11.1.38) u3 = u1u2.

By (11.1.28),

(11.1.39) u22 = −1, and u2u1 = −u1u2 = −u3.
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Figure 11.1.1. Multiplication table schematic for O

Note that

(11.1.40) Reu3 = Re(u1u2) = −〈u1, u2〉 = 0.

Also, by (11.1.16), |u3| = 1, so

(11.1.41) 1 = u3u3 = −u23.

Furthermore, by (11.1.3),

(11.1.42)
u1u3 = u1(u1u2) = (u1u1)u2 = −u2, and

u3u2 = (u1u2)u2 = u1(u2u2) = −u1.

Let us also note that

(11.1.43) u3 = u1 × u2.

Hence, by Proposition 11.1.2,

(11.1.44) 〈u3, u1〉 = 〈u3, u2〉 = 0,

and, again by (11.1.28), u3u1 = −u1u3 and u2u3 = −u3u2. Thus we have
for each such choice of u1 and u2 a subalgebra of O,

(11.1.45) Span{1, u1, u2, u3} ≈ H.
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At this point we can make the following observation.

Proposition 11.1.3. Given any two elements x1, x2 ∈ O, the algebra A
generated by 1, x1, and x2 is isomorphic to either R,C, or H. In particular,
it is associative.

Proof. Consider V = Span{1, x1, x2}. If dimV = 1, then A ≈ R. If
dimV = 2, the argument yielding (11.1.36) gives A ≈ C. If dimV = 3, then
=x1 and =x2 are linearly independent. We can pick orthonormal elements
u1 and u2 in their span. Then A is the algebra generated by 1, u1, and u2,
and the analysis (11.1.35)–(11.1.45) gives A ≈ H. □

The last assertion of Proposition 11.1.3 contains (11.1.3) and (11.1.17)
as special cases. The failure of O to be associative is clearly illustrated by
(11.1.31), which implies

(11.1.46) eℓ(emf0) = (emeℓ)f0, for 1 ≤ `,m ≤ 3,

so

eℓ(emf0) = −(eℓem)f0, if ` 6= m.

Bringing in also (11.1.33) yields

(11.1.47) fℓ(emf0) = emeℓ, while (fℓem)f0 = eℓem.

We next explore how the subalgebra

(11.1.48) A = Span{1, u1, u2, u3},

from (11.1.45), interacts with its orthogonal complement A⊥. Pick

(11.1.49) v0 ∈ A⊥, |v0| = 1.

Note that v0 ∈ Im(O). Taking a cue from (11.1.30), we set

(11.1.50) vℓ = uℓv0, 1 ≤ ` ≤ 3.

Note that Re vℓ = −〈uℓ, v0〉 = 0, so vℓ ∈ Im(O). We claim that

(11.1.51) {v0, v1, v2, v3} is an orthonormal set in O.

To show this, we bring in the following operators. Given x ∈ O, define the
R-linear maps

(11.1.52) Lx, Rx : O −→ O, Lxy = xy, Rxy = yx.

By (11.1.16), for y ∈ O,

(11.1.53) |x| = 1 =⇒ |Lxy| = |Rxy| = |y|.

Hence Lx and Rx are orthogonal transformations. Since the unit sphere in
O is connected, detLx and detRx are ≡ 1 for such x, so

(11.1.54) |x| = 1 =⇒ Lx, Rx ∈ SO(O).
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Hence Rv0 ∈ SO(O). Since

(11.1.55) v0 = Rv01, vℓ = Rv0uℓ for 1 ≤ ` ≤ 3,

we have (11.1.51). We next claim that

(11.1.56) vℓ ⊥ um, ∀ `,m ∈ {1, 2, 3}.
In fact, since Luℓ ∈ SO(O),

(11.1.57)
〈vℓ, um〉 = 〈uℓv0, um〉 = 〈uℓ(uℓv0), uℓum〉

= 〈(uℓuℓ)v0, uℓum〉 = −〈v0, uℓum〉 = 0,

the third identity by (11.1.3).

It follows that

(11.1.58) A⊥ = Span{v0, v1, v2, v3}.
Consequently

(11.1.59) {1, u1, u2, u3, v0, v1, v2, v3} is an orthonormal basis of O.

Results above imply that

(11.1.60) Rv0 : A ≈−→ A⊥.

Such an argument applies to any unit length v ⊥ A. Consequently

(11.1.61) x ∈ A, y ∈ A⊥ =⇒ xy ∈ A⊥.

Noting that if also x ∈ Im(O) then xy = −yx, we readily deduce that

(11.1.62) x ∈ A, y ∈ A⊥ =⇒ yx ∈ A⊥.

Furthermore, since |x| = 1 ⇒ Lx, Rx ∈ SO(O), we have

(11.1.63) x ∈ A⊥ =⇒ Lx, Rx : A⊥ −→ A,
hence

(11.1.64) x, y ∈ A⊥ =⇒ xy ∈ A.
Note that for the special case

(11.1.65) H = H⊕ 0, H⊥ = 0⊕H,

the results (11.1.61)–(11.1.64) follow immediately from (11.1.26).

We have the following important result about the correspondence be-
tween the bases (11.1.27) and (11.1.59) of O.

Proposition 11.1.4. Let uℓ, vℓ ∈ Im(O) be given as in (11.1.48)–(11.1.50).
Then the orthogonal transformation K : O → O, defined by

(11.1.66) K1 = 1, Keℓ = uℓ, Kfℓ = vℓ,

preserves the product on O:

(11.1.67) K(xy) = K(x)K(y), ∀x, y ∈ O.
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That is to say, K is an automorphism of O.

Proof. What we need to show is that {u1, u2, u3, v0, v1, v2, v3} has the same
multiplication table as {e1, e2, e3, f0, f1, f2, f3}. That products involving
only {uℓ} have such behavior follows from the arguments leading to (11.1.45).
That eℓf0 = fℓ is paralleled by uℓv0 = vℓ, for 1 ≤ ` ≤ 3, is the definition
(3.49). It remains to show that the products uℓvm and vℓvm mirror the
products eℓfm and fℓfm, as given in (11.1.31)–(11.1.33).

First, we have, for 1 ≤ m ≤ 3,

(11.1.68) v0vm = −vmv0 = −(umv0)v0 = −um(v0v0) = um,

mirroring (11.1.32). Mirroring the case ` = m of (11.1.31), we have

(11.1.69) uℓvℓ = uℓ(uℓv0) = (uℓuℓ)v0 = −v0.

The analogue of (11.1.31) for ` = m is simple, thanks to (11.1.15):

(11.1.70) vℓvℓ = −1.

It remains to establish the following:

(11.1.71) uℓvm = (umuℓ)v0, vℓvm = umuℓ, for 1 ≤ `,m ≤ 3, ` 6= m.

Expanded out, the required identities are

(11.1.72) uℓ(umv0) = (umuℓ)v0, 1 ≤ `,m ≤ 3, ` 6= m,

and

(11.1.73) (uℓv0)(umv0) = umuℓ, 1 ≤ `,m ≤ 3, ` 6= m.

□

Such identities as (11.1.72)–(11.1.73) are closely related to an important
class of identities known as “Moufang identities,” which we now introduce.

Proposition 11.1.5. Given x, y, z ∈ O,

(11.1.74) (xyx)z = x(y(xz)), z(xyx) = ((zx)y)x,

and

(11.1.75) (xy)(zx) = x(yz)x.

Regarding the paucity of parentheses here, we use the notation xwx to
mean

(11.1.76) xwx = (xw)x = x(wx),

the last identity by (11.1.3). Note also that the two identities in (11.1.74)
are equivalent, respectively, to

(11.1.77) Lxyx = LxLyLx, and Rxyx = RxRyRx.
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A proof of Proposition 11.1.5 will be given in §11.2. We now show how
(11.1.74)–(11.1.75) can be used to establish (11.1.72)–(11.1.73).

We start with (11.1.73), which is equivalent to

(11.1.78) (v0uℓ)(umv0) = uℓum.

In this case, (11.1.75) yields

(11.1.79)

(v0uℓ)(umv0) = v0(uℓum)v0

= −(uℓum)v0v0 (if ` 6= m)

= uℓum,

via a couple of applications of (11.1.15). This gives (11.1.73).

Moving on, applying Lv0 , we see that (11.1.72) is equivalent to

(11.1.80) v0(uℓ(umv0)) = v0(umuℓ)v0,

hence to

(11.1.81) v0(uℓ(v0um)) = v0(uℓum)v0.

Now the first identity in (11.1.74) implies that the left side of (11.1.81) is
equal to

(11.1.82) (v0uℓv0)um = uℓum,

the latter identity because v0uℓv0 = −uℓv0v0 = uℓ. On the other hand, if
` 6= m, then

(11.1.83) v0(uℓum)v0 = −(uℓum)v0v0 = uℓum,

agreeing with the right side of (11.1.82). Thus we have (11.1.81), hence
(11.1.72).

Rather than concluding that Proposition 11.1.4 is now proved, we must
reveal that the proof of Proposition 11.1.5 given in the next section actually
uses Proposition 11.1.4. Therefore, it is necessary to produce an alternative
endgame to the proof of Proposition 11.1.4.

We begin by noting that the approach to the proof of Proposition 11.1.4
described above uses the identities (11.1.74)–(11.1.75) with

(11.1.84) x = v0, y = uℓ, z = um, ` 6= m,

hence xy = −vℓ, zx = vm, yz = ±uh, {h, `,m} = {1, 2, 3}. Thus the applica-
tion of the first identity of (11.1.74) in (11.1.82) is justified by the following
special case of (11.1.77):

Proposition 11.1.6. If {u, v} ∈ Im(O) is an orthonormal set, then

(11.1.85) Luvu = Lv = LuLvLu.
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Proof. Under these hypotheses, u2 = −1 and uv = −vu. Bringing in (3.3),
we have

(11.1.86) uvu = −u2v = v,

which gives the first identity in (11.1.85). We also have

(11.1.87) a ∈ Im(O) =⇒ L2
a = La2 = −|a|2I,

the first identity by (11.1.3). Thus

(11.1.88)
−2I = L2

(u+v) = (Lu + Lv)(Lu + Lv)

= L2
u + L2

v + LuLv + LvLu,

so

(11.1.89) LuLv = −LvLu,

and hence

(11.1.90) LuLvLu = −LvL2
u = Lv,

giving the second identity in (11.1.85). □

As for the application of (11.1.75) to (11.1.79), we need the special case

(11.1.91) (uv)(wu) = u(vw)u,

for u = v0, v = uℓ, w = um, ` 6= m, 1 ≤ `,m ≤ 3 (so uv = −vℓ), in which
cases

(11.1.92) {u, v, w, uv}, {u, vw} ⊂ Im(O), are orthonormal sets.

In such a case, u(vw)u = −(vw)u2 = vw, so it suffices to show that

(11.1.93) (uv)(wu) = vw,

for

(11.1.94) {u, v, w, uv} ⊂ Im(O), orthonormal.

When (11.1.94) holds, we say {u, v, w} is a Cayley triangle. The following
takes care of our needs.

Proposition 11.1.7. Assume {u, v, w} is a Cayley triangle. Then

(11.1.95) v(uw) = −(vu)w,

(11.1.96) 〈uv, uw〉 = 0, so {u, v, uw} is a Cayley triangle,

and (11.1.93) holds.
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Proof. To start, the hypotheses imply

(11.1.97) vu = −uv, vw = −wv, uw = −wu, (vu)w = −w(vu),
so

(11.1.98)

v(uw) + (vu)w = −v(wu)− w(vu)

= (v2 + w2)u− (v + w)(vu+ wu)

= (v + w)2u− (v + w)((v + w)u)

= 0,

and we have (11.1.95). Next,

(11.1.99) 〈uv, uw〉 = 〈Luv, Luw〉 = 〈u,w〉 = 0,

since Lu ∈ SO(O). Thus {u, v, uw} is a Cayley triangle. Applying (11.1.95)
to this Cayley triangle (and bringing in (11.1.3)) then gives

(11.1.100)

(vu)(uw) = −v(u(uw))
= −v(u2w)
= vw,

yielding (11.1.93). □

At this point, we have a complete proof of Proposition 11.1.4. The proof
of Proposition 11.1.5 will be given in the following section.
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11.2. The automorphism group of O

The set of automorphisms of O is denoted Aut(O). Note that Aut(O) is a
group, i.e.,

(11.2.1) Kj ∈ Aut(O) =⇒ K1K2, K
−1
j ∈ Aut(O).

Clearly K ∈ Aut(O) ⇒ K1 = 1. The following result will allow us to
establish a converse to Proposition 11.1.4.

Proposition 11.2.1. Assume K ∈ Aut(O). Then

(11.2.2) K : Im(O) −→ Im(O).

Consequently

(11.2.3) Kx = Kx, ∀x ∈ O,

and

(11.2.4) |Kx| = |x|, ∀x ∈ O,

so K : O → O is an orthogonal transformation.

Proof. To start, we note that, given x ∈ O, x2 is real if and only if either
x is real or x ∈ Im(O). Now, given u ∈ Im(O),

(11.2.5) (Ku)2 = K(u2) = −|u|2K1 = −|u|2 (real),

so either Ku ∈ Im(O) or Ku = a is real. In the latter case, we have
K(a−1u) = 1, so a−1u = 1, so u = a, contradicting the hypothesis that u ∈
Im(O). This gives (11.2.2). The result (11.2.3) is an immediate consequence.
Thus, for x ∈ O,

(11.2.6) |Kx|2 = (Kx)(Kx) = (Kx)(Kx) = K(xx) = |x|2,

giving (4.4). □

Now, given K ∈ Aut(O), define u1, u2, and v0 by

(11.2.7) u1 = Ke1, u2 = Ke2, v0 = Kf0.

By Proposition 11.2.1, these are orthonormal elements of Im(O). Also, A =
K(H), spanned by 1, u1, u2, and u1u2 = u1 × u2, is a subalgebra of O, and
v0 ∈ A⊥. These observations, together with Proposition 11.1.4, yield the
following.

Proposition 11.2.2. The formulas (11.2.7) provide a one-to-one corre-
spondence between the set of automorphisms of O and

(11.2.8)

the set of ordered orthonormal triples (u1, u2, v0) in Im(O)

such that v0 is also orthogonal to u1 × u2, that is,

the set of Cayley triangles in Im(O).
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It can be deduced from (11.2.8) that Aut(O) is a compact, connected
Lie group of dimension 14.

We return to the Moufang identities and use the results on Aut(O)
established above to prove them.

Proof of Proposition 11.1.5. Consider the first identity in (11.1.74), i.e.,

(11.2.9) (xyx)z = x(y(xz)), ∀x, y, z ∈ O.

We begin with a few simple observations. First, (11.2.9) is clearly true if any
one of x, y, z is scalar, or if any two of them coincide (thanks to Proposition
11.1.3). Also, both sides of (11.2.9) are linear in y and in z. Thus, it suffices
to treat (11.2.9) for y, z ∈ Im(O). Meanwhile, multiplying by a real number
and applying an element of Aut(O), we can assume x = a + e1, for some
a ∈ R.

To proceed, (11.2.9) is clear for y ∈ Span(1, x), so, using the linearity
in y, and applying Proposition 11.2.2 again, we can arrange that y = e2.
Given this, (11.2.9) is clear for z ∈ H = Span(1, e2, e2, e3 = e1e2). Thus,
using linearity of (11.2.9) in z, it suffices to treat z ∈ H⊥, and again applying
an element of Aut(O), we can assume z = f1.

At this point, we have reduced the task of proving (11.2.9) to checking
it for

(11.2.10) x = a+ e1, y = e2, z = f1, a ∈ R,

and this is straightforward. Similar arguments applied to the second identity
in (11.1.74), and to (11.1.75), reduce their proofs to a check in the case
(11.2.10). □

We next look at some interesting subgroups of Aut(O). Taking Sp(1) to
be the group of unit quaternions, as in (10.1.27), we have group homomor-
phisms

(11.2.11) α, β : Sp(1) −→ Aut(O),

given by

(11.2.12)
α(ξ)(ζ, η) = (ξζξ, ξηξ),

β(ξ)(ζ, η) = (ζ, ξη),

where ζ, η ∈ H define (ζ, η) ∈ O. As in (10.1.33)–(10.1.38), for ξ ∈ Sp(1),
π(ξ)ζ = ξζξ gives an automorphism of H, and it commutes with conjugation
in H, so the fact that α(ξ) is an automorphism of O follows from the defi-
nition (11.1.2) of the product in O. The fact that β(ξ) is an automorphism
of O also follows directly from (11.1.2). Parallel to (10.1.36),

(11.2.13) Kerα = {±1} ⊂ Sp(1),
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so the image of Sp(1) under α is a subgroup of Aut(O) isomorphic to SO(3).
Clearly β is one-to-one, so it yields a subgroup of Aut(O) isomorphic to
Sp(1).

These two subgroups of Aut(O) do not commute with each other. In
fact, we have, for ξj ∈ Sp(1), (ζ, η) ∈ O,

(11.2.14)
α(ξ1)β(ξ2)(ζ, η) = (ξ1ζξ1, ξ1ξ2ηξ1),

β(ξ2)α(ξ1)(ζ, η) = (ξ1ζξ1, ξ2ξ1ηξ1).

Note that, since ξ2ξ1 = ξ1(ξ1ξ2ξ1),

(11.2.15) β(ξ2)α(ξ1) = α(ξ1)β(ξ1ξ2ξ1).

It follows that

(11.2.16) GH = {α(ξ1)β(ξ2) : ξj ∈ Sp(1)}

is a subgroup of Aut(O). It is clear from (11.2.12) that each automorphism
α(ξ1), β(ξ2), and hence each element of GH, preserves H (and also H⊥). The
converse also holds:

Proposition 11.2.3. The group GH is the group of all automorphisms of
O that preserve H.

Proof. Indeed, suppose K ∈ Aut(O) preserves H. Then K|H is an auto-
morphism of H ≈ H. Arguments in the paragraph containing (10.1.37)–
(10.1.40) imply that there exists ξ1 ∈ Sp(1) such that K|H = α(ξ1)|H, so
K0 = α(ξ1)

−1K ∈ Aut(O) is the identity on H. Now K0f1 = (0, ξ2) for some
ξ2 ∈ Sp(1), and it then follows from Proposition 11.2.2 that K0 = β(ξ2).
Hence K = α(ξ1)β(ξ2), as desired. □

For another perspective on GH, we bring in

(11.2.17) α̃ : Sp(1) −→ Aut(O), α̃(ξ) = β(ξ)α(ξ).

Note that

(11.2.18) α̃(ξ)(ζ, η) = (ξζξ, ηξ),

so α̃ is a group homomorphism. Another easy consequence of (11.2.18) is
that α̃(ξ1) and β(ξ2) commute, for each ξj ∈ Sp(1). We have a surjective
group homomorphism

(11.2.19) α̃× β : Sp(1)× Sp(1) −→ GH.

Note that Ker(α̃×β) = {(1, 1), (−1,−1)}, with 1 denoting the unit in H. It
follows that

(11.2.20) GH ≈ SO(4).
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We now take a look at one-parameter families of automorphisms of O,
of the form

(11.2.21) K(t) = etA, A ∈ L(O),

where etA is the matrix exponential, studied in §1.3. To see when such linear
transformations on O are automorphisms, we differentiate the identity

(11.2.22) K(t)(xy) = (K(t)x)(K(t)y), x, y ∈ O,

obtaining

(11.2.23) A(xy) = (Ax)y + x(Ay), x, y ∈ O.

When (11.2.23) holds, we say

(11.2.24) A ∈ Der(O).

Proposition 11.2.4. Given A ∈ L(O), etA ∈ Aut(O) for all t ∈ R if and
only if A ∈ Der(O).

Proof. The implication⇒ was established above. For the converse, suppose
A satisfies (11.2.23). Take x, y ∈ O, and set

(11.2.25) X(t) = (etAx)(etAy).

Applying d/dt gives

(11.2.26)

dX

dt
= (AetAx)(etAy) + (etAx)(AetAy)

= A
(
(etAx)(etAy)

)
= AX(t),

the second identity by (11.2.23). Since X(0) = xy, it follows from the
standard uniqueness argument of ODE, cf. Chapter 3 of [44], that

(11.2.27) X(t) = etA(xy),

so indeed etA ∈ Aut(O). □

The set Der(O) has the following structure.

Proposition 11.2.5. The set Der(O) is a linear subspace of L(O) satisfying

(11.2.28) A,B ∈ Der(O) =⇒ [A,B] ∈ Der(O),

where [A,B] = AB −BA. That is, Der(O) is a Lie algebra.

Proof. That Der(O) is a linear space is clear from the defining property
(4.23). Furthermore, if A,B ∈ Der(O), then, for all x, y ∈ O,

(11.2.29)
AB(xy) = A((Bx)y) +A(x(By))

= (ABx)y + (Bx)(Ay) + (Ax)(By) + x(ABy),
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and similarly

(11.2.30) BA(xy) = (BAx)y + (Ax)(By) + (Bx)(Ay) + x(BAy),

so

(11.2.31) [A,B](xy) = ([A,B]x)y + x([A,B]y),

and we have (11.2.28). □

By Proposition 11.2.1, if A ∈ Der(O), then etA is an orthogonal trans-
formation for each t ∈ R. We have

(11.2.32) (etA)∗ = etA
∗
,

so

(11.2.33) A ∈ Der(O) =⇒ A∗ = −A,

i.e., A is skew-adjoint. It is clear that

(11.2.34) A ∈ Der(O) =⇒ A : Im(O) → Im(O),

and since Im(O) is odd dimensional, the structural analysis in Chapter 2,
§11 of [44] implies

(11.2.35) A ∈ Der(O) =⇒ N (A) ∩ Im(O) 6= 0.

As long as A 6= 0, we can also deduce from Proposition 11.4 in Chapter 2
of [44] that Im(O) contains a two-dimensional subspace with orthonormal
basis {u1, u2}, invariant under A, and with respect to which A is represented
by a 2× 2 block

(11.2.36)

(
0 −λ
λ 0

)
.

Then, by (11.2.23),

(11.2.37)

A(u1u2) = (Au1)u2 + u1(Au2)

= λu22 − λu21

= 0,

so u1u2 = u1×u2 ∈ N (A)∩Im(O). As in (11.1.37)–(11.1.45), Span{1, u1, u2, u3 =
u1u2} = A is a subalgebra of O isomorphic to H. We see that A preserves
A, so the associated one-parameter group of automorphisms etA preserves
A.

Using Proposition 11.2.2, we can pick K ∈ Aut(O) taking A to H, and
deduce the following.

Proposition 11.2.6. Given A ∈ Der(O), there exists K ∈ Aut(O) such
that

(11.2.38) KetAK−1 ∈ GH, ∀ t ∈ R.
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Note that then

(11.2.39) KetAK−1 = etÃ, Ã = KAK−1 ∈ Der(O),

and (11.2.38) is equivalent to

(11.2.40) Ã : H −→ H, Ã ∈ Der(O),

which also entails Ã : H⊥ → H⊥, since Ã is skew-adjoint. When (11.2.40)
holds, we say

(11.2.41) Ã ∈ DH.

Going further, suppose we have d commuting elements of Der(O):

(11.2.42) Aj ∈ Der(O), AjAk = AkAj , j, k ∈ {1, . . . , d}.
A modification of the arguments leading to Proposition 11.4 of [44] yields a
two-dimensional subspace of Im(O), with orthonormal basis {u1, u2}, invari-
ant under each Aj , with respect to which each Aj is represented by a 2× 2
block as in (11.2.36), with λ replaced by λj (possibly 0). As in (11.2.37),

(11.2.43) Aj(u1u2) = 0, 1 ≤ j ≤ d,

so each Aj preserves A = Span{1, u1, u2, u3 = u1u2}, and so does each one-
parameter group of automorphisms etAj . Bringing in K ∈ Aut(O), taking
A to H, we have the following variant of Proposition 11.2.6.

Proposition 11.2.7. Given commuting Aj ∈ Der(O), 1 ≤ j ≤ d, there
exists K ∈ Aut(O) such that

(11.2.44) KetAjK−1 ∈ GH, ∀ t ∈ R, j ∈ {1, . . . , d}.

As a consequence, we have

(11.2.45) Ãj = KAjK
−1 ∈ DH, ÃjÃk = ÃkÃj , 1 ≤ j, k ≤ d.

Consequently, etÃj are mutually commuting one-parameter subgroups of
GH, i.e.,

(11.2.46) etjÃj ∈ GH, etjÃjetkÃk = etkÃketjÃj , 1 ≤ j, k ≤ d.

One can produce pairs of such commuting groups, as follows. Take

(11.2.47) α̃(ξ1(t1)), β(ξ2(t2)) ∈ GH,

with β as in (11.2.11)–(11.2.12), α̃ as in (11.2.17)–(11.2.18), and ξν(t) one-
parameter subgroups of Sp(1), for example

(11.2.48) ξν(t) = etων , ων ∈ Im(H) = Span{i, j, k}.
The exponential etων is amenable to a treatment parallel to that given in
§1.3. Mutual commutativity in (11.2.47) follows from the general mutual
commutativity of α̃ and β. The following important structural information
on Aut(O) says d = 2 is as high as one can go.



434 11. The Octonions and the group G2

Proposition 11.2.8. If Aj ∈ Der(O) are mutually commuting, for j ∈
{1, . . . , d}, and if {Aj} is linearly independent in L(O), then d ≤ 2.

Proof. To start, we obtain from Aj the mutually commuting one-parameter
groups KetAjK−1, subgroups of GH. Taking inverse images under the two-
to-one surjective homomorphism (11.2.19), we get mutually commuting one-
parameter subgroups γj(t) of Sp(1)× Sp(1), which can be written

(11.2.49) γj(t) =

(
eωjt

eσjt

)
, ωj , σj ∈ Im(H), 1 ≤ j ≤ d.

Parallel to Proposition 3.7.6 of [42], this commutativity requires {ωj : 1 ≤
j ≤ d} to commute in H and it also requires {σj : 1 ≤ j ≤ d} to commute
in H. These conditions in turn require each ωj to be a real multiple of some

ω# ∈ Im(H) and each σj to be a real multiple of some σ# ∈ Im(H).

Now the linear independence of {Aj : 1 ≤ j ≤ d} in Der(O) implies the
linear independence of {(ωj , σj) : 1 ≤ j ≤ d} in Im(H) ⊕ Im(H), and this
implies d ≤ 2. □

We turn to the introduction of another interesting subgroup of Aut(O).
Note that, by Proposition 11.2.2, given any unit u1 ∈ Im(O), there exists
K ∈ Aut(O) such that Ke1 = u1. Consequently, Aut(O), acting on =(O) as
a group of orthogonal transformations, acts transitively on the unit sphere
S in Im(O) ≈ R7, i.e., on S ≈ S6. We are hence interested in the group

(11.2.50) {K ∈ Aut(O) : Ke1 = e1} = Ge1 .

We claim that

(11.2.51) Ge1 ≈ SU(3).

