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Introduction

These notes were prepared for a short course on pseudodifferential operators,
in the Fall of 2008 at MSRI, as part of an introduction to a special semester on
analysis and PDE. They are organized into four chapters, corresponding to four
lectures given at MSRI, though each chapter covers more material than I could
actually go over in an hour. The interested audience member could find in the
notes material that filled out the lectures.

Chapter I treats basic results on pseudodifferential operators with smooth sym-
bols on Euclidean space Rn, and on smooth compact manifolds. The scope of such
material is enlarged in various ways in the subsequent chapters.

Chapter II starts with a treatment of pseudodifferential operators with rough
symbols. These are useful for treating PDE with rough coefficients, a study that
often arises in the study of nonlinear PDE. We make use of this to develop the
theory of paradifferential operators, also of direct use in nonlinear PDE.

Chapter III develops the theory of layer potentials on domains with rough bound-
aries. It starts with a treatment of Lipschitz domains, then proceeds to the more
general situation of uniformly rectifiable domains. There is a section on an impor-
tant class of UR domains called chord-arc domains, or, as we call them here, SKT
domains.

Chapter IV takes up again analysis on manifolds, this time with an emphasis on
classes of noncompact manifolds, known as manifolds with bounded geometry. As
an example, one section looks at analysis on symmetric spaces of noncompact type.
Another section develops theories of Hardy spaces, bmo, and associated Sobolev
spaces on manifolds with bounded geometry.

In the intervening years, I have seen these notes being used by colleagues in
various graduate PDE courses. I have done some polishing of the text and have
added some references to more recent results, though I have not altered the basic
scope of the text.
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I. Pseudodifferential operators with smooth symbol on Rn

This lecture covers a number of topics on pseudodifferential operators on Eu-
clidean space. In §1 we give the Fourier integral representation of such an operator,
with symbol p(x, ξ). We take p(x, ξ) in one of Hörmander’s symbol classes Sm

ρ,δ.

For basic results in linear PDE, the emphasis is naturally on (ρ, δ) = (1, 0), but
other classes prove useful from time to time. (In Lecture II there will be a special
emphasis on classes Sm

1,δ, both for δ ∈ [0, 1) and for δ = 1.) We proceed in §2 to
discuss adjoints, products, and commutators of such operators. As seen there, we
typically need 0 ≤ δ < ρ ≤ 1. In §3 we discuss the behavior of such operators
on L2-Sobolev spaces, and (for ρ = 1) on Lp-Sobolev spaces, and also Hardy and
bmo-Sobolev spaces, and Zygmund spaces (which include Hölder spaces). Section
4 deals with elliptic operators, producing results on global and local regularity.
In this section we derive further results for strongly elliptic operators, including
particularly G̊arding’s inequality.

Section 5 treats hyperbolic equations, starting with first order symmetric hyper-
bolic systems. Energy estimates provide a tool for proving existence and unique-
ness of solutions. We show how a certain class of second order hyperbolic PDE can
be transformed to first order symmetric hyperbolic systems. Results on strongly
elliptic operators from §4 are useful in this analysis. In §6 we conjugate a pseu-
dodifferential operator P by the solution operator to a scalar hyperbolic equation
and obtain a family P (t) of pseudodifferential operators, whose principal symbols
are related by a Hamiltonian flow; this is Egorov’s theorem. In §7 we define the
wave front set WF (f) of a distribution f on Rn. This is a conic subset of “phase
space,” (x, ξ)-space, which via (x, ξ) 7→ x projects onto the singular support of f .
Results on propagation of singularities are naturally expressed in terms of wave
front sets. We show how the solution operator to a first order scalar hyperbolic
equation propagates wave front sets, as a consequence of Egorov’s theorem. Section
8 discusses pseudodifferential operators on a compact manifold M . We show that
OPSm

ρ,δ(M) is well defined when ρ ∈ (1/2, 1] and δ = 1 − ρ, as a consequence of
Egorov’s theorem.

The material presented here is necessarily a bit sketchy. Much more detailed
presentations can be found in several monographs, such as [H5], [T2], and [Tr], as
well as other sources listed in the references.

1. Representations of pseudodifferential operators

The following is the Fourier integral representation of a pseudodifferential oper-
ator on Rn:

(1.1) p(x,D)u = (2π)−n/2

∫
Rn

p(x, ξ)û(ξ)eix·ξ dξ,
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where û(ξ) is the Fourier transform of u:

(1.2) û(ξ) = (2π)−n/2

∫
Rn

u(y)e−iy·ξ dy.

The function p(x, ξ) in (1.1) is called the symbol of p(x,D). Symbol classes will
be discussed below. When p(x, ξ) =

∑
pα(x)ξ

α is a polynomial in ξ, (1.1) defines
the differential operator p(x,D) =

∑
pα(x)D

α, where Dα = Dα1
1 · · ·Dαn

n , Dj =
(1/i)∂/∂xj . This follows by applying Dj to the Fourier inversion formula

(1.3) u(x) = (2π)−n/2

∫
Rn

û(ξ)eix·ξ dξ,

giving

(1.4) Dαu(x) = (2π)−n/2

∫
ξαû(ξ)eix·ξ dξ.

The power of this representation is to convert differential operators to algebraic
operators. As an illustration, the heat equation

(1.5)
∂u

∂t
= ∆u, u(0, x) = f(x)

becomes

(1.6)
∂û

∂t
= −|ξ|2û, û(0, ξ) = f̂(ξ),

with solution

(1.7) u(t, x) = et∆f(x) = (2π)−n/2

∫
e−t|ξ|2 f̂(ξ)eix·ξ dξ.

Another representation for pseudodifferential operators is the singular integral
representation:

(1.8) p(x,D)u =

∫
K(x, x− y)u(y) dy,

where

(1.9) K(x, x− y) = (2π)−n

∫
p(x, ξ)ei(x−y)·ξ dξ.

We can apply this to (1.7), in concert with the formula

(1.10) (2π)−n

∫
Rn

e−t|ξ|2eiz·ξ dξ = (4πt)−n/2e−|z|2/4t,
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to obtain the formula

(1.11) et∆f(x) = (4πt)−n/2

∫
e−|x−y|2/4tf(y) dy.

The operator

(1.12) ∆−1f(x) = −(2π)−n/2

∫
|ξ|−2f̂(ξ)eix·ξ dξ

can also be written

(1.13)
∆−1f(x) =

∫
G(x− y)f(y) dy,

G(x− y) = Cn|x− y|−(n−2), n ≥ 3.

One way to get this formula is via

(1.14) ∆−1f(x) =

∫ ∞

0

et∆f(x) dt,

and an application of (1.11), along with a change of variable, s = 1/t.
Operators of the form (1.1) are called pseudodifferential operators provided

p(x, ξ) belongs to a symbol class, such as Sm
ρ,δ, defined as follows. Given m ∈ R,

0 ≤ δ, ρ ≤ 1, we say

(1.15) p(x, ξ) ∈ Sm
ρ,δ ⇐⇒ |Dβ

xD
α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|.

Here 〈ξ〉 = (1 + |ξ|2)1/2. We say

(1.16) p(x, ξ) ∈ Sm
ρ,δ ⇐⇒ p(x,D) ∈ OPSm

ρ,δ.

The most basic symbol class is Sm
1,0, introduced in [KN]. An important subclass,

which we denote Sm (or sometimes Sm
cl ) consists of symbols p(x, ξ) ∈ Sm

1,0 such that

(1.17) p(x, ξ) ∼
∑
j≥0

pj(x, ξ),

where pj(x, ξ) ∈ Sm−j
1,0 is homogeneous of degree m− j in ξ for |ξ| ≥ 1, and (1.17)

means p(x, ξ) −
∑k

0 pj(x, ξ) ∈ Sm−k−1
1,0 . (We then say p(x,D) ∈ OPSm.) The

classes Sm
ρ,δ were introduced in [H1], and there are more general classes, arising in

[BF] and [H4].
The term p0(x, ξ) in (1.17) is called the principal symbol of p(x,D) ∈ OPSm.

For general p(x, ξ) ∈ Sm
ρ,δ, the principal symbol of p(x,D) is the equivalence class
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of p(x, ξ), mod S
m−(ρ−δ)
ρ,δ . For this to be meaningful, one needs ρ > δ. Further

clarification of this will arise in §2.
The function |ξ|−2 in (1.12) does not belong to S−2, due to the singularity at

ξ = 0. One has E ∈ OPS−2 for

(1.18) Ef(x) = −(2π)−n/2

∫
1− φ(ξ)

|ξ|2
f̂(ξ)eix·ξ dξ,

given φ ∈ C∞
0 (Rn) such that φ(ξ) = 1 for ξ in a neighborhood of 0. In such a case,

(1.19)

∆Ef(x) = E∆f(x) = (I +R)f(x),

Rf(x) = −(2π)−n/2

∫
φ(ξ)f̂(ξ)eix·ξ dξ.

We have

(1.20) R ∈ OPS−∞ =
⋂
m>0

OPS−m
1,0 .

Such an operator will be shown to be a smoothing operator, and we say E is a
parametrix for ∆. One important motivation for the theory of pseudodifferential
operators is to construct parametrices for various classes of differential operators,
starting with the class of elliptic operators. See §4 for more on this.

Returning to the singular integral representation (1.8)–(1.9), note that

(1.21) Dβ
xD

γ
z z

αK(x, z) = (2π)−n

∫
pαβ(x, ξ)ξ

γeiz·ξ dξ,

where

(1.22)
pαβ(x, ξ) = Dβ

xD
α
ξ p(x, ξ)

⇒ pαβ(x, ξ)ξ
γ ∈ S

m−ρ|α|+δ|β|+|γ|
ρ,δ .

Provided ρ > 0, we see that given β and γ, as long as |α| is large enough, pαβ(x, ξ)ξγ
is integrable in ξ, so that the left side of (1.21) is bounded and continuous. Con-
sequently, whenever p(x, ξ) ∈ Sm

ρ,δ and ρ > 0, the Schwartz kernel K(x, x − y) of

p(x,D) is C∞ off the diagonal x = y and is rapidly decreasing as |x− y| → ∞.
More can be said if ρ = 1. In fact

(1.23) p(x, ξ) ∈ Sm
1,δ ⇒ |Dβ

xD
γ
yK(x, x− y)| ≤ Cβγ |x− y|−n−m−|β|−|γ|,

provided

(1.24) m+ |β|+ |γ| > −n.
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This holds for δ ∈ [0, 1]. See, e.g., [T5], Chapter 7, §2, for a proof.
We end this section with a brief comment about a more general Fourier integral

representation than (1.1), namely

(1.25) Au(x) = (2π)−n

∫∫
a(x, y, ξ)ei(x−y)·ξu(y) dy dξ.

Here x, y, and ξ each run over Rn. We say
(1.26)

a(x, y, ξ) ∈ Sm
ρ,δ1,δ2 ⇔ |Dβ1

x Dβ2
y Dα

ξ a(x, y, ξ)| ≤ Cαβ1β2
〈ξ〉m−ρ|α|+δ1|β1|+δ2|β2|.

An operator of the form (1.25) can be rewritten in the form (1.1), with

(1.27)
p(x, ξ) = (2π)−n

∫
a(x, y, η)ei(x−y)·(η−ξ) dy dη

= eiDξ·Dya(x, y, ξ)
∣∣
y=x

.

A variant of the stationary phase method can be used to show that if a(x, y, ξ) ∈
Sm
ρ,δ1,δ2

, then

(1.28)

0 ≤ δ2 < ρ ≤ 1 =⇒ p(x, ξ) ∈ Sm
ρ,δ, δ = max(δ1, δ2), and

p(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα

ξD
α
y a(x, y, ξ)

∣∣
y=x

,

the asymptotic formula holding in the sense that the sum over |α| < N above differs

from p(x, ξ) by an element of S
m−N(ρ−δ)
ρ,δ . Proofs can be found in the sources cited

above. We will see several applications in §2 and §8.

2. Symbol calculus: adjoints, products, and commutators

The adjoint of an operator p(x,D) as in (1.1) has the form

(2.1) p(x,D)∗u = (2π)−n

∫∫
p(y, ξ)∗ei(x−y)·ξu(y) dy dξ.

This is a special case of (1.25), with a(x, y, ξ) = p(y, ξ)∗. Hence (1.27) gives

(2.2) p(x,D)∗ = p∗(x,D), p∗(x, ξ) = eiDξ·Dxp(x, ξ)∗,

and we deduce from (1.28) that

(2.3)

p(x, ξ) ∈ Sm
ρ,δ, 0 ≤ δ < ρ ≤ 1 ⇒ p∗(x, ξ) ∈ Sm

ρ,δ, and

p∗(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα

ξD
α
xp(x, ξ)

∗.
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For the composition of operators pj(x,D) ∈ OPS
mj

ρj ,δj
, we have p1(x,D)p2(x,D) =

(p1 ◦ p2)(x,D), with

(2.4)
(p1 ◦ p2)(x, ξ) = (2π)−n

∫∫
p1(x, η)p2(y, ξ)e

i(x−y)·(η−ξ) dη dy

= eiDη·Dy p1(x, η)p2(y, ξ)
∣∣
y=x,η=ξ

,

and the sort of stationary phase analysis that gives (1.28) also gives
(2.5)
0 ≤ δ2 < ρ1 ≤ 1 ⇒ (p1 ◦ p2)(x, ξ) ∈ Sm1+m2

ρ,δ , ρ = min {ρk}, δ = max {δj}, and

(p1 ◦ p2)(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα

ξ p1(x, ξ)D
α
xp2(x, ξ).

Proofs can be found in the references cited in §1. In particular, if pj ∈ S
mj

ρ,δ , 0 ≤
δ < ρ ≤ 1,

(2.6) (p1 ◦ p2)(x, ξ) = p1(x, ξ)p2(x, ξ) mod S
m1+m2−(ρ−δ)
ρ,δ .

Let us specialize to ρ = 1, δ = 0. Taking the terms |α| = 0 and 1 in (2.5) gives

(2.7) (p1 ◦ p2)(x, ξ) = p1(x, ξ)p2(x, ξ) +
1

i

n∑
j=1

∂p1
∂ξj

∂p2
∂xj

mod Sm1+m2−2
1,0 ,

assuming pj ∈ S
mj

1,0 . In particular if pj(x, ξ) are scalar valued, or more gener-

ally are commuting matrices, we have for the commutator [p1(x,D), p2(x,D)] =
p1(x,D)p2(x,D)− p2(x,D)p1(x,D),

(2.8) [p1(x,D), p2(x,D)] = [p1, p2](x,D) ∈ OPSm1+m1−1
1,0 ,

with

(2.9) [p1, p2](x, ξ) =
1

i

n∑
j=1

(∂p1
∂ξj

∂p2
∂xj

− ∂p1
∂xj

∂p2
∂ξj

)
mod Sm1+m2−2

1,0 .

We also write the symbol on the right side of (2.8) as

(2.10)
1

i
{p1, p2}(x, ξ) =

1

i
Hp1p2(x, ξ),

where {p1, p2} denotes the Poisson bracket and Hp1
the Hamiltonian vector field

(2.11) Hp1
=

n∑
j=1

(∂p1
∂ξj

∂

∂xj
− ∂p1
∂xj

∂

∂ξj

)
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on R2n associated to the function p1(x, ξ).
As we will see, (2.6) leads to elliptic regularity results while (2.8)–(2.11) lead to

results on propagation of singularities.

3. Operator estimates on function spaces

The first fundamental L2-operator estimate is

(3.1) p(x, ξ) ∈ S0
ρ,δ, 0 ≤ δ < ρ ≤ 1 =⇒ p(x,D) : L2(Rn) → L2(Rn).

An ingenious proof of [H5] proceeds in stages. First, it is elementary that p(x,D) :
Lp(Rn) → Lp(Rn) for each p ∈ [1,∞] if p(x, ξ) ∈ S−m

ρ,δ with ρ > 0 and m large

enough, by the integral kernel estimates arising from (1.21)–(1.22). Next, if a > 0

and p(x, ξ) ∈ S−a
ρ,δ , then P = p(x,D) has the property (P ∗P )k ∈ OPS−ka

ρ,δ , as long

as 0 ≤ δ < ρ ≤ 1, by results of §2. Consequently (P ∗P )k is bounded on L2(Rn) for
k large, which implies P : L2(Rn) → L2(Rn). Finally, if p(x, ξ) is as in (3.1), then

(3.2) q(x,D) = p(x,D)∗p(x,D) ∈ OPS0
ρ,δ.

Suppose

(3.3) |q(x, ξ)| ≤M − b, b > 0,

so

(3.4) A(x, ξ) =
(
M − Re q(x, ξ)

)1/2 ∈ S0
ρ,δ,

and, by results of §2,

(3.5) A(x,D)∗A(x,D) =M − q(x,D) + r(x,D), r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .

We have

(3.6)
M‖u‖2L2 − ‖p(x,D)u‖2L2 = ‖A(x,D)u‖2L2 − (r(x,D)u, u)

≥ −C‖u‖2L2 ,

the last inequality by the known boundedness of r(x,D) on L2(Rn). This implies

(3.7) ‖p(x,D)u‖2L2 ≤ (M + C)‖u‖2L2 ,

giving (3.1).
The endpoint cases of (3.1), with δ = ρ ∈ [0, 1), hold. This is the Calderon-

Vaillancourt theorem. See [CV]; proofs can also be found in [H5] and [T2].
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The result (3.1) extends to Lp-boundedness for p ∈ (1,∞) in case ρ = 1:

(3.8) p(x, ξ) ∈ S0
1,δ, δ ∈ [0, 1) =⇒ p(x,D) : Lp(Rn) → Lp(Rn), ∀ p ∈ (1,∞).

This follows from Calderon-Zygmund theory. Generally, if P has integral kernel
k(x, y) on Rn × Rn satisfying

(3.9) |k(x, y)| ≤ C|x− y|−n, |∇x,yk(x, y)| ≤ C|x− y|−n−1,

and if P is bounded on L2(Rn), then P is bounded on Lp(Rn) for all p ∈ (1,∞).
For details, see, e.g., [St2] or [T5], Chapter 13. In case P = p(x,D) ∈ OPS0

1,δ, the

estimates in (3.9) follow from (1.23), actually for δ ∈ [0, 1]. The restriction δ < 1 is
needed to apply (3.1).

An important extension of (3.8) allows one to estimate p(x,D)u when u takes
values in a Hilbert space H1 and p(x, ξ) takes values in L(H1,H2), H2 being also
a Hilbert space. The following is a paradigmatic special case:

(3.10)
P (ξ) ∈ C∞(Rn,L(H1,H2)), ‖Dα

ξ P (ξ)‖L(H1,H2) ≤ Cα〈ξ〉−|α|

=⇒ P (D) : Lp(Rn,H1) → Lp(Rn,H2), ∀ p ∈ (1,∞).

This leads to an important circle of results known as Littlewood-Paley Theory.
To obtain this, start with a partition of unity {ψj : j ≥ 0}:

(3.11) 1 =
∞∑
j=0

ψj(ξ)
2

where ψj ∈ C∞, ψ0(ξ) is supported on |ξ| ≤ 1, ψ1(ξ) is supported on 1
2 ≤ |ξ| ≤ 2,

and ψj(ξ) = ψ1(2
1−jξ) for j ≥ 2. We take H1 = C, H2 = ℓ2, and look at

(3.12) Φ : L2(Rn) −→ L2(Rn, ℓ2)

given by

(3.13) Φ(f) = (ψ0(D)f, ψ1(D)f, ψ2(D)f, . . . ).

This is clearly an isometry, though of course it is not surjective. The adjoint

(3.14) Φ∗ : L2(Rn, ℓ2) −→ L2(Rn),

given by

(3.15) Φ∗(g0, g1, g2, . . . ) =
∑

ψj(D)gj
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satisfies

(3.16) Φ∗Φ = I

on L2(Rn). Note that Φ = Φ(D), where

(3.17) Φ(ξ) = (ψ0(ξ), ψ1(ξ), ψ2(ξ), . . . ).

It is easy to see that the hypothesis in (3.10) is satisfied by both Φ(ξ) and Φ∗(ξ).
Hence, for 1 < p <∞,

(3.18)
Φ : Lp(Rn) −→ Lp(Rn, ℓ2)

Φ∗ : Lp(Rn, ℓ2) −→ Lp(Rn).

In particular, Φ maps Lp(Rn) isomorphically onto a closed subspace of Lp(Rn, ℓ2),
and we have compatibility of norms:

(3.19) ‖u‖Lp ≈ ‖Φu‖Lp(Rn,ℓ2).

In other words,

(3.20) C ′
p‖u‖Lp ≤

∥∥∥{ ∞∑
j=0

|ψj(D)u|2
}1/2∥∥∥

Lp
≤ Cp‖u‖Lp ,

for 1 < p <∞.
The result (3.8) fails at the endpoints p = 1 and p = ∞. They work when

L1(Rn) and L∞(Rn) are replaced by h1(Rn) and bmo(Rn), spaces introduced in
[G] as local versions of the spaces H1(Rn) and BMO(Rn) studied in [FS]. These
spaces can be defined as follows.

(3.21) h1(Rn) = {f ∈ L1
loc(Rn) : Gbf ∈ L1(Rn)},

where

(3.22) Gbf(x) = sup
0<r≤1

sup
φ∈F

∣∣∣∫ φr(x− y)f(y) dy
∣∣∣,

with

(3.23) F = {φ ∈ C1
0 (B1) : ‖∇φ‖L∞ ≤ 1}

and φr(x) = r−nφ(r−1x). Meanwhile

(3.24) bmo(Rn) = {f ∈ L1
loc(Rn) : N f ∈ L∞(Rn)},
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where

(3.25) N f(x) = sup
B∈B1(x)

1

V (B)

∫
B

|f(y)− fB | dy +
1

V (B1(x))

∫
B1(x)

|f(y)| dy,

with

(3.26) B1(x) = {Br(x) : 0 < r ≤ 1}.

Lp-Sobolev spaces can be characterized as

(3.27) Hs,p(Rn) = (1−∆)−s/2Lp(Rn), s ∈ R, 1 < p <∞,

where the right side is a priori a linear subspace of S ′(Rn). Note that (1−∆)−s/2 ∈
OPS−s

1,0. The result (3.8) plus the results on products from §2 give

(3.28)
p(x, ξ) ∈ Sm

1,δ, δ ∈ [0, 1) =⇒
p(x,D) : Hs,p(Rn) → Hs−m,p(Rn), ∀ s ∈ R, p ∈ (1,∞).

In addition, there are Hardy and bmo-Sobolev spaces:

(3.29) hs,1(Rn) = (1−∆)−s/2h1(Rn), hs,∞(Rn) = (1−∆)−s/2 bmo(Rn).

For p(x, ξ) as in (3.28), we have

(3.30) p(x,D) : hs,p(Rn) −→ hs−m,p(Rn), s ∈ R, p = 1, ∞.

In case p = 2, we can use (3.1) in place of (3.8) to obtain

(3.31)
p(x, ξ) ∈ Sm

ρ,δ, 0 ≤ δ < ρ ≤ 1 =⇒
p(x,D) : Hs,2(Rn) → Hs−m,2(Rn).

Another important class of function spaces consists of the Zygmund spaces:

(3.32) Cs
∗(Rn) = {f ∈ S ′(Rn) : ‖ψj(D)f‖L∞ ≤ C2−sj},

where {ψj(ξ)} is the Littlewood-Paley partition of unity given in (3.11). One has

(3.33) k ∈ Z+, α ∈ (0, 1) =⇒ Ck+α
∗ (Rn) = Ck,α(Rn),

the space of functions whose kth order derivatives are Hölder continuous of exponent
α. Parallel to (3.28), one has

(3.34) p(x, ξ) ∈ Sm
1,δ, δ ∈ [0, 1) =⇒ p(x,D) : Cs

∗(Rn) → Cs−m
∗ (Rn), ∀ s,m ∈ R.
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Proofs can be found in [St2] and [T5], Chapter 13.
The case δ = 1 is worthy of mention. The conclusions in (3.28) and (3.34) fail

for general p(x, ξ) ∈ Sm
1,1 when s−m ≤ 0, but E. Stein showed that they hold when

s − m > 0. These results play an important role in the study of paradifferential
operators, as we will see in Lecture II. There we will also introduce an important
subclass of Sm

1,1, for which the conclusions in (3.28) and (3.34) continue to hold for
all s,m ∈ R.

There are also local Lp-Sobolev spaces, etc. If Ω ⊂ Rn is open and f ∈ Hσ,q(Rn)
for some σ ∈ R, q ∈ (1,∞), and if s ∈ R, p ∈ (1,∞),

(3.35) f ∈ Hs,p
loc (Ω) ⇐⇒ φf ∈ Hs,p(Rn), ∀φ ∈ C∞

0 (Ω).

Parallel to (3.28), we have for such f as in (3.35),

(3.36) p(x, ξ) ∈ Sm
1,δ, δ ∈ [0, 1) =⇒ p(x,D)f ∈ Hs−m,p

loc (Ω).

To see this, given φ ∈ C∞
0 (Ω), take ψ ∈ C∞

0 (Ω) such that ψ ≡ 1 on supp φ, and
write

(3.37) φ(x)p(x,D)f = φ(x)p(x,D)(ψf) + φ(x)p(x,D)((1− ψ)f).

