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Introduction

These notes have arisen as a supplement to the text I have used in Math 522, In-
troduction to Analysis in Several Variables – Advanced Calculus. There are several
categories of items. Some beef up homework problems given in the text. Others
present a different way to derive some specific result. Some merely correct some
typos.

We highlight some of the supplements given in these notes. For Chapter 2, we
provide a proof of the inverse function theorem based on a minimization argument,
rather than the iterative construction used in the text. We also include a neat trick
to show that if the inverse function theorem, applies to a C1 map F , yielding a C1

inverse G, then higher regularity F ∈ Ck yields correspondingly higher regularity
of G.

Supplementary material on the multidimensional integral in Chapter 3 includes
some reworking of basic material, to bring to the fore a characterization of the
upper and lower Riemann integrals I(f) and I(f) in terms of

∫
g dV , respectively for

continuous g ≥ f and for continuous g ≤ f . We use this to present a Fubini theorem
that is much stronger and more general than Theorem 3.1.9, and furthermore has
a slicker proof. We also present a generalization of Darboux’s theorem to a setting
of partitions of a cell by contented sets.

Two supplements to §3.2 discuss additional material on smooth maps between
surfaces. We also explore the computation of further surface integrals, such as∫

Sn−1

ωα dS(ω).

A supplement to §4.1 delves into the issue of defining a differential form directly
on a surface M ⊂ Rn, as an extension of the notion of a differential form defined on
an open set in Euclidean space. We take the perspective that in an introduction to
the theory of differential forms, it is desirable not to detour into the treatment of
vector bundles, and instead define such forms as objects given in local coordinate
systems, subject to natural compatibility conditions. (We do briefly indicate the
bundle approach.)

A supplement to Chapter 5 extends the brief treatment of holomorphic functions
on a domain in C given in §5.1. We derive the holomorphic inverse function theorem,
as a corollary of the inverse function theorem of Chapter 2. Given that we have
the real result, passing to the holomorphic case is a short step, much shorter than
what one sees in standard complex analysis texts. We use this to establish the open
mapping theorem for holomorphic maps.

Other supplements to Chapter 5 include further comments on the use of differen-
tial forms to prove the change of variable formula for integrals, and further results
on the Euler characteristic of a compact 2D surface.
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Chapter 6, on geometric properties of surfaces M in Rn, brings in the family

P (x) = orthogonal projection of Rn onto TxM

as an incisive tool. To supplement this, we provide some formulas for P (x), ex-
tending well known formulas for 2D surfaces M ⊂ R3 that involve computing the
unit normal N(x).
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Chapter 1. Background

§1.1. Sharper criterion for Riemann integrability

Here we aim to prove a Riemann integrability result that is sharper than Propo-
sition 1.1.11. A key to this proof is the result that if X ⊂ R is compact, then each
open cover of X has a finite subcover. This is a special case of Proposition 1.2.8
(in §1.2).

Proposition 1.1.11A. Set I = [a, b], and let f : I → R be bounded, say |f | ≤M .
Suppose that the set S of points of discontinuity of f has the property

(1) m∗(S) = 0.

Then f ∈ R(I).

Proof. Fix ε, δ > 0. Cover S with a countable family of open intervals Jℓ such that∑
ℓ `(Jℓ) ≤ δ. Set

(2) K = I \
⋃
ℓ

Jℓ.

Then f is continuous at each x ∈ K, so for each x ∈ K, there is an open interval
Kx, containing x, such that |f(x) − f(y)| < ε, for y ∈ Kx ∩ I. Hence y, y′ ∈
Kx ∩ I ⇒ |f(y)− f(y′)| ≤ 2ε.

Now {Jℓ,Kx} is a cover of I by open intervals, so we can produce a finite
subcover, {Jℓ,Kj}. Perhaps shrinking these intervals, and relabeling, we get a
partition P = {Jℓ,Kj} = P0 ∪ P1 of I, with P0 = {Jℓ}, P1 = {Kj}. (These
shrunken and relabeled intervals are now closed.) We have

(3)

Jℓ ∈ P0 ⇒ sup
Jℓ

f − inf
Jℓ

f ≤ 2M,
∑
ℓ

`(Jℓ) ≤ δ,

Kj ∈ P1 ⇒ sup
Kj

f − inf
Kj

f ≤ 2ε,
∑
j

`(Kj) ≤ b− a.

Hence

(4)
IP(f)− IP(f) ≤

∑
Jℓ∈P0

2M`(Jℓ) +
∑

Kj∈P1

2ε`(Kj)

≤ 2Mδ + 2ε(b− a).

This implies f ∈ R(I).
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§1.1. Exercises on when
∫ b

a
|f(x)| dx = 0.

23. Let f ∈ R([a, b]). Show that
∫ b

a
|f(x)| dx = 0 if and only if, for each ε > 0,

Sε = {x ∈ [a, b] : |f(x)| > ε} =⇒ cont+(Sε) = 0.

In such a case,
S = {x ∈ [a, b] : f(x) 6= 0} =⇒ m∗(S) = 0.

24. Let f ∈ R([0, 1]) be the function arising in Example 2, following Proposition

1.1.11. We have
∫ 1

0
|f(x)| dx = 0. Show that

S = {x ∈ [0, 1] : f(x) 6= 0} = [0, 1] ∩Q, hence cont+ S = 1.
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§1.1. The binomial formula

Here we establish the binomial formula,

(1) (x+ a)n =

n∑
k=0

(
n

k

)
an−kxk,

(
n

k

)
=

n!

k!(n− k)!
,

which plays a significant role in relating two multi-index notations in Chapter 2
(see (2.1.47)–(2.1.51)). The formula is used in some calculus courses to derive the
formula

(2)
d

dx
xn = nxn−1,

via

(3)
d

dx
xn = lim

a→a

(x+ a)n − xn

a
.

However, we think it is easier to prove (2) using the product formula, obtaining

(4)
d

dx
x2 =

d

dx
x · x = 2x,

d

dx
x3 =

d

dx
x · x2 = 3x2,

and so on, getting (2) by induction on n. Hence, we take (2) as known, and use it
as a tool to derive (1).

Clearly (x+ a)n is a polynomial in x of degree n,

(5) (x+ a)n = p(x) = bnx
n + bn−1x

n−1 + · · ·+ b0.

Applying (d/dx)k and using (2), we see that

(6) p(k)(0) = k! bk.

On the other hand, (2) also implies

(7)
dk

dxk
(x+ a)n

∣∣∣
x=0

= n(n− 1) · · · (n− k + 1) an−k.

Comparing (6)–(7) gives

(8) bk =
n(n− 1) · · · (n− k + 1)

k!
an−k =

(
n

k

)
an−k,

and we have (1).
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We mention Newton’s extension of (1), to

(9) (x+ a)r =
∞∑
k=0

(
r

k

)
ar−kxk, |x| < |a|,

where

(10)

(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
,

valid for r ∈ R. See §4.3 of Introduction to Analysis in One Variable.
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§1.4. Exercise relating determinant and trace.

5. Show that, for A,B ∈M(n,F),

det(B + tA) = detB + t
∑
k

det(b1, . . . , ak, . . . , bn) +O(t2)

= detB + t
∑
j,k

ajk Cof(B)jk +O(t2)

= detB + t TrCof(B)tA+O(t2).

Comparing Exercise 4, re-derive Cramer’s formula.



10

Chapter 2. Multivariable differential calculus

§2.1. Further power series exercises

1. Let Ω ⊂ Rn be open, f, g ∈ Ck(Ω) real valued, 0 ∈ Ω. Write

f(x) =
∑
|β|≤k

fβx
β + o(xk), g(x) =

∑
|γ|≤k

gγx
γ + o(xk),

with

fβ =
f (β)(0)

β!
, gγ =

g(γ)(0)

γ!
.

Show that h(x) = f(x)g(x) satisfies

h(x) =
∑

|β|,|γ|≤k

fβgγx
β+γ + o(xk),

and deduce that, for |α| ≤ k,

h(α)(0)

α!
=

∑
β+γ=α

fβgγ =
∑

β+γ=α

1

β!γ!
f (β)(0)g(γ)(0).

Pass from this to the identity

(1) ∂α(fg)(x) =
∑

β+γ=α

α!

β!γ!
f (β)(x)g(γ)(x),

for x ∈ Ω. This identity is called the Leibniz identity.

2. Define f : R2 → R by
f(x) = ex1 cosx2.

Compute f (α)(x) for |α| ≤ 3. Then write down

P (x) =
∑
|α|≤3

1

α!
f (α)(0)xα.

3. Attack the computation of P (x) in Exercise 2 using Exercise 1, starting with

ex1 = 1 + x1 +
x21
2

+
x31
3!

+ · · · ,

and a similar expansion of cos x2.
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4. Write down the power series about (0, 0) of

F (x, y) =

∫ 1

0

ext

1 + yt
dt.

Hint. Start by multiplying the power series of ext and (1 + yt)−1.

5. Show that, for x = (x1, . . . , xn), with |xj | < 1 for all j,

∑
α≥0

xα =
1

1− x1
· · · 1

1− xn
.

Hint. Write the left side as ∑
α1≥0

xα1
1 · · ·

∑
αn≥0

xαn
n .

6. In this exercise, we take

η = (t, t, . . . , t) ∈ Rn, |t| < 1,

and consider

F (η) =
∑
α≥0

ηα.

(a) Show that, for |t| < 1,

F (η) =
∑
α1≥0

tα1 · · ·
∑
αn≥0

tαn = (1− t)−n.

(b) Show that

F (η) =
∑
α≥0

t|α| =
∞∑
k=0

dk(n)t
k,

where
dk(n) = #{α = (α1, . . . , αn) : |α| = k}

= dimPk(Rn),

with

Pk(Rn) = space of polynomials in x ∈ Rn, homogeneous of degree k.
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(c) Comparing results of (a) and (b), show that

dk(n) = coefficient of tk in fn(t) = (1− t)−n

=
1

k!
f (k)n (0)

=
n(n+ 1) · · · (n+ k − 1)

k!

=

(
n+ k − 1

k

)
.

(d) If Pk(Rn) = space of polynomials in x ∈ Rn of degree ≤ k, show that

dimPk(Rn) = dimPk(Rn+1)

=

(
n+ k

k

)
=

(
n+ k

n

)
=

(k + n)(k + n− 1) · · · (k + 1)

n!
.

(e) Another formulation of part (a) is that (with α = (α1, . . . , αn))∑
α≥0

t|α| = (1− t)−n, for |t| < 1.

Show how this leads to convergence in (2.1.86).

(f) Show that, for each j ∈ {1, . . . , n},∑
α≥0

αjt
|α| = t(1− t)−n−1, for |t| < 1.

Show how this leads to convergence in (2.1.91).

7. The multinomial theorem says

(2) (x1 + · · ·+ xn)
k =

∑
|α|=k

(
k

α

)
xα,

(
k

α

)
=
k!

α!
,

where α! = α1! · · ·αn!. Verify the following slick route to a proof. First,

(3) ex1+···+xn =
∞∑
k=0

1

k!
(x1 + · · ·+ xn)

k,

second

(4)

ex1 · · · exn =
∑
α1≥0

xα1
1

α1!
· · ·

∑
αn≥0

xαn
n

αn!

=
∑
α≥0

xα

α!
.

Comparing (3) and (4) yields (2). Compare the derivation in (2.1.50)–(2.1.51).
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§2.2. The inverse function theorem (alternative proof)

The inverse function theorem gives a condition under which a function can be
locally inverted. This theorem and its corollary the implicit function theorem are
fundamental results in multivariable calculus. First we state the inverse function
theorem. Here, we assume k ≥ 1.

Theorem 2.2.1. Let F be a Ck map from an open neighborhood Ω of p0 ∈ Rn

to Rn, with q0 = F (p0). Suppose the derivative DF (p0) is invertible. Then there
is a neighborhood O of p0 and a neighborhood U of q0 such that F : O → U is
one-to-one and onto, and F−1 : U → O is a Ck map. (One says F : O → U is a
diffeomorphism.)

We divide the task of proving this into two parts, first getting a one-to-one result,
then getting a result about the image containing a certain neighborhood of q0. Both
of these results contain more quantitative information than is stated in Theorem
2.2.1, and are interesting in their own right.

Here is an injectivity result.

Proposition 2.2.2. Assume Ω ⊂ Rn is open and convex, and let f : Ω → Rn be
C1. Assume the symmetric part of Df(u) is positive definite for each u ∈ Ω. Then
f is one-to-one on Ω.

Proof. Take distinct points u1, u2 ∈ Ω, and set u2−u1 = w. Consider ϕ : [0, 1] → R,
given by

ϕ(t) = w · f(u1 + tw).

Then ϕ′(t) = w·Df(u1+tw)w > 0 for t ∈ [0, 1], so ϕ(0) 6= ϕ(1). But ϕ(0) = w·f(u2)
and ϕ(1) = w · f(u2), so f(u1) 6= f(u2).

Corollary 2.2.2A. Take Ω and f as in the first sentence of Proposition 2.2.2, and
assume there exists α < 1 such that for all x ∈ Ω,

(2.1) ‖Df(x)− I‖ ≤ α.

The f is one-to-one on Ω.