As preparation for the demonstration, note that each K ∈ Ge1 is an
orthogonal linear transformation on O that leaves invariant Span{1, e1},
and hence it also leaves invariant the orthogonal complement

(11.2.52) V = Span{1, e1}⊥ = Span{e2, e3, f0, f1, f2, f3},

a linear space of R-dimension 6. We endow V with a complex structure.
Generally, a complex structure on a real vector space V is an R-linear map
J : V → V such that J2 = −IV . One can check that this requires dimR V
to be even, say 2k. Then (V, J) has the structure of a complex vector space,
with

(11.2.53) (a+ ib)v = av + bJv, a, b ∈ R, v ∈ V.

One has dimC(V, J) = k. If V is a real inner product space, with inner
product 〈 , 〉, and if J is orthogonal (hence skew-adjoint) on V , then (V, J)
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gets a natural Hermitian inner product

(11.2.54) (u, v) = 〈u, v〉+ i〈u, Jv〉.

If T : V → V preserves 〈 , 〉 and commutes with J , then it also preserves
( , ), so it is a unitary transformation on (V, J).

We can apply this construction to V as in (11.2.52), with

(11.2.55) Jv = Le1v = e1v,

noting that Le1 is an orthogonal map on O that preserves Span{1, e1}, and
hence also preserves V . To say that an R-linear map K : V → V is C-
linear is to say that K(e1v) = e1K(v), for all v ∈ V . Clearly this holds if
K ∈ Aut(O) and Ke1 = e1. Thus each element of Ge1 defines a complex
linear orthogonal (hence unitary) transformation on V , and we have an
injective group homomorphism

(11.2.56) Ge1 −→ U(V, J).

Note that the 6 element real orthonormal basis of V in (11.2.52) yields the
3 element orthonormal basis of (V, J),

(11.2.57) {e2, f0, f2},

since

(11.2.58) e3 = e1e2, f1 = e1f0, f3 = −e1f2,

the latter two identities by (11.1.30)–(11.1.31). This choice of basis yields
the isomorphism

(11.2.59) U(V, J) ≈ U(3).

We aim to identify the image of Ge1 in U(3) that comes from (11.2.56) and
(11.2.59).

To accomplish this, we reason as follows. From Proposition 11.2.2 it fol-
lows that there is a natural one-to-one correspondence between the elements
of Ge1 and

(11.2.60)
the set of ordered orthonormal pairs {u2, v0} in V

such that also v0 ⊥ e1u2,

or, equivalently,

(11.2.61) the set of ordered orthonormal pairs {u2, v0} in (V, J),

where (V, J) carries the Hermitian inner product (11.2.54). In fact, the
correspondence associates to K ∈ Ge1 (i.e., K ∈ Aut(O) and Ke1 = e1) the
pair

(11.2.62) u2 = Ke2, v0 = Kf0.
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Then the image of Ge1 in U(V, J) in (11.2.56) is uniquely determined by the
action of K on the third basis element in (11.2.57), as

(11.2.63) Kf2 = K(e2f0) = K(e2)K(f0) = u2v0 = u2 × v0,

where we recall from (11.1.30) that f2 = e2f0, and the last identity in
(11.2.63) follows from (11.1.21).

From (11.2.60)–(11.2.61), it can be deduced that Ge1 is a compact, con-
nected Lie group of dimension 8. Then (11.2.55) and (11.2.58) present Ge1
as isomorphic to a subgroup (call it G̃) of U(3) that is a compact, connected

Lie group of dimension 8. Meanwhile, dimU(3) = 9, so G̃ has codimension
1. We claim that this implies

(11.2.64) G̃ = SU(3).

We sketch a proof of (11.2.64).

To start, one can show that a connected, codimension-one subgroup of

a compact, connected Lie group must be normal. Hence G̃ is a normal

subgroup of U(3). This implies U(3)/G̃ is a group. This quotient is a
compact Lie group of dimension 1, hence isomorphic to S1 = {z ∈ C : |z| =
1}, and the projection U(3) → U(3)/G̃ produces a continuous, surjective
group homomorphism

(11.2.65) ϑ : U(3) −→ S1, Kerϑ = G̃.

Now a complete list of such homomorphisms is given by

(11.2.66) ϑj(K) = (detK)j , j ∈ Z \ 0,

and in such a case, Kerϑj has |j| connected components. Then connectivity

of G̃ forces ϑ = ϑ±1 in (11.2.65), which in turn gives (11.2.64).

It is useful to take account of various subgroups of Aut(O) that are
conjugate to GH (given by (11.2.16)) or to Ge1 (given by (11.2.50)). In
particular, when A ⊂ O is a four-dimensional subalgebra, we set

(11.2.67) GA = {K ∈ Aut(O) : K(A) ⊂ A},

and if u ∈ Im(O), |u| = 1, we set

(11.2.68) Gu = {K ∈ Aut(O) : Ku = u}.

We see that each group GA is conjugate to GH, and isomorphic to SO(4),
and each group Gu is conjugate to Ge1 , and isomorphic to SU(3).

It is of interest to look at Gu ∩ Gv, where u and v are unit elements of
Im(O) that are not collinear. Then

(11.2.69) Gu ∩ Gv = {K ∈ Aut(O) : K = I on Span{u, v}}.
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Now we can write Span{u, v} = Span{u1, u2}, with u1 = u, u2 ⊥ u1, and
note that Kuj = uj ⇒ K(u1u2) = u1u2, so (4.69) is equal to

(11.2.70) GA = {K ∈ Aut(O) : K = I on A},
where A = Span{1, u1, u2, u1u2} is a four-dimensional subalgebra of O.
Clearly

(11.2.71) GA ⊂ GA, and GA ≈ Sp(1) ≈ SU(2).

In fact, GA is conjugate to GH = β(Sp(1)), with β as in (11.2.11)–(11.2.12).

Extending (11.2.52), we have associated to each unit u ∈ Im(O) the
space

(11.2.72) Vu = Span{1, u}⊥,
and Lu : Vu → Vu gives a complex structure Ju = Lu|Vu , so (Vu, Ju) is a
three-dimensional complex vector space. Parallel to (11.2.56), we have an
injective group homomorphism

(11.2.73) Gu −→ U(Vu, Ju),

whose image is a codimension-one subgroup isomorphic to SU(3). Associ-
ated to the family (Vu, Ju) is the following interesting geometrical structure.
Consider the unit sphere S ≈ S6 in Im(O). There is a natural identification
of Vu with the tangent space TuS to S at u:

(11.2.74) TuS = Vu,

and the collection of complex structures Ju gives S what is called an almost
complex structure. Now an element K ∈ Aut(O) acts on S, thanks to
Proposition 11.2.1. Furthermore, for each u ∈ S,

(11.2.75) K : Vu −→ VKu

is an isometry, and it is C-linear, since

(11.2.76) v ∈ Vu =⇒ K(uv) = K(u)K(v).

Thus Aut(O) acts as a group of rotations on S that preserve its almost
complex structure. In fact, this property characterizes Aut(O). To state
this precisely, we bring in the following notation. Set

(11.2.77) ι : Aut(O) −→ SO(Im(O)), ι(K) = K
∣∣
ℑ(O)

.

This is an injective group homomorphism, whose image we denote

(11.2.78) Ab(O) = ιAut(O).

The inverse of the isomorphism ι : Aut(O) → Ab(O) is given by

(11.2.79)
j
∣∣∣
Ab(O)

, j : SO(Im(O)) → SO(O),

J(K0)(a+ u) = a+K0u.
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Our result can be stated as follows.

Proposition 11.2.9. The group Γ of rotations on Im(O) that preserve the
almost complex structure of S is equal to Ab(O).

Proof. We have seen that Ab(O) ⊂ Γ. It remains to prove that Γ ⊂ Ab(O),
so take K0 ∈ Γ, and set K = j(K0), as in (11.2.79). We need to show that
K ∈ Aut(O). First, one readily checks that, if K = j(K0), then

(11.2.80) K ∈ Aut(O) ⇐⇒ K(uv) = K(u)K(v), ∀u, v ∈ Im(O),

and furthermore we can take |u| = 1. Now the condition K0 ∈ Γ implies

(11.2.81) K0(uv) = K0(u)K0(v), ∀u ∈ Im(O), v ∈ Vu.

To finish the argument, we simply note that if K0 ∈ Γ and K = j(K0), and
if u is a unit element of Im(O) and v ∈ Vu, then for all a ∈ R,

(11.2.82)

K(u(au+ v)) = K(−a+ uv)

= −a+K0(uv)

= −a+K0(u)K0(v),

while

(11.2.83)

(Ku)(K(au+ v)) = (K0u)(aK0u+K0v)

= a(K0u)
2 + (K0u)(K0v)

= −a+K0(u)K0(v).

This finishes the proof. □

Further results on almost complex 6-dimensional submanifolds, includ-
ing submanifolds of O, can be found in [6] and [7].
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11.3. Simplicity and root structure of Aut(O)

Our first goal in this section is to establish the following.

Proposition 11.3.1. The group Aut(O) is simple.

We will deduce this from the facts that Aut(O) is a compact, connected
Lie group of dimension 14 and that it has rank 2. We recall from basic Lie
group theory that if G is a compact Lie group, it has a maximal torus, and
any two such are conjugate. The dimension of such a maximal torus is the
rank of G. That Aut(O) has rank 2 follows from Proposition 11.2.8. The
following general result basically does the trick.

Proposition 11.3.2. Let G be a compact Lie group of rank 2. If its Lie
algebra g has a non-trivial ideal, h, then dimG ≤ 6.

Proof. Give g an ad-invariant inner product. If h ⊂ g is an ideal, then ad g
preserves both h and h⊥, so h⊥ is also an ideal, and each X ∈ h commutes
with each Y ∈ h⊥. Now if h and h⊥ are both nonzero,

Rank g = 2 =⇒ Rank h = Rank h⊥ = 1.

But, as is well known,

Rank h = 1 =⇒ dim h = 1 or 3,

so we have the conclusion that dimG ≤ 6. □

It follows from Proposition 11.3.2 that the Lie algebra Der(O) of Aut(O)
has no nontrivial ideals. A connected Lie group with this property is typi-
cally said to be simple.

Remark. Our analysis of Aut(O) as a compact simple Lie group, of rank 2
and dimension 14, implies that it is isomorphic to the group G2, introduced
in §6.6.

Going further, we establish the more precise result that Aut(O) contains
no nontrivial normal subgroups. Indeed, if H were such a subgroup, so would
be its closure, so it suffices to consider the case when H is closed. (The reader
can show that a proper dense subgroup of a noncommutative, connected Lie
group cannot be normal.) Then H is a Lie group, and Proposition 11.3.2
implies that either H = Aut(O) or H is discrete, hence finite. In such a
case, H normal implies H is the center of Aut(O), so our task is reduced to
showing

(11.3.1) Aut(O) has trivial center.

Indeed, suppose K0 belongs to the center of Aut(O). Then K0 belongs to a
one-parameter subgroup etA, and (11.2.35) applies, to yield u ∈ S ⊂ Im(O),
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fixed under the action of etA, hence fixed byK0. Then, for eachK ∈ Aut(O),
KK0K

−1 = K0 fixes Ku, and since Aut(O) acts transitively on the unit
sphere S ⊂ Im(O), K0 must fix each point of Im(O), so K0 = I, and we
have (11.3.1).

Our next goal is to analyze the root structure of Aut(O). We start by
recalling the general definition. Let G be a compact, connected Lie group,
with maximal torus T, having associated Lie algebras t ⊂ g. Give g an
Ad-invariant inner product. The adjoint representation Ad of G on gC has
derived Lie algebra representation ad of g by skew-adjoint transformations
on gC, which simultaneously diagonalize when restricted to t. We have the
root space decomposition

(11.3.2) gC = tC ⊕
⊕
α

gα,

where, given α ∈ t′, α 6= 0,

(11.3.3) gα = {z ∈ gC : [x, z] = iα(x)z, ∀x ∈ t}.

If gα 6= 0, we call α a root, and nonzero elements of gα are called root
vectors. As sen in §6.1, we have

(11.3.4) [gα, gβ ] ⊂ gα+β ,

that

(11.3.5) α root =⇒ dim gα = 1,

and that if z denotes the center of g,

(11.3.6) z = 0 =⇒ the set of roots spans t′.

Before tackling the particulars for G = Aut(O), we recall the most classical
case SU(n), from §§4.2–4.5.

The group SU(n) has maximal torus

(11.3.7) T =
{e

ix1

. . .

eixn

 : xj ∈ R,
∑
j

xj = 0
}
,

leading to the identification

(11.3.8) t = {x = (x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0}.

Then the set ∆ of roots of SU(n) is given by

(11.3.9) ∆ = {ωjk : j 6= k, 1 ≤ j, k ≤ n},

where ωjk ∈ t′ is given by

(11.3.10) ωjk(x) = xj − xk, x ∈ t.
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See (4.2.14).

Such results, for n = 3, actually yield half the roots of Aut(O), as we
now explain. As seen in §11.2, we have the subgroup

(11.3.11) Ge1 = {K ∈ Aut(O) : Ke1 = e1} ≈ SU(3).

Thus a maximal torus T of Ge1 is two-dimensional, and, by Proposition
11.2.8, this must also be a maximal torus of Aut(O). The adjoint action
of t on Der(O) leaves invariant the Lie algebra ge1 of Ge1 , so, with the
identification (11.3.8), we see that

(11.3.12) {ωjk : 1 ≤ j, k ≤ 3, j 6= k}, ωjk(x) = xj − xk,

are roots of Aut(O). This gives six roots. Since dimAut(O) = 14 and t has
dimension 2, it follows from (11.3.2)–(11.3.5) that Aut(O) has 12 roots. It
remains to find the other six.

Let us abstract the setting. Let G be a compact, connected Lie group,
H ⊂ G a compact, connected subgroup, and assume that a maximal torus
T of G is contained in H, i.e., T ⊂ H. Then the adjoint action of G on gC,
restricted to T, is also the restriction to T of the action of H on gC, obtained
by restricting Ad from G to H. This latter is a unitary representation of H
on gC, which we will denote by π. Thus the roots of G coincide with the
weights of π.

We recall the definition of weights. Let H be as above, with maximal
torus T, whose Lie algebra is t, and let π be a unitary representation of H
on a finite-dimensional complex inner-product space V . Then there is an
orthogonal decomposition

(11.3.13) V =
⊕
λ

Vλ,

where, for λ ∈ t′,

(11.3.14) Vλ = {v ∈ V : dπ(x)v = iλ(x)v, ∀x ∈ t}.

If Vλ 6= 0, we call λ a weight, and any nonzero v ∈ Vλ a weight vector.
Generally, if π is a representation of H on V , we define the contragredient
representation π of H on V ′ by π(g) = π(g−1)t. It is readily verified that
λ ∈ t′ is a weight of π if and only if −λ is a weight of π.

To take an example, let H = SU(n), with maximal torus given by
(11.3.7) and t as in (11.3.8), and let π0 be the standard representation of
SU(n) on Cn. Then the weights of π0 are

(11.3.15) {λj : 1 ≤ j ≤ n}, λj(x) = xj ,

with associated weight spaces Vλj = Span{ej}, where {e1, . . . , en} is the
standard basis of Cn. The weights of the contragredient representation π0
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of SU(n) on Cn are given by

(11.3.16) {−λj : 1 ≤ j ≤ n}.

We return to the situation introduced three paragraphs above, with
T ⊂ H ⊂ G, and π the restriction to H of the adjoint representation of G
on g (and on its complexification gC). Taking an Ad-invariant inner product
on g, we can write

(11.3.17) g = h⊕ h⊥,

and both pieces are invariant under π, say

(11.3.18) π = πh ⊕ π1.

Of course, πh is simply the adjoint action of H on h. We need to analyze
π1.

To do this, it is convenient to look at the homogeneous space M = G/H,
on which G acts transitively. Then H is the subgroup of elements of G that
fix the point p = eH ∈ M . This gives rise to an action of H on TpM ,
i.e., a real representation ρ of H on TpM . Furthermore, we have natural
equivalences

(11.3.19) h⊥ ≈ TpM, π1 ≈ ρ.

We now apply this to

(11.3.20) G = Aut(O), H = Ge1 , M = S ⊂ Im(O), p = e1.

Then, as seen in §11.2, TpS carries a complex structure, with respect to
which, via the isomorphism Ge1 ≈ SU(3) set up in §11.2, ρ becomes the
standard representation π0 of SU(3) on C3.

However, we need to regard ρ as a real representation on TpS, and then
complexify this vector space. When this is done, the resulting representation
on (h⊥)C is seen to be

(11.3.21) π0 ⊕ π0,

with weights

(11.3.22) {λj ,−λj : 1 ≤ j ≤ 3}, λj(x) = xj .

We have the following conclusion.

Proposition 11.3.3. The roots of Aut(O) are the linear functionals on

(11.3.23) t = {x ∈ R3 : x1 + x2 + x3 = 0}

given by (11.3.12) and (11.3.22).
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Figure 11.3.1. Root system of Aut(O) ≈ G2

The root system of Aut(O) ≈ G2 is depicted in Figure 11.3.1 Results on

(11.3.24) g0 = tC ⊕
⊕
j ̸=k

gωjk
, g1 =

⊕
j

gλj , g−1 =
⊕
j

g−λj

are discussed in the next section.

We want to investigate the Weyl group of Aut(O). Generally, if G is a
compact, connected Lie group with maximal torus T, the Weyl group of G
is

(11.3.25) W (G) = N(T)/T, N(T) = {g ∈ G : g−1Tg = T}.

We define the representation W of N(T) on t by

(11.3.26) W(g) = Ad(g)
∣∣∣
t
, for g ∈ N(T),

and denote by W the contragredient representation on t′ (and its complex-
ification). Of course, these two representations are equivalent via the iso-
morphism t ≈ t′ induced by the Ad-invariant inner product we use on g.

A key example is

(11.3.27) W (SU(n)) ≈ Sn,
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the symmetric group on n symbols, which arises as follows (if n is odd). For
σ ∈ Sn, the permutation matrix Eσ ∈ U(n), defined on the standard basis
{u1, . . . , un} of Cn by Eσuk = uσ(k), has the property that

(11.3.28) C(Eσ) : T −→ T, C(Eσ)V = E−1
σ V Eσ,

with T as in (11.3.7). Since detEσ = sgnσ, we need to alter (11.3.28) to
get an element of N(T) ⊂ SU(n). For n odd, we can just replace Eσ in
(11.3.28) by

(11.3.29) Ẽσ = (sgnσ)Eσ.

For n even, see (6.3.35)–(6.3.37). Of immediate interest here is the case

n = 3. Note that σ 7→ Ẽσ gives a group homomorphism

(11.3.30) S3 −→ N(T) ⊂ SU(3),

whose composition with Ẽσ 7→ C(Ẽσ) : T → T yields an isomorphism of
S3 with the image of W (SU(3)) under the map W. In connection with
these facts, we mention the following general results regarding W (G), for an
arbitrary compact, connected, semisimple Lie group G. For details, see §6.3
of this text, and Chapter 8 of [34].

Proposition 11.3.4. Let π be a unitary representation of G on V , with
weight space decomposition V = ⊕Vλ. Then

(11.3.31) g ∈ N(T) =⇒ π(g) : Vλ → VW(g)λ.

Proposition 11.3.5. If g ∈ G and g−1ug = u for each u ∈ T, then g ∈ T.
Hence if g ∈ N(T) and W(g) = I on t, then g ∈ T. Consequently, we can
identify W (G) with its image under W in G`(t), and therefore also with its
image under W in G`(t′).

Proposition 11.3.6. The image of W (G) under W in G`(t′) is generated
by the set of reflections Sα across hyperplanes in t′ orthogonal to α, as α
runs over the set of roots of G.

It is straightforward to verify these results for G = SU(3). Note that,
under W, the Weyl group W (SU(3)) acts transitively on each of the sets
(11.3.32)

{ωjk : j 6= k, 1 ≤ j, k ≤ 3}, {λj : 1 ≤ j ≤ 3}, {−λj : 1 ≤ j ≤ 3},

defined as in (11.3.12), (11.3.15), and (11.3.16). The first set is the set of
roots for SU(3), and the last two sets are, respectively, the sets of weights
for π0 and π0.

Composing the map σ 7→ Ẽσ in (11.3.30) with the inclusion SU(3) ≈
Ge1 ⊂ Aut(O) yields the injective group homomorphism

(11.3.33) W (SU(3)) −→W (Aut(O)).
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However, W (Aut(O)) is bigger than W (SU(3)). By Proposition 11.3.6, the
image under W of W (SU(3)) is generated by the reflections in t′ across
lines orthogonal to ω12, ω23, and ω31, respectively. The image under W of
W (Aut(O) is generated by these 3 reflections plus 3 more: reflections in
t′ across lines orthogonal to λ1, λ2, and λ3, respectively. In particular, the
image under W of W (Aut(O)) acts transitively on each of the sets

(11.3.34) {ωjk : j 6= k, 1 ≤ j, k ≤ 3}, {λj ,−λj : 1 ≤ j ≤ 3},
which together give all the roots of Aut(O). We see that W (Aut(O)) is
isomorphic to the group of isometries of a regular hexagon.
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11.4. More on the Lie algebra of Aut(O)

As seen in §§11.2–11.3, the Lie algebra Der(O) of Aut(O) can be written as
a vector space sum

(11.4.1) Der(O) = su(3)⊕ V,

where su(3) is the Lie algebra of Ge1 ≈ SU(3) and V , the orthogonal com-
plement of su(3), is isomorphic to Te1S, a vector space of R-dimension 6,
with a complex structure J , so (V, J) ≈ C3, and the natural action ρ of Ge1
on V is equivalent to the standard action of SU(3) on C3. Thus an element
of Der(O) can be represented as a pair (X, v), with X ∈ su(3), v ∈ V . If
also (Y,w) ∈ Der(O), we want to look at the Lie bracket

(11.4.2) [(X, v), (Y,w)] = [X,Y ] + [X,w] + [v, Y ] + [v, w].

Of course, [X,Y ] is the standard bracket on su(3). Meanwhile, by (5.18)–
(5.19),

(11.4.3) [X,w] = dρ(X)w ∈ V,

and similarly [v, Y ] = −[Y, v] = −dρ(Y )v.

It remains to examine [v, w], which will typically have a component in
su(3) and a component in V . The component in su(3) is specified by

(11.4.4)

〈X, [v, w]〉 = 〈X, ad(v), w〉
= −〈ad(v)X,w〉
= 〈dρ(X)v, w〉.

For further analysis of [v, w], it is convenient to bring in the complexification

(11.4.5) VC = V1 ⊕ V−1,

where

(11.4.6) Vµ = {v ∈ VC : Jv = µiv}, µ = ±1.

Since dρ(X) commutes with J , we have, for v, w ∈ VC,

(11.4.7)

〈X, [Jv,w]〉 = 〈dρ(X)Jv,w〉
= 〈Jdρ(X)v, w〉
= −〈dρ(X)v, Jw〉
= −〈X, [v, Jw]〉,

and hence

(11.4.8)
〈X, [Jv, Jw]〉 = −〈X, [v, J2w]〉

= 〈X, [v, w]〉.
Meanwhile, for each µ = ±1,

(11.4.9) v, w ∈ Vµ =⇒ [Jv, Jw] = −[v, w],
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so

(11.4.10) v, w ∈ Vµ =⇒ [v, w] ⊥ X, ∀X ∈ su(3).

More precisely, we can show that

(11.4.11) v, w ∈ Vµ =⇒ [v, w] ∈ V−µ.

This can be seen from the root space decomposition, established in §11.3.
With gC denoting the complexification of Der(O), we have

(11.4.12)
gC = g0 ⊕ g1 ⊕ g−1,

g0 = su(3)C, g1 = V1, g−1 = V−1,

and

(11.4.13) g0 = tC ⊕
⊕
j ̸=k

gωjk
, g1 =

⊕
j

gλj , g−1 =
⊕
j

g−λj ,

with {ωjk} and {±λj} as in (11.3.10), (11.3.15). It follows from (11.3.4)
that

(11.4.14) [gj , gk] ⊂ gℓ, ` = j + k mod 3.

In particular,

(11.4.15) [g1, g−1] ⊂ g0,

so this bracket action is completely determined by (11.4.4). It remains to
analyze

(11.4.16) [g1, g1] → g−1, and [g−1, g−1] → g1,

or equivalently

(11.4.17) [V1, V1] → V−1, [V−1, V−1] → V1,

with V±1 as in (11.4.5)–(11.4.6). The following observation is useful.

Proposition 11.4.1. If (V, J) is a vector space with complex structure J ,
equipped with a Hermitian inner product ( , ), and VC = V1 ⊕ V−1, as in
(11.4.5)–(11.4.6), then there are natural C-linear isomorphisms

(11.4.18) V ′
1 ≈ V−1 and V ′

−1 ≈ V1.

Proof. The inner product ( , ) on V extends to a C-bilinear form on VC.
If u− iJu ∈ V1 and v + iJv ∈ V−1 (with u, v ∈ V ), then

(11.4.19)
(u− iJu, v + iJv) = (u, v)− i(Ju, v) + i(u, Jv) + (Ju, Jv)

= 2(u, v),

so the left side yields a C-linear dual pairing of V1 and V−1. Note that
(i(u − iJu), v + iJv) = 2(Ju, v) = 2i(u, v) and (u − iJu, i(v + iJv)) =
−2(u, Jv) = 2i(u, v). □
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It follows that the bilinear maps in (11.4.17) yield tri-linear maps

(11.4.20) ϕ : V1 × V1 × V1 → C, ψ : V−1 × V−1 × V−1 → C,
via

(11.4.21) ϕ(u, v, w) = ([u, v], w), u, v, w ∈ V1,

and analogously for ψ. Note that

([u, v], w) = (adu(v), w)

= −(v, adu(w))

= −(v, [u,w])

= −([u,w], v),

so ϕ is anti-symmetric in its arguments. On the other hand,

(11.4.22) dimC V1 = 3 =⇒ Λ3
CV1 ≈ C,

so ϕ is uniquely determined, up to a scalar multiple, by the anti-symmetry
property. Let us note that ϕ in (11.4.20) is not zero, i.e., the bracket
[V1, V1] ↪→ V−1 is not identically zero. In fact, for example, [gλ1 , gλ3 ] has
nonzero image in g−λ2 (cf. Proposition 6.1.6).



Appendix A

Background in
advanced calculus and
ODE

This appendix provides some background in topics of advanced calculus and
ODE that come up in the text. More leisurely developments of this material
can be found in Chapters 2–3 of the advanced calculus text [40], in Chapter
4 of the ODE text [44], and in Chapter 1 (Basic theory of ODE and vector
fields) of the text [39].

Section A.1 proves the submersion mapping theorem, which came up in
§1.1 as a tool to show that various matrix groups are in fact smooth subman-
ifolds of the linear spaces M(n,R) and M(n,C). This appendix derives the
needed result from the inverse function theorem, whose proof is given in [40].
Another application of the inverse function theorem treated in §A.1 involves
holomorphic mappings with invertible derivatives. We obtain a holomorphic
inverse function theorem, of use in the treatment of the complexification of
a Lie group, in Chapter 6.

Section A.2 discusses metric tensors on smooth manifolds, and the vol-
ume elements they induce, which allow one to define an integral. Section
A.3 gives basic material on differential forms and how to integrate them.