The first term on the right side of (3.37) belongs to Hs,p(Rn), by (3.28). As for the
second term, results of §2 imply

(3.38) φ(x)p(x,D)(1− ψ(x)) ∈ OPS−∞
1,0 ,

so this term belongs to C∞
0 (Rn). There are analogues of this for f ∈ hs,1loc(Ω), h

s,∞
loc (Ω),

and Cs
∗,loc(Ω). Also, in case p = 2, one can use (3.31) in place of (3.28) to deduce

that if f ∈ Hσ,q(Rn) and f ∈ Hs,2
loc (Ω), then

(3.39) p(x, ξ) ∈ Sm
ρ,δ, 0 ≤ δ < ρ < 1 =⇒ p(x,D)f ∈ Hs−m,2

loc (Ω).

4. Elliptic equations

Given p(x, ξ) ∈ Sm
ρ,δ, 0 ≤ δ < ρ ≤ 1, we say P = p(x,D) is elliptic provided

there exist C,K ∈ (0,∞) such that

(4.1) |p(x, ξ)−1| ≤ C〈ξ〉−m, for |ξ| ≥ K.

In such a case, if we take φ ∈ C∞(Rn) such that φ(ξ) = 1 for |ξ| ≥ 2K, 0 for
|ξ| ≤ K, it follows that

(4.2) q(x, ξ) = φ(ξ)p(x, ξ)−1 ∈ S−m
ρ,δ .
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Then, with Q = q(x,D) ∈ OPS−m
ρ,δ , results of §2 give

(4.3) PQ = I −R1, QP = I − S1, R1, S1 ∈ OPS
−(ρ−δ)
ρ,δ .

We can then take

(4.4) Er ∼ Q
(∑
j≥0

Rj
1

)
, Eℓ ∼

(∑
j≥0

Sj
1

)
Q ∈ OPS−m

ρ,δ ,

and obtain

(4.5) PEr = I −R, EℓP = I − S, R, S ∈ OPS−∞
1,0 .

The identity Eℓ(PEr) = (EℓP )Er implies Eℓ−Er ∈ OPS−∞
1,0 , so we can set E = Eℓ

and obtain (with a slightly different R)

(4.6) PE = I −R, EP = I − S, R, S ∈ OPS−∞
1,0 .

One calls Er in (4.5) a right parametrix of P and Eℓ a left parametrix. The
argument just given shows that if P has both a right and left parametrix (and
it does if P is elliptic), these essentially coincide, yielding E as in (4.6), called a
(two-sided) parametrix of P .

Given such a parametrix, we deduce various global regularity results. For exam-
ple, suppose u ∈ Hσ,2(Rn) for some σ ∈ R, and

(4.7) Pu = f.

Applying E to both sides gives

(4.8) u = Ef + Su.

Now u ∈ Hσ,2(Rn) ⇒ Su ∈ Hk,2(Rn), ∀ k, and f ∈ Hs,2(Rn) ⇒ Ef ∈ Hs+m,2(Rn),
by (3.31). Hence

(4.9) f ∈ Hs,2(Rn) =⇒ u ∈ Hs+m,2(Rn).

In case ρ = 1, i.e., P ∈ OPSm
1,δ is elliptic, δ ∈ [0, 1), use of (3.28) in place of (3.31)

gives Lp-Sobolev regularity for p ∈ (1,∞):

(4.10) u ∈ Hσ,p(Rn), Pu = f ∈ Hs,p(Rn) =⇒ u ∈ Hs+m,p(Rn).

Also, for ρ = 1, there are analogous regularity results in Hardy and bmo-Sobolev
spaces and Zygmund spaces, via the mapping properties (3.30) and (3.34).
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Bringing in the results (3.35)–(3.39) on local Lp-Sobolev spaces, we have various
local elliptic regularity results. For example, if P ∈ OPSm

ρ,δ is elliptic, 0 ≤ δ < ρ ≤
1,

(4.11) u ∈ Hσ,2(Rn), Pu = f ∈ Hs,2
loc (Ω) =⇒ u ∈ Hs+m,2

loc (Ω),

and in case ρ = 1, given p ∈ (1,∞),

(4.12) u ∈ Hσ,q(Rn), Pu = f ∈ Hs,p
loc (Ω) =⇒ u ∈ Hs+m,p

loc (Ω),

with analogues for local regularity in Hardy and bmo-Sobolev spaces and Zygmund
spaces.

We now discuss special properties of p(x,D) when p(x, ξ) ∈ Sm
ρ,δ satisfies

(4.13) P (x, ξ) =
1

2

(
p(x, ξ) + p(x, ξ)∗

)
≥ C0|ξ|m, for |ξ| ≥ K,

with C0 > 0. (As usual, 0 ≤ δ < ρ ≤ 1.) We say such an operator is strongly
elliptic. Taking C1 ∈ (0, C0), we can pick φ ∈ C∞

0 (Rn) such that

(4.14) q(x, ξ) = (1− φ(ξ))
(
P (x, ξ)− C1〈ξ〉m

)1/2

∈ S
m/2
ρ,δ .

Note that, with Q = q(x,D) and Λ = (1−∆)1/2,

(4.15) Q∗Q = P (x,D)− C1Λ
m − r(x,D), r(x,D) ∈ OPS

m−(ρ−δ)
ρ,δ .

This gives

(4.16)

Re(p(x,D)u, u) = C1(Λ
mu, u) + (Q∗Qu, u) + (r(x,D)u, u)

≥ C1‖u‖2Hm/2 + (r(x,D)u, u)

≥ C1‖u‖2Hm/2 − C2‖u‖2H(m−(ρ−δ))/2 .

Here and below we set Hs = Hs,2. We can take arbitrary σ < (m− (ρ− δ))/2 and
use the estimate

(4.17) ‖u‖2H(m−(ρ−δ))/2 ≤ ε‖u‖2Hm/2 + Cε,σ‖u‖2Hσ ,

to produce the following result, known as G̊arding’s inequality, for strongly elliptic
p(x,D) ∈ OPSm

ρ,δ, when 0 ≤ δ < ρ ≤ 1. Namely, with C0 as in (4.13), σ < m/2,
there exists C2 such that

(4.18) Re(p(x,D)u, u) ≥ C1‖u‖2Hm/2 − C2‖u‖2Hσ .
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Let us specialize to the case m > 0. Then we can take σ = 0 in (4.18), getting

(4.19) Re((p(x,D) + C2)u, u) ≥ C1‖u‖2Hm/2 .

Standard Hilbert space theory gives

(4.20) p(x,D) + C2 : Hm/2(Rn) −→ H−m/2(Rn), invertible,

so we have

(4.21) E = (p(x,D) + C2)
−1 : H−m/2(Rn) −→ Hm/2(Rn).

It can also be shown that

(4.22) E ∈ OPS−m
ρ,δ ,

by taking a parametrix F ∈ OPS−m
ρ,δ for p(x,D) + C2 and comparing various

formulas for F (p(x,D) + C2)E and E(p(x,D) + C2)F .
Although we do not have the space to discuss them here, we mention the existence

of “sharp G̊arding inequalities,” of Hörmander, Lax-Nirenberg, and Fefferman-
Phong. Treatments can be found in [H5].

5. Hyperbolic equations

Let K(t, x, ξ) ∈ S1
1,0 be a k × k matrix, depending smoothly on t. This defines

K(t) = K(t, x,D) ∈ OPS1
1,0. The equation

(5.1)
∂u

∂t
= K(t)u, u(0) = f

is said to be symmetric hyperbolic provided K(t, x, ξ)+K(t, x, ξ)∗ ∈ S0
1,0, or equiv-

alently

(5.2) K(t) +K(t)∗ ∈ OPS0
1,0.

In such a case, we have unique solvability, and the following regularity:

(5.3) f ∈ Hs,2(Rn) =⇒ u ∈ C(R,Hs,2(Rn)).

This result follows from energy estimates of the following sort. Set Λ = (1 −
∆)1/2. If u satisfies (5.1) and is sufficiently smooth, then

(5.4)

d

dt
‖u(t)‖2Hs,2 = 2Re(Λsut,Λ

su)

= 2Re(ΛsK(t)u,Λsu)

= 2Re(K(t)Λsu,Λsu) + 2Re(A(t)u,Λsu).



18

where A(t) = [Λs,K(t)] ∈ OPSs
1,0. This plus (5.2) and operator estimates from §3

gives

(5.5)
d

dt
‖u(t)‖2Hs,2 ≤ C‖u(t)‖2Hs,2 ,

which leads to

(5.6) ‖u(t)‖Hs,2 ≤ eCt‖f‖Hs,2 .

To actually establish existence, one convenient approach is to bring in a family
of smoothing operators, such as

(5.7) Jε = eε∆,

modify (5.1) to

(5.8)
∂uε
∂t

= JεK(t)Jεuε, uε(0) = Jεf,

which has a global solution by ODE techniques, and estimate uε(t) via arguments
parallel to (5.4)–(5.6). Details cen be found in [T2], Chapter 4, for example.

We move on to a class of second order hyperbolic equations. Suppose L(x,D) is
a second order differential operator:

(5.9) L(x,D) =
∑
|α|≤2

aα(x)D
α, |Dβ

xaα(x)| ≤ Cαβ ,

and assume

(5.10) L2(x, ξ) ≤ −C|ξ|2,

for some C > 0, where L2(x, ξ) =
∑

|α|=2 aα(x)ξ
α. Then one can take C0 sufficiently

large that

(5.11) A(x, ξ) =
(
C0 − L(x, ξ)

)1/2
+ C0 ∈ S1,

and that

(5.12) A = A(x,D) ∈ OPS1, A−1 ∈ OPS−1,

the last result via (4.18)–(4.22). Then the second order equation

(5.13)
∂2u

∂t2
− Lu = 0, u(0) = f, ∂tu(0) = g
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yields the following first order system for v1 = Au, v2 = ∂tu:

(5.14)
∂

∂t

(
v1
v2

)
=

(
0 A

LA−1 0

)(
v1
v2

)
.

Since LA−1 = −A∗ mod OPS0, this has the form (5.1). We deduce global solv-
ability of (5.13), with regularity

(5.15) f ∈ Hs(Rn), g ∈ Hs−1(Rn) =⇒ u ∈ C(R,Hs(Rn)).

We mention that solutions to (5.13) enjoy finite propagation speed:

(5.16) supp f, g ⊂ BR(p) =⇒ suppu(t) ⊂ BR+K|t|(p),

for K <∞ depending on the top order coefficients of L(x,D). If these coefficients
are real analytic, this follows from Holmgren’s theorem. In the general case (5.9),
one can approximate by real analytic coefficients and apply a limiting argument.

We have no space here to discuss symmetrizable hyperbolic systems, strictly
hyperbolic systems, and finite propagation speed for strictly hyperbolic PDE, which
gives another approach to the proof of (5.16). These topics can be found in Chapter
4 of [T2].

6. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating a pseu-
dodifferential operator P0 ∈ OPSm

1,0 by the solution operator to a scalar hyperbolic
equation of the form

(6.1)
∂u

∂t
= iA(t, x,Dx)u,

where we assume A = A1 +A0 with

(6.2) A1(t, x, ξ) ∈ S1
cl real, A0(t, x, ξ) ∈ S0

cl.

We suppose A1(t, x, ξ) is homogeneous in ξ, for |ξ| ≥ 1. Denote by S(t, s) the
solution operator to (6.1), taking u(s) to u(t). This is a bounded operator on each
Sobolev space Hσ, with inverse S(s, t). Set

(6.3) P (t) = S(t, 0)P0S(0, t).

We aim to prove the following result of Egorov.
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Theorem 6.1. If P0 = p0(x,D) ∈ OPSm
1,0, then for each t, P (t) ∈ OPSm

1,0,

modulo a smoothing operator. The principal symbol of P (t) (mod Sm−1
1,0 ) at a point

(x0, ξ0) is equal to p0(y0, η0), where (y0, η0) is obtained from (x0, ξ0) by following
the flow C(t) generated by the (time dependent) Hamiltonian vector field

(6.4) HA1(t,x,ξ) =
n∑

j=1

(∂A1

∂ξj

∂

∂xj
− ∂A1

∂xj

∂

∂ξj

)
.

To start the proof, differentiating (6.3) with respect to t yields

(6.5) P ′(t) = i[A(t, x,D), P (t)], P (0) = P0.

We will construct an approximate solution Q(t) to (6.5) and then show that Q(t)−
P (t) is a smoothing operator.

So we are looking for Q(t) = q(t, x,D) ∈ OPSm
1,0, solving

(6.6) Q′(t) = i[A(t, x,D), Q(t)] +R(t), Q(0) = P0,

where R(t) is a smooth family of operators in OPS−∞. We do this by constructing
the symbol q(t, x, ξ) in the form

(6.7) q(t, x, ξ) ∼ q0(t, x, ξ) + q1(t, x, ξ) + · · · .

Now the symbol of i[A,Q(t)] is of the form

(6.8) HA1
q + {A0, q}+ i

∑
|α|≥2

i|α|

α!

(
A(α)q(α) − q(α)A(α)

)
,

where A(α) = Dα
ξ A, A(α) = Dα

xA, etc. Since we want the difference between this

and ∂q/∂t to have order −∞, this suggests defining q0(t, x, ξ) by

(6.9)
( ∂
∂t

−HA1

)
q0(t, x, ξ) = 0, q0(0, x, ξ) = p0(x, ξ).

Thus q0(t, x0, ξ0) = p0(y0, η0), as in the statement of the Theorem; therefore
q0(t, x, ξ) ∈ Sm

1,0. The equation (6.9) is called a transport equation. Recursively
we obtain transport equations

(6.10)
( ∂
∂t

−HA1

)
qj(t, x, ξ) = bj(t, x, ξ), qj(0, x, ξ) = 0,

for j ≥ 1, with solutions in Sm−j
1,0 , leading to a solution to (6.6).
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Finally we show P (t) − Q(t) is a smoothing operator. Equivalently, we show
that, for any f ∈ Hσ(Rn),

(6.11) v(t)− w(t) = S(t, 0)P0f −Q(t)S(t, 0)f ∈ H∞(Rn),

whereH∞(Rn) = ∩sH
s(Rn). (Here we deal only with L2-Sobolev spaces; Hs(Rn) =

Hs,2(Rn).) Note that

(6.12)
∂v

∂t
= iA(t, x,D)v, v(0) = P0f,

while use of (6.6) gives

(6.13)
∂w

∂t
= iA(t, x,D)w + g, w(0) = P0f,

where

(6.14) g = R(t)S(t, 0)w ∈ C∞(R,H∞(Rn)).

Hence

(6.15)
∂

∂t
(v − w) = iA(t, x,D)(v − w)− g, v(0)− w(0) = 0.

Thus energy estimates for hyperbolic equations from §5 yield v(t)−w(t) ∈ H∞ for
any f ∈ Hσ(Rn), completing the proof.

A check of the proof shows that

(6.16) P0 ∈ OPSm
cl =⇒ P (t) ∈ OPSm

cl .

Also the proof readily extends to yield the following:

Proposition 6.2. With A(t, x,D) as before,

(6.17) P0 ∈ OPSm
ρ,δ =⇒ P (t) ∈ OPSm

ρ,δ

provided

(6.18) ρ >
1

2
, δ = 1− ρ.

One needs δ = 1 − ρ to insure that p(C(t)(x, ξ)) ∈ Sm
ρ,δ, and one needs ρ > δ to

insure that the transport equations generate qj(t, x, ξ) of progressively lower order.



22

7. Wave front set and microlocal regularity

We define the notion of wave front set of a distribution u ∈ H−∞(Rn) =
∪sH

s(Rn), which refines the notion of singular support. Throughout this section,
Hs(Rn) = Hs,2(Rn).

If p(x, ξ) ∈ Sm has principal symbol pm(x, ξ), homogeneous in ξ, then the char-
acteristic set of P = p(x,D) is given by

(7.1) Char P = {(x, ξ) ∈ Rn × (Rn \ 0) : pm(x, ξ) = 0}.

If pm(x, ξ) is a K ×K matrix, take the determinant. Equivalently, (x0, ξ0) is non-
characteristic for P, or P is elliptic at (x0, ξ0), if |p(x, ξ)−1| ≤ C|ξ|−m, for (x, ξ)
in a small conic neighborhood of (x0, ξ0), and |ξ| large. By definition, a conic set
is invariant under the dilations (x, ξ) 7→ (x, rξ), r ∈ (0,∞). The wave front set is
defined by

(7.2) WF (u) =
⋂

{Char P : P ∈ OPS0, Pu ∈ C∞}.

Clearly WF (u) is a closed conic subset of Rn × (Rn \ 0). If π is the projection
(x, ξ) 7→ x, we have:

Proposition 7.1. π(WF (u)) = sing supp u.

Proof. If x0 /∈ sing supp u, there is a φ ∈ C∞
0 (Rn), φ = 1 near x0, such that

φu ∈ C∞
0 (Rn). Clearly (x0, ξ) /∈ Char φ for any ξ 6= 0, so π(WF (u)) ⊂ sing supp

u.
Conversely, if x0 /∈ π(WF (u)), then for any ξ 6= 0 there is a Q ∈ OPS0 such that

(x0, ξ) /∈ Char Q and Qu ∈ C∞. Thus we can construct finitely many Qj ∈ OPS0

such that Qju ∈ C∞ and each (x0, ξ), |ξ| = 1 is noncharacteristic for some Qj . Let
Q =

∑
Q∗

jQj ∈ OPS0. Then Q is elliptic near x0 and Qu ∈ C∞, so u is C∞ near
x0.

We define the associated notion of ES(P ) for a pseudodifferential operator. Let
U be an open conic subset of Rn × (Rn \ 0). We say p(x, ξ) ∈ Sm

ρ,δ has order −∞
on U if for each closed conic set V of U we have estimates, for each N,

(7.3) |Dβ
xD

α
ξ p(x, ξ)| ≤ CαβNV 〈ξ〉−N , (x, ξ) ∈ V.

If P = p(x,D) ∈ OPSm
ρ,δ, we define the essential support of P (and of p(x, ξ)) to

be the smallest closed conic set on the complement of which p(x, ξ) has order −∞.
We denote this set by ES(P ).

From the symbol calculus of §2 it follows easily that

(7.4) ES(P1P2) ⊂ ES(P1) ∩ ES(P2)

provided Pj ∈ OPS
mj

ρj ,δj
and ρ1 > δ2. To relate WF (Pu) to WF (u) and ES(P ),

we begin with the following.
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Lemma 7.2. Let u ∈ H−∞(Rn) and suppose U is a conic open set satisfying
WF (u) ∩ U = ∅. If P ∈ OPSm

ρ,δ, ρ > 0, and δ < 1, and ES(P ) ⊂ U, then
Pu ∈ C∞.

Proof. Taking P0 ∈ OPS0 with symbol identically 1 on a conic neighborhood of
ES(P ), so P = PP0 mod OPS−∞, it suffices to conclude that P0u ∈ C∞, so we
can specialize the hypothesis to P ∈ OPS0.

By hypothesis, we can find Qj ∈ OPS0 such that Qju ∈ C∞ and each (x, ξ) ∈
ES(P ) is noncharacteristic for some Qj , and if Q =

∑
Q∗

jQj , then Qu ∈ C∞ and

Char Q ∩ ES(P ) = ∅. We claim there exists A ∈ OPS0 such that AQ = P mod

OPS−∞. Indeed, let Q̃ be an elliptic operator whose symbol equals that of Q on a
conic neighborhood of ES(P ), and let Q̃−1 denote a parametrix for Q̃. Now simply

set set A = PQ̃−1. Consequently (mod C∞) Pu = AQu ∈ C∞, so the lemma is
proved.

We are ready for the basic result on the preservation of wave front sets by a
pseudodifferential operator.

Proposition 7.3. If u ∈ H−∞ and P ∈ OPSm
ρ,δ, with ρ > 0, δ < 1, then

(7.5) WF (Pu) ⊂WF (u) ∩ ES(P ).

Proof. First we show WF (Pu) ⊂ ES(P ). Indeed, if (x0, ξ0) /∈ ES(P ), choose
Q = q(x,D) ∈ OPS0 such that q(x, ξ) = 1 on a conic neighborhood of (x0, ξ0)
and ES(Q) ∩ ES(P ) = ∅. Thus QP ∈ OPS−∞, so QPu ∈ C∞. Hence (x0, ξ0) /∈
WF (Pu).

In order to show that WF (Pu) ⊂ WF (u), let Γ be any conic neighborhood of
WF (u) and write P = P1 + P2, Pj ∈ OPSm

ρ,δ, with ES(P1) ⊂ Γ and ES(P2) ∩
WF (u) = ∅. By Lemma 7.2, P2u ∈ C∞. Thus WF (Pu) = WF (P1u) ⊂ Γ, which
shows WF (Pu) ⊂WF (u).

One says that a pseudodifferential operator of type (ρ, δ), with ρ > 0 and δ < 1,
is microlocal. As a corollary, we have the following sharper form of local regularity
for elliptic operators, called microlocal regularity.

Corollary 7.4. If P ∈ OPSm
ρ,δ is elliptic, 0 ≤ δ < ρ ≤ 1, then

(7.6) WF (Pu) =WF (u).

Proof. We have seen that WF (Pu) ⊂WF (u). On the other hand, if E ∈ OPS−m
ρ,δ

is a parametrix for P, we see that WF (u) =WF (EPu) ⊂WF (Pu). In fact, by an
argument close to the proof of Lemma 7.2, we have for general P that

(7.7) WF (u) ⊂WF (Pu) ∪ Char P.
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We next discuss how the solution operator eitA to a scalar hyperbolic equation
∂u/∂t = iA(x,D)u propagates the wave front set. We assume A(x, ξ) ∈ S1

cl, with
real principal symbol. SupposeWF (u) = Σ. Then there is a countable family of op-
erators pj(x,D) ∈ OPS0, each of whose complete symbols vanish in a neighborhood
of Σ, but such that

(7.8) Σ =
⋂
j

{(x, ξ) : pj(x, ξ) = 0}.

We know that pj(x,D)u ∈ C∞ for each j. Using Egorov’s Theorem, we want
to construct a family of pseudodifferential operators qj(x,D) ∈ OPS0 such that
qj(x,D)eitAu ∈ C∞, this family being rich enough to describe the wave front set
of eitAu.

Indeed, let qj(x,D) = eitApj(x,D)e−itA. Egorov’s Theorem implies that qj(x,D) ∈
OPS0, (modulo a smoothing operator) and gives the principal symbol of qj(x,D).
Since pj(x,D)u ∈ C∞, we have eitApj(x,D)u ∈ C∞, which in turn implies qj(x,D)eitAu ∈
C∞. From this it follows that WF (eitAu) is contained in the intersection of the
characteristics of the qj(x,D), which is precisely C(t)Σ, the image of Σ under the
canonical transformation C(t), generated by HA1

. In other words,

WF (eitAu) ⊂ C(t)WF (u).

However, our argument is reversible; u = e−itA(eitAu). Consequently, we have:

Proposition 7.5. If A = A(x,D) ∈ OPS1 is scalar with real principal symbol,
then, for u ∈ H−∞,

(7.9) WF (eitAu) = C(t)WF (u).

The same argument works for the solution operator S(t, 0) to a time-dependent
scalar hyperbolic equation.

8. Pseudodifferential operators on compact manifolds

Let M be a smooth compact manifold. We aim to define the class OPSm
ρ,δ(M),

at least for a certain range of (ρ, δ). A first attempt would be to say that if
P : C∞(M) → D′(M), then P ∈ OPSm

ρ,δ(M) provided its Schwartz kernel is C∞

off the diagonal in M ×M , and there exists an open cover Ωj of M, a subordinate
partition of unity φj , and diffeomorphisms Fj : Ωj → Oj ⊂ Rn which transform the
operators φkPφj : C∞(Ωj) → E ′(Ωk) into pseudodifferential operators in OPSm

ρ,δ,
as defined in §1.

This is not entirely satisfactory as a definition. We need to know that if P ∈
OPSm

ρ,δ(M), then P is so transformed by every coordinate cover. This comes down
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to demanding that the class OPSm
ρ,δ defined in §1 is invariant under a coordinate

transformation, i.e., a diffeomorphism F : Rn → Rn. It would suffice to establish
this for the case where F is the identity outside a compact set.

In case ρ ∈ (1/2, 1] and δ = 1− ρ, this invariance is a special case of the Egorov
Theorem established in §6. Indeed, one can find a time-dependent vector field X(t)
whose flow at t = 1 coincides with F and apply Theorem 6.1 to iA(t, x,D) = X(t).
This shows that the class OPSm

ρ,δ(M) is well defined for a compact manifold M
provided

(8.1)
1

2
< ρ ≤ 1, and δ = 1− ρ.

Note that the formula for the principal symbol of the conjugated operator given
there implies

(8.2) p(1, F (x), ξ) = p0(x, F
′(x)tξ),

so that the principal symbol is well defined on the cotangent bundle of M .
An alternative approach to coordinate invariance is to insert the coordinate

changes into the Fourier integral representation of P and work on that. This ap-
proach has the advantage of working for a larger set of symbol classes Sm

ρ,δ than the
more general conjugation invariance applies to. In fact, one needs only

(8.3)
1

2
< ρ ≤ 1, ρ+ δ ≥ 1.