Proof. We can write

(2.2) f(x) = x+R(x), DR(x) = Df(x)− I, ‖DR(x)‖ ≤ α,

so

(2.3) w ·Df(x)w = ‖w‖2 − w ·DR(x)w ≥ (1− α)‖w‖2,

and Proposition 2.2.2 applies. We obtain

(2.3A) (u2 − u1) · [f(u2)− f(u1)] ≥ (1− α)‖u2 − u1‖2.
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Second proof. For x, y ∈ Ω,

(2.4) x− y = {f(x)− f(y)} − {R(x)−R(y)},

and the hypotheses imply

(2.5) ‖R(x)−R(y)‖ ≤ α‖x− y‖,

so

(2.6) (1− α)‖x− y‖ ≤ ||f(x)− f(y)‖, ∀x, y ∈ Ω.

Remark. The estimate (2.3A) implies (2.6), and in fact is more precise. One
advantage of the second proof is that it extends to the Banach space setting, while
the argument leading to (2.3A) requires a Hilbert space setting.

We now present a surjectivity result.

Proposition 2.2.3. Let Ω ⊂ Rn be open and bounded and contain p0. Assume
F : Ω → Rn is continuous and F (p0) = q0. Assume F is C1 on Ω and DF (x) is
invertible for all x ∈ Ω. Finally, assume there exists R > 0 such that

(2.7) x ∈ ∂Ω =⇒ ‖F (x)− q0‖ ≥ R.

Then

(2.8) F (Ω) ⊃ BR/2(q0).

Proof. Given y0 ∈ BR/2(q0), we deduce from continuity of F and compactness of

Ω that there exists x0 ∈ Ω such that

(2.9) ‖F (x0)− y0‖ = inf
x∈Ω

‖F (x)− y0‖.

It follows from (2.7) and the fact that ‖F (p0) − y0‖ < R/2 that x0 /∈ ∂Ω, hence
x0 ∈ Ω. We claim that F (x0) = y0. Indeed, if F (x0) 6= y0, we can consider

(2.10) F (x0 + tz) = F (x0) + tDF (x0)z + o(‖tz‖),

with z ∈ Rn satisfying

(2.11) DF (x0)z = y0 − F (x0),

and deduce that, for small t > 0, F (x0 + tz) is closer to y0 than F (x0) is. Contra-
diction, so F (x0) = y0.

A further short argument improves the conclusion of the last result.
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Corollary 2.2.3A. Under the hypotheses of Proposition 2.2.3, we actually have

(2.12) F (Ω) ⊃ BR(q0).

Proof. It is convenient to translate coordinates, so q0 = 0. It suffices to show that
F (Ω) ⊃ BS(0) for each S ∈ (R/2, R). To get this, set G(x) = ϕ ◦ F (x), where
ϕ : Rn → Rn is a diffeomorphism satisfying

(2.13) ϕ(y) = y for |y| ≤ S, ϕ(y) = 2y for |y| ≥ R.

Then we apply Proposition 2.2.3, with F replaced by G and R replaced by 2R, to
get G(Ω) ⊃ BR(q0), hence F (Ω) ⊃ BS(q0).

We can now put these results together to obtain a bijectivity result.

Proposition 2.2.4. Let p0 ∈ Rn, ρ > 0, and Ω = Bρ(p0). Assume F : Ω → Rn is
continuous, and C1 on Ω, and assume

(2.14) ‖DF (x)− I‖ ≤ α, ∀x ∈ Ω,

with α < 1. Let F (p0) = q0. Then F maps Ω one-to-one onto its image, and

(2.15) F (Ω) ⊃ BR(q0), R = ρ(1− α).

Hence, taking

(2.16) O = F−1(BR(q0)) ⊂ Ω,

O is a open neighborhood of p0 in Rn, and

(2.17) F : O −→ BR(q0), one-to-one and onto.

Proof. That F maps Ω one-to-one onto its image follows from Corollary 2.2.2A.
Also, (2.14) implies DF (x) is invertible for each x ∈ Ω, so Corollary 2.2.3A applies,
and we have (2.15). Since F (p0) = q0 and F is continuous, O in (2.16) is an open
set containing p0, and (2.17) follows.

Remark. In the setting of Proposition 2.2.4, we have from (2.6) that

(2.18) (1− α)‖x− x′‖ ≤ ‖F (x)− F (x′)‖, ∀x, x′ ∈ Ω,

hence for all x, x′ ∈ O, so the inverse map G : BR(q0) → O satisfies

(2.19) (1− α)‖G(y)−G(y′)‖ ≤ ‖y − y′‖, ∀ y, y′ ∈ BR(q0),

so G is continuous, in fact Lipschitz continuous, on BR(q0).
This observation leads to the following differentiability result.
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Proposition 2.2.5. In the setting of Proposition 2.2.4, the inverse map G : BR(q0) →
O is differentiable at each y ∈ BR(q0), and

(2.20) DG(y) = DF (x)−1, for y = F (x).

Proof. Given x ∈ O, ξ ∈ Rn small, we have

(2.21) F (x+ ξ) = F (x) +DF (x)ξ +R(x, ξ), R(x, ξ) = o(|ξ|).

hence

(2.22)

G(F (x) +DF (x)ξ) = G(F (x+ ξ)−R(x, ξ))

= G ◦ F (x+ ξ) +O(R(x, ξ))

= x+ ξ + o(|ξ|),

the second identity by (2.19) and the rest by (2.21). Equivalently, given that DF (x)
is invertible, for y = F (x) ∈ BR(q0), η ∈ Rn small,

(2.23) G(y + η) = x+DF (x)−1η + o(|η|),

yielding (2.20).

We are now ready for the

Proof of Theorem 2.2.1. Set

(2.24) f(x) = AF (x), A = DF (p0)
−1,

so Df(p0) = I. Then take α < 1 and ρ > 0 such that Bρ(p0) ⊂ Ω and

(2.25) ‖Df(x)− I‖ ≤ α, ∀x ∈ Bρ(p0).

Then Propositions 2.2.4–2.2.5 apply to f , so there exists an open set O, containing
p0 and R > 0 such that

(2.26) f : O −→ BR(Aq0) is one-to-one and onto,

and the inverse map g : BR(Aq0) → O is differentiable, with

(2.27) Dg(y) = Df(x)−1, for x ∈ O, y = f(x).

It follows that, with U = A−1BR(Aq0), a neighborhood of q0,

(2.28) F : O −→ U is one-to-one and onto,

with inverse G : U → O that is differentiable, satisfying

(2.29) DG(y) = DF (x)−1, for x ∈ O, y = F (x).

The formula

(2.30) DG(y) = DF (G(y))−1

presents DG as the composition of continuous maps, so G ∈ C1.
Regarding higher differentiability of G in case F ∈ Ck, k > 1, we next take up

an approach to this, different from that indicated in the text.
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§2.2. Higher regularity of inverse functions

So far we have a proof of Theorem 2.2.1 for F ∈ Ck when k = 1. If F has higher
smoothness, one neat way to establish higher regularity for the inverse map G is to
couple F and DF .

Thus we consider

(2.31) Φ : Ω× Rn −→ Rn × Rn,

given by

(2.32) Φ(x, v) =

(
F (x)

DF (x)v

)
.

We retain the hypothesis that DF (p0) is invertible. Note that F ∈ C2 ⇒ Φ ∈ C1

and

(2.33) DΦ(x, v) =

(
DF (x) 0

Dx(DF (x)v) DF (x)

)
is invertible at (p0, v). Hence we have a local C1 inverse

(2.35) Ψ(y, w) =

(
G(y)

ψ(y, w)

)
,

where G is the local inverse of F . A calculation gives

(2.35) Φ(Ψ(y, w)) = Φ

(
G(y)

ψ(y, w)

)
=

(
y

DF (G(y))ψ(y, w)

)
,

and since also Φ(Ψ(y, w)) = (y, w)t, we haveDF (G(y))ψ(y, w) = w. SinceDF (G(y))
DG(y) = I, we have ψ(y, w) = DG(y)w, hence the local inverse of Φ is

(2.36) Ψ(y, w) =

(
G(y)

DG(y)w

)
.

Now

(2.37) F ∈ C2 ⇒ Φ ∈ C1 ⇒ Ψ ∈ C1 ⇒ G,DG ∈ C1 ⇒ G ∈ C2.

We can proceed by induction to establish the following.

Proposition 2.2.6. In the setting of Theorem 2.2.1, the hypothesis F ∈ Ck yields
G ∈ Ck, for all k ∈ N.
Proof. To complete the induction, suppose we have the result for k ∈ {1, . . . , `},
and suppose F ∈ Cℓ+1. Again we have (2.31)–(2.36), and we can replace the chain
of inferences in (2.37) by

(2.38) F ∈ Cℓ+1 ⇒ Φ ∈ Cℓ ⇒ Ψ ∈ Cℓ ⇒ G,DG ∈ Cℓ ⇒ G ∈ Cℓ+1.

This does it.
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Chapter 3. Multivariable integral calculus and calculus on surfaces

§3.1. Comments on Proposition 3.1.11

We concentrate on a part of Proposition 3.1.11.

Proposition 3.1.11A. Given a cell R ⊂ Rn and f : R→ R bounded,

(42A) I(f) = I3(f) = inf
{∫

g dV : g ∈ C(R), g ≥ f
}
,

and

(43A) I(f) = I3(f) = sup
{∫

g dV : g ∈ C(R), g ≤ f
}
.

Proof. We are skipping the parts of Proposition 3.1.11 that read

(1) I(f) = I1(f) = I2(f), I(f) = I1(f) = I2(f).

To begin the proof of (42A), first note that

(2) I3(f) ≥ I(f).

This follows directly from the observation that, given f, g : R→ R, bounded,

(3) g ≥ f =⇒ I(g) ≥ I(f),

so

(4) g ∈ C(R), g ≥ f =⇒
∫
R

g dV ≥ I(f).

We next tackle the converse to (2),

(5) I3(f) ≤ I(f).

Adding a constant, we can assume f ≥ 0 on R. Now pick ε > 0, and let P = {Rα}
be a partition of R such that

(6) I(f) ≥ IP(f)− ε =
∑
α

fαV (Rα)− ε,

where

(7) fα = sup
Rα

f.
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The key is to take

(8) gα ∈ C(R), gα ≥ χRα ,

∫
R

gα dV ≤ (1 + ε)V (Rα).

Then we set

(9) g =
∑
α

fαgα,

satisfying

(10) g ∈ C(R), g ≥ f,

and

(11)

∫
R

g dV ≤
∑
α

fα(1 + ε)V (Rα)

≤ (1 + ε)
[
I(f) + ε

]
.

This gives (5), and finishes the proof of (42A). The proof of (43A) is similar, so we
have Proposition 3.1.11A.

Corollary 3.1.11B. Given f : R → R bounded, f ∈ R(R) if and only if there
exist ϕ,ψ ∈ C(R) such that

(12) ϕ ≤ f ≤ ψ, and

∫
R

(ψ − ϕ) dV < ε.

Remark. This result has a generalization, given in Lemma 3.1.16.
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§3.1. Application to products

Using Proposition 3.1.11A, we can give another analysis of products of Riemann
integrable functions.

Proposition 3.1.17. If R ⊂ Rn is a cell, then

(1) f1, f2 ∈ R(R) =⇒ f1f2 ∈ R(R).

Proof. Looking at

(2) (f1 + a1)(f2 + a2) = f1f2 + a1f2 + a2f1 + a1a2,

we see that there is no loss of generality in assuming f1, f2 ≥ 0. Say also fj ≤ M .
Now take ε > 0 and use Proposition 3.1.11A to pick ϕj , ψj such that

(3) 0 ≤ ϕj ≤ fj ≤ ψj ≤M, ϕj , ψj ∈ C(R),

∫
R

(ψj − ϕj) dV < ε.

Then

(4) ϕ1ϕ2 ≤ f1f2 ≤ ψ1ψ2,

and

(5)
ψ1ψ2 − ϕ1ϕ2 = ψ1(ψ1 − ϕ2) + (ψ1 − ϕ1)ϕ2

≤M(ψ2 − ϕ2) +M(ψ1 − ϕ1),

so

(6) 0 ≤
∫

(ψ1ψ2 − ϕ1ϕ2) dV ≤ 2εM,

and Proposition 3.1.11A implies f1f2 ∈ R(R).
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§3.1. Comments on Proposition 3.1.14

In the argument involving (3.1.48)–(3.1.51), it is convenient to impose on the
partition P = {Rα} the condition that the cells Rα be cubes, or at least that there
be some a priori bound on the ratio of the sidelengths. This makes it straightforward
to justify (3.1.19), as a consequence of the preceding formula for G(ξα + y). If the
shortest sidelength of Rα were allowed to be tiny compared to the longest sidelength,
this implication could fail.

Thanks to Mark Williams for pointing this out.
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§3.1A. Further Fubini theorems

Here we present some Fubini theorems that are much stronger and more general
than Theorem 3.1.9, and furthermore have a slicker proof. As a preliminary, we
establish the following special case.

Proposition 1A.1. Let A ⊂ Rk, B ⊂ Rℓ be cells, k + ` = n. Assume f ∈
C(A×B), and set

(1A.1) g(x) =

∫
B

f(x, y) dy.

Then g ∈ C(A) and

(1A.2)

∫
A

g(x) dx =

∫
A×B

f dV.