Section A.4 discusses how a vector field X generates a flow. Section A.5
discusses how such a flow acts on another vector field, Y, how the derivative
of such an action yields a Lie derivative LXY , and how this is equal to the Lie
bracket [X,Y ]. Section A.6 uses this interplay between the Lie derivative
and the Lie bracket to establish Frobenius’ theorem. This result has the

449
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important consequence that if g is the Lie algebra of G, then a subalgebra
h of g is the Lie algebra of a subgroup of G.

Section A.7 derives a formula for the variation of a flow as the vector
field generating the flow is varied.

Section A.8 has material on the Laplace-Beltrami operator on a Rie-
mannian manifold. One key result is that this operator is invariant under
the action of isometries.
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A.1. The inverse function theorem and submersion mapping
theorem

Let V and W be finite dimensional real vector spaces, Ω ⊂ V open, and
F : Ω → W . We recall that F is said to be differentiable at x ∈ Ω if and
only if there exists a linear map L : V →W such that, for small y ∈ V ,

(A.1.1) F (x+ y) = F (x) + Ly + r(x, y), |r(x, y)| = o(|y|).

Then we set DF (x) = L. If F is differentiable at each x ∈ Ω, we have
DF : Ω → L(V,W ). If DF is continuous, we say F is C1. Then we can
consider differentiability of DF , etc., and naturally arrive at the concept
of F ∈ Ck, in the standard fashion. The following is the Inverse Function
Theorem.

Theorem A.1.1. Assume dimV = dimW . Let F : Ω →W be Ck (k ≥ 1).
Take x0 ∈ Ω and assume DF (x0) : V → W is an isomorphism. Then there
exists a neighborhood U of x0 and a neighborhood O of y0 = F (x0) such that
F : U → O is bijective, and its inverse F−1 : O → U is Ck.

We assume this is part of the reader’s background. Proofs can be found
in Chapter 2 of [40], Chapter 1 of [39], and Appendix B of [41].

Our first application of this result is to the following Submersion Map-
ping Theorem, of use in §1.1. In this case, dim V ≥ dimW .

Theorem A.1.2. Let V and W be finite dimensional vector spaces, and
F : V →W a Ck map, k ≥ 1. Fix p ∈W , and consider

(A.1.2) S = {x ∈ V : F (x) = p}.

Assume that, for each x ∈ S, DF (x) : V → W is surjective. Then S is a
Ck submanifold of V . Furthermore, for each x ∈ S,

(A.1.3) TxS = kerDF (x).

Proof. Given q ∈ S, set Kq = kerDF (q) and define

(A.1.4) Gq : V −→W ⊕Kq, Gq(x) = (F (x), Pq(x− q)),

where Pq is a projection of V onto Kq. Note that

(A.1.5) Gq(q) = (F (q), 0) = (p, 0).

Also

(A.1.6) DGq(x) = (DF (x), Pq), x ∈ V.

We claim that

(A.1.7) DGq(q) = (DF (q), Pq) : V →W ⊕Kq is an isomorphism.

This is a special case of the following general observation. □
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Lemma A.1.3. If A : V → W is a surjective linear map and P is a
projection of V onto kerA, then

(A.1.8) (A,P ) : V −→W ⊕ kerA is an isomorphism.

We postpone the proof of this lemma and proceed with the proof of
Theorem A.1.2. Having (A.1.7), we can apply the Inverse Function Theorem
to obtain a neighborhood U of q in V and a neighborhood O of (p, 0) in
W ⊕Kq such that Gq : U → O is bijective, with Ck inverse

(A.1.9) G−1
q : O −→ U, G−1

q (p, 0) = q.

By (A.1.4), given x ∈ U ,

(A.1.10) x ∈ S ⇐⇒ Gq(x) = (p, v), for some v ∈ Kq.

Hence S ∩U is the image under the Ck diffeomorphism G−1
q of O∩ {(p, v) :

v ∈ Kq}. Hence S is smooth of class Ck and dimTqS = dimKq. It follows
from the chain rule that TqS ⊂ Kq, so the dimension count yields TqS = Kq.
This proves Theorem A.1.2.

It remains to prove Lemma A.1.3. Indeed, given that A : V → W
is surjective, the fundamental theorem of linear algebra implies dim V =
dim(W ⊕ kerA), and it is clear that (A,P ) in (A.1.8) is injective, so the
isomorphism property follows.

Remark. In case V = Rn and W = R, DF (x) is typically denoted ∇F (x),
the hypothesis on DF (x) becomes ∇F (x) 6= 0, and (A.1.3) is equivalent to
the assertion that dimS = n− 1 and, for x ∈ S,

∇F (x) ⊥ TxS.

This result (at least for n = 2, 3) appears in standard multivariable calculus
courses.

We next treat an extension of Theorem A.1.1 to the setting of holomor-
phic maps. Let Ω ⊂ Cn be an open set, F : Ω → Cn a C1 map. We say F
is holomorphic on Ω if it satisfies the Cauchy-Riemann equations

(A.1.11)
∂F

∂xj
=

1

i

∂F

∂yj
,

where (x, y) ∈ Ω, x, y ∈ Rn. Consequently, if F = u + iv, u and v taking
values in Rn, we have

(A.1.12) Dxu = Dyv, Dyu = −Dxv.
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Another way to phrase this is to write F =
(
u
v

)
, so

(A.1.13) DF (x, y) =

(
Dxu Dyu
Dxv Dyv

)
,

and the Cauchy-Riemann equations say

(A.1.14) DF (x, y) =

(
Dyv −Dxv
−Dyu Dxu

)
.

Now if we set

(A.1.15) J =

(
0 −I
I 0

)
∈M(2n,R), J2 =

(
−I 0
0 −I

)
,

we see that the Cauchy-Riemann equations hold (i.e., (A.1.13) is equal to
(A.1.14)) if and only if

(A.1.16) DF (x, y)J = J DF (x, y).

Given this, the following holomorphic inverse function theorem is a straight-
forward consequence of Theorem A.1.1.

Theorem A.1.4. Let Ω ⊂ Cn be open, F : Ω → Cn be holomorphic. As-
sume p ∈ Ω, q = F (p), and DF (p) invertible. Then there are neighbor-
hoods U of p and O of q such that F : U → O is bijective, with inverse
G = F−1 : O → U . Furthermore, G is holomorphic.

Proof. We need only show that G is holomorphic. Say q0 ∈ O, G(q0) =
p0 ∈ U . Then

(A.1.17) DG(q0) = DF (p0)
−1,

and it suffices to note that

(A.1.18) DF (p0) commutes with J =⇒ DG(q0) commutes with J.

□
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A.2. Metric tensors and volume elements

Let M be a C1 manifold of dimension n. A continuous metric tensor on
M gives a continuous inner product on tangent vectors to M . In a local
coordinate system (x1, . . . , xn), identifying an open subset of M with an
open set O ⊂ Rn, the metric tensor is given by a positive definite n × n
matrix G(x) = (gjk(x)), and the inner product of vectors U and V is given
by

(A.2.1) 〈U, V 〉 = U ·G(x)V =
∑
j,k

gjk(x)uj(x)vk(x),

where U =
∑

j uj(x)ej , V =
∑

k vk(x)ek, and {e1, . . . , en} is the standard

basis of Rn. If we change coordinates by a C1 diffeomorphism F : O → Ω,
the metric tensor H(y) = (hjk(y)) in the coordinate system y = F (x) is
related to G(x) by

(A.2.2) DF (x)U ·H(y)DF (x)V = 〈U, V 〉 = U ·G(x)V,

at y = F (x), i.e.,

(A.2.3) G(x) = DF (x)tH(y)DF (x),

or

(A.2.4) gjk(x) =
∑
i,ℓ

∂Fi
∂xj

∂Fℓ
∂xk

hiℓ(y).

Now, for an integrable function u supported on a coordinate patch, the
integral is given by

(A.2.5)

∫
u dV =

∫
u(x)

√
g dx, g(x) = detG(x).

To see that (A.2.5) is well defined, note that under the change of coordinates
y = F (x) we have by (A.2.3) that detG(x) = (detDF (x))2 detH(y). Hence

(A.2.6)
√
h = | detDF |−1√g, h = detH,

so, by the standard change of variable formula for the integral,

(A.2.7)

∫
u(y)

√
h dy =

∫
u(F (x))| detDF |−1√g| detDF | dx

=

∫
u(F (x))

√
g dx.

More generally,
∫
M u dV is defined by writing u as a sum of terms sup-

ported on coordinate charts. We see that we have a well defined integral
over M , determined by the metric tensor.
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In caseM is an n-dimensional submanifold of Rm and a local coordinate
chart arises via a C1 map ϕ : O → Rm, the metric tensor induced on O is
given by

(A.2.8) G(x) = Dϕ(x)tDϕ(x),

i.e.,

(A.2.9) gjk(x) =
m∑
ℓ=1

∂ϕℓ
∂xj

∂ϕℓ
∂xk

=
∂ϕ

∂xj
· ∂ϕ
∂xk

,

using the dot product on Rm.
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A.3. Integration of differential forms

The calculus of differential forms provides a convenient setting for integra-
tion on manifolds, as we will explain in this appendix, due to the efficient
way it keeps track of changes of variables.

A k-form β on an open set O ⊂ Rn has the form

(A.3.1) β =
∑
j

bj(x) dxj1 ∧ · · · ∧ dxjk .

Here j = (j1, . . . , jk) is a k-multi-index. We write β ∈ Λk(O). The wedge
product used in (A.3.1) has the anti-commutative property

(A.3.2) dxℓ ∧ dxm = −dxm ∧ dxℓ,

so that if σ is a permutation of {1, . . . , k}, we have

(A.3.3) dxj1 ∧ · · · ∧ dxjk = (sgnσ) dxjσ(1)
∧ · · · ∧ dxjσ(k)

.

In particular, an n-form α on O ⊂ Rn can be written

(A.3.4) α = A(x) dx1 ∧ · · · ∧ dxn.

If A ∈ L1(O, dx), we write

(A.3.5)

∫
O

α =

∫
O

A(x) dx,

the right side being the usual integral on Euclidean space.

Suppose now Ω ⊂ Rn is open and there is a C1 diffeomorphism F : Ω →
O. We define the pull-back F ∗β of the k-form β in (A.3.1) as

(A.3.6) F ∗β =
∑
j

bj(F (x)) (F
∗dxj1) ∧ · · · ∧ (F ∗dxjk),

where

(A.3.7) F ∗dxj =
∑
ℓ

∂Fj
∂xℓ

dxℓ,

the algebraic computation in (A.3.6) being performed using the rule (A.3.3).

If B = (bℓm) is an n × n matrix, then, by (A.3.3) and the standard
formula for the determinant,

(A.3.8)

(∑
m

b1m dxm

)
∧
(∑
m

b2m dxm

)
∧ · · · ∧

(∑
m

bnm dxm

)
=
(∑

σ

(sgnσ) b1σ(1)b2σ(2) · · · bnσ(n)
)
dx1 ∧ · · · ∧ dxn

= (detB) dx1 ∧ · · · ∧ dxn.
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Hence, if F : Ω → O is a C1 map and α is an n-form on O, as in (A.3.4),
then

(A.3.9) F ∗α = detDF (x)A(F (x)) dx1 ∧ · · · ∧ dxn.

This formula is especially significant in light of the standard change of vari-
able formula

(A.3.10)

∫
O

A(x) dx =

∫
Ω

A(F (x)) | detDF (x)| dx,

when F : Ω → O is a C1 diffeomorphism. The only difference between
the right side of (A.3.10) and

∫
Ω F

∗α is the absolute value sign around

detDF (x). We say a C1 map F : Ω → O is orientation preserving when
detDF (x) > 0 for all x ∈ Ω. In such a case, (A.3.10) yields

Proposition A.3.1. If F : Ω → O is a C1 orientation-preserving diffeo-
morphism and α an integrable n-form on O, then

(A.3.11)

∫
O

α =

∫
Ω

F ∗α.

In addition to the pull-back, there are some other operations on differ-
ential forms. The wedge product of dxℓ’s extends to a wedge product on
forms as follows. If β ∈ Λk(O) has the form (A.3.1) and if

(A.3.12) α =
∑
i

ai(x) dxi1 ∧ · · · ∧ dxiℓ ∈ Λℓ(O),

define

(A.3.13) α ∧ β =
∑
i,j

ai(x)bj(x) dxi1 ∧ · · · ∧ dxiℓ ∧ dxj1 ∧ · · · ∧ dxjk

in Λk+ℓ(O). We retain the equivalences (A.3.3). It follows that

(A.3.14) α ∧ β = (−1)kℓβ ∧ α.

It is also readily verified that

(A.3.15) F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β).

Another important operator on forms is the exterior derivative:

(A.3.16) d : Λk(O) −→ Λk+1(O),

defined as follows. If β ∈ Λk(O) is given by (A.3.1), then

(A.3.17) dβ =
∑
j,ℓ

∂bj
∂xℓ

dxℓ ∧ dxj1 ∧ · · · ∧ dxjk .
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The antisymmetry dxm ∧ dxℓ = −dxℓ ∧ dxm, together with the identity
∂2bj/∂xℓ∂xm = ∂2bj/∂xm∂xℓ, implies

(A.3.18) d(dβ) = 0,

for any smooth differential form β. We also have a product rule:

(A.3.19) d(α ∧ β) = (dα) ∧ β + (−1)jα ∧ (dβ), α ∈ Λj(O), β ∈ Λk(O).

The exterior derivative has the following important property under pull-
backs:

(A.3.20) F ∗(dβ) = dF ∗β,

if β ∈ Λk(O) and F : Ω → O is a smooth map. To see this, extending
(A.3.19) to a formula for d(α ∧ β1 ∧ · · · ∧ βℓ) and using this to apply d to
F ∗β, we have
(A.3.21)

dF ∗β =
∑
j,ℓ

∂

∂xℓ

(
bj ◦ F (x)

)
dxℓ ∧

(
F ∗dxj1

)
∧ · · · ∧

(
F ∗dxjk

)
+
∑
j,ν

(±)bj
(
F (x)

)(
F ∗dxj1

)
∧ · · · ∧ d

(
F ∗dxjν

)
∧ · · · ∧

(
F ∗dxjk

)
.

Now the definition (A.3.6)–(A.3.7) of pull-back gives directly that

(A.3.22) F ∗dxi =
∑
ℓ

∂Fi
∂xℓ

dxℓ = dFi,

and hence d(F ∗dxi) = ddFi = 0, so only the first sum in (A.3.21) contributes
to dF ∗β. Meanwhile,

(A.3.23) F ∗dβ =
∑
j,m

∂bj
∂xm

(
F (x)

)
(F ∗dxm) ∧

(
F ∗dxj1

)
∧ · · · ∧

(
F ∗dxjk

)
,

so (A.3.20) follows from the identity∑
ℓ

∂

∂xℓ

(
bj ◦ F (x)

)
dxℓ =

∑
m

∂bj
∂xm

(
F (x)

)
F ∗dxm,

which in turn follows from the chain rule.

Here is another important consequence of the chain rule. Suppose F :
Ω → O and ψ : O → U are smooth maps between open subsets of Rn. We
claim that for any form α of any degree,

(A.3.24) ψ ◦ F = ϕ =⇒ ϕ∗α = F ∗ψ∗α.

It suffices to check (A.3.24) for α = dxj . Then (A.3.7) gives the basic identity
ψ∗ dxj =

∑
(∂ψj/∂xℓ) dxℓ. Consequently,

(A.3.25) F ∗ψ∗ dxj =
∑
ℓ,m

∂Fℓ
∂xm

∂ψj
∂xℓ

dxm, ϕ∗ dxj =
∑
m

∂ϕj
∂xm

dxm;
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but the identity of these forms follows from the chain rule:

(A.3.26) Dϕ = (Dψ)(DF ) =⇒ ∂ϕj
∂xm

=
∑
ℓ

∂ψj
∂xℓ

∂Fℓ
∂xm

.

One can define a k-form on an n-dimensional manifoldM as follows. Say
M is covered by open sets Oj and there are coordinate charts Fj : Ωj → Oj ,

with Ωj ⊂ Rn open. A collection of forms βj ∈ Λk(Ωj) is said to define
a k-form on M provided the following compatibility condition holds. If
Oi ∩ Oj 6= ∅ and we consider Ωij = F−1

i (Oi ∩ Oj) and diffeomorphisms

(A.3.27) ϕij = F−1
j ◦ Fi : Ωij −→ Ωji,

we require

(A.3.28) ϕ∗
ijβj = βi.

The fact that this is a consistent definition is a consequence of (A.3.24). For
example, if G : M → Rm is a smooth map and γ is a k-form on Rm, then
there is a well-defined k-form β = G∗γ onM , represented in such coordinate
charts by βj = (G ◦Fj)∗γ. Similarly, if β is a k-form on M as defined above
and G : U → M is smooth, with U ⊂ Rm open, then G∗β is a well-defined
k-form on U .

We give an intrinsic definition of
∫
M α when α is an n-form on M , pro-

vided M is oriented, i.e., there is a coordinate cover as above such that
detDϕjk > 0. The object called an “orientation” on M can be identified
as an equivalence class of nowhere vanishing n-forms on M , two such forms
being equivalent if one is a multiple of another by a positive function in
C∞(Ω). A member of this equivalence class, say ω, defines the orientation.
The standard orientation on Rn is determined by dx1∧· · ·∧dxn. The equiv-
alence class of positive multiples a(x)ω is said to consist of “positive” forms.
A smooth map ψ : S → M between oriented n-dimensional manifolds pre-
serves orientation provided ψ∗σ is positive on S whenever σ ∈ Λn(M) is
positive. We mention that there exist surfaces that cannot be oriented, such
as the famous “Möbius strip.”

We define the integral of an n-form over an oriented n-dimensional man-
ifold as follows. First, if α is an n-form supported on an open set O ⊂ Rn,
given by (A.3.4), then we define

∫
O α by (A.3.5).

More generally, if M is an n-dimensional manifold with an orientation,
say the image of an open set O ⊂ Rn by ϕ : O → M , carrying the natural
orientation of O, we can set

(A.3.29)

∫
M

α =

∫
O

ϕ∗α
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for an n-form α on M . If it takes several coordinate patches to cover M ,
define

∫
M α by writing α as a sum of forms, each supported on one patch.

We need to show that this definition of
∫
M α is independent of the choice

of coordinate system on M (as long as the orientation of M is respected).
Thus, suppose ϕ : O → U ⊂ M and ψ : Ω → U ⊂ M are both coordinate
patches, so that F = ψ−1 ◦ ϕ : O → Ω is an orientation-preserving diffeo-
morphism. We need to check that, if α is an n-form on M , supported on U,
then

(A.3.30)

∫
O

ϕ∗α =

∫
Ω

ψ∗α.

To establish this, we use (A.3.24). This implies that the left side of (A.3.30)
is equal to

(A.3.31)

∫
O

F ∗(ψ∗α),

which is equal to the right side of (A.3.30), by (A.3.11) (with slightly altered
notation). Thus the integral of an n-form over an oriented n-dimensional
manifold is well defined.
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A.4. Flows and vector fields

Let U ⊂ Rn be open. A vector field on U is a smooth map

(A.4.1) X : U −→ Rn.

Consider the corresponding ODE

(A.4.2)
dy

dt
= X(y), y(0) = x,

with x ∈ U. A curve y(t) solving (A.4.2) is called an integral curve of the
vector field X. It is also called an orbit. For fixed t, write

(A.4.3) y = y(t, x) = F t
X(x).

The locally defined F t
X , mapping (a subdomain of) U to U, is called the flow

generated by the vector field X.

The vector field X defines a differential operator on scalar functions, as
follows:

(A.4.4) LXf(x) = lim
h→0

h−1
[
f(Fh

Xx)− f(x)
]
=

d

dt
f(F t

Xx)
∣∣
t=0

.

We also use the common notation

(A.4.5) LXf(x) = Xf,

that is, we apply X to f as a first order differential operator.

Note that, if we apply the chain rule to (A.4.4) and use (A.4.2), we have

(A.4.6) LXf(x) = X(x) · ∇f(x) =
∑

aj(x)
∂f

∂xj
,

if X =
∑
aj(x)ej , with {ej} the standard basis of Rn. In particular, using

the notation (A.4.5), we have

(A.4.7) aj(x) = Xxj .

In the notation (A.5),

(A.4.8) X =
∑

aj(x)
∂

∂xj
.

We note that X is a derivation, i.e., a map on C∞(U), linear over R,
satisfying

(A.4.9) X(fg) = (Xf)g + f(Xg).

Conversely, any derivation on C∞(U) defines a vector field, i.e., has the form
(A.4.8), as we now show.

Proposition A.4.1. If X is a derivation on C∞(U), then X has the form
(A.4.8).
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Proof. Set aj(x) = Xxj , X
# =

∑
aj(x)∂/∂xj , and Y = X −X#. Then Y

is a derivation satisfying Y xj = 0 for each j; we aim to show that Y f = 0
for all f. Note that, whenever Y is a derivation

1 · 1 = 1 ⇒ Y · 1 = 2Y · 1 ⇒ Y · 1 = 0,

i.e., Y annihilates constants. Thus in this case Y annihilates all polynomials
of degree ≤ 1.

Now we show Y f(p) = 0 for all p ∈ U. Without loss of generality, we

can suppose p = 0, the origin. Then we can take bj(x) =
∫ 1
0 (∂jf)(tx)dt, and

write
f(x) = f(0) +

∑
bj(x)xj .

It immediately follows that Y f vanishes at 0, so the proposition is proved.
□

If U is a manifold, it is natural to regard a vector field X as a section of
the tangent bundle of U . Of course, the characterization given in Proposition
A.4.1 makes good invariant sense on a manifold.

A fundamental fact about vector fields is that they can be “straightened
out” near points where they do not vanish. To see this, suppose a smooth
vector field X is given on U (open in Rn) such that, for a certain p ∈
U, X(p) 6= 0. Then near p there is a hypersurface M which is nowhere
tangent to X. We can choose coordinates near p so that p is the origin and
M is given by {xn = 0}. Thus we can take a neighborhood O of 0 ∈ Rn−1,
and define a map

(A.4.10) Φ : O × (−t0, t0) −→ U

by

(A.4.11) Φ(u′, t) = F t
X(ψ(u

′)), ψ(u′) = (u′, 0).

This is C∞ and has surjective derivative, so by the Inverse Function Theorem
is a local diffeomorphism. Note that

(A.4.12) Fs
XΦ(u

′, t) = Fs
XF t

X(ψ(u
′)) = F t+s

X (ψ(u′)) = Φ(u′, t+ s).

If we set u = (u′, t), x = Φ(u), we have the following result, known as the
Straightening Lemma.

Theorem A.4.2. If X is a smooth vector field on U with X(p) 6= 0, then
there exists a coordinate system (u1, . . . , un) centered at p (so uj(p) = 0)
with respect to which

(A.4.13) X =
∂

∂un
.
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A.5. Lie brackets

If F : Ω → O is a diffeomorphism between two open domains in Rn, or
between two smooth manifolds, and Y is a vector field on O, we define a
vector field F#Y on Ω so that

(A.5.1) F t
F#Y

= F−1 ◦ F t
Y ◦ F,

or equivalently, by the chain rule,

(A.5.2) F#Y (x) =
(
DF−1

)(
F (x)

)
Y
(
F (x)

)
.

In particular, if U ⊂ Rn is open and X is a vector field on U, defining a flow
F t, then for a vector field Y, F t

#Y is defined on most of U, for |t| small, and
we can define the Lie derivative:

(A.5.3) LXY = lim
h→0

h−1
(
Fh
#Y − Y

)
=

d

dt
F t
#Y
∣∣
t=0

,

as a vector field on U.

Another natural construction is the operator-theoretic bracket:

(A.5.4) [X,Y ] = XY − Y X,

where the vector fields X and Y are regarded as first order differential op-
erators on C∞(U). One verifies that (A.5.4) defines a derivation on C∞(U),
hence a vector field on U. The basic elementary fact about the Lie bracket
is the following.

Theorem A.5.1. If X and Y are smooth vector fields, then

(A.5.5) LXY = [X,Y ].

Proof. Let us first verify the identity in the special case

X =
∂

∂x1
, Y =

∑
bj(x)

∂

∂xj
.

Then F t
#Y =

∑
bj(x+te1)∂/∂xj .Hence, in this case LXY =

∑
(∂bj/∂x1)∂/∂xj ,

and a straightforward calculation shows this is also the formula for [X,Y ],
in this case.

Now we verify (A.5.5) in general, at any point x0 ∈ U. First, if X is
nonvanishing at x0, we can choose a local coordinate system so the exam-
ple above gives the identity. By continuity, we get the identity (A.5.5) on
the closure of the set of points x0 where X(x0) 6= 0. Finally, if x0 has a
neighborhood where X = 0, clearly LXY = 0 and [X,Y ] = 0 at x0. This
completes the proof. □

Corollary A.5.2. If X and Y are smooth vector fields on U, then

(A.5.6)
d

dt
F t
X#Y = F t

X#[X,Y ]
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for all t.

Proof. Since locally F t+s
X = Fs

XF t
X , we have the same identity for F t+s

X#,

which yields (A.5.6) upon taking the s-derivative. In more detail, (d/dt)F t
X#Y =

(d/ds)F t+s
X#Y |s=0 = (d/ds)F t

X#Y |s=0 = F t
X#LXY , and the last step follows

from (A.5.5). □

We make some further comments about cases when one can explicitly
integrate a vector field X in the plane, exploiting “symmetries” that might
be apparent. In fact, suppose one has in hand a vector field Y such that

(A.5.7) [X,Y ] = 0.

By (A.5.6), this implies F t
Y#X = X for all t. Suppose one has an explicit

hold on the flow generated by Y, so one can produce explicit local coordinates
(u, v) with respect to which

(A.5.8) Y =
∂

∂u
.

In this coordinate system, write X = a(u, v)∂/∂u+ b(u, v)∂/∂v. The condi-
tion (A.5.7) implies ∂a/∂u = 0 = ∂b/∂u, so in fact we have

(A.5.9) X = a(v)
∂

∂u
+ b(v)

∂

∂v
.

Integral curves of (A.5.9) satisfy

(A.5.10) u′ = a(v), v′ = b(v)

and can be found explicitly in terms of integrals; one has

(A.5.11)

∫
b(v)−1 dv = t+ C1,

and then

(A.5.12) u =

∫
a(v(t)) dt+ C2.

More generally than (A.5.7), we can suppose that, for some constant c,

(A.5.13) [X,Y ] = cX,

which by (A.5.6) is the same as

(A.5.14) F t
Y#X = e−ctX.

An example would be

(A.5.15) X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

where f and g satisfy “homogeneity” conditions of the form

(A.5.16) f(rax, rby) = ra−cf(x, y), g(rax, rby) = rb−cg(x, y),
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for r > 0; in such a case one can take explicitly

(A.5.17) F t
Y (x, y) = (eatx, ebty).

Now, if one again has (B.8) in a local coordinate system (u, v), then X must
have the form

(A.5.18) X = ecu
[
a(v)

∂

∂u
+ b(v)

∂

∂v

]
which can be explicitly integrated, since

(A.5.19) u′ = ecua(v), v′ = ecub(v) =⇒ du

dv
=
a(v)

b(v)
.