Proofs can be found in [H5] and [T2].
Defining classes of pseudodifferential operators on noncompact M requires fur-

ther considerations. Lecture IV will take this up for complete Riemannian manifolds
with bounded geometry.
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II. Pseudodifferential operators with rough symbols

and paradifferential operators

In this second lecture we treat pseudodifferential operators associated to symbols
with low regularity. In §1 we lay out the basic symbol classes we will consider.
Basic examples start with symbols of differential operators with Hölder continuous
coefficients. We introduce the process of symbol smoothing, writing a rough symbol
p(x, ξ) as p#(x, ξ) + pb(x, ξ), with p#(x, ξ) ∈ Sm

1,δ, so that some symbol calculus

applies to p#(x,D), either such as discussed in Lecture I (when δ < 1) or in
Proposition 1.1 in this section (dealing with some cases where δ = 1), while pb(x,D)
is regarded as a remainder, to be estimated. Section 2 provides crucial operator
estimates. Section 3 illustrates how results of §§1–2 apply to regularity for linear
elliptic equations with rough coefficients.

Section 4 treats paradifferential operators, introduced in [Bon] to study nonlin-
ear PDE. These are linear operators whose symbols are singular in the sense of
belonging to Sm

1,1. Results of §§1–2 are set up to apply to these operators also.
In §5 we illustrate how results of §§2 and 4 apply to regularity for nonlinear ellip-
tic PDE, getting short proofs of Schauder type regularity results, though not the
deeper results that rely on DeGiorgi-Nash-Moser theory or Krylov-Safanov theory.

Section 6 studies paraproducts, a particularly interesting class of paradifferen-
tial operators. A number of special paraproduct estimates are produced, and the
theory is applied to an important estimate on ‖uv‖Hs,p due to [CW], applicable
to numerous problems in nonlinear PDE. We close with §7, analyzing estimates on
commutators, [P, f ]u = Pfu− fPu, for various classes of P and f , with emphasis
on f ∈ Lip1(Rn) and f ∈ bmo(Rn). Applications of the latter class to div-curl esti-
mates and to regularity results for elliptic operators with coefficients in L∞ ∩ vmo
are also discussed.

More detailed presentations of results discussed here can be found in [CM], [T2],
[T5], [T6], and references given there.

1. Symbol classes and symbol smoothing

The most basic classes of symbols with limited smoothness we will deal with are
CrSm

1,δ and Cr
∗S

m
1,δ, with r ∈ R+ and δ ∈ [0, 1], defined as follows. First,

(1.1)

p(x, ξ) ∈ CrSm
1,δ ⇔ |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|,

‖Dα
ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α|+rδ, and

‖Dα
ξ p(·, ξ)‖Cj ≤ Cα〈ξ〉m−|α|+jδ, for 0 ≤ j ≤ r.
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Next,

(1.2)
p(x, ξ) ∈ Cr

∗S
m
1,δ ⇔ |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|, and

‖Dα
ξ p(·, ξ)‖Cr

∗
≤ Cα〈ξ〉m−|α|+rδ.

Recall Cr
∗(Rn) is the Zygmund space, defined by (I.3.32), while Cr(Rn) = Ck,α(Rn)

if r = k + α, k ∈ Z+, α ∈ [0, 1). As stated in (I.3.33), Cr
∗(Rn) = Cr(Rn) if

r ∈ R+ \ Z+, but CrSm
1,δ and Cr

∗S
m
1,δ differ slightly, according to the definitions

(1.1) and (1.2).
Basic examples of such symbols include p(x, ξ) =

∑
|α|≤m pα(x)ξ

α, symbols of

differential operators with coefficients pα(x) in Hölder spaces, or Zygmund spaces.
In such cases, δ = 0. Cases with nonzero δ will arise below.

In order to deal with the operator p(x,D) associated to such p(x, ξ), it is conve-
nient to split p(x, ξ) into two pieces:

(1.3) p(x, ξ) = p#(x, ξ) + pb(x, ξ),

where p#(x, ξ) is obtained from p(x, ξ) by “symbol smoothing” and pb(x, ξ) is the
remainder. We define p#(x, ξ) as follows. Let {ψk(ξ) : k ≥ 0} be a Littlewood-Paley
partition of unity, as in (I.3.11). Set

(1.4) p#(x, ξ) =
∞∑
k=0

Jεkp(x, ξ)ψk(ξ),

where

(1.5) Jεf(x) = ψ0(εD)f(x).

Take δ ∈ (0, 1], and set

(1.6) εk = 2−kδ, (or, if δ = 1) εk = 2−(k−3).

The first symbol smoothing result is

(1.7) p(x, ξ) ∈ CrSm
1,0 ⇒ p#(x, ξ) ∈ Sm

1,δ, p
b(x, ξ) ∈ CrSm−rδ

1,δ ,

with a similar result for p(x, ξ) ∈ Cr
∗S

m
1,0. The proof is a straightforward conse-

quence of the following estimates, with ε ∈ (0, 1]:

(1.8)

‖Dβ
xJεf‖Cr

∗
≤ Cβε

−|β|‖f‖Cr
∗
,

‖f − Jεf‖Cr−s
∗

≤ Cεs‖f‖Cr
∗
, s ≥ 0,

‖f − Jεf‖L∞ ≤ Cεr‖f‖Cr
∗
, r > 0.
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The first estimate applies to p#(x, ξ) and the next two to pb(x, ξ). Details on this
and other symbol smoothing results given below can be found in Chapters 1–3 of
[T4] and in Chapter 13, §§9–10, of [T5].

Here is one generalization of (1.7). Take δ < γ ≤ 1 and apply symbol smoothing
to p(x, ξ) ∈ CrSm

1,δ, with εk = 2−j(γ−δ). The result is

(1.9) p(x, ξ) ∈ CrSm
1,δ ⇒ p#(x, ξ) ∈ Sm

1,γ , p
b(x, ξ) ∈ CrS

m−r(γ−δ)
1,γ .

The point of making the decomposition (1.3) is to be able to apply symbol
calculus to the operator p#(x,D), while pb(x,D) is a remainder to be estimated.
In connection with this, it is useful to record further symbol properties of p#(x, ξ).
For example, one has

(1.10)
p(x, ξ) ∈ CrSm

1,0 ⇒ Dβ
xp

#(x, ξ) ∈ Sm
1,δ, |β| ≤ r,

S
m+δ(|β|−r)
1,δ , |β| > r.

This is proven using the following complement to (1.8):

(1.11)
‖Dβ

xJεf‖L∞ ≤ C‖f‖Cr , |β| ≤ r,

Cε−(|β|−r)‖f‖Cr
∗
, |β| > r.

The following symbol classes serve to record such symbol behavior and variants:

(1.12) Ar
0S

m
1,δ ⊂ ArSm

1,δ ⊂ rSm
1,δ.

We say p(x, ξ) ∈ rSm
1,δ provided Dβ

xp(x, ξ) satisfies the conclusions in (1.10). We
say

(1.13)
p(x, ξ) ∈ ArSm

1,δ ⇔ ‖Dα
ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α|, and

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ(|β|−r), for |β| > r.

Furthermore, we say

(1.14) p(x, ξ) ∈ Ar
0S

m
1,δ ⇔ ‖Dα

ξ p(·, ξ)‖Cr+s ≤ Cαs〈ξ〉m−|α|+δs, for s ≥ 0.

The inclusions in (1.12) are easy to verify. The following result refines (1.10):

(1.15) p(x, ξ) ∈ CrSm
1,0 ⇒ p#(x, ξ) ∈ Ar

0S
m
1,δ.

This can be proven by supplementing (1.11) with

(1.16) ‖Jεf‖Cr+s
∗

≤ Cε−s‖f‖Cr
∗
, s ≥ 0.
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We next bring in special symbol classes that record the behavior of p#(x, ξ) when
one takes εk = 2−(k−3) in (1.4). Given ρ ∈ (0, 1), we say

(1.17)
p(x, ξ) ∈ BρS

m
1,1 ⇔ p(x, ξ) ∈ Sm

1,1, and

p̂(η, ξ) is supported on |η| < ρ|ξ|,

and we set

(1.18) BSm
1,1 =

⋃
ρ<1

BρS
m
1,1.

We also set

(1.19) BrSm
1,1 = BSm

1,1 ∩ ArSm
1,1.

We have for this type of symbol smoothing

(1.20)
p(x, ξ) ∈ CrSm

1,0 ⇒ p#(x, ξ) ∈ BrSm
1,1,

pb(x, ξ) ∈ CrSm−r
1,1 .

The collection of symbol classes listed in (1.12) and (1.17)–(1.19) might strike
one as overabundant. However, these various classes arose in the papers [Bon],
[Mey], and [H6] (with different notation), and it seems useful to keep all of them.

As stated, we want to apply symbol calculus to operators of the form p#(x,D)
arising in the decomposition (1.3). This includes cases when (1.20) holds. The
following result on operator composition is a variant of results of [Bon] and [Mey],
obtained in [AT]. A proof is also given in Chapter 13 of [T5].

Proposition 1.1. Assume

(1.21) a(x, ξ) ∈ Sµ
1,1, b(x, ξ) ∈ BSm

1,1.

Then

(1.22) a(x,D)b(x,D) = p(x,D) ∈ OPSµ+m
1,1 ,

and there is the following result on the remainder rν(x, ξ) in

(1.23) p(x, ξ) =
∑
|α|≤ν

i|α|

α!
Dα

ξ a(x, ξ)D
α
x b(x, ξ) + rν(x, ξ).

Namely, if one has

(1.24) ‖Dα
ξ b(·, ξ)‖Cr

∗
≤ Cα〈ξ〉m2−|α|,



30

then

(1.25) ν + 1 > r =⇒ rν(x, ξ) ∈ Sµ+m2−r
1,1 .

In particular, this holds with m2 = m for all b(x, ξ) ∈ BrSm
1,1.

If one has (1.21), (1.24), and also, for some µ2 ≤ µ,

(1.26) |Dβ
xD

α
ξ a(x, ξ)| ≤ Cαβ〈ξ〉µ2−|α|+|β|, for |α| ≥ ν + 1,

then (1.28) improves to

(1.27) ν + 1 > r =⇒ rν(x, ξ) ∈ Sµ2+m2−r
1,1 .

Remark. Hypothesis (1.24) holds with r = k if

(1.28) Dβ
xb(x, ξ) ∈ Sm2

1,1 , for |β| ≤ k.

Also, it is very significant to note that one can take r = 0 in (1.24).

The family OPBS∗
1,1 does not form an algebra, but the following result is useful.

Proposition 1.2. Assume that for some ρ ∈ (0, 1/4),

(1.29) a(x, ξ) ∈ BρS
µ
1,1, b(x, ξ) ∈ BρS

m
1,1.

Then

(1.30) a(x, ξ)b(x, ξ) ∈ BSµ+m
1,1 , a(x,D)b(x,D) ∈ OPBSµ+m

1,1 .

2. Operator estimates on function spaces

The fundamental result of this section is the following result of [Bou], following
earlier work of [St2]. A proof is also given in Chapter 13 of [T5].

Proposition 2.1. If r > 0 and p ∈ (1,∞), then for p(x, ξ) ∈ Cr
∗S

m
1,1,

(2.1) p(x,D) : Hs+m,p(Rn) −→ Hs,p(Rn),

provided 0 < s < r. Furthermore, under these hypotheses,

(2.2) p(x,D) : Cs+m
∗ (Rn) −→ Cs

∗(Rn).
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It suffices to treat the case m = 0. The proof begins by writing p(x, ξ) as a
rapidly convergent sum of elementary symbols, where by definition an elementary
symbol in Cr

∗S
0
1,1 is of the form

(2.3) q(x, ξ) =
∞∑
k=0

Qk(x)φk(ξ),

where φk(ξ) is supported on 〈ξ〉 ∼ 2k and bounded in S0
1,0 (in fact φk(ξ) =

φ1(2
1−kξ) for k ≥ 2), and Qk satisfies

(2.4) ‖Qk‖L∞ ≤ C, ‖Qk‖Cr
∗
≤ C · 2kr.

One is reduced to proving (2.1) and (2.2) for p(x, ξ) = q(x, ξ). One next decomposes
q(x, ξ) into three pieces:

(2.5)
q(x, ξ) =

∑
k

{k−4∑
j=0

Qkj(x) +
k+3∑

j=k−3

Qkj(x) +
∞∑

j=k+4

Qkj(x)
}
φk(ξ)

= q1(x, ξ) + q2(x, ξ) + q3(x, ξ),

by a variant of symbol smoothing. Namely, if {ψj : j ≥ 0} is the Littlewood-Paley
partition of unity used in (1.4), we take

(2.6) Qkj(x) = ψj(D)Qk(x).

It is shown that (2.1)–(2.2) hold for q1(x,D) for all s ∈ R, that they hold for
q2(x,D) for s > 0, and that they hold for q3(x,D) for s < r. Estimates of the form
(6.14) (see §6) are used in the analysis of each term qj(x,D). Details can be found
in the references cited above.

In case p(x, ξ) ∈ BSm
1,1, only q1(x, ξ) arises in this analysis, and we have:

Proposition 2.2. If p(x, ξ) ∈ BSm
1,1, then (2.1) and (2.2) hold for all s ∈ R.

For Sm
1,1 replaced by Sm

1,δ, we have the following.

Proposition 2.3. If δ ∈ [0, 1) and p(x, ξ) ∈ Cr
∗S

m
1,δ, with r > 0, then

(2.7)
p(x,D) : Hs+m,p(Rn) −→ Hs,p(Rn),

p(x,D) : Cs+m
∗ (Rn) −→ Cs

∗(Rn),

provided p ∈ (1,∞) and

(2.8) −(1− δ)r < s < r.
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We already have (2.8) for 0 < s < r. To get it for −(1 − δ)r < s ≤ 0, use the
symbol smoothing (1.9); with γ ∈ (δ, 1),

(2.9) p(x, ξ) = p#(x, ξ) + pb(x, ξ), p#(x, ξ) ∈ Sm
1,γ , pb(x, ξ) ∈ Cr

∗S
m−r(γ−δ)
1,γ .

The mapping properties in (2.7) hold for p#(x,D) for all s ∈ R, and the corre-
sponding properties for pb(x,D) can be deduced from Proposition 2.1, which gives

(2.10) pb(x,D) : Hs+m,p → Hs+(γ−δ)r,p ⊂ Hs,p, ∀ s >∈ (−(γ − δ)r, 0].

Then let γ ↗ 1 to obtain (2.7) under the hypothesis (2.8).

3. Linear elliptic regularity

We illustrate how to use results developed so far to obtain global elliptic regu-
larity results. Assume r > 0 and

(3.1) p(x, ξ) ∈ Cr
∗S

m
1,0 is elliptic,

that

(3.2) −r < σ < s < r, 1 < p <∞,

and that

(3.3) u ∈ Hσ+m,p(Rn), p(x,D)u = f ∈ Hs,p(Rn).

We claim

(3.4) u ∈ Hs+m,p(Rn).

To get this, use the symbol smoothing p(x, ξ) = p#(x, ξ) + pb(x, ξ), with

(3.5) p#(x, ξ) ∈ Sm
1,δ elliptic, pb(x, ξ) ∈ Cr

∗S
m−rδ
1,δ .

Let E ∈ OPS−m
1,δ be a parametrix for p#(x,D). Then (3.3) yields

(3.6) u = Ef − Epb(x,D)u mod H∞,p(Rn),

we have Ef ∈ Hs+m,p(Rn), and Proposition 2.1 gives

(3.7) pb(x,D)u ∈ Hσ1,p(Rn), σ1 = min(σ + rδ, s),
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under the hypothesis on u in (3.3), hence Epb(x,D)u ∈ Hσ1+m,p(Rn), hence

(3.8) u ∈ Hσ1+m,p(Rn).

Iterating this argument yields the assertion (3.4).

4. Paradifferential operators

Paradifferential operators arise in the process of “linearizing” nonlinear opera-
tors. They originated in work of [Bon], with important complements by [Mey]. We
begin with a construction of [Mey]. Assume

(4.1) F ∈ C∞(R), F (0) = 0.

Let {ψk : k ≥ 0} be the Littlewood-Paley partition of unity we have used before,
and set

(4.2) Ψk(ξ) =
∑
ℓ≤k

ψℓ(ξ), uk = Ψk(D)u, u−1 = 0.

Then

(4.3)
F (u) =

∑
k≥−1

{
F (uk+1)− F (uk)

}
=M(x,D)u,

where

(4.4) M(x, ξ) =
∑
k

mk(x)ψk+1(ξ), mk(x) =

∫ 1

0

F ′(uk + τψk+1(D)u) dτ.

When needed, we use the notation MF (u;x, ξ) in place of M(x, ξ). To estimate
M(x, ξ), given u ∈ L∞(Rn), we have, by the chain rule

(4.5) ‖Dℓ
xmk‖L∞ ≤ Cℓ

∑
1≤ν≤ℓ

‖Dℓ1uk+1‖L∞ · · · ‖Dℓνuk+1‖L∞ · ‖F ′′‖Cν−1 .

Also

(4.6) ‖Dℓjuk+1‖L∞ ≤ Cℓj 2
kℓj ‖u‖L∞ .

Since 2kℓ ∼ 〈ξ〉ℓ on supp ψk+1, we have

(4.7) u ∈ L∞(Rn) =⇒MF (u;x, ξ) ∈ S0
1,1.
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The operator estimates of Proposition 2.1 are available, and we see the operator
norms depend on ‖u‖L∞ alone. This immediately gives an important circle of
results known as Moser estimates: for p ∈ (1,∞), s > 0,

(4.8) ‖F (u)‖Hs,p ≤ C(‖u‖L∞) ‖u‖Hs,p ,

with linear dependence on ‖u‖Hs,p . There are parallel estimates on Cs
∗ norms, for

s > 0. Such estimates are of great use in nonlinear analysis.
If u ∈ Cr(Rn), the estimates (4.5)–(4.6) can be supplemented by

(4.9) ‖mk‖Cr+s ≤ C · 2ks,

from which we obtain

(4.10) u ∈ Cr(Rn), r ≥ 0 =⇒MF (u;x, ξ) ∈ Ar
0S

0
1,1 ⊂ CrS0

1,0,

recalling the family of symbols in (1.12).
Next, we apply symbol smoothing, as in (1.3)–(1.6):

(4.11) MF (u;x, ξ) =M#(x, ξ) +M b(x, ξ).

If we take δ ∈ (0, 1) in (1.6),

(4.12)
u ∈ Cr(Rn), r ≥ 0 =⇒ M#(x, ξ) ∈ Ar

0S
0
1,δ,

M b(x, ξ) ∈ S−rδ
1,1 ,

the result on M#(x, ξ) following from (4.10) and (1.15). If we take δ = 1 and
εk = 2−(k−3) in (1.6), we get

(4.13)
u ∈ Cr(Rn), r ≥ 0 =⇒ M#(x, ξ) ∈ BrS0

1,1,

M b(x, ξ) ∈ S−r
1,1 ,

the result onM#(x, ξ) following from (4.10) and (1.20). For more details, see [Mey],
or [T2], or [T5], Chapter 13.

Results discussed above extend easily to the case of a function F of several
variables, say u = (u1, . . . , uL). Directly extending (4.3)–(4.4), we have for F ∈
C∞(RL), F (0) = 0,

(4.14) F (u) =
L∑

j=1

Mj(x,D)uj ,

with

(4.15) Mj(x, ξ) =
∑
k

mj
k(x)ψk+1(ξ),
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where

(4.16) mj
k(x) =

∫ 1

0

(∂jF )
(
Ψk(D)u+ τψk+1(D)u

)
dτ.

Clearly the results established above apply to the Mj(x, ξ) here, e.g.,

(4.17) u ∈ Cr =⇒Mj(x, ξ) ∈ Ar
0S

m
1,1.

In the particular case F (u, v) = uv, we obtain

(4.18) uv = A(u;x,D)v +A(v;x,D)u+Ψ0(D)u ·Ψ0(D)v

where

(4.19) A(u;x, ξ) =

∞∑
k=0

[
Ψk(D)u+

1

2
ψk+1(D)u

]
ψk+1(ξ).

Since this symbol belongs to S0
1,1 for u ∈ L∞, we obtain the following Moser

estimate, valid for p ∈ (1,∞), s > 0:

(4.20) ‖uv‖Hs,p ≤ C
[
‖u‖L∞‖v‖Hs,p + ‖u‖Hs,p‖v‖L∞

]
.

We now analyze a nonlinear differential operator in terms of a paradifferential
operator. Denote Dmu = {Dαu : |α| ≤ m}. Say ζ = {ζα : |α| ≤ m}, and assume
F (x, ζ) is smooth in (x, ζ) and F (x, 0) = 0. In analogy with (4.14)–(4.16), we have

(4.21) F (x,Dmu) =
∑

|α|≤m

Mα(x,D)Dαu,

where

(4.22) Mα(x, ξ) =
∑
k

mα
k (x)ψk+1(ξ)

with

(4.23) mα
k (x) =

∫ 1

0

∂F

∂ζα

(
Ψk(D)Dmu+ τψk+1(D)Dmu

)
dτ.

As in (4.10), we have, for r ≥ 0,

(4.24) u ∈ Cm+r =⇒Mα(x, ξ) ∈ Ar
0S

0
1,1 ⊂ CrS0

1,0.

In other words, if we set

(4.25) M(u;x,D) =
∑

|α|≤m

Mα(x,D)Dα,

we obtain
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Proposition 4.1. If u ∈ Cm+r, r ≥ 0, then

(4.26) F (x,Dmu) =M(u;x,D)u,

with

(4.27) M(u;x, ξ) ∈ Ar
0S

m
1,1 ⊂ CrSm

1,0.

As in (4.12)–(4.13), in this case, symbol smoothing yields

(4.28) M(u;x, ξ) =M#(x, ξ) +M b(x, ξ),

with

(4.29) M#(x, ξ) ∈ Ar
0S

m
1,δ, M b(x, ξ) ∈ Sm−rδ

1,1 ,

for εk = 2−kδ in (1.6), and, for εk = 2−(k−3),

(4.30) M#(x, ξ) ∈ BrSm
1,1, M b(x, ξ) ∈ Sm−r

1,1 .

Parallel to (4.8), we have from Proposition 4.1 and Proposition 2.1 the following
Moser estimates: for p ∈ (1,∞), s > 0,

(4.31) ‖F (x,Dmu)‖Hs,p ≤ C(‖u‖Cm) ‖u‖Hs+m,p .

5. Nonlinear elliptic regularity

Here we apply results of §§1, 2, and 4 to obtain global regularity results for a
solution u to

(5.1) F (x,Dmu) = f ∈ Hs,p(Rn),

with F (x, ζ) as in (4.21). We assume p ∈ (1,∞) and

(5.2) u ∈ Cσ+m(Rn) ∩Hσ+m,p(Rn), 0 < σ < s,

and we assume F (x,Dmu) is elliptic at u. We claim that

(5.3) u ∈ Hs+m,p(Rn).

To start, by Proposition 4.1 and (4.28)–(4.29), we have

(5.4) F (x,Dmu) =M#(x,D)u+M b(x,D)u,
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where, with δ chosen in (0, 1),

(5.5) M#(x, ξ) ∈ Sm
1,δ, elliptic, M b(x, ξ) ∈ Sm−rδ

1,1 .

Letting E ∈ OPS−m
1,δ be a parametrix for M#(x,D), we then have

(5.6) u = Ef − EM b(x,D)u, mod H∞,p(Rn).

We have Ef ∈ Hs+m.p(Rn), and Proposition 2.1 gives

(5.7) M b(x,D)u ∈ Hσ+rδ,p(Rn),

under the hypotheses on u in (5.2), hence EM b(x,D)u ∈ Hσ+rδ+m,P (Rn), so

(5.8) u ∈ Hσ1+m,p(Rn), σ1 = min(σ + rδ, s).

Iterating this argument yields the assertion (5.3).

6. Paraproducts

Paraproducts, which arose independently in [Bon], [CM], and [Tri], are a par-
ticularly interesting class of paradifferential operators. They arise in the following
expansion of a product:

(6.1) uv = Tuv + Tvu+R(u, v),

where, with ψk,Ψk as in (4.2),

(6.2) Tuv =
∑
k≥3

Ψk−3(D)u · ψk+1(D)v,

so

(6.3) R(u, v) =
∑

j,k:|j−k|≤3

ψj(D)u · ψk(D)v.

Note that Tu arises from the operator A(u;x,D) in (4.18) via symbol smoothing.
Clearly

(6.4)
u ∈ L∞(Rn) =⇒ Tu ∈ OPBS0

1,1, and

Ru ∈ OPS0
1,1,

where Ruv = R(u, v). Results of §2 specialize to

(6.5) ‖Tuv‖Hs,p ≤ C‖u‖L∞‖v‖Hs,p ,
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for all p ∈ (1,∞), s ∈ R, and corresponding estimates for v ∈ Cs
∗(Rn), while they

imply

(6.6) ‖R(u, v)‖Hs,p ≤ C‖u‖L∞‖v‖Hs,p ,

for p ∈ (1,∞), but only for s > 0, with similar estimates for v ∈ Cs
∗(Rn).