Proof. Since A × B is compact, f is uniformly continuous. Say |f(z) − f(z′)| ≤
ω(|z − z′|). Then |f(x, y)− f(x′, y)| ≤ ω(|x− x′|), so

(1A.3) |g(x)− g(x′)| ≤ Vℓ(B)ω(|x− x′|),

hence g ∈ C(A).
To proceed, pick ε > 0 and take a partition {Rαβ} = {Rα × Rβ} of A × B,

sufficiently fine that, for each α, β,

(1A.4) oscRαβ
f < ε, oscRα

g < ε,

where oscS f = supS f − infS f . Pick zαβ = (xα, yβ) ∈ Rαβ . Since

(1A.5) g(x) =
∑
β

∫
Rβ

f(x, y) dy,

we have

(1A.6) g(x) =
∑
β

f(zαβ)Vℓ(Rβ) +R1(ε, x),

for all x ∈ Rα, with |R1(ε, x)| ≤ Vℓ(B)ε. Furthermore,

(1A.7)

∫
A

g(x) dx =
∑
α

g(xα)Vk(Rα) +R2(ε),
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with |R2(ε)| ≤ Vk(A)ε. Then (1A.6)–(1A.7) yield

(1A.8)

∫
A

g(x) dx =
∑
α,β

f(zαβ)Vk(Rα)Vℓ(Rβ) +R3(ε),

with |R3(ε)| ≤ [Vk(A) + Vn(A×B)]ε. On the other hand,

(1A.9)

∫
A×B

f dV =
∑
α,β

f(zαβ)V (Rαβ) +R4(ε),

with |R4(ε)| ≤ V (A×B)ε. Comparing (1A.8) with (1A.9) gives the asserted result
(1A.2).

We proceed to the main result (advertised in Exercise 22).

Theorem 1A.2. Let A,B be cells, as above, and take

(1A.10) f ∈ R(A×B).

Let fx(y) = f(x, y), so fx : B → R, for x ∈ A. Set

(1A.11) g+(x) = IBfx, g−(x) = IBfx.

Then g± ∈ R(A) and

(1A.12)

∫
A

g±(x) dx =

∫
A×B

f dV.

Proof. We will derive this from Proposition 1A.1, via Proposition 3.1.11. Denote
the right side of (1A.12) by I(f). Take ε > 0. Then, using Proposition 3.1.11, pick
ϕ,ψ ∈ C(A×B) such that

(1A.13) ϕ ≤ f ≤ ψ, and

∫
A×B

(ψ − ϕ) dV < ε.

We have ϕx ≤ fx ≤ ψx for each x ∈ A, so

(1A.14)

∫
B

ϕx(y) dy ≤ g−(x) ≤ g+(x) ≤
∫
B

ψx(y) dy,

for all x ∈ A. Proposition 1A.1 gives

(1A.15)

∫
A

(∫
B

ϕ(x, y) dy
)
dx =

∫
A×B

ϕdV,
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and similarly for ψ. Hence

(1A.16)

∫
A×B

ϕdV ≤ IAg
− ≤ IAg

+ ≤
∫

A×B

ψ dV.

Taking ε↘ 0 gives

(1A.17) I(f) ≤ IAg
− ≤ IAg

+ ≤ I(f).

Hence equality holds at each step of (1A.17). It follows from this that g± ∈ R(A)
and (1A.12) holds.

Remark. We also have

(1A.18) IA(g
+ − g−) = 0 =⇒ g+(x) = g−(x), ∀x ∈ A \N,

where m∗(N) = 0, hence

(1A.19) fx ∈ R(B), ∀x ∈ A \N.

We present some examples that illustrate how Theorem 1A.2 contains results
that generalize Theorem 3.1.9.

Example 1. Let u ∈ R(A×B), take

(1A.20) Ω ⊂ A×B, contented,

and, for x ∈ A, set

(1A.21) Ωx = {y ∈ B : (x, y) ∈ Ω}.

Then, by Proposition 3.1.17,

(1A.22) f = χΩu ∈ R(A×B).

Note that, for x ∈ A, y ∈ B,

(1A.23) fx(y) = χΩx
(y)ux(y).

We form g±(x) as in (1A.11), and conclude from (1A.12) that

(1A.24)

∫
Ω

u dV =

∫
A×B

f dV =

∫
A

g±(x) dx.

Let us specialize further, and assume

(1A.25) u ∈ C(A×B), each Ωx ⊂ B contented.

Then

(1A.26) g±(x) =

∫
Ωx

u(x, y) dy,

and we have the following.
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Proposition 1A.3. Assume Ω ⊂ A × B is contented and that u and Ω satisfy
(1A.25). Then

(1A.27)

∫
Ω

u dV =

∫
A

(∫
Ωx

u(x, y) dy
)
dx.

(Sub)example 2. Take B = [b1, b2] and

(1A.28) Ω = {(x, y) ∈ A×B : ϕ1(x) ≤ y ≤ ϕ2(x)},

where

(1A.29) ϕj : A→ [b1, b2], ϕj ∈ R(A), ϕ1 ≤ ϕ2.

It follows that Ω is contented, and also, for each x ∈ A,

(1A.30) Ωx = [ϕ1(x), ϕ2(x)]

is contented. Take

(1A.31) u ∈ C(Ω), f = χΩu.

Then, for each x ∈ A,

(1A.32) g+(x) = g−(x) =

∫ φ2(x)

φ1(x)

u(x, y) dy,

and we deduce from Proposition 1A.3 that

(1A.33)

∫
Ω

u dV =

∫
A

g±(x) dx =

∫
A

(∫ φ2(x)

φ1(x)

u(x, y) dy
)
dx.

This generalizes Theorem 3.1.9.
Indeed, if Σ ⊂ A is contented and

(1A.34) ϕ1(x) = ϕ2(x) for x ∈ A \ Σ,

then we can replace Ω by

(1A.35) Ω̃ = {(x, y) ∈ Σ×B : ϕ1(x) ≤ y ≤ ϕ2(x)},

and obtain

(1A.36)

∫
Ω̃

u dV =

∫
Σ

(∫ φ2(x)

φ1(x)

u(x, y) dy
)
dx.
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Taking u ≡ 1, we have

(1A.37) V (Ω̃) =

∫
Σ

[ϕ2(x)− ϕ1(x)] dx.

Volumes of balls. Taking Ω̃ to be the unit ball in Rn,

(1A.38) Bn = {z ∈ Rn : |z| ≤ 1},

we can apply (1A.37) to write

(1A.39) V (Bn) = 2

∫
Bn−1

√
1− |x|2 dx.

For example,

(1A.40) V (B3) = 2

∫
D

√
1− |x|2 dx,

where D = B2 is te unit disk. In turn, an application of Proposition 1A.3 gives

(1A.41)

∫
D

√
1− |x|2 dx =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

√
1− x2 − y2 dy dx.

Taking a2 = 1− x2, we write the inner integral as

(1A.42)

∫ a

−a

√
a2 − y2 dy = a2

∫ 1

−1

√
1− s2 ds

=
π

2
a2,

using y = as and the substitution s = sin t. Hence

(1A.43)

∫
D

√
1− |x|2 dx =

π

2

∫ 1

−1

(1− x2) dx =
2

3
π,

and we get

(1A.44) V (B3) =
4

3
π.

Another attack on the integral (1A.40), using polar coordinates, is mentioned in
Exercise 6 of §3.1.

Another approach to computing V (Bn) will arise from the following generaliza-
tion of Theorem 3.1.9.
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Proposition 1A.4. Let n = k+ `, and let Σ ⊂ Rk be a closed, bounded, contented
set. Let ϕj : Σ → [0,∞) be continuous, and satisfy ϕ1(x) ≤ ϕ2(x). Take

(1A.45) Ω = {(x, y) ∈ Rn : x ∈ Σ, y ∈ Rℓ, ϕ1(x) ≤ |y| ≤ ϕ2(x)}.
Then Ω is a contented set in Rn. If f : Ω → R is continuous, then

(1A.46) g(x) =

∫
φ1(x)≤|y|≤φ2(x)

f(x, y) dy

is continuous on Σ, and

(1A.47)

∫
Ω

f dVn =

∫
Σ

g dVk.

Methods used to prove Theorem 3.1.9 can be tweaked to cover this result. Alter-
natively (and better), this proposition follows from Proposition 1A.3 in the same
way as (1A.36) does.

Solids of revolution. Before applying Proposition 1A.4 to V (Bn), we look at
a class of 3D domains to which it applies, namely solids of revolution. Take a
continuous function ϕ : [a, b] → [0,∞), and consider

(1A.48) Ω = {(x, y, z) : a ≤ x ≤ b,
√
y2 + z2 ≤ ϕ(x)}.

This has the form (1A.45), with Σ = [a, b], ϕ1 ≡ 0, ϕ2(x) = ϕ(x). If f : Ω → R is
continuous, then (1A.46) leads to

(1A.49) g(x) =

∫
|y|≤φ(x)

f(x, y) dy.

In particular, if f = f(x), then g(x) = f(x)A(Dφ(x)), with

(1A.50) Dρ = {y ∈ R2 : |y| ≤ ρ}, A(Dρ) = πρ2,

so, for Ω as in (1A.48),

(1A.51)

∫
Ω

f(x) dx dy dz = π

∫ b

a

f(x)ϕ(x)2 dx,

and taking f ≡ 1 gives

(1A.52) V (Ω) = π

∫ b

a

ϕ(x)2 dx.

The ball B3 is the solid of revolution one gets with ϕ(x) =
√
1− x2, [a, b] =

[−1, 1], so (1A.52) yields an alternative derivation of (1A.44):

(1A.53) V (B3) = π

∫ 1

−1

(1− x2) dx =
4

3
π.
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Volumes of balls (bis). Returning to the case Bn, we apply Proposition 1A.4,

with Σ = [−1, 1], ϕ1 ≡ 0, ϕ2(x) =
√
1− x2, to obtain, for f ∈ C(Bn),

(1A.54)

∫
Bn

f dV =

∫ 1

−1

( ∫
|y|≤

√
1−x2

f(x, y) dy
)
dx.

In particular,

(1A.55) V (Bn) =

∫ 1

−1

V (Bn−1√
1−x2

) dx,

where

(1A.56) Bn−1
r = {y ∈ Rn−1 : |y| ≤ r}.

Scaling gives

(1A.57) V (Bn−1
r ) = V (Bn−1)rn−1,

so we have the inductive result

(1A.58) V (Bn) = βnV (Bn−1), βn =

∫ 1

−1

(1− x2)(n−1)/2 dx.

Applying this to n = 3, and using V (B2) = A(D) = π, leads back to (1A.53). To
go one step further, we have

(1A.59) V (B4) = β4V (B3),

with

(1A.60) β4 =

∫ 1

−1

(1− x2)3/2 dx = 2

∫ π/2

0

cos4 t dt.

One can attack this trigonometric integral using

(1A.61) 2 cos2 t = 1 + cos 2t,

and squaring it.
In §3.2 we show how to calculate the area of the unit sphere Sn−1, and relate

this to a computation of V (Bn).
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§3.1B. Contented partitions and extension of Darboux’s theorem

A contented partition of a cell R ⊂ Rn is a finite collection {Kj : 1 ≤ j ≤ M}
of compact subsets of R that are contented (so cont+(Kj) = cont−(Kj) = V (Kj)),
satisfying

(1B.1)

M⋃
j=1

Kj = R, cont(Kj ∩Kℓ) = 0, ∀ j 6= `.

We denote the family of contented partitions of R by C(R). This is larger than the
family Π(R) of cellular partitions, introduced in (3.1.8).

If f : R → R is bounded and P = {Kj : 1 ≤ j ≤ M} is an element of C(R), we

define IP(f) and IP(f) as in (3.1.5):

(1B.2) IP(f) =
∑
j

(sup
Kj

f)V (Kj), IP(f) =
∑
j

(inf
Kj

f)V (Kj).

Alternatively, if we set

(1B.3) f#P (x) = sup
Kj

f, f bP(x) = inf
Kj

f, for x ∈ Kj ,

with the convention that if x belongs to several sets Kℓ, f
#
P (x) is the maximum of

such values and f bP(x) is the minimum, then f#P , f
b
P ∈ R(R), and

(1B.4) IP(f) = I(f#P ), IP(f) = I(f bP).

Note that

(1B.5) f bP ≤ f ≤ f#P ,

so, as in the case of the cellular partitions in (3.1.5),

(1B.6) IP(f) ≤ I(f) ≤ I(f) ≤ IP(f),

for each P ∈ C(R) (with I(f) and I(f) still defined by (3.1.8)). In light of this, we
can complement (3.1.8) with the identities

(1B.7) I(f) = inf
P∈C(R)

IP(f), I(f) = sup
P∈C(R)

IP(f).

Parallel to (3.1.3), we set

(1B.8) maxsize(P) = max
j

diamKj ,

for P ∈ C(R). Our next goal is to establish the following version of Darboux’s
theorem. Compare Theorem 1.1.4. See Exercise 30 of §3.2 for an extension to
integrals on a C1 surface M ⊂ Rn.
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Proposition 1B.1. Let Pν = {Kνj : 1 ≤ j ≤ ν} be a sequence of contented
partitions of R, satisfying

(1B.9) maxsize(Pν) ≤ δν → 0.

Let f : R→ R be bounded. Then

(1B.10) IPν (f) −→ I(f), and IPν
(f) −→ I(f).