The hypothesis (A.5.13) implies that the linear span (over R) of X and
Y is a two dimensional solvable Lie algebra. Sophus Lie devoted a good
deal of effort to examining when one could use constructions of solvable Lie
algebras of vector fields to explicitly integrate vector fields; his investigations
led to his foundation of the theory of Lie groups.
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A.6. Frobenius’ theorem

Let G : U → V be a diffeomorphism. Recall from §A.5 the action on vector
fields:

(A.6.1) G#Y (x) = DG(y)−1Y (y), y = G(x).

As noted there, an alternative characterization of G#Y is given in terms of
the flow it generates. One has

(A.6.2) F t
Y ◦G = G ◦ F t

G#Y
.

The proof of this is a direct consequence of the chain rule. As a special case,
we have the following

Proposition A.6.1. If G#Y = Y, then F t
Y ◦G = G ◦ F t

Y .

From this, we derive the following condition for a pair of flows to com-
mute. Let X and Y be vector fields on U.

Proposition A.6.2. If X and Y commute as differential operators, i.e.,

(A.6.3) [X,Y ] = 0,

then locally Fs
X and F t

Y commute, i.e., for any p0 ∈ U, there exists δ > 0
such that, for |s|, |t| < δ,

(A.6.4) Fs
XF t

Y p0 = F t
Y Fs

Xp0.

Proof. By Proposition A.6.1, it suffices to show that Fs
X#Y = Y. Clearly

this holds at s = 0. But by (A.5.6), we have

d

ds
Fs
X#Y = Fs

X#[X,Y ],

which vanishes if (A.6.3) holds. This finishes the proof. □

We have stated that, given (A.6.3), then (A.6.4) holds locally. If the
flows generated by X and Y are not complete, this can break down globally.
For example, consider X = ∂/∂x1, Y = ∂/∂x2 on R2, which satisfy (A.6.3)
and generate commuting flows. These vector fields lift to vector fields on the
universal covering surface M̃ of R2 \ (0, 0), which continue to satisfy (A.6.3).

The flows on M̃ do not commute globally. This phenomenon does not arise,
for example, for vector fields on a compact manifold.

We now consider when a family of vector fields has a multidimensional
integral manifold. Suppose X1, . . . , Xk are smooth vector fields on U which
are linearly independent at each point of a k−dimensional surface Σ ⊂ U. If
each Xj is tangent to Σ at each point, Σ is said to be an integral manifold
of (X1, . . . , Xk).
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Proposition A.6.3. Suppose X1, . . . , Xk are linearly independent at each
point of U and [Xj , Xℓ] = 0 for all j, `. Then, for each x0 ∈ U, there is a
k-dimensional integral manifold of (X1, . . . , Xk) containing x0.

Proof. We define a map F : V → U, V a neighborhood of 0 in Rk, by

(A.6.5) F (t1, . . . , tk) = F t1
X1

· · · F tk
Xk
x0.

Clearly (∂/∂t1)F = X1(F ). Similarly, since F tj
Xj

all commute, we can put

any F tj
Xj

first and get (∂/∂tj)F = Xj(F ). This shows that the image of V

under F is an integral manifold containing x0. □

We now derive a more general condition guaranteeing the existence of
integral submanifolds. This important result is due to Frobenius. We say

(X1, . . . , Xk) is involutive provided that, for each j, `, there are smooth bjℓm(x)
such that

(A.6.6) [Xj , Xℓ] =
k∑

m=1

bjℓm(x)Xm.

The following is Frobenius’ Theorem.

Theorem A.6.4. If (X1, . . . , Xk) are C∞ vector fields on U, linearly in-
dependent at each point, and the involutivity condition (A.6.6) holds, then
through each x0 there is, locally, a unique integral manifold Σ, of dimension
k.

We will give two proofs of this result. First, let us restate the conclusion
as follows. There exist local coordinates (y1, . . . , yn) centered at x0 such
that

(A.6.7) span (X1, . . . , Xk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.

First proof. The result is clear for k = 1.We will use induction on k. So let
the set of vector fields X1, . . . , Xk+1 be linearly independent at each point
and involutive. Choose a local coordinate system so that Xk+1 = ∂/∂u1.
Now let

(A.6.8) Yj = Xj − (Xju1)
∂

∂u1
for 1 ≤ j ≤ k, Yk+1 =

∂

∂u1
.

Since, in (u1, . . . , un) coordinates, no Y1, . . . , Yk involves ∂/∂u1, neither does
any Lie bracket, so

[Yj , Yℓ] ∈ span (Y1, . . . , Yk), j, ` ≤ k.
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Thus (Y1, . . . , Yk) is involutive. The induction hypothesis implies there exist
local coordinates (y1, . . . , yn) such that

span (Y1, . . . , Yk) = span
( ∂

∂y1
, . . . ,

∂

∂yk

)
.

Now let

(A.6.9) Z = Yk+1 −
k∑
ℓ=1

(
Yk+1yℓ

) ∂
∂yℓ

=
∑
ℓ>k

(Yk+1yℓ)
∂

∂yℓ
.

Since, in the (u1, . . . , un) coordinates, Y1, . . . , Yk do not involve ∂/∂u1, we
have

[Yk+1, Yj ] ∈ span (Y1, . . . , Yk).

Thus [Z, Yj ] ∈ span (Y1, . . . , Yk) for j ≤ k, while (A.6.9) implies that
[Z, ∂/∂yj ] belongs to the span of (∂/∂yk+1, . . . , ∂/∂yn), for j ≤ k. Thus
we have [

Z,
∂

∂yj

]
= 0, j ≤ k.

Proposition A.6.3 implies span (∂/∂y1, . . . , ∂/∂yk, Z) has an integral mani-
fold through each point, and since this span is equal to the span of X1, . . . , Xk+1,
the first proof is complete. □

Second proof. Let X1, . . . , Xk be C
∞ vector fields, linearly independent at

each point, and satisfying the condition (A.6.6). Choose an n−k dimensional
surface O ⊂ U, transverse to X1, . . . , Xk. For V a neighborhood of the origin
in Rk, define Φ : V ×O → U by

(A.6.10) Φ(t1, . . . , tk, x) = F t1
X1

· · · F tk
Xk
x.

We claim that, for x fixed, the image of V in U is a k dimensional surface Σ
tangent to eachXj , at each point of Σ.Note that, since Φ(0, . . . , tj , . . . , 0, x) =

F tj
Xj
x, we have

(A.6.11)
∂

∂tj
Φ(0, . . . , 0, x) = Xj(x), x ∈ O.

To establish the claim, it suffices to show that F t
Xj#

Xℓ is a linear com-

bination with coefficients in C∞(U) of X1, . . . , Xk. This is accomplished by
the following:

Lemma A.6.5. Suppose [Y,Xj ] =
∑
ℓ

λjℓ(x)Xℓ, with smooth coefficients

λjℓ(x). Then F t
Y#Xj is a linear combination of X1, . . . , Xk, with coefficients

in C∞(U).
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Proof. Denote by Λ the matrix (λjℓ) and let Λ(t) = Λ(t, x) = (λjℓ(F t
Y x)).

Now let A(t) = A(t, x) be the unique solution to the ODE

(A.6.12)
d

dt
A(t) = Λ(t)A(t), A(0) = I.

Write A = (αjℓ). We claim that

(A.6.13) F t
Y#Xj =

∑
ℓ

αjℓ(t, x)Xℓ.

This formula will prove the lemma. Indeed, we have

d

dt
(F t

Y )#Xj = (F t
Y )#[Y,Xj ]

= (F t
Y )#

∑
ℓ

λjℓXℓ

=
∑
ℓ

(λjℓ ◦ F t
Y )(F t

Y#Xℓ).

Uniqueness of the solution to (A.6.12) gives (A.6.13), and we are done. □

This completes the second proof of Frobenius’ Theorem.
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A.7. Variation of flows

We want to derive a formula for the variation of a flow as the vector field
generating the flow is varied. It will be technically convenient to consider
first how a solution to an ODE depends on the initial conditions. Consider
a nonlinear system

(A.7.1)
dy

dt
= F (y), y(0) = x.

Suppose F : U → Rn is smooth, U ⊂ Rn open; for simplicity we assume U
is convex. Say y = y(t, x). We want to examine smoothness in x.

Note that formally differentiating (A.7.1) with respect to x suggests that
W = Dxy(t, x) satisfies an ODE called the linearization of (A.7.1):

(A.7.2)
dW

dt
= DF (y)W, W (0) = I.

In other words, w(t, x) = Dxy(t, x)w0 satisfies

(A.7.3)
dw

dt
= DF (y)w, w(0) = w0.

To justify this, we want to compare w(t) and

(A.7.4) z(t) = y1(t)− y(t) = y(t, x+ w0)− y(t, x).

It would be convenient to show that z satisfies an ODE similar to (A.7.3).
Indeed, z(t) satisfies

(A.7.5)
dz

dt
= F (y1)− F (y) = Φ(y1, y)z, z(0) = w0,

where

(A.7.6) Φ(y1, y) =

∫ 1

0
DF

(
τy1 + (1− τ)y

)
dτ.

If we assume

(A.7.7) ‖DF (u)‖ ≤M for u ∈ U,

then the solution operator S(t, 0) of the linear ODE d/dt−B(t), with B(y) =

Φ(y1(t), y(t)), satisfies a bound ‖S(t, 0)‖ ≤ e|t|M as long as y(t), y1(t) ∈ U.
Hence

(A.7.8) ‖y1(t)− y(t)‖ ≤ e|t|M‖w0‖.
This establishes that y(t, x) is Lipschitz in x.

To continue, since Φ(y, y) = DF (y), we rewrite (D.5) as

(A.7.9)
dz

dt
= Φ(y + z, y)z = DF (y)z +R(y, z), w(0) = w0.

where

(A.7.10) ∈ C1(U) =⇒ ‖R(y, z)‖ = o(‖z‖) = o(‖w0‖).
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Now comparing the ODE (A.7.9) with (A.7.3), we have

(A.7.11)
d

dt
(z − w) = DF (y)(z − w) +R(y, z), (z − w)(0) = 0.

Then Duhamel’s principle yields

(A.7.12) z(t)− w(t) =

∫ t

0
S(t, s)R

(
y(s), z(s)

)
ds,

so by the bound ‖S(t, s)‖ ≤ e|t−s|M and (A.7.10) we have

(A.7.13) z(t)− w(t) = o(‖w0‖).

This is precisely what is required to show that y(t, x) is differentiable with
respect to x, with derivative W = Dxy(t, x) satisfying (A.7.2). We state our
first result.

Proposition A.7.1. If F ∈ C1(U), and if solutions to (A.7.1) exist for t ∈
(−T0, T1), then for each such t, y(t, x) is C1 in x, with derivative Dxy(t, x) =
W (t, x) satisfying (A.7.2).

So far we have shown that y(t, x) is both Lipschitz and differentiable in
x, but the continuity of W (t, x) in x follows easily by comparing the ODEs
of the form (A.7.2) for W (t, x) and W (t, x+w0), in the spirit of the analysis
of (A.7.11).

If F possesses further smoothness, we can obtain higher differentiability
of y(t, x) in x by the following trick. Couple (A.7.1) and (A.7.2), to get an
ODE for (y,W ) :

(A.7.14)
dy

dt
= F (y),

dW

dt
= DF (y)W

with initial condition

(A.7.15) y(0) = x, W (0) = I.

We can reiterate the argument above, getting results on Dx(y,W ), i.e., on
D2
xy(t, x), and continue, proving:

Proposition A.7.2. If F ∈ Ck(U), then y(t, x) is Ck in x.

We now tackle our stated goal: to consider dependence of the solution
to a system of the form

(A.7.16)
dy

dt
= F (τ, y), y(0) = x

on a parameter τ, assuming F is smooth jointly in τ, y. This result can be
deduced from the previous one by the following trick: consider the ODE

(A.7.17)
dy

dt
= F (z, y),

dz

dt
= 0; y(0) = x, z(0) = τ.
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Thus we get smoothness of y(t, τ, x) in (τ, x). Furthermore, v(t, τ, x) =
∂τy(t, τ, x) satisfies

(A.7.18)
dv

dt
= DyF (τ, y)v + Fτ (τ, y), v(0, τ, x) = 0.
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A.8. The Laplace-Beltrami operator

The Laplace operator ∆ on an open set Ω ⊂ Rn is given by

(A.8.1) ∆u(x) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

One useful characterization of this operator is that, if u ∈ C2(Ω) and v ∈
C2
0 (Ω), then

(A.8.2)

∫
Ω

∆u(x) v(x) dx = −
∫
Ω

∇u(x) · ∇v(x) dx,

an identity that follows by integration by parts. We can use this to define
the Laplace-Beltrami operator ∆ on a Riemannian manifold M (equipped
with a metric tensor (gjk)) as follows. Take u ∈ C2(M). Then we want ∆u
to satisfy

(A.8.3)

∫
M

∆u(x) v(x) dV = −
∫
M

〈∇u,∇v〉 dV, ∀ v ∈ C2
0 (M),

where the inner product 〈X,Y 〉 of the vector fields X and Y is determined
by the metric tensor. We have, in local coordinates,

(A.8.4) 〈∇u,∇v〉 = gjk(x) ∂ku(x) ∂jv(x),

using the summation convention, and taking (gjk) to be the matrix inverse
of (gjk). Hence, if v is supported on one coordinate chart,

(A.8.5)

−
∫
M

〈∇u,∇v〉 dV = −
∫
gjk∂ku ∂jv g

1/2 dx

=

∫
∂j

(
g1/2gjk∂ku

)
v dx

=

∫
M

g−1/2∂j

(
g1/2gjk∂ku

)
v dV,

the second identity in (A.8.5) by integration by parts. Thus the Laplace-
Beltrami operator ∆ is given in local coordinates by

(A.8.6) ∆u(x) = g(x)−1/2∂j

(
g(x)1/2gjk(x)∂ku(x)

)
.

The formula (A.8.6) has the following important implication.

Proposition A.8.1. Assume ϕ : M → M is a smooth isometry (i.e., it
preserves the metric tensor). Take

(A.8.7) ϕ∗u(x) = u(ϕ(x)).
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Then, for each u ∈ C2(M),

(A.8.8) ∆ϕ∗u = ϕ∗∆u.

Applications of these concepts and results arise in the use of spherical
polar coordinates. In detail, let Sn−1 denote the unit sphere in Rn,
(A.8.9) Sn−1 = {x ∈ Rn : |x| = 1}.
Spherical polar coordinates on Rn are defined in terms of a smooth diffeo-
morphism

(A.8.10) R : (0,∞)× Sn−1 −→ Rn \ 0, R(r, ω) = rω.

Let (hℓm) denote the metric tensor on Sn−1 (induced from its inclusion in
Rn), with respect to some coordinate chart ϕ : O → U ⊂ Sn−1. Then we
have a coordinate chart

(A.8.11) Φ : (0,∞)×O −→ U ⊂ Rn, Φ(r, y) = rϕ(y).

Take y0 = r, y = (y1, . . . , yn−1). In this coordinate system Φ, the Euclidean
metric tensor (ejk) is give by

(A.8.12)

e00 = ∂0Φ · ∂0Φ = ϕ(y) · ϕ(y) = 1,

e0j = ∂0Φ · ∂jΦ = ϕ(y) · ∂jϕ(y) = 0, 1 ≤ j ≤ n− 1,

ejk = r2∂jϕ · ∂kϕ = r2hjk, 1 ≤ j, k ≤ n− 1.

The fact that ϕ(y) · ∂jϕ(y) = 0 follows from applying ∂/∂yj to the identity
ϕ(y) · ϕ(y) ≡ 1. To summarize,

(A.8.13) (ejk) =

(
1

r2hℓm

)
.

One implication of (A.8.13) is that

(A.8.14)
√
e = rn−1

√
h,

so we have the following result for integrating a function in spherical polar
coordinates:

(A.8.15)

∫
Rn

f(x) dx =

∫
Sn−1

∫ ∞

0
f(rω)rn−1 dr dS(ω).

Of primary significance to us now is that the Laplace operator (A.8.1) on
Rn takes the following form in spherical polar coordinates:

(A.8.16) ∆u(rω) = ∂2ru(rω) +
n− 1

r
∂ru(rω) +

1

r2
∆Su(rω),

where ∆S is the Laplace-Beltrami operator on Sn−1. In case u is a radial
function, say f(|x|), we obtain

(A.8.17) u(x) = f(|x|) =⇒ ∆u(x) = f ′′(|x|) + n− 1

|x|
f ′(|x|).



Appendix B

Linear algebra and
multilinear algebra

This appendix treats some topics in linear algebra of use in the main text,
particularly multilinear algebra, including tensor products and exterior al-
gebra. This material plays an important role in the treatment of classes of
representations of U(n), in Chapter 4, and similarly for representations of
SO(n), and also for results on Clifford algebras in Chapter 7.

Section B.1 develops the basic theory of determinants of n×n matrices.
Given A ∈ M(n,F), F = R or C, we analyze detA as a function of the
columns of A that is linear in each column and changes sign when two
columns are switched. That is, we regard

(B.0.1) det : Fn × · · · × Fn −→ F,

linear in each argument. This is a paradigm example of a multilinear map.

Section B.2 treats multilinear maps in general, bringing in

(B.0.2) M(V1, . . . , Vℓ;W ),

the space of maps β : V1×· · ·×Vℓ →W that are linear in each variable. As
mentioned above, a prime example of such a map is the determinant, as in
(B.0.1), with ` = n, Vj = Fn. In this case, V1 = · · · = Vℓ = V (which equals
Fn), and the resulting special case of (B.0.2) is denoted

(B.0.3) Mℓ(V,W ).

The determinant det provides an element of

(B.0.4) Altℓ(V,W ),

475
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with ` = n, V = Fn,W = F, where an element of (B.0.4) is a multilinear
map β(v1, . . . , vℓ) that changes sign when two elements, e.g., vj and vk with
j 6= k, are interchanged.

In §B.3 we treat tensor products. If Vj are finite-dimensional vector
spaces, of dimension dj , then V1 ⊗ · · · ⊗ Vℓ is a vector space, of dimension
d1 · · · dℓ, for which we have a natural isomorphism

(B.0.5) M(V1, . . . , Vℓ;W )
≈−→ L(V1 ⊗ · · · ⊗ Vℓ,W ),

for each vector space W . This tensor product construction ties together
linear algebra and multilinear algebra.

Section B.4 treats exterior algebra, which provides a natural algebraic
extension of the theory of the determinant. If V is a finite-dimensional
vector space over F, we set Λ0V ′ = F, Λ1V ′ = V ′, and, generally,

(B.0.6) ΛkV ′ = Altk(V,F).
This sequence of vector spaces carries a wedge product,

(B.0.7) α ∈ ΛkV ′, β ∈ ΛℓV ′ =⇒ α ∧ β ∈ Λk+ℓV ′.

Topics treated in §B.4 include an approach to Cramer’s formula, given here
in terms of the structure of the exterior algebra. Section B.5 sketches an
alternative approach to exterior algebra.

Section B.6 establishes the simplicity of the algebra M(n,F), when F =
R or C, of use in the proof of Proposition 7.5.1. Section B.7 discusses the
discriminant of an n× n matrix A and relates it to the behavior of adA.
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B.1. Determinants

Determinants arise in the study of inverting a matrix. To take the 2 × 2
case, solving for x and y the system

(B.1.1)
ax+ by = u,

cx+ dy = v

can be done by multiplying these equations by d and b, respectively, and sub-
tracting, and by multiplying them by c and a, respectively, and subtracting,
yielding

(B.1.2)
(ad− bc)x = du− bv,

(ad− bc)y = av − cu.

The factor on the left is

(B.1.3) det

(
a b
c d

)
= ad− bc,

and solving (B.1.2) for x and y leads to

(B.1.4) A =

(
a b
c d

)
=⇒ A−1 =

1

detA

(
d −b
−c a

)
,

provided detA 6= 0.

We now consider determinants of n × n matrices. Let M(n,F) denote
the set of n× n matrices with entries in F = R or C. We write

(B.1.5) A =

a11 · · · a1n
...

...
an1 · · · ann

 = (a1, . . . , an),

where

(B.1.6) aj =

a1j...
anj


is the jth column of A. The determinant is defined as follows.

Proposition B.1.1. There is a unique function

(B.1.7) ϑ :M(n,F) −→ F,

satisfying the following three properties:

(a) ϑ is linear in each column aj of A,

(b) ϑ(Ã) = −ϑ(A) if Ã is obtained from A by interchanging two columns,
(c) ϑ(I) = 1.
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This defines the determinant:

(B.1.8) ϑ(A) = detA.

If (c) is replaced by

(c′) ϑ(I) = r,

then

(B.1.9) ϑ(A) = r detA.

The proof will involve constructing an explicit formula for detA by fol-
lowing the rules (a)–(c). We start with the case n = 3. We have

(B.1.10) detA =
3∑
j=1

aj1 det(ej , a2, a3),

by applying (a) to the first column of A, a1 =
∑

j aj1ej . Here and below,

{ej : 1 ≤ j ≤ n} denotes the standard basis of Fn, so ej has a 1 in the jth
slot and 0s elsewhere. Applying (a) to the second and third columns gives

(B.1.11)

detA =
3∑

j,k=1

aj1ak2 det(ej , ek, a3)

=
3∑

j,k,ℓ=1

aj1ak2aℓ3 det(ej , ek, eℓ).

This is a sum of 27 terms, but most of them are 0. Note that rule (b) implies

(B.1.12) detB = 0 whenever B has two identical columns.

Hence det(ej , ek, eℓ) = 0 unless j, k, and ` are distinct, that is, unless (j, k, `)
is a permutation of (1, 2, 3). Now rule (c) says

(B.1.13) det(e1, e2, e3) = 1,

and we see from rule (b) that det(ej , ek, eℓ) = 1 if one can convert (ej , ek, eℓ)
to (e1, e2, e3) by an even number of column interchanges, and det(ej , ek, eℓ) =
−1 if it takes an odd number of interchanges. Explicitly,

(B.1.14)

det(e1, e2, e3) = 1, det(e1, e3, e2) = −1,

det(e2, e3, e1) = 1, det(e2, e1, e3) = −1,

det(e3, e1, e2) = 1, det(e3, e2, e1) = −1.
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Consequently (B.1.11) yields

(B.1.15)

detA = a11a22a33 − a11a32a23

+ a21a32a13 − a21a12a33

+ a31a12a23 − a31a22a13.

Note that the second indices occur in (1, 2, 3) order in each product. We can
rearrange these products so that the first indices occur in (1, 2, 3) order:

(B.1.16)

detA = a11a22a33 − a11a23a32

+ a13a21a32 − a12a21a33

+ a12a23a31 − a13a22a31.

We now tackle the case of general n. Parallel to (B.1.10)–(B.1.11), we
have

(B.1.17)

detA =
∑
j

aj1 det(ej , a2, . . . , an) = · · ·

=
∑

j1,...,jn

aj11 · · · ajnn det(ej1 , . . . ejn),

by applying rule (a) to each of the n columns of A. As before, (B.1.12)
implies det(ej1 , . . . , ejn) = 0 unless (j1, . . . , jn) are all distinct, that is, unless
(j1, . . . , jn) is a permutation of the set (1, 2, . . . , n). We set

(B.1.18) Sn = set of permutations of (1, 2, . . . , n).

That is, Sn consists of elements σ, mapping the set {1, . . . , n} to itself,

(B.1.19) σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},

that are one-to-one and onto. We can compose two such permutations,
obtaining the product στ ∈ Sn, given σ and τ in Sn. A permutation that
interchanges just two elements of {1, . . . , n}, say j and k (j 6= k), is called
a transposition, and labeled (jk). It is easy to see that each permutation of
{1, . . . , n} can be achieved by successively transposing pairs of elements of
this set. That is, each element σ ∈ Sn is a product of transpositions. We
claim that

(B.1.20) det(eσ(1), . . . , eσ(n)) = (sgnσ) det(e1, . . . , en) = sgnσ,

where
(B.1.21)

sgnσ = 1 if σ is a product of an even number of transpositions,

− 1 if σ is a product of an odd number of transpositions.

In fact, the first identity in (B.1.20) follows from rule (b) and the second
identity from rule (c).
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There is one point to be checked here. Namely, we claim that a given
σ ∈ Sn cannot simultaneously be written as a product of an even number
of transpositions and an odd number of transpositions. If σ could be so
written, sgn σ would not be well defined, and it would be impossible to
satisfy condition (b), so Proposition B.1.1 would fail. One neat way to see
that sgnσ is well defined is the following. Let σ ∈ Sn act on functions of n
variables by

(B.1.22) (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

It is readily verified that if also τ ∈ Sn,

(B.1.23) g = σf =⇒ τg = (τσ)f.

Now, let P be the polynomial

(B.1.24) P (x1, . . . , xn) =
∏

1≤j<k≤n
(xj − xk).

One readily has

(B.1.25) (σP )(x) = −P (x), whenever σ is a transposition,

and hence, by (B.1.23),

(B.1.26) (σP )(x) = (sgnσ)P (x), ∀σ ∈ Sn,

and sgnσ is well defined.

The proof of (B.1.20) is complete, and substitution into (B.1.17) yields
the formula

(B.1.27) detA =
∑
σ∈Sn

(sgnσ)aσ(1)1 · · · aσ(n)n.

It is routine to check that this satisfies the properties (a)–(c). Regarding (b),

note that if ϑ(A) denotes the right side of (B.1.27) and Ã is obtained from A

by applying a permutation τ to the columns of A, so Ã = (aτ(1), . . . , aτ(n)),
then

(B.1.28)

ϑ(Ã) =
∑
σ∈Sn

(sgnσ)aσ(1)τ(1) · · · aσ(n)τ(n)

=
∑
σ∈Sn

(sgnσ)aστ−1(1)1 · · · aστ−1(n)n

=
∑
ω∈Sn

(sgnωτ)aω(1)1 · · · aω(n)n

= (sgn τ)ϑ(A),

the last identity because

(B.1.29) sgnωτ = (sgnω)(sgn τ), ∀ω, τ ∈ Sn.
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As for the final part of Proposition B.1.1, if (c) is replaced by (c′), then
(B.1.20) is replaced by

(B.1.30) ϑ(eσ(1), . . . , eσ(n)) = r(sgnσ),

and (B.1.9) follows.

Remark. Some authors take (B.1.27) as a definition of the determinant.
Our perspective is that, while (B.1.27) is a useful formula for the determi-
nant, it is a bad definition, indeed one that has perhaps led to a bit of fear
and loathing among math students.

Remark. Here is another formula for sgn σ, which the reader is invited to
verify. If σ ∈ Sn,

(B.1.31) sgnσ = (−1)κ(σ),

where

(B.1.32)
κ(σ) = number of pairs (j, k) such that 1 ≤ j < k ≤ n,

but σ(j) > σ(k).

Note that

(B.1.33) aσ(1)1 · · · aσ(n)n = a1τ(1) · · · anτ(n), with τ = σ−1,

and sgnσ = sgnσ−1, so, parallel to (B.1.16), we also have

(B.1.34) detA =
∑
σ∈Sn

(sgnσ)a1σ(1) · · · anσ(n).

Comparison with (B.1.27) gives

(B.1.35) detA = detAt,

where A = (ajk) ⇒ At = (akj). Note that the jth column of At has the
same entries as the jth row of A. In light of this, we have:

Corollary B.1.2. In Proposition B.1.1, one can replace “columns” by “rows.”