A remarkable paraproduct estimate of [CM] implies the following complement
to (6.5)–(6.6): for p ∈ (1,∞),

(6.7) ‖Tuv‖Lp , ‖R(u, v)‖Lp ≤ C‖u‖Lp‖v‖bmo.

A proof is also given in Appendix D of [T2]. The following extensions of (6.7) are
established in Propositions 3.5.D and 3.5.F of [T2]. Given p ∈ (1,∞),

‖R(u, v)‖Hs,p ≤ C‖u‖Hs−r,p‖v‖hr,∞ , r ∈ R, s ∈ [0,∞),(6.8)

‖Tuv‖Hs,p ≤ C‖u‖Hs−r,p‖v‖hr,∞ , 0 ≤ s ≤ r,(6.9)

where hr,∞(Rn) is the bmo-Sobolev space defined in §I.3.
Other estimates arise from the implications

(6.10)
u ∈ C−µ

∗ (Rn) =⇒ Tu ∈ OPBSµ
1,1, µ > 0,

u ∈ Cr
∗(Rn) =⇒ Ru ∈ OPS−r

1,1 , r ∈ R.

which follows readily from the definitions (6.2)–(6.3). The latter implication yields
the following variant of (6.8) (since R(u, v) = R(v, u)):

(6.11) ‖R(u, v)‖Hs,p ≤ C‖u‖Hs−r,p‖v‖Cr
∗
, r ∈ R, s > 0.

Note that (6.11) is stronger than (6.8) for s > 0, but it is not applicable in the
important case s = 0.

Before presenting the next result, we mention additional tools that will be used.
One involves the Hardy-Littlewood maximal function

(6.12) Mf(x) = sup
r>0

1

VolBr(x)

∫
Br(x)

|f(y)| dy,

for which one has

(6.13) ‖Mf‖Lp ≤ Cp‖f‖Lp , 1 < p ≤ ∞.

The others involve Littlewood-Paley theory. First, if f̂k(ξ) are supported on shells
〈ξ〉 ∼ 2k, then for p ∈ (1,∞), s ∈ R,

(6.14)
∥∥∥∑
k≥0

fk

∥∥∥
Hs,p

≤ C
∥∥∥(∑

k≥0

22ks|fk|2
)1/2∥∥∥

Lp
.
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If fk = ψk(D)f , the converse estimate also holds. Furthermore, if f̂k(ξ) are sup-
ported on balls |ξ| ≤ C2k, the (6.14) holds, for p ∈ (1,∞), s > 0. These results
follow readily from the Littlewood-Paley results given in (I.3.11)–(I.3.18), and they
also play a role in the proof of Proposition 2.1. (See, e.g., [T5], Chapter 13, §9 for
details.) The significance here is that the terms

(6.15) fk = Ψk−3(D)u · ψk+1(D)v

appearing in (6.2) have f̂k supported in such shells, while the terms

(6.16) fk =
k+3∑

j=k−3

ψj(D)u · ψk(D)v

appearing in (6.3) have f̂k supported in such balls.
Our next goal is to use paraproducts to establish the following result of [CW],

of frequent use in nonlinear PDE.

Proposition 6.1. We have, for s > 0, 1 < p <∞,

(6.17) ‖uv‖Hs,p ≤ C‖u‖Lq1‖v‖Hs,q2 + C‖v‖Lr1 ‖u‖Hs,r2

provided

(6.18)
1

p
=

1

q1
+

1

q2
=

1

r1
+

1

r2
, q2, r2 ∈ (1,∞), q1, r1 ∈ (1,∞].

Note that the Moser estimate (4.20), i.e.,

‖uv‖Hs,p ≤ C‖u‖L∞‖v‖Hs,p + C‖u‖Hs,p‖v‖L∞ ,

is the special case q1 = r1 = ∞ of (6.17).
To prove this, we write uv as in (6.1), and see that suffices to show that, under

the hypotheses of Proposition 6.1,

‖Tuv‖Hs,p ≤ C‖u‖Lq1 ‖v‖Hs,q2 ,(6.19)

‖R(u, v)‖Hs,p ≤ C‖u‖Lq1 ‖v‖Hs,q2 .(6.20)

In fact, we have, for all s ∈ R,

(6.21)

‖Tuv‖Hs,p ∼
∥∥∥(∑

k

22ks|Ψk−3u|2|ψkv|2
)1/2∥∥∥

Lp

≤ C
∥∥∥Mu

(∑
k

22ks|ψkv|2
)1/2∥∥∥

Lp

≤ C‖Mu‖Lq1

∥∥∥(∑
k

22ks|ψkv|2
)1/2∥∥∥

Lq2

≤ C‖u‖Lq1 ‖v‖Hs,q2 .
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Here, M is the Hardy-Littlewood maximal operator (6.12), and we have used the
material around (6.14). This proves (6.19). Next, for s > 0,

(6.22)

‖R(u, v)‖Hs,p ≤ C
∥∥∥( ∑

|j−k|≤4

22ks|ψju|2|ψkv|2
)1/2∥∥∥

Lp

≤ C
∥∥∥Mu

(∑
k

22ks|ψkv|2
)1/2∥∥∥

Lp

and, as in (6.21), this last quantity is ≤ C‖Mu‖Lq1‖v‖Hs,q2 , so we have (6.20).

Remark. In connection with (6.21)–(6.22), note that the functions F(Ψk−3u ·
ψkv)(ξ) are supported on shells and the functions F(ψju · ψkv)(ξ) are supported
on balls.

We now connect paraproducts with the operators that arose in §4 to treat com-
positions:

(6.23) F (u) =MF (u;x,D)u,

for F as in (4.1). We compare
(6.24)

MF (u;x,D) =
∑

mk(x)ψk+1(D), mk(x) =

∫ 1

0

F ′(Ψk(D)u+ τψk+1(D)u) dτ,

with

(6.25) TF ′(u) =
∑

Ψk−3(D)F ′(u)ψk+1(D).

It is fairly straightforward to obtain

(6.26) u ∈ Cr(Rn), r > 0 =⇒MF (u;x,D)− TF ′(u) ∈ OPS−r
1,1 .

In other words, TF ′(u) plays essentially the same role in approximatingMF (u;x,D)

as the symbol-smoothed operator M#(x,D) given in (4.13).

7. Commutator estimates

The following three commutator estimates on [P, f ]u = P (fu)− f(Pu) are very
useful in PDE.

Proposition 7.1. Given p ∈ (1,∞), s ≥ 0, P ∈ OPBSm
1,1, m > 0,

(7.1) ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hm−1+s,p + C‖f‖Hm+s,p‖u‖L∞ .
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Proposition 7.2. Given p ∈ (1,∞), P ∈ OPBS1
1,1,

(7.2) ‖[P, f ]u‖Lp ≤ C‖f‖Lip1‖u‖Lp .

Proposition 7.3. Given p ∈ (1,∞), P ∈ OPBS0
1,1,

(7.3) ‖[P, f ]u‖Lp ≤ C‖f‖bmo‖u‖Lp .

Proposition 7.1 is due to Moser when P is a differential operator and s = 0,
to [KP] when P = (1 − ∆)m/2 and s = 0. In [T2] it was extended to s ≥ 0 and
P ∈ OPSm

1,0. Proposition 7.2 is due to A.P. Calderon when P ∈ OPS1
cl, and to

[CM2] when P ∈ OPS1
1,0. Note that (7.2) is sharper than the case m = 1, s = 0

of (7.1). Proposition 7.3 is due to [CRW] for P ∈ OPS0
cl. The extensions of these

results to the form stated above, with P ∈ OPBS∗
1,1, were given in [AT].

A paraproduct approach to these commutator estimates starts with

(7.4)
P (fu) = PTfu+ PTuf + PR(f, u),

f(Pu) = TfPu+ TPuf +R(f, Pu),

giving

(7.5) [P, f ]u = [P, Tf ]u+ 4 other terms.

Symbol calculus is applied to [P, Tf ]. For use in Propositions 7.1–7.2, we have (for
ρ small)

(7.6) f ∈ Lip1(Rn), P ∈ OPBρS
m
1,1 =⇒ [Tf , P ] ∈ OPBSm−1

1,1 .

For use in Proposition 7.3, we have

(7.7) f ∈ C0
∗(Rn), P ∈ OPBρS

0
1,1 =⇒ [Tf , P ] ∈ OPBS0

1,1.

These results follow from Proposition 1.1 and an examination of the symbol F (x, ξ)
of Tf , for which one has

(7.8) |Dβ
xD

α
ξ F (x, ξ)| ≤ Cαβ〈ξ〉−r−|α|+|β|‖f‖Cr

∗
, for |α| ≥ 1,

valid for each r ∈ R. For Proposition 7.3, the following results play a role:

(7.9)

f ∈ C0
∗(Rn) =⇒ F (x, ξ) ∈ BSε

1,1, ∀ ε > 0,

‖F (·, ξ)‖C0
∗
≤ C‖f‖C0

∗
,

∇xF (x, ξ) ∈ BS1
1,1.
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These results allow for effective use of (1.24)–(1.25) in the symbol analysis of PTf
and (1.26)–(1.27) in the symbol analysis of TfP .

Remark. The results (7.6)–(7.7) hold for ρ < 1/2. If ρ is closer to 1, one can
redefine Tf , replacing Ψk−3(D) in (6.2) by Ψk−N (D), for sufficiently large N , and
restore (7.6)–(7.7), while slightly altering the remainder terms.

As for the four remainder terms in (7.5), estimates given in §6 handle them. To
give a sample, the implication

(7.10) u ∈ L∞(Rn), P ∈ OPBSm
1,1, m > 0 =⇒ TPu ∈ OPBSm

1,1

follows from (6.10) and the containment Pu ∈ C−m
∗ (Rn), the estimate

(7.11) ‖R(f, Pu)‖Hs,p ≤ C‖f‖Lip1‖u‖Hm−1+s,p , s ≥ 0,

follows from (6.8) and the inclusion Lip1(Rn) ⊂ h1,∞(Rn) (and R(u, v) = R(v, u)),
and the estimate

(7.12) ‖TPuf‖Hs,p ≤ C‖f‖Lip1‖Pu‖Hs−1,p , 0 ≤ s ≤ 1,

follows from (6.9). In the setting of Proposition 7.3, the estimates in (6.7) handle
the four remainder terms.

Proposition 7.3 (in the case P ∈ OPS0
cl) was exploited in [CLMS] to produce

important “div-curl” estimates. We mention an approach to such estimates, using
a “super-commutator” estimate described in Proposition 7.4 below.

We will switch from working on Euclidean space Rn to a compact, oriented,
n-dimensional Riemannian manifold M . So far in this second lecture we have not
mentioned analysis on manifolds, but there is no difficulty extending Propositions
7.1–7.3 to this setting, at least for P ∈ OPS∗

1,δ(M) with δ ∈ [0, 1), via partitions
of unity and local coordinate charts.

To define the super-commutator, let f be an ℓ-form, on M, set Wfu = f ∧ u,
and define

(7.13)
[[Λ−1d,Wf ]] = [Λ−1d,Wf ] if ℓ is even,

{Λ−1d,Wf} if ℓ is odd,

where [A,B] = AB−BA and {A,B} = AB+BA. Here, d is the exterior derivative
and Λ = (I −∆)1/2. We prove the following estimate.

Proposition 7.4. For 1 < p <∞,

(7.14) ‖ [[Λ−1d,Wf ]]β‖Lp ≤ Cp‖f‖bmo‖β‖Lp .
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Proof. Write Wf =
∑
MfiWei where ei are smooth ℓ-forms, fi are real-valued

functions, and
∑

‖fi‖bmo ∼ ‖f‖bmo. Then

(7.15) [[Λ−1d,Wf ]]β =
∑
i

[Λ−1d,Mfi ]Weiβ +
∑
i

Mfi [[Λ
−1d,Wei ]]β.

Now the estimate (7.3) applies to the first sum on the right. Since the principal
symbol of Λ−1d is wedge by i|ξ|−1ξ, we have

(7.16) [[Λ−1d,Wei ]] ∈ OPS−1
1,0 ,

so the estimate on the second term on the right side of (7.15) is elementary.

We apply this result, first to an estimate of du ∧ dv. Let u be a j-form and v
a k-form on M, j + k ≤ n − 2. Let f be an ℓ-form, ℓ = n − j − k − 2. We set
u = Λ−1ũ, v = Λ−1ṽ, and desire to estimate

(7.17)

∫
M

f ∧ du ∧ dv = (WfdΛ
−1ũ, δΛ−1 ∗ ṽ).

Here, δ is the adjoint of d, and ∗ is the Hodge star operator. Since WfΛ
−1ddΛ−1 =

0, the right side of (7.17) is equal to

(7.18) (Λ−1dWfdΛ
−1ũ, ∗ṽ) =

(
[[Λ−1d,Wf ]]dΛ

−1ũ, ∗ṽ
)
.

Applying Proposition 7.4, we deduce that

(7.19)
∣∣∣∫
M

f ∧ du ∧ dv
∣∣∣ ≤ Cp‖f‖bmo‖u‖H1,p‖v‖H1,p′ .

Next, we estimate k-fold wedge products. Assume uj are ℓj-forms, and that∑k
j=1(ℓj + 1) = m ≤ n. Let f be an (n−m)-form. Then we will show that

(7.20)
∣∣∣∫
M

f ∧ du1 ∧ · · · ∧ duk
∣∣∣ ≤ Cp‖f‖bmo‖u1‖H1,p1 · · · ‖uk‖H1,pk ,

provided pj ∈ (1,∞] and

(7.21)
1

p1
+ · · ·+ 1

pk
= 1, pk ∈ (1,∞).

To prove this, note that, since du1 ∧ · · · ∧ duk−1 is closed, we can use Hodge theory
to write

(7.22) du1 ∧ · · · ∧ duk−1 = du+ h,
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where h is a harmonic form and

(7.23)

‖u‖H1,p + ‖h‖L∞ ≤ C‖u1‖H1,p1 · · · ‖uk−1‖H1,pk−1 ,

1

p1
+ · · ·+ 1

pk−1
=

1

p
, p ∈ (1,∞), pk = p′.

Then, with v = uk, we have

(7.24)

∫
M

f ∧ du1 ∧ · · · ∧ duk =

∫
M

f ∧ du ∧ dv +
∫
M

f ∧ h ∧ dv.

The last integral in (7.24) is easy to estimate, and the estimate (7.19) applies to the
other integral on the right side of (7.24). This proves the desired estimate (7.20).
The case k = n, ℓj = 0 yields a Jacobian determinant estimate, which played a
particularly significant role in [CLMS].

We move to another consequence of Proposition 7.3. We continue to work on a
compact Riemannian manifold M . Let

(7.25) vmo(M) = closure of C∞(M) in bmo(M).

Proposition 7.5. Given p ∈ (1,∞), P ∈ OPS0
1,δ(M), δ ∈ [0, 1),

(7.26) f ∈ vmo(M) =⇒ [P, f ] : Lp(M) → Lp(M) is compact.

Proof. When f ∈ C∞(M), [P, f ] ∈ OPS
−(1−δ)
1,δ (M), and the compactness on

Lp(M) is clear. The asserted compactness in (7.26) then follows by (7.3) and a
standard limiting argument.

Using Proposition 7.5, one can deduce Fredholm results for operators in diver-
gence form (in local coordinates, modulo lower order terms)

(7.27)
Lu =

∑
∂ja

jk(x)∂ku,

L : H1,p(M) −→ H−1,p(M), 1 < p <∞,

given L elliptic, with

(7.28) ajk ∈ L∞(M) ∩ vmo(M),

and Fredholm results for operators in non-divergence form (in local coordinates,
modulo lower order terms)

(7.29)
Lu =

∑
ajk(x)∂j∂ku,

L : H2,p(M) −→ Lp(M), 1 < p <∞,

given L elliptic with ajk as in (7.28). From there one can deduce global and local
regularity results, obtained in [CFL]; see also [T6], §§I.11 and III.1. Along these
lines we also mention a partial regularity result, applicable to foliation regularity
results, in [RT].
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III. Layer potentials on Lipschitz domains and

other classes of uniformly rectifiable domains

This lecture covers material on singular integral operators on various fairly rough
surfaces, which have applications to boundary problems for PDE on rough domains.
The basic object has the form

Kf(x) =
∫
∂Ω

k(x− y)f(y) dσ(y),

where Ω is an n-dimensional domain, σ is surface measure on ∂Ω, f ∈ Lp(∂Ω, dσ),
and x is first taken in the complement of ∂Ω. One desires maximal function es-
timates on Kf(x), and results on the limiting behavior as x approaches ∂Ω, in
particular how that limit is related to Kf = limε→0 Kεf , where

Kεf(x) =

∫
∂Ω\Bε(x)

k(x− y)f(y) dσ(y), x ∈ ∂Ω.

And one wants maximal function estimates on Kεf . Here k(z) is an odd function,
smooth in z ∈ Rn \ 0, and homogeneous of degree −(n− 1). More generally we can
replace k(z) by k(x, z), or by k(y, z), which allows extension of the results to the
setting of Ω ⊂M , an n-dimensional manifold.

In §1 we treat the Cauchy integral on Lipschitz curves. Results obtained on
this are extended to singular integrals on higher dimensional Lipschitz surfaces in
§2, via the method of rotations. The scope is extended further in §3, to a class
of domains called uniformly rectifiable. This is essentially the maximal class of
domains on which such boundedness results hold. In §4 we consider an important
subclass, the class of regular SKT domains (also called chord-arc domains with
vanishing constant). Such domains for which ∂Ω is also compact form essentially
the maximal class of domains for which such operators K are compact.

The last two sections connect this work to boundary problems for second order
elliptic PDE, particularly of the form Lu = 0, with L = ∆ − V , where ∆ is the
Laplace operator on Rn, or more generally the Laplace Beltrami operator on a
Riemannian manifold. In §5 we construct double layer potentials and single layer
potentials associated to such L and apply results of §§2–4 to these operators. In
§6 we apply these results to the Dirichlet problem on Ω, with emphasis on the
cases when Ω is either a regular SKT domain or a Lipschitz domain, in a compact
Riemannian manifold with a Hölder continuous metric tensor.
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1. Cauchy integral on Lipschitz curves

Let A : R → R be a Lipschitz function, with Lipschitz constant L, and consider
the Lipschitz graph

(1.1) Γ = {t+ iA(t) : t ∈ R}.

Let Ω+ denote the region in C above Γ and Ω− the region below Γ. We form the
Cauchy integral

(1.2) KΓf(z) =

∫
Γ

f(ζ)

z − ζ
dζ, z ∈ Ω±.

The following result was established in [CMM], following [Ca2].

Theorem 1.1. The limits

(1.3) K±
Γ f(z) = lim

±y↘0
KΓf(z + iy), z ∈ Γ,

exist and define operators

(1.4) K±
Γ : L2(Γ) −→ L2(Γ),

satisfying

(1.5) ‖K±
Γ f‖L2(Γ) ≤ C0(1 + L)2‖f‖L2(Γ),

for some absolute constant C0.

In addition to [CMM], a number of other proofs have been given. We outline a
proof from [CJS]. It exploits the behavior of

(1.6) EΓf(z) =
d

dz
KΓf(z) = −

∫
Γ

f(ζ)

(z − ζ)2
dζ,

on Ω±. The following plays a key role.

Lemma 1.2. Suppose F is holomorphic on Ω+ and vanishes at infinity. Then

(1.7) ‖F‖L2(Γ) ≤ C1(1 + L)‖F ′‖H+
,

where

(1.8) H+ = L2(Ω+, d(z) dx dy), d(z) = dist(z,Γ).

Analogous estimates hold for F holomorphic on Ω−, with H− = L2(Ω−, d(z) dx dy).
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To attack Theorem 1.1, we first assume A ∈ C∞
0 (R). Once we obtain the estimate

(1.5), the case of general Lipschitz A follows by a limiting argument.
To proceed, with A ∈ C∞

0 (R), the existence of K±
Γ is classical, and Lemma 1.2

implies

(1.9) ‖K±
Γ f‖L2(Γ) ≤ C(1 + L)‖EΓf‖H± .

Next,

(1.10) (EΓf, g)H+
= −

∫
Γ

f(ζ)T (g) dζ,

where, for f ∈ H+,

(1.11) Tf(ζ) =

∫∫
Ω+

f(z)d(z)

(z − ζ)2
dx dy, ζ ∈ Γ.

It follows that

(1.12) |(EΓf, g)H+
| ≤ ‖f‖L2(Γ)‖Tg‖L2(Γ),

so we get

(1.13) ‖EΓf‖H+ ≤ C(1 + L)‖f‖L2(Γ)

from the following:

Lemma 1.3. For some absolute constant C2,

(1.14) ‖Tf‖L2(Γ) ≤ C2(1 + L)‖f‖H+ .

Lemma 1.3 is established by applying (the Ω− version of) Lemma 1.2 to F =
Tf |Ω− :

(1.15) ‖Tf‖L2(Γ) ≤ C(1 + L)‖(Tf)′‖H− ,

so it suffices to estimate ‖(Tf)′‖H− in terms of ‖f‖H+
. This estimate in turn can

be deduced from an operator norm estimate on

(1.16)

S : L2(Ω+) −→ L2(Ω−),

SF (w) = d(w)1/2
∫∫
Ω+

F (z)d(z)1/2

(z − w)3
dx dy,

which follows from Schur’s lemma.
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Putting together (1.9) and (1.13) (and its counterpart for H−) gives the asserted
estimate (1.5), at least for A ∈ C∞

0 (R), and as stated above the general case of
Lipschitz A follows by a limiting argument.

A couple of comments about the proof of Lemma 1.2 given in [CJS]. It brings
in a conformal diffeomorphism Φ : R2

+ → Ω+, with Φ(R) = Γ and Φ(∞) = ∞, and
uses the Koebe-Bieberbach theorem:

(1.17) |Φ′(z)|y ≤ dist(Φ(z), ∂Ω) ≤ 4|Φ′(z)|y,

to reduce the estimate (1.7) to

(1.18)

∫ ∞

−∞
|G(x)|2|Φ′(x)| dx ≤ C(1 + L)2

∫∫
R2

+

|G′(z)|2|Φ′(z)|y dx dy,

for holomorphic functions G on R2
+ decaying at infinity. The estimate (1.18) is

given an elementary (though clever) proof in [CJS]. Details can also be found in
[T6], §IV.1.

Remark. The Koebe-Bieberbach theorem has the following geometric formulation.
Let Ω ⊂ C be a simply connected domain (not all of C) and let γ(z)2 |dz|2 denote
its Poincare metric tensor. Then, for z ∈ Ω,

(1.19)
1

2
dist(z, ∂Ω) ≤ 1

γ(z)
≤ 2 dist(x, ∂Ω).

We describe further properties of the Cauchy integral. Details can be found in
[Jo], or in §IV.1 of [T6]. First, the integral kernels of K±

Γ satisfy the estimates
(I.3.9), with n = 1, so Calderon-Zygmund theory applies. Once one has the L2-
estimates (1.4), it follows that

(1.20) K±
Γ : Lp(Γ) −→ Lp(Γ), 1 < p <∞.

Also, if one forms

(1.21) KΓ,δf(z) =

∫
Γ\Bδ(z)

f(ζ)

z − ζ
dζ, z ∈ Γ,

one has estimates on the maximal function

(1.22) K#
Γ f(z) = sup

0<δ≤1
|KΓ,δf(z)|,

namely

(1.23) ‖K#
Γ f‖Lp(Γ) ≤ C(p, L)‖f‖Lp(Γ), 1 < p <∞,
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and there is a limit

(1.24) lim
δ→0

KΓ,δf(z) = KΓf(z),

both in Lp-norm and pointwise a.e. on Γ; one writes

(1.25) KΓf(z) = PV

∫
Γ

f(z)

z − ζ
dζ.

There is also a nontangential maximal function, defined as follows. Pick M > L
and let

(1.26) CM = {(x, y) : |y| ≤ 1, |y| > M |x|}.

Then set

(1.27) K∗
Γf(z) = sup

ζ∈CM

|KΓf(z + ζ)|, z ∈ Γ.

One has

(1.28) ‖K∗
Γf‖Lp(Γ) ≤ C(p,M)‖f‖Lp(Γ), 1 < p <∞.

This is useful in showing that the limits (1.3) exist pointwise a.e., as well as in
Lp-norm, and more generally

(1.29) K±
Γ f(z) = lim

C±
M

∋ζ→0
KΓf(z + ζ), a.e. on Γ,

where C±
M = {(x, y) ∈ CM : ±y > 0}. The operators K±

Γ and KΓ are related by the
following formula, due for smooth Γ to Plemelj:

(1.30) K±
Γ f(z) = KΓf(z)± πif(z).

It is useful to reformulate these results in terms of singular integral operators on
L2(R). We can rewrite the Cauchy integral (1.2) as

(1.31) KΓf(z) =

∫ ∞

−∞

f ◦ α(t)
z − t− iA(t)

α′(t) dt,

with α(t) = t+ iA(t). Taking z = s+ iA(s) + iσ and g(t) = f(α(t))α′(t), we have
an essentially equivalent operator

(1.32) Kσ
Ag(s) =

∫ ∞

−∞

g(t)

s− t+ i(A(s)−A(t)) + iσ
dt.
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Theorem 1.1 yields limiting operators as ±σ ↘ 0,

(1.33) K±
A : L2(R) −→ L2(R),

of operator norm ≤ C(1 + L)2, with integral kernels

(1.34) kA(s, t) =
1

s− t+ i(A(s)−A(t))
.