Consequently,

(1B.11) f ∈ R(R) ⇐⇒ I(f) = lim
ν→∞

ν∑
j=1

f(ξνj)V (Kνj),

for arbitrary ξνj ∈ Kνj , in which case the limit is
∫
R
f dV .

Proof. We make use of Proposition 3.1.11, which implies that

(1B.12)

I(f) = inf
{∫
R

g dV : g ∈ C(R), g ≥ f
}
,

I(f) = sup
{∫
R

g dV : g ∈ C(R), g ≤ f
}
.

We will concentrate on proving the first part of (1B.10), i.e.,

(1B.13) IPν
(f) −→ I(f).

The second part has a similar proof.
To begin, pick ε > 0, and take γ > 0, g1 ∈ C(R) such that

(1B.14) f + γ ≤ g1, I(g1) ≤ I(f) + ε.

Now pick ν sufficiently large that, for x, x′ ∈ R,

(1B.15) |x− x′| ≤ 3δν =⇒ |g1(x)− g1(x
′)| < γ

2
.

Then, for all x ∈ R,

(1B.16) f#Pν
(x) ≤ sup

|x′−x|≤3δν

f(x′) ≤ sup
|x′−x|≤3δν

g1(x
′)− γ ≤ g1(x),

so

(1B.17) IPν
(f) = I(f#Pν

) ≤ I(g1) ≤ I(f) + ε.

Since I(f) ≤ IPν (f), this leads to (1B.13).
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§3.1C. From coverings to partitions

Our goal here is to prove the following.

Proposition 1C.1. Let R ⊂ Rn be a cell. Assume {Uk : 1 ≤ k ≤ K} is a finite
cover of R by open cells. Then there is a partition P = {Lα} of R with the property
that

(1) each Lα is contained in some Uk.

In this work, a cell R is defined to be a product of compact intervals. By contrast,
we say an open cell (in R) is a product of intervals that is open (in R).

To start the proof of Proposition 1C.1, we note that scaling each xj variable
leaves invariant the class of cells, open cells, coverings, and partitions, so without
loss of generality we can assume

(2) R = [0, 1]× · · · × [0, 1].

Generally, if a cell U (open or closed) is a product of intervals with endpoints ak
and bk, 1 ≤ k ≤ n, we call the points (c1, . . . , cn) ∈ R whose kth component is
either ak or bk the vertices of U . Returning to the cover {Uk}, we can write each
Uk as a union of open cells (in R), Ukℓ, ` ∈ N, with rational vertices. Hence we get
a cover of R by a countable family {Ukℓ : 1 ≤ k ≤ K, ` ∈ N} of open cells with
rational vertices. Since R is compact, this has a finite subcover,

(3) {Vj : 1 ≤ j ≤ J},

of open cells with rational vertices. It suffices to show there is a partition P = {Lα}
such that

(4) each Lα is contained in some Vj .

To arrange this, let µ be the least common multiple of the denominators of the
rational numbers that arise as components of the vertices of the various Vj . Then
take for P the partition of [0, 1]n into µn cubes, with vertices having components

(5)
α

µ
, α ∈ Z, 0 ≤ α ≤ µ.

This partition has the property (4).

Remark. Proposition 1C.1 provides a convenient means of passing from the cov-

ering {R1, . . . , RN , R
#
1 , . . . , R

#
M} to the partition P = {Lk} in the proof of Propo-

sition 3.1.31.
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§3.2A. Action of diffeomorphisms on surfaces

Let Ω,O ⊂ Rn be open, and suppose F : Ω → O is a Ck diffeomorphism. Let
S ⊂ Ω be a Ck surface, with coordinate chart

(1) ϕ : U −→ S, U ⊂ Rℓ, open,

so

(2) x ∈ U =⇒ Dϕ(x) : Rℓ → Rn is injective.

We aim to prove the folowing.

Proposition 3.2A.1. Let Σ = F (S). Then Σ ⊂ O is a Ck surface, with coordinate
chart ψ = F ◦ ϕ. In addition,

(3) p ∈ S, q = F (p) ∈ Σ =⇒ DF (p) : TpS
≈−→ TqΣ.

Proof. The chain rule gives

(4) Dψ(x) = DF (ϕ(x))Dϕ(x), x ∈ Ω.

Hence Dψ(x) is injective for each x ∈ U , so ψ is a coordinate chart on Σ, making
Σ a Ck surface.

Say ϕ(x0) = p, so ψ(x0) = q. Then TpS = RangeDϕ(x0), and

(5) TqΣ = RangeDψ(x0) = RangeDF (p)Dϕ(x0) = DF (p)TpS,

and we have (3).

We next compare the metric tensors on S and Σ (in ϕ and ψ coordinates, re-
spectively). We have, respectively,

(6) G(x) = Dϕ(x)tDϕ(x),

and

(7)
H(x) = Dψ(x)tDψ(x)

= Dϕ(x)t[DF (ϕ(x))tDF (ϕ(x))]Dϕ(x).

This leads to the following.

Proposition 3.2A.2. If F : Ω → O is an isometry, given by F (y) = Ay, A ∈
O(n), then, for x ∈ U ,

(8) H(x) = G(x).



33

§3.2B. Smooth maps between surfaces

Let X ⊂ Rm and Y ⊂ Rn be surfaces, smooth of class Ck. Say j = dimX, ` =
dimY . We say a map F : X → Y is smooth of class Ck provided that, for each
p ∈ X, there are coordinate charts ϕ : Ω → U 3 p and ψ : O → V 3 q = F (p) such
that

(1) ψ−1 ◦ F ◦ ϕ : Ω −→ O is smooth of class Ck.

Note that Lemma 3.2.1 then gives such a result for other coordinate charts about
p and q.

The concept of smoothness of maps between surfaces is applicable in particular to
the case where one surface is actually an open set in Euclidean space. In connection
with this, it is useful to note that the arguments proving Lemma 3.2.1 also establish
the following.

Lemma 3.2B.1. Let Y ⊂ Rn be a Ck smooth surface, q ∈ Y . Then there exist a

neighborhood Ṽ of q in Rn and a Ck map

(2) R : Ṽ −→ Y ∩ Ṽ , R(y) = y, ∀ y ∈ Y ∩ Ṽ .

Proof. Say ψ(y0) = q. As seen in the proof of Lemma 3.2.1, the inverse function

theorem implies there exist a neighborhood Õ = O1 × B of (y0, 0) in O × Rn−ℓ, a

neighborhood Ṽ of q in Rn, and a diffeomorphism

(3) Ψ : Õ −→ Ṽ , such that Ψ(y, 0) = ψ(y), ∀ y ∈ O1.

Then take

(4) R = Ψ ◦ P ◦Ψ−1, P (y, v) = (y, 0).

Using this, we can prove the following.

Proposition 3.2B.2. Take X,Y as above, and let F : X → Y . Then F is Ck

smooth as a map from X to Y if and only if F : X → Rn is Ck smooth.

Proof. Take p ∈ X, q = F (p) ∈ Y , and then take ϕ,ψ, U, V as in the definition
above. If F : X → Y is Ck smooth, then

(5) F ◦ ϕ = ψ ◦ (ψ−1 ◦ F ◦ ϕ) : Ω −→ Rn is Ck smooth,

so F : X → Rn is smooth. Conversely, if F : X → Rn is Ck smooth (and

F : X → Y ), take Ṽ and R as in Lemma 3.2B.1. We have

(6) F = R ◦ F,
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for x in some neighborhood of p in X, so F : X → Y is Ck smooth, in a neighbor-
hood of p.

If we denote the composite map (1) by G = ψ−1 ◦ F ◦ ϕ : Ω → O, which by
hypothesis is Ck-smooth, we have

(7) F ◦ ϕ = ψ ◦G : Ω → Y.

If ϕ(x0) = p and ψ(y0) = q, we have

(8) Dϕ(x0) : Rj ≈−→ TpX, Dψ(y0) : Rℓ ≈−→ TqY,

and hence it is natural to define

(9) DF (p) : TpX −→ TqY

as

(10) DF (p) = Dψ(y0)DG(x0)Dϕ(x0)
−1.

Note that DF (p) is invertible if and only if DG(x0) is. In such a case, the inverse
function theorem for G translates to the following result for F :

Proposition 3.2B.3. Let F : X → Y be a Ck-smooth map, k ≥ 1, p ∈ X, q =
F (p). If DF (p) : TpX → TqY is an isomorphism, then there exist a neighborhood
U of p in X and a neighborhood V of q in Y such that F : U → V is one-to-one
and onto. Furthermore, the inverse map F−1 : V → U is smooth of class Ck.

Proof. For the last result, note that

(11) G−1 = ϕ−1 ◦ F−1 ◦ ψ

is Ck-smooth, so (1) applies to F−1.
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§3.2C. Further surface integrals

We have the goal of evaluating

(1) Sn(α) =

∫
Sn−1

ωα dS(ω), α = (α1, . . . , αn).

We accomplish this by evaluating

(2) In(α) =

∫
Rn

e−|x|2xα dx

in two ways. For one, we write this integral as an iterated integral and use the

identity e−|x|2 = e−x2
1 · · · e−x2

n to get

(3) In(α) = I1(α1) · · · I1(αn),

where, for k ∈ Z+,

(4) I1(k) =

∫
R

e−x2

xk dx.

We note right away that k odd ⇒ I1(k) = 0, hence

(5) In(α) = 0, if any component αν is odd.

For the second evaluation of (2), we use (3.2.28) to write

(6)

In(α) =

∫
Sn−1

∫ ∞

0

e−r2r|α|ωαrn−1 dr dS(ω)

= Sn(α)

∫ ∞

0

e−r2rn+|α|−1 dr.

Taking s = r2 gives

(7)

∫ ∞

0

e−r2rn+|α|−1 dr =
1

2

∫ ∞

0

e−ss(n+|α|)/2−1 ds

=
1

2
Γ
(n+ |α|

2

)
,

where, as in (3.2.33), we have the gamma function

(8) Γ(z) =

∫ ∞

0

e−ssz−1 ds, z > 0.
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Note also that, for k ∈ Z+,

(9) I1(2k) = 2

∫ ∞

0

e−x2

x2k dx = Γ
(
k +

1

2

)
.

We have the following conclusions:

(10) Sn(α) = 0, whenever some component αν is odd,

and, for β ∈ (Z+)n,

(11)

∫
Sn−1

ω2β dS(ω) = 2
In(2β)

Γ(|β|+ n
2 )

= 2
Γ(β1 +

1
2 ) · · ·Γ(βn + 1

2 )

Γ(|β|+ n
2 )

.

In connection with this, recall that, for k ∈ Z+,

(12) Γ(k + 1) = k!

and

(13) Γ(k + 1
2 ) = (k − 1

2 )(k −
3
2 ) · · ·

1
2

√
π.

As an aside, we derive a formula for the integral of xα over the unit ball Bn ⊂ Rn:

(14)

∫
Bn

xα dx =

∫
Sn−1

∫ 1

0

ωαrn+|α|−1 dr dS(ω)

= Sn(α)

∫ 1

0

rn+|α|−1 dr

=
Sn(α)

n+ |α|
.
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§3.4. Sard’s theorem.

The following result, which complements Proposition 3.4.1, is the more typical
formulation of Sard’s theorem.

Proposition 3.4.1. If O ⊂ Rn is open and F : O → Rn is a C1 map, C its set of
critical points, then

(1) m∗(F (C)) = 0.

Proof. Take compact Kℓ ⊂ O such that Kℓ ↗ O. Set Sℓ = F (C ∩Kℓ), S = F (C).
Then each Sℓ is compact, and m∗(Sℓ) = cont+(Sℓ) = 0, while Sℓ ↗ S. It is a
general result that

(2) Sℓ ↗ S, m∗(Sℓ) = 0 =⇒ m∗(S) = 0.

To see this, pick ε > 0 and let {Uℓν : ν ∈ N} be a countable cover of Sℓ by cells
such that

∑
ν V (Uℓν) < 2−ℓε. Then {Uℓν : `, ν ∈ N} is a countable cover of S, and∑

ℓ,ν V (Uℓν) < 2ε. Hence m∗(S) < 2ε for each ε > 0. This proves (1).

Note that the analogue of (2) fails when m∗ is replaced by cont+, as is illustrated
by Sℓ ↗ [0, 1] ∩Q, where Sℓ is a set with ` points.
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§3.5A. Gradient vector fields on a surface

Let S ⊂ Rn be a k-dimensional surface, smooth of class Cℓ. Assume O is an
open neighborhood of S in Rn and f : O → R is a Cℓ-smooth function. Hence
∇f is a vector field on O. We associate to this a vector field tangent to S via the
formula

(1) ∇Sf(y) = P (y)∇f(y), y ∈ S,

where

(2) P (y) : Rn −→ TyS is the orthogonal projection.

We want some further formulas for ∇Sf , in terms of a coordinate chart

(3) ϕ : Ω −→ U ⊂ S, Ω ⊂ Rk open,

where ϕ is Cℓ-smooth and Dϕ(x) : Rk → Rn is injective for each x ∈ Ω. In
particular, we want to relate ∇Sf to ∇g, where

(4) g = f ◦ ϕ : Ω −→ R.

To begin, the chain rule gives

(5) Dg(x) = Df(y)Dϕ(x), y = ϕ(x),

so, for Y ∈ Rk,

(6)

∇g(x) · Y = Dg(x)Y

= Df(y)Dϕ(x)Y

= ∇f(y) ·Dϕ(x)Y
= Dϕ(x)t∇f(y) · Y.