The following is a key property of the determinant.

Proposition B.1.3. Given A and B in M(n,F),

(B.1.36) det(AB) = (detA)(detB).

Proof. For fixed A, apply Proposition B.1.1 to

(B.1.37) ϑ1(B) = det(AB).

If B = (b1, . . . , bn), with jth column bj , then

(B.1.38) AB = (Ab1, . . . , Abn).



482 B. Linear algebra and multilinear algebra

Clearly rule (a) holds for ϑ1. Also, if B̃ = (bσ(1), . . . , bσ(n)) is obtained from

B by permuting its columns, then AB̃ has columns (Abσ(1), . . . , Abσ(n)),
obtained by permuting the columns of AB in the same fashion. Hence rule
(b) holds for ϑ1. Finally, rule (c

′) holds for ϑ1, with r = detA, and (B.1.36)
follows. □

Corollary B.1.4. If A ∈M(n,F) is invertible, then detA 6= 0.

Proof. If A is invertible, there exists B ∈M(n,F) such that AB = I. Then,
by (B.1.36), (detA)(detB) = 1, so detA 6= 0. □

The converse of Corollary B.1.4 also holds. Before proving it, it is con-
venient to show that the determinant is invariant under a certain class of
column operations, given as follows.

Proposition B.1.5. If Ã is obtained from A = (a1, . . . , an) ∈ M(n,F) by
adding caℓ to ak for some c ∈ F, ` 6= k, then

(B.1.39) det Ã = detA.

Proof. By rule (a), det Ã = detA+ c detAb, where Ab is obtained from A
by replacing the column ak by aℓ. Hence Ab has two identical columns, so
detAb = 0, and (B.1.39) holds. □

We now extend Corollary B.1.4.

Proposition B.1.6. If A ∈ M(n,F), then A is invertible if and only if
detA 6= 0.

Proof. We have half of this from Corollary B.1.4. To finish, assume A is not
invertible. This implies the columns a1, . . . , an of A are linearly dependent.
Hence, for some k,

(B.1.40) ak +
∑
ℓ̸=k

cℓaℓ = 0,

with cℓ ∈ F. Now we can apply Proposition B.1.5 to obtain detA = det Ã,

where Ã is obtained by adding
∑
cℓaℓ to ak. But then the kth column of Ã

is 0, so detA = det Ã = 0. This finishes the proof of Proposition B.1.6. □
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B.2. Multilinear mappings

If V1, . . . , Vℓ and W are vector spaces over F, we set

(B.2.1)
M(V1, . . . , Vℓ;W ) = set of mappings β : V1 × · · · × Vℓ →W

that are linear in each variable.

That is, for each j ∈ {1, . . . , `},

(B.2.2)

vj , wj ∈ Vj , a, b ∈ F =⇒
β(u1, . . . , avj + bwj , . . . , uℓ)

= aβ(u1, . . . , vj , . . . , uℓ) + bβ(u1, . . . , wj , . . . , uℓ).

This has the natural structure of a vector space, and one readily computes
that

(B.2.3) dimM(V1, . . . , Vℓ;W ) = (dimV1) · · · (dimVℓ)(dimW ).

If {ej,1, . . . , ej,dj} is a basis of Vj (of dimension dj), then β is uniquely
determined by the elements

(B.2.4)
bj ∈W, bj = β(e1,j1 , . . . , eℓ,jℓ},
j = (j1, . . . , jℓ), 1 ≤ jν ≤ dν .

In many cases of interest, all the Vj are the same. Then we set

(B.2.5) Mℓ(V,W ) = M(V1, . . . , Vℓ;W ), V1 = · · · = Vℓ = V.

This is the space of `-linear maps from V to W . It has two distinguished
subspaces,

(B.2.6) Symℓ(V,W ), Altℓ(V,W ),

where, given β ∈ Mℓ(V,W ),

(B.2.7)

β ∈ Symℓ(V,W ) ⇐⇒
β(v1, . . . , vj , . . . , vk, . . . , vℓ) = β(v1, . . . , vk, . . . , vj , . . . , vℓ),

β ∈ Altℓ(V,W ) ⇐⇒
β(v1, . . . , vj , . . . , vk, . . . , vℓ) = −β(v1, . . . , vk, . . . , vj , . . . , vℓ),

whenever 1 ≤ j < k ≤ `.

Here are some basic examples of multilinear maps. There is ϑ = det :
M(n,F) → F as an element

(B.2.8) ϑ ∈ Altn(Fn,F).

For A ∈M(n,F), detA is linear in each column of A and changes sign upon
switching any two columns. Another example is the cross product

(B.2.9) κ ∈ Alt2(R3,R3), κ(u, v) = u× v.
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Other examples of multilinear maps include the matrix product

(B.2.10) Π ∈ M2(M(n,F),M(n,F)), Π(A,B) = AB,

and the matrix commutator,

(B.2.11) C ∈ Alt2(M(n,F),M(n,F)), C(A,B) = AB −BA,

and anticommutator,

(B.2.12) A ∈ Sym2(M(n,F),M(n,F)), A(A,B) = AB +BA.

Considerations of multilinear maps lead naturally to material treated in
the next two sections, namely tensor products and exterior algebra. In §B.3
we define the tensor product V1⊗· · ·⊗Vℓ of finite-dimensional vector spaces
and describe a natural isomorphism

(B.2.13) M(V1, . . . , Vℓ;W ) ≈ L(V1 ⊗ · · · ⊗ Vℓ,W ).

In §B.4 we discuss spaces ΛkV and describe a natural isomorphism

(B.2.14) Altk(V,W ) ≈ L(ΛkV,W ).
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B.3. Tensor products

Here all vector spaces will be finite-dimensional vector spaces over F (R or
C).

Definition. Given vector spaces V1, . . . , Vℓ, the tensor product V1⊗· · ·⊗Vℓ
is the space of `-linear maps

(B.3.1) β : V ′
1 × · · · × V ′

ℓ −→ F.

Given vj ∈ Vj , we define v1 ⊗ · · · ⊗ vℓ ∈ V1 ⊗ · · · ⊗ Vℓ by

(B.3.2) (v1 ⊗ · · · ⊗ vℓ)(w1, . . . , wℓ) = 〈v1, w1〉 · · · 〈vℓ, wℓ〉, wj ∈ V ′
j .

If {ej,1, . . . , ej,dj} is a basis of Vj (of dimension dj), with dual basis {εj,1, . . . , εj,dj}
for V ′

j , then β in (B.3.1) is uniquely determined by the numbers

(B.3.3) bj = β(ε1,j1 , . . . , εℓ,jℓ}, j = (j1, . . . , jℓ), 1 ≤ jν ≤ dν .

It follows that

(B.3.4) dimV1 ⊗ · · · ⊗ Vℓ = d1 · · · dℓ,
and a basis of V1 ⊗ · · · ⊗ Vℓ is given by

(B.3.5) e1,j1 ⊗ · · · ⊗ eℓ,jℓ , 1 ≤ jν ≤ dν .

The following is a universal property for the tensor product.

Proposition B.3.1. Given vector spaces Vj and W , there is a natural iso-
morphism

(B.3.6) Φ : M(V1, . . . , Vℓ;W )
≈−→ L(V1 ⊗ · · · ⊗ Vℓ,W ).

Proof. Given an `-linear map

(B.3.7) α : V1 × · · · × Vℓ −→W,

the map Φα : V1 ⊗ · · · ⊗ Vℓ →W should satisfy

(B.3.8) Φα(v1 ⊗ · · · ⊗ vℓ) = α(v1, . . . , vℓ), vj ∈ Vj .

In fact, in terms of the basis (B.3.5) of V1 ⊗ · · · ⊗ Vℓ, we can specify that

(B.3.9) Φα(e1,j1 ⊗ · · · ⊗ eℓ,jℓ) = α(e1,j1 , . . . , eℓ,jℓ), 1 ≤ jν ≤ dν ,

and then extend Φα by linearity. Such an extension uniquely defines Φα ∈
L(V1 ⊗ · · · ⊗ Vℓ,W ), and it satisfies (B.3.8). In light of this, it follows that
the construction of Φα is independent of the choice of bases of V1, . . . , Vℓ.
We see that Φ is then injective. In fact, if Φα = 0, then (B.3.9) is identically
0, so α = 0. Since M(V1, . . . , Vℓ;W ) and L(V1 ⊗ · · · ⊗ Vℓ,W ) both have
dimension d1 · · · dℓ(dimW ), the isomorphism property of Φ follows. □
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We next note that linear maps Aj : Vj → Wj naturally induce a linear
map

(B.3.10) A1 ⊗ · · · ⊗ Aℓ : V1 ⊗ · · · ⊗ Vℓ −→W1 ⊗ · · · ⊗Wℓ,

as follows. If ωj ∈ W ′
j , and β : V ′

1 × · · · × V ′
ℓ → F defines β ∈ V1 ⊗ · · · ⊗ Vℓ,

then

(B.3.11) (A1 ⊗ · · · ⊗ Aℓ)β(ω1, . . . , ωℓ) = β(At1ω1, . . . , A
t
ℓωℓ),

with Atjωj ∈ V ′
j . One sees readily that, for vj ∈ Vj ,

(B.3.12) (A1 ⊗ · · · ⊗ Aℓ)(v1 ⊗ · · · ⊗ vℓ) = (A1v1)⊗ · · · ⊗ (Aℓvℓ).

For notational simplicity, we now restrict attention to the case ` = 2, i.e.,
to tensor products of two vector spaces. The following is straightforward.

Proposition B.3.2. Given A ∈ L(V ), B ∈ L(W ), inducing A ⊗ B ∈
L(V ⊗W ), suppose SpecA = {λj} and SpecB = {µk}. Then

(B.3.13) SpecA⊗B = {λjµk}.
Also,

(B.3.14)
E(A⊗B, σ) = Span{v ⊗ w : v ∈ E(A, λj),

w ∈ E(B,µk), σ = λjµk},
and

(B.3.15)
GE(A⊗B, σ) = Span{v ⊗ w : v ∈ GE(A, λj),

w ∈ GE(B,µk), σ = λjµk}.
Furthermore,

(B.3.16) Spec(A⊗ I + I ⊗B) = {λj + µk},
and we have

(B.3.17)
E(A⊗ I + I ⊗B, τ) = Span{v ⊗ w : v ∈ E(A, λj),

w ∈ E(B,µk), τ = λj + µk},
and

(B.3.18)
GE(A⊗ I + I ⊗B, τ) = Span{v ⊗ w : v ∈ GE(A, λj),

w ∈ GE(B,µk), τ = λj + µk}.
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B.4. Exterior algebra

Let V be a finite dimensional vector space over F (R or C), with dual V ′.
We define the spaces ΛkV ′ as follows:

(B.4.1) Λ0V ′ = F, Λ1V ′ = V ′,

and, for k ≥ 2,

(B.4.2)
ΛkV ′ = set of k-linear maps α : V × · · · × V → F

that are anti-symmetric,

i.e.,

(B.4.3) α(v1, . . . , vj , . . . , vℓ, . . . , vk) = −α(v1, . . . , vℓ, . . . , vj , . . . , vk),

for v1, . . . , vk ∈ V , 1 ≤ j < ` ≤ k. Another way to picture such α is as a
map

(B.4.4) α :M(k × n,F) −→ F

that is linear in each column v1, . . . , vk of A = (v1, . . . , vk) ∈ M(k × n,F),
and satisfies the anti-symmetry condition (B.4.3), if

(B.4.5) n = dimV, so V ≈ Fn.

In case k = n, the theory of the determinant implies that any such α :
M(n× n,F) → F must be a multiple of the determinant. We have

Proposition B.4.1. Given (B.4.5),

(B.4.6) dimΛnV ′ = 1.

Before examining dimΛkV ′ for other values of k, let us look into the
following. Pick a basis {e1, . . . , en} of V , and let {ε1, . . . , εn} denote the
dual basis of V ′. Clearly an element α ∈ ΛkV ′ is uniquely determined by its
values

(B.4.7) aj = α(ej1 , . . . , ejk), j = (j1, . . . , jk),

as j runs over the set of k-tuples (j1, . . . , jk), with 1 ≤ jν ≤ n. Now, α
satisfies the anti-symmetry condition (B.4.3) if and only if

(B.4.8) aj1···jk = (sgnσ)ajσ(1)···jσ(k)
,

for each σ ∈ Sk, i.e., for each permutation σ of {1, . . . , k}. In particular,

(B.4.9) jµ = jν for some µ 6= ν =⇒ α(ej1 , . . . , ejk) = 0.

Applying this observation to k > n yields the following:

Proposition B.4.2. In the setting of Proposition B.4.1,

(B.4.10) k > n =⇒ ΛkV ′ = 0.
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Meanwhile, if 1 ≤ k ≤ n, an element α of ΛkV ′ is uniquely determined
by its values

(B.4.11) aj = α(ej1 , . . . , ejk), 1 ≤ j1 < · · · < jk ≤ n.

There are
(
n
k

)
such multi-indices, so we have the following (which contains

Proposition B.4.1).

Proposition B.4.3. In the setting of Proposition B.4.1,

(B.4.12) 1 ≤ k ≤ n =⇒ dimΛkV ′ =

(
n

k

)
.

Here is some useful notation. Given the dual basis {ε1, . . . , εn}, we define

(B.4.13) εj1 ∧ · · · ∧ εjk ∈ ΛkV ′,

for jν ∈ {1, . . . , n}, all distinct, by

(B.4.14)
(εj1 ∧ · · · ∧ εjk)(ej1 , . . . , ejk) = 1,

(εj1 ∧ · · · ∧ εjk)(eℓ1 , . . . , eℓk) = 0, if {`1, . . . , `k} 6= {j1, . . . , jk}.

The anti-symmetry condition then specifies

(B.4.15) (εj1 ∧ · · · ∧ εjk)(ejσ(1)
, . . . , ejσ(k)

) = sgnσ, for σ ∈ Sk.

Note that

(B.4.16) εj1 ∧ · · · ∧ εjk = (sgnσ) εjσ(1)
∧ · · · ∧ εjσ(k)

,

if σ ∈ Sk. In light of this, if not all {j1, . . . , jk} are distinct, i.e., if jµ = jν
for some µ 6= ν, we say (B.4.16) vanishes, i.e.,

(B.4.17) εj1 ∧ · · · ∧ εjk = 0 if jµ = jν for some µ 6= ν.

Then, for arbitrary α ∈ ΛkV ′, we can write

(B.4.18) α =
1

k!

∑
j

aj εj1 ∧ · · · ∧ εjk ,

as j runs over all k-tuples, and aj is as in (B.4.7). Alternatively, we can
write

(B.4.19) α =
∑

1≤j1<···<jk≤n
aj εj1 ∧ · · · ∧ εjk ,

with aj as in (B.4.7). Proposition B.4.3 has the following more explicit form.

Proposition B.4.4. In the setting of Proposition B.4.3, if 1 ≤ k ≤ n,

(B.4.20) {εj1 ∧ · · · ∧ εjk : 1 ≤ j1 < · · · < jk ≤ n} is a basis of ΛkV ′.
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The products arising in (B.4.13)–(B.4.20) are called wedge products. As
these formulas suggest, it is useful to define wedge products as bilinear maps

(B.4.21) w : ΛkV ′ × ΛℓV ′ −→ Λk+ℓV ′, w(α, β) = α ∧ β,

such that

(B.4.22) (εj1 ∧ · · · ∧ εjk)∧ (εm1 ∧ · · · ∧ εmℓ
) = εj1 ∧ · · · εjk ∧ εm1 ∧ · · · ∧ εmℓ

,

with equivalencies as in (B.4.16)–(B.4.17). We also want to define (B.4.21)
in a fashion that does not depend on the choice of basis of V (and associated
dual basis of V ′). The following result gives a clue as to how to do this.

Proposition B.4.5. If εj1 ∧ · · · ∧ εjk ∈ ΛkV ′ is specified by (B.4.14)–
(B.4.17), then, for v1, . . . , vk ∈ V ,

(B.4.23) (εj1 ∧ · · · ∧ εjk)(v1, . . . , vk) =
∑
σ∈Sk

(sgnσ)εjσ(1)
(v1) · · · εjσ(k)

(vk).

Proof. We set

(B.4.24) vℓ =
n∑
j=1

ajℓej , ajℓ = εj(vℓ),

and substitute into the left side of (B.4.23), obtaining

(B.4.25)
n∑

ℓ1,...,ℓk=1

εℓ1(v1) · · · εℓk(vk)(εj1 ∧ · · · ∧ εjk)(eℓ1 , . . . , eℓk),

and (B.4.14)–(B.4.17) gives

(B.4.26) (εj1 ∧ · · · ∧ εjk)(eℓ1 , . . . , eℓk) = 0,

unless {j1, . . . , jk} = {`1, . . . , `k}, and the k numbers are all distinct, in
which case `ν = jσ(ν) for some σ ∈ Sk, and we get sgn σ in (B.4.26). Thus
(B.4.25) is converted to the right side of (B.4.23). (Both sides of (B.4.23)
vanish if the numbers j1, . . . , jk are not all distinct.) □

Remark. In case n = k, we obtain the fundamental result on the determi-
nant. Note also that the right side of (B.4.23) is equal to

(B.4.27)
∑
σ∈Sk

(sgnσ)εj1(vσ(1)) · · · εjk(vσ(k)).

As a further preparation for defining α ∧ β in (B.4.21), note that

(B.4.28) α ∈ ΛkV ′ ⇒ α(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(sgnσ)α(vσ(1), . . . , vσ(k)).
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We now define the wedge product:

Definition. If α ∈ ΛkV ′ and β ∈ ΛℓV ′, then α ∧ β ∈ Λk+ℓV ′ is given by

(B.4.29)

(α ∧ β)(v1, . . . , vk+ℓ)

=
1

k!`!

∑
σ∈Sk+ℓ

(sgnσ)α(vσ(1), . . . , vσ(k)) · β(vσ(k+1), . . . , vσ(k+ℓ)).

Our first task is to check the fundamental identity (B.4.22).

Proposition B.4.6. With α∧β defined as in (B.4.29), the identity (B.4.22)
holds.

Proof. With α = εj1 ∧ · · · ∧ εjk and β = εm1 ∧ · · · ∧ εmℓ
, we have

(B.4.30)

(α ∧ β)(v1, . . . ,vk+ℓ)

=
1

k!`!

∑
σ∈Sk+ℓ

(sgnσ)(εj1 ∧ · · · ∧ εjk)(vσ(1), . . . , vσ(k))

· (εm1 ∧ · · · ∧ εmℓ
)(vσ(k+1), . . . , vσ(k+ℓ)),

which expands out to

(B.4.31)

1

k!`!

∑
σ∈Sk+ℓ

∑
τ∈Sk

∑
ρ∈Sℓ

(sgnσ)(sgn τ)(sgn ρ)

· εj1(vστ(1)) · · · εjk(vστ(k)) · εm1(vσρ(k+1)) · · · εmℓ
(vσρ(k+ℓ)).

Here, σ permutes {1, . . . , k + `}, τ permutes {1, . . . , k}, and ρ permutes
{k + 1, . . . , k + `}. Note that such σ, τ, ρ yield γ(σ, τ, ρ) ∈ Sk+ℓ, with

(B.4.32)
γ(σ, τ, ρ)(ν) = στ(ν) for 1 ≤ ν ≤ k,

σρ(ν) for k + 1 ≤ ν ≤ k + `,

and sgn γ(σ, τ, ρ) = (sgnσ)(sgn τ)(sgn ρ). Also, for each fixed τ ∈ Sk, ρ ∈ Sℓ
γ(σ, τ, ρ) runs over Sk+ℓ once as σ runs over Sk+ℓ. Hence, if we fix τ and ρ
in (B.4.31) and just sum over σ, we get

(B.4.33)

∑
σ∈Sk+ℓ

(sgn γ(σ, τ, ρ))εj1(vγ(σ,τ,ρ)(1)) · · · εjk(vγ(σ,τ,ρ)(k))

· εm1(vγ(σ,τ,ρ)(k+1)) · · · εmℓ
(vγ(σ,τ,ρ)(k+ℓ)),

and each such sum is equal to

(B.4.34) (εj1 ∧ · · · ∧ εjk ∧ εm1 ∧ · · · ∧ εmℓ
)(v1, . . . , vk, vk+1, . . . , vk+ℓ).

Then summing over τ ∈ Sk and ρ ∈ Sℓ and dividing by k!`! also yields
(B.4.34), as desired. □

From here, the following is straightforward.
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Proposition B.4.7. The wedge product α∧β, defined by (B.4.29), produces
a well defined bilinear map ΛkV ′ × ΛℓV ′ → Λk+ℓV ′. Furthermore, given
α ∈ ΛkV ′ and β ∈ ΛℓV ′,

(B.4.35) α ∧ β = (−1)kℓβ ∧ α,

and, if also γ ∈ ΛmV ′,

(B.4.36) (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

The wedge product gives us an algebra. We define the exterior algebra
Λ∗V ′ to be

(B.4.37) Λ∗V ′ =
⊕
k≥0

ΛkV ′,

keeping in mind that the summands on the right are nonvanishing only for
k ≤ n = dimV . Proposition B.4.7 says this is an algebra. The element
1 ∈ F = Λ0V ′ ⊂ Λ∗V ′ acts as the unit in this algebra. The identity (B.4.36)
is the associative law for the wedge product. By (B.4.35), this is not a
commutative algebra (if n > 1).

We next consider the action a linear map on V induces on Λ∗V ′. A
linear map A : V → V induces a linear map

(B.4.38) ΛkAt : ΛkV ′ −→ ΛkV ′,

via

(B.4.39) (ΛkAt)α(v1, . . . , vk) = α(Av1, . . . , Avk).

In particular, Λ1At = At : V ′ → V ′. A straightforward calculation from
(B.4.29) yields

(B.4.40)
α ∈ΛkV ′, β ∈ ΛℓV ′, A ∈ L(V )

=⇒ (Λk+ℓAt)(α ∧ β) = (ΛkAt)α ∧ (ΛℓAt)β.

Here is a natural extension of the identity (AB)t = BtAt.

Proposition B.4.8. If A,B ∈ L(V ), then

(B.4.41) Λk(AB)t = (ΛkBt) (ΛkAt).

Proof. We have

(B.4.42)

Λk(AB)tα(v1, . . . , vk) = α(ABv1, . . . , ABvk)

= (ΛkAt)α(Bv1, . . . , Bvk)

= (ΛkBt)(ΛkAt)α(v1, . . . , vk).

□

We now return to determinants.
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Proposition B.4.9. If A ∈ L(V ) and n = dimV , then, for ω ∈ ΛnV ′,

(B.4.43) (ΛnAt)ω = (detA)ω.

Proof. We may as well take ω = ε1∧· · ·∧εn. Then an iteration of (B.4.40)
gives

(B.4.44) (ΛnAt)ω = (Atε1) ∧ · · · ∧ (Atεn).

If A = (ajk) with respect to the basis {ej}, then Atεj =
∑

k ajkεk, so

(B.4.45)

(ΛnAt)ω =
∑

1≤kν≤n
a1k1 · · · ankn εk1 ∧ · · · ∧ εkn

=
∑
σ∈Sn

(sgnσ)a1σ(1) · · · anσ(n) ε1 ∧ · · · ∧ εn

= (detA) ε1 ∧ · · · ∧ εn,

the last identity constituting a fundamental formula for the determinant. □

Combining Propositions B.4.8 and B.4.9 yields the following multiplica-
tive property for the determinant.

Corollary B.4.10. If A,B ∈ L(V ), then

(B.4.46) det(AB) = (detA)(detB).

Interior products

We next define the interior product

(B.4.47) ιv : Λ
kV ′ −→ Λk−1V ′, for v ∈ V,

k ≥ 1, as follows. If α ∈ ΛkV ′, then ιvα ∈ Λk−1V ′ is defined by

(B.4.48) (ιvα)(v1, . . . , vk−1) = α(v, v1, . . . , vk−1).

From this we can compute that, if {e1, . . . , en} is a basis of V , with dual
basis {ε1, . . . , εn} for V ′, then, if j1, . . . , jk are distinct,

(B.4.49) α = εj1 ∧ · · · ∧ εjk ⇒ ιejℓα = (−1)ℓ−1εj1 ∧ · · · ∧ ε̂jℓ ∧ · · · ∧ εjk ,

where ε̂jℓ denotes removing the factor εjℓ . Furthermore, for such α,

(B.4.50) m /∈ {j1, . . . , jk} =⇒ ιemα = 0.

By convention, ιvα = 0 if α ∈ Λ0V ′.

We make use of the operators ∧k and ιk on Λ∗V ′:

(B.4.51) ∧kα = εk ∧ α, ιkα = ιekα.

There is the following useful anticommutation relation:
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Proposition B.4.11. With the notation (m21.51),

(B.4.52) ∧kιℓ + ιℓ∧k = δkℓ,

where δkℓ = 1 if k = `, 0 otherwise.

The proof is an exercise. We also have

(B.4.53) ∧j ∧k + ∧k ∧j = 0, ιjιk + ιkιj = 0.

We mention that (B.4.52) implies the following.

(B.4.54) (∧wιv + ιv∧w)α = 〈v, w〉α,

given α ∈ ΛkV ′, w ∈ V ′, v ∈ V , with the notation

(B.4.55) ∧wα = w ∧ α.

Cramer’s formula

Cramer’s formula computes a matrix inverse A−1 in terms of detA and
the (n− 1)× (n− 1) minors of A (or better, of At). We present a derivation
of such a formula here, using exterior algebra.

Let V be n-dimensional, with dual V ′. Let A ∈ L(V ), with transpose
At ∈ L(V ′). We bring in the isomorphism

(B.4.56) κ : V ⊗ ΛnV ′ ≈−→ Λn−1V ′,

given by

(B.4.57) κ(u⊗ ω)(v1, . . . , vn−1) = ω(u, v1, . . . , vn−1).

We aim to prove the following version of Cramer’s formula.

Proposition B.4.12. If A ∈ L(V ) is invertible, then

(B.4.58) (detA)A−1 ⊗ I = κ−1 ◦ Λn−1At ◦ κ,

in L(V ⊗ ΛnV ′).

Proof. Since ΛnAt = (detA)I in L(ΛnV ′), the desired identity (B.4.58) is
equivalent to

(B.4.59) (Λn−1At) ◦ κ = κ ◦ (A−1 ⊗ ΛnAt),

in L(V ⊗ ΛnV ′,Λn−1V ′). Recall that Λn−1At ∈ L(Λn−1V ′) is defined by

(B.4.60) (Λn−1At)β(v1, . . . , vn−1) = β(Av1, . . . , Avn−1).

Hence if we take u⊗ ω ∈ V ⊗ ΛnV ′, we get

(B.4.61)
(Λn−1At) ◦ κ(u⊗ ω)(v1, . . . , vn−1) = κ(u⊗ ω)(Av1, . . . , Avn−1)

= ω(u,Av1, . . . , Avn−1).
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On the other hand, since

(B.4.62) (A−1 ⊗ ΛnAt)(u⊗ ω) = A−1u⊗ ΛnAtω,

we have

(B.4.63)

κ ◦ (A−1 ⊗ ΛnAt)(u⊗ ω)(v1, . . . , vn−1)

= κ(A−1u⊗ ΛnAtω)(v1, . . . , vn−1)

= (ΛnAtω)(A−1u, v1, . . . , vn−1)

= ω(u,Av1, . . . , Avn−1),

which agrees with the right side of (B.4.61). This completes the proof. □

The exterior algebra Λ∗V

If V is an n-dimensional space, we define ΛkV in a fashion to the defini-
tion of ΛkV ′, simply by switching V and V ′, using the natural isomorphism
V ≈ (V ′)′. Thus we set Λ0V = F, Λ1V = V , and, for k ≥ 2,

(B.4.64)
ΛkV = set of k-linear maps β : V ′ × · · · × V ′ → F

that are anti-symmetric.