There are natural analogues of (1.20)–(1.30).
This analysis extends to the following variant. If A : R → R has Lipschitz

constant L, let γ be a compact subset of C \ [−2L, 2L]. For ζ ∈ γ, set

(1.35) Aζ(t) = ζt−A(t), kζ(s, t) =
1

Aζ(s)−Aζ(t)
.

Then one has

(1.36) Kζ : L2(R) −→ L2(R), Kζf(z) = PV

∫
kζ(s, t)g(t) dt,

satisfying

(1.37) ‖Kζf‖L2(R) ≤ C(1 + L)2‖f‖L2(R).

This leads to the following results of [CDM], which play an important role in the
extension to several dimensions, which will be taken up in §2.

Lemma 1.4. With A : R → R as above, set

(1.38) eA(s, t) =
1

s− t
exp i

(A(s)−A(t)

s− t

)
.

Then PV eA is the kernel of a operator EA on L2(R), satisfying

(1.39) ‖EAf‖L2 ≤ C(1 + L)3‖f‖L2 .

Proof. If Ω is the region in C consisting of points of distance ≤ 1 from [−2L, 2L],
and γ = ∂Ω, we have

(1.40) eA(s, t) =
1

2πi

∫
γ

eiζkζ(s, t) dζ,

and (1.39) then follows from (1.37).
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Proposition 1.5. Let φ : R → Rn be Lipschitz. Let F ∈ CN (Rn), and assume
N > n+ 3. Consider

(1.41) τ(s, t) =
1

s− t
F
(φ(s)− φ(t)

s− t

)
.

Then PV τ(s, t) is the kernel of a bounded operator on L2(R).

Proof. If φ has Lipschitz constant L, you can alter F outside BL(0) ⊂ Rn, without
altering τ , to be periodic of period 2πL in each argument. Then Proposition 1.5
follows from Lemma 1.4 and a Fourier series argument.

2. Singular integral operators on Lipschitz surfaces

One can pass from the one-dimensional result of §1 to a useful multi-dimensional
result by the method of rotations. Our treatment of the next proposition follows
[CDM] and [Dav].

Proposition 2.1. Let k ∈ CN (Rn \ 0) be odd and homogeneous of degree −k.
Assume N > n− k + 3. Let Γ be a k-dimensional Lipschitz graph, of the form

(2.1) Γ = {(x, φ(x)) : x ∈ Rk},

where φ : Rk → Rn−k is Lipschitz. Set ψ(x) = (x, φ(x)). Then

(2.2) Kf(x) = P.V.

∫
Rk

k
(
ψ(x)− ψ(y)

)
f(y) dy

is a well defined operator satisfying

(2.3) K : L2(Rk) −→ L2(Rk).

Proof. Write

(2.4) Kf(x) = ck

∫
Sk−1

Tωf(x) dS(ω),

where, for ω ∈ Sk−1,

(2.5) Tωf(x) =

∫ ∞

−∞
k
(
ψ(x)− ψ(x+ sω)

)
f(x+ sω)|s|k−1 ds.
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We estimate the operator norm of Tω on L2(Rk). To do this, let Vω = (ω)⊥ =
{x ∈ Rk : x · ω = 0}, and note that

(2.6) ‖Tωf‖2L2 =

∫
Vω

‖Tω,ξfξ‖2L2 dξ,

where fξ(t) = f(ξ + tω) and Tω,ξ is the singular integral operator (acting on func-
tions on R) with kernel

(2.7) τω,ξ(s, t) = k
(
ψ(ξ + sω)− ψ(ξ + tω)

)
|s− t|k−1.

Thus our task is to estimate the operator norm of Tω,ξ on L2(R). Note that

(2.8)
τω,ξ(s, t) =

1

s− t
k
(ψ(ξ + sω)− ψ(ξ + tω)

s− t

)
=

1

s− t
Fω

(φ(ξ + sω)− φ(ξ + tω)

s− t

)
,

where Fω ∈ CN (Rn−k) is given by

(2.9) Fω(xk+1, . . . , xn) = k(ω1, . . . , ωk, xk+1, . . . , xn).

Now the function t 7→ φ(ξ+tω) is Lipschitz, uniformly in ξ and ω. Hence the desired
estimate on ‖Tω,ξ‖L(L2) follows from Proposition 1.5, and the proof of Proposition
2.1 is complete.

As in §1, we see that the operator K in (2.2)–(2.3) is a Calderón-Zygmund
operator, and we have an estimate on K : Lp(Rk) → Lp(Rk):

(2.10) ‖K‖L(Lp) ≤ C(p,Γ)
∥∥k∣∣

Sn−1

∥∥
CN , 1 < p <∞.

The operator K in (2.2) is closely related to the principal-value singular integral
operator:

(2.11)

KΓf(x) = P.V.

∫
Γ

k(x− y)f(y) dσ(y)

= lim
ε→0

∫
{y∈Γ:|x−y|>ε}

k(x− y)f(y) dσ(y),

where dσ is the area element of Γ, induced from the Euclidean structure of Rn.
This is also related to the following operator, defined for x ∈ Rn \ Γ:

(2.12) KΓf(x) =

∫
Γ

k(x− y)f(y) dσ(y).
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in a fashion parallel to analogues in §1.
We now restrict attention to Lipschitz graphs of dimension n− 1 in Rn, i.e., to

the case k = n− 1 of Proposition 2.1.
As in §1 we have estimates on nontangential maximal functions. If Γ is a Lip-

schitz graph, with Lipschitz constant ≤ L, and if ϑ > 1 is chosen, then for each
x ∈ Γ, consider the cone Cx = C + x, where C = {x ∈ Rn : ϑL|x′| ≤ |xn| ≤ 1}. For
a function u defined on Rn, we define the nontangential maximal function:

(2.13) u∗(x) = sup
y∈Cx

|u(y)|, x ∈ Γ.

From the analysis above and in §1 it follows that, with KΓ as in (2.12), one has,
for f ∈ Lp(Γ), 1 < p <∞,

(2.14) ‖(KΓf)
∗‖Lp(Γ) ≤ C‖f‖Lp(Γ),

with a bound on C of the form (2.10).
Extending jump relations given in (1.30), one can show that KΓf has nontan-

gential boundary values a.e. on Γ, which are related to KΓf by:

(2.15) (KΓf)±(x) = ∓ 1
2 iP−1

(
n(x)

)
f(x) +KΓf(x).

Here, (KΓf)+(x) is the limit from above Γ and (KΓf)−(x) is the limit from below
Γ (within the cone Cx), n(x) is the unit (downward-pointing) conormal to Γ at x
(defined a.e. on Γ), and P−1(ξ) is the principal symbol (homogeneous of degree −1
in ξ) of the operator Pu(x) =

∫
Rn k(x− y)u(y) dy.

Our next goal is to extend the analysis of (2.11) to the variable-coefficient case.
As above, let Γ be a Lipschitz graph in Rn, of the form xn = φ(x1, . . . , xn−1). Here
we follow [MT1].

Proposition 2.2. There exists M = M(n) such that the following holds. Let
b(x, z) be odd in z and homogeneous of degree −(n− 1) in z, and assume Dα

z b(x, z)
is continuous and bounded on Rn × Sn−1, for |α| ≤ M . Then b(x, x − y) is the
kernel of an operator B, bounded on Lp(Γ), for 1 < p <∞, and so is b(y, x− y).

Proof. The classical method of spherical harmonic decomposition due to Calderón
and Zygmund works in this case. Thus, we can write

(2.16) b(x, z) =
∑
j≥1

bj(x)φj

(
z/|z|

)
|z|−(n−1),

where {φj : j ≥ 1} is an orthonormal basis of L2(Sn−1) consisting of eigenfunctions
of the Laplace operator on the sphere Sn−1. Furthermore, we can assume that φj

is odd whenever bj 6= 0. With N as in Proposition 2.1 and M sufficiently larger
than N , the regularity hypothesis implies

(2.17) ‖bj‖L∞‖φj‖CN ≤ Cj−2.
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Note that, if kj(x) = φj(x/|x|)|x|−(n−1) with φj odd, then the operator Kj on
Lp(Γ) with kernel kj(x− y) is estimable by (2.10), and, for f ∈ Lp(Γ),

(2.18) Bf(x) =
∑
j≥1

bj(x)Kjf(x).

Hence,

(2.19)
‖B‖L(Lp) ≤ C(p,Γ)

∑
‖bj‖L∞‖φj‖CN

≤ C(p,Γ) sup
|α|≤M

‖Dα
z b(x, z)‖L∞(Rn×Sn−1).

and the proof is done for b(x, x−y). To treat b(y, x−y), just replace bj(x) by bj(y)
in the sum on the right side of (2.16).

Proposition 2.2 applies to the Schwartz kernels of certain pseudodifferential op-
erators. In fact, operators in OPC0S−1

cl have Schwartz kernels that differ from
those treated in Proposition 2.2 by kernels with weak singularities, and with a dif-
ferent asymptotic behavior far from the diagonal. For our purposes it is sufficient
to use the elementary consequence that the conclusions of these propositions hold,
provided one acts on functions with support on a given compact subset Γ0 of Γ,
and estimates the norm of the resulting function over Γ0. In the rest of this section
we will restrict attention to this case.

We now state the consequence of Proposition 2.2 most directly relevant for the
analysis for elliptic boundary problems.

Proposition 2.3. If p(x, ξ) ∈ C0S−1
cl has a principal symbol that is odd in ξ, then

the Schwartz kernel of p(x,D) is the kernel of an operator bounded on Lp(Γ0), for
1 < p <∞.

The operator B in Proposition 2.2 is given by

(2.20) Bf(x) = P.V.

∫
Γ

b(x, x− y)f(y) dσ(y).

This is related to the following operator, defined for x ∈ Rn \ Γ:

(2.21) Bf(x) =
∫
Γ

b(x, x− y)f(y) dσ(y).

There is an estimate on the nontangential maximal function for Bf . Under the
hypotheses of Proposition 2.2, if B is as in (2.21) then, by (2.18), we have

(2.22) (Bf)∗(x) ≤
∑
j≥1

‖bj‖L∞(Kjf)
∗(x).

Thus, using estimates of the form (2.17) and (2.14), we have:
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Proposition 2.4. If p(x, ξ) ∈ C0S−1
cl has a principal symbol that is odd in ξ, then

its Schwartz kernel is the kernel of an operator B, satisfying

(2.23) ‖(Bf)∗‖Lp(Γ0) ≤ Cp‖f‖Lp(Γ0),

for 1 < p <∞ (and f supported on Γ0).

Given (2.15), the superposition arguments used above yield:

Proposition 2.5. If p(x, ξ) is as in Proposition 2.4, with principal symbol p−1(x, ξ),
then, a.e. on Γ, we have nontangential limits

(2.24) (Bf)±(x) = ∓ 1
2 ip−1

(
x, n(x)

)
f(x) +Bf(x).

3. Singular integral operators on uniformly rectifiable domains

Perhaps the maximal class of open domains Ω ⊂ Rn for which it would make
sense to discuss integral equations on the boundary is the class of domains with
locally finite perimeter, i.e., domains Ω for which ∇χΩ = µ is a locally finite Rn-
valued measure. In such a case, the Radon-Nikodym theorem implies µ = −νσ,
where σ is a locally finite positive measure, supported on ∂Ω, and ν ∈ L∞(∂Ω, dσ)
is an Rn-valued function, satisfying |ν(x)| = 1, σ-a.e. It then follows from the
Besicovitch differentiation theorem that

(3.1) lim
r→0

1

σ(Br(x))

∫
Br(x)

ν dσ = ν(x),

for σ-a.e.x. Works of Federer and De Giorgi produced the following results on the
structure of σ. First,

(3.2) σ = Hn−1b∂∗Ω,

where Hn−1 is (n−1)-dimensional Hausdorff measure and ∂∗Ω ⊂ ∂Ω is the reduced
boundary of Ω, defined as

∂∗Ω = {x : (3.1) holds, with |ν(x)| = 1}.

Second, ∂∗Ω is countably rectifiable, i.e., it is a countable disjoint union

(3.3) ∂∗Ω =
⋃
k

Mk ∪N,
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where each Mk is an (n − 1)-dimensional Lipschitz surface and Hn−1(N) = 0. In
fact, Mk can be taken to be (n− 1)-dimensional C1 surfaces, to which ν is normal
in the usual sense.

In general, ∂Ω can be much larger than ∂∗Ω, and it is useful to have criteria for
when

(3.4) Hn−1(∂Ω \ ∂∗Ω) = 0.

One class of examples is the class of domains whose boundaries are graphs of con-
tinuous functions A satisfying

(3.5) A : Rn−1 −→ R, ∇A ∈ L1
loc(Rn−1).

Such a domain has locally finite perimeter, with

(3.6) σ
(
{(x,A(x)) : x ∈ O}

)
=

∫
O

√
1 + |∇A(x)|2 dx,

and (3.4) holds; see [HMT], §2.2.

Remark. Given any open Ω ⊂ Rn, one defines the measure theoretic boundary ∂∗Ω
to consist of x ∈ ∂Ω at which both Ω and Rn \Ω have positive density. It is known
that if Ω has locally finite perimeter, then ∂∗Ω ⊂ ∂∗Ω and Hn−1(∂∗Ω \ ∂∗Ω) = 0.
Furthermore, Ω has locally finite perimeter if and only if Hn−1(∂∗Ω ∩K) <∞ for
each compact K ⊂ Rn. Good sources for this material include [EG] and [Zie], or
one could consult [Fed].

The class of domains with locally finite perimeter is too large for singular inte-
grals such as arise in Proposition 2.1 to be bounded. David and Semmes [Dav],
[DS], introduced the notion of uniformly rectifiable sets as a class on which one
does have such bounded operators. To define this, we first bring in the concept of
Ahlfors regularity.

Given a domain Ω ⊂ Rn, we say ∂Ω is Ahlfors regular provided there exist
a, b ∈ (0,∞) such that

(3.7) arn−1 ≤ Hn−1(Br(x) ∩ ∂Ω) ≤ brn−1

for each x ∈ ∂Ω, r ∈ (0,∞). If ∂Ω is compact, we require (3.7) only for r ∈ (0, 1].
Given this, we say ∂Ω ⊂ Rn is uniformly rectifiable provided it is Ahlfors reg-

ular and the following property holds. There exist δ, M ∈ (0,∞), called the UR
constants of ∂Ω, such that for each x ∈ ∂Ω, R > 0, there is a Lipschitz map

(3.8) φ : Bn−1
R −→ Rn, Bn−1

R = {x ∈ Rn−1 : |x| < R},
such that

(3.9) ‖∇φ‖L∞ ≤M, Hn−1
(
∂Ω ∩BR(x) ∩ φ(Bn−1

R )
)
≥ δRn−1.

If ∂Ω is compact, we require this only for R ∈ (0, 1]. It is readily verified that if
∂Ω is uniformly rectifiable then it is countably rectifiable. We call Ω a UR domain
provided ∂Ω is uniformly rectifiable and (3.4) holds.

The following result is established in [Dav], Proposition 4 bis.



57

Proposition 3.1. Assume Ω ⊂ Rn is a UR domain. Take p ∈ (1,∞). Then there
exist N ∈ Z+, C ∈ (0,∞), each depending only on p and the Ahlfors regularity and
UR constants of ∂Ω, with the following property.

Assume k ∈ CN (Rn \ 0) is odd and homogeneous of degree −(n− 1). Then, with

(3.10)

Tεf(x) =

∫
∂Ω\Bε(x)

k(x− y)f(y) dσ(y), x ∈ ∂Ω,

T∗f(x) = sup
0<ε≤1

|Tεf(x)|,

one has

(3.11) ‖T∗f‖Lp(∂Ω,dσ) ≤ C
∥∥k∣∣

Sn−1

∥∥
CN ‖f‖Lp(∂Ω,dσ).

In §§3.2–3.5 of [HMT], this estimate is supplemented by results on

(3.12) T f(x) =
∫
∂Ω

k(x− y)f(y) dσ(y), x ∈ Ω,

for k(x−y) as in Proposition 3.1. First, there is the nontangential maximal function,

(3.13) N (T f)(x) = sup{|T f(z)| : z ∈ Γ(x)}, x ∈ ∂Ω},

where, fixing α > 0, one sets

(3.14) Γ(x) = {z ∈ Ω : |z − x| < (1 + α) dist(z, ∂Ω)}.

It is shown that, for p ∈ (1,∞),

(3.15) ‖N (T f)‖Lp(∂Ω,dσ) ≤ C
∥∥k∣∣

Sn−1

∥∥
CN ‖f‖Lp(∂Ω,dσ).

It is also proven in [HMT] that, given p ∈ (1,∞), f ∈ Lp(∂Ω, dσ), the limit

(3.16) Tf(x) = lim
ε→0

Tεf(x)

exists for σ-a.e. x ∈ ∂Ω, that

(3.17) T : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ),

and furthermore that

(3.18) lim
Γ(x)∋z→x

T f(z) = Tf(x) +
1

2i
k̂(ν(x))f(x), for σ-a.e. x ∈ ∂Ω.
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The proof involves some Clifford analysis, amongst other things.

Remark. Each UR domain, and more generally each Ahlfors regular domain Ω ⊂
Rn, has the weak accessibility property

(3.19) x ∈ Γ(x), for σ-a.e. x ∈ ∂Ω.

This is proven in §2.3 of [HMT]. This helps make (3.18) meaningful.

There is also an extension of Proposition 3.1 and the results (3.15)–(3.18) to the
variable coefficient setting, parallel to Propositions 2.2–2.5, given in §3.5 of [HMT].

The definition of UR domains is complicated, and it is valuable to have in hand
results guaranteeing that more simply defined classes of domains are UR. The
following result is proven in [DJ]. Assume that ∂Ω is Ahlfors regular and that the
following “two disks” condition holds: There exists C ∈ (0,∞) such that for each
x ∈ ∂Ω and r > 0, there are two (n−1)-dimensional disks, with centers at a distance
≤ r from x, of radius r/C, one contained in Ω and the other contained in Rn \ Ω.
(If ∂Ω is compact, just take r ∈ (0, 1].) Then ∂Ω is uniformly rectifiable. The
monograph [DS] studies a number of characterizations of the class of UR domains.

One class of UR domains is the class of domains whose boundaries are graphs of
functions A satisfying

(3.20) A : Rn−1 −→ R, ∇A ∈ bmo(Rn−1);

cf. [HMT], §§2.5 and 3.1. An open set Ω ⊂ Rn is called a bmo1 domain if ∂Ω is
locally the graph of such functions. It is called a vmo1 domain if it has such a form,
with ∇A ∈ vmo(Rn), the closure of C∞

0 (Rn) in bmo(Rn).

4. Singular integral operators on SKT domains

We will introduce a class of domains called regular SKT domains in [HMT].
To do this, we first define the “John condition.” We say an open set Ω ⊂ Rn

satisfies a John condition provided there exists θ ∈ (0, 1) and R > 0 (we require
R = ∞ if ∂Ω in unbounded), such that the following conditions hold. First, for
each p ∈ ∂Ω, r ∈ (0, R), there exists

(4.1) pr ∈ Br(p) ∩ Ω such that Bθr(pr) ⊂ Ω.

Second, for each x ∈ ∂Ω ∩ Br(p), there exists a path γx from x to pr in Ω (except
for the endpoint x), such that

(4.2) length γx ≤ r

θ
, and dist(γx(t), ∂Ω) ≥ θ|γx(t)− x|, ∀ t.
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If both Ω and Rn \Ω satisfy a John condition, we say Ω satisfies a two-sided John
condition.

By (4.1), the two-sided John condition is stronger than the two disk condition
given in §3, so each Ω ⊂ Rn with Ahlfors regular boundary that satisfies a two-
sided John condition is a UR domain. It is shown in §3.1 of [HMT] that each bmo1
domain satisfies a two-sided John condition.

We now characterize regular SKT domains.

Characterization. An open set Ω ⊂ Rn is a regular SKT domain provided it
has the following properties:

∂Ω is Ahlfors regular,(4.3)

Ω satisfies a two-sided John condition,(4.4)

ν ∈ vmo(∂Ω, dσ).(4.5)

Here vmo(∂Ω, dσ) is the closure of C0(∂Ω) in bmo(∂Ω, dσ), whose definition is
parallel to that of bmo(Rn) given in (I.3.24)–(I.3.25).

This is not the original definition. The class of domains under consideration
was introduced in [Sem] and developed further in [KT]; see also [CKL] for further
discussion. There they were called “chord-arc domains with vanishing constant,”
extending to higher dimensions a class of domains arising in complex function theory
(for n = 2). Such a label does not capture the essence of the class of domains when
n ≥ 3, so these domains were called regular SKT domains in [HMT]. The definition
given in [Sem] and [KT] is somewhat different from the characterization given above,
bringing in particularly the notion of Reifenberg flatness. The equivalence of their
definition and the characterization above was established in §4.2 of [HMT].

As stated above, each bmo1 domain satisfies conditions (4.3) and (4.4). If Ω is
a vmo1 domain, then condition (4.5) is also satisfied. (This is not a tautology, but
it is established in §2.5 of [HMT].) It follows that each vmo1 domain is a regular
SKT domain.

The following compactness result is established in §4.5 of [HMT].

Proposition 4.1. Let Ω ⊂ Rn be a regular SKT domain and assume ∂Ω is com-
pact. Let E ∈ C∞(Rn \ 0) be even and homogeneous of degree −n. Consider

(4.6) Tf(x) = lim
ε→0

∫
∂Ω\Bε(x)

〈x− y, ν(y)〉E(x− y)f(y) dσ(y), x ∈ ∂Ω.

Then

(4.7) T : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) is compact, ∀ p ∈ (1,∞).

Note that the boundedness of T on Lp(∂Ω, dσ) for p ∈ (1,∞) follows from
Proposition 3.1 (supplemented by (3.17)–(3.18)). The integral kernels appearing
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in (4.6) are less general than those appearing in (3.10), as would be necessary for
compactness, even for smoothly bounded Ω. However, they include cases arising in
the layer potential approach to second order elliptic PDE. The most basic example
is the harmonic double layer:

(4.8) Kf(x) = lim
ε→0

1

ωn

∫
∂Ω\Bε(x)

〈x− y, ν(y)〉|x− y|−nf(y) dσ(y).

The following extension of Proposition 4.1 is also established in §4.5 of [HMT].
Here K(Lp) denotes the space of compact linear operators on Lp(∂Ω, dσ).

Proposition 4.2. Let Ω satisfy (4.3)–(4.4) and assume ∂Ω is compact. Pick p ∈
(1,∞), ε > 0. Then there exists δ > 0, depending on ε, p, k|Sn−1 , and the
geometric characteristics of Ω, with the property that, with T as in (4.6),

(4.9) dist(ν, vmo(∂Ω, dσ)) < δ =⇒ dist(T,K(Lp)) < ε.

The proof of Propositions 4.1–4.2 occupies about 12 pages of [HMT], and it
begins with a treatment in §4.4 of the result for vmo1 domains. Estimates from
[Hof] get the proof started.

As in §2, one has variable coefficient versions of these results, in which E(x− y)
in (4.6) is replaced by k(x, x− y), where k(x, z) is even and homogeneous of degree
−n in z, and Dα

z k(x, z) is continuous and bounded on Rn × Sn−1 for all α. This is
useful for the layer potential treatment of variable coefficient PDE, involving such
operators as the Laplace operator on a Riemannian manifold.

There is a converse to the compactness result of Proposition 4.1, described as
follows. In addition to the operatorK given in (4.8), we bring in “Riesz transforms,”

(4.10) Rkf(x) = lim
ε→0

∫
∂Ω\Bε(x)

xk − yk
|x− y|n

f(y) dσ(y), x ∈ ∂Ω.

These operators are bounded on Lp(∂Ω, dσ) for each p ∈ (1,∞), by the results of
§3, whenever Ω is a UR domain. Next, with ν = (ν1, . . . , νn) the unit normal to
∂Ω, set

(4.11) Mνjf(x) = νj(x)f(x).

The following is proven in §4.6 of [HMT].

Proposition 4.3. Let Ω ⊂ Rn satisfy (4.3)–(4.4), and assume ∂Ω is compact.
Then Ω is a regular SKT domain if and only if

(4.12) K and each [Mνj
,Rk] are compact on L2(∂Ω, dσ).
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The fact thatK is compact if Ω is a regular SKT domain follows from Proposition
4.1. The fact that [Mνj ,Rk] is compact in such a case follows from a variant of
Proposition II.7.3, though one requiring quite a different proof, given in §2.4 of
[HMT]. The major point addressed in §4.6 of [HMT] is the converse part of this
proposition.

Converses in this spirit to Proposition 4.2 are also established in [HMT], but we
will not state them here.

5. Layer potentials

Let Ω ⊂ Rn be a UR domain. Throughout this section we will also assume ∂Ω
is compact. The double layer potential associated with the Laplace operator ∆ on
Rn is

(5.1) Df(x) =
∫
∂Ω

∂νyG(x− y)f(y) dσ(y), x ∈ Rn \ ∂Ω,

where G is the fundamental solution to the Laplace equation, i.e., ∆G = δ, so

(5.2) Df(x) = Cn

∫
∂Ω

〈x− y, ν(y)〉
|x− y|n

f(y) dσ(y).