We hence have

(7)
∇g(x) = Dϕ(x)t∇f(y)

= Dϕ(x)t∇Sf(y),

the last identity because

(8) KerDϕ(x)t = (RangeDϕ(x))⊥ = (TyS)
⊥ = KerP (y).

Note that

(9) Dϕ(x)t : TyS
≈−→ Rk, Dϕ(x) : Rk ≈−→ TyS.
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We have seen the “metric tensor”

(10) G(x) = Dϕ(x)tDϕ(x) ∈ L(Rk),

which is symmetric and positive definite. To relate ∇Sf(y) to a vector field on Ω,
we want to solve

(11) Dϕ(x)X = ∇Sf(y), for X ∈ Rk.

Indeed, applying Dϕ(x)t to both sides yields

(12) G(x)X = Dϕ(x)t∇Sf(y),

hence

(13) X = G(x)−1Dϕ(x)t∇Sf(y).

Comparison with (7) gives the formula

(14) X = G(x)−1∇g(x),

or, denoting the solution X by ∇Sg(x),

(15) ∇Sg(x) = G(x)−1∇g(x).

This is the representative of the vector field ∇Sf on S, in the coordinate system
(3).

In turn, (11) and (15) yield

(16) ∇Sf(y) = Dϕ(x)G(x)−1∇g(x),

hence, by (7),

(17) ∇Sf(y) = Dϕ(x)G(x)−1Dϕ(x)t∇f(y).

That is to say, we have the formula

(18) P (y) = Dϕ(x)G(x)−1Dϕ(x)t, y = ϕ(x),

for the orthogonal projection P (y) defined in (2). In connection with this, we
mention that the form of the right side of (18) readily yields

(19) P (y)t = P (y), and P (y)2 = P (y).

Remark. The orthogonal projection P will play an important role in geometric
investigations of surfaces, pursued in Chapter 6.
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Chapter 4. Differential forms and the Gauss-Green-Stokes formula

§4.1. Revision of (4.1.12)–(4.1.13)

There is a special notation we use for k-forms. If J = (j1, . . . , jk) and 1 ≤ j1 <
· · · < jk ≤ n, we set

(4.1.12) α =
∑
J

aJ(x) dxj1 ∧ · · · ∧ dxjk ,

where

(4.1.13) aJ(x) = α(Dj1 , . . . , Djk), Dj = ∂/∂xj .

More generally, we assign meaning to (4.1.12) summed over all k-indices (j1, . . . , jk),
where we identify

(4.1.14) dxj1 ∧ · · · ∧ dxjk = (sgnσ) dxjσ(1)
∧ · · · ∧ dxjσ(k)

,

σ being a permutation of {1, . . . , k}. In such a case, we replace (4.1.13) by

(4.1.13A) aJ(x) =
1

k!
α(Dj1 , . . . , Djk).

Another variation on (4.1.12), parallel to the J-index notation used in (2.1.35)
and (2.1.39), is

(4.1.12A) α =
∑
J

aJ(x) dx
J , dxJ = dxj1 ∧ · · · ∧ dxjk .

Then we can rewrite the formula (4.2.11) for the exterior derivative as

(4.2.11A) dα =
∑
J,ℓ

∂aJ
∂xℓ

dxℓ ∧ dxJ .
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§4.1A. k-forms on a surface

Let S ⊂ Rn be a Cℓ-smooth m-dimensional surface. We have developed results
on k-forms on an open neighborhood of S in Rn. Here we introduce the notion of
a k-form on S itself.

Say S is covered by Uj , for which there are smooth coordinate charts

(1) ϕj : Oj −→ Uj , Oj ⊂ Rm, open.

For a first approach, we view a k-form on S as an object associated to a collection
of k-forms αj on Oj , subject to a natural compatibility condition on coordinate
overlaps. Namely, if Ui ∩ Uj 6= ∅, we have transition maps

(2) Fij : Oij −→ Oji, Fij = ϕ−1
j ◦ ϕi,

known to be Cℓ-smooth, by Lemma 3.2.1. The compatibility condition is

(3) αi = F ∗
ijαj on Oij .

We say the collection {αj} of k-forms is compatible. Recalling that the formula for
the pull-back F ∗

ij involves first-order derivatives of the map Fij , we see that if S

is a Cℓ-smooth surface, a natural smoothness condition for a compatible collection
{αj} is that these forms be Cr-smooth, with r ≤ ` − 1. We give the compatible
collection {αj} of k-forms a label, say α.

One way a compatible collection of k-forms arises is the following. Suppose U is
an open neighborhood of S in Rn and α̃ is a Cr-smooth k-form on U. Then each
ϕj is also a map ϕj : Oj → U, and we can set

(4) αj = ϕ∗
j α̃ ∈ Λk(Oj).

The compatibility condition (3) follows from (4.1.28), in this case. We say

(5) α = ι∗α̃,

where ι : S ↪→ U is the inclusion, and α is the label for the compatible collection
{αj}.

A bit later we will establish a converse to this construction.
Suppose now that we have a Cℓ-smooth map

(6) ψ : Ω −→ S, Ω ⊂ Rd, open,

and a compatible collection α = {αj} of Cr-smooth k-forms on S (i.e., associated
to a coordinate cover {ϕj} of S). We propose to define

(7) ψ∗α ∈ Λk(Ω).



42

To do this, we set

(8) Ωj = ψ−1(Uj), Ω =
⋃
j

Ωj ,

with Uj as in (1), and define

(9)
Gj : Ωj −→ Oj , Gj = ϕ−1

j ◦ ψ,

βj = G∗
jαj , βj ∈ Λk(Ωj).

The compatibility condition on {αj} implies

(10) βi = βj on Ωi ∩ Ωj ,

if Ωj ∩Ωj 6= ∅. Hence there is a unique k-form β ∈ Λk(Ω), equal to βj on each open
subset Ωj . We set

(11) ψ∗α = β.

Note that taking ψ = ϕj : Oj → S as in (1) yields

(12) ϕ∗
jα = αj .

Also, if α is given by (5), we have

(13) ψ∗α = ψ∗α̃,

where, for the right side of (13), we take ψ : Ω → U.
Going further, suppose we have a Cℓ-smooth, d-dimensional surface X ⊂ Rν ,

covered by Vi, for which there are smooth coordinate charts

(14) ψi : Ωi −→ Vi, Ωi ⊂ Rd, open,

and suppose we have a Cℓ-smooth map

(15) F : X −→ S,

as considered in §3.2B of this supplement. Thus, for each i, we have a Cℓ-smooth
map

(16) Fi = F ◦ ψi : Ωi −→ S,

and, as established above, if α = {αj} is a compatible collection of k-forms on S,
we have for each i a well defined k-form

(17) βi = F ∗
i α ∈ Λk(Ωi).
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Furthermore, {βi} is a compatible collection of k-forms on X (associated to the
coordinate cover {ψi}). We label this collection β, and obtain

(18) β = F ∗α.

Parallel to (13), if α is given by (5), we have

(19) F ∗α = F ∗α̃,

where, for the right side of (19), we take F : X → U, and F ∗α̃ labels the compatible
collection of k-forms {F ∗

i α̃}.
We record observations on exterior derivatives and wedge products. If α = {αj}

and β = {βj} are compatible collections of k-forms and `-forms on S (associated
to a coordinate cover {ϕj}), then {dαj} and {αj ∧ βj} are compatible collections,
defining

(20) dα = {dαj}, α ∧ β = {αj ∧ βj}.
Also we have

(21) F ∗dα = dF ∗α, F ∗(α ∧ β) = F ∗α ∧ F ∗β,

for F as in (15).
We turn to a construction of compactly supported “k-forms” on S, in a fashion

that interfaces with (5). Let ϕ0 : O0 → U0 ⊂ S be a Cℓ-smooth coordinate chart
on S, and let α0 be a Cr-smooth k-form on O0 (r ≤ `− 1), with compact support.
Then ϕ0(suppα0) = K0 is a compact subset of U0. We aim to prove the following.

Proposition 4.1A.1. Let U be an open neighborhood of K0 in Rn. Then there is
a Cr-smooth k-form α̃ on Rn such that supp α̃ ⊂ U and

(22) ϕ∗
0α̃ = α0.

Proof. Chopping up α0 via a partition of unity and applying some relabeling, we
can refer to the proof of Lemma 3.2B.1 of this supplement, and assume there exist
an open neighborhood O′

0 of suppα0 in O0, an open neighborhood B of 0 in Rn−m

(m = dimS), and a diffeomorphism

(23) Φ : O′
0 ×B −→ Ũ ⊂ U, such that Φ(x, 0) = ϕ0(x), ∀x ∈ O′

0.

Denote elements of O′
0 ×B by (x, v), x ∈ O′

0, v ∈ B. Now take

(24) β0 = fP ∗α0, P (x, v) = x,

where f ∈ C∞
0 (B) and f(v) = 1 for v in some neighborhood of 0. We have β0

compactly supported in O′
0 ×B. Then set

(25) α̃ = (Φ−1)∗β0, supp α̃ ⊂ Ũ,

to obtain (22).

Remark. Having Proposition 4.1A.1, we can apply (5), to obtain

(26) α = ι∗α̃,

supported on U0, and satisfying ϕ∗
0α = α0, in the sense of (7)–(12).
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Another approach to k-forms on a surface.

Let S ⊂ Rn be a smooth m-dimensional surface, covered by Uj , for which there
are coordinate charts,

ϕj : Oj −→ Uj , Oj ⊂ Rm, open.

In §4.1A we have developed the notion of a k-form α on S as an object associated
to a collection of k-forms αj on Oj , subject to natural compatibility conditions on
coordinate overlaps. Here we outline another approach to the definition of a k-form
on S.

To set up this definition, we bring in the space

T kS = {(x, v1, . . . , vk) ∈ (Rn)k+1 : x ∈ S, vj ∈ TxS},

which has the structure of a smooth (k+1)m-dimensional surface. Then we define
a k-form α on S to be a smooth map

α : T kS −→ R,

having the property that, for each x ∈ S, the restriction

α(x) : TxS × · · · × TxS −→ R

is k-linear, and alternating.
In this setting, we can directly define αj ∈ Λk(Oj) by the formula

αj(x)(X1, . . . , Xk) = α(ϕj(x))(Dϕj(x)X1, . . . , Dϕj(x)Xk),

with
Xν ∈ Rm, Dϕj(x)Xν ∈ Tφj(x)S.

Going further, if X ⊂ Rd is a smooth surface and F : X → S is a smooth map (as
defined in §3.2B of this Supplement), we have

DF (x) : TxX −→ TF (x)S,

defined as in (7)–(10) of §3.2B, and then, for x ∈ X, α as above,

F ∗α(x)(X1, . . . , Xk) = α(F (x))(DF (x)X1, . . . , DF (x)Xk),

with
Xν ∈ TxX, DF (x)Xν ∈ TF (x)S.
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§4.2A. Exterior derivative versus gradient

As stated in (4.1.8), a 1-form α acts linearly on a vector field X by

(1) α(X) =
∑
j

bj(x)aj(x), X =
∑

bj(x)
∂

∂xj
, α =

∑
aj(x) dxj .

Say these objects are defined on Ω, an open subset of Rn. If we have a Riemannian
metric on Ω, given by a positive definite matrix G(x), we can associate to α a vector
field Y such that

(2) α(X) = G(x)X · Y.

That is,

(3) Y =
∑

aj(x)
∂

∂xj
,

∑
k

gjk(x)a
k(x) = aj(x),

where (gjk) = G. Equivalently,

(4) aj(x) =
∑
k

gjk(x)ak(x), (gjk(x)) = G(x)−1.

One suggestive way to think of this is to regard

(5) G(X) : TxΩ
≈−→ T ∗

xΩ,

and then

(6) α(x) = G(x)Y (x), i.e., Y (x) = G(x)−1α(x).

In case α = df(x), we define the gradient ∇Gf to be the associated vector field,

(7) ∇Gf(x) = G(x)−1df(x),

the superscript G denoting that we are associating the vector field ∇Gf to the
1-form df via the metric tensor G. Compare the formula (15) in §3.5A of this
supplement.
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§4.5. Alternative endgame to the change of variable formula for integrals

Recall the change of variable formula:

Theorem 4.5.1. Let O,Ω be open sets in Rn, ϕ : O → Ω a C1 diffeomorphism.
Given f continuous on Ω, with compact support, we have

(1)

∫
O

f(ϕ(x))| detDϕ(x)| dx =

∫
Ω

f(x) dx.

This was deduced from the following.

Theorem 4.5.2. Let ϕ : Rn → Rn be a C1 map. Assume ϕ(x) = x for |x| ≥ R.
Let f be a continuous function on Rn with compact support. Then

(2)

∫
f(ϕ(x)) detDϕ(x) dx =

∫
f(x) dx.

The proof of Theorem 4.5.2 given in the text was a neat variant of an approach of
P. Lax. The derivation of Theorem 4.5.1 from 4.5.2 involved further arguments, and
made use of the fact that G`+(n,R) is connected. Here we provide an alternative
route from Theorem 4.5.2 to 4.5.1, making use of Proposition 3.1.10, which we
recall.