All the results from the early part of this section go through, with the roles of
V and V ′, and also of the bases {e1, . . . , en} and {ε1, . . . , εn}, interchanged.
For example, for 1 ≤ k ≤ n,

(B.4.65) {ej1 ∧ · · · ∧ ejk : 1 ≤ j1 < · · · < jk ≤ n} is a basis of ΛkV.

With these facts in mind, we can pass from A ∈ L(V ) to At ∈ L(V ′) to

(B.4.66) ΛkA : ΛkV −→ ΛkV,

and, parallel to (B.4.40),

(B.4.67)
α ∈ΛkV, β ∈ ΛℓV, A ∈ L(V )

=⇒ (Λk+ℓA)(α ∧ β) = (ΛkA)α ∧ (ΛℓA)β.

Consequently,

(B.4.68) (ΛkA)(ej1 ∧ · · · ∧ ejk) = Aej1 ∧ · · · ∧ Aejk .

We now mention a “universal property” possessed by ΛkV . Let W be
another finite-dimensional vector space over F, and set

(B.4.69)
Altk(V,W ) = set of k-linear maps V × · · · × V →W

that are anti-symmetric.

This has the structure of a finite-dimensional vector space.
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Proposition B.4.13. There is a natural linear isomorphism

(B.4.70) Φ : Altk(V,W )
≈−→ L(ΛkV,W ).

One way to describe Φ is with the aid of a basis {e1, . . . , en} of V , leading,

as mentioned, to the basis (B.4.65) of ΛkV . Given α ∈ Altk(V,W ), hence

(B.4.71) α : V × · · · × V −→W,

we can define Φα : ΛkV →W by

(B.4.72) (Φα)(ej1 ∧ · · · ∧ ejk) = α(ej1 , . . . , ejk).

It is clear that this defines a linear map Φ : Altk(V,W ) → L(ΛkV,W ). One
needs to show that this is an isomorphism and that it is independent of the
choice of basis {ej} of V . We leave these tasks to the enthusiastic reader.

Now that, in case W = F, we have

(B.4.73) Altk(V,F) = ΛkV ′, L(ΛkV,F) = (ΛkV )′,

and Proposition B.4.13 implies that there is a natural isomorphism

(B.4.74) ΛkV ′ ≈ (ΛkV )′.

B.5. Second perspective on exterior algebra

Let V be an n-dimensional vector space (over R or C), with basis {e1, . . . , en}.
We define Λ∗V by

(B.5.1) Λ∗V =
⊗

∗V/I,

where ⊗∗V = R ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ · · · is the tensor algebra
and

(B.5.2) I is the 2-sided ideal generated by {u⊗ v + v ⊗ u : u, v ∈ V }.

Equivalently, I is the 2-sided ideal generated by {ej ⊗ ek + ek ⊗ ej : 1 ≤
j, k ≤ n}. We denote the product of ϕ,ψ ∈ Λ∗V by ϕ ∧ ψ. Note that

(B.5.3) u, v ∈ V =⇒ u ∧ v = −v ∧ u.

We see that

(B.5.4) Λ∗V =
n⊕
k=0

ΛkV,

where Λ0V = R (or C) and ΛkV is spanned by

(B.5.5) {ej1 ∧ · · · ∧ ejk : 1 ≤ j1 < · · · < jk ≤ n}.

Our goal in this appendix is to prove the following result, which was used
in §7.3; cf. (7.3.14).
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Proposition B.5.1. The set (B.5.5) is linearly independent, hence a basis
of ΛkV , for each k ∈ {1, . . . , n}.

Proof. We start with k = n, where the assertion is that

(B.5.6) e1 ∧ · · · ∧ en 6= 0,

or, equivalently,

(B.5.7) e1 ∧ · · · ∧ en 6= −e1 ∧ · · · ∧ en.
Note from (B.5.3) that if σ ∈ Sn, i.e., σ is a permutation of {1, . . . , n}, then
(B.5.8) eσ(1) ∧ · · · ∧ eσ(n) = (sgnσ)σ1 ∧ · · · ∧ en.
The content of (B.5.7) is that sgn σ is well defined, as a one-dimensional
representation of Sn. One way to see this is to represent Sn on the space of
functions on Rn ≈ V :

(B.5.9) R(σ)f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

and note that R(σ) leaves invariant

(B.5.10) W = SpanP (x), P (x) =
∏

1≤j<k≤n
(xj − xk).

Furthermore,

(B.5.11) R(σ)P (x) = (sgnσ)P (x),

showing that sgn σ is well defined.

Having the result for k = n, we proceed by induction. Let ` < n and
suppose we have the result for all k > `. To establish independence of
(B.5.5) with k = `, suppose

(B.5.12)
∑

1≤j1<···<jℓ≤n
aj1···jℓ ej1 ∧ · · · ∧ ejℓ = 0.

Then, for each m ∈ {1, . . . , n}, wedge this with em on the left to get

(B.5.13)
∑

m/∈{j1,...,jℓ}

aj1···jℓ em ∧ ej1 ∧ · · · ∧ ejℓ = 0.

One can reorder (m, j1, . . . , jℓ) to express (B.5.13) as a linear combination
of monomials of the form (B.5.5) with k = `+ 1. The inductive hypothesis
yields

(B.5.14) aj1···jℓ = 0,

for all multi-indices (j1, . . . , jℓ) not containing m, for each m, hence (B.5.14)
holds for all multi-indices (j1, . . . , jℓ). This completes the inductive argu-
ment. □
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B.6. Simplicity of M(n,F)

The following result (in the case F = C) was useful in the proof of Proposi-
tion 7.5.1.

Proposition B.6.1. If F is a field, then the associative algebra M(n,F) of
n × n matrices with entries in F is simple, i.e., it has no proper two-sided
ideal.

Proof. Suppose I ⊂ M(n,F) is a two-sided ideal, i.e., A ∈ I, X ∈ M(n,F) ⇒
AX ∈ I and XA ∈ I. Suppose I contains a nonzero element A. Say
A = (ajk) and aℓm 6= 0. Denote by Ejk the element of M(n,F) with a 1 in
the jth row and kth column and zeros elsewhere. Thus, if {e1, . . . , en} is
the standard basis of Fn,
(B.6.1) Ejkeℓ = δkℓej .

A calculation gives

(B.6.2) EjℓAEmk = aℓmEjk,

for each j, k, `,m ∈ {1, . . . , n}. Hence, if aℓm 6= 0 it follows that Ejk ∈ I for
each j, k ∈ {1, . . . , n}, so I = M(n,F). □
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B.7. The discriminant of a matrix

Take A ∈ End(Cn). Say SpecA = {λ1, . . . , λn}, counting multiplicities.
Then

(B.7.1) LA, RA : End(Cn) −→ End(Cn), LAX = AX, RAX = XA,

have the same spectrum, with n-fold increases in multiplicity. Since LA and
RA commute, we can say about adA = LA −RA that

(B.7.2) Spec adA = {λj − λk : 1 ≤ j, k ≤ n}.
We thus have

(B.7.3)

det(sI − adA) =
∏
j,k

[
s− (λj − λk)

]
= sn

∏
j<k

[
s2 − (λj − λk)

2
]

= (−1)n(n−1)/2 snD(A) +O(sn+1),

as s→ 0, where D(A) is the discriminant of A:

(B.7.4) D(A) =
∏
j<k

(λj − λk)
2.

It follows that

(B.7.5) D(A) =
(−1)n(n−1)/2

n!

dn

dsn
det(sI − adA)

∣∣
s=0

.

Suppose A is diagonal, say A = diag(λ1, . . . , λn). Let Ejk denote the
n× n matrix with a 1 in row j, column k, zeroes elsewhere. We have

(B.7.6) [A,Ejk] = (λj − λk)Ejk.

It follows readily from (B.7.6) that, when A is diagonal,

(B.7.7) D(A) = det adA
∣∣
End(Cn)/D,

where D is the space of complex diagonal matrices. This yields

(B.7.8) D(A) = det adA
∣∣
u/t
,

when A ∈ t, u = set of skew-adjoint operators on Cn, t = space of diagonal
matrices with purely imaginary diagonal entries.



Appendix C

Functional analysis
background

This appendix provides background on topics in functional analysis that
arise in the text, starting in Chapter 2. One guiding principle is to present
enough functional analysis background to support the arguments proving
the Peter-Weyl theorem in that chapter. This background is useful for the
understanding of other analytical results, such as those on analysis on U(n)
presented in Chapter 5, those on spherical harmonics in Chapter 8, and
those on analysis on homogeneous spaces in Chapter 9.

Section C.1 introduces the class of Banach spaces and establishes some
basic results. Fundamental examples include the space C(X) of continu-
ous functions on a compact space X, and the Lebesgue spaces Lp(X,µ) of
pth power integrable functions on a measure space (X,µ). For p = 2, we
get the Hilbert space L2(X,µ). Other results reviewed in §C.1 include the
Stone-Weierstrass theorem, giving sufficient conditions that an algebra A of
continuous functions on a compact space X be dense in C(X). Our first
major use of this result is given in Chapter 2, in the first version of the
Peter-Weyl theorem.

Section C.2 is devoted to basic results on a Hilbert space H, with em-
phasis on the notion of an orthonormal basis {uk} of H, and the expansion
of an element v ∈ H in terms of this basis, as a sequence SNv, that converges
to v in H-norm.

Section C.3 considers the space L(V,W ) of bounded linear operators
from a Banach space V to W . We endow this space with an operator
norm, and consider various convergence issues. Section C.4 specializes to
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the subspace K(V,W ) of compact linear operators. The main result here
is the spectral theorem for a compact, self-adjoint operator A on a Hilbert
space H, which states that H has an orthonormal basis of eigenvectors of
A, with real eigenvalues λk → 0. This is a key functional analytical tool in
the proof of the general Peter-Weyl theorem in Chapter 2.

What we present here is simply a “bare bones” introduction to functional
analysis. A more substantial introduction to the subject is given in Appendix
A of [39] (Outline of functional analysis). Beyond that, one can find full-
blown treatments of functional analysis in various texts, such as [48].
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C.1. Banach spaces

A Banach space V is a complete, normed linear space. A norm on V is a
positive function ‖v‖ having the properties

(C.1.1)

‖av‖ = |a| · ‖v‖, ∀ v ∈ V, a ∈ C (or R),
‖v‖ > 0 unless v = 0,

‖v + w‖ ≤ ‖v‖+ ‖w‖.

The last of these conditions is called the triangle inequality. Given a norm
on V , we have the distance function d(u, v) = ‖u − v‖, making V a metric
space.

A metric space is a set X, with distance function d : X × X → R+,
satisfying

(C.1.2)

d(u, v) = d(v, u),

d(u, v) > 0 unless u = v,

d(u, v) ≤ d(u,w) + d(w, v).

A sequence (vj) is Cauchy provided d(vn, vm) → 0 as m,n→ ∞. Complete-
ness is the property that each Cauchy sequence converges.

We list some examples of Banach spaces. First let X be a compact
metric space, that is, a metric space with the property that each sequence
(xn) has a convergent subsequence. Then C(X), the space of continuous
(real or complex valued) functions on X, is a Banach space, with norm

(C.1.3) ‖u‖sup = sup{|u(x)| : x ∈ X}.

Also, given α ∈ [0, 1], we set

(C.1.4) Lipα(X) = {u ∈ C(X) : |u(x)− u(y)| ≤ Cd(x, y)α, ∀x, y ∈ X}.

This is a Banach space, with norm

(C.1.5) ‖u‖α = ‖u‖sup + sup
x,y∈X

|u(x)− u(y)|
d(x, y)α

.

Lip0(X) = C(X). The space Lip1(X) is typically denoted Lip(X). For
α ∈ (0, 1), Lipα(X) is frequently denoted Cα(X). It is straightforward
to verify the conditions (C.1.1) on the proposed norms and to establish
completeness.

More subtle examples of Banach spaces are the Lp-spaces, defined as fol-
lows. First take p = 1. Let (X,µ) be a measure space. We say a measurable
function f belongs to L1(X,µ) provided

(C.1.6)

∫
X

|f(x)| dµ(x) <∞.
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Elements of L1(X,µ) consist of equivalence classes of elements of L1(X,µ),
where we say

(C.1.7) f ∼ f̃ ⇔ f(x) = f̃(x), for µ-a.e. x.

Abusing notation, we denote by f both a measurable function in L1(X,µ)
and its equivalence class in L1(X,µ).

The norm ‖f‖L1 is given by (C.1.6). It is easy to see that this norm has
the properties (C.1.1). The proof of completeness makes use of the mono-
tone convergence theorem and dominated convergence theorem of Lebesgue
theory. We refer to standard books on measure theory (such as [41]) for
details.

Continuing with a description of Lp-spaces, we define L∞(X,µ) to con-
sist of bounded, measurable functions, L∞(X,µ) to consist of equivalence
classes of such functions, via (C.1.7), and we define ‖f‖L∞ to be the smallest

sup of f̃ ∼ f . It is easy to show that L∞(X,µ) is a Banach space.

For p ∈ (1,∞), we define Lp(X,µ) to consist of measurable functions f
such that

(C.1.8)
[∫
X

|f(x)|p dµ(x)
]1/p

is finite. Lp(X,µ) consists of equivalence classes, via (C.1.7), and the Lp-
norm ‖f‖Lp is given by (C.1.8). This time it takes some work to verify the
triangle inequality, i.e.,

(C.1.9) ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp ,

known as Minkowski’s inequality. One way to establish this is by the fol-
lowing characterization of the Lp-norm. Suppose p and q are related by

(C.1.10)
1

p
+

1

q
= 1.

Then, if f ∈ Lp(X,µ),

(C.1.11) ‖f‖Lp = sup {‖fh‖L1 : h ∈ Lq(X,µ), ‖h‖Lq ≤ 1}.

We can apply this to f + g, which belongs to Lp(X,µ) if f and g do, since
|f+g|p ≤ 2p(|f |p+|g|p). Given this, (C.1.9) follows easily from the inequality
‖(f+g)h‖L1 ≤ ‖fh‖L1+‖gh‖L1 . We again refer to standard measure theory
texts for a proof of (C.1.11). Details on the case L2(X,µ), which is a Hilbert
space, are given in the following section.

There are occasions where it is important to know that one space of
functions is a dense linear subspace of another. We mention a couple of
particularly significant cases here.
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Proposition C.1.1. If µ is a finite Borel measure on a compact metric
space X, then C(X) is dense in Lp(X,µ) for each p ∈ [1,∞).

The following result is known as the Stone-Weierstrass theorem.

Theorem C.1.2. Let X be a compact metric space and A a subalgebra of
CR(X), the algebra of real-valued continuous functions on X. Suppose that
1 ∈ A and that A separates the points of X, that is, given distinct p, q ∈ X,
there exists hpq ∈ A such that hpq(p) 6= hpq(q). Then A is dense in CR(X).

If instead A is such a subalgebra of CC(X) and if also u ∈ A ⇒ u ∈ A,
then A is dense in CC(X).

Again, proofs can be found in [41].
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C.2. Hilbert spaces

A Hilbert space H is a Banach space equipped with an inner product, i.e.,
an assignment (u, v) ∈ C to each u, v ∈ H, satisfying

(C.2.1)

(a1u1 + a2u2, v) = a1(u1, v) + a2(u2, v),

∀ aj ∈ C, uj , v ∈ H,

(u, v) = (v, u), ∀u, v,∈ H,

(u, u) > 0, unless u = 0.

In such a case we define a norm on H by

(C.2.2) ‖u‖2 = (u, u).

We need to verify that this norm satisfies the triangle inequality,

(C.2.3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, ∀u, v ∈ H.

To see this, square each side,

(C.2.4)

‖u+ v‖2 = (u+ v, u+ v)

= ‖u‖2 + ‖v‖2 + 2Re(u, v),

(‖u‖+ ‖v‖)2 = ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖.

The desired inequality (C.2.3) then results from the following, known as
Cauchy’s inequality:

Lemma C.2.1. For u, v ∈ H,

(C.2.5) Re(u, v) ≤ ‖u‖ · ‖v‖.

Proof. We start with

(C.2.6) 0 ≤ ‖u− v‖2 = (u− v, u− v) = ‖u‖2 + ‖v‖2 − 2Re(u, v),

obtaining

(C.2.7) 2Re(u, v) ≤ ‖u‖2 + ‖v‖2.
Then taking u 7→ tu, v 7→ t−1v yields

(C.2.8) 2Re(u, v) ≤ t2‖u‖2 + t−2‖v‖2, ∀t ∈ (0,∞).

Provided u 6= 0 and v 6= 0, we can take

(C.2.9) t2 =
‖v‖
‖u‖

,

and obtain the desired estimate (C.2.5). Note that replacing u by eiθu for
appropriate θ ∈ R yields

(C.2.10) |(u, v)| ≤ ‖u‖ · ‖v‖.
□
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Typically, if f, g ∈ H, we say

(C.2.11) f ⊥ g ⇐⇒ (f, g) = 0,

and note that

(C.2.12)
‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re(f, g)

⇒ ‖f + g‖2 = ‖f‖2 + ‖g‖2, if f ⊥ g.

The main result we want to discuss next is the concept of an orthonormal
basis of H. To formulate this, let {uk : k ∈ N} be an orthonormal set, so

(C.2.13) (uj , uk) = δjk.

Set

(C.2.14) L = Span{uk : k ∈ N},
i.e., L is the set of finite linear combinations of these elements. We say {uk}
is an orthonormal basis of H if L is dense in H. Suppose this holds. Given
v ∈ H, we set

(C.2.15) SNv =
N∑
k=1

v̂(k)uk, v̂(k) = (v, uk).

We can write

(C.2.16) v = SNv +RNv,

and note that (SNv, uk) = (v, uk) for k ≤ N , hence RNv ⊥ uk for k ≤ N , so

(C.2.17) RNv ⊥ SNv, i.e., (SNv,RNv) = 0.

It follows that, for each N ,

(C.2.18) ‖v‖2 = ‖SNv‖2 + ‖RNv‖2.
In particular, ‖SNv‖ ≤ ‖v‖, ∀ v ∈ H. With this result in hand, we establish
the following.

Proposition C.2.2. If {uk} is an orthonormal basis of H, then

(C.2.19) SNv −→ v, in H-norm, as N → ∞, ∀ v ∈ H.

Proof. Clearly if w ∈ L, then SNw = w for all sufficiently large N , so

(C.2.20) w ∈ L =⇒ SNw → w, in H-norm.

Now, given v ∈ H, take ε > 0 and pick w ∈ L such that ‖w − v‖ < ε. Then

(C.2.21) v − SNv = v − w + w − SNw + SNw − SNv,

so

(C.2.22)
‖v − SNv‖ ≤ ‖v − w‖+ ‖w − SNw‖+ ‖SN (w − v)‖

≤ 2‖v − w‖+ ‖w − SNw‖,
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hence

(C.2.23) lim sup
N→∞

‖v − SNv‖ ≤ 2ε, ∀ ε > 0,

which gives the desired result (C.2.19). □

We pursue this line a little further. Now let {uk : k ∈ N} be an or-
thonormal set in H, and define L as in (C.2.14), but do not assume L is
dense in H. Say

(C.2.24) L = H0,

a closed linear subspace of H. Again define SNv as in (C.2.15). We still
have (C.2.16)–(C.2.18). Let us write the conclusion ‖SNv‖ ≤ ‖v‖ as

(C.2.25)

N∑
k=1

|v̂(k)|2 = ‖SNv‖2 ≤ ‖v‖2.

It follows that

(C.2.26)
∞∑
k=1

|v̂(k)|2 <∞, hence
M+N∑
k=M

|v̂(k)|2 → 0, as M → ∞.

so

(C.2.27) ‖SM+Nv − SMv‖2 −→ 0, as M → ∞,

in which case, for each v ∈ H, (SNv) is Cauchy in H. Thus this sequence
converges:

(C.2.28) SNv −→ Pv in H-norm, as N → ∞, ∀ v ∈ H,

this defining Pv. One checks that P : H → H is linear, that

(C.2.29) P : H −→ H0, ‖Pv‖ ≤ ‖v‖, ∀ v ∈ H.

It follows from Proposition C.2.2 that

(C.2.30) v ∈ H0 =⇒ Pv = v.

Furthermore, with

(C.2.31) v = Pv +Rv,

we see that (Pv, uk) = (v, uk) for all k, hence (Rv, uk) = 0 for all k, so

(C.2.32) Rv ∈ H1 = H⊥
0 , ∀ v ∈ H,

where

(C.2.33) H⊥
0 = {w ∈ H : w ⊥ v, ∀ v ∈ H0}.

This gives an orthogonal decomposition,

(C.2.34) v = v0 + v1, v0 ∈ H0, v1 ∈ H1, ∀ v ∈ H.
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Such a decomposition is unique. Indeed, if also v = v′0 + v′1, v
′
j ∈ Hj , then

0 = (v0 − v′0) + (v1 − v′1), hence vj − v′j ∈ H0 ∩ H⊥
0 = 0. We say P is the

orthogonal projection of H onto H0. We record the result.

Proposition C.2.3. If {uk : k ∈ N} is an orthonormal set in H, L =
Span{uk}, and H0 = L, and if SNv is defined as in (C.2.15), then, for all
v ∈ H, SNv → Pv in H-norm, as N → ∞, where P is the orthogonal
projection of H onto H0.

We next discuss the existence of an orthonormal basis for each closed
linear subspace H0 of a separable Hilbert space H. Such a space H0 is also
separable, so there is a countable dense subset {xk : k ∈ N} of H0. Use this
to form a subset {yk : k ∈ N} obtained from {xk} by throwing away each xj
that is in the span of {xℓ : ` < j}. Then we have the spaces

(C.2.35) Vk = Span{yj : j ≤ k}, dimVk = k,

and we can use the Gram-Schmidt process to construct an orthonormal set
{uk : k ∈ N} such that

(C.2.36) Vk = Span{u1, . . . , uk}.

Then L = Span{uk : k ∈ N} contains {xk}, so L = H0, and we are in the
setting of Proposition C.2.3. This yields the following.

Corollary C.2.4. If H is a separable Hilbert space and H0 a closed linear
subspace, there is a (uniquely defined) orthogonal projection

(C.2.37) P : H −→ H0,

yielding the orthogonal decomposition

(C.2.38) H = H0 ⊕H1, H1 = H⊥
0 .

Using this, we can establish the following result, known as the Riesz
representation theorem for Hilbert space.

Proposition C.2.5. Let H be a separable Hilbert space over F (R or C),
and let

(C.2.39) ϕ : H −→ F

be a continuous linear map. Then there is a unique w ∈ H such that

(C.2.40) ϕ(v) = (v, w), ∀ v ∈ H.

Proof. If ϕ = 0, w = 0. Assume ϕ 6= 0. Let H0 = Kerϕ = {v ∈ H :
ϕ(v) = 0}, which is a closed linear subspace of H, and use (C.2.38). Then

(C.2.41) ϕ : H1 −→ F
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is injective and nonzero, hence an isomorphism (so dimH1 = 1). Take a
unit vector w1 ∈ H1. Then, for w ∈ H1,

(C.2.42) (w1, w) = ϕ(w1) ⇐⇒ w = ϕ(w1)w1.

For such w, (C.2.40) holds for v ∈ H0 and for v ∈ H1, hence for all v ∈ H.
Uniqueness is readily checked. □
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C.3. Linear operators

If V and W are Banach spaces, L(V,W ) denotes the space of linear trans-
formations T : V → W that are continuous. Continuity is equivalent to
T−1({w ∈ W : ‖w‖ < 1}) being a neighborhood of 0 in V , hence to the
existence of a constant C <∞ such that

(C.3.1) ‖Tv‖ ≤ C‖v‖, ∀ v ∈ V.

For this reason, we also call an element of L(V,W ) a bounded linear opera-
tor. We define the norm of T to be

(C.3.2) ‖T‖ = sup {‖Tv‖ : ‖v‖ ≤ 1}.

Then (C.3.1) holds with C = ‖T‖, and ‖T‖ is the smallest constant for
which (C.3.1) holds.

It is clear that L(V,W ) is a linear space. If Tj ∈ L(V,W ), then

(C.3.3) ‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖.

Completeness is also easy to establish, so L(V,W ) is a Banach space. If X
is a third Banach space and S ∈ L(W,X), then ST ∈ L(V,X), and

(C.3.4) ‖ST‖ ≤ ‖S‖ · ‖T‖.

The space L(V ) is a Banach algebra for each Banach space V . Generally
a Banach algebra is defined to be a Banach space B, with the structure of
an algebra, so that, for each S, T ∈ B, the inequality (C.3.4) holds. Another
example of a Banach algebra is the space C(X), with the sup norm, for
compact X. Still another, introduced in Chapter 2, is L1(G), with the
convolution product

(C.3.5) u ∗ v(x) =
∫
G

u(g)v(g−1x) dg,

when G is a Lie group, equipped with Haar measure.

If V is a Banach space over F (R or C), we set

(C.3.6) V ′ = L(V,F),

and call V ′ the dual of V . We also use the notation

(C.3.7) 〈v, ω〉 = ω(v), v ∈ V, ω ∈ V ′.

If T ∈ L(V,W ), we have

(C.3.8) T ′ ∈ L(W ′, V ′),

defined by T ′ω = ωT : V → F, i.e.,

(C.3.9) 〈v, T ′ω〉 = 〈Tv, ω〉, v ∈ V, ω ∈W ′.
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A special case of (C.3.4) is that ‖T ′ω‖ ≤ ‖ω‖ · ‖T‖, hence ‖T ′‖ ≤ ‖T‖. In
fact, ‖T ′‖ = ‖T‖. The proof uses a result called the Hahn-Banach theorem,
and can be found in Appendix A of [39].

An element T ∈ L(V,W ) is said to be an isometry if ‖Tv‖ = ‖v‖ for all
v ∈ V . An isometry is always injective. If T is also surjective, we say it is
an isomorphic isomorphism. For an example, we note from (C.1.11) that if
p and q are related by (C.1.10) (we say q = p′ and p = q′), then the pairing

(C.3.10) 〈h, f〉 =
∫
X

f(x)h(x) dµ(x)

satisfies

(C.3.11) f ∈ Lp(X,µ) ⇒ ‖f‖Lp = sup {|〈h, f〉| : ‖h‖Lq ≤ 1},

and hence yields an isometry

(C.3.12) ι : Lp(X,µ) −→ Lq(X,µ)′.

It is an important fact that, if (X,µ) is σ-finite,

(C.3.13)
1 ≤ q <∞ ⇒ ι is an isometric isomorphism, so

Lq(X,µ)′ ≈ Lp(X,µ).