Material developed in the preceding sections allows us to draw conclusions about
the limiting behavior of Df(x) as x approaches ∂Ω, relate the limits to

(5.3) Kf(x) = lim
ε→0

Cn

∫
∂Ω\Bε(x)

〈x− y, ν(y)〉
|x− y|n

f(y) dσ(y),

and analyze boundedness and possible compactness of K on Lp(∂Ω, dσ). Once we
discuss these issues, we will move on to double layer potentials arising for a class
of second order elliptic operators with variable (perhaps rough) coefficients.

The special classes of UR domains we will emphasize are the classes of Lipschitz
domains and of regular SKT domains, but to afford some perspective, we first point
out an apparently maximal class of domains for which K in (5.3) has an elementary
analysis, namely a class of C1,ω-domains, i.e., domains for which ∂Ω is locally the
graph of a C1 function A such that ∇A has modulus of continuity ω. In such a
case,

(5.4) |〈x− y, ν(y)〉| ≤ C|x− y|ω(|x− y|),

and hence the integral kernel for K in (5.3) has the bound

(5.5) |k(x, y)| ≤ C
ω(|x− y|)
|x− y|n−1

.
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If ω satisfies the Dini condition

(5.6)

∫ 1

0

ω(t)

t
dt <∞,

Schur’s lemma applies to yield boundedness ofK on Lp(∂Ω, dσ), for each p ∈ [1,∞],
and also to show that K −Kε tends to 0 in Lp-operator norm as ε→ 0, where Kε

is the operator defined by the right side of (5.3) (before passing to the limit). For
each ε > 0, Kε has bounded integral kernel, and the fact that Kε is compact on
Lp(∂Ω, dσ) for each p ∈ (1,∞) is elementary. One approach: Kε is Hilbert-Schmidt
on L2(∂Ω, dσ), and interpolation with boundedness on Lp for p = 1 and p = ∞ can
be applied to yield compactness on Lp for 1 < p <∞.

If ∂Ω is C1 but without a modulus of continuity satisfying (5.6), this elementary
argument does not apply, but [FJR], making use of [Ca2], established compactness
of K in such a case.

Now we record what results of §§3–4 imply for D and K. Results of §3 imply
that, whenever Ω is a UR domain,

(5.7) ‖N (Df)‖Lp(∂Ω,dσ) ≤ Cp‖f‖Lp(∂Ω,dσ), 1 < p <∞,

where N (Df) is the nontangential maximal function, defined as in (3.13), that

(5.8) K : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ), 1 < p <∞,

and that

(5.9) (Df)±(x) =
(
±1

2
I +K

)
f(x), σ-a.e. x ∈ ∂Ω,

where (Df)+(x) is the nontangential limit of Df(y) as y → x from within Ω+ = Ω,
and (Df)−(x) the nontangential limit as y → x from within Ω− = Rn \ Ω.

Results of §4 imply that if Ω is a regular SKT domain (and ∂Ω is compact) then
K is compact on Lp(∂Ω, dσ) for each p ∈ (1,∞). As we have noted, the class of
regular SKT domains contains the class of vmo1 domains, and this in turn contains
the class of C1 domains.

In case Ω is a Lipschitz domain, (5.7)–(5.9) follow from earlier results, discussed
in §2. When Ω is Lipschitz, K need not be compact on Lp(∂Ω, dσ); such compact-
ness fails even for polygonal domains in R2. This influences results on the Dirichlet
problem, as we discuss in §6.

Moving to a more general setting, let Rn have a metric tensor gjk, let ∆ denote
the associated Laplace-Beltrami operator, let V ∈ L∞(Rn) be ≥ 0, and take L =
∆− V . Assume L : H1,2(Rn) → H−1,2(Rn) is invertible, and say

(5.10) L−1u(x) =

∫
E(x, y)u(y) dV (y),
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where dV is the volume element associated to gjk. Then the double layer potential
associated to a UR domain Ω is

(5.11) Df(x) =
∫
∂Ω

∂νyE(x, y)f(y) dσg(y),

where σg stands for the surface measure and ν the unit normal vector to ∂Ω induced
by the metric tensor gjk. One has

(5.12) dσg = ρ dσ, ρ(x) =
√
g(x)G(x, n(x))1/2,

where g(x) = det(gjk(x)), G(x, ξ) = gjkξjξk, and n is the unit conormal to ∂Ω
with respect to the Euclidean metric. A parametrix construction, detailed for
progressively rougher metric tensors in [MT1]–[MT4], gives

(5.13)
√
g(x)E(x, y) = e0(x− y, x) + e1(y, x),

where the leading term has the form (for n ≥ 3)

(5.14) e0(z, x) = Cn

(∑
gjk(x)zjzk

)−(n−2)/2

,

and the remainder e1(y, x) satisfies the following estimates if the metric tensor is
Hölder continuous, say gjk ∈ Cα for some α ∈ (0, 1):

(5.15) |e1(y, x)| ≤ C|x− y|−(n−2−α), |∇ye1(y, x)| ≤ C|x− y|−(n−1−α).

Cf. Proposition 2.4 of [MT4], which improves (2.70)–(2.71) of [MT2]. (Tools dis-
cussed in §II.3 of these notes play a role in the analysis.) The contribution of
e1(y, x) to Df in (5.11) can be handled by elementary means, and the results of
§3 apply to the contribution of e0(x − y, x) to (5.11). We deduce that the results
(5.7)–(5.9) continue to hold in this context, with

(5.16) Kf(x) = lim
ε→0

∫
∂Ω\Bε(x)

∂νy
E(x, y)f(y) dσg(y).

Furthermore, a calculation (see §5.2 of [HMT] for details) gives

(5.17) K = K# +K0,

where K0 has a weakly singular integral kernel and is seen to be compact on
Lp(∂Ω, dσ) by elementary means, and

(5.18) K#f(x) = lim
ε→0

Cn

∫
∂Ω\Bε(x)

〈x− y, n(y)〉
Γ(x, x− y)n/2

G(y, n(y))−1/2f(y) dσg(y),
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where Γ(x, x−y) =
∑
gjk(x)(xj−yj)(xk−yk) and 〈 , 〉 denotes the Euclidean inner

product. One deduces from Proposition 4.1 that K# is compact on Lp(∂Ω, dσ) for
1 < p < ∞, and hence so is K, when Ω is a regular SKT domain (and ∂Ω is
compact).

In addition to the double layer potential, the single layer potential

(5.19) Sf(x) =
∫
∂Ω

E(x, y)f(y) dσg(y), x ∈ Rn \ ∂Ω,

also plays an important role. One wants to estimate ∇Sf and establish the limiting
behavior of ∂νSf . To make this analysis for rough metric tensors, it is convenient
to replace (5.13) by

(5.20)
√
g(y)E(x, y) = e0(x− y, y) + e1(x, y)

(using the symmetry E(x, y) = E(y, x)), and apply results of §3 to the contribution
of e0(x−y, y) to ∇S, and elementary consequences of (5.15) to the remainder. The
result is that, when Ω is a UR domain,

(5.21) ‖N (∇Sf)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ), 1 < p <∞,

and, for f ∈ Lp(∂Ω, dσ), p ∈ (1,∞),

(5.22) (∂νSf)±(x) =
(
∓1

2
I +K∗

)
f(x), σ-a.e. x ∈ ∂Ω,

where

(5.23) K∗ : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ)

is the adjoint of K in (5.16). In addition, for f ∈ Lp(∂Ω, dσ),

(5.24) (Sf)+(x) = (Sf)−(x) = Sf(x), σ-a.e. x ∈ ∂Ω,

where Sf(x) is defined as in (5.19), with x ∈ ∂Ω.
We end this section with the following remark. Now that we’ve worked with

a non-flat Riemannian metric on Rn, there are no difficulties in extending this
setting, replacing Rn with an n-dimensional Riemannian manifold M . An open set
Ω ⊂M is a UR domain (respectively, a Lipschitz domain, or a regular SKT domain)
provided ∂Ω can be covered by coordinate charts and in these coordinates satisfies
the appropriate conditions. There is the issue of invariance of these properties
under coordinate transformations, which can be happily ignored (or tackled, which
has been done in [HMT2]). In the next section we will in fact take M to be a
compact Riemannian manifold.
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6. Dirichlet problem on rough domains

We work in the following setting. M is a compact Riemannian manifold with a
Hölder continuous metric tensor, and Ω ⊂M is a UR domain. Also set Ω+ = Ω and
Ω− =M \ Ω. We assume Ω is connected, but we do not assume Ω− is connected.

Let ∆ be the Laplace Beltrami operator on M , and take V ∈ L∞(M), V ≥ 0.
We assume V > 0 on a set of positive measure in each connected component of Ω−.
Set

(6.1) L = ∆− V.

Then L : H1,2(M) → H−1,2(M) is invertible. Take E, D, and S as in §5. Here we
drop the g-subscripts, so σg is denoted σ.

We study the following Dirichlet problem. Given f ∈ Lp(∂Ω, dσ), find u ∈
C1

loc(Ω) satisfying the conditions

(6.2) Lu = 0 on Ω, Nu ∈ Lp(∂Ω, dσ), u
∣∣
∂Ω

= f,

where the last condition means the nontangential limit of u exists for σ-a.e. x ∈ ∂Ω
and is equal to f(x). The method of layer potentials looks for a solution u in the
form

(6.3) u = Dg, g ∈ Lp(∂Ω, dσ).

By (5.9), this works if and only if

(6.4)
(1
2
I +K

)
g = f.

Thus we are led to seek conditions guaranteeing that

(6.5)
1

2
I +K : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) is invertible.

This is a classical method when ∂Ω has smoothness somewhat better than C1.
For C1 domains, this was carried through in [FJR] for p ∈ (1,∞), and for Lipschitz
domains in [Ver], for p = 2, in both cases in the setting M = flat Rn (and V ≡ 0).
In such a setting, a topological restriction was needed; ∂Ω was required to be
connected. One motivation for [MT1] was the realization that going from constant
coefficients to variable coefficients afforded a convenient way to eliminate such a
topological restriction.

Generalizing previous results, the attack on the validity of (6.5) made in [HMT]
starts with the following.
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Proposition 6.1. If Ω ⊂M is a UR domain, then the map

(6.6)
1

2
I +K∗ : L2(∂Ω) −→ L2(∂Ω)

is injective.

Proof. Suppose f ∈ L2(∂Ω) and ( 12I +K∗)f = 0. Set u = Sf, so (∆− V )u = 0 on
M \ ∂Ω. The estimate (5.21) allows the use of Green’s formula, to write

(6.7)

∫
Ω−

{
|∇u|2 + V |u|2

}
dV = −

∫
∂Ω

u
∂u

∂ν
dσ.

By (5.22), the right side of (4.3) vanishes when f ∈ ker ( 12I + K∗). Thus u is
constant on each connected component of Ω− and u = 0 on supp V . Hence u = 0
on Ω−. Hence, by (5.24), Sf = 0 a.e. on ∂Ω, so, again by (5.24) and Green’s
formula, we have

(6.8)

∫
Ω

{
|∇u|2 + V |u|2

}
dV =

∫
∂Ω

u
∂u

∂ν
dσ = 0.

Hence u is constant on Ω, so ∂νu+ = 0 a.e. on ∂Ω. Since, by (5.22), f is equal to
the jump of ∂νu across ∂Ω, we have f = 0, so Proposition 6.1 is proven.

Remark. Actually, in the setting of Proposition 6.1, to apply Green’s formula
takes a bit of work. We give further details. The asserted formula is

(6.9)

∫
Ω

div v dV =

∫
∂Ω

〈ν, v|∂Ω〉 dσ,

with

(6.10) v = u∇u,

which gives

(6.11) div v = |∇u|2 + u∆u = |∇u|2 + V u2 on M \ ∂Ω.

The following result is proven in §5.3 of [HMT].

Proposition 6.2. If M has a continuous metric tensor and Ω ⊂ M is Ahlfors
regular, then (6.9) holds whenever

(6.12) div v ∈ L1(Ω) and v ∈ Lp,
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for some p > 1, where

(6.13)
Lp = {v ∈ C(Ω) : N v ∈ Lp(∂Ω, dσ) and

∃ nontangential limit v|∂Ω, σ-a.e.}.

Most of the work needed to prove this is done in §2.3 of [HMT], which treats the
Euclidean case. As for the applicability of this result here, we have

(6.14)
f ∈ L2(∂Ω, dσ) =⇒ N∇u ∈ L2(∂Ω, dσ)

=⇒ N v ∈ Lp(∂Ω, dσ), for some p > 1,

whenever Ω is a UR domain, by (5.21) and (6.11). Also we have

(6.15)
N∇u ∈ L2(∂Ω, dσ) =⇒ |∇u|2 ∈ Lq(Ω)

=⇒ div v ∈ Lq(Ω), some q > 1,

whenever Ω is Ahlfors regular (as shown in [HMT], §3.2). Furthermore, local elliptic
regularity results, obtainable via methods discussed in §II.3, imply u is C1 on the
interior regions Ω and Ω−, so v is continuous there.

Versions of (6.9) valid for general finite perimeter domains can be found in [EG],
[Fed], and [Zie], but they require much more regularity on v. We also mention that
the justification of Green’s formula in the proof of Proposition 6.1 is much easier if
Ω is a Lipschitz domain. This was done (in the Euclidean context) in [Ver].

Using Proposition 6.1 and the compactness result given in §5 that

(6.16) K : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) is compact, for p ∈ (1,∞),

when Ω is a regular SKT domain, we have the following.

Proposition 6.3. If M has a Hölder continuous metric tensor and Ω ⊂ M is a
regular SKT domain, then the invertibility result (6.5) holds for each p ∈ (1,∞).

Proof. Since K is compact on Lp(∂Ω, dσ) for each p ∈ (1,∞), we have (1/2)I +K
Fredholm of index 0 on Lp. Proposition 6.1 implies (1/2)I + K∗ is injective on
Lp(∂Ω, dσ) for each p ∈ [2,∞), hence (1/2)I + K is bijective on Lp(∂Ω, dσ) for
each p ∈ (1, 2]. In particular,

(6.17)
1

2
I +K is injective on Lp(∂Ω, dσ),

for each p ∈ (1, 2], hence for each p ∈ (1,∞). This, together with Fredholmness of
degree 0, gives the asserted invertibility.

Thus when Ω ⊂ M is a regular SKT domain the Dirichlet problem (6.2) is
solvable for each f ∈ Lp(∂Ω, dσ), for p ∈ (1,∞). (One can also let p = ∞.)
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Uniqueness also holds. This takes an additional argument, given in §7.1 of [HMT].
It is also shown there that, for p ∈ (1,∞),

(6.18) f ∈ H1,p(∂Ω, dσ) =⇒ N (∇u) ∈ Lp(∂Ω, dσ).

In such a case, u is constructed in the form

(6.19) u = S(S−1f).

The theory of Lp-Sobolev spaces H1,p(∂Ω, dσ) is less straightforward in this general
context than it is for Lipschitz domains. It is developed in the context of Ahlfors
regular domains in §3.6 of [HMT], and then further in §4.3, where comparison is
made with other works on Lp-Sobolev spaces on metric measure spaces.

We turn to the setting of Lipschitz domains.

Proposition 6.4. If M has a Hölder continuous metric tensor and Ω ⊂ M is a
Lipschitz domain, then there exists ε = ε(Ω, L) > 0 such that invertibility in (6.5)
holds for each p ∈ (2− ε,∞).

As a consequence, (6.2) is solvable for each f ∈ Lp(∂Ω, dσ), as long as p ∈
(2− ε,∞). (One can also let p = ∞.)

The first key step is to establish invertibility on L2(∂Ω, dσ). This was done in
[Ver], in the Euclidean context, and in [MT1]–[MT4] in the Riemannian manifold
context. In light of Proposition 6.1, this invertibility follows from:

(6.20) ±1

2
I +K∗ are Fredholm of index 0 on L2(∂Ω, dσ).

(The result with the minus sign is useful in the study of the Neumann problem.)
In the route taken in [MT1]–[MT4], (6.20) follows from:

(6.21)
λ ∈ R, |λ| ≥ 1

2
=⇒ λI +K∗ : L2(∂Ω, dσ) → L2(∂Ω, dσ)

has closed range and finite-dimensional kernel.

In fact, (6.21) implies that each such λI+K∗ is semi-Fredholm, with a well defined
index. Such an index is continuous in λ, hence constant on (−∞,−1/2] and on
[1/2,∞). Invertibility is clear for large |λ|, so the index must be zero.

The key tool used to establish (6.20) in [Ver] and (6.21) in [MT1] is a Rellich
identity, which can be stated as follows, in the Riemannian manifold context. Pick
a Lipschitz vector field w, transverse to ∂Ω, so that 〈ν, w〉 ≥ a > 0 on ∂Ω. Given
f ∈ L2(∂Ω, dσ), set u = Sf on M \ ∂Ω. The identity is

(6.22)

∫
∂Ω

〈ν, w〉
{
|∇Tu|2 − (∂νu)

2
}
dσ

= 2

∫
∂Ω

(∇Twu)(∂νu) dσ − 2

∫
Ω

(∇wu)h dV

+

∫
Ω

{
(divw)|∇u|2 − 2(Lwg)(∇u,∇u)

}
dV,
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where Tw is the component of w tangent to ∂Ω, and where

(6.23) ∆u = h,

so, for Lu = (∆ − V )u = 0, h = V u. To prove this identity, one can compute
div(〈∇u,∇u〉w) and 2 div(∇wu · ∇u), and apply the divergence theorem to the
difference. This is applicable when the metric tensor is C1, or even Lipschitz, and
we can immediately pass to the pair of estimates

(6.24)
‖∇Tu‖2L2(∂Ω) ≤ C‖∂νu‖2L2(∂Ω) + C{‖h‖2L2(Ω) + ‖∇u‖2L2(Ω)},

‖∂νu‖2L2(∂Ω) ≤ C‖∇Tu‖2L2(∂Ω) + C{‖h‖2L2(Ω) + ‖∇u‖2L2(Ω)},

A similar argument is made with Ω replaced by Ω−. Then the jump relations (5.22)
are used to show that

(6.25)

∥∥∥(±1

2
I +K∗

)
f
∥∥∥
L2(∂Ω)

≤ C
∥∥∥(∓1

2
I +K∗

)
f
∥∥∥
L2(∂Ω)

+ C
∣∣∣∫
∂Ω

Sf dσ
∣∣∣

+ C‖Sf‖L2(M),

and hence

(6.26) ‖f‖L2(∂Ω) ≤ C
∥∥∥(±1

2
I +K∗

)
f
∥∥∥
L2(∂Ω)

+ C‖Sf‖H1,2(M).

Now using (5.21) one can show that

(6.27) S : L2(∂Ω, dσ) −→ H1,2(M) is compact.

This implies semi-Fredholmness of ±(1/2)I +K∗.
Next, the cases for which |λ| > 1/2 are treated by the following Rellich-type

identity, (4.22) of [MT1]:

(6.28)

(
λ2 − 1

4

) ∫
∂Ω

〈ν, w〉|f |2 dσ +

∫
∂Ω

〈ν, w〉|∇TSf |2 dσ

=

∫
∂Ω

〈ν, w〉|(λI +K∗)f |2 dσ + 2

∫
∂Ω

(∇TwSf)
(
(λI +K∗)f

)
dσ +R,

where R denotes a quantity satisfying an estimate

(6.29) |R| ≤ C‖Sf‖2H1,2(M).

Hence we have

(6.30) ‖f‖L2(∂Ω) ≤ C‖(λI +K∗)f‖L2(∂Ω) + C‖Sf‖H1,2(M),
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giving the asserted semi-Fredholmness (6.21).
This Rellich identity argument is not directly applicable when the metric tensor

g onM is merely Hölder, and further arguments are developed in [MT2] to establish
(6.21) in such a more general setting. These involve approximating g by a sequence
of smooth metric tensors, uniformly and boundedly in Cα.

Invertibility in (6.5) for p = 2 implies solvability of (6.2) for p = 2. Once the
uniqueness is established, one shows that the solution given by (6.3)–(6.4) coincides
with the solution given by the variational method when f ∈ H1/2,2(∂Ω), and with
the solution given by maximum principle arguments when f ∈ C(∂Ω), or more
generally f ∈ L∞(∂Ω). Thus we have a solution operator

(6.31) PI : L2(∂Ω, dσ) −→ C1
loc(Ω),

and estimates

(6.32) ‖N (PI f)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ),

valid for p = 2 and p = ∞, and hence, by interpolation, for all p ∈ [2,∞].
The invertibility of (1/2)I + K in (6.5) for p ∈ (2 − ε, 2 + ε) follows from the

invertibility at p = 2 and a general functional analysis argument. The invertibility
on the rest of p ∈ (2 − ε,∞) is suggested by the solvability results arising from
(6.32), but the proof requires further arguments, given in [MT3].

To say (6.2) is solvable for each f ∈ Lp(∂Ω, dσ) is to say that the harmonic

measure belongs to Lp′
(∂Ω, dσ). Thus Proposition 6.4 implies that whenever Ω ⊂

M is a Lipschitz domain, there exists ε > 0 such that harmonic measure belongs
to Lq(∂Ω, dσ) for all q ∈ [1, 2 + ε). In general this is sharp. It is easy to estimate
harmonic measure on the boundary of a polygonal domain in R2 and, given q0 > 2,
construct such a domain whose harmonic measure does not belong to Lq0(∂Ω, dσ).

The following result, established in [MT2]–[MT3], applies to solvability of the
Dirichlet problem with boundary data f ∈ H1,p(∂Ω, dσ).

Proposition 6.5. If M has a Hölder continuous metric tensor and Ω ⊂ M is a
Lipschitz domain, then there exists ε = ε(Ω, L) > 0 such that

(6.33) S : Lp(∂Ω, dσ) −→ H1,p(∂Ω, dσ), 1 < p < 2 + ε,

is invertible.

To apply this to the Dirichlet problem, construct the solution u by (6.19) and
make use of the estimate (5.21).

There are further results on the Dirichlet problem, such as Sobolev-Besov es-
timates, which we will not touch on here. It is clear from (5.22) that results on
solvability of the equation

(6.34)
(
−1

2
I +K∗

)
f = g,
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which by (6.20) is Fredholm of index zero on L2(∂Ω, dσ), apply to the Neumann
problem. There are also results on natural boundary problems for the Hodge Lapla-
cian, which include the Maxwell system of electromagnetism, results on the Stokes
system, with applications to the Navier-Stokes equations, and other systems of
elliptic PDE, which can be found in various references at the end of these notes.
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IV. Pseudodifferential operators on noncompact manifolds

with bounded geometry

In this lecture we introduce some classes of pseudodifferential operators on a
Riemannian manifold M with bounded geometry. We define “bounded geometry”
as follows. First we assume there exists R0 ∈ (0,∞) such that for each p ∈M , the
exponential map

(0.1) Expp : TpM −→M

has the property

(0.2) Expp : BR0(0) −→ BR0(p) diffeomorphically,

where Br(p) = {x ∈ M : d(x, p) < r}, d(x, p) denoting the distance from x to p.
Furthermore, the pull-back of the metric tensor from BR0

(p) ⊂ M to BR0
(0) ⊂

TpM , identified with BR0
(0) ⊂ Rn (n = dimM), uniquely up to an element of

O(n), furnishes a collection of n× n matrices Gp(x) = (gpjk(x)) satisfying

(0.3) {Gp : p ∈M} is bounded in C∞(BR0
(0),End(Rn)).

We also require that

(0.4) ξ ·Gp(x)ξ ≥
1

2
|ξ|2, ∀ p ∈M,x ∈ BR0

(0), ξ ∈ Rn,

and that

(0.5) BR0
(p) is geodesically convex, ∀ p ∈M.

Such is a complete Riemannian manifold with bounded geometry. Given this, we
find it convenient to multiply the metric tensor of M by a constant, if necessary, so
we can say the properties above hold with

(0.6) R0 = 4.

Having (0.2)–(0.6), we can pick pk ∈M, k ∈ Z+, such that

(0.7) {B1/2(pk) : k ∈ Z+} covers M,

while, for some K = K(M) <∞,

(0.8) ∀ p ∈M, at most K balls B2(pk) contain p.
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We can then form a partition of unity
∑

k φk = 1 such that

(0.9) supp φk ⊂ B1(pk), φk ◦ Exppk
is bounded in C∞

0 (B1(0)).

We call such {φk : k ∈ Z+} a tame partition of unity, and the collection {B1(pk) :
k ∈ Z+} a tame cover of M .