Lemma A. Let f be a continuous function with compact support on Rn. If A ∈
G`(n,R), then

(3)

∫
f(x) dx = | detA|

∫
f(Ax) dx.

To start the proof of Theorem 4.5.1, bring in a partition of unity on Ω to write

(4) f =

N∑
ν=1

fν , fν ∈ Cc(Ων), Oν = ϕ−1(Ων),

and arrange that each Oν is small enough that there exist Aν ∈ G`(n,R) such that

(5) ‖A−1
ν Dϕ(x)− I‖ ≤ 1

2
, ∀x ∈ Oν .

Now set

(6) ψν(x) = A−1
ν ϕ(x),
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so we have a diffeomorphism

(7) ψν : Oν −→ Ω̃ν , Ω̃ν = A−1
ν (Ων),

satisfying

(8) ‖Dψν(x)− I‖ ≤ 1

2
, ∀x ∈ Oν .

Now to show that

(9)

∫
Oν

fν(ϕ(x))| detDϕ(x)| dx =

∫
Ων

fν(x) dx,

it suffices by Lemma A to show that

(10)

∫
Ων

fν(x) dx =

∫
Õν

fν(ψν(x)) detDψν(x) dx.

Let us recast this as a fresh proposition. We simplify the notation by deleting

the subscripts ν (and also the tilde from Õν).

Proposition B. Let O, Ω be open sets in Rn, ψ : O → Ω a C1 diffeomorphism.
Assume

(11) ‖Dψ(x)− I‖ ≤ 1

2
, ∀x ∈ O.

Then, given f ∈ Cc(Ω), we have

(12)

∫
O

f(ψ(x)) detDψ(x) dx =

∫
Ω

f(x) dx.

To tackle Proposition B, pick p ∈ O, set q = ψ(p), and pick δ > 0 such that

(13) Bδ(p) ⊂ O.

As seen in the proof of Corollary 2.2.2A (in §2.2 of this supplement), ‖ψ(x)−ψ(y)‖ ≥
(1/2)‖x− y‖, for all x, y ∈ Bδ(p), so

(14) x ∈ ∂Bδ(p) =⇒ ‖ψ(x)− q‖ ≥ δ

2
.

Hence, by Corollary 2.2.3A (in §2.2 of this supplement),

(15) ψ(Bδ(p)) ⊃ Bδ/2(q).
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In fact, ψ(Bδ(p)) is compact, so it contains Bδ/2(q), and consequently

(16) Bδ/2(q) ⊂ Ω.

To continue, we simplify notation by translating axes so that

(17) p = 0, q = 0,

and we note that (2.3A) (in §2.2 of this supplement) yields

(18) x · ψ(x) ≥ 1

2
|x|2, for |x| ≤ δ.

Now we pick β ∈ C∞
0 (O) such that β = 1 on a neighborhood of Bδ(0), and

(19) suppβ ⊂ Bγ(0) ⊂ O,

for some γ > δ, and set

(20) Ψ(x) = β(x)ψ(x) + (1− β(x))x, x ∈ Rn.

Noting that (18) then holds for |x| ≤ γ, we have

(21) x ·Ψ(x) = β(x)x · ψ(x) + (1− β(x))|x|2 ≥ 1

2
|x|2, ∀x ∈ Rn,

hence

(22) |Ψ(x)| ≥ 1

2
|x|, ∀x ∈ Rn, Ψ(x) = x for |x| ≥ γ.

In particular,

(23) |Ψ(x)| ≥ δ

2
, for |x| ≥ δ,

so

(24)
supp f ⊂ Bδ/2(q) ⇒ f ◦Ψ = f ◦ ψ, supported on Bδ(p)

⇒ f(Ψ(x)) detDΨ(x) = f(ψ(x)) detDψ(x).

Now Theorem 4.5.2 yields

(25)

∫
O

f(Ψ(x)) detDΨ(x) dx =

∫
Ω

f(x) dx,

and we have the following.

Lemma C. In the setting of Proposition B, if (13)–(16) hold, and if supp f ⊂
Bδ/2(q), then (12) holds.

From here, a partition of unity argument finishes the proof of Proposition B.
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Alternative proof of Lemma A

Rather than depend on the argument in Proposition 3.1.10, we bring in the
following result, of a flavor more like the proof of Theorem 4.5.2, to establish Lemma
A.

Lemma D. Let A ∈M(n,R), and assume f ∈ C1
0 (Rn). Then

(26)

∫
Rn

f(etAx) dx = (det etA)−1

∫
Rn

f(x) dx.

Proof. Set

(27) vt(x) = f(etAx), so Dvt(x) = Df(etAx)etA.

Then

(28)

d

dt
vt(x) = Df(etAx)AetAx

= Dvt(x)Ax

= ∇vt(x) ·Ax.

Hence

(29) ϕ(t) =

∫
f(etAx) dx =

∫
vt(x) dx

satisfies

(30)

ϕ′(t) =

∫
∇vt(x) ·Axdx

= −
∫
vt(x) div(Ax) dx,

the last identity by integration by parts. Now, for A = (ajk) ∈M(n,R),

(31) div(Ax) =
n∑

j=1

∂j

n∑
k=1

ajkxk = TrA,

so

(32) ϕ′(t) = −TrAϕ(t),
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hence

(33) ϕ(t) = e−tTrAϕ(0),

which yields (26), since (cf. §2.3, Exercise 8)

(34) e−tTrA = det e−tA = (det etA)−1.

Using Lemma D, we can prove Lemma A as follows. Take A ∈ G`+(n,R). By
Proposition 3.2.11, we can write

(35) A = UQ, U ∈ SO(n), Q ∈ P(n).

Now, by (3.2.19),

(36) u = eB1 , for some B1 ∈ Skew(n).

Meanwhile, Q is conjugate to a diagonal matrix with positive entries, so we also
have

(37) Q = eB2 , for some B2 ∈ Sym(n).

Thus

(38)

∫
f(Ax) dx =

∫
f(eB1eB2x) dx,

and the identity (3) follows from two applications of Lemma D.
Finally, if A ∈ G`(n,R) and detA < 0, we can write

(39)
A = A1A2, A1 ∈ G`+(n,R),
A2ej = −ej if j = 1, ej otherwise.

Directly verifying Lemma A for A2 is elementary, and the proof is complete.
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Chapter 5. Applications of the Gauss-Green-Stokes formula

§5.1A. Holomorphic inverse function theorem

As defined in §5.1, if Ω ⊂ C is open and f : Ω → C, the map f is holomorphic
provided f is C1-smooth and complex differentiable. Equivalently, with

(1) f(z) = u(x, y) + iv(x, y), z = x+ iy, u, v : Ω → R,

the functions u and v are C1-smooth and satisfy the Cauchy-Riemann equations,

(2)
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

derived from

(3)
∂f

∂x
=

1

i

∂f

∂y
.

Here we want to examine the map F : Ω → R2, defined by

(4) F (x, y) =

(
u(x, y)

v(x, y)

)
,

and compare complex differentiability of f with the behavior of

(5) DF (x, y) =

(
ux uy
vx vy

)
.

Lemma 5.1A.1. The Cauchy-Riemann equations (2) are equivalent to the state-
ment that

(6) DF (x, y)J = JDF (x, y), J =

(
0 −1
1 0

)
.

Proof. One routinely computes

(7) DF (x, y)J =

(
uy −ux
vy −vx

)
, JDF (x, y) =

(
−vx −vy
ux uy

)
,

and checks the equivalence of (2) and (6).

Remark. Given (5), as also see that the CR equations (2) are equivalent to the
identity

(8) DF (x, y) =

(
ux −vx
vx ux

)
= uxI + vxJ,
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and to the identity

(9) DF (x, y) =

(
vy uy
−uy vy

)
= vyI − uyJ.

We next look at

(10) detDF (x, y) = uxvy − vxuy.

The CR equations (2) yield

(11) detDF (x, y) = u2x + v2x = v2y + u2y.

Meanwhile, complex differentiability of f implies

(12)

f ′(z) = fx = ux + ivx, and

f ′(z) =
1

i
fy = −iuy + vy,

hence

(13) |f ′(z)|2 = u2x + v2x = u2y + v2y.

Comparing (11) and (13), we have:

Lemma 5.1A.2. If f : Ω → C is holomorphic, given by (1), and if F is given by
(4), then

(14) detDF (x, y) = |f ′(z)|2, z = x+ iy ∈ Ω.

Having these results, we can bring in the inverse function theorem, Theorem
2.2.1, to obtain the following holomorphic inverse function theorem.

Theorem 5.1A.3. Let f : Ω → C be holomorphic, z0 ∈ Ω, w0 = f(z0). If f
′(z0) 6=

0, then there exist an open neighborhood O of z0 in Ω and an open neighborhood U
of w0 in C such that

(15) f : O −→ U is one-to-one and onto,

with inverse

(16) g : U −→ O,

and g is holomorphic on U .
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Proof. By (14), we obtain from Theorem 2.2.1 that such O and U exist satisfying

(17) F : O −→ U is one-to-one and onto,

with C1 inverse

(18) G : U −→ O.

Furthermore, with (u, v) ∈ U, G(u, v) = (x, y) ∈ O,

(19) DG(u, v) = DF (x, y)−1.

The commutativity (6) then implies

(20) DG(u, v)J = JDG(u, v),

so

(21) G =

(
ξ

η

)
, g = ξ + iη

gives the holomorphic inverse (16).
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Open mapping theorem

We use the holomorphic inverse function theorem to derive the following open
mapping theorem for holomorphic functions.

Theorem 5.1A.4. Let Ω ⊂ C be open and connected, and assume f : Ω → C is
holomorphic and not constant. Then

(1) O ⊂ Ω open =⇒ f(O) open in C.

Proof. It suffices to show that each z0 ∈ Ω has a neighborhood O1 such that

(2) f(O1) is a neighborhood of w0 = f(z0).

If f ′(z0) 6= 0, this follows from the holomorphic inverse function theorem.
Now suppose f ′(z0) = 0. Then there is a first n ∈ N such that f (n)(z0) 6= 0, so

the power series expansion of f about z0 has the form

(3) f(z) = w0 +

∞∑
k=n

ak(z − z0)
k, an 6= 0,

on some disk DR(z0). Otherwise, all the power series coefficients would vanish, and
f would be constant. We can write

(4) f(z) = w0 + an(z − z0)
ng(z),

with

(5) g(z) =

∞∑
k=0

bk(z − z0)
k, bk =

an+k

an
, b0 = 1,

holomorphic onDR(z0). We hence have g(z)1/n holomorphic on some neighborhood
O0 of z0, and

(6) f(z) = w0 + [b(z − z0)g(z)
1/n]n = w0 +H(z)n,

with H holomorphic on O0,

(7) H(z0) = 0, H ′(z0) 6= 0.

Thus, by the holomorphic inverse function theorem, H maps some neighborhood
O1 of z0 onto a neighborhood U1 of 0, hence

(8) Hn(z) = H(z)n maps O1 onto a neighborhood Un of 0,

and we have (2).
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§5.1B. Exercise on log z.

Exercise 9 of §5.1 introduced log : Ω → C (Ω = C \ (−∞, 0]), satisfying

d

dz
log z =

1

z
, log 1 = 0.

This led to the next exercise:

10. Show that
elog z = z, ∀ z ∈ Ω.

Two approaches were suggested as hints. Here is a third.
Hint. Set

ψ(z) = ze− log z,

and show that ψ′(z) ≡ 0.

Here is a complementary result.

10A. With Ω as above and O = {z ∈ C : | Im z| < π}, show that

Exp : O −→ Ω,

where Exp(z) = ez, and that

(*) log ez = z, ∀ z ∈ O.

(Hint. Apply d/dz to log ez to get (*).) Show that

log : Ω −→ O.
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§5.1C. The Hodge ∗-operator and harmonic functions

The Hodge ∗-operator is a linear map

(1C.1) ∗ : ΛkRn −→ Λn−kRn

that satisfies the identity

(1C.2) u ∧ ∗v = 〈u, v〉ω,

for u, v ∈ ΛkRn, where 〈u, v〉 is the inner product on ΛkRn treated in Exercises 5–10
of §4.1 and ω = e1 ∧ · · · ∧ en ({ej : 1 ≤ j ≤ n} denoting the standard orthonormal
basis of Rn). In particular, we have

(1C.3) ∗1 = ω

and

(1C.4) ∗(ej1 ∧ · · · ∧ ejk) = (sgnπ)eℓ1 ∧ · · · ∧ eℓn−k
,

where {j1, . . . , jk, `1, . . . , `n−k} = {1, . . . , n} and π is the permutation taking the
first ordered set to the second. We apply this to differential forms, obtaining

(1C.5) ∗ : Λk(Ω) −→ Λn−k(Ω),

for open Ω ⊂ Rn, upon substituting dxj for ej . Thus

(1C.6) ∗1 = dx1 ∧ · · · ∧ dxn,

and

(1C.7) ∗
∑
j

gj dxj =
∑
j

(−1)j−1gj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Here we aim to relate the ∗-operator to harmonic functions and to various formulas
that arise in §§4.2–4.4, 5.1, and 5.3.