This is proved in standard measure theory texts, such as [41]. For p = 2, it
is a simple consequence of the Hilbert space theory presented in the previous
section.

In case V andW are Hilbert spaces and T ∈ L(V,W ), then we also have
an adjoint T ∗ ∈ L(W,V ), given by

(C.3.14) (Tv,w) = (v, T ∗w), v ∈ V, w ∈W,

using the inner products on W and V , respectively. In this case, it it is
elementary that

(C.3.15) ‖T‖ = sup {|(Tv,w)| : ‖v‖, ‖w‖ ≤ 1} = ‖T ∗‖.

One also has T ∗∗ = T .

When H is a Hilbert space, the Banach algebra L(H) is a C∗-algebra.
Generally a C∗-algebra B is a Banach algebra, equipped with a conjugate
linear involution T 7→ T ∗, satisfying ‖T ∗‖ = ‖T‖ and

(C.3.16) ‖T ∗T‖ = ‖T‖2.

To see that (C.3.16) holds for T ∈ L(H), note that both sides are equal to
the sup over ‖v1‖, ‖v2‖ ≤ 1, of the absolute value of

(C.3.17) (T ∗Tv1, v2) = (Tv1, T v2),

such a supremum necessarily being obtained over the set of pairs satisfying
v1 = v2. Note that C(X), considered above, is also a C∗-algebra. However,
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for a general Banach space V , L(V ) will not have the structure of a C∗-
algebra.

It is of interest to know when a sequence Tk ∈ L(V,W ) has the conver-
gence property Tkv → Tv, ∀ v ∈ V , with T ∈ L(V,W ). An example of this
has appeared in §C.2. Here is a general result.

Proposition C.3.1. Let Tk, T ∈ L(V,W ), and assume there exists C <∞
such that ‖Tk‖ ≤ C for all k, and ‖T‖ ≤ C. Let L ⊂ V be a dense linear
subspace, and assume

(C.3.18) Tkv −→ Tv, in W -norm,

for all v ∈ L. Then (C.3.18) holds for all v ∈ V .

Proof. Take v ∈ V . Pick ε > 0, and then pick w ∈ L such that ‖v−w‖ < ε.
Then

(C.3.19) Tv − Tkv = Tv − Tw + Tw − Tkw + Tkw − Tkv,

so

(C.3.20)
‖Tv − Tkv‖ ≤ ‖T (v − w)‖+ ‖Tw − Tkw‖+ ‖Tk(v − w)‖

≤ 2C‖v − w‖+ ‖Tw − Tkw‖.
Hence

(C.3.21) lim sup
k→∞

‖Tv − Tkv‖ ≤ 2Cε, ∀ ε > 0,

so the limsup is 0, and we have (C.3.18) for all v ∈ V . □

The following is a simple but useful strengthening.

Proposition C.3.2. Let Tk ∈ L(V,W ) and assume there exists C < ∞
such that ‖Tk‖ ≤ C for all k. Let L ⊂ V be a dense linear subspace, and
assume

(C.3.22) Tkv converges, in W -norm, ∀ v ∈ L.

Then there exists T ∈ L(V,W ) such that ‖T‖ ≤ C and (C.3.18) holds for
all v ∈ V .

Proof. As above, take v ∈ V , pick ε > 0, and then pick w ∈ L such that
‖v − w‖ < ε. Replacing (C.3.19) by

(C.3.23) Tjv − Tkv = Tjv − Tjw + Tjw − Tkw + Tkw − Tkv,

we deduce as above that

(C.3.24) (Tkv) is Cauchy in W, ∀ v ∈ V.

Denote the limit by Tv. One then checks that T ∈ L(V,W ), ‖T‖ ≤ C, and
(C.3.18) holds. □
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The following application of Proposition C.3.2 will play an important
role in the proof of Proposition C.4.4.

Proposition C.3.3. Let H be a separable Hilbert space. Assume wk ∈ H
and ‖wk‖ ≤ 1. Then there exists w ∈ H, ‖w‖ ≤ 1, and a subsequence (wkν )
such that

(C.3.25) (v, wkν ) −→ (v, w), ∀ v ∈ H.

Proof. Let {un : n ∈ N} be an orthonormal basis of H. Define Tk : H → F
by Tkv = (v, wk), so ‖Tk‖ ≤ 1. Since {Tku1 : k ∈ N} is a bounded set in

F, there is a subsequence T
(1)
k such that T

(1)
k u1 converges. In turn T

(1)
k has

a further subsequence T
(2)
k such that T

(2)
k u2 converges, and so on, yielding

nested subsequences T
(ℓ)
k such that T

(ℓ)
k uj converges as k → ∞, for each

j ∈ {1, . . . , `}. Then a diagonal argument produces a subsequence Tkν such
that Tkνuj converges as kν → ∞, for each j ∈ N.

Now Proposition C.3.2 applies, with W = F and L = Span{un : n ∈ N}.
We have T ∈ L(H,F) such that

(C.3.26) Tkνv −→ Tv, ∀ v ∈ H.

Also ‖T‖ ≤ 1. Finally, we have w ∈ H such that Tv = (v, w) for all v ∈ H,
and then (C.3.25) holds. □

Remark. When (C.3.25) holds, we say wkν → w weakly in H.
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C.4. Compact operators

If V and W are Banach spaces, an operator T ∈ L(V,W ) is said to be
compact provided T takes each bounded subset of V to a relatively compact
subset of W , that is, a set with compact closure. It suffices to assume that
T (B1) is relatively compact in W , where B1 is the closed unit ball in V . We
denote the space of compact operators by K(V,W ). If V = W , we use the
notation K(V ).

The following proposition summarizes some elementary facts about K(V,W ).

Proposition C.4.1. K(V,W ) is a closed linear subspace of L(V,W ). Each
T in L(V,W ) with finite-dimensional range is compact. Furthermore, if
T ∈ K(V,W ), S1 ∈ L(V1, V ), and S2 ∈ L(W,W2), then S2TS1 ∈ K(V1,W2).

Most of these assertions are obvious. We show that if Tj ∈ K(V,W )
is norm convergent to T , then T is compact. Given a sequence (xn) in
B1, one can pick successive subsequences on which T1xn converges, then
T2xn converges, and so on, and by a diagonal argument produce a single
subsequence (which we will still denote (xn)) such that for each j, Tjxn
converges as n → ∞. It is then easy to show that Txn converges, giving
compactness of T .

Here is a useful class of compact operators.

Proposition C.4.2. If X is a compact metric space, then the natural in-
clusion

(C.4.1) ι : Lip(X) −→ C(X)

is compact.

This is a special case of Ascoli’s theorem. More generally, let ω : X ×
X → [0,∞) be any continuous function, vanishing on the diagonal ∆ =
{(x, x) : x ∈ X}. Fix K ∈ R+. Let F be any subset of C(X) satisfying

(C.4.2) |u(x)| ≤ K, |u(x)− u(y)| ≤ Kω(x, y).

This condition is called equicontinuity. Ascoli’s theorem states that such a
set is relatively compact in C(X) whenever X is a compact metric space.
See, for example, Appendix A of [39] for a proof of Proposition C.4.2.

One useful implication is the persistence of compactness under taking
adjoints.

Proposition C.4.3. If T ∈ K(V,W ), then T ′ is also compact.

Proof. Let (ωn) be a sequence in B′
1, the closed unit ball in W ′. Con-

sider (ωn) as a sequence of continuus functions on the compact space X =
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T (B1), B1 being the unit ball in V . Proposition C.4.2 applies; there exists a
subsequence (ωnk

) converging uniformly on X. Thus (T ′ωnk
) is a sequence

in V ′ converging uniformly on B1, hence in the V ′-norm. This completes
the proof. □

For simplicity, we restrict attention in the next result to operators in
K(H), where H is a separable Hilbert space. A more general result is given
in Appendix A of [39].

Proposition C.4.4. Let H be a separable Hilbert space. If T ∈ K(H), then
the image of the closed unit ball B ⊂ H under T is compact.

Proof. Take vn ∈ B. Since we are given that T (B) is relatively compact
in H, a subsequence Kvn converges, to a limit w ∈ H. Our task is to show
that w ∈ K(B).

Now, by Proposition C.3.3, we have a subsequence vn → v weakly, v ∈ B.
Consequently, for all x ∈ H,

(C.4.3) (Kvn, x) = (vn,K
∗x) −→ (v,K∗x) = (Kv, x),

so Kvn → Kv weakly. Since Kvn → w in norm, we conclude that w = Kv,
as desired. □

We next derive some results on the spectral theory of a compact operator
on a separable Hilbert space H that is self adjoint, so A = A∗.

Proposition C.4.5. If H is a separable Hilbert space and A ∈ L(H) is
compact and self adjoint, then either ‖A‖ or −‖A‖ is an eigenvalue of S,
that is, there exists u 6= 0 such that

(C.4.4) Au = λu,

with λ = ±‖A‖.

Proof. By Proposition C.4.4, we know that the image under A of the closed
unit ball B ⊂ H is compact, so the norm assumes a maximum on this image.
Thus there exists u ∈ H such that

(C.4.5) ‖u‖ = 1, ‖Au‖ = ‖A‖.

Pick any unit w ⊥ u. Self-adjointness implies ‖Ax‖2 = (A2x, x), so we have,
for all real s,

(C.4.6) (A2(u+ sw), u+ sw) ≤ ‖A‖2(1 + s2),

equality holding at s = 0. Since the left side is equal to

(C.4.7) ‖A‖2 + 2sRe(A2u, u) + s2‖Aw‖2,
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this inequality for s → 0 implies Re(A2u,w) = 0. Replacing w by iw gives
(A2u,w) = 0 whenever w ⊥ u. Thus A2u is parallel to u, that is, A2u = cu
for some scalar c, and (C.4.5) implies c = ‖A‖2. Now, assuming A 6= 0, set

v = (A+ ‖A‖I)u.

If v = 0, then u satisfies (C.4.4) with λ = −‖A‖. If v 6= 0, then v is an
eigenvector of A with eigenvalue λ = ‖A‖. □

The space of u ∈ H satisfying (C.4.4) is called the λ-eigenspace of A.
Clearly, if A is compact and λ 6= 0, such a λ-eigenspace must be finite
dimensional. If Auj = λjuj , A = A∗, then

(C.4.8) λ1(u1, u2) = (Au1, u2) = (u1, Au2) = λ2(u1, u2).

With λ1 = λ2 and u1 = u2, this implies that each eigenvalue of A = A∗ is
real. With λ1 6= λ2, it then yields (u1, u2) = 0, so any distinct eigenspaces
of A = A∗ are orthogonal.

We also note that if H0 ⊂ H is a closed linear subspace,

(C.4.9) A : H0 → H0 =⇒ A : H⊥
0 → H⊥

0 .

Indeed, we have

(u,Av) = (Au, v) = 0, ∀u ∈ H0, v ∈ H⊥
0 .

Now if A is compact and self adjoint on H, we can apply Proposition
C.4.5, restrict A to the orthogonal complement of its ±‖A‖-eigenspaces
(where its norm must be strictly smaller, as a consequence of Proposition
C.4.5), apply the proposition again, and continue. In this fashion we ob-
tain mutually orthogonal finite-dimensional spaces Hj ⊂ H, sums of µj and
−µj-eigenspaces of A, with

(C.4.10) ‖A‖ = µ1 > µ2 > · · · ,

and

(C.4.11) A : Ek → Ek, Ek =
(⊕
j≤k

Hj

)⊥
, ‖A|Ek

‖ < µk.

We claim µj ↘ 0 is H is infinite dimensional. Indeed, if all µj ≥ a > 0, then
picking one unit vector vj in each Hj gives an orthonormal set {vj} ⊂ H
such that, for j 6= k,

‖Avj −Avk‖2 = µ2j + µ2k ≥ 2a2,

contradicting compactness of A. We have the following result, known as the
spectral theorem for compact, self-adjoint operators.
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Proposition C.4.6. If A ∈ L(H) is a compact, self-adjoint operator on
a Hilbert space H, then H has an orthonormal basis uj of eigenvectors of
A. With Auj = λjuj, (λj) is a sequence of real numbers with only 0 as an
accumulation point.

There is also a spectral theorem for general bounded self-adjoint oper-
ators, but for the purpose of these notes the compact case suffices. The
general result is teated in Chapter 8 of [39].



Appendix D

Positive definite zonal
functions

A function u on the unit sphere Sn−1 ⊂ Rn is said to be a zonal function
if u is a function of xn alone. Such a function can be expanded in zonal
harmonics. In more detail, we have

(D.0.1) L2(Sn−1) =
⊕
ℓ≥0

Vℓ,

where each Vℓ is an eigenspace of the Laplace-Beltrami operator ∆ on Sn−1:

(D.0.2) Vℓ = {f ∈ C∞(Sn−1) : ∆f = −λ2ℓf},

where {−λ2ℓ : ` ≥ 0} = Spec ∆, i.e., λ2ℓ = `(`+ n− 2). Each space Vℓ has a
one-dimensional subspace of zonal functions, spanned by

(D.0.3) zℓ(x) = AℓnC
α
ℓ (xn), α =

n− 2

2
,

where Cαℓ is a Gegenbauer polynomial, given by the generating function

(D.0.4) (1− 2tr + r2)−α =

∞∑
ℓ=0

Cαℓ (t)r
ℓ.

(We assume n ≥ 3.) See Chapter 8, §§8.3–8.4. Taking t = 1 gives (1− r)−2α

for the left side, and we see that

(D.0.5) Cαℓ (1) > 0,

for α > 0, ` ≥ 0. We set Aℓn = 1/Cαℓ (1) (which is > 0) in (D.0.3), so

(D.0.6) zℓ(p0) = 1,

where p0 = (0, . . . , 0, 1) is the “north pole” of Sn−1.

517
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We are interested in zonal functions of the form

(D.0.7) u(x) =
∑
ℓ≥0

cℓzℓ(x), cℓ ≥ 0.

If u ∈ C(Sn−1) has the form (1.7), we say

(D.0.8) u ∈ PZ(Sn−1).

At first glance, one might think the normalization z(p0) > 0 is pretty ar-
bitrary, and that the class of functions given by (D.0.7) is not particularly
distinguished. However, as we will see, this is far from the case.

In fact PZ(Sn−1) is naturally equivalent to the space of K-bi-invariant
elements of C(G) that are positive definite, as functions on the compact
group G, where

(D.0.9) G = SO(n), K = SO(n− 1).

This natural class of functions on G is independent of any choice of normal-
ized eigenfunctions. Further general properties of positive-definite functions
imply that

(D.0.10) u, v ∈ PZ(Sn−1) =⇒ uv ∈ PZ(Sn−1).

Furthermore, the class Z(Sn−1) of zonal functions on Sn−1 has a natural
convolution product, and

(D.0.11) u, v ∈ PZ(Sn−1) =⇒ u ∗ v ∈ PZ(Sn−1).

In §D.1 we gather some facts about positive-definite functions. We work
more generally on a compact Lie group G, and replace Sn−1 by M = G/K,
where K is a closed subgroup of G. In §§D.2–D.3 we define PZ(M) and
identify it with the class of K-bi-invariant functions on G that are positive
definite. We establish (D.0.10), in the more general setting of PZ(M). For
(D.0.11), we require M to be a rank-one symmetric space.
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D.1. Positive definite functions on G

Let G be a compact Lie group. A function u ∈ C(G) is said to be positive
definite provided

(D.1.1) L(u) : L2(G) −→ L2(G),

defined as left convolution by u:

(D.1.2) L(u)f(x) = u ∗ f(x) =
∫
G

u(y)f(y−1x) dy, f ∈ L2(G),

is a positive, self-adjoint operator. An equivalent condition is that, for each
strongly continuous unitary representation π of G on a Hilbert space H,
π(u) : H → H is a positive, self-adjoint operator, where

(D.1.3) π(u)f =

∫
G

u(y)π(y)f dy, f ∈ H.

Note that in (D.1.2), L(y)f(x) = f(y−1x) is the left regular representation
of G on L2(G). Note also that

(D.1.4)

L(u)f(x) =

∫
G

u(xy−1)f(y) dy

=

∫
G

Ku(x, y)f(y) dy,

where

(D.1.5) Ku(x, y) = u(xy−1).

Hence an alternative characterization is that u ∈ C(G) is positive definite if
and only if, for each finite set {g1, . . . , gN} ⊂ G, the N ×N matrix

(D.1.6) A = (ajk) =
(
u(gjg

−1
k )
)

is positive and self-adjoint in M(N,C).

We denote the set of positive definite elements of C(G) by P(G). The
following is a consequence of the characterization (D.1.6).

Proposition D.1.1. We have

(D.1.7) u, v ∈ P(G) =⇒ uv ∈ P(G).

Proof. Take {g1, . . . , gN} ⊂ G. Parallel to (D.1.6), given v ∈ P(G), we
have

(D.1.8) B =
(
v(gjg

−1
k )
)

positive, self-adjoint.

To establish (D.1.7), it suffices to deduce from (D.1.6) and (D.1.8) that

(D.1.9) C = (cjk), cjk = ajkbjk
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is positive. In fact, (D.1.6) and (D.1.8) imply

(D.1.10) A⊗B ≥ 0 in M(N2,C),
hence

(D.1.11)
∑

ajkbj′k′ηjj′ηkk′ ≥ 0, ∀ ηjj′ ∈ C.

Take ηjj′ = ξjδjj′ . We get

(D.1.12)
∑

ajkbj′k′ηjj′ηkk′ =
∑

ajkbjkξjξk,

so (2.11) implies

(D.1.13)
∑

ajkbjkξjξk ≥ 0, ∀ ξj ∈ C,

as desired. □

We also have convolution u∗v, defined as in (D.1.2), and if π is a strongly
continuous unitary representation of G on H,

(D.1.14) π(u ∗ v) = π(u)π(v).

Now, if π(u) and π(v) commute, we can deduce that π(u∗v) is positive, self-
adjoint, provided π(u) and π(v) are, but we cannot draw such a conclusion
if these factors do not commute. More on this later.

The following ties in with the normalization (D.0.6).

Proposition D.1.2. Let e ∈ G denote the identity element. Then

(D.1.15) u ∈ P(G) =⇒ u(e) ≥ |u(x)|, ∀x ∈ G.

Proof. Let {πα} be a complete set of irreducible unitary representations of
G on Vα, of dimension dα. We have the following Fourier inversion formula
for u ∈ L2(G):

(D.1.16) u(x) =
∑
α

dαTr
(
πα(u)πα(x)

∗),
with convergence in L2-norm. To check absolute and uniform convergence,
note that

(D.1.17) dα|Tr(πα(u)πα(x)∗)| ≤ dα‖πα(u)‖TR.
If u ∈ C(G) is positive definite, then each πα(u) ≥ 0, and

(D.1.18) ‖πα(u)‖TR = Trπα(u).

In such a case,

(D.1.19) |u(x)| ≤
∑
α

dαTrπα(u) = u(e),

as asserted in (D.1.15). □
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D.2. K-bi-invariant functions

Let G be a compact Lie group and K a closed subgroup, and set M = G/K,
endowed with a G-invariant Riemannian metric. Set

(D.2.1) p0 = [e] ∈M = G/K.

A function in C(M) corresponds to a function u ∈ C(G) satisfying u(xk) =
u(x), for each x ∈ G, k ∈ K. A function in C(M) invariant under the action
of K corresponds to a function u ∈ C(G) satisfying

(D.2.2) u(k1xk2) = u(x), ∀ kj ∈ K, x ∈ G.

We say u is K-bi-invariant, or u ∈ C(K \G/K).

We denote by Z(M) the space of continuous functions on M invariant
under the action of K. We have a natural isomorphism

(D.2.3) Z(M) ≈ C(K \G/K),

and these spaces are also naturally isomorphic to the space of K-bi-invariant
functions in C(G). Note that

(D.2.4) u, v ∈ Z(M) =⇒ uv ∈ Z(M).

We say

(D.2.5) u ∈ PZ(M)

provided u ∈ Z(M) and its counterpart in C(G) is positive definite. By
Proposition D.1.1,

(D.2.6) u, v ∈ PZ(M) =⇒ uv ∈ PZ(M).

Recall the convolution product of u and v in C(G):

(D.2.7) u ∗ v(x) =
∫
G

u(y)v(y−1x) dy.

If u and v are right K-invariant, u∗v might not be right K-invariant, except
in special cases. However, if u and v are K-bi-invariant, so is u ∗ v. This
gives rise to a convolution product on Z(M):

(D.2.8) u, v ∈ Z(M) =⇒ u ∗ v ∈ Z(M).

IfG is non-commutative, the convolution product on C(G) is non-commutative.
As we will see, sometimes the convolution product on Z(M) is commutative
(in particular, this happens when M = Sn−1).

For general u ∈ C(G), if π is a unitary representation of G,

(D.2.9) v(x) = u(k1xk2) =⇒ π(v) = π(k−1
1 )π(u)π(k−1

2 ).

Hence, if u is K-bi-invariant, then

(D.2.10) π(u) = π(k1)π(u)π(k2), ∀ kj ∈ K.
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Equivalently, given u ∈ C(G),

(D.2.11)
u ∈ C(K \G/K) =⇒ π(u) = π(u)π(k)

= π(k)π(u), ∀ k ∈ K.

Consequently, if u ∈ C(K \G/K), then, for all k ∈ K,

(D.2.12)
π(k) = id. on Rπ(u), and

π(k) = id. on Rπ(u)∗ =
(
Nπ(u)

)⊥
,

where Rπ(u) is the range of π(u) and Nπ(u) is the null space of π(u). If
π(u) is self-adjoint, the two conditions in (D.2.12) are equivalent to each
other.
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D.3. Specialization to M = Sn−1

We now assume G and K are given by (D.0.9), so M = Sn−1, with its
standard metric. G acts on M by rotations, hence as a unitary group on
L2(M), and then it acts on each space Vℓ in (D.0.1). Call this representation
πℓ. Since Sn−1 is a rank-one symmetric space, dim K \G/K = 1 and each
Vℓ has a one-dimensional subspace of zonal functions,

(D.3.1) Zℓ = Span (zℓ),

with zℓ as in (D.0.3) (normalized by (D.0.6). (Hence each πℓ is irreducible.)
The space Zℓ is the subspace of Vℓ on which πℓ(k) acts as the identity for
all k ∈ K. Hence, by (D.2.12), if u ∈ Z(M),

(D.3.2) πℓ(u) : Vℓ −→ Zℓ,

and ditto for πℓ(u)
∗. Generally, if π is a unitary representation of G and

u ∈ C(G),

(D.3.3) π(u)∗ = π(u∗), u∗(x) = u(x−1).

In this setting, we have

(D.3.4) z∗ℓ = zℓ,

so πℓ(zℓ) is a scalar muitiple of an orthogonal projection:

(D.3.5) πℓ(zℓ) = γℓZℓ,

with γℓ ∈ R and

(D.3.6) Zℓ = orthogonal projection of Vℓ onto Span (zℓ).

The Weyl orthogonality relations imply that if πα is an irreducible rep-
resentation of G,

(D.3.7) πα not ≡ πℓ =⇒ πα(zℓ) = 0.

In view of the inversion formula (D.1.16), this implies πℓ(zℓ) 6= 0, so γℓ 6= 0
in (D.3.5). Whether γℓ > 0 or γℓ < 0, either zℓ or −zℓ is mapped by πℓ to
a positive operator, so it must be positive definite. In fact, since z(p0) > 0,
it follows from Proposition D.1.2 that it must be zℓ that is positive definite,
so γℓ > 0 and

(D.3.8) zℓ is positive definite.

In fact, via (D.1.19),

(D.3.9) z(p0) = 1 =⇒ γℓ =
1

dℓ
, dℓ = dimVℓ.

We also deduce from Proposition D.1.2 that

(D.3.10) |zℓ(x)| ≤ 1, ∀x ∈ Sn−1.
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Note that (D.3.5) extends:

(D.3.11) u ∈ Z(Sn−1) =⇒ πℓ(u) = Γℓ(u)Zℓ, Γℓ : Z(Sn−1) → C.

This observation enables us to prove the following.

Proposition D.3.1. The convolution product on Z(Sn−1) is commutative:

(D.3.12) u, v ∈ Z(Sn−1) =⇒ u ∗ v = v ∗ u in Z(Sn−1).

Consequently, with PZ(M) defined as in §D.2,

(D.3.13) u, v ∈ PZ(Sn−1) =⇒ u ∗ v ∈ PZ(Sn−1).

Proof. To get (D.3.12), it suffices to show that

(D.3.14) u, v ∈ Z(Sn−1) =⇒ πα(u)πα(v) = πα(v)πα(u),

for each irreducible unitary representation πα of = SO(n). In fact, either
πα is equivalent to πℓ for some ` (which always holds if n = 3), in which
case (4.11) holds, or else, by the Weyl orthogonality relations, πα(u) = 0.
Since each Zℓ is a rank-one projection, (D.3.14) follows. As noted previously,
(D.3.13) is a consequence of such commutativity. □

We now show that PZ(M), defined as in §D.2, coincides with the space
characterized by (D.0.7)–(D.0.8) when M = Sn−1.

Proposition D.3.2. With PZ(M) defined as in §D.2, a function u ∈
Z(Sn−1) belongs to PZ(Sn−1) if and only if (D.0.7) holds.

Proof. By (D.3.9)–(D.3.10), if (D.0.7) holds and the sum is bounded, then∑
cℓ < ∞, and the sum converges absolutely and uniformly. That such a

sum belongs to PZ(Sn−1) then follows readily from (D.3.8).

For the converse, if u ∈ Z(Sn−1), we can write

(D.3.15) u =
∑

bℓzℓ,

with bℓ ∈ C, and convergence in L2-norm. We need to show that if u ∈
PZ(Sn−1), then each bℓ is ≥ 0. In fact, for u as in (D.3.15) and each ` ≥ 0,
we have

(D.3.16) πℓ(u) = bℓγℓZℓ.

Since γℓ > 0, we have bℓ ≥ 0 when u ∈ PZ(Sn−1). □

We hence have (D.0.10)–(D.0.11).
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Remark. While we have desired to deduce (D.0.10) from “general princi-
ples,” we can also deduce it (in the setting of PZ(Sn−1) defined by (D.0.7)–
(D.0.8)) from special function identities. In fact, given α > 0 and `j ≥ 0,

(D.3.17) Cαℓ1(t)C
α
ℓ2(t) =

∑
ℓ∈S(ℓ1,ℓ2)

σαℓ1,ℓ2(`)C
α
ℓ (t),

where

(D.3.18) S(`1, `2) = {` ∈ Z : |`1−`2| ≤ ` ≤ `1+`2 and ` = `1+`2 mod 2},
and

(D.3.19) σαℓ1,ℓ2(`) > 0 whenever ` ∈ S(`1, `2).
A formula for these coefficients is given in [46], p. 491. For another appli-
cation of this, see [32], §5.





Appendix E

Complementary results

In this appendix we discuss a variety of results on Lie groups and Lie al-
gebras, not so much needed as background for the main text, but related
to this material in interesting ways. Section E.1 discusses a class of Lie
algebras known as two-step nilpotent Lie algebras, the leading example of
which is the Heisenberg algebra. This is germane to quantum theory, and
its representation theory plays a significant role in [38]. Here, we take a
look at automorphism groups of such a Lie algebra n, and see that every
compact Lie group arises as a group of automorphisms of such a Lie algebra.
We also discuss some generalizations of this.