We mention that each Riemannian manifold with bounded geometry satisfies a
volume bound of the form

(0.10) Vol(Br(p)) ≤ C〈r〉µeκr, ∀ r ∈ (0,∞),

for some constants C, µ, and κ, independent of p ∈M .
Section 1 makes an analysis of certain families of functions of the Laplace Bel-

trami operator ∆, such as (λI − ∆)m/2, for λ > 0, m ∈ R, as pseudodifferential
operators on M . Given W > 0, we define a class of operators Ψm

W (M), whose
Schwartz kernels behave like those of operators in OPSm

1,0(Rn) near the diagonal, in

a uniform fashion, and away from the diagonal decay like 〈d(x, y)〉−ke−Wd(x,y), ∀ k,
as do all derivatives. We also introduce a smaller class of operators, Ψ̃m

W (M). It

is shown that (λI − ∆)m/2 ∈ Ψ̃m
W (M) when λ > W 2. More generally, we con-

sider Φ(
√
−∆) for Φ in a space Sm

W , consisting of even functions (of ζ) smooth and
satisfying symbolic estimates on the strip {|Im ζ| ≤ W}, and holomorphic on the
interior. Even more generally, we consider Φ(

√
−L), with L = ∆ + B2, in case

Spec(−∆) ⊂ [B2,∞).
In §2 we show that P : Lp(M) → Lp(M) for all p ∈ (1,∞) whenever P ∈ Ψ0

W (M)

with W ≥ κ, and also whenever P ∈ Ψ̃0
W (M) with W ≥ κ/2, provided (0.10)

holds. In §3 we show that if P1 ∈ Ψm1

W (M) and P2 ∈ Ψm2

W+κ(M), then P1P2

and P2P1 belong to Ψm1+m2

W (M). In §4 we define Lp-Sobolev spaces Hs,p(M),
with p ∈ (1,∞). We give one definition for s = k ∈ Z+ and another for general
s ∈ R, and show they are equivalent when s = k. We discuss mapping properties
P : Hs,p(M) → Hs−m,p(M), and show that {Hs,p(M) : s ∈ R} forms a complex
interpolation scale, for each p ∈ (1,∞). Section 5 obtains a few additional results
in the case that M is a symmetric space of noncompact type.

In §6 we define local Hardy space h1(M) and bmo(M), extending to the setting
of Riemannian manifolds with bounded geometry the definitions of h1(Rn) and
bmo(Rn) given in §I.3. We also define Hardy and bmo-Sobolev spaces hs,1(M) and
hs,∞(M) and give results about the action of operators in Ψm

W (M) on these spaces.
This material was developed in [T7], and is currently being applied to the study
of nonlinear wave equations on hyperbolic space, in joint work of the author and
Jason Metcalfe.

1. Functions of the Laplace operator
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A fruitful approach to study a function Φ(A) of a self-adjoint operator A is via
the formula

(1.1) Φ(A)f =
1√
2π

∫ ∞

−∞
Φ̂(t)eitAf dt,

whose validity follows from the spectral theorem and the Fourier inversion formula.
If Φ is even, we can rewrite this as

(1.2) Φ(A)f =
1√
2π

∫ ∞

−∞
Φ̂(t) cos tA f dt.

We can apply this to

(1.3) A =
√
−∆,

when ∆ is the Laplace-Beltrami operator on the Riemannian manifold M . In some
important cases one has not merely Spec(−∆) ⊂ [0,∞), but

(1.4) Spec(−∆) ⊂ [B2,∞),

and it is convenient to take

(1.5) A =
√
−L, L = ∆+B2.

Note that for f ∈ L2(M), u(t, x) = cos t
√
−Lf(x) solves the wave equation

(1.6)
∂2u

∂t2
− Lu = 0, u(0, x) = f(x), ut(0, x) = 0.

For an important class of functions Φ, defined below, one can obtain a great deal
of information about Φ(

√
−L) by exploiting two properties of the wave equation

(1.6):

(a) Construction of a parametrix for small |t|;
(b) Use of finite propagation speed.

The parametrix is constructed by the method of geometrical optics. In local
coordinates, one sets

(1.7) U(t)f(x) =
∑
±

(2π)−n/2

∫
a±(t, x, ξ)eiφ

±(t,x,ξ)f̂(ξ) dξ,

where φ± is real valued, smooth for ξ 6= 0, and homogeneous of degree 1 in ξ, and

(1.8) a±(t, x, ξ) ∼
∑
k≥0

a±k (t, x, ξ),
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with ak(t, x, ξ) ∈ S−k
cl , homogeneous of degree −k in |ξ| for |ξ| ≥ 1. To construct

these functions, one calculates

(1.9) (∂2t − L)(a±eiφ
±
) = b±eiφ

±
, b±(t, x, ξ) ∼

∑
k≥0

b±k (t, x, ξ),

with b±k ∈ S2−k
cl , homogeneous of degree 2− k in ξ for |ξ| ≥ 1. One has

(1.10) b±0 (t, x, ξ) = −a±0
(
|∂tφ±|2 − |∇xφ

±|2
)
.

We set this equal to zero by requiring φ± to satisfy the eikonal equations

(1.11)
∂φ±

∂t
= ±|∇xφ

±|.

We take initial data φ±(0, x, ξ) = x · ξ. The fact that M has bounded geometry
implies that if we work in local exponential coordinate systems as described in this
lecture’s introduction, then there exists a > 0 such that there is a solution for
|t| ≤ a on all unit balls, with good bounds. Note that φ+(−t, x, ξ) = φ−(t, x, ξ).

Once (1.11) is achieved, the formula for b±1 simplifies to

(1.12) b±1 (t, x, ξ) = i
(
2φ±

t ∂ta
±
0 − 2〈∇xφ

±,∇xa
±
0 〉+ a±0 (∂

2
t −∆)φ±).

This vanishes provided a±0 (t, x, ξ) satisfies the first transport equation

(1.13) 2φ±
t

∂a±0
∂t

= 2〈∇xφ
±,∇xa

±
0 〉 − a±0 (∂

2
t −∆)φ±.

By (1.11), φ±
t is nonzero for |t| small enough. Then one can impose the initial

condition a±0 (0, x, ξ) = 1/2. Higher order transport equations for a±k (t, x, ξ) are

obtained from similar formulas for b±k (t, x, ξ). We have a+(−t, x, ξ)eiφ+(−t,x,ξ) =

a−(t, x, ξ)eiφ
−(t,x,ξ), hence U(−t) = U(t). The fact that U(t) − cos t

√
−L is a

smoothing operator for |t| ≤ a follows via energy estimates from §I.5.
The role of this parametrix in the analysis of Φ(

√
−L) arises as follows. Take

ψ ∈ C∞
0 (R) such that ψ(t) = 1 for |t| ≤ a/4, 0 for |t| ≥ a/2, and write (1.2) as

(1.14)

Φ(
√
−L)f

=
1√
2π

∫ ∞

−∞
Φ̂(t)ψ(t) cos t

√
−Lf dt+ 1√

2π

∫ ∞

−∞
Φ̂(t)(1− ψ(t)) cos t

√
−Lf dt

= Φ#(
√
−L)f +Φb(

√
−L)f.

Decreasing a if necessary, we assume a ≤ 1. Note that the Schwartz kernel of
Φ#(

√
−L) is contained in

(1.15) {(x, y) ∈M ×M : d(x, y) ≤ a/2}.
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In local coordinates, and modulo a smooth remainder, we have

(1.16) Φ#(
√
−L)f(x) = Cn

∑
±

∫ ∞

−∞

∫
Φ̂#(t)a±(t, x, ξ)eiφ

±(t,x,ξ)f̂(ξ) dξ.

Now

(1.17)

∫
Φ̂#(t)a±(t, x, ξ)eiφ

±(t,x,ξ) dt = Φ#(Dt)
(
a±(t, x, ξ)eiφ

±(t,x,ξ)
)∣∣∣

t=0
,

and if Φ# ∈ Sm
1,0(R), since φ

±
t 6= 0, there is an asymptotic expansion

(1.18) Φ#(Dt)(a
±eiφ

±
) = e±(t, x, ξ)eiφ

±
,

with e± ∈ Sm
1,0, satisfying

(1.19) e±(t, x, ξ) ∼
∑
k≥0

e±k (t, x, ξ),

with e±k (t, x, ξ) ∈ Sm−k
1,0 and

(1.20) e±0 (t, x, ξ) = a±(t, x, ξ)Φ#(φ±
t (t, x, ξ)).

In particular,

(1.21) Φ#(Dt)(a
±eiφ

±
)
∣∣
t=0

= e±(0, x, ξ)eix·ξ,

and

(1.22)

e±(0, x, ξ) ∼
∑
k≥0

e±k (0, x, ξ)

e±0 (0, x, ξ) =
1

2
Φ#(±|ξ|).

We therefore have:

Proposition 1.1. Assume Φ ∈ Sm
1,0(R) is even. Then

(1.22) Φ#(
√
−L) ∈ Ψm

#(M),

the class of operators on functions on M defined as follows.

Given an operator P : C∞
0 (M) → D′(M), we say P ∈ Ψm

#(M) provided the

following conditions hold. First we assume its Schwartz kernel KP ∈ D′(M ×M)
satisfies

(1.23)
suppKP ⊂ {(x, y) ∈M ×M : d(x, y) ≤ 1},

sing suppKP ⊂ diag (M ×M) = {(x, x) : x ∈M}.
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Next, we assume that, for each p ∈M ,

(1.24) Mφ1PMφ2 ∈ OPSm
1,0(Rn),

with uniform bounds, independent of p ∈M , where this statement has the following
meaning.

For each p ∈ M , use Expp : TpM → M , satisfying (0.1)–(0.6), to identify
B4(p) ⊂ M with B4(0) ⊂ TpM , further identified with B4(0) ⊂ Rn, uniquely up
to the action of O(n). Thus functions supported on B4(p) ⊂M are identified with
functions supported on B4(0) ⊂ Rn. We pick φj ∈ C∞

0 (B4(0)) ≈ C∞
0 (B4(p)),

equal to 1 on B2(p), and set Mφj
f = φjf , and use these identifications to regard

Mφ1
PMφ2

as operating on functions on Rn.

We turn to Φb(
√
−L) in (1.14). Note that for an even function Φ,

(1.25) Φ ∈ Sm
1,0(R) =⇒ Φ̂(t)(1− ψ(t)) ∈ S(R).

At this point, we may as well treat Φ(
√
−L) when Φ ∈ S(R) is even. We want to

obtain estimates on the integral kernel kΦ(x, y) of Φ(
√
−L), given by

(1.26) Φ(
√
−L)f(x) =

∫
M

KΦ(x, y)f(y) dV (y).

Note that

(1.27) kΦ(·, y) = Φ(
√
−L)δy.

Given that M has bounded geometry, we can find φy and ψy, supported in B1(y),
such that, with m = [n/4] + 1,

(1.28) δy = Lmφy + ψy, ‖φy‖L2 , ‖ψy‖L2 ≤ C.

Then

(1.29) kΦ(·, y) = Φm(
√
−L)φy +Φ(

√
−L)ψy, Φm(λ) = λ2mΦ(λ).

Also

(1.30) Lj
yL

k
xkΦ(x, y) = kΦj+k

(x, y).

Bringing in (1.2), we have

(1.33)

kΦ(·, y) =
1√
2π

∫ ∞

−∞
Φ̂(t) cos t

√
−L(Lmφy + ψy) dt

=
1√
2π

∫ ∞

−∞

{
(−1)mΦ̂(2m)(t) cos t

√
−Lφy

+ Φ̂(t) cos t
√
−Lψy

}
dt,
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and more generally

(1.34)
Lj
yL

k
xkΦ(·, y) =

1√
2π

∫ ∞

−∞

{
(−1)mΦ̂(2m+2j+2k)(t) cos t

√
−Lφy

+ Φ̂(2j+2k)(t) cos t
√
−Lψy

}
dt.

Since cos t
√
−L has L2-operator norm ≤ 1, it readily follows for even functions Φ,

(1.35) Φ ∈ S(R) =⇒ kΦ ∈ C∞(M ×M).

We can also estimate the rate of decay of kΦ(x, y) when d(x, y) is large. For this
we bring in finite propagation speed to deduce from (1.33) that

(1.36)

d(x, y) ≥ R+ 1 =⇒

kΦ(x, y) =
1√
2π

∫
|t|>R

{(−1)mΦ̂(2m)(t) cos t
√
−Lφy(x)

+Φ̂(t) cos t
√
−Lψy(x)

}
dt.

We get estimates of the following sort. With C independent of y ∈M ,

(1.37) ‖kΦ(·, y)‖L2(M\BR(y)) ≤ CN0(Φ, R) + CNm(Φ, R),

where

(1.38) Nj(Φ, R) =

∫
|t|>R

|Φ̂(2j)(t)| dt.

More generally, via (1.34),

(1.39) ‖Lj
yL

k
xkΦ(·, y)‖L2(M\BR(y)) ≤ CNj+k(Φ, R) + CNm+j+k(Φ, R).

Local elliptic regularity and Sobolev regularity give, also with C independent of
x, y ∈M ,

(1.40) |kΦ(x, y)| ≤ C
2∑

j=0

Njm(Φ, d(x, y)− 2),

and similar estimates on its derivatives.
If Φ ∈ S(R), then all quantities Nm(Φ, R) are rapidly decreasing as R → ∞.

However, for a Riemannian manifold M with bounded geometry, one has such
volume estimates as

(1.41) Vol(Br(p)) ≤ C〈r〉µeκr,
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and if κ > 0 one desires bounds on kΦ(x, y) involving exponential decay. The
following has proven to be a useful class of functions Φ. Given W > 0, let

(1.42) ΩW = {ζ ∈ C : |Im ζ| < W}.

We denote by Sm
W the space of even functions Φ ∈ C∞(ΩW ), holomorphic on ΩW ,

and satisfying the symbol estimates

(1.43) |Φ(k)(ζ)| ≤ Ck〈ζ〉m−k, ζ ∈ ΩW .

The decomposition Φ = Φ# + Φb of (1.14) gives Φ#(
√
−L) ∈ Ψm

#(M), as before,

and Φb ∈ S−∞
W . One has

(1.44) |Φ̂b(t)| ≤ Cj〈t〉−je−W |t|,

and similar estimates on derivatives, yielding the following results.
Given W > 0, we say

(1.45) P b ∈ Ψ−∞
W (M)

provided it has the form

(1.46) P bf(x) =

∫
M

kb(x, y)f(y) dV (y),

where kb ∈ C∞(M ×M) satisfies

(1.47) |kb(x, y)| ≤ Cj〈d(x, y)〉−je−Wd(x,y),

and also such estimates hold for all x and y-derivatives of kb(x, y) (say in local
exponential coordinate systems). We set

(1.48) Ψm
W (M) = {P# + P b : P# ∈ Ψm

#(M), P b ∈ Ψ−∞
W (M)}.

The result (1.22) together with the estimate (1.40) and analogues, give the following
conclusion.

Proposition 1.2. We have

(1.49) Φ ∈ Sm
W =⇒ Φ(

√
−L) ∈ Ψm

W (M).

It is useful to record a slightly smaller class of operators. We say

(1.50) P b ∈ Ψ̃−∞
W (M)
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provided it has the form (1.46) and kb ∈ C∞(M ×M) satisfies, with Cjkℓ indepen-
dent of y ∈M ,

(1.51) ‖Lj
yL

k
xk

b(·, y)‖L2(M\BR(y)) ≤ Cjkℓ〈R〉−ℓe−WR,

and

(1.52) ‖Lj
yL

k
xk

b(x, ·)‖L2(M\BR(x)) ≤ Cjkℓ〈R〉−ℓe−WR.

We then set

(1.53) Ψ̃m
W (M) = {P# + P b : P# ∈ Ψm

#(M), P b ∈ Ψ̃−∞
W (M)}.

The derivation of (1.40) from (1.39) leads to

(1.54) Ψ̃−∞
W (M) ⊂ Ψ−∞

W (M), hence Ψ̃m
W (M) ⊂ Ψm

W (M).

The estimates (1.39) themselves then imply the following improvement of Proposi-
tion 1.2. As will be seen in §2, this next result has somewhat stronger implications
for Lp-operator norm bounds than Proposition 1.2.

Proposition 1.3. We have

(1.54) Φ ∈ Sm
W =⇒ Φ(

√
−L) ∈ Φ̃m

W (M).

Proof. The estimate (1.39) gives (1.51) directly. Since Φ(
√
−L)∗ = Φ∗(

√
−L), with

Φ∗(ζ) = Φ(ζ), we also have (1.52).

Remark. A family of examples of functions of
√
−L to keep in mind is the follow-

ing, with m, t, b ∈ R:

(1.56) (−∆+ b2)(m+it)/2 = (−L+B2 + b2)(m+it)/2.

This is of the form Φ(
√
−L), with

(1.57) Φ(ζ) = (ζ2 +B2 + b2)(m+it)/2.

We have

(1.58) Φ ∈ Sm
W , ∀W <

√
B2 + b2.

2. Lp operator norm estimates

We seek results on when elements of Ψ0
W (M) and of Ψ̃0

W (M) are bounded on
Lp(M). The first result is a straightforward consequence of (I.3.8).
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Proposition 2.1. If P ∈ Ψ0
#(M), then P : Lp(M) → Lp(M) for each p ∈ (1,∞).

It remains to see when elements of Ψ−∞
W (M) and Ψ̃−∞

W (M) are bounded on
Lp(M). As is well known, given thatM has bounded geometry, there exist constants
C, µ, and κ such that for each r ∈ (0,∞), p ∈M ,

(2.1) Vol(Br(p)) ≤ C〈r〉µeκr.

(Stronger results are proven in §4 of [CGT].) In case M = Hn, n-dimensional
hyperbolic space of constant sectional curvature −1, one has

(2.2) Vol(Br(p)) = Cn

∫ r

0

(
sinh s

)n−1
ds.

Here is a result for Ψ0
W (M), implicit in [CGT].

Proposition 2.2. If W ≥ κ, then

(2.3) P b ∈ Ψ−∞
W (M) =⇒ P b : Lp(M) → Lp(M), ∀ p ∈ [1,∞].

Hence

(2.4) P ∈ Ψ0
W (M) =⇒ P : Lp(M) → Lp(M), ∀ p ∈ (1,∞).

Proof. If kb(x, y) is the integral kernel of P b, to prove (2.3) it suffices to show that

(2.5)

sup
y

∫
M

|kb(x, y)| dV (x) <∞, and

sup
x

∫
M

|kb(x, y)| dV (y) <∞.

Our hypotheses yield

(2.6)

∫
M

|kb(x, y)| dV (x) ≤ Ck

∫ ∞

0

〈r〉µ−ke(κ−W )r dr ≤ C <∞,

independent of y, provided W ≥ κ and we pick k > µ+ 1. The other part of (2.5)
works the same way. From (2.3) and Proposition 2.1 we have (2.4).

Here is the result for Ψ̃0
W (M), implicit in [T3].
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Proposition 2.3. If W ≥ κ/2, then

(2.7) P b ∈ Ψ̃−∞
W (M) =⇒ P b : Lp(M) → Lp(M), ∀ p ∈ [1,∞].

Hence

(2.8) P ∈ Ψ̃0
W (M) =⇒ P : Lp(M) → Lp(M), ∀ p ∈ (1,∞).

Proof. Again it suffices to verify (2.5). We estimate the first integral in (2.5) by
dividing M into shells

(2.7) Aj(y) = {x ∈M : j ≤ d(x, y) ≤ j + 1}.

We have the following estimate:

(2.8)

∫
M

|kb(x, y)| dV (x) =
∑
j≥0

∫
Aj(y)

|kb(x, y)| dV (x)

≤
∑
j≥0

(
VolAj(y)

)1/2‖kb(·, y)‖L2(Aj(y))

≤ C
∑
j≥0

〈j〉µ/2ejκ/2‖kb(·, y)‖L2(Aj(y)).

Bringing in (1.51) (with j = k = 0) we have

(2.9) ‖kb(·, y)‖L2(Aj(y)) ≤ Cℓ〈j〉−ℓe−jW ,

and taking ℓ > µ/2 + 1 yields the first bound in (2.5), as long as W ≥ κ/2. The
second bound in (2.5) is proven similarly. Again, Proposition 2.1 and (2.7) yield
(2.8).

Propositions 1.2 and 1.3 can now be applied. The result of applying Proposition
1.3 is better, so we record that conclusion.

Proposition 2.3. If the volume estimate (2.1) holds, then

(2.10) Φ ∈ S0
W , W ≥ κ

2
=⇒ Φ(

√
−L) : Lp(M) → Lp(M), ∀p ∈ (1,∞).

Hilbert space theory implies Φ(
√
−L) is bounded on L2(M) for each bounded

Φ. A standard argument using the Stein interpolation theorem allows one to pass
from Proposition 2.3 to the following (Theorem 1.6 of [T3]), which is sharp when
M is a symmetric space of noncompact type.
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Proposition 2.4. If Φ ∈ S0
W , then

(2.11) Φ(
√
−L) : Lp(M) −→ Lp(M),

provided

(2.12) p ∈ (1,∞), and W ≥
∣∣∣1
p
− 1

2

∣∣∣ · κ.

3. Operator products

We want to analyze products P1P2 when Pj ∈ Ψ
mj

Wj
(M). As in §2, we assume

M has bounded geometry and the volume bound

(3.1) Vol(Br(p)) ≤ C〈r〉µeκr.

To make straightforward sense of P1P2, we define some classes of “test functions”
f and give conditions under which g = P2f is a test function and P1g is a test
function.

We define classes of test functions as follows. Fix p ∈M and say

(3.2) f ∈ C∞
W (M) ⇐⇒ |Lkf(x)| ≤ Cjk〈d(x, p)〉−je−Wd(x,y), ∀ j, k ≥ 0.

We start with the following result.

Proposition 3.1. We have

(3.3) P ∈ Ψm
W (M), f ∈ C∞

W+κ(M) =⇒ Pf ∈ C∞
W (M).

Proof. It follows readily from results on §§I.3–I.4 that

(3.4) P# ∈ Ψm
#(M), f ∈ C∞

W (M) =⇒ P#f ∈ C∞
W (M),

so it remains to estimate g = P bf , given P b ∈ Ψ−∞
W (M). We have

(3.5) g(x) =

∫
M

kb(x, z)f(z) dV (z),

and estimates on kb(x, z) and f(z) give

(3.6) |g(x)| ≤ Cjk

∫
M

〈d(x, z)〉−j〈d(z, p)〉−ke−W [d(x,z)+d(z,p)]e−κd(z,p) dV (z).
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We have

(3.7)
〈d(x, z)〉〈d(z, p)〉 ≈ (1 + d(x, z))(1 + d(z, p))

≥ 1 + d(x, z) + d(z, p),

and

(3.8) d(x, z) + d(z, p) ≥ d(x, p),

so taking k ≥ j + µ+ 2 in (3.6), we get

(3.9) |g(x)| ≤ Cj〈d(x, p)〉−je−Wd(x,p)

∫
M

〈d(z, p)〉−µ−2e−κd(z,p) dV (z),

and the integral is finite. There are similar estimates on Lkg(x), so (3.4) is estab-
lished.

The following is a useful complement to Proposition 3.1.

Proposition 3.2. We have

(3.9) P ∈ Ψm
W+κ(M), f ∈ C∞

W (M) =⇒ Pf ∈ C∞
W (M).

Proof. The result (3.4) is applicable, and it remains to estimate (3.5). In place of
(3.6), this time we have

(3.10) |g(x)| ≤ Cjk

∫
M

〈d(x, z)〉−j〈d(z, p)〉−ke−κd(x,z)e−W [d(x,z)+d(z,p] dV (z).

Again use (3.7)–(3.8), this time with j ≥ k + µ+ 2, to get

(3.11) |g(x)| ≤ Ck〈d(x, p)〉−ke−Wd(x,p)

∫
M

〈d(x, z)〉−µ−2e−κd(x,z) dV (z),

and the integral is again finite, with a bound independent of x ∈ M . Similar
estimates hold for Lkg(x), so (3.9) is proven.

Here is the corresponding composition result.

Proposition 3.3. We have

(3.12) P1 ∈ Ψm1

W (M), P2 ∈ Ψm2

W+κ(M) =⇒ P1P2, P2P1 ∈ Ψm1+m2

W (M).

Proof. As a preliminary, note the mapping properties

(3.13)
C∞

W+2κ(M)
P2−→ C∞

W+κ(M)
P1−→ C∞

W (M),

C∞
W+κ(M)

P1−→ C∞
W (M)

P2−→ C∞
W (M).
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To proceed, write Pj = P#
j + P b

j with P#
j ∈ Ψ

mj

# (M), P b
1 ∈ Ψ−∞

W (M), and P b
2 ∈

Ψ−∞
W+κ(M). Furthermore, arrange that the Schwartz kernels of P#

j are supported

within distance 1/2 of the diagonal in M ×M . We claim that the following hold:

(3.14) P#
1 P

#
2 ∈ Ψm1+m2

# (M),

and

(3.15) P#
1 P

b
2 , P

b
1P

#
2 ∈ Φ−∞

W (M),

together with their counterparts with the subscripts 1 and 2 interchanged, and
furthermore

(3.16) P b
1P

b
2 , P

b
2P

b
1 ∈ Ψ−∞

W (M).

Of these, (3.14) and its counterpart follow directly from results of §I.2 (plus coor-
dinate invariance, from §I.8). The first result in (3.15) follows from the fact that

(3.17) kP#
1 P b

2
(·, y) = P#

1 kP b
2
(·, y),

plus standard pseudodifferential operator estimates, and the second part from the
first, by passing to the adjoint. Similarly for their counterparts.

This leaves (3.16). We have

(3.18) kP b
1P

b
2
(x, y) =

∫
M

kP b
1
(x, z)kP b

2
(z, y) dV (z),

hence
(3.19)

|kP b
1P

b
2
(x, y)| ≤ Cjk

∫
M

〈d(x, z)〉−j〈d(z, y)〉−ke−W [d(x,z)+d(z,y)]e−κd(z,y) dV (z).