To begin, let Ω ⊂ Rn be open and let f : Ω → R be smooth of class C2. Then
we have the 1-form

(1C.8) df =
∑
j

(∂jf) dxj ,

and (1C.7) yields the (n− 1)-form

(1C.9) ∗df =
∑
j

(−1)j−1(∂jf) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.
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For example,

(1C.10) f(x) =
1

2
|x|2 =⇒ df = β =

n∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,

which arose in Exercises 6–9 of §4.3.
To proceed, we have, in general,

(1C.11)

d ∗ df =
∑
j,k

(−1)j−1(∂k∂jf) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

=
∑
j

(∂2j f) dx1 ∧ · · · ∧ dxn

= (∆f)ω.

We can interpret this as follows.

Proposition 1C.1. Given a C2 smooth f : Ω → R, with Ω ⊂ Rn open, the
(n− 1)-form ∗df is closed if and only if f is harmonic on Ω.

Let us apply this to the functions hn : Rn \ 0 → R given by

(1C.12) hn(x) =
|x|2−n

2− n
, n ≥ 3, h2(x) = log |x|,

seen in Exercise 12 of §4.4 and in Exercise 29 of §5.1 to be harmonic on Rn \ 0. We
have ∂jhn(x) = xj/|x|n, so

(1C.13) dhn = |x|−n
∑
j

xj dxj ,

hence, with β as in (1C.10),

(1C.14) ∗dhn = |x|−nβ,

the (n− 1)-form on Rn \ 0 that arises in Exercise 9 of §4.3. This (n− 1)-form will
also arise in Exercise 25 of §5.3. In these two exercises, this form might first seem
to be pulled out of a hat, and the fact that is is closed might seem to be a bit of a
coincidence. Proposition 1C.1 shows that it arises naturally and why it is closed.

The discussion of harmonic conjugates on planar domains in (5.1.34)–(5.1.35),
leading to Proposition 5.1.10, can also be cast in the language of the Hodge star
operator. In fact, given a smooth u : O → R, O ⊂ R2 open,

(1C.15) du =
∂u

∂x
dx+

∂u

∂y
dy =⇒ ∗du = −∂u

∂y
dx+

∂u

∂x
dy = α,

the 1-form defined in (5.1.34), so the result that α is closed if and only if u is
harmonic is seen to be a special case of Proposition 1A.1.

The Hodge ∗-operator has a natural extension to

(1C.16) ∗ : ΛkM −→ Λn−kM,

when M is an oriented n-dimensional manifold with a Riemannian metric. This
is introduced in (A.7.63) and plays a significant role in Hodge theory on compact
Riemannian manifolds, discussed in Appendix A.7.
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§5.2A. Further variations on the change of variable formula for integrals

Here we aim to establish further results on change of variable formulas, using
arguments of the flavor of those arising in the proof of Theorem 4.5.2.

Proposition 5.2A.1. Let Ft : Rn → Rn be a family of smooth diffeomorphisms of
Rn, depending smoothly on t ∈ I, an interval in R. Let ω be a smooth, compactly
supported n-form on Rn, and set

(1) ϕ(t) =

∫
Rn

F ∗
t ω.

Then ϕ(t) is independent of t.

Proof. As in (5.2.25), define vector fields Xt on Rn by

(2)
d

dt
Ft(x) = Xt(Ft(x)).

Then, by (5.2.26),

(3)
d

dt
F ∗
t ω = F ∗

t LXt
ω = F ∗

t d(ωcXt).

Hence

(4)

ϕ′(t) =

∫
F ∗
t d(ωcXt)

=

∫
dF ∗

t (ωcXt)

= 0,

the last identity by switching to an iterated integral and using the fundamental
theorem of calculus.

The following is a stronger result.

Proposition 5.2A.2. Let ft : Rn → Rn be a smooth family of maps, depending
smoothly on t ∈ R. Assume that for each compact K0 ⊂ Rn, there exist compact
K1 ⊂ Rn such that

(5) f−1
t (K0) ⊂ K1, ∀ t ∈ R.

Let ω be a smooth, compactly supported n-form on Rn, and set

(6) ϕ(t) =

∫
Rn

f∗t ω.
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Then ϕ(t) is independent of t.

For the proof, we want to replace use of (5.2.26) by arguments arising in the proof
of Proposition 5.2.3. To start, take F : R×Rn → Rn, F (t, x) = ft(x), and consider

(7) ω̃ = F ∗ω ∈ Λn(R× Rn).

We have dω̃ = F ∗dω = 0. Note that if (5) holds, then

(8) suppω ⊂ K0 =⇒ supp ω̃ ⊂ R×K1.

Now consider

(9) Φs : R× Rn → R× Rn, Φs(t, x) = (s+ t, x).

We claim that

(10)
d

ds
Φ∗

sω̃ = Φ∗
sd(ω̃c∂t).

Indeed, the proof of Lemma 5.2.4 applies to yield this identity. (In the present case,
` = n and Rn already provides the desired coordinate system.) Now, with

(11) j : Rn −→ R× Rn, j(x) = (0, x),

we have F ◦ Φs ◦ j = fs, so

(12)

d

ds
f∗s ω = j∗

d

ds
Φ∗

sω̃

= j∗Φ∗
sd(ω̃c∂t)

= dj∗Φ∗
s(ω̃c∂t)

= dαs,

and

(13) suppω ⊂ K0 =⇒ suppαs ⊂ K1.

Consequently

(14) ϕ′(t) =

∫
Rn

dαs = 0,

again by going to the iterated integral and applying the fundamental theorem of
calculus. This proves Proposition 5.2A.2.
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§5.3. Further cases of Euler’s formula for χ(M)

Let M be a compact 2D manifold. In Exercise 8 of §5.3, we were given a trian-
gulation of M , with

(1) V vertices, E edges, and F faces,

and obtained the formula

(2) χ(M) = V − E + F

by constructing a vector field X with

(3)
one source in each face, one sink at each vertex,

and one saddle in each edge.

Going further, one can suppose M is partitioned into F faces, each of which is a
curvilinear polygon, with edges and vertices, and extend formula (2) to this more
general setting.

For example, one can take a convex polyhedron P in R3, and project its boundary
∂P onto a sphere S2 ⊂ R3, obtaining the classic Euler formula

V − E + F = 2.

One can also get variants, such as

V − E + F = 0,

for a donut shaped polyhedron.

For higher dimensional results, see Chapter 1, §20, especially (20.12), of

M. Taylor, Partial Differential Equations, Vol. 1, Springer, NY, 1996 (2nd ed. 2011).



61

More exercises

31. Define
ϕ : S2 −→ R, ϕ = xyz

∣∣
S2 ,

and consider the vector field X = ∇ϕ on S2.

(a) Show that X has 14 critical points, 4 sources, 4 sinks, and 6 saddles.
(b) Show that the count from part (a) is consistent with the calculation χ(S2) = 2.
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Chapter 6. Differential geometry of surfaces

§6.1A. Formulas for P

If S ⊂ Rn is a k-dimensional surface, smooth of class C1, y ∈ S, we have the
map P (y) ∈ L(Rn),

(1) P (y) = ⊥ projection of Rn onto TyS,

arising in (6.1.16), as an essential tool in the study of differential geometry on S.
Here we derive some formulas for P (y), in two settings: either there is a coordinate
chart

(2) ϕ : Ω −→ U ⊂ S, TyS = Range Dϕ(x),

with y = ϕ(x), or S is the level set of a map

(3) F : O −→ Rℓ (` = n− k),

where O is an open neighborhood of S in Rn and DF (y) : Rn → Rℓ is surjective,
so

(4) TyS = KerDF (y).

In fact, in the former case, we have derived such a formula in §3.5A, but we revisit
that work and produce a unified treatment of the two cases.

To get this, it is convenient to bring in the following two linear algebra results.

Lemma 6.1A.1. Let A : Rk → Rn be injective, and set

(5) P = ⊥ projection of Rn onto V = Range A.

Then

(6) P = AG−1At,

where

(7) G = AtA ∈ L(Rk) is positive definite.
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Lemma 6.1A.2. Let B : Rn → Rℓ be surjective, and set

(8) Q = ⊥ projection of Rn onto W = KerB.

Then I −Q = Q⊥ is given by

(9) Q⊥ = BtH−1B,

where

(10) H = BBt ∈ L(Rℓ) is positive definite.

Proof. The formula (6) follows from a derivation parallel to that leading up to (18)
in §3.5A of this supplement. We present a separate verification of (6), as follows.
First, for v ∈ Rk, Gv · v = ‖Av‖2, so (7) holds, hence the right side of (6) is well

defined; denote it by P̃ . It is routine to check that

(11) P̃ t = P̃ , P̃ 2 = P̃ ,

so P̃ is an orthogonal projection. Furthermore, the hypotheses yield

(12) At : Rn −→ Rk is surjective,

hence Range P̃ = Range A. This yields P̃ = P , and proves Lemma 6.1A.1.
Moving to Lemma 6.1A.2, we see that the hypotheses imply

(13) Bt : Rℓ −→ Rn is injective, RangeBt =W⊥.

Thus we can apply Lemma 6.1A.1, with A replaced by Bt (and k replaced by `),
hence G = AtA replaced by H = BBt, and we have from (8) that

(14) Q⊥ = ⊥ projection of Rn onto W⊥.

Hence the formula (6) yields the formula (9) for Q⊥, and Lemma 6.1A.2 is proved.

We can now present our formulas for P (y).

Proposition 6.1A.3. Assume there is a coordinate chart on S, as in (2), with
y = ϕ(x) ∈ U . Then

(15) P (y) = Dϕ(x)G(x)−1Dϕ(x)t,

with

(16) G(x) = Dϕ(x)tDϕ(x).
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Proposition 6.1A.4. Assume S is a level set of F , as in (3), with DF (y) : Rn →
Rℓ surjective. Then

(17) I − P (y) = DF (y)tH(y)−1DF (y),

with

(18) H(y) = DF (y)DF (y)t.

These results are direct consequences of Lemma 6.1A.1 and 6.1A.2, with A =
Dϕ(x) and B = DF (y), respectively.

Remark. A standard presentation of Proposition 6.1A.4 in case ` = 1 is to set
N(y) = ∇F (y)/|∇F (y)| (unit normal to S at y) and write

(19) P (y)⊥v = (N(y) · v)N(y),

or equivalently

(20) P (y)⊥ = N(y)N(y)t.

We leave it to the reader to show how (17) leads to this formula in such a case.
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§6.2A. Curvature and torsion of curves in R3.

Given a curve c(t) = (x(t), y(t), z(t)) in 3-space, we define its velocity and accel-
eration by

(2A.1) v(t) = c′(t), a(t) = v′(t) = c′′(t).

We also define its speed s′(t) and arclength by

(2A.2) s′(t) = ‖v(t)‖, s(t) =

∫ t

t0

s′(τ) dτ,

assuming we start at t = t0. We define the unit tangent vector to the curve as

(2A.3) T (t) =
v(t)

‖v(t)‖
.

Henceforth we assume the curve is parametrized by arclength.
We define the curvature κ(s) of the curve and the normal N(s) by

(2A.4) κ(s) =
∥∥∥dT
ds

∥∥∥, dT

ds
= κ(s)N(s).

Note that

(2A.5) T (s) · T (s) = 1 =⇒ T ′(s) · T (s) = 0,

so indeed N(s) is orthogonal to T (s). We then define the binormal B(s) by

(2A.6) B(s) = T (s)×N(s).

For each s, the vectors T (s), N(s) and B(s) are mutually orthogonal unit vectors,
known as the Frenet frame for the curve c(s). Rules governing the cross product
yield

(2A.7) T (s) = N(s)×B(s), N(s) = B(s)× T (s).

(For material on the cross product, see the exercises at the end of §1.4.)
The torsion of a curve measures the change in the plane generated by T (s) and

N(s), or equivalently it measures the rate of change of B(s). Note that, parallel to
(2A.5),

B(s) ·B(s) = 1 =⇒ B′(s) ·B(s) = 0.

Also, differentiating (2A.6) and using (2A.4), we have

(2A.8) B′(s) = T ′(s)×N(s) + T (s)×N ′(s) = T (s)×N ′(s) =⇒ B′(s) · T (s) = 0.



66

We deduce that B′(s) is parallel to N(s). We define the torsion by

(2A.9)
dB

ds
= −τ(s)N(s).

We complement the formulas (2A.4) and (2A.9) for dT/ds and dB/ds with one
for dN/ds. Since N(s) = B(s)× T (s), we have

(2A.10)
dN

ds
=
dB

ds
× T +B × dT

ds
= τN × T + κB ×N,

or

(2A.11)
dN

ds
= −κ(s)T (s) + τ(s)B(s).

Together, (2A.4), (2A.9) and (2A.11) are known as the Frenet-Serret formulas.

Example. Pick a, b > 0 and consider the helix

(2A.12) c(t) = (a cos t, a sin t, bt).

Then v(t) = (−a sin t, a cos t, b) and ‖v(t)‖ =
√
a2 + b2, so we can pick s = t

√
a2 + b2

to parametrize by arc length. We have

(2A.13) T (s) =
1√

a2 + b2
(−a sin t, a cos t, b),

hence

(2A.14)
dT

ds
=

1

a2 + b2
(−a cos t,−a sin t, 0).

By (2A.4), this gives

(2A.15) κ(s) =
a

a2 + b2
, N(s) = (− cos t,− sin t, 0).

Hence

(2A.16) B(s) = T (s)×N(s) =
1√

a2 + b2
(b sin t,−b cos t, a).