Section E.2 defines induced representations, leading from an irreducible
representation ρ of a closed subgroup H of a compact G to the induced
representation π of G, typically not irreducible. We establish the Frobenius
reciprocity theorem, which states that, if λ is an irreducible representation
of G, then the number of times π contains λ is equal to the number of times
λ
∣∣
H

contains ρ.

Section E.3 studies the geometrical properties of a Lie group G, equipped
with a bi-invariant Riemannian metric. It is shown that the constant speed
geodesics through the identity element coincide with the one parameter sub-
groups γX(t) = Exp(tX), X ∈ g. We use this to produce formulas for the
Riemann curvature tensor. We bring in a theorem from differential geome-
try to deduce that if G is such a group, and if the center of g is 0 (and G is
connected), then G is compact.

Section E.4 gives a brief discussion of how G2, the smallest of the excep-
tional compact Lie groups, is related to E8, the largest and most mysterious.
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Section E.5 analyzes integrals of the form

(E.0.1)

∫
U(n)

u(g)⊗ v(g) dg,

where u, v ∈ C(S1) and u(g), v(g) ∈ End(Cn) are defined by the spectral
theorem. The trace of such an integral arose in [8], and the analysis there
made use of work of Dyson [17]. The analysis of (E.0.1) has the complicating
feature that, unlike its trace, the integrand is not a central function.
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E.1. Two-step nilpotent Lie algebras

Every 2-step nilpotent Lie algebra n has the form

(E.1.1) n = V ⊕ z,

as a vector space direct sum, where z is central and the Lie bracket on V is
uniquely determined by an anti-symmetric bilinear map

(E.1.2) A : V × V −→ z.

Namely,

(E.1.3) [(X1, Z1), (X2, Z2)] = (0, A(X1, X2)), Xj ∈ V, Zj ∈ z.

A structure equivalent to (E.1.2) is A : Λ2V → z; another equivalent struc-
ture is

(E.1.4) A′ : z′ −→ (Λ2V )′ ≈ Λ2V ′.

Inner products on z and on V produce isomorphisms z′ ≈ z and Λ2V ′ ≈
Sk(V ), the space of skew-adjoint linear operators on V , and hence the struc-
ture (E.1.4) is equivalent to

(E.1.5) j : z −→ Sk(V ),

related to A by

(E.1.6) 〈j(Z)X,Y 〉 = 〈A(X,Y ), Z〉,

for X,Y ∈ V, Z ∈ z, where the left side of (E.1.6) uses the inner product
on V and the right side uses the inner product on z.

This precisely captures all 2-step nilpotent Lie algebras. To guarantee
that the center is precisely z, we add the non-degeneracy hypothesis

(E.1.7) A(X,Y ) = 0 ∀Y ∈ V =⇒ X = 0,

or equivalently, if we have inner products on V and z and use (E.1.5) to
define the Lie algebra structure,

(E.1.8)
⋂
Z∈z

ker j(Z) = 0 ⊂ V.

Example 1. The Heisenberg Lie algebra Hn has the form (E.1.1)–(E.1.3)
with

(E.1.9) V = T ∗Rn ≈ R2n, z = R,

and A the symplectic form on V (specified below). For Xj = (xj , yj)
t ∈ V ,

we have

(E.1.10) A(X1, X2) = x1 · y2 − x2 · y1, 〈X1, X2〉 = x1 · x2 + y1 · y2,
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and hence

(E.1.11) j(Z) = ZJ, J =

(
0 −I
I 0

)
, Z ∈ R.

Generalizing Example 1, one says n is of Heisenberg type if it is defined
by the structures (E.1.1) and (E.1.5), with

(E.1.12) j(Z)2 = −|Z|2I, ∀Z ∈ z.

This is equivalent to requiring

(E.1.13) j(Z)j(W ) + j(W )j(Z) = −2〈Z,W 〉 I, ∀Z,W ∈ z.

In other words, j extends to a unital representation of the Clifford algebra
C`(z) on V . For example, we can take a representation of C`(z) on a direct
sum of spaces of spinors. Note that

(E.1.14) j(Z) = σD(Z)

is the symbol of a Dirac operator on z.

We bring in some notation. Given vector spaces V and z, and given
A ∈ L(Λ2V, z), we denote by nA the two-step nilpotent Lie algebra given by
(E.1.1)–(E.1.3). The set of Lie algebras so produced is hence parametrized
by L(Λ2V, z). The condition (E.1.7) that the center of nA be exactly z is
that A belong to

(E.1.15) N 0(V, z) = {A ∈ L(Λ2V, z) : A(X,Y ) = 0 ∀Y ∈ V ⇒ X = 0}.

We examine when A1 and A2 ∈ N 0(V, z) yield isomorphic Lie algebras:

(E.1.16) T : nA1

≈−→ nA2 .

Since T must preserve the common center z, we see that T must have the
form
(E.1.17)

T (X,Z) = (QX,RX + SZ), Q ∈ Gl(V ), S ∈ Gl(z), R ∈ L(V, z).

The condition that such T be a Lie algebra isomorphism is

(E.1.18) A2(QX,QY ) = SA1(X,Y ), ∀X,Y ∈ V,

or equivalently A2(X,Y ) = SA1(Q
−1X,Q−1Y ). Thus, given A1 ∈ N 0(V, z),

the set of elements A2 ∈ N 0(V, z) for which nA2 ≈ nA1 consists of the orbit
of A1 under the natural action on L(Λ2V, z) of Gl(V )×Gl(z).
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We next make some remarks on identifying groups of automorphisms of
a 2-step nilpotent Lie algebra n, constructed via (E.1.1) and either (E.1.2)
or (E.1.5). Suppose a group G has representations π on V and ρ on z. If

(E.1.19) A(π(g)X,π(g)Y ) = ρ(g)A(X,Y ), ∀X,Y ∈ V, g ∈ G,

it is clear that

(E.1.20) (X,Z) 7→ (π(g)X, ρ(g)Z)

yields a Lie algebra automorphism of n = V ⊕ z. (This specializes (E.1.18)
to A1 = A2 = A.) If we assume V and z have inner products, via which we
pass from (E.1.2) to (E.1.5), and the operators π(g) and ρ(g) preserve these
inner products, then the hypothesis

(E.1.21) j(ρ(g)Z) = π(g)j(Z)π(g)−1, ∀ g ∈ G, Z ∈ z

readily yields (E.1.19), displaying the action of G as a group of automor-
phisms of n in (E.1.20). If we do not assume π(g) and ρ(g) preserve these
inner products, replace (E.1.21) by

(E.1.22) j(ρ(g)tZ) = π(g)tj(Z)π(g), ∀g ∈ G, Z ∈ z.

Example 2. Dilations. If we take G = R and π(t)X = etX, ρ(t)Z = e2tZ
in (E.1.20), it is clear that (E.1.19) holds. Thus each two-step nilpotent Lie
algebra n = V ⊕ z has the group of dilations

(E.1.23) δ(t)(X,Z) = (etX, e2tZ)

as a group of automorphisms.

Example 3. Let n = Hn = T ∗Rn ⊕ R, as in Example 1, and let G =
Sp(n,R), the group of linear operators on T ∗Rn preserving the symplectic
form, hence yielding a representation π of G on V = T ∗Rn. Let ρ be the
trivial representation of G on R. Then (E.1.19) obviously holds, so Sp(n,R)
acts as a group of automorphisms of Hn.

Example 4. Let G be a compact semisimple Lie group with Lie algebra
g, and let π be a representation of G on V , via operators preserving its
inner product. Let z = g, as a linear space, with inner product given by the
negative of the Killing form. Then take

(E.1.24) j = dπ : z −→ Sk(V ),

to define a 2-step nilpotent Lie algebra n. We have (E.1.21) with

(E.1.25) ρ(g)Z = (Ad g)Z,

so G acts as a group of automorphisms of n.
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Remark. Throughout the constructions above, we need not insist that
the inner products on z and V be positive-definite. They could be non-
degenerate inner products with other signatures. Thus we can extend the
scope of Example 4 to include noncompact semisimple Lie groups. Also
we can replace the hypothesis that G be semisimple by the more general
hypothesis that g possess a non-degenerate Ad-invariant inner product, so
G can be a real reductive group. We do need G to act on V , preserving a non-
degenerate inner product. For example, we could take V = g, π(g) = Ad g,
or V could be some G-invariant subspace of ⊗kg, as long as it inherits a
non-degenerate inner product. Other examples:

(E.1.26) G = SO(p, q), V = Rp,q.

For the nilpotent Lie algebras considered in Examples 3 and 4, we have
both the group of automorphisms constructed there (action of Sp(n,R) and
of G, respectively) and the groups of dilations constructed in Example 2.
These are mutually commuting groups of automorphisms of n. Some of the
nilpotent Lie algebras of Example 4 have a much larger group of automor-
phisms, such as described in the next example.

Example 5. Let G = SO(n), and let ρ = Ad, as in (E.1.25). We take
V = Rn and let π be the standard representation of SO(n) on Rn. Then
g ≈ Skew(Rn), and we have

(E.1.27) π(g)X = gX, ρ(g)Z = gZgt, X ∈ Rn, Z ∈ Skew(Rn),
where we use the fact that g−1 = gt for g ∈ SO(n). We set n = V ⊕ g, with
Lie bracket defined by j as in (E.1.23), which in this setting is tautological:

(E.1.28) j(Z) = Z, Z ∈ g ≈ Skew(Rn).
Example 4 specializes to yield SO(n) acting on n as a group of automor-
phisms. We claim this enlarges to

(E.1.29) Gl(n,R) −→ Aut n,

given by (E.1.20), where π(g) and ρ(g) are again defined by (E.1.27), for
g ∈ Gl(n,R). To verify (E.1.22), note that

(E.1.30) j(ρ(g)tZ) = gtZg and π(g)tj(Z)π(g) = gtZg,

for all g ∈ Gl(n,R), Z ∈ Skew(Rn), in the current setting. Note that the
automorphism group (E.1.29) contains both the SO(n) action and the group
δ(t) of dilations from Example 2.
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E.2. The Frobenius reciprocity theorem

Let G be a compact group, H a closed subgroup. Let ρ be an irreducible
representation of H. We define the induced representation

(E.2.1) π = IndGH(ρ)

as follows. The representation π is given by the left G-action on

(E.2.2) HWρ = {u ∈ L2(G,Vρ) : u(gh) = ρ(h)−1u(g), ∀h ∈ H}.
The following result is the Frobenius reciprocity theorem.

Theorem E.2.1. Let ρ and π be as above, and let λ be an irreducible rep-
resentation of G. Set

(E.2.3)
µ(π, λ) = Number of times π contains λ,

ν(λ, ρ) = Number of times λ
∣∣
H

contains ρ.

Then

(E.2.4) µ(π, λ) = ν(λ, ρ).

Proof. We first note that, by the orthogonality relations,

(E.2.5) ν(λ, ρ) =

∫
H

χλ(h)χρ(h) dh.

We aim to show that µ(π, λ) is equal to the same integral.

We next note that, if we set

(E.2.6) HHρ = {u ∈ L2(G) : HR acts like copies of ρ},
where HR denotes the right regular representation of H on L2(G), then HHρ

is isomorphic to a sum of dρ copies of HWρ, and

(E.2.7)
the left G-action on HHρ is isomorphic to

a sum of dρ copies of π.

Now the orthogonal projection of L2(G) on HHρ is given by

(E.2.8) P1v(x) = dρ

∫
H

v(xh)χρ(h) dh,

and the orthogonal projection of L2(G) onto the space where G acts on the
left like copies of λ is given by

(E.2.9)

P2w(x) = dλ

∫
G

w(g−1x)χλ(g) dg

= dλ

∫
G

w(g)χλ(g−1x) dg.
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Note that these projections commute, and, by (E.2.7),

(E.2.10) dρdλµ(π, λ) = TrP2P1.

Now, by (E.2.8)–(E.2.9), we have

(E.2.11)

P2P1v(x) = dρdλ

∫
G

∫
H

v(gh)χρ(h)χλ(g−1x) dh dg

= dρdλ

∫
G

∫
H

v(g)χρ(h)χλ(hg−1x) dh dg,

so TrP2P1 is clearly dρdλ times the right side of (E.2.5), and the theorem is
proved. □
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E.3. Differential geometric properties of compact Lie groups

Let G be a Lie group. Assume G has a bi-invariant Riemannian metric (as
it would have if it were compact). We will obtain some interesting results
on the interplay between the geometry of G, and the algebraic behavior of
G and its Lie algebra g. Differential geometry background can be found in
Appendix C of [39], or Chapter 6 of [40].

We begin with the following observation.

Lemma E.3.1. The map ψ : G → G given by ψ(x) = x−1 is an isometry
of G, fixing the identity element e.

Proof. This map takes a left-invariant metric to a right-invariant metric
and vice-versa, hence it takes a bi-invariant metric to a bi-invariant metric.
We have

(E.3.1) Dψ(e) = −I on g = TeG,

so such a metric tensor is preserved. □

More generally, for each g ∈ G, we have

(E.3.2) ψg : G −→ G, ψg(x) = gx−1g,

an isometry of G, fixing g, and satisfying Dψg(g) = −I on TgG.

Using this, we establish the following key result.

Proposition E.3.2. If γ is a unit speed geodesic on G satisfying γ(0) = e,
then

(E.3.3) γ(s+ t) = γ(s)γ(t).

Proof. Fix t ∈ R and consider σ(s) = γ(t+ s). This is the unit speed geo-
desic satisfying σ(0) = γ(t), σ′(0) = γ′(t). It follows that σ̃(s) = ψγ(t)(σ(s))
is the unit speed geodesic satisfying σ̃(0) = γ(t), σ̃′(0) = −γ′(t). This forces
σ̃(s) = γ(t− s), i.e.,

(E.3.4) γ(t− s) = ψγ(t)(γ(t+ s)) = γ(t)γ(t+ s)−1γ(t).

Taking t = 0 gives

(E.3.5) γ(−s) = γ(s)−1,

and then taking s 7→ −s gives

(E.3.6) γ(s+ t) = γ(t)γ(s− t)γ(t).

Taking s = t gives γ(2t) = γ(t)2, and then we obtain by induction that

(E.3.7) γ((n+ 1)t) = γ(t)γ((n− 1)t)γ(t) = γ(t)n+1,
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for each n ∈ N. A limiting argument then gives (E.3.3) when s and t have
the same sign. In such a case, (E.3.4) gives

(E.3.8) γ(t− s) = γ(t)γ(s)−1γ(t)−1γ(t) = γ(t)γ(−s),

so we have (E.3.3) in general. □

Proposition E.3.2 implies that if X ∈ g, then γX(t) = Exp tX is a
constant speed geodesic through e. The geodesic equation gives ∇XX = 0.
Given also Y ∈ g, we have ∇Y Y = 0 and ∇X+Y (X + Y ) = 0, hence

(E.3.9) ∇XY +∇YX = 0.

Since

(E.3.10) ∇XY −∇YX = [X,Y ],

we obtain

(E.3.11) ∇XY =
1

2
[X,Y ].

The Riemann tensor R is defined by

(E.3.12) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It then follows that, if X,Y, Z ∈ g,

(E.3.13) R(X,Y )Z = −1

4
[[X,Y ], Z].

The Ricci tensor is then given by

(E.3.14) Ric(X,Y ) =
∑
j

〈R(X,Ej)Y,Ej〉,

where {Ej} is an orthonormal basis of g. It follows that if X,Y ∈ g,

(E.3.15) Ric(X,Y ) =
1

4

∑
j

〈[X,Ej ], [Y,Ej ]〉,

since the inner product on g is Ad-invariant. In particular,

(E.3.16) Ric(X,X) =
1

4

∑
j

‖[X,Ej ]‖2.

This readily yields the following.

Proposition E.3.3. Given X ∈ g,

(E.3.17) Ric(X,X) > 0, unless X ∈ z, the center of g.

Proposition E.3.3 has the following important consequence.
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Proposition E.3.4. If G is a connected Lie group with a bi-invariant Rie-
mannian metric, and if the center of its Lie algebra is 0, then G is compact.
Hence, if G is a compact Lie group and its Lie algebra has trivial center,

then its universal covering group G̃ is compact.

Example. The universal covering group of SO(n) is compact, for n ≥ 3.

Proposition E.3.4 follows from Proposition E.3.3 together with the fol-
lowing classical result, known as Meyer’s theorem.

Proposition E.3.5. If M is a complete, connected Riemannian manifold
of dimension n and

(E.3.18) Ric(X,X) ≥ (n− 1)κ‖X‖2

for some κ > 0, then M is compact, of diameter ≤ π/
√
κ.

We sketch a proof of this, refering to Chapter 1 of [10] or §19 of [29] for
details. Let γs be a 1-parameter family of curves such that γs(a) ≡ p and
γs(b) ≡ q. Assume γ0 is a constant speed geodesic. Define the energy

(E.3.19) E(s) =
1

2

∫ b

a
〈γ′s(t), γ′s(t)〉 dt.

We set T = γ′0(t), V = ∂sγs(t)|s=0. One has

(E.3.20)

E′(0) =
1

2

∫ b

a
V 〈T, T 〉 dt

=

∫ b

a
〈∇V T, T 〉 dt.

Using T 〈V, T 〉 = 〈∇TV, T 〉+ 〈V,∇TT 〉, we get

(E.3.21) E′(0) = −
∫ b

a
〈V,∇TT 〉 dt.

If γ0 is a geodesic, this is 0 for all variations γs, fixed at the endpoints t = a
and t = b. This yields the geodesic equation ∇TT = 0. Going further, one
has the second variational formula

(E.3.22) E′′(0) =

∫ b

a

[
〈R(V, T )V, T 〉+ 〈∇TV,∇TV 〉

]
dt.

With this background, we turn to the proof of Proposition E.3.5. Let
γ0 be a unit speed geodesic on M , say γ0 : [0, `] → M , so γ0 has length
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`. Say γ0(0) = p, γ0(`) = q, and γ′0(t) = T . Let {T, e1, . . . , en−1} be an
orthonormal basis of TpM , and extend ej along γ0 by ∇T ej = 0. Set

(E.3.23) Vj(t) = sin
πt

`
ej(t).

For each j, construct a family of curves γs so that ∂sγs(t) = Vj(t) at s = 0.
Then use (E.3.22) with V = Vj and denote the result by E′′

j (0). We have

(E.3.24)

∑
j

E′′
j (0) =

∫ ℓ

0

{
(n− 1)

π2

`2
cos2

πt

`
− Ric(T, T ) sin2

πt

`

}
dt

≤ (n− 1)

∫ ℓ

0

{π2
`2

cos2
πt

`
− κ sin2

πt

`

}
dt

= (n− 1)
`

2

(π2
`2

− κ
)
.

This is < 0 if ` > π/
√
κ. In such a case, γ0 cannot be length minimizing

from p = γ0(0) to q = γ0(`). Consequently, given p, q ∈M , these points can
be joined by a curve of length ≤ π/

√
κ. This proves the diameter estimate

of Proposition P.4, hence the compactness.
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E.4. From G2 to E8

The complexification of Der(O), analyzed in §11.4, is the first of 5 excep-
tional complex simple Lie algebras, introduced by Killing and Cartan, de-
noted G2,F4,E6,E7, and E8. We describe a uniform construction of G2 and
E8, due to Freudenthal. In each case, the complex Lie algebra has a Z/(3)
grading:

(E.4.1) g = g−1 ⊕ g0 ⊕ g1, Z/(3) = {−1, 0, 1}.
We will have [gj , gk] ⊂ gj+k, with j + k computed mod 3. In each case, the
complex Lie algebra g0 has a representation ρ on a complex vector space,
with contragredient representation ρ′ on V ′. We set

(E.4.2) g1 = V, g−1 = V ′,

and define the actions [g0, gj ] → gj via these representations. In the cases
g = G2 or E8, we take respectively

(E.4.3) g0 = s`(3,C), g0 = s`(9,C),
and, respectively,

(E.4.4) V = C3 and V = Λ3C9.

There is a natural representation ρ of g0 on V in each case. In the first case,
we have Λ3V = Λ3C3 ≈ C, via an invariant complex volume element, and
in the second case Λ3V → Λ9C9 ≈ C. Thus we have natural bilinear maps

(E.4.5) V × V −→ V ′, V ′ × V ′ −→ V,

which are anti-symmetric. These define Lie brackets

(E.4.6) [g1, g1] → g−1, [g−1, g−1] → g1.

It remains to specify

(E.4.7) [g1, g−1] → g0.

This is done as follows. Given v ∈ V, v′ ∈ V ′, we define [v, v′] ∈ g0 by

(E.4.8) −B(λ, [v, v′]) = 〈ρ(λ)v, v′〉, λ ∈ g0,

where B is the Killing form on the simple Lie algebra g0.

In this fashion, the Lie algebras are constructed. For G2, the construc-
tion outlined here is consistent with the analysis of the complexification of
Der(O) done in §11.4. For E8, one needs to verify that the “products” de-
fined above satisfy the Jacobi identity. For details on this, and the analysis
of the root system for E8, see [1], [35].
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E.5. Dyson integrals and generalizations

Let u, v : S1 → C be continuous. Given g ∈ U(n), we define u(g), v(g) ∈
End(Cn) by the spectral representation. As advertised in §4.15, it is of
interest to obtain formulas for

(E.5.1)

∫
U(n)

Xu(g)Xv(g) dg,

where

(E.5.2) Xu(g) = Tru(g).

Such integrals arise in random matrix theory. An evaluation of (E.5.1) was
made by Bump, Diaconis, and Keller in [8]. The work made use of iden-
tities of Dyson [17], also presented in [28]. Here we present an alternative
approach. Going further, we seek formulas for

(E.5.3)

∫
U(n)

u(g)⊗ v(g) dg,

for which (E.5.1) is the trace. One complicating feature of (E.5.3) is that
the integrand is not a central function.

To attack (E.5.3), we use Fourier series:

(E.5.4) u(g) =

∞∑
j=−∞

û(j)gj , û(j) =
1

2π

∫ π

−π
u(θ)e−ijθ dθ.

We see that (E.5.3) is equal ro

(E.5.5)
∑
j,k

û(j)v̂(k)Ajk, Ajk =

∫
U(n)

gj ⊗ gk dg.

Performing the measure-preserving transformation g 7→ eiψg on U(n), we
see that

(E.5.6) Ajk = ei(j+k)ψAjk,

for all ψ ∈ R, and hence Ajk = 0 for j 6= −k. Hence

(E.5.7)

∫
U(n)

u(g)⊗ v(g) dg =
∑
j

û(j)v̂(−j)Aj ,

with

(E.5.8) Aj =

∫
U(n)

gj ⊗ g−j dg.
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Note also that performimg the measure-preserving transformation g 7→ g−1

on U(n) yields

(E.5.9) Aj = A−j .

From (E.5.7) we deduce that

(E.5.10)

∫
U(n)

Xu(g)Xv(g) dg =
∑
j

û(j)v̂(−j)ajn,

where

(E.5.11) ajn = TrAj =

∫
U(n)

|Tr gj |2 dg.

Clearly

(E.5.12) a0n = n2.

Meanwhile, as shown in §4.15, for j ≥ 1, ajn = j ∧ n. By (E.5.9) we have
a−j,n = ajn. Hence

(E.5.13) ajn = |j| ∧ n, for j 6= 0.

This provides an analysis of (E.5.1).

Operator analysis of (E.5.3)

For the operator analysis of (E.5.3), we need an analysis of the operators
Aj , given by (E.5.8), which we proceed to investigate. Let us define

(E.5.14) σ : Cn ⊗ Cn −→ Cn ⊗ Cn

by

(E.5.15) σ(u⊗ v) = v ⊗ u.

(Here u and v are elements of Cn, not of C(S1).) Let I denote the identity
operator on Cn ⊗ Cn. We will establish the following

Proposition E.5.1. For j ≥ 1, n ≥ 2, we have

(E.5.16) Aj =
n2 − (j ∧ n)
n(n2 − 1)

σ +
(j ∧ n)− 1

n2 − 1
I.

Proof. Take X ∈ U(n), acting on Cn ⊗Cn by X(u⊗ v) = Xu⊗Xv. Then

(E.5.17)

X−1AjX(u⊗ v)

=

∫
U(n)

X−1gjXu⊗X−1g−jXv dg

= Aj(u⊗ v),
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since g 7→ X−1gX is a measure preserving transformation on U(n). Thus
Aj commutes with the action of U(n) on Cn ⊗ Cn. It follows that

(E.5.18) Aj = αjnσ + βjnI,

for some scalars αjn and βjn. Taking the trace of the right side of (E.5.18)
and comparing with (E.5.11)–(E.5.13), we have

(E.5.19) nαjn + n2βjn = j ∧ n.

To obtain a second identity involving αjn and βjn, we proceed as follows.
Write (E.5.18) as

(E.5.20) Aj(u⊗ v) = αjnv ⊗ u+ βjnu⊗ v.

Setting u = v and taking the inner product of both sides with u⊗ u yields

(E.5.21)

(αjn + βjn)|u|4 =
∫

U(n)

(gju⊗ g−ju, u⊗ u) dg

=

∫
U(n)

(gju, u)(g−ju, u) dg

=

∫
U(n)

|(gju, u)|2 dg.

On the other hand, taking u ⊥ v and taking the inner product of both sides
of (E.5.20) with v ⊗ u yields

(E.5.22)

αjn|u|2|v|2 =
∫

U(n)

(gju⊗ g−jv, v ⊗ u) dg

=

∫
U(n)

(gju, v)(v, gju) dg

=

∫
U(n)

|(gju, v)| dg.

Now let e1, . . . , en denote the standard orthonormal basis of Cn, and set
u = e1. Apply (E.5.21) for ` = 1 and (E.5.22) with v = eℓ for ` > 1, and
sum, to get

(E.5.23)

αjn + βjn + (n− 1)αjn =

n∑
ℓ=1

∫
U(n)

|(gje1, eℓ)|2 dg

=

∫
U(n)

|gje1|2 dg.
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Since |gje1| = 1, we have our second identity:

(E.5.24) nαjn + βjn = 1.

Now (E.5.16) follows. □

With (E.5.16) in hand (and noting that A0 = I), we can finish the
computation of (E.5.7). We obtain

(E.5.25)

∫
U(n)

u(g)⊗ v(g) dg =
1

n2 − 1

[
w(0)− Fnw(0)

](
I − σ

n

)

− 1

n2 − 1

[
w(0)− ŵ(0)

]
(I − nσ)

+ ŵ(0)I,

where

(E.5.26) w(θ) = u ∗ v̆(θ) = 1

2π

∫
S1

u(ϕ)v(ϕ− θ) dϕ,

and where Fnw denotes the nth Fejér mean of the Fourier series of w:

(E.5.27) Fnw(θ) =
∑
|j|<n

(
1− |j| ∧ n

n

)
ŵ(j)eijθ.

Note that ŵ(0) is equal to the product of the mean values of u and v.

Remark. Taking v ∈ Cn orthogonal to u and taking the inner product of
both sides of (E.5.20) with u⊗ v yields the identity

(E.5.28)

∫
U(n)

(gju, u)(gjv, v) dg = βjn|u|2|v|2, for u ⊥ v.
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