This has the same form as (3.6), with y in place of p. Hence the estimates on (3.6)
apply. Similarly,
(3.20)

|kP b
2P

b
1
(x, y)| ≤ Cjk

∫
M

〈d(x, z)〉−j〈d(z, y)〉−ke−κd(x,z)e−W [d(x,z)+d(z,y)] dV (z),

which is estimated as in (3.10). There are similar estimates on derivatives, and
(3.16) follows. This gives (3.12).

The following variant of Proposition 3.3 is proven in [T7].
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Proposition 3.4. Given W > κ/2, we have

(3.21) Pj ∈ Ψ
mj

W (M) =⇒ P1P2 ∈ Ψm1+m2

W−κ/2(M).

4. Sobolev spaces

As usual, M is a Riemannian manifold with bounded geometry, satisfying (0.1)–
(0.6). We want to define and study the spaces Hs,p(M) of functions (or distri-
butions) with s derivatives in Lp(M). Here is one natural definition when s = k
is a positive integer. Let V1(M) denote the space of smooth vector fields X on
M with the property that, in each exponential coordinate system Expq : TqM ⊃
B1(0) → B1(q), there is a uniform bound (independent of q) on the coefficients of
X and, for each k, a uniform bound on all the derivatives of these coefficients of
order ≤ k. Let Vk(M) denote the set of linear combinations of operators of the
form L = X1 · · ·Xj , with Xν ∈ V1(M) and j ≤ k. Then we can define

(4.1) Hk,p(M) = {u ∈ Lp(M) : Lu ∈ Lp(M), ∀L ∈ Vk(M)}.

There are alternative characterizations of these spaces. For one, let {B1(pℓ) : ℓ ∈
Z+} be a tame cover of M and {φℓ : ℓ ∈ Z+} a tame partition of unity, as defined
in (0.7)–(0.9). Given a function u on M , set

(4.2) uℓ = (φℓu) ◦ Exppℓ
,

a function supported on B1(0) ⊂ Tpℓ
M , which we can identify with B1(0) ⊂ Rn,

uniquely up to the action of an element of O(n). Then (given p <∞)

(4.3) u ∈ Hk,p(M) ⇔
∑
ℓ

∑
|α|≤k

‖Dαuℓ‖pLp(B1(0))
<∞.

Thie equivalence is straightforward.
We next define Sobolev spaces for arbitrary index of regularity s ∈ R, as

(4.4) Hs,p(M) = (λI −∆)−s/2Lp(M).

where we take λ > κ2, where κ is as in (3.1). From here on, we work under the
condition

(4.5) 1 < p <∞.

Of course, we need to show that when s = k is a positive integer, (4.1) is
equivalent to (4.4). Before tackling this, we first need to show that the right side
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of (4.4) is well defined. This will follow from results obtained in §§1–3. To begin,
we write

(4.6) (λI −∆)−s/2 = Φs,λ(
√
−∆),

where

(4.7) Φs,λ(ζ) = (ζ2 + λ)−s/2.

With Sm
W defined as in (1.42)–(1.43), we have

(4.8) Φs,λ ∈ S−s
W , ∀W <

√
λ.

Hence, by (1.56)–(1.58), given λ > 0,

(4.9) (λI −∆)−s/2 ∈ Ψ−s
W (M), ∀W <

√
λ.

We can now establish the following.

Proposition 4.1. Given λ > κ2,

(4.10) (λI −∆)−k/2 : Lp(M) −→ Hk,p(M).

where the spaces on the right are defined by (4.1).

Proof. Note that Vk(M) ⊂ Ψk
#(M). Hence, by (3.12),

(4.11) L ∈ Vk(M) =⇒ L(λI −∆)−k/2 ∈ Ψ0
W (M), ∀W <

√
λ.

As long as we can take W > κ, we can apply Proposition 2.1 to conclude that such
L(λI −∆)−k/2 is bounded on Lp(M), p ∈ (1,∞), establishing (4.10).

At this point, we have the spaces defined on the right side of (4.4) contained in
the spaces defined in (4.1), when s = k is a positive integer.

To proceed, it will be convenient to know that

(4.12) (λI −∆)−r/2(λI −∆)−s/2f = (λI −∆)−(r+s)/2f, ∀ r, s ∈ R,
whenever f ∈ Lp(M), 1 < p < ∞. The result (4.12) for f ∈ L2(M) is a well
known consequence of Hilbert space spectral theory. In that case, the self-duality
of L2(M) extends to produce the duality

(4.13)
(
(λI −∆)−s/2L2(M)

)′
= (λI −∆)s/2L2(M), ∀ s ∈ R.

Now, given that (λI −∆)−k/2L2(M) is contained in Hk,2(M) as defined by (4.1),
or by (4.3.5), we have

(4.14) (λI −∆)−k/2L2(M) ⊂ L∞(M), ∀ k > n

2
,

and hence, by duality,

(4.15) L1(M) ⊂ (λI −∆)k/2L2(M), ∀ k > n

2
,

from which it follows that whenever k > n/2,

(4.16) Lp(M) ⊂ (λI −∆)k/2L2(M), ∀ p ∈ (1, 2].

We can now prove:
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Lemma 4.2. The identity (4.12) holds for all f ∈ Lp(M), 1 < p <∞.

Proof. We have seen that (4.12) holds for all f ∈ L2(M). The result (4.16) implies
(4.12) holds on Lp(M) for p ∈ (1, 2]. The facts that (4.12) holds on Lp(M) for
p ∈ (2,∞) follow by duality.

We are now prepared to prove:

Proposition 4.3. If s = k is a positive integer, the spaces defined by (4.1) coincide
with those defined by (4.4) (assuming p ∈ (1,∞)).

Proof. We have one set of inclusions. For the converse, assume u has the property

(4.17) u, X1 · · ·Xju ∈ Lp(M), ∀ j ≤ k, Xν ∈ V1(M),

We claim

(4.18) f = (λI −∆)k/2u ∈ Lp(M).

If so, then, by (4.12),

(4.19) u = (λI −∆)−k/2f,

and we are done.
The result (4.18) is elementary if k = 2j is an even integer. Then (λI −∆)j is a

differential operator, and it is a finite linear combination of operators of the form
appearing in (4.17). Now suppose k = 2j + 1. The same argument shows that

(4.20) v = (λI −∆)ju

has the property

(4.21) v, Xv ∈ Lp(M), ∀X ∈ V1(M).

If we can show that for such v,

(4.22) (λI −∆)1/2v ∈ Lp(M),

we will be done. To get this, write

(4.23) (λI −∆)1/2v = Φ#
−1,λ(

√
−∆)v +Φb

−1,λ(
√
−∆)v,

with Φ#
−1,λ(

√
−∆) ∈ Ψ1

#(M) and Φb
−1,λ(

√
−∆) ∈ Ψ−∞

W (M), for all W <
√
λ.

Estimates in (2.3) give

(4.24) Φb
−1,λ(

√
−∆) : Lp(M) −→ Lp(M),
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for p ∈ (1,∞). It remains to show that

(4.25) Φ#
−1,λ(

√
−∆)v ∈ Lp(M),

whenever (4.21) holds. Indeed, since P = Φ#
−1,λ(

√
−∆) ∈ Ψ1

#(M), as defined after
Proposition 1.1, pseudodifferential operator calculus allows us to write

(4.26) P = Q0 +

N∑
j=1

QjXj ,

with

(4.27) X1, . . . , XN ∈ V1(M), Qj ∈ Ψ0
#(M).

Hence, if v satisfies (4.21),

(4.28) Pv = Q0v +
N∑
j=1

Qj(Xjv) ∈ Lp(M),

by Proposition 2.1.

Having identified the spaces (4.1) with their counterparts in (4.4) when s = k ∈
N, we next show that for general s ∈ R, the spaces (4.4) are independent of the
choice of λ, as long as λ > κ2.

Proposition 4.4. For each s ∈ R, p ∈ (1,∞),

(4.29) µ, λ > κ2 =⇒ (λI −∆)−s/2Lp(M) = (µI −∆)−s/2Lp(M).

Proof. Note that

(4.30) (µI −∆)s/2(λI −∆)−s/2 = ψs,µ,λ(
√
−∆), ψs,µλ(ζ) =

(µ+ ζ2

λ+ ζ2

)s/2

,

and ψs,µ,λ ∈ S0
W for all W < min(µ, λ). Hence

(4.31) (µI −∆)s/2(λI −∆)−s/2 : Lp(M) −→ Lp(M),

by Proposition 2.2, with inverse ψs,λ,µ(
√
−∆), so (4.31) is an isomorphism. This

gives (4.29).

We next record how elements of Ψm
W (M) act on these Sobolev spaces.
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Proposition 4.5. Take m, s ∈ R and assume W ≥ κ. Then

(4.32) P ∈ Ψm
W (M) ⇒ P : Hs,p(M) → Hs−m,p(M), ∀ p ∈ (1,∞).

Proof. The results in (4.32) are equivalent to the existence of λ > κ2 such that

(4.33) Q = (λI −∆)(s−m)/2P (λI −∆)−s/2

has the mapping properties

(4.34) Q : Lp(M) → Lp(M), p ∈ (1,∞).

To get this, take λ > (W + κ)2, so (λI − ∆)σ/2 ∈ Ψσ
W+κ(M). An application of

Proposition 3.3 gives P (λI −∆)−s/2 ∈ Ψm−s
W (M), and a second application gives

Q ∈ Ψ0
W (M). Then the mapping properties in (4.34) follow from Proposition 2.2.

We next prove a density result.

Proposition 4.6. For each s ∈ R and p ∈ (1,∞),

(4.35) C∞
0 (M) is dense in Hs,p(M).

Proof. Pick W > κ and consider the family of spaces C∞
W (M) defined by (3.2).

Note that C∞
W+κ(M) is dense in Lp(M). Hence, by (4.4), with λ > W 2,

(4.36) {(λI −∆)−s/2f : f ∈ C∞
W+κ(M)} is dense in Hs,p(M).

By Proposition 3.1, this space is contained in C∞
W (M), so C∞

W (M) is dense in
Hs,p(M). It is elementary that C∞

0 (M) is dense in C∞
W (M) in the Hk,p(M)-norm,

for each k ∈ Z+, as long as W > κ. Choosing k > s then gives (4.35).

We next show that for each p ∈ (1,∞), {Hs,p(M) : s ∈ R} forms a complex
interpolation scale.

Proposition 4.7. For p ∈ (1,∞), s0 < s1 ∈ R, θ ∈ (0, 1),

(4.37) [Hs0,p(M),Hs1,p(M)]θ = H(1−θ)s0+θs1,p(M).

Proof. With O = {z ∈ C : 0 < Re z < 1}, we form H, the space of functions
u : O → Hs0,p(M), bounded and continuous on O, holomorphic on O, satisfying

(4.38) sup
y∈R

‖u(iy)‖Hs0,p , sup
y∈R

‖u(1 + iy)‖Hs1,p <∞.

Then the left side of (4.37) is

(4.39) {u(θ) : u ∈ H}.
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To prove (4.37), first take u ∈ H. Pick φ ∈ C∞
0 (M) such that 0 ≤ φ ≤ 1, ε > 0,

and λ > κ2, and form

(4.40) vε,φ(z) = eεz
2

φ(x)eε∆(λI −∆)−((1−z)s0+zs1)/2u(z).

We have v : O → Lp(M), continuous, holomorphic on O, vanishing at infinity. By
Proposition 2.2,

(4.41) sup
y∈R

‖vε,φ(iy)‖Lp , sup
y∈R

‖vε,φ(1 + iy)‖Lp ≤ C,

with C independent of ε ∈ (0, 1] and φ (given 0 ≤ φ ≤ 1), and the maximum
principle gives

(4.42) ‖vε,φ(θ)‖Lp ≤ C,

with the same C (hence independent of ε, φ). Taking ε↘ 0 and φ↗ 1 gives

(4.43) u(θ) ∈ H(1−θ)s0+θs1,p(M),

so the left side of (4.37) is contained in the right side of (4.37).
For the reverse inclusion, take f ∈ H(1−θ)s0+θs1,p(M). Then set

(4.44) u(z) = T (z)f = ez
2−θ2

(λI −∆)(θ−z)(s0−s1)f.

Then we have u ∈ H. The bounds (4.38) again follow from Proposition 2.2. The
assewtion that T (z)f maps O → Hs0,p(M) boundedly also follows from Proposition
2.2. That it maps continuously is readily verified for f ∈ Hσ,p(M), as long as
σ > (1− θ)s0+ θs1. Then it follows for all f ∈ H(1−θ)s0+θs1,p(M), by such uniform
bounds, plus the fact that

(4.45) Hσ,p(M) is dense in Hs,p(M), ∀σ > s,

itself a corollary of Proposition 4.6.

5. Further results for symmetric spaces of noncompact type

A symmetric space of noncompact type is a Riemannian manifold M = G/K,
where G is a semisimple Lie group of noncompact type and K a maximal compact
subgroup. Examples include hyperbolic spaceHn, with constant sectional curvature
−1, amongst others. (However, this definition excludes Euclidean space.) We refer
to [Hel] for basic material; basic results are also summarized in §2 of [T3]. Without
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going into details, we mention the following key fact: there exists a positive quantity,
denoted |ρ|2, with the property that

(5.1) Spec (−∆) = [|ρ|2,∞) on L2(M)

and

(5.2) VolBr(p) ∼ Crβe2|ρ|r, r → ∞,

for some β ∈ (0,∞). Cf. [T3], (2.2) and (2.9). When M = Hn, |ρ| = (n − 1)/2.
Now, if we set

(5.3) L = ∆+ |ρ|2,

so Spec (−L) = [0,∞) on L2(M), we can apply Proposition 2.4 to deduce that, for
p ∈ (1,∞),

(5.4) Φ ∈ S0
W , W >

∣∣∣2
p
− 1

∣∣∣ · |ρ| =⇒ Φ(
√
−L) : Lp(M) → Lp(M).

Using this, we can establish the following variant of the fact that

(5.5) (λI −∆)m/2 : Hs,p(M) −→ Hs−m,p(M),

for s,m ∈ R, p ∈ (1,∞), given λ > 0 sufficiently large, which was proven in §4, in
the setting of general manifolds with bounded geometry.

Proposition 5.1. If M is a symmetric space of noncompact type, then for s,m ∈
R, p ∈ (1,∞),

(5.6) (−∆)m/2 : Hs,p(M) −→ Hs−m,p(M).

Remark. This fails when M = Rn.

Proof. In light of the results of §4, (5.6) is equivalent to the assertion that, for λ > 0
sufficiently large,

(5.7) (λI −∆)(s−m)/2(−∆)m/2(λI −∆)−s/2 : Lp(M) −→ Lp(M).

We can write this operator as

(5.8) (λI + |ρ|2 − L)(s−m)/2(|ρ|2 − L)m/2(λI + |ρ|2 − L)−s/2 = Φ(
√
−L),
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where Φ(ζ) = (λ+ |ρ|2 + ζ2)−m/2(|ρ|2 + ζ2)m/2, and we see that

(5.9) Φ ∈ S0
W , ∀W < |ρ|.

Now for each p ∈ (1,∞), |2/p− 1| < 1, so (5.7) follows from (5.4).

6. Hardy spaces, bmo, and associated Sobolev spaces

In this last section we define h1(M) and bmo(M) when M is a Riemannian
manifold with bounded geometry and discuss some basic properties. Proofs can
be found in [T7]. These spaces are defined in analogy with the spaces h1(Rn) and
bmo(Rn) in (I.3.21)–(I.3.26).

The spaces on Rn were introduced in [G], as variants of the spaces H1(Rn) and
BMO(Rn) treated in [FS]. One advantage of the spaces h1 and bmo is that they
are invariant under multiplication by bounded Lipschitz functions.

We mention that [I] introduced a variant of H1 and BMO for functions on rank-
one symmetric spaces of noncompact type, though the definition there differs from
the Euclidean case in ways that make it problematic to give a unified treatment.
This is perhaps another advantage of h1 and bmo. We also mention the recent work
[CaMM], extending the scope of [I] to a class of measured metric spaces.

To define h1(M), we set up the following maximal function. Given f ∈ L1
loc(M),

let

(6.1) Gbf(x) = sup
0<r≤1

Grf(x),

where

(6.2) Grf(x) = sup
{∣∣∣∫ φ(y)f(y) dV (y)

∣∣∣ : φ ∈ F(Br(x))
}
,

with

(6.3) F(Br(x)) =
{
φ ∈ C1

0 (Br(x)) : ‖φ‖Lip ≤ 1

rn+1

}
.

We then set

(6.4) h1(M) = {f ∈ L1
loc(M) : Gbf ∈ L1(M)},

with norm

(6.5) ‖f‖h1 = ‖Gbf‖L1 .
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One could replace C1
0 (Br(x)) by {φ ∈ Lip(M) : suppφ ⊂ Br(x)} and get the same

result. A comparison with (I.3.21)–(I.3.23) shows that when M = Rn, the space
h1(M) defined above coincides with the space h1(Rn) defined in the §I.3.

To define bmo(M), we set up the following maximal functions. Given f ∈
L1
loc(M), let

(6.6) f#(x) = sup
B∈B(x)

1

V (B)

∫
B

|f − fB | dV, fB =
1

V (B)

∫
B

f dV,

where

(6.7) B(x) = {Br(x) : 0 < r ≤ 1}.

Then define

(6.8) N f(x) = f#(x) +N0f(x), N0f(x) =
1

V (B1(x))

∫
B1(x)

|f | dV.

We set

(6.9) bmo(M) = {f ∈ L1
loc(M) : N f ∈ L∞(M)},

with norm

(6.10) ‖f‖bmo = ‖N f‖L∞ .

In case M = Rn, the definition of bmo(M) given here is clearly equivalent to
that of bmo(Rn) given in §I.3; cf. (I.3.24)–(I.3.26).

It is useful to make note of some equivalent norms. For example, in place of f#,
consider

(6.11) fs(x) = sup
B∈B(x)

inf
cB∈C

1

V (B)

∫
B

|f − cB | dV.

Given B ∈ B(x) and taking cB to realize this infimum, we have

(6.12) |fB − cB | =
∣∣∣ 1

V (B)

∫
B

(f − cB) dV
∣∣∣ ≤ fs(x),

which gives

(6.13) fs(x) ≤ f#(x) ≤ 2fs(x).
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It is also useful to note that one can fix a, b, c ∈ (0,∞), with a < b, and replace
B(x) by

(6.14) B̃(x) = {Qα
r (x) : 0 < r ≤ 1, α ∈ A},

where Qα
r (x) is a family of measurable sets with the property that for each r ∈ (0, 1],

(6.15)
V (Qα

r (x)) ≥ cV (Br(x)), Qα
r (x) ⊂ Bbr(x), for all α, and

Bar(x) ⊂ Qα
r (x), for some α.

One gets functions comparable in size in (6.11) and hence also in (6.6). In connec-
tion with this, we recall that the original treatments in [JN] and [FS] used cubes
containing x in place of balls centered at x. One consequence of this observation is
that the John-Nirenberg estimate, proven in [JN] for functions defined on a cube in
Rn, is applicable in our current situation. We have, for each ball B ⊂M of radius
≤ 1,

(6.16)
1

V (B)

∫
B

eα|f−fB | dV ≤ γ,

with

(6.17) α =
β

‖f‖bmo
, β, γ constants.

Cf. (3′) of [JN].
It is convenient to know that h1(M) and bmo(M) are modules over Lip(M) ∩

L∞(M). In fact, a more precise result holds. Let σ be a modulus of continuity, and
say

(6.18) a ∈ Cσ(M) ⇐⇒ |a(x)− a(y)| ≤ Lσ(d(x, y)), for d(x, y) ≤ 1,

for some L ∈ [0,∞). Define ‖a‖Cσ to be the smallest L for which (6.18) holds (this
is a seminorm). We then have the following result.

Proposition 6.1. Let σ be a modulus of continuity satisfying the Dini condition

(6.19) D(σ) =

∫ 1

0

σ(r)

r
dr <∞.

We also assume σ(r)/r is monotonically decreasing on (0, 1] (or constant). Then

(6.20) a ∈ L∞(M) ∩ Cσ(M), f ∈ h1(M) =⇒ af ∈ h1(M).

On the other hand, if a ∈ L∞(M) ∩ Cσ(M) with

(6.21) σ(r) =
(
log

1

r

)−1

, 0 < r ≤ 1

2
,
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then

(6.22) f ∈ bmo(M) =⇒ af ∈ bmo(M).

The proof of (6.20) is fairly straightforward; Schur’s lemma is involved. The
proof of (6.22) uses the John-Nirenberg estimate (6.16).

Remark. Note that the Dini condition (6.19) just barely fails for σ(r) given by
(6.21). h1-bmo duality, discussed below, allows one to amalgamate these results.

Using Proposition 6.1, we can establish the following.

Proposition 6.2. Let {φk : k ∈ Z+} be a tame partition of unity. Given f ∈
L1
loc(M), we have

(6.23) f ∈ h1(M) ⇐⇒
∑
k

‖φkf‖h1 <∞,

and

(6.24) ‖f‖h1 ≈
∑
k

‖φkf‖h1 .

Furthermore,

(6.25) f ∈ bmo(M) ⇐⇒ sup
k

‖φkf‖bmo <∞,

and

(6.26) ‖f‖bmo ≈ sup
k

‖φkf‖bmo.

Proposition 6.2 combines nicely with the following elementary result. We recall
that there is an isometric isomorphism of the n-dimensional inner product space
TpM with Rn, determined uniquely up to the action of O(n).

Proposition 6.3. We have, uniformly in k ∈ Z+,

(6.27) ‖φkf‖h1(M) ≈ ‖(φkf) ◦ Exppk
‖h1(Rn).

and

(6.28) ‖φkf‖bmo(M) ≈ ‖(φkf) ◦ Exppk
‖bmo(Rn).
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Corollary 6.4. In the setting of Proposition 6.2,

(6.29) ‖f‖h1(M) ≈
∑
k

‖(φkf) ◦ Exppk
‖h1(Rn).

and

(6.30) ‖f‖bmo(M) ≈ sup
k

‖φkf) ◦ Exppk
‖bmo(Rn).

These results open the door to making use of Euclidean results of [G], and, by
extension, results of [FS]. For example, we can prove the duality

(6.31) h1(M)′ = bmo(M),

using Corollary 6.4 and the result of [G] that (6.31) holds for M = Rn, itself a
consequence of the famous result

(6.32) H1(Rn)′ = BMO(Rn)

of [FS]. Furthermore, the result of [G] that

(6.33)
P ∈ OPS0

1,0(Rn) =⇒ P : h1(Rn) → h1(Rn) and

P : bmo(Rn) → bmo(Rn)

can be used to prove the following.

Proposition 6.5. Take κ as in (0.10). Then

(6.34)
P ∈ Ψ0

W (M), W ≥ κ =⇒ P : h1(M) → h1(M) and

P : bmo(M) → bmo(M).

We can define Hardy and bmo-Sobolev spaces. Parallel to (4.4), we can take
λ > κ2 and set

(6.35)
hs,1(M) = (λI −∆)−s/2 h1(M),

hs,∞(M) = (λI −∆)−s/2 bmo(M).

As in §4, these spaces are shown to be independent of the choice of λ, as long as
λ > κ2. As with (4.1), one can show that, for k ∈ Z+,

(6.36)
hk,1(M) = {u ∈ h1(M) : Lu ∈ h1(M), ∀L ∈ Vk(M)},
hh,∞(M) = {u ∈ bmo(M) : Lu ∈ bmo(M), ∀L ∈ Vk(M)}.

Parallel to Proposition 4.5, we have:



98

Proposition 6.6. Take m, s ∈ R and assume W ≥ κ. Then

(6.37)
P ∈ Ψm

W (M) =⇒ P : hs,1(M) → hs−m,1(M), and

P : hs,∞(M) → hs−m,∞(M).

Another result of [T7] is the following analogue of the sharp maximal function
estimate in Lp of [FS]:

Proposition 6.7. Assume p ∈ (1,∞), f ∈ L1
loc(M), and N f ∈ Lp(M). Then

f ∈ Lp(M) and

(6.38) ‖f‖Lp(M) ≤ Cp‖N f‖Lp(M).

Using this, [T7] establishes the following interpolation result, a variant of Corol-
lary 2 of [FS]:

Proposition 6.8. Take s ∈ R. Assume we have a bounded operator

(6.39) R : L2(M) → L2(M), R : L1(M) → hs,∞(M),

satisfying

(6.40) ‖Rf‖L2 ≤M1‖f‖L2 , ‖Rf‖hs,∞ ≤M0‖f‖L1 .

Then, for θ ∈ (0, 1),

(6.41) R : Lp(θ)(M) → H(1−θ)s,p(θ)′(M), p(θ) =
2

2− θ
, p(θ)′ =

2

θ
,

and (with Cθ ∈ (0,∞) independent of R and f),

(6.42) ‖Rf‖H(1−θ)s,p(θ)′ ≤ CθM
θ
1M

1−θ
0 ‖f‖Lp(θ) .

Such a result can be applied to dispersive estimates and Strichartz estimates.
Details will be presented elsewhere.
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[H3] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183.
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