Then

(2A.17)
dB

ds
=

1

a2 + b2
(b cos t, b sin t, 0),
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so, by (2A.9),

(2A.18) τ(s) =
b

a2 + b2
.

In particular, for the helix (2A.12), we see that the curvature and torsion are
constant.

Let us collect the Frenet-Serret equations

(2A.19)

dT

ds
= κN

dN

ds
= −κT + τB

dB

ds
= − τN

for a smooth curve c(s) in R3, parametrized by arclength, with unit tangent T (s),
normal N(s), and binormal B(s), given by

(2A.20) N(s) =
1

κ(s)
T ′(s), B(s) = T (s)×N(s),

assuming κ(s) = ‖T ′(s)‖ > 0.
The basic existence and uniqueness theory, given in §2.3, applies to (2A.19). If

κ(s) and τ(s) are given smooth functions on an interval I = (a, b) and s0 ∈ I, then,
given T0, N0, B0 ∈ R3, (2A.19) has a unique solution on s ∈ I satisfying

(2A.21) T (s0) = T0, N(s0) = N0, B(s0) = B0.

We now establish the following.

Proposition 2A.1. Assume κ and τ are given smooth functions on I, with κ > 0
on I. Assume {T0, N0, B0} is an orthonormal basis of R3, such that B0 = T0×N0.
Then there exists a smooth, unit-speed curve c(s), s ∈ I, for which the solution to
(2A.19) and (2A.21) is the Frenet frame.

To construct the curve, take T (s), N(s), and B(s) to solve (2A.19) and (2A.21),
pick p ∈ R3 and set

(2A.22) c(s) = p+

∫ s

s0

T (σ) dσ,

so T (s) = c′(s) is the velocity of this curve. To deduce that {T (s), N(s), B(s)} is
the Frenet frame for c(s), for all s ∈ I, we need to know:

(2A.23) {T (s), N(s), B(s)} orthonormal, with B(s) = T (s)×N(s), ∀ s ∈ I.
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In order to pursue the analysis further, it is convenient to form the 3×3 matrix-
valued function

(2A.24) F (s) = (T (s), N(s), B(s)),

whose columns consist respectively of T (s), N(s), and B(s). Then (2A.23) is
equivalent to

(2A.25) F (s) ∈ SO(3), ∀ s ∈ I,

with SO(3) defined as in §1.4. The hypothesis on {T0, N0, B0} stated in Proposition
7.1 is equivalent to F0 = (T0, N0, B0) ∈ SO(3). Now F (s) satisfies the differential
equation

(2A.26) F ′(s) = F (s)A(s), F (s0) = F0,

where

(2A.27) A(s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

 .

Note that

(2A.28)
dF ∗

ds
= A(s)∗F (s)∗ = −A(s)F (s)∗,

since A(s) in (2A.27) is skew-adjoint. Hence

(2A.29)

d

ds
F (s)F (s)∗ =

dF

ds
F (s)∗ + F (s)

dF ∗

ds
= F (s)A(s)F (s)∗ − F (s)A(s)F (s)∗

= 0.

Thus, whenever (2A.26)–(2A.27) hold,

(2A.30) F0F
∗
0 = I =⇒ F (s)F (s)∗ ≡ I,

and we have (2A.23).

Let us specialize the system (2A.19), or equivalently (2A.26), to the case where
κ and τ are constant, i.e.,

(2A.31) F ′(s) = F (s)A, A =

 0 −κ 0
κ 0 −τ
0 τ 0

 ,
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with solution

(2A.32) F (s) = F0 e
(s−s0)A.

We have already seen in that a helix of the form (2A.12) has curvature κ and torsion
τ , with

(2A.33) κ =
a

a2 + b2
, τ =

b

a2 + b2
,

and hence

(2A.34) a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.

In (2A.12), s and t are related by t = s
√
κ2 + τ2.

We can also see such a helix arise via a direct calculation of esA, which we now
produce. First, a straightforward calculation gives, for A as in (2A.31),

(2A.35) det(λI −A) = λ(λ2 + κ2 + τ2),

hence

(2A.36) Spec(A) = {0,±i
√
κ2 + τ2}.

An inspection shows that we can take

(2A.37) v1 =
1√

κ2 + τ2

 τ
0
κ

 , v2 =

 0
1
0

 , v3 =
1√

κ2 + τ2

−κ
0
τ

 ,

and then

(2A.38) Av1 = 0, Av2 =
√
κ2 + τ2 v3, Av3 = −

√
κ2 + τ2 v2.

In particular, with respect to the basis {v2, v3} of V = Span{v2, v3}, A|V has the
matrix representation

(2A.39) B =
√
κ2 + τ2

(
0 −1
1 0

)
.

We see that

(2A.40) esAv1 = v1,
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while

(2A.41)
esAv2 = (cos s

√
κ2 + τ2)v2 +(sin s

√
κ2 + τ2)v3,

esAv3 = −(sin s
√
κ2 + τ2)v2+(cos s

√
κ2 + τ2)v3.

Exercises

1. Consider a curve c(t) in R3, not necessarily parametrized by arclength. Show
that the acceleration a(t) is given by

(2A.42) a(t) =
d2s

dt2
T + κ

(ds
dt

)2

N.

Hint. Differentiate v(t) = (ds/dt)T (t) and use the chain rule dT/dt = (ds/dt)(dT/ds),
plus (2A.4).

2. Show that

(2A.43) κB =
v × a

‖v‖3
.

Hint. Take the cross product of both sides of (2A.42) with T , and use (2A.6).

3. In the setting of Exercises 1–2, show that

(2A.44) κ2τ‖v‖6 = −a · (v × a′).

Deduce from (2A.43)–(2A.44) that

(2A.45) τ =
(v × a) · a′

‖v × a‖2
.

Hint. Proceed from (2A.43) to

d

dt
(κ‖v‖3)B + κ‖v‖3 dB

dt
=

d

dt
(v × a) = v × a′,

and use dB/dt = −τ(ds/dt)N , as a consequence of (2A.9). Then dot with a, and
use a ·N = κ‖v‖2, from (2A.42), to get (2A.44).

4. Consider the curve c(t) in R3 given by

c(t) = (a cos t, b sin t, t),
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where a and b are given positive constants. Compute the curvature, torsion, and
Frenet frame.
Hint. Use (2A.43) to compute κ and B. Then use N = B × T . Use (2A.45) to
compute τ .

5. Suppose c and c̃ are two curves, both parametrized by arc length over 0 ≤ s ≤ L,
and both having the same curvature κ(s) > 0 and the same torsion τ(s). Show
that there exit x0 ∈ R3 and A ∈ O(3) such that

c̃(s) = Ac(s) + x0, ∀ s ∈ [0, L].

Hint. To begin, show that if their Frenet frames coincide at s = 0, i.e., T̃ (0) =

T (0), Ñ(0) = N(0), B̃(0) = B(0), then T̃ ≡ T, Ñ ≡ N, B̃ ≡ B.

6. Suppose c is a curve in R3 with curvature κ > 0. Show that there exists a plane
in which c(t) lies for all t if and only if τ ≡ 0.
Hint. When τ ≡ 0, the plane should be parallel to the orthogonal complement of
B.
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§6.4. New endgame to proof of Proposition 6.4.19

Let G be a smooth matrix group with a bi-invariant metric tensor. As seen in
Proposition 6.4.18, for each g ∈ G,

(6.4.109) ψg : G −→ G, ψg(x) = gx−1g,

is an isometry of G, fixing g and satisfying

(6.4.110) Dψg(g) = −I on TgG.

Here we aim to provide a new endgame to the proof of the following.

Proposition 6.4.19. If γ is a unit speed geodesic on G satisfying γ(0) = I, then

(6.4.111) γ(s+ t) = γ(s)γ(t).

Proof. Fix t ∈ R and consider

(6.4.112) σ(s) = γ(t+ s).

This is a unit-speed geodesic satisfying σ(0) = γ(t), σ′(0) = γ′(t). It follows from
Proposition 6.4.18 that

(6.4.113) σ̃(s) = ψγ(t)(σ(s))

is the unit-speed geodesic satisfying σ̃(0) = γ(t), σ̃′(0) = −γ′(t). This forces
σ̃(s) = γ(t− s), i.e.,

(6.4.114)
γ(t− s) = ψγ(t)(γ(t+ s))

= γ(t)γ(t+ s)−1γ(t).

Taking t = 0 gives

(6.4.115) γ(−s) = γ(s)−1,

and then taking s 7→ −s gives

(6.4.116) γ(s+ t) = γ(t)γ(s− t)γ(t).

Taking s = t gives γ(2t) = γ(t)2, and then we obtain by induction that

(6.4.117) γ((n+ 1)t) = γ(t)γ((n− 1)t)γ(t) = γ(t)n+1,

for each n ∈ N. A limiting argument gives (6.4.111) when s and t have the same
sign. In such a case, (6.4.114) gives

(6.4.117A) γ(t− s) = γ(t)γ(s)−1γ(t)−1γ(t) = γ(t)γ(−s),

so we have (6.4.111) in general.
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Chapter 7. Fourier analysis

§7.4. Comment on the dimensions of spaces of spherical harmonics

Section 7.4 deals with the space Vk of spherical harmonics of degree k on Sn−1,
seen to be isomorphic to the space

(1)
Hk = space of harmonic polynomials on Rn,

homogeneous of degree k.

It is shown in (7.4.49) that

(2) dimHk = dimPk(Rn−2) + dimPk−1(Rn−2),

where

(3) Pk(Rn) = space of polynomials on Rn, of degree ≤ k.

The formula

(4) dimPk(Rn) =

(
n+ k

k

)
leads to the computation that, on Sn−1,

(5) dimVk =

(
k + n− 2

k

)
+

(
k + n− 3

k − 1

)
.

See (7.4.52).
Here we point out that a nice derivation of (4) is given in the supplement “Further

power series exercises,” for §2.1. See Exercise 5 there.
An alternative formula for dim Vk appears in (7.4.123).
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Appendix A. Complementary material

§A.7. Correction of formula (A.7.39)

Formula (A.7.39) should be revised to read as follows:

(A.7.39) −(∆u, u)L2 = ‖du‖2L2 + ‖δu‖2L2 , u ∈ ΛkM.

That is, replace ‖∆u‖2L2 on the left side of the original (A.7.32) by (−∆u, u)L2 . This
is what actually follows from (A.7.36). With this change, none of the surrounding
arguments are affected.
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§A.7. Topological invariance of de Rham cohomology

If X is a smooth compact manifold, the definition of the de Rham cohomology
groups Hk(X) depends explicitly on the differential structure of X. In light of this,
it is of interest that the following topological invariance result holds.

Proposition T.1. Let X and Y be smooth, compact, n-dimensional manifolds,
and let

(T.1) f : X −→ Y be a homeomorphism.

Then f induces an isomorphism of de Rham cohomology,

(T.2) f∗ : Hk(Y ) −→ Hk(X), for 0 ≤ k ≤ n.

Part of the significance of this result lies in the fact that there are compact
smooth manifolds that are homeomorphic but not diffeomorphic. Indeed, [Mil]
stunned the mathematical world by producing smooth manifolds homeomorphic
but not diffeomorphic to S7.

Proof of Proposition T.1. First, embedding Y smoothly in some Euclidean space,
we can find a sequence of C∞ maps ϕν : X → Y such that ϕν → f uniformly as
ν → ∞. Similarly, with g = f−1 : Y → X, we can find C∞ maps ψν : Y → X such
that ψν → g uniformly. It follows that

(T.3) ψν ◦ ϕν : X → X and ϕν ◦ ψν : Y → Y

are smooth maps and ψν ◦ ϕν and ϕν ◦ ψν uniformly tend to the identity maps on
X and Y , respectively. Of course, we have the induced maps

(T.4) ϕ∗
ν : Hk(Y ) → Hk(X), ψ∗

ν : Hk(X) → Hk(Y ),

for 0 ≤ k ≤ n, hence

(T.5)
ϕ∗
ν ◦ ψ∗

ν = (ψν ◦ ϕν)
∗ : Hk(X) −→ Hk(X),

ψ∗
ν ◦ ϕ∗

ν = (ϕν ◦ ψν)
∗ : Hk(Y ) −→ Hk(Y ).

The key to the endgame is very simple. There exists N such that for ν ≥ N , ψν ◦ϕν

and ϕν ◦ ψν in (T.3) are smoothly homotopic to the identity maps on X and Y ,
respectively, so the induced maps on cohomology are the identity maps. That is,
the maps in (T.5) are the identity maps, for ν ≥ N . Hence, for ν ≥ N ,

(T.6) ϕ∗
ν : Hk(Y )

≈−→ Hk(X), ψ∗
ν : Hk(X)

≈−→ Hk(Y ),
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these maps being 2-sided inverses of each other.
We also note that, for N large enough,

(T.7)
µ, ν ≥ N ⇒ ϕν , ϕµ smoothly homotopic, ditto for ψν , ψµ

⇒ ϕ∗
ν = ϕ∗

µ and ψ∗
ν = ψ∗

µ in (T.4),

so the isomorphisms (T.6) are uniquely determined by the map f .

There are singular cohomology groups Hk
sing(X,R), designed to be topological

invariants, and a result known as de Rham’s theorem yields a natural isomorphism

(T.8) Hk(X) ≈ Hk
sing(X,R),

when X is a smooth compact manifold. A proof can be found in [Lee].